Science.gov

Sample records for acyl hydrolase activity

  1. A Bifunctional Enzyme That Has Both Monoacylglycerol Acyltransferase and Acyl Hydrolase Activities1[W][OA

    PubMed Central

    Vijayaraj, Panneerselvam; Jashal, Charnitkaur B.; Vijayakumar, Anitha; Rani, Sapa Hima; Venkata Rao, D.K.; Rajasekharan, Ram

    2012-01-01

    Monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, the precursor of triacylglycerol biosynthesis and an important signaling molecule. Here, we describe the isolation and characterization of the peanut (Arachis hypogaea) MGAT gene. The soluble enzyme utilizes invariant histidine-62 and aspartate-67 residues of the acyltransferase motif for its MGAT activity. A sequence analysis revealed the presence of a hydrolase (GXSXG) motif, and enzyme assays revealed the presence of monoacylglycerol (MAG) and lysophosphatidylcholine (LPC) hydrolytic activities, indicating the bifunctional nature of the enzyme. The overexpression of the MGAT gene in yeast (Saccharomyces cerevisiae) caused an increase in triacylglycerol accumulation. Similar to the peanut MGAT, the Arabidopsis (Arabidopsis thaliana) homolog (At1g52760) also exhibited both acyltransferase and hydrolase activities. Interestingly, the yeast homolog lacks the conserved HX4D motif, and it is deficient in the acyltransferase function but exhibits MAG and LPC hydrolase activities. This study demonstrates the presence of a soluble MGAT/hydrolase in plants. The predicted three-dimensional homology modeling and substrate docking suggested the presence of two separate substrate (MAG and LPC)-binding sites in a single polypeptide. Our study describes a soluble bifunctional enzyme that has both MGAT and hydrolase functions. PMID:22915575

  2. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids.

    PubMed Central

    Stahl, U.; Banas, A.; Stymne, S.

    1995-01-01

    Developing endosperms and embryos accumulating triacylglycerols rich in caproyl (decanoyl) groups (i.e. developing embryos of Cuphea procumbens and Ulmus glabra) had microsomal acyl hydrolases with high selectivities toward phosphatidylcholine with this acyl group. Similarly, membranes from Euphorbia lagascae and Ricinus communis endosperms, which accumulate triacylglycerols with vernoleate (12-epoxy-octadeca-9-enoate) and ricinoleate (12-hydroxy-octadeca-9-enoate), respectively, had acyl hydrolases that selectively removed their respective oxygenated acyl group from the phospholipids. The activities toward phospholipid substrates with epoxy, hydroxy, and medium-chain acyl groups varied greatly between microsomal preparations from different plant species. Epoxidated and hydroxylated acyl groups in sn-1 and sn-2 positions of phosphatidylcholine and in sn-1-lysophosphatidylcholine were hydrolyzed to a similar extent, whereas the hydrolysis of caproyl groups was highly dependent on the positional localization. PMID:12228415

  3. Inhibition of Diabrotica Larval Growth by Patatin, the Lipid Acyl Hydrolase from Potato Tubers.

    PubMed Central

    Strickland, J. A.; Orr, G. L.; Walsh, T. A.

    1995-01-01

    Patatin, the nonspecific lipid acyl hydrolase from potato (Solanum tuberosum L.) tubers, dose-dependently inhibits the growth of southern corn rootworm (SCR) and western corn rootworm when fed to them on artificial diet. The 50% growth reduction levels are somewhat cultivar dependent, ranging from 60 to 150 [mu]g/g diet for neonate SCR larvae. A single patatin isoform also inhibits larval growth. Neonate SCR continuously exposed to patatin are halted in larval development. Treatment with di-isopropylfluorophosphate essentially eliminates patatin's phospholipase, galactolipase, and acyl hydrolase activities. SCR growth inhibition is eliminated also, indicating that patatin's serine hydrolase activity is responsible for the observed activities. Patatin-mediated phospholipolysis is highly pH and cultivar dependent, with specific activities up to 300-fold less at pH 5.5 than at pH 8.5. Esterase or phospholipase activities do not correlate with insect growth inhibition. Galactolipase activity, being cultivar and pH independent, correlates significantly with SCR growth inhibition. Insect-growth inhibition of patatin is significantly reduced with increased dietary cholesterol levels. In conclusion, patatin represents a new class of insect-control proteins with a novel mode of action possibly involving lipid metabolism. PMID:12228621

  4. Inhibition of Diabrotica Larval Growth by Patatin, the Lipid Acyl Hydrolase from Potato Tubers.

    PubMed

    Strickland, J. A.; Orr, G. L.; Walsh, T. A.

    1995-10-01

    Patatin, the nonspecific lipid acyl hydrolase from potato (Solanum tuberosum L.) tubers, dose-dependently inhibits the growth of southern corn rootworm (SCR) and western corn rootworm when fed to them on artificial diet. The 50% growth reduction levels are somewhat cultivar dependent, ranging from 60 to 150 [mu]g/g diet for neonate SCR larvae. A single patatin isoform also inhibits larval growth. Neonate SCR continuously exposed to patatin are halted in larval development. Treatment with di-isopropylfluorophosphate essentially eliminates patatin's phospholipase, galactolipase, and acyl hydrolase activities. SCR growth inhibition is eliminated also, indicating that patatin's serine hydrolase activity is responsible for the observed activities. Patatin-mediated phospholipolysis is highly pH and cultivar dependent, with specific activities up to 300-fold less at pH 5.5 than at pH 8.5. Esterase or phospholipase activities do not correlate with insect growth inhibition. Galactolipase activity, being cultivar and pH independent, correlates significantly with SCR growth inhibition. Insect-growth inhibition of patatin is significantly reduced with increased dietary cholesterol levels. In conclusion, patatin represents a new class of insect-control proteins with a novel mode of action possibly involving lipid metabolism. PMID:12228621

  5. Selectivity of celite-immobilized patatin (lipid acyl hydrolase) from potato (Solanum tuberosum L.) tubers in esterification reactions As influenced by water activity and glycerol analogues as alcohol acceptors.

    PubMed

    Pinsirodom, P; Parkin, K L

    2000-02-01

    Lipid acyl hydrolase (LAH; patatin) was purified from potato tubers by ammonium sulfate fractionation followed by anion-exchange and affinity chromatography. The major protein band of 40-43 kDa on SDS-PAGE appeared to be patatin, and it stained positive for lipase activity on native PAGE. Selectivity of a Celite-immobilized potato LAH in esterification reactions with n-acyl fatty acids (FA; C4, C6, C8, C10, C12, C14, C16, and C18) and alcohol acceptors (n-propanol, 2-propanol, 1,3-propanediol, and glycerol; 1,2-propanediol was not sufficiently reactive) was studied in isooctane. Immobilized LAH was highly selective for medium chain FAs (C8/C10) with a secondary optimum for chain lengths of C14/16. Water activity (a(w)) influenced activity and FA selectivity of the enzyme. Initial rates of ester synthesis were greatest at a(w) of 0.90 for all alcohol acceptors except for glycerol, where greatest initial rates were observed at a(w) of 0.19. Immobilized LAH preparations exhibited a bell-shape pH profile with optimum activity at pH 6-7 for ester synthesis, and no effect of pH on FA selectivity was observed. PMID:10691609

  6. Characterization of a Serine Hydrolase Targeted by Acyl-protein Thioesterase Inhibitors in Toxoplasma gondii

    PubMed Central

    Kemp, Louise E.; Rusch, Marion; Adibekian, Alexander; Bullen, Hayley E.; Graindorge, Arnault; Freymond, Céline; Rottmann, Matthias; Braun-Breton, Catherine; Baumeister, Stefan; Porfetye, Arthur T.; Vetter, Ingrid R.; Hedberg, Christian; Soldati-Favre, Dominique

    2013-01-01

    In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of β-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the β-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein. PMID:23913689

  7. Soluble Epoxide Hydrolase Dimerization Is Required for Hydrolase Activity*

    PubMed Central

    Nelson, Jonathan W.; Subrahmanyan, Rishi M.; Summers, Sol A.; Xiao, Xiangshu; Alkayed, Nabil J.

    2013-01-01

    Soluble epoxide hydrolase (sEH) plays a key role in the metabolic conversion of the protective eicosanoid 14,15-epoxyeicosatrienoic acid to 14,15-dihydroxyeicosatrienoic acid. Accordingly, inhibition of sEH hydrolase activity has been shown to be beneficial in multiple models of cardiovascular diseases, thus identifying sEH as a valuable therapeutic target. Recently, a common human polymorphism (R287Q) was identified that reduces sEH hydrolase activity and is localized to the dimerization interface of the protein, suggesting a relationship between sEH dimerization and activity. To directly test the hypothesis that dimerization is essential for the proper function of sEH, we generated mutations within the sEH protein that would either disrupt or stabilize dimerization. We quantified the dimerization state of each mutant using a split firefly luciferase protein fragment-assisted complementation system. The hydrolase activity of each mutant was determined using a fluorescence-based substrate conversion assay. We found that mutations that disrupted dimerization also eliminated hydrolase enzymatic activity. In contrast, a mutation that stabilized dimerization restored hydrolase activity. Finally, we investigated the kinetics of sEH dimerization and found that the human R287Q polymorphism was metastable and capable of swapping dimer partners faster than the WT enzyme. These results indicate that dimerization is required for sEH hydrolase activity. Disrupting sEH dimerization may therefore serve as a novel therapeutic strategy for reducing sEH hydrolase activity. PMID:23362272

  8. Soluble epoxide hydrolase dimerization is required for hydrolase activity.

    PubMed

    Nelson, Jonathan W; Subrahmanyan, Rishi M; Summers, Sol A; Xiao, Xiangshu; Alkayed, Nabil J

    2013-03-15

    Soluble epoxide hydrolase (sEH) plays a key role in the metabolic conversion of the protective eicosanoid 14,15-epoxyeicosatrienoic acid to 14,15-dihydroxyeicosatrienoic acid. Accordingly, inhibition of sEH hydrolase activity has been shown to be beneficial in multiple models of cardiovascular diseases, thus identifying sEH as a valuable therapeutic target. Recently, a common human polymorphism (R287Q) was identified that reduces sEH hydrolase activity and is localized to the dimerization interface of the protein, suggesting a relationship between sEH dimerization and activity. To directly test the hypothesis that dimerization is essential for the proper function of sEH, we generated mutations within the sEH protein that would either disrupt or stabilize dimerization. We quantified the dimerization state of each mutant using a split firefly luciferase protein fragment-assisted complementation system. The hydrolase activity of each mutant was determined using a fluorescence-based substrate conversion assay. We found that mutations that disrupted dimerization also eliminated hydrolase enzymatic activity. In contrast, a mutation that stabilized dimerization restored hydrolase activity. Finally, we investigated the kinetics of sEH dimerization and found that the human R287Q polymorphism was metastable and capable of swapping dimer partners faster than the WT enzyme. These results indicate that dimerization is required for sEH hydrolase activity. Disrupting sEH dimerization may therefore serve as a novel therapeutic strategy for reducing sEH hydrolase activity. PMID:23362272

  9. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    PubMed Central

    Rodríguez-Durán, Luis V.; Valdivia-Urdiales, Blanca; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N.

    2011-01-01

    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme. PMID:21941633

  10. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors.

    PubMed

    Adibekian, Alexander; Martin, Brent R; Wang, Chu; Hsu, Ku-Lung; Bachovchin, Daniel A; Niessen, Sherry; Hoover, Heather; Cravatt, Benjamin F

    2011-07-01

    Serine hydrolases are a diverse enzyme class representing ∼1% of all human proteins. The biological functions of most serine hydrolases remain poorly characterized owing to a lack of selective inhibitors to probe their activity in living systems. Here we show that a substantial number of serine hydrolases can be irreversibly inactivated by 1,2,3-triazole ureas, which show negligible cross-reactivity with other protein classes. Rapid lead optimization by click chemistry-enabled synthesis and competitive activity-based profiling identified 1,2,3-triazole ureas that selectively inhibit enzymes from diverse branches of the serine hydrolase class, including peptidases (acyl-peptide hydrolase, or APEH), lipases (platelet-activating factor acetylhydrolase-2, or PAFAH2) and uncharacterized hydrolases (α,β-hydrolase-11, or ABHD11), with exceptional potency in cells (sub-nanomolar) and mice (<1 mg kg(-1)). We show that APEH inhibition leads to accumulation of N-acetylated proteins and promotes proliferation in T cells. These data indicate 1,2,3-triazole ureas are a pharmacologically privileged chemotype for serine hydrolase inhibition, combining broad activity across the serine hydrolase class with tunable selectivity for individual enzymes. PMID:21572424

  11. Effects of hypo- and hyperthyroidism on rat liver microsomal long-chain fatty acyl-CoA synthetase and hydrolase

    SciTech Connect

    Dang, A.Q.; Faas, F.H.; Carter, W.J.

    1986-05-01

    The effects of hyperthyroidism (hyperT/sub 3/), (tri-iodothryonine (T/sub 3/) injected rats), and hypothyroidism (hypoT/sub 3/) (thyroidectomized rats) on the activation of fatty acids by a microsomal long-chain fatty acyl-CoA (LCA-CoA) synthetase and the degradation of LCA-CoA by a microsomal LCA-CoA hydrolase was determined. MAS was assayed by measuring the (1-/sup 14/C)-palmitate or -1-/sup 14/C) oleate incorporated into its water soluble CoA ester. MAH was assayed spectrophotomerically by following the reduction of 5',5'-dithiobis-(2-nitrobenzoic acid) by the CoA released from palmitoyl-CoA or oleoyl-CoA. Enzyme activities are given as mean (nmoles/mg/min) +/- SEM. MAS activities were decreased 36-44% (p < 0.01) in both hypoT/sub 3/ and hyperT/sub 3/ (controls = 101 +/- 4 (n = 11, (1-/sup 14/C)-palmitate) of 72 +/- 2 (n = 5,(1-/sup 14/C)oleate)). These decreases may contribute to the decreased triacelyglycerol (TG) and phospholipid contents in the hyperT/sub 3/ liver and the decreased clearance rate of plasma TG in the hypoT/sub 3/. MAH was decreased 27-42% (p<0.01) only in hypoT/sub 3/ (controls = 77 +/- 3 (n = 11, palmitoyl-CoA) or 45 +/- 1 (n = 5, oleoyl-CoA)). This decrease was corrected by T/sub 3/ treatment. Since the decreased MAH would increase the availability of LCA-CoA, it may contribute to the increased TG synthesis in hypoT/sub 3/.

  12. Emergent decarboxylase activity and attenuation of α/β-hydrolase activity during the evolution of methylketone biosynthesis in tomato.

    PubMed

    Auldridge, Michele E; Guo, Yongxia; Austin, Michael B; Ramsey, Justin; Fridman, Eyal; Pichersky, Eran; Noel, Joseph P

    2012-04-01

    Specialized methylketone-containing metabolites accumulate in certain plants, in particular wild tomatoes in which they serve as toxic compounds against chewing insects. In Solanum habrochaites f. glabratum, methylketone biosynthesis occurs in the plastids of glandular trichomes and begins with intermediates of de novo fatty acid synthesis. These fatty-acyl intermediates are converted via sequential reactions catalyzed by Methylketone Synthase2 (MKS2) and MKS1 to produce the n-1 methylketone. We report crystal structures of S. habrochaites MKS1, an atypical member of the α/β-hydrolase superfamily. Sequence comparisons revealed the MKS1 catalytic triad, Ala-His-Asn, as divergent to the traditional α/β-hydrolase triad, Ser-His-Asp. Determination of the MKS1 structure points to a novel enzymatic mechanism dependent upon residues Thr-18 and His-243, confirmed by biochemical assays. Structural analysis further reveals a tunnel leading from the active site consisting mostly of hydrophobic residues, an environment well suited for fatty-acyl chain binding. We confirmed the importance of this substrate binding mode by substituting several amino acids leading to an alteration in the acyl-chain length preference of MKS1. Furthermore, we employ structure-guided mutagenesis and functional assays to demonstrate that MKS1, unlike enzymes from this hydrolase superfamily, is not an efficient hydrolase but instead catalyzes the decarboxylation of 3-keto acids. PMID:22523203

  13. Competitive Activity-Based Protein Profiling Identifies Aza-β-Lactams as a Versatile Chemotype for Serine Hydrolase Inhibition

    PubMed Central

    Zuhl, Andrea M.; Mohr, Justin T.; Bachovchin, Daniel A.; Niessen, Sherry; Hsu, Ku-Lung; Berlin, Jacob M.; Dochnahl, Maximilian; López-Alberca, María P.; Fu, Gregory C.; Cravatt, Benjamin F.

    2012-01-01

    Serine hydrolases are one of the largest and most diverse enzyme classes in Nature. Most serine hydrolases lack selective inhibitors, which are needed for assigning functions to these enzymes. We recently discovered a set of aza-β-lactams (ABLs) that act as potent and selective inhibitors of the mammalian serine hydrolase protein-phosphatase methylesterase-1 (PME-1). The ABLs inactivate PME-1 by covalent acylation of the enzyme’s serine nucleophile, suggesting that they could offer a general scaffold for serine hydrolase inhibitor discovery. Here, we have tested this hypothesis by screening ABLs more broadly against cell and tissue proteomes by competitive activity-based protein profiling (ABPP), leading to the discovery of lead inhibitors for several serine hydrolases, including the uncharacterized enzyme alpha, beta-hydrolase-10 (ABHD10). ABPP-guided medicinal chemistry yielded a compound ABL303 that potently (IC50 value ~ 30 nM) and selectively inactivated ABHD10 in vitro and in living cells. A comparison of optimized inhibitors for PME-1 and ABHD10 indicates that modest structural changes that alter steric bulk can tailor the ABL to selectively react with distinct, sequence-unrelated serine hydrolases. Our findings, taken together, designate the ABL as a versatile reactive group for creating first-in-class serine hydrolase inhibitors. PMID:22400490

  14. Competitive activity-based protein profiling identifies aza-β-lactams as a versatile chemotype for serine hydrolase inhibition.

    PubMed

    Zuhl, Andrea M; Mohr, Justin T; Bachovchin, Daniel A; Niessen, Sherry; Hsu, Ku-Lung; Berlin, Jacob M; Dochnahl, Maximilian; López-Alberca, María P; Fu, Gregory C; Cravatt, Benjamin F

    2012-03-21

    Serine hydrolases are one of the largest and most diverse enzyme classes in Nature. Most serine hydrolases lack selective inhibitors, which are valuable probes for assigning functions to these enzymes. We recently discovered a set of aza-β-lactams (ABLs) that act as potent and selective inhibitors of the mammalian serine hydrolase protein-phosphatase methylesterase-1 (PME-1). The ABLs inactivate PME-1 by covalent acylation of the enzyme's serine nucleophile, suggesting that they could offer a general scaffold for serine hydrolase inhibitor discovery. Here, we have tested this hypothesis by screening ABLs more broadly against cell and tissue proteomes by competitive activity-based protein profiling (ABPP), leading to the discovery of lead inhibitors for several serine hydrolases, including the uncharacterized enzyme α,β-hydrolase domain-containing 10 (ABHD10). ABPP-guided medicinal chemistry yielded a compound ABL303 that potently (IC(50) ≈ 30 nM) and selectively inactivated ABHD10 in vitro and in living cells. A comparison of optimized inhibitors for PME-1 and ABHD10 indicates that modest structural changes that alter steric bulk can tailor the ABL to selectively react with distinct, distantly related serine hydrolases. Our findings, taken together, designate the ABL as a versatile reactive group for creating first-in-class serine hydrolase inhibitors. PMID:22400490

  15. Acyl-acyl carrier protein: Lysomonogalactosyldiacylglycerol acyl transferase in Anabaena variabilis

    SciTech Connect

    Chen, H.H.

    1989-01-01

    Monogalactosyldiacylglycerol was produced when membranes isolated from the cyanobacterium, Anabaena variabilis, and washed free of soluble endogenous constituents, were incubated with ({sup 14}C)acyl-acyl carrier protein. This enzymatic synthesis of monogalactosyldiacylglycerol localized in the membranes was not dependent on any added cofactors, such as ATP, coenzyme A, and dithiothreitol. Palmitoyl-, stearoyl-, and oleoyl-acyl carrier proteins were approximately equally active as substrates with Km of 0.37, 0.36, and 0.23 {mu}M, respectively. The ({sup 14}C)acyl group was exclusively transferred to the sn-1 hydroxyl of the glycerol backbone of monogalactosyldiacylglycerol as demonstrated by hydrolysis of all incorporated acyl groups by the lipase from Rhizopus arrhizus delamar. Using a double labelled ({sup 14}C)acyl-({sup 14}C)acyl carrier protein, this enzyme catalyzed the direct transfer of the acyl group from acyl-acyl carrier protein to an endogenous lysomonogalactosyldiacylglycerol to form monogalactosyldiacylglycerol. The transfer reaction mechanism was also confirmed by the increased activity with the addition of the lysomonogalactosyldiacylglycerol suspension. A specific galactolipid acyl hydrolase activity was released into the soluble protein fraction when the membranes of Anabaena variabilis were treated with 2% Triton X-100. The positional specificity of this acyl hydrolase was demonstrated to be similar to that of Rhizopus lipase, i.e. only the acyl group at the sn-1 position was hydrolyzed. The acyl hydrolase which was also localized in the membrane fraction of Anabaena variabilis was presumably responsible for producing endogenous lysomonogalactosyldiacylglycerol used by the acyltransferase.

  16. Click-generated triazole ureas as ultrapotent, in vivo-active serine hydrolase inhibitors

    PubMed Central

    Adibekian, Alexander; Martin, Brent R.; Wang, Chu; Hsu, Ku-Lung; Bachovchin, Daniel A.; Niessen, Sherry; Hoover, Heather; Cravatt, Benjamin F.

    2011-01-01

    Serine hydrolases (SHs) are a diverse enzyme class representing > 1% of all human proteins. The biological functions for most SHs remain poorly characterized due to a lack of selective inhibitors to probe their activity in living systems. Here, we show that a substantial number of SHs can be irreversibly inactivated by 1,2,3-triazole ureas, which exhibit negligible cross-reactivity with other protein classes. Rapid lead optimization by click chemistry-enabled synthesis and competitive activity-based profiling identified 1,2,3-triazole ureas that selectively inhibit enzymes from diverse branches of the SH superfamily, including peptidases (acyl-peptide hydrolase or APEH), lipases (platelet-activating factor acetylhyrolase-2 or PAFAH2), and uncharacterized hydrolases (α, β-hydrolase 11 or ABHD11), with exceptional potency in cells (sub-nM) and mice (< 1 mg/kg). We show that APEH inhibition leads to accumulation of N-acetylated proteins and promotes proliferation in T-cells. These data designate 1,2,3-triazole ureas as a pharmacologically privileged chemotype for SH inhibition that shows broad activity across the SH class coupled with tunable selectivity for individual enzymes. PMID:21572424

  17. Detection and determination of lipase (acylglycerol hydrolase) activity from various sources.

    PubMed

    Jensen, R G

    1983-09-01

    Methods for the detection and determination of lipases (acylglycerol hydrolases) and preparation of assays are reviewed including substrates, conditions and screening. Some newer methods for the determination of lipase activity are discussed. Several of these are: (a) titrimetry, (b) colorimetry of Cu soaps of free fatty acids (FFA), (c) colorimetry of chromophores in the acyl chain of FFA or in glycerol, (d) radioassay, (e) gas liquid chromatography, (f) enzymatic treatment of FFA and measurement of the resulting products, and (g) direct immunological determination of the lipase. Examples and sensitivities are given and advantages and disadvantages are described. PMID:6633171

  18. Acyl silicates and acyl aluminates as activated intermediates in peptide formation on clays

    NASA Technical Reports Server (NTRS)

    White, D. H.; Kennedy, R. M.; Macklin, J.

    1984-01-01

    Glycine reacts with heating on dried clays and other minerals to give peptides in much better yield than in the absence of mineral. This reaction was proposed to occur by way of an activated intermediate such as an acyl silicate or acyl aluminate analogous to acyl phosphates involved in several biochemical reactions including peptide bond synthesis. The proposed mechanism has been confirmed by trapping the intermediate, as well as by direct spectroscopic observation of a related intermediate. The reaction of amino acids on periodically dried mineral surfaces represents a widespead, geologically realistic setting for prebiotic peptide formation via in situ activation.

  19. Complete amino acid sequence of the medium-chain S-acyl fatty acid synthetase thio ester hydrolase from rat mammary gland

    SciTech Connect

    Randhawa, Z.I.; Smith, S.

    1987-03-10

    The complete amino acid sequence of the medium-chain S-acyl fatty acid synthetase thio ester hydrolase (thioesterase II) from rat mammary gland is presented. Most of the sequence was derived by analysis of (/sup 14/C)-labelled peptide fragments produced by cleavage at methionyl, glutamyl, lysyl, arginyl, and tryptophanyl residues. A small section of the sequence was deduced from a previously analyzed cDNA clone. The protein consists of 260 residues and has a blocked amino-terminal methionine and calculated M/sub r/ of 29,212. The carboxy-terminal sequence, verified by Edman degradation of the carboxy-terminal cyanogen bromide fragment and carboxypeptidase Y digestion of the intact thioesterase II, terminates with a serine residue and lacks three additional residues predicted by the cDNA sequence. The native enzyme contains three cysteine residues but no disulfide bridges. The active site serine residue is located at position 101. The rat mammary gland thioesterase II exhibits approximately 40% homology with a thioesterase from mallard uropygial gland, the sequence of which was recently determined by cDNA analysis. Thus the two enzymes may share similar structural features and a common evolutionary origin. The location of the active site in these thioesterases differs from that of other serine active site esterases; indeed, the enzymes do not exhibit any significant homology with other serine esterases, suggesting that they may constitute a separate new family of serine active site enzymes.

  20. Purification and Characterization of Tannin Acyl Hydrolase Produced by Mixed Solid State Fermentation of Wheat Bran and Marigold Flower by Penicillium notatum NCIM 923

    PubMed Central

    Gayen, Saswati; Ghosh, Uma

    2013-01-01

    Tannin acyl hydrolase produced extracellularly by the fungal strain Penicillium notatum NCIM 923 in mixed solid state fermentation of wheat bran and marigold flower in the ratio 4 : 1 was purified from the cell-free extract broth by ammonium sulphate fractionation followed by diethylaminoethyl-cellulose column chromatography. Tannase was purified by 19.89-fold with yield of 11.77%. The specific activity of crude tannase was found to be 1.31 U/mg protein while that of purified tannase was 22.48 U/mg protein. SDS-PAGE analysis indicated that the enzyme is dimeric with one major band of molecular mass 97 kDa and a very light band of molecular mass 43 kDa. Temperature of 35 to 40°C and pH 5 were optimum for tannase activity. The enzyme retained more than 60% of its stability at 60°C and 40% stability at pH 3 and 8, respectively. Km was found to be 0.33 × 10−2 M and Vmax = 40 U/mg. Since the enzyme is active over a wide range of pH and temperature, it could find potential use in the food processing industry. PMID:24350277

  1. Acyl Silicates and Acyl Aluminates as Activated Intermediates in Peptide Formation on Clays

    NASA Astrophysics Data System (ADS)

    White, David H.; Kennedy, Robert M.; Macklin, John

    1984-12-01

    Glycine reacts with heating on dried clays and other minerals to give peptides in much better yield than in the absence of mineral. This reaction was proposed to occur by way of an activated intermediate such as an acyl silicate or acyl aluminate (i.e., the anhydride of a carboxylic acid with Si-OH or Al-OH), analogous to acyl phosphates involved in several biochemical reactions including peptide bond synthesis. We confirmed the proposed mechanism by trapping the intermediate, as well as by direct spectroscopic observation of a related intermediate. The reaction of amino acids on periodically dried mineral surfaces represents a widespread, geologically realistic setting for prebiotic peptide formation via in situ activation.

  2. Identification of an Acyl-Enzyme Intermediate in a meta-Cleavage Product Hydrolase Reveals the Versatility of the Catalytic Triad

    SciTech Connect

    Ruzzini, Antonio C.; Ghosh, Subhangi; Horsman, Geoff P.; Foster, Leonard J.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2012-03-14

    Meta-cleavage product (MCP) hydrolases are members of the {alpha}/{beta}-hydrolase superfamily that utilize a Ser-His-Asp triad to catalyze the hydrolysis of a C-C bond. BphD, the MCP hydrolase from the biphenyl degradation pathway, hydrolyzes 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to 2-hydroxypenta-2,4-dienoic acid (HPD) and benzoate. A 1.6 {angstrom} resolution crystal structure of BphD H265Q incubated with HOPDA revealed that the enzyme's catalytic serine was benzoylated. The acyl-enzyme is stabilized by hydrogen bonding from the amide backbone of 'oxyanion hole' residues, consistent with formation of a tetrahedral oxyanion during nucleophilic attack by Ser112. Chemical quench and mass spectrometry studies substantiated the formation and decay of a Ser112-benzoyl species in wild-type BphD on a time scale consistent with turnover and incorporation of a single equivalent of {sup 18}O into the benzoate produced during hydrolysis in H{sub 2}{sup 18}O. Rapid-scanning kinetic studies indicated that the catalytic histidine contributes to the rate of acylation by only an order of magnitude, but affects the rate of deacylation by over 5 orders of magnitude. The orange-colored catalytic intermediate, ES{sup red}, previously detected in the wild-type enzyme and proposed herein to be a carbanion, was not observed during hydrolysis by H265Q. In the newly proposed mechanism, the carbanion abstracts a proton from Ser112, thereby completing tautomerization and generating a serinate for nucleophilic attack on the C6-carbonyl. Finally, quantification of an observed pre-steady-state kinetic burst suggests that BphD is a half-site reactive enzyme. While the updated catalytic mechanism shares features with the serine proteases, MCP hydrolase-specific chemistry highlights the versatility of the Ser-His-Asp triad.

  3. Human α/β hydrolase domain containing 10 (ABHD10) is responsible enzyme for deglucuronidation of mycophenolic acid acyl-glucuronide in liver.

    PubMed

    Iwamura, Atsushi; Fukami, Tatsuki; Higuchi, Ryota; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-03-16

    Mycophenolic acid (MPA), the active metabolite of the immunosuppressant mycophenolate mofetil (MMF), is primarily metabolized by glucuronidation to a phenolic glucuronide (MPAG) and an acyl glucuronide (AcMPAG). It is known that AcMPAG, which may be an immunotoxic metabolite, is deglucuronidated in human liver. However, it has been reported that recombinant β-glucuronidase does not catalyze this reaction. AcMPAG deglucuronidation activity was detected in both human liver cytosol (HLC) and microsomes (HLM). In this study, the enzyme responsible for AcMPAG deglucuronidation was identified by purification from HLC with column chromatographic purification steps. The purified enzyme was identified as α/β hydrolase domain containing 10 (ABHD10) by amino acid sequence analysis. Recombinant ABHD10 expressed in Sf9 cells efficiently deglucuronidated AcMPAG with a K(m) value of 100.7 ± 10.2 μM, which was similar to those in HLM, HLC, and human liver homogenates (HLH). Immunoblot analysis revealed ABHD10 protein expression in both HLC and HLM. The AcMPAG deglucuronidation by recombinant ABHD10, HLC, and HLH were potently inhibited by AgNO(3), CdCl(2), CuCl(2), PMSF, bis-p-nitrophenylphosphate, and DTNB. The CL(int) value of AcMPAG formation from MPA, which was catalyzed by human UGT2B7, in HLH was increased by 1.8-fold in the presence of PMSF. Thus, human ABHD10 would affect the formation of AcMPAG, the immunotoxic metabolite. PMID:22294686

  4. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    SciTech Connect

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai; Lee, Kyung-Dall; Amidon, Gordon L.

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar to tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.

  5. Influence of the degree of unsaturation of the acyl side chain upon the interaction of analogues of 1-arachidonoylglycerol with monoacylglycerol lipase and fatty acid amide hydrolase

    SciTech Connect

    Vandevoorde, Severine; Saha, Bijali; Mahadevan, Anu; Razdan, Raj K.; Pertwee, Roger G.; Martin, Billy R.; Fowler, Christopher J. . E-mail: cf@pharm.umu.se

    2005-11-11

    Little is known as to the structural requirements of the acyl side chain for interaction of acylglycerols with monoacylglycerol lipase (MAGL), the enzyme chiefly responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain. In the present study, a series of twelve analogues of 1-AG (the more stable regioisomer of 2-AG) were investigated with respect to their ability to inhibit the metabolism of 2-oleoylglycerol by cytosolic and membrane-bound MAGL. In addition, the ability of the compounds to inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) was investigated. For cytosolic MAGL, compounds with 20 carbon atoms in the acyl chain and 2-5 unsaturated bonds inhibited the hydrolysis of 2-oleoylglycerol with similar potencies (IC{sub 50} values in the range 5.1-8.2 {mu}M), whereas the two compounds with a single unsaturated bond were less potent (IC{sub 50} values 19 and 21 {mu}M). The fully saturated analogue 1-monoarachidin did not inhibit the enzyme, whereas the lower side chain analogues 1-monopalmitin and 1-monomyristin inhibited the enzyme with IC{sub 50} values of 12 and 32 {mu}M, respectively. The 22-carbon chain analogue of 1-AG was also potent (IC{sub 50} value 4.5 {mu}M). Introduction of an {alpha}-methyl group for the C20:4, C20:3, and C22:4 compounds did not affect potency in a consistent manner. For the FAAH and the membrane-bound MAGL, there was no obvious relationship between the degree of unsaturation of the acyl side chain and the ability to inhibit the enzymes. It is concluded that increasing the number of unsaturated bonds on the acyl side chain of 1-AG from 1 to 5 has little effect on the affinity of acylglycerols for cytosolic MAGL.

  6. [Regulation of peptide hydrolase activity in psoriasis].

    PubMed

    Suworow, A P

    1990-01-01

    Clinico-biological examination of 154 patients with psoriasis resulted in data showing high activity of endo- and exopeptidases in efflorescences of that dermatosis. This was accompanied by depressed activity of trypsin inhibitor. At the same time magnesium deficiency, polysaccharide decrease and leucocyte increase were stated to be in the focus of skin damage. That character of interrelation, which play an important role in the pathogenesis of this widespread skin disease, is demonstrated. PMID:2257941

  7. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  8. Active site and laminarin binding in glycoside hydrolase family 55.

    PubMed

    Bianchetti, Christopher M; Takasuka, Taichi E; Deutsch, Sam; Udell, Hannah S; Yik, Eric J; Bergeman, Lai F; Fox, Brian G

    2015-05-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  9. Monogalactosyldiacylglycerol biosynthesis by direct acyl transfer in Anabaene variabilis

    SciTech Connect

    Chen, H.H.; Wickrema, A.; Jaworski, J.

    1987-04-01

    The authors previously reported the direct acylation of monogalactosyldiacylglycerol (MGDG) by an enzyme in the membranes of the cyanobacterium Anabaena variabilis. The enzyme requires acyl-acyl carrier protein (acyl-ACP) as substrate, but had no other additional cofactor requirements. Palmitoyl-, stearoyl- and oleoyl-ACP were all effective substrates. The A. variabilis membranes also had a hydrolase activity which metabolized the acyl-ACP to yield free fatty acid and ACP. Possible mechanisms for the acylation reaction include either acyl exchange with existing MGDG or direct acyl transfer to a lyso-MGDG, with concomitant release of free ACP. The mechanism of this reaction has been resolved using a double labelled (/sup 14/C)acyl-(/sup 14/)ACP substrate prepared with E. coli acyl-ACP synthetase. Following incubation with the enzyme, the unreacted (/sup 14/)acyl-(/sup 14/)ACP was isolated and the (/sup 14/)acyl/(/sup 14/)ACP ratio determined. Comparison of this ratio to that of the original substrate indicated no change and eliminated acyl exchange as a possible mechanism. Therefore, the direct acylation of lyso-MGDG is the proposed mechanism for this enzyme.

  10. Glycerol Ester Hydrolase Activity of Lactic Acid Bacteria

    PubMed Central

    Oterholm, Anders; Ordal, Z. John; Witter, Lloyd D.

    1968-01-01

    Seventeen strains of lactic acid bacteria were assayed for their glycerol ester hydrolase activity by using an improved agar-well technique, and eight strains by determining the activity in cell-free extracts using a pH-stat procedure. All cultures tested showed activity and hydrolyzed tributyrin more actively than they did tricaproin. The cell extract studies demonstrated that the cells contained intracellular esterases and lipases. The culture supernatant fluid was without activity. The lipase and the esterase differed in their relative activity to each other in the different extracts and in the ease by which they could be freed from the cellular debris. It is suggested that the lipase of these organisms is an endoenzyme and the esterase an ectoenzyme. PMID:5649866

  11. New acylated anthocyanins from purple yam and their antioxidant activity.

    PubMed

    Moriya, Chiemi; Hosoya, Takahiro; Agawa, Sayuri; Sugiyama, Yasumasa; Kozone, Ikuko; Shin-Ya, Kazuo; Terahara, Norihiko; Kumazawa, Shigenori

    2015-01-01

    Purple yam (Dioscorea alata L.), which is widely distributed in tropical and subtropical regions, is characterized by its color and viscosity. Previous studies have shown that purple yams contain a variety of acylated anthocyanins that exhibit higher levels of antioxidant activity than the corresponding nonacylated compounds. In this study, the pigments found in purple yams from the Philippines (D. alata) were isolated and evaluated in terms of antioxidant activity. Four new acylated anthocyanins, alanins (1-4) were isolated from the MeOH extracts of purple yam, which were subsequently determined to be cyanidin (1, 2, and 4) and peonidin (3) type compounds, along with four known anthocyanins (5-8). The structures of 1-4 were determined by spectroscopic methods, including NMR and MS analyses. The antioxidant activities of anthocyanins 1-8 were investigated using oxygen radical absorbing capacity and ferric reducing antioxidant power assays. PMID:25848974

  12. A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser-His-Asp Containing C-C Bond Hydrolase

    SciTech Connect

    Ruzzini, Antonio C.; Bhowmik, Shiva; Ghosh, Subhangi; Yam, Katherine C.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2013-11-12

    The meta-cleavage product (MCP) hydrolases utilize a Ser–His–Asp triad to hydrolyze a carbon–carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ESred, which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ESred decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2nuc ~ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His–Asp pair does not play an essential role. The data further suggest that ESred represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.

  13. Structure–Activity Relationships of α-Keto Oxazole Inhibitors of Fatty Acid Amide Hydrolase

    PubMed Central

    Hardouin, Christophe; Kelso, Michael J.; Romero, F. Anthony; Rayl, Thomas J.; Leung, Donmienne; Hwang, Inkyu; Cravatt, Benjamin F.; Boger, Dale L.

    2008-01-01

    A systematic study of the structure–activity relationships (SAR) of 2b (OL-135), a potent inhibitor of fatty acid amide hydrolase (FAAH), is detailed targeting the C2 acyl side chain. A series of aryl replacements or substituents for the terminal phenyl group provided effective inhibitors (e.g., 5c, aryl = 1-napthyl, Ki = 2.6 nM) with 5hh (aryl = 3-Cl-Ph, Ki = 900 pM) being 5-fold more potent than 2b. Conformationally-restricted C2 side chains were examined and many provided exceptionally potent inhibitors of which 11j (ethylbiphenyl side chain) was established to be a 750 pM inhibitor. A systematic series of heteroatoms (O, NMe, S), electron-withdrawing groups (SO, SO2), and amides positioned within and hydroxyl substitutions on the linking side chain were investigated which typically led to a loss in potency. The most tolerant positions provided effective inhibitors (12p, 6-position S, Ki = 3 nM or 13d, 2-position OH, Ki = 8 nM) comparable in potency to 2b. Proteomic-wide screening of selected inhibitors from the systematic series of >100 candidates prepared revealed that they are selective for FAAH over all other mammalian serine proteases. PMID:17559203

  14. Synthesis and antihyperglycemic activity of novel N-acyl-2-arylethylamines and N-acyl-3-coumarylamines.

    PubMed

    Dwivedi, Atma P; Kumar, Shailesh; Varshney, Vandana; Singh, Amar B; Srivastava, Arvind K; Sahu, Devi P

    2008-04-01

    A series of novel N-acyl-2-arylethylamines and N-acyl-3-coumarylamines were synthesized and evaluated for their antihyperglycemic activity. Compounds 3g and 6d exhibited lowering of postprandial plasma glucose by 30.7%, 23.3% in SLM and 25.6%, 25.4% in STZ models respectively which is significant compared to metformin and glybenclamide. Other compounds exhibited moderate to good activity ranging from 19.5% to 32.8% in SLM and 3.26% to 25.4% in STZ models. PMID:18353644

  15. The Responses of Rat Intestinal Brush Border and Cytosol Peptide Hydrolase Activities to Variation in Dietary Protein Content DIETARY REGULATION OF INTESTINAL PEPTIDE HYDROLASES

    PubMed Central

    Nicholson, J. Alex; McCarthy, Denis M.; Kim, Young S.

    1974-01-01

    The effects of variation in dietary protein content on small intestinal brush border and cytosol peptide hydrolase activities have been investigated. One group of rats was fed a high protein diet (55% casein) and another group was fed a low protein diet (10% casein). After 1 wk, brush border peptide hydrolase activity (L-leucyl-β-naphthylamide as substrate) and cytosol peptide hydrolase activity (L-prolyl-L-leucine as substrate) were determined in mucosae taken from the proximal, middle, and distal small intestine. As judged by several parameters, brush border peptide hydrolase activity was significantly greater in rats fed the high protein diet when data for corresponding segments were compared. In contrast, no significant difference was seen in cytosol peptide hydrolase activity. In a second study, brush border and cytosol peptide hydrolase activities were determined in the proximal intestine by utilizing an additional three peptide substrates: L-leucyl-L-alanine, L-phenylalanylglycine, and glycyl-L-phenylalanine. Sucrase, maltase, and alkaline phosphatase activities were also determined. As before, brush border peptide hydrolase activities were significantly greater in rats fed the high protein diet. However, activities of the nonproteolytic brush border enzymes did not vary significantly with diet. In contrast to the results obtained with L-prolyl-L-leucine as substrate for the cytosol enzymes, cytosol activity against the three additional peptide substrates was greater in rats fed the high protein diet. It is suggested that the brush border peptide hydrolase response to variation in dietary protein content represents a functional adaptation analogous to the regulation of intestinal disaccharidases by dietary carbohydrates. The implication of the differential responses of the cytosol peptide hydrolases is uncertain, since little is known of the functional role of these nonorgan-specific enzymes. PMID:4430719

  16. Inhibition of peptidoglycan hydrolase activity in vivo and in vitro by energy uncouplers in Escherichia coli.

    PubMed

    Rodionov, D G; Ishiguro, E E

    1996-01-01

    The effects of energy uncouplers on in vivo and in vitro peptidoglycan hydrolase activities in Escherichia coli were determined. Sodium azide, potassium cyanide, and carbonyl cyanide m-chlorophenylhydrazone all inhibited ampicillin-induced lysis of exponential phase cultures, even when they were added to lysis-committed cultures. These energy uncouplers also inhibited the solubilization of radiolabeled peptidoglycan by bacterial suspensions that had been treated with 5% trichloroacetic acid by the method of Hartmann et al.3 to activate the peptidoglycan hydrolases. Therefore, the in vivo and in vitro activities of peptidoglycan hydrolases in E. coli are dependent on membrane energization. PMID:9158735

  17. Extracellular Glycoside Hydrolase Activities in the Human Oral Cavity.

    PubMed

    Inui, Taichi; Walker, Lauren C; Dodds, Michael W J; Hanley, A Bryan

    2015-08-15

    Carbohydrate availability shifts when bacteria attach to a surface and form biofilm. When salivary planktonic bacteria form an oral biofilm, a variety of polysaccharides and glycoproteins are the primary carbon sources; however, simple sugar availabilities are limited due to low diffusion from saliva to biofilm. We hypothesized that bacterial glycoside hydrolase (GH) activities would be higher in a biofilm than in saliva in order to maintain metabolism in a low-sugar, high-glycoprotein environment. Salivary bacteria from 13 healthy individuals were used to grow in vitro biofilm using two separate media, one with sucrose and the other limiting carbon sources to a complex carbohydrate. All six GHs measured were higher in vitro when grown in the medium with complex carbohydrate as the sole carbon source. We then collected saliva and overnight dental plaque samples from the same individuals and measured ex vivo activities for the same six enzymes to determine how oral microbial utilization of glycoconjugates shifts between the planktonic phase in saliva and the biofilm phase in overnight dental plaque. Overall higher GH activities were observed in plaque samples, in agreement with in vitro observation. A similar pattern was observed in GH activity profiles between in vitro and ex vivo data. 16S rRNA gene analysis showed that plaque samples had a higher abundance of microorganisms with larger number of GH gene sequences. These results suggest differences in sugar catabolism between the oral bacteria located in the biofilm and those in saliva. PMID:26048943

  18. Effects of synthetic alkamides on Arabidopsis fatty acid amide hydrolase activity and plant development.

    PubMed

    Faure, Lionel; Cavazos, Ronaldo; Khan, Bibi Rafeiza; Petros, Robby A; Koulen, Peter; Blancaflor, Elison B; Chapman, Kent D

    2015-02-01

    Alkamides and N-acylethanolamines (NAEs) are bioactive, amide-linked lipids that influence plant development. Alkamides are restricted to several families of higher plants and some fungi, whereas NAEs are widespread signaling molecules in both plants and animals. Fatty acid amide hydrolase (FAAH) has been described as a key contributor to NAE hydrolysis; however, no enzyme has been associated with alkamide degradation in plants. Herein reported is synthesis of 12 compounds structurally similar to a naturally occurring alkamide (N-isobutyl-(2E,6Z,8E)decatrienamide or affinin) with different acyl compositions more similar to plant NAEs and various amino alkyl head groups. These "hybrid" synthetic alkamides were tested for activity toward recombinant Arabidopsis FAAH and for their effects on plant development (i.e., cotyledon expansion and primary root length). A substantial increase in FAAH activity was discovered toward NAEs in vitro in the presence of some of these synthetic alkamides, such as N-ethyllauroylamide (4). This "enhancement" effect was found to be due, at least in part, to relief from product inhibition of FAAH by ethanolamine, and not due to an alteration in the oligomerization state of the FAAH enzyme. For several of these alkamides, an inhibition of seedling growth was observed with greater results in FAAH knockouts and less in FAAH over-expressing plants, suggesting that these alkamides could be hydrolyzed by FAAH in planta. The tight regulation of NAE levels in vivo appears to be important for proper seedling establishment, and as such, some of these synthetic alkamides may be useful pharmacological tools to manipulate the effects of NAEs in situ. PMID:25491532

  19. Monogalactosyldiacylglycerol biosynthesis by direct acyl transfer in Anabaena variabilis. [Anabaena variabilis

    SciTech Connect

    Chen, H.H.; Wickrema, A.; Jaworski, J.

    1987-05-01

    The authors previously reported the direct acylation of monogalactosyldiacylglycerol (MGDG) by an enzyme in the membranes of the cyanobacterium (Anabaena variabilis. The enzyme requires acyl-acyl carrier protein (acyl-ACP) as substrate, but had no other additional cofactor requirements. Palmitoyl-, stearoyl- and oleoyl-ACP were all effective substrates. The A. variabilis membranes also had a hydrolase activity which metabolized the acyl-ACP to yield free fatty acid and ACP. Possible mechanisms for the acylation reaction include either acyl exchange with existing MGDG or direct acyl transfer to a lyso-MGDG, with concomitant release of free ACP. The mechanism of this reaction has been resolved using a double labelled (/sup 14/C)acyl-(/sup 14/C)ACP substrate prepared with E. coli acyl-ACP synthetase. Following incubation with the enzyme, the unreacted (/sup 14/C)acyl-(/sup 14/C)ACP was isolated and the (/sup 14/C)acyl/(/sup 14/C)ACP ratio determined. Comparison of this ratio to that of the original substrate indicated no change and eliminated acyl exchange as a possible mechanism. Therefore, the direct acylation of lyso-MGDG is the proposed mechanism for this enzyme. The reaction is apparently specific for MGDG synthesis, as other glycolipids and phospholipids were not labelled during incubations.

  20. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity

    PubMed Central

    2011-01-01

    Background Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. Results To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. Conclusion These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids. PMID:21831316

  1. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp.

    PubMed Central

    Dashkevicz, M P; Feighner, S D

    1989-01-01

    An agar plate assay was developed to detect bile salt hydrolase activity in lactobacilli. On Lactobacillus-selective MRS or Rogosa SL medium supplemented with taurodeoxycholic, taurocholic, or taurochenodeoxycholic acids, bile salt hydrolysis was manifested at two intensities: (i) the formation of precipitate halos around colonies or (ii) the formation of opaque granular white colonies. Sixty-six lactobacilli were tested for bile salt hydrolase activity by both the plate assay and a sensitive radiochemical assay. No false-positive or false-negative results were detected by the plate assay. Based on results of experiments with Eubacterium lentum and Bacteroides species, the plate assay was dependent on two factors: (i) the presence of bile salt hydrolytic activity and (ii) the ability of the organism to sufficiently acidify the medium to protonate free bile acids. The availability of a differential medium for determination of bile salt hydrolase activity will provide a rapid method for determining shifts in a specific functional activity of intestinal Lactobacillus species and provide a rapid screening capability for identifying bile salt hydrolase-deficient mutants. The latter application should allow bile salt hydrolase activity to be used as a marker enzyme in genetic experiments. Images PMID:2705765

  2. John Montgomery's legacy: carbocyclic adenosine analogues as SAH hydrolase inhibitors with broad-spectrum antiviral activity.

    PubMed

    De Clercq, Erik

    2005-01-01

    Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626-629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3 Ado), neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3 Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in thefirst place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola. PMID:16438025

  3. Microbial Tailoring of Acyl Peptidic Siderophores

    PubMed Central

    2015-01-01

    Marine bacteria produce an abundance of suites of acylated siderophores characterized by a unique, species-dependent headgroup that binds iron(III) and one of a series of fatty acid appendages. Marinobacter sp. DS40M6 produces a suite of seven acylated marinobactins, with fatty acids ranging from saturated and unsaturated C12–C18 fatty acids. In the present study, we report that in the late log phase of growth, the fatty acids are hydrolyzed by an amide hydrolase producing the peptidic marinobactin headgroup. Halomonas aquamarina str. DS40M3, another marine bacterium isolated originally from the same sample of open ocean water as Marinobacter sp. DS40M6, produces the acyl aquachelins, also as a suite composed of a peptidic headgroup distinct from that of the marinobactins. In contrast to the acyl marinobactins, hydrolysis of the suite of acyl aquachelins is not detected, even when H. aquamarina str. DS40M3 is grown into the stationary phase. The Marinobacter cell-free extract containing the acyl amide hydrolase is active toward exogenous acyl-peptidic siderophores (e.g., aquachelin C, loihichelin C, as well as octanoyl homoserine lactone used in quorum sensing). Further, when H. aquamarina str. DS40M3 is cultured together with Marinobacter sp. DS40M6, the fatty acids of both suites of siderophores are hydrolyzed, and the aquachelin headgroup is also produced. The present study demonstrates that coculturing bacteria leads to metabolically tailored metabolites compared to growth in a single pure culture, which is interesting given the importance of siderophore-mediated iron acquisition for bacterial growth and that Marinobacter sp. DS40M6 and H. aquamarina str. DS40M3 were isolated from the same sample of seawater. PMID:24735218

  4. Microbial tailoring of acyl peptidic siderophores.

    PubMed

    Gauglitz, Julia M; Iinishi, Akira; Ito, Yusai; Butler, Alison

    2014-04-29

    Marine bacteria produce an abundance of suites of acylated siderophores characterized by a unique, species-dependent headgroup that binds iron(III) and one of a series of fatty acid appendages. Marinobacter sp. DS40M6 produces a suite of seven acylated marinobactins, with fatty acids ranging from saturated and unsaturated C12-C18 fatty acids. In the present study, we report that in the late log phase of growth, the fatty acids are hydrolyzed by an amide hydrolase producing the peptidic marinobactin headgroup. Halomonas aquamarina str. DS40M3, another marine bacterium isolated originally from the same sample of open ocean water as Marinobacter sp. DS40M6, produces the acyl aquachelins, also as a suite composed of a peptidic headgroup distinct from that of the marinobactins. In contrast to the acyl marinobactins, hydrolysis of the suite of acyl aquachelins is not detected, even when H. aquamarina str. DS40M3 is grown into the stationary phase. The Marinobacter cell-free extract containing the acyl amide hydrolase is active toward exogenous acyl-peptidic siderophores (e.g., aquachelin C, loihichelin C, as well as octanoyl homoserine lactone used in quorum sensing). Further, when H. aquamarina str. DS40M3 is cultured together with Marinobacter sp. DS40M6, the fatty acids of both suites of siderophores are hydrolyzed, and the aquachelin headgroup is also produced. The present study demonstrates that coculturing bacteria leads to metabolically tailored metabolites compared to growth in a single pure culture, which is interesting given the importance of siderophore-mediated iron acquisition for bacterial growth and that Marinobacter sp. DS40M6 and H. aquamarina str. DS40M3 were isolated from the same sample of seawater. PMID:24735218

  5. Vertebrate fatty acyl desaturase with Δ4 activity

    PubMed Central

    Li, Yuanyou; Monroig, Oscar; Zhang, Liang; Wang, Shuqi; Zheng, Xiaozhong; Dick, James R.; You, Cuihong; Tocher, Douglas R.

    2010-01-01

    Biosynthesis of the highly biologically active long-chain polyunsaturated fatty acids, arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids, in vertebrates requires the introduction of up to three double bonds catalyzed by fatty acyl desaturases (Fad). Synthesis of ARA is achieved by Δ6 desaturation of 18∶2n - 6 to produce 18∶3n - 6 that is elongated to 20∶3n - 6 followed by Δ5 desaturation. Synthesis of EPA from 18∶3n - 3 requires the same enzymes and pathway as for ARA, but DHA synthesis reportedly requires two further elongations, a second Δ6 desaturation and a peroxisomal chain shortening step. This paper describes cDNAs, fad1 and fad2, isolated from the herbivorous, marine teleost fish (Siganus canaliculatus) with high similarity to mammalian Fad proteins. Functional characterization of the cDNAs by heterologous expression in the yeast Saccharomyces cerevisiae showed that Fad1 was a bifunctional Δ6/Δ5 Fad. Previously, functional dual specificity in vertebrates had been demonstrated for a zebrafish Danio rerio Fad and baboon Fad, so the present report suggests bifunctionality may be more widespread in vertebrates. However, Fad2 conferred on the yeast the ability to convert 22∶5n - 3 to DHA indicating that this S. canaliculatus gene encoded an enzyme having Δ4 Fad activity. This is a unique report of a Fad with Δ4 activity in any vertebrate species and indicates that there are two possible mechanisms for DHA biosynthesis, a direct route involving elongation of EPA to 22∶5n - 3 followed by Δ4 desaturation, as well as the more complicated pathway as described above. PMID:20826444

  6. Acylpeptide hydrolase: inhibitors and some active site residues of the human enzyme.

    PubMed

    Scaloni, A; Jones, W M; Barra, D; Pospischil, M; Sassa, S; Popowicz, A; Manning, L R; Schneewind, O; Manning, J M

    1992-02-25

    Acylpeptide hydrolase may be involved in N-terminal deacetylation of nascent polypeptide chains and of bioactive peptides. The activity of this enzyme from human erythrocytes is sensitive to anions such as chloride, nitrate, and fluoride. Furthermore, blocked amino acids act as competitive inhibitors of the enzyme. Acetyl leucine chloromethyl ketone has been employed to identify one active site residue as His-707. Diisopropylfluorophosphate has been used to identify a second active site residue as Ser-587. Chemical modification studies with a water-soluble carbodiimide implicate a carboxyl group in catalytic activity. These results and the sequence around these active site residues, especially near Ser-587, suggest that acylpeptide hydrolase contains a catalytic triad. The presence of a cysteine residue in the vicinity of the active site is suggested by the inactivation of the enzyme by sulfhydryl-modifying agents and also by a low amount of modification by the peptide chloromethyl ketone inhibitor. Ebelactone A, an inhibitor of the formyl aminopeptidase, the bacterial counterpart of eukaryotic acylpeptide hydrolase, was found to be an effective inhibitor of this enzyme. These findings suggest that acylpeptidase hydrolase is a member of a family of enzymes with extremely diverse functions. PMID:1740429

  7. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function.

    PubMed

    Dutta, Arnob; Abmayr, Susan M; Workman, Jerry L

    2016-08-18

    Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs. PMID:27540855

  8. Data set of optimal parameters for colorimetric red assay of epoxide hydrolase activity.

    PubMed

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-09-01

    The data presented in this article are related to the research article entitled "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization" [1]. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. This article describes the optimal parameters for the colorimetric red assay to determine the enzymatic activity, with an emphasis on the characterization of the kinetic parameters, pH optimum and thermal stability of this enzyme. The effects of reagents that are not resistant to oxidation by sodium periodate on the reactions can generate false positives and interfere with the final results of the red assay. PMID:27366781

  9. Epoxide hydrolase activities and epoxy fatty acids in the mosquito Culex quinquefasciatus

    PubMed Central

    Xu, Jiawen; Morisseau, Christophe; Yang, Jun; Mamatha, Dadala M.

    2015-01-01

    Culex mosquitoes have emerged as important model organisms for mosquito biology, and are disease vectors for multiple mosquito-borne pathogens, including West Nile virus. We characterized epoxide hydrolase activities in the mosquito Culex quinquefasciatus, which suggested multiple forms of epoxide hydrolases were present. We found EH activities on epoxy eicosatrienoic acids (EETs). EETs and other eicosanoids are well-established lipid signaling molecules in vertebrates. We showed EETs can be synthesized in vitro from arachidonic acids by mosquito lysate, and EETs were also detected in vivo both in larvae and adult mosquitoes by LC-MS/MS. The EH activities on EETs can be induced by blood feeding, and the highest activity was observed in the midgut of female mosquitoes. The enzyme activities on EETs can be inhibited by urea-based inhibitors designed for mammalian soluble epoxide hydrolases (sEH). The sEH inhibitors have been shown to play diverse biological roles in mammalian systems, and they can be useful tools to study the function of EETs in mosquitoes. Besides juvenile hormone metabolism and detoxification, insect epoxide hydrolases may also play a role in regulating lipid signaling molecules, such as EETs and other epoxy fatty acids, synthesized in vivo or obtained from blood feeding by female mosquitoes. PMID:25686802

  10. Structural Determinants Allowing Transferase Activity in SENSITIVE TO FREEZING 2, Classified as a Family I Glycosyl Hydrolase*

    PubMed Central

    Roston, Rebecca L.; Wang, Kun; Kuhn, Leslie A.; Benning, Christoph

    2014-01-01

    SENSITIVE TO FREEZING 2 (SFR2) is classified as a family I glycosyl hydrolase but has recently been shown to have galactosyltransferase activity in Arabidopsis thaliana. Natural occurrences of apparent glycosyl hydrolases acting as transferases are interesting from a biocatalysis standpoint, and knowledge about the interconversion can assist in engineering SFR2 in crop plants to resist freezing. To understand how SFR2 evolved into a transferase, the relationship between its structure and function are investigated by activity assay, molecular modeling, and site-directed mutagenesis. SFR2 has no detectable hydrolase activity, although its catalytic site is highly conserved with that of family 1 glycosyl hydrolases. Three regions disparate from glycosyl hydrolases are identified as required for transferase activity as follows: a loop insertion, the C-terminal peptide, and a hydrophobic patch adjacent to the catalytic site. Rationales for the effects of these regions on the SFR2 mechanism are discussed. PMID:25100720

  11. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    PubMed

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity. PMID:27451793

  12. Exogenous myristic acid can be partially degraded prior to activation to form acyl-acyl carrier protein intermediates and lipid A in Vibrio harveyi.

    PubMed Central

    Shen, Z; Byers, D M

    1994-01-01

    To study the involvement of acyl carrier protein (ACP) in the metabolism of exogenous fatty acids in Vibrio harveyi, cultures were incubated in minimal medium with [9,10-3H]myristic acid, and labeled proteins were analyzed by gel electrophoresis. Labeled acyl-ACP was positively identified by immunoprecipitation with anti-V. harveyi ACP serum and comigration with acyl-ACP standards and [3H]beta-alanine-labeled bands on both sodium dodecyl sulfate- and urea-polyacrylamide gels. Surprisingly, most of the acyl-ACP label corresponded to fatty acid chain lengths of less than 14 carbons: C14, C12, C10, and C8 represented 33, 40, 14, and 8% of total [3H]14:0-derived acyl-ACPs, respectively, in a dark mutant (M17) of V. harveyi which lacks myristoyl-ACP esterase activity; however, labeled 14:0-ACP was absent in the wild-type strain. 14:0- and 12:0-ACP were also the predominant species labeled in complex medium. In contrast, short-chain acyl-ACPs (< or = C6) were the major labeled derivatives when V. harveyi was incubated with [3H]acetate, indicating that acyl-ACP labeling with [3H]14:0 in vivo is not due to the total degradation of [3H]14:0 to [3H]acetyl coenzyme A followed by resynthesis. Cerulenin increased the mass of medium- to long-chain acyl-ACPs (> or = C8) labeled with [3H]beta-alanine fivefold, while total incorporation of [3H]14:0 was not affected, although a shift to shorter chain lengths was noted. Additional bands which comigrated with acyl-ACP on sodium dodecyl sulfate gels were identified as lipopolysaccharide by acid hydrolysis and thin-layer chromatography. The levels of incorporation of [3H] 14:0 into acyl-ACP and lipopolysaccharide were 2 and 15%, respectively, of that into phospholipid by 10 min. Our results indicate that in contrast to the situation in Escherichia coli, exogenous fatty acids can be activated to acyl-ACP intermediates after partial degradation in V. harveyi and can effectively label products (i.e., lipid A) that require ACP as an acyl

  13. Measurement of Long-Chain Fatty Acyl-CoA Synthetase Activity.

    PubMed

    Füllekrug, Joachim; Poppelreuther, Margarete

    2016-01-01

    Long-chain fatty acyl-CoA synthetases (ACS) are a family of essential enzymes of lipid metabolism, activating fatty acids by thioesterification with coenzyme A. Fatty acyl-CoA molecules are then readily utilized for the biosynthesis of storage and membrane lipids, or for the generation of energy by ß-oxidation. Acyl-CoAs also function as transcriptional activators, allosteric inhibitors, or precursors for inflammatory mediators. Recent work suggests that ACS enzymes may drive cellular fatty acid uptake by metabolic trapping, and may also regulate the channeling of fatty acids towards specific metabolic pathways. The implication of ACS enzymes in widespread lipid associated diseases like type 2 diabetes has rekindled interest in this protein family. Here, we describe in detail how to measure long-chain fatty acyl-CoA synthetase activity by a straightforward radiometric assay. Cell lysates are incubated with ATP, coenzyme A, Mg(2+), and radiolabeled fatty acid bound to BSA. Differential phase partitioning of fatty acids and acyl-CoAs is exploited to quantify the amount of generated acyl-CoA by scintillation counting. The high sensitivity of this assay also allows the analysis of small samples like patient biopsies. PMID:26552674

  14. Inhibitory activity of S-adenosylhomocysteine hydrolase inhibitors against human cytomegalovirus replication.

    PubMed

    Snoeck, R; Andrei, G; Neyts, J; Schols, D; Cools, M; Balzarini, J; De Clercq, E

    1993-07-01

    Various acyclic and carbocyclic adenosine analogues, which are apparently targeted at the S-adenosylhomocysteine (AdoHcy) hydrolase have been reported to inhibit the replication of a number of pox-, rhabdo-, paramyxo-, arena-, and reoviruses. Here we show that this activity spectrum extends to human cytomegalovirus (HCMV). Of the compounds tested, neplanocin A, 3-deazaneplanocin A, 6'-C-methylneplanocin A and 5'-noraristeromycin were found to be the most potent inhibitors of HCMV replication in vitro. Their 50% inhibitory concentration ranged from 0.05 to 1.35 micrograms/ml. In general, the anti-HCMV activity of the adenosine analogues correlated well with their affinity (Ki) for AdoHcy hydrolase, suggesting that AdoHcy hydrolase may be considered as a target enzyme for anti-HCMV agents. For four compounds (3-deazaneplanocin A, 6'-C-methylneplanocin A (isomers I and II) and 3-deazaadenosine), anti-HCMV potency was greater than could be expected solely from their interaction with AdoHcy hydrolase, suggesting that these compounds may be functioning by an additional mechanism. PMID:8215298

  15. A single amino acid substitution in a chitinase of the legume Medicago truncatula is sufficient to gain Nod-factor hydrolase activity.

    PubMed

    Zhang, Lan-Yue; Cai, Jie; Li, Ru-Jie; Liu, Wei; Wagner, Christian; Wong, Kam-Bo; Xie, Zhi-Ping; Staehelin, Christian

    2016-07-01

    The symbiotic interaction between nitrogen-fixing rhizobia and legumes depends on lipo-chitooligosaccharidic Nod-factors (NFs). The NF hydrolase MtNFH1 of Medicago truncatula is a symbiotic enzyme that hydrolytically inactivates NFs with a C16 : 2 acyl chain produced by the microsymbiont Sinorhizobium meliloti 1021. MtNFH1 is related to class V chitinases (glycoside hydrolase family 18) but lacks chitinase activity. Here, we investigated the substrate specificity of MtNFH1-related proteins. MtCHIT5a and MtCHIT5b of M. truncatula as well as LjCHIT5 of Lotus japonicus showed chitinase activity, suggesting a role in plant defence. The enzymes failed to hydrolyse NFs from S. meliloti. NFs from Rhizobium leguminosarum with a C18 : 4 acyl moiety were neither hydrolysed by these chitinases nor by MtNFH1. Construction of chimeric proteins and further amino acid replacements in MtCHIT5b were performed to identify chitinase variants that gained the ability to hydrolyse NFs. A single serine-to-proline substitution was sufficient to convert MtCHIT5b into an NF-cleaving enzyme. MtNFH1 with the corresponding proline-to-serine substitution failed to hydrolyse NFs. These results are in agreement with a substrate-enzyme model that predicts NF cleavage when the C16 : 2 moiety is placed into a distinct fatty acid-binding cleft. Our findings support the view that MtNFH1 evolved from the ancestral MtCHIT5b by gene duplication and subsequent symbiosis-related neofunctionalization. PMID:27383628

  16. A single amino acid substitution in a chitinase of the legume Medicago truncatula is sufficient to gain Nod-factor hydrolase activity

    PubMed Central

    Zhang, Lan-Yue; Cai, Jie; Li, Ru-Jie; Liu, Wei; Wagner, Christian; Wong, Kam-Bo; Xie, Zhi-Ping; Staehelin, Christian

    2016-01-01

    The symbiotic interaction between nitrogen-fixing rhizobia and legumes depends on lipo-chitooligosaccharidic Nod-factors (NFs). The NF hydrolase MtNFH1 of Medicago truncatula is a symbiotic enzyme that hydrolytically inactivates NFs with a C16 : 2 acyl chain produced by the microsymbiont Sinorhizobium meliloti 1021. MtNFH1 is related to class V chitinases (glycoside hydrolase family 18) but lacks chitinase activity. Here, we investigated the substrate specificity of MtNFH1-related proteins. MtCHIT5a and MtCHIT5b of M. truncatula as well as LjCHIT5 of Lotus japonicus showed chitinase activity, suggesting a role in plant defence. The enzymes failed to hydrolyse NFs from S. meliloti. NFs from Rhizobium leguminosarum with a C18 : 4 acyl moiety were neither hydrolysed by these chitinases nor by MtNFH1. Construction of chimeric proteins and further amino acid replacements in MtCHIT5b were performed to identify chitinase variants that gained the ability to hydrolyse NFs. A single serine-to-proline substitution was sufficient to convert MtCHIT5b into an NF-cleaving enzyme. MtNFH1 with the corresponding proline-to-serine substitution failed to hydrolyse NFs. These results are in agreement with a substrate-enzyme model that predicts NF cleavage when the C16 : 2 moiety is placed into a distinct fatty acid-binding cleft. Our findings support the view that MtNFH1 evolved from the ancestral MtCHIT5b by gene duplication and subsequent symbiosis-related neofunctionalization. PMID:27383628

  17. Phosphatidylinositol-4-phosphate 5-Kinase Isoforms Exhibit Acyl Chain Selectivity for Both Substrate and Lipid Activator*

    PubMed Central

    Shulga, Yulia V.; Anderson, Richard A.; Topham, Matthew K.; Epand, Richard M.

    2012-01-01

    Phosphatidylinositol 4,5-bisphosphate is mostly produced in the cell by phosphatidylinositol-4-phosphate 5-kinases (PIP5K) and has a crucial role in numerous signaling events. Here we demonstrate that in vitro all three isoforms of PIP5K, α, β, and γ, discriminate among substrates with different acyl chains for both the substrates phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol (PtdIns) although to different extents, with isoform γ being the most selective. Fully saturated dipalmitoyl-PtdIns4P was a poor substrate for all three isoforms, but both the 1-stearoyl-2-arachidonoyl and the 1-stearoyl-2-oleoyl forms of PtdIns4P were good substrates. Vmax was greater for the 1-stearoyl-2-arachidonoyl form compared with the 1-stearoyl-2-oleoyl form, although for PIP5Kβ the difference was small. For the α and γ isoforms, Km was much lower for 1-stearoyl-2-oleoyl PtdIns4P, making this lipid the better substrate of the two under most conditions. Activation of PIP5K by phosphatidic acid is also acyl chain-dependent. Species of phosphatidic acid with two unsaturated acyl chains are much better activators of PIP5K than those containing one saturated and one unsaturated acyl chain. PtdIns is a poor substrate for PIP5K, but it also shows acyl chain selectivity. Curiously, there is no acyl chain discrimination among species of phosphatidic acid in the activation of the phosphorylation of PtdIns. Together, our findings indicate that PIP5K isoforms α, β, and γ act selectively on substrates and activators with different acyl chains. This could be a tightly regulated mechanism of producing physiologically active unsaturated phosphatidylinositol 4,5-bisphosphate species in the cell. PMID:22942276

  18. A novel activity of microsomal epoxide hydrolase: metabolism of the endocannabinoid 2-arachidonoylglycerol

    PubMed Central

    Nithipatikom, Kasem; Endsley, Michael P.; Pfeiffer, Adam W.; Falck, John R.; Campbell, William B.

    2014-01-01

    Microsomal epoxide hydrolase (EPHX1, EC 3.3.2.9) is a highly abundant α/β-hydrolase enzyme that is known for its catalytical epoxide hydrolase activity. A wide range of EPHX1 functions have been demonstrated including xenobiotic metabolism; however, characterization of its endogenous substrates is limited. In this study, we present evidence that EPHX1 metabolizes the abundant endocannabinoid 2-arachidonoylglycerol (2-AG) to free arachidonic acid (AA) and glycerol. The EPHX1 metabolism of 2-AG was demonstrated using commercially available EPHX1 microsomes as well as PC-3 cells overexpressing EPHX1. Conversely, EPHX1 siRNA markedly reduced the EPHX1 expression and 2-AG metabolism in HepG2 cells and LNCaP cells. A selective EPHX1 inhibitor, 10-hydroxystearamide, inhibited 2-AG metabolism and hydrolysis of a well-known EPHX1 substrate, cis-stilbene oxide. Among the inhibitors studied, a serine hydrolase inhibitor, methoxy-arachidonyl fluorophosphate, was the most potent inhibitor of 2-AG metabolism by EPHX1 microsomes. These results demonstrate that 2-AG is an endogenous substrate for EPHX1, a potential role of EPHX1 in the endocannabinoid signaling and a new AA biosynthetic pathway. PMID:24958911

  19. [Effect of chitosan on the cell ultrastructure and activity of hydrolases in tobacco leaves].

    PubMed

    Nagorskaia, V P; Reunov, A V; Lapshina, L A; Davydova, V N; Ermak, I M

    2012-01-01

    Effect of chitosan on the mesophyll cell ultrastucture and activity of hydrolases in leaves of tobacco cv. Samsun was studied. It was shown that, in many cells, chitosan treatment stimulated the protein-synthesizing apparatus (nucleolus dimension and amount of both mitochondria and rough endoplasmic reticulum membranes increased) and, at the same time, caused some activation of lytic compartment expressed in the stimulation of the formation of dictyosomes, smooth ER elements and cytoplasmic vacuoles, which are all prominent constituents of this compartment. In biochemical experiments, it was established that chitosan substantially enhanced activity of hydrolases (acid phosphatase, RNase, proteases) in the leaves as compared to untreated leaves. In some cells chitosan treatment caused considerable destructive changes (condensation of nuclear chromatin, collapse of cytoplasm and so on) that can be classified as a result of programmed cell death development. PMID:23461036

  20. Long chain acyl-CoA synthetases and other acyl activating enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper synthesis and breakdown of molecules containing carboxylic acids is a vital part of metabolism in all living organisms. Given the relatively inert chemical nature of many carboxylic acids, activation is a necessary step prior to use in the various anabolic and catabolic pathways that utilize...

  1. Nickel-Catalyzed Decarbonylative Borylation of Amides: Evidence for Acyl C-N Bond Activation.

    PubMed

    Hu, Jiefeng; Zhao, Yue; Liu, Jingjing; Zhang, Yemin; Shi, Zhuangzhi

    2016-07-18

    A nickel/N-heterocyclic carbene catalytic system has been established for decarbonylative borylation of amides with B2 nep2 by C-N bond activation. This transformation shows good functional-group compatibility and can serve as a powerful synthetic tool for late-stage borylation of amide groups in complex compounds. More importantly, as a key intermediate, the structure of an acyl nickel complex was first confirmed by X-ray analysis. Furthermore, the decarbonylative process was also observed. These findings confirm the key mechanistic features of the acyl C-N bond activation process. PMID:27258597

  2. Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholyltaurine hydrolase activity.

    PubMed Central

    Feighner, S D; Dashkevicz, M P

    1987-01-01

    A radiochemical method was developed to estimate cholyltaurine hydrolase potentials and rates of cholyltaurine hydrolysis in chicken intestinal homogenates. This method was used to monitor the effects of antibiotic feed additives on cholyltaurine hydrolase activity. Avoparcin, bacitracin methylenedisalisylic acid, efrotomycin, lincomycin, penicillin G procaine, and virginiamycin improved rate of weight gain and feed conversion of chicks and decreased cholyltaurine hydrolase activity in ileal homogenates relative to those of nonmedicated control birds. The results provided the first evidence that feeding selected antibiotics at subtherapeutic levels can affect bile acid-transforming enzymes in small-intestinal homogenates. The inverse relationship between growth performance and cholyltaurine hydrolase activity raises the possibility that specific inhibitors of this enzyme may promote weight gain and feed conversion in livestock and thereby reduce or eliminate the need for antibiotic feed additives. PMID:3566269

  3. The cytotoxic activity of Bacillus anthracis lethal factor is inhibited by leukotriene A4 hydrolase and metallopeptidase inhibitors.

    PubMed Central

    Menard, A; Papini, E; Mock, M; Montecucco, C

    1996-01-01

    The lethal factor of Bacillus anthracis is central to the pathogenesis of anthrax. Its mechanism of action is still unknown. Recently, on the basis of sequence similarities, we suggested that lethal factor might act similarly to leukotriene A4 hydrolase (LTA4), a bifunctional enzyme also endowed with a metallopeptidase activity. Here we show that some inhibitors of the LTA4 hydrolase and metallopeptidase activities of LTA4 hydrolase also affect the cytotoxicity of the anthrax lethal factor on macrophage cell lines, without interfering with the ability of the lethal factor to enter cells. These results support the proposal that anthrax lethal factor might display in the cytosol of intoxicated cells a peptidase activity similar to that of LTA4 hydrolase. PMID:8973585

  4. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    NASA Astrophysics Data System (ADS)

    Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles

    2014-07-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  5. Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In higher plants, the superfamily of carboxyl-CoA ligases and related proteins, collectively called acyl activating enzymes (AAEs), has evolved to provide enzymes for many pathways of primary and secondary metabolism and for the conjugation of hormones to amino acids. Across the superfamily there is...

  6. Acyl lipidation of a peptide: effects on activity and epidermal permeability in vitro

    PubMed Central

    Rocco, Daniel; Ross, James; Murray, Paul E; Caccetta, Rima

    2016-01-01

    Short-chain lipid conjugates can increase permeability of a small peptide across human epidermis; however, the emerging lipoaminoacid (LAA) conjugation technique is costly and can deliver mixed synthetic products of varied biological potential. LAA conjugation using a racemic mixture produces a mixture of D- and L-stereoisomers. Individual enantiomers can be produced at an extra cost. We investigated an affordable technique that produces only one synthetic product: short-chain (C7–C8) acyl lipidation. Acyl lipidation of Ala-Ala-Pro-Val, an inhibitor of human neutrophil elastase (HNE; believed to lead to abnormal tissue destruction and disease development), was investigated as an alternative to LAA conjugation. The current study aimed to assess the effects of acyl lipidation (either at the N-terminal or at the C-terminal) on neutrophil elastase activity in vitro and on transdermal delivery ex vivo. The inhibitory capacity of the acyl conjugates was compared to LAA conjugates (conjugated at the N-terminal) of the same peptide. The L-stereoisomer appears to rapidly degrade, but it represents a significantly (P<0.05) better inhibitor of HNE than the parent peptide (Ala-Ala-Pro-Val). Although the D-stereoisomer appears to permeate human epidermal skin sections in a better fashion than the L-stereoisomer, it is not a significantly better inhibitor of HNE than the parent peptide. Acyl lipidation (with a C7 lipid chain) at either end of the peptide substantially enhances the permeability of the peptide across human skin epidermis as well as significantly (P<0.005) increases its elastase inhibitory potential. Therefore, our current study indicates that acyl lipidation of a peptide is a more economical and effective alternative to LAA conjugation. PMID:27468224

  7. Synthesis, antimycobacterial, antiviral, antimicrobial activity and QSAR studies of N(2)-acyl isonicotinic acid hydrazide derivatives.

    PubMed

    Judge, Vikramjeet; Narasimhan, Balasubramanian; Ahuja, Munish; Sriram, Dharmarajan; Yogeeswari, Perumal; De Clercq, Erik; Pannecouque, Christophe; Balzarini, Jan

    2013-02-01

    A series of N(2)-acyl isonicotinic acid hydrazides (1-17) was synthesized and tested for its in vitro antimycobacterial activity against Mycobacterium tuberculosis and the results indicated that the compound, isonicotinic acid N'- tetradecanoyl-hydrazide (12) was more active than the reference compound isoniazid. The results of antimicrobial activity of the synthesized compounds against S. aureus, B. subtilis, E. coli, C. albicans and A. niger indicated that compounds with dichloro, hydroxyl, tri-iodo and N(2)-tetradecanoyl substituent were the most active ones. The antiviral activity studies depicted that none of the tested compounds were active against DNA or RNA viruses. The multi-target QSAR model was found to be effective in describing the antimicrobial activity of N(2)-acyl isonicotinic acid hydrazides. PMID:22762163

  8. Fatty Acid Elongation Is Independent of Acyl-Coenzyme A Synthetase Activities in Leek and Brassica napus1

    PubMed Central

    Hlousek-Radojcic, Alenka; Evenson, Kimberly J.; Jaworski, Jan G.; Post-Beittenmiller, Dusty

    1998-01-01

    In both animal and plant acyl elongation systems, it has been proposed that fatty acids are first activated to acyl-coenzyme A (CoA) before their elongation, and that the ATP dependence of fatty acid elongation is evidence of acyl-CoA synthetase involvement. However, because CoA is not supplied in standard fatty acid elongation assays, it is not clear if CoA-dependent acyl-CoA synthetase activity can provide levels of acyl-CoAs necessary to support typical rates of fatty acid elongation. Therefore, we examined the role of acyl-CoA synthetase in providing the primer for acyl elongation in leek (Allium porrum L.) epidermal microsomes and Brassica napus L. cv Reston oil bodies. As presented here, fatty acid elongation was independent of CoA and proceeded at maximum rates with CoA-free preparations of malonyl-CoA. We also showed that stearic acid ([1-14C]18:0)-CoA was synthesized from [1-14C]18:0 in the presence of CoA-free malonyl-CoA or acetyl-CoA, and that [1-14C]18:0-CoA synthesis under these conditions was ATP dependent. Furthermore, the appearance of [1-14C]18:0 in the acyl-CoA fraction was simultaneous with its appearance in phosphatidylcholine. These data, together with the s of a previous study (A. Hlousek-Radojcic, H. Imai, J.G. Jaworski [1995] Plant J 8: 803–809) showing that exogenous [14C]acyl-CoAs are diluted by a relatively large endogenous pool before they are elongated, strongly indicated that acyl-CoA synthetase did not play a direct role in fatty acid elongation, and that phosphatidylcholine or another glycerolipid was a more likely source of elongation primers than acyl-CoAs.

  9. Structural Milestones in the Reaction Pathway of an Amide Hydrolase: Substrate, Acyl, and Product Complexes of Cephalothin with AmpC [beta]-Lactamase

    SciTech Connect

    Beadle, Beth M.; Trehan, Indi; Focia, Pamela J.; Shoichet, Brian K.

    2010-03-05

    {beta}-lactamases hydrolyze {beta}-lactam antibiotics and are the leading cause of bacterial resistance to these drugs. Although {beta}-lactamases have been extensively studied, structures of the substrate-enzyme and product-enzyme complexes have proven elusive. Here, the structure of a mutant AmpC in complex with the {beta}-lactam cephalothin in its substrate and product forms was determined by X-ray crystallography to 1.53 {angstrom} resolution. The acyl-enzyme intermediate between AmpC and cephalothin was determined to 2.06 {angstrom} resolution. The ligand undergoes a dramatic conformational change as the reaction progresses, with the characteristic six-membered dihydrothiazine ring of cephalothin rotating by 109{sup o}. These structures correspond to all three intermediates along the reaction path and provide insight into substrate recognition, catalysis, and product expulsion.

  10. Acylated anthocyanins from sprouts of Raphanus sativus cv. Sango: isolation, structure elucidation and antioxidant activity.

    PubMed

    Matera, Riccardo; Gabbanini, Simone; Berretti, Serena; Amorati, Riccardo; De Nicola, Gina Rosalinda; Iori, Renato; Valgimigli, Luca

    2015-01-01

    Little is known on structure-activity relationships of antioxidant anthocyanins. Raphanus sativus cv Sango sprouts are among the richest sources (270 mg/100 g fresh weight). We isolated from sprouts' juice 9 acylated anthocyanins, including 4 new compounds. All comprise a cyanidin core bearing 3-4 glucose units, multiply acylated with malonic and phenolic acids (ferulic and sinapic). All compounds were equally effective in inhibiting the autoxidation of linoleic acid in aqueous micelles, with rate constant for trapping peroxyl radicals kinh=(3.8 ± 0.7) × 10(4)M(-1)s(-1) at 37 °C. In acetonitrile solution kinh varied with acylation: (0.9-2.1) × 10(5)M(-1)s(-1) at 30 °C. Each molecule trapped a number n of peroxyl radicals ranging from 4 to 7. Anthocyanins bearing sinapic acid were more effective than those bearing the ferulic moiety. Under identical settings, deacylated cyanin, ferulic and sinapic acids had kinh of 0.4 × 10(5), 0.3 × 10(5) and 1.6 × 10(5)M(-1)s(-1) respectively, with n ranging 2-3. Results show the major role of acylation on antioxidant performance. PMID:25053073

  11. Radiometric assay of ghrelin hydrolase activity and 3H-ghrelin distribution into mouse tissues.

    PubMed

    Chen, Vicky Ping; Gao, Yang; Geng, Liyi; Brimijoin, Stephen

    2015-12-15

    A high-throughput radiometric assay was developed to characterize enzymatic hydrolysis of ghrelin and to track the peptide's fate in vivo. The assay is based on solvent partitioning of [(3)H]-octanoic acid liberated from [(3)H]-octanoyl ghrelin during enzymatic hydrolysis. This simple and cost-effective method facilitates kinetic analysis of ghrelin hydrolase activity of native and mutated butyrylcholinesterases or carboxylesterases from multiple species. In addition, the assay's high sensitivity facilitates ready evaluation of ghrelin's pharmacokinetics and tissue distribution in mice after i.v. bolus administration of radiolabeled peptide. PMID:26514871

  12. Enzymatic acylation of starch.

    PubMed

    Alissandratos, Apostolos; Halling, Peter J

    2012-07-01

    Starch a cheap, abundant and renewable natural material has been chemically modified for many years. The popular modification acylation has been used to adjust rheological properties as well as deliver polymers with internal plasticizers and other potential uses. However the harsh reaction conditions required to produce these esters may limit their use, especially in sensitive applications (foods, pharmaceuticals, etc.). The use of enzymes to catalyse acylation may provide a suitable alternative due to high selectivities and mild reaction conditions. Traditional hydrolase-catalysed synthesis in non-aqueous apolar media is hard due to lack of polysaccharide solubility. However, acylated starch derivatives have recently been successfully produced in other non-conventional systems: (a) surfactant-solubilised subtilisin and suspended amylose in organic media; (b) starch nanoparticles dispersed in organic medium with immobilised lipase; (c) aqueous starch gels with lipase and dispersed fatty acids. We attempt a systematic review that draws parallels between the seemingly unrelated approaches described. PMID:22138593

  13. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels.

    PubMed

    Shipston, Michael J

    2014-01-01

    Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease. PMID:25140154

  14. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels

    PubMed Central

    Shipston, Michael J.

    2014-01-01

    Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease. PMID:25140154

  15. [The effect of antioxidants on the activity of acid hydrolases in blood leukocytes from patients with leukoplakia of mouth mucosa].

    PubMed

    Petrovich, Iu A; Mashkilleĭson, A L; Suleĭmanova, G G; Lagunov, A I

    1989-01-01

    Activity of acid hydrolases, alkaline phosphatase and leucine aminopeptidase was studied in leukocytes of patients with leukoplakia of mouth mucosa before and after the treatment involving antioxidant drugs. The enzymatic activity studied was increased in leukoplakia. Cryotherapy combined with antioxidants and the treatment with antioxidants only contributed to a decrease in these enzymes activity. PMID:2617939

  16. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase.

    PubMed

    Legler, Patricia M; Boisvert, Susanne M; Compton, Jaimee R; Millard, Charles B

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine Oγ. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its k cat/K m for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1 (hCE1). We discuss the use of pNBE as a surrogate scaffold for the mammalian esterases, and the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases. PMID:25077141

  17. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    PubMed Central

    Legler, Patricia M.; Boisvert, Susanne M.; Compton, Jaimee R.; Millard, Charles B.

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine Oγ. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1 (hCE1). We discuss the use of pNBE as a surrogate scaffold for the mammalian esterases, and the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases. PMID:25077141

  18. [Antibacterial Activity of Alkylated and Acylated Derivatives of Low-Molecular Weight Chitosan].

    PubMed

    Shagdarova, B Ts; Il'ina, A V; Varlamov, V P

    2016-01-01

    A number of alkylated (quaternized) and acylated derivatives of low-molecular weight chitosan were obtained. The structure and composition of the compounds were confirmed by the results of IR and PMR spectroscopy, as well as conductometric titration. The effect of the acyl substituent and the degree of substitution of N-(2-hydroxy-3-trimethylammonium) with the propyl fragment appended to amino groups of the C2 atom of polymer chains on antibacterial activity against typical representatives of gram-positive and gram-negative microorganisms (Staphylococcus epidermidis and Escherichia coli) was studied. The highest activity was in the case of N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride with the maximal substitution (98%). The minimal inhibitory concentration of the derivative was 0.48 µg/mL and 3.90 µg/mL for S. epidermis and E. coli, respectively. PMID:27266254

  19. A remarkable activity of human leukotriene A4 hydrolase (LTA4H) toward unnatural amino acids.

    PubMed

    Byzia, Anna; Haeggström, Jesper Z; Salvesen, Guy S; Drag, Marcin

    2014-05-01

    Leukotriene A4 hydrolase (LTA4H--EC 3.3.2.6) is a bifunctional zinc metalloenzyme, which processes LTA4 through an epoxide hydrolase activity and is also able to trim one amino acid at a time from N-terminal peptidic substrates via its aminopeptidase activity. In this report, we have utilized a library of 130 individual proteinogenic and unnatural amino acid fluorogenic substrates to determine the aminopeptidase specificity of this enzyme. We have found that the best proteinogenic amino acid recognized by LTA4H is arginine. However, we have also observed several unnatural amino acids, which were significantly better in terms of cleavage rate (k cat/K m values). Among them, the benzyl ester of aspartic acid exhibited a k cat/K m value that was more than two orders of magnitude higher (1.75 × 10(5) M(-1) s(-1)) as compared to L-Arg (1.5 × 10(3) M(-1) s(-1)). This information can be used for design of potent inhibitors of this enzyme, but may also suggest yet undiscovered functions or specificities of LTA4H. PMID:24573245

  20. Synthesis, Surface Active Properties and Cytotoxicity of Sodium N-Acyl Prolines.

    PubMed

    Sreenu, Madhumanchi; Narayana Prasad, Rachapudi Badari; Sujitha, Pombala; Kumar, Chityal Ganesh

    2015-01-01

    Sodium N-acyl prolines (NaNAPro) were synthesized using mixture of fatty acids obtained from coconut, palm, karanja, Sterculia foetida and high oleic sunflower oils via Schotten-Baumann reaction in 58-75% yields to study the synergetic effect of mixture of hydrophobic fatty acyl functionalities like saturation, unsaturation and cyclopropene fatty acids with different chain lengths and aliphatic hetero cyclic proline head group on their surface and cytotoxicity activities. The products were characterized by chromatographic and spectral techniques. The synthesized products were evaluated for their surface active properties such as surface tension, wetting power, foaming characteristics, emulsion stability, calcium tolerance, critical micelle concentration (CMC) and thermodynamic properties. The results revealed that all the products exhibited superior surface active properties like CMC, calcium tolerance and emulsion stability as compared to the standard surfactant, sodium lauryl sulphate (SLS). In addition, palm, Sterculia foetida and high oleic sunflower fatty N-acyl prolines exhibited promising cytotoxicity against different tumor cell lines. PMID:26521810

  1. New mode for divalent metal activation of glycoside hydrolases: X-ray structure of ß-xyloisdase-Ca2+

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the first X-ray structure of a glycoside hydrolase family 43 ß-xylosidase, RS223BX, which is strongly activated by the addition of divalent metal cations. The 2.69 Å structure reveals that the Ca2+ cation is located at the back of the active site pocket. The Ca2+ coordinates to H274 to sta...

  2. Accumulation of glucosaminyl(acyl)phosphatidylinositol in an S3 HeLa subline expressing normal dolicholphosphomannose synthase activity.

    PubMed Central

    Sevlever, D; Schiemann, D; Guidubaldi, J; Medof, M E; Rosenberry, T L

    1997-01-01

    Glucosaminyl(acyl)phosphatidylinositol [GlcN(acyl)PI], the third intermediate in the mammalian glycosylphosphatidylinositol (GPI) anchor pathway, is undetectable in most cells. This intermediate was previously shown to accumulate, however, in murine lymphoma mutant E and in yeast mutant dpm1, both of which lack dolicholphosphomannose synthase activity. Here we report that a mammalian HeLa S3 subline, denoted D, produces large amounts of GlcN(acyl)PI. The level of GlcN(acyl)PI in this subline is twice that in the murine lymphoma mutant E and 4 times that in the parental S3 line. This HeLa D subline differs from the previously reported mutants that accumulate GlcN(acyl)PI because no defects in the synthesis or utilization of dolicholphosphomannose were found. Kinetic analysis indicated that in this HeLa subline there is an increased rate of synthesis of GlcN(acyl)PI, whereas the rate of metabolism for this GPI is comparable to that in wild-type cells. Furthermore, HeLa D cells accumulate GlcN(acyl)PI without a block in the synthesis of the downstream mannosylated GPI anchor precursors and GPI-anchored proteins. These findings might be relevant for understanding the regulation of the GPI pathway. PMID:9032473

  3. Synthesis and structure-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors

    SciTech Connect

    Pecic, Stevan; Pakhomova, Svetlana; Newcomer, Marcia E.; Morisseau, Christophe; Hammock, Bruce D.; Zhu, Zhengxiang; Rinderspacher, Alison; Deng, Shi-Xian

    2013-09-27

    A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure–activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.

  4. Acylated flavonol glycosides from Tagetes minuta with antibacterial activity.

    PubMed

    Shahzadi, Irum; Shah, Mohammad M

    2015-01-01

    Wild marigold (Tagetes minuta), a flowering plant of the family Asteraceae contains compounds of pharmaceutical and nutritional importance especially essential oils and flavonols. Identification, characterization of flavonols and determination of their antibacterial activity were major objectives of the current study. The isolation and purification of flavonols was accomplished using chromatographic techniques while structural elucidation was completed by LC-MS and NMR spectroscopy. The extracts and purified compounds were tested against various bacterial strains for antibacterial activity. A total of 19 flavonols were isolated from this species. Of these, 17 were of butanol and two of ethyl acetate extracts. Based on the concentration and purity, eight potential flavonols were selected and structurally elucidated. Four flavonols, 6-hydroxyquercetin 7-O-β-(6''-galloylglucopyranoside; 2), 6-hydroxykaempferol 7-O-β-glucopyranoside (5), 6-hydroxykaempferol 7-O-β-(6''-galloylglucopyranoside; 7), 6-hydroxyquercetin 7-O-β-(6''-caffeoylglucopyranoside; 9), were identified for the first time from T. minuta. Butanol and ethyl acetate extracts of flowers and seeds showed significant antibacterial activity against Micrococcus leteus, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas pikettii. Among the isolated flavonols only 1, 2, and 18 were found to possess significant antibacterial activity against M. luteus. The extracts and purified flavonols from T. minuta can be potential candidates for antibacterial drug discovery and support to ethnopharmacological use. PMID:26441652

  5. Acylated flavonol glycosides from Tagetes minuta with antibacterial activity

    PubMed Central

    Shahzadi, Irum; Shah, Mohammad M.

    2015-01-01

    Wild marigold (Tagetes minuta), a flowering plant of the family Asteraceae contains compounds of pharmaceutical and nutritional importance especially essential oils and flavonols. Identification, characterization of flavonols and determination of their antibacterial activity were major objectives of the current study. The isolation and purification of flavonols was accomplished using chromatographic techniques while structural elucidation was completed by LC–MS and NMR spectroscopy. The extracts and purified compounds were tested against various bacterial strains for antibacterial activity. A total of 19 flavonols were isolated from this species. Of these, 17 were of butanol and two of ethyl acetate extracts. Based on the concentration and purity, eight potential flavonols were selected and structurally elucidated. Four flavonols, 6-hydroxyquercetin 7-O-β-(6′′-galloylglucopyranoside; 2), 6-hydroxykaempferol 7-O-β-glucopyranoside (5), 6-hydroxykaempferol 7-O-β-(6′′-galloylglucopyranoside; 7), 6-hydroxyquercetin 7-O-β-(6′′-caffeoylglucopyranoside; 9), were identified for the first time from T. minuta. Butanol and ethyl acetate extracts of flowers and seeds showed significant antibacterial activity against Micrococcus leteus, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas pikettii. Among the isolated flavonols only 1, 2, and 18 were found to possess significant antibacterial activity against M. luteus. The extracts and purified flavonols from T. minuta can be potential candidates for antibacterial drug discovery and support to ethnopharmacological use. PMID:26441652

  6. Design and Synthesis of Activity-Based Probes and Inhibitors for Bleomycin Hydrolase.

    PubMed

    van der Linden, Wouter A; Segal, Ehud; Child, Matthew A; Byzia, Anna; Drąg, Marcin; Bogyo, Matthew

    2015-08-20

    Bleomycin hydrolase (BLMH) is a neutral cysteine aminopeptidase that has been ascribed roles in many physiological and pathological processes, yet its primary biological function remains enigmatic. In this work, we describe the results of screening of a library of fluorogenic substrates to identify non-natural amino acids that are optimally recognized by BLMH. This screen identified several substrates with kcat/KM values that are substantially improved over the previously reported fluorogenic substrates for this enzyme. The substrate sequences were used to design activity-based probes that showed potent labeling of recombinant BLMH as well as endogenously expressed BLMH in cell extracts, and in intact cells. Importantly, we identify potent BLMH inhibitors that are able to fully inhibit endogenous BLMH activity in intact cells. These probes and inhibitors will be valuable new reagents to study BLMH function in cellular and animal models of human diseases where BLMH is likely to be involved. PMID:26256478

  7. Expression and characterization of an epoxide hydrolase from Anopheles gambiae with high activity on epoxy fatty acids

    PubMed Central

    Xu, Jiawen; Morisseau, Christophe; Hammock, Bruce D.

    2014-01-01

    In insects, epoxide hydrolases (EHs) play critical roles in the metabolism of xenobiotic epoxides from the food resources and in the regulation of endogenous chemical mediators, such as juvenile hormones. Using the baculovirus expression system, we expressed and characterized an epoxide hydrolase from Anopheles gambiae (AgEH) that is distinct in evolutionary history from insect juvenile hormone epoxide hydrolases (JHEHs). We partially purified the enzyme by ion exchange chromatography and isoelectric focusing. The experimentally determined molecular weight and pI were estimated to be 35kD and 6.3 respectively, different than the theoretical ones. The AgEH had the greatest activity on long chain epoxy fatty acids such as 14,15-epoxyeicosatrienoic acids (14,15-EET) and 9,10-epoxy-12Z-octadecenoic acids (9,10-EpOME or leukotoxin) among the substrates evaluated. Juvenile hormone III, a terpenoid insect growth regulator, was the next best substrate tested. The AgEH showed kinetics comparable to the mammalian soluble epoxide hydrolases, and the activity could be inhibited by AUDA [12-(3-adamantan-1-yl-ureido) dodecanoic acid], a urea-based inhibitor designed to inhibit the mammalian soluble epoxide hydrolases. The rabbit serum generated against the soluble epoxide hydrolase of Mus musculus can both cross-react with natural and denatured forms of the AgEH, suggesting immunologically they are similar. The study suggests there are mammalian sEH homologs in insects, and epoxy fatty acids may be important chemical mediators in insects. PMID:25173592

  8. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  9. A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae.

    PubMed

    Gozu, Yoshifumi; Ishizaki, Yuichi; Hosoyama, Yuhei; Miyazaki, Takatsugu; Nishikawa, Atsushi; Tonozuka, Takashi

    2016-08-01

    Glycoside hydrolase family (GH) 31 enzymes exhibit various substrate specificities, although the majority of members are α-glucosidases. Here, we constructed a heterologous expression system of a GH31 enzyme, Fjoh_4430, from Flavobacterium johnsoniae NBRC 14942, using Escherichia coli, and characterized its enzymatic properties. The enzyme hydrolyzed dextran and pullulan to produce isomaltooligosaccharides and isopanose, respectively. When isomaltose was used as a substrate, the enzyme catalyzed disproportionation to form isomaltooligosaccharides. The enzyme also acted, albeit inefficiently, on p-nitrophenyl α-D-glucopyranoside, and p-nitrophenyl α-isomaltoside was the main product of the reaction. In contrast, Fjoh_4430 did not act on trehalose, kojibiose, nigerose, maltose, maltotriose, or soluble starch. The optimal pH and temperature were pH 6.0 and 60 °C, respectively. Our results indicate that Fjoh_4430 is a novel GH31 dextranase with high transglucosylation activity. PMID:27170214

  10. Chemical constituents from the root of Polygonum multiflorum and their soluble epoxide hydrolase inhibitory activity.

    PubMed

    Sun, Ya Nan; Li, Wei; Kim, Jang Hoon; Yan, Xi Tao; Kim, Ji Eun; Yang, Seo Young; Kim, Young Ho

    2015-06-01

    Fourteen compounds were isolated from a methanol extract of Polygonum multiflorum roots, and their structures were elucidated by comparing spectroscopic data to published spectra. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were then evaluated. Compounds 1-7 inhibited sEH activity potently, with IC50 values ranging from 6.2 ± 0.5 to 48.6 ± 3.1 μM. Moreover, a kinetic analysis of compounds 1-7 revealed that the inhibitory actions of compounds 1, 3 and 4 were non-competitive, whereas those of compounds 2 and 5-7 were mixed-type. PMID:25413971

  11. Comparative gene identification 58/α/β hydrolase domain 5 lacks lysophosphatidic acid acyltransferase activity

    PubMed Central

    McMahon, Derek; Dinh, Anna; Kurz, Daniel; Shah, Dharika; Han, Gil-Soo; Carman, George M.; Brasaemle, Dawn L.

    2014-01-01

    Mutations in the gene encoding comparative gene identification 58 (CGI-58)/α/β hydrolase domain 5 (ABHD5) cause Chanarin-Dorfman syndrome, characterized by excessive triacylglycerol storage in cells and tissues. CGI-58 has been identified as a coactivator of adipose TG lipase (ATGL) and a lysophosphatidic acid acyltransferase (LPAAT). We developed a molecular model of CGI-58 structure and then mutated predicted active site residues and performed LPAAT activity assays of recombinant WT and mutated CGI-58. When mutations of predicted catalytic residues failed to reduce LPAAT activity, we determined that LPAAT activity was due to a bacterial contaminant of affinity purification procedures, plsC, the sole LPAAT in Escherichia coli. Purification protocols were optimized to reduce plsC contamination, in turn reducing LPAAT activity. When CGI-58 was expressed in SM2-1(DE3) cells that lack plsC, lysates lacked LPAAT activity. Additionally, mouse CGI-58 expressed in bacteria as a glutathione-S-transferase fusion protein and human CGI-58 expressed in yeast lacked LPAAT activity. Previously reported lipid binding activity of CGI-58 was revisited using protein-lipid overlays. Recombinant CGI-58 failed to bind lysophosphatidic acid, but interestingly, bound phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 5-phosphate [PI(5)P]. Prebinding CGI-58 with PI(3)P or PI(5)P did not alter its coactivation of ATGL in vitro. In summary, purified recombinant CGI-58 that is functional as an ATGL coactivator lacks LPAAT activity. PMID:24879803

  12. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    PubMed Central

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  13. Synthesis of Phenoxyacyl-Ethanolamides and Their Effects on Fatty Acid Amide Hydrolase Activity*

    PubMed Central

    Faure, Lionel; Nagarajan, Subbiah; Hwang, Hyeondo; Montgomery, Christa L.; Khan, Bibi Rafeiza; John, George; Koulen, Peter; Blancaflor, Elison B.; Chapman, Kent D.

    2014-01-01

    N-Acylethanolamines (NAEs) are involved in numerous biological activities in plant and animal systems. The metabolism of these lipids by fatty acid amide hydrolase (FAAH) is a key regulatory point in NAE signaling activity. Several active site-directed inhibitors of FAAH have been identified, but few compounds have been described that enhance FAAH activity. Here we synthesized two sets of phenoxyacyl-ethanolamides from natural products, 3-n-pentadecylphenolethanolamide and cardanolethanolamide, with structural similarity to NAEs and characterized their effects on the hydrolytic activity of FAAH. Both compounds increased the apparent Vmax of recombinant FAAH proteins from both plant (Arabidopsis) and mammalian (Rattus) sources. These NAE-like compounds appeared to act by reducing the negative feedback regulation of FAAH activity by free ethanolamine. Both compounds added to seedlings relieved, in part, the negative growth effects of exogenous NAE12:0. Cardanolethanolamide reduced neuronal viability and exacerbated oxidative stress-mediated cell death in primary cultured neurons at nanomolar concentrations. This was reversed by FAAH inhibitors or exogenous NAE substrate. Collectively, our data suggest that these phenoxyacyl-ethanolamides act to enhance the activity of FAAH and may stimulate the turnover of NAEs in vivo. Hence, these compounds might be useful pharmacological tools for manipulating FAAH-mediated regulation of NAE signaling in plants or animals. PMID:24558037

  14. Synthesis of phenoxyacyl-ethanolamides and their effects on fatty acid amide hydrolase activity.

    PubMed

    Faure, Lionel; Nagarajan, Subbiah; Hwang, Hyeondo; Montgomery, Christa L; Khan, Bibi Rafeiza; John, George; Koulen, Peter; Blancaflor, Elison B; Chapman, Kent D

    2014-03-28

    N-Acylethanolamines (NAEs) are involved in numerous biological activities in plant and animal systems. The metabolism of these lipids by fatty acid amide hydrolase (FAAH) is a key regulatory point in NAE signaling activity. Several active site-directed inhibitors of FAAH have been identified, but few compounds have been described that enhance FAAH activity. Here we synthesized two sets of phenoxyacyl-ethanolamides from natural products, 3-n-pentadecylphenolethanolamide and cardanolethanolamide, with structural similarity to NAEs and characterized their effects on the hydrolytic activity of FAAH. Both compounds increased the apparent Vmax of recombinant FAAH proteins from both plant (Arabidopsis) and mammalian (Rattus) sources. These NAE-like compounds appeared to act by reducing the negative feedback regulation of FAAH activity by free ethanolamine. Both compounds added to seedlings relieved, in part, the negative growth effects of exogenous NAE12:0. Cardanolethanolamide reduced neuronal viability and exacerbated oxidative stress-mediated cell death in primary cultured neurons at nanomolar concentrations. This was reversed by FAAH inhibitors or exogenous NAE substrate. Collectively, our data suggest that these phenoxyacyl-ethanolamides act to enhance the activity of FAAH and may stimulate the turnover of NAEs in vivo. Hence, these compounds might be useful pharmacological tools for manipulating FAAH-mediated regulation of NAE signaling in plants or animals. PMID:24558037

  15. Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence.

    PubMed

    Ortega, Corrie; Anderson, Lindsey N; Frando, Andrew; Sadler, Natalie C; Brown, Robert W; Smith, Richard D; Wright, Aaron T; Grundner, Christoph

    2016-02-18

    The transition from replication to non-replication underlies much of Mycobacterium tuberculosis (Mtb) pathogenesis, as non- or slowly replicating Mtb are responsible for persistence and poor treatment outcomes. Therapeutic targeting of non-replicating populations is a priority for tuberculosis treatment, but few drug targets in non-replicating Mtb are currently known. Here, we directly measured the activity of the highly diverse and druggable serine hydrolases (SHs) during active replication and non-replication using activity-based proteomics. We predict SH activity for 78 proteins, including 27 proteins with unknown function, and identify 37 SHs that remain active in the absence of replication, providing a set of candidate persistence targets. Non-replication was associated with major shifts in SH activity. These activity changes were largely independent of SH abundance, indicating extensive post-translational regulation of SHs. By probing a large cross-section of druggable Mtb enzyme space during replication and non-replication, we identify new SHs and suggest new persistence targets. PMID:26853625

  16. Blood acylpeptide hydrolase activity is a sensitive marker for exposure to some organophosphate toxicants.

    PubMed

    Quistad, Gary B; Klintenberg, Rebecka; Casida, John E

    2005-08-01

    Acylpeptide hydrolase (APH) unblocks N-acetyl peptides. It is a major serine hydrolase in rat blood, brain, and liver detected by derivatization with (3)H-diisopropyl fluorophosphate (DFP) or a biotinylated fluorophosphonate. Although APH does not appear to be a primary target of acute poisoning by organophosphorus (OP) compounds, the inhibitor specificity of this secondary target is largely unknown. This study fills the gap and emphasizes blood APH as a potential marker of OP exposure. The most potent in vitro inhibitors for human erythrocyte and mouse brain APH are DFP (IC(50) 11-17 nM), chlorpyrifos oxon (IC(50) 21-71 nM), dichlorvos (IC(50) 230-560 nM), naled (IC(50) 370-870 nM), and their analogs with modified alkyl substituents. (3)H-diisopropyl fluorophosphate is a potent inhibitor of mouse blood and brain APH in vivo (ED(50) 0.09-0.2 mg/kg and 0.02-0.03 mg/l for ip and vapor exposure, respectively). Mouse blood and brain APH and blood butyrylcholinesterase (BChE) are of similar sensitivity to DFP in vitro and in vivo (ip and vapor exposure), but APH inhibition is much more persistent in vivo (still >80% inhibition after 4 days). The inhibitory potency of OP pesticides in vivo in mice varies from APH selective (dichlorvos, naled, and trichlorfon), to APH and BChE selective (profenofos and tribufos), to ChE selective or nonselective (many commercial insecticides). Sarin administered ip at a lethal dose to guinea pigs inhibits blood acetylcholinesterase and BChE completely but erythrocyte APH only partially. Blood APH activity is therefore a sensitive marker for exposure to some but not all OP pesticides and chemical warfare agents. PMID:15888665

  17. Isolation and characterization of an extracellular glycosylated protein complex from Clostridium thermosaccharolyticum with pectin methylesterase and polygalacturonate hydrolase activity.

    PubMed

    Van Rijssel, M; Gerwig, G J; Hansen, T A

    1993-03-01

    An extracellular protein complex was isolated from the supernatant of a pectin-limited continuous culture of Clostridium thermosaccharolyticum Haren. The complex possessed both pectin methylesterase (EC 3.1.1.11) and exo-poly-alpha-galacturonate hydrolase (EC 3.2.1.82) activity and produced digalacturonate from the nonreducing end of the pectin chain. The protein consisted of 230- and 25-kDa subunits. The large subunit contained 10% (wt/wt) sugars (N-acetylgalactosamine and galactose). Under physiological conditions both activities acted in a coordinated manner: the ratio between methanol and digalacturonate released during degradation was constant and equal to the degree of esterification of the pectin used. Prolonged incubation of the enzyme with pectin led to a nondialyzable fraction that was enriched in neutral sugars, such as arabinose, rhamnose, and galactose; the high rhamnose/galacturonic acid ratio was indicative of hairy region-like structures. The smallest substrate utilized by the hydrolase was a tetragalacturonate. Vmax with oligogalacturonates increased with increasing chain length. The Km and Vmax for the polygalacturonate hydrolase with citrus pectate as a substrate were 0.8 g liter-1 and 180 mumol min-1 mg of protein-1, respectively. The Km and Vmax for the esterase with citrus pectin as a substrate were 1.2 g liter-1 and 440 mumol min-1 mg of protein-1, respectively. The temperature optima for the hydrolase and esterase were 70 and 60 degrees C, respectively. Both enzyme activities were stable for more than 1 h at 70 degrees C. The exo-polygalacturonate hydrolase of Clostridium thermosulfurogenes was partially purified while the methylesterase was also copurified. PMID:8481009

  18. Cholesterol ester hydrolase in pig liver is activated by cyclic AMP-dependent protein kinase

    SciTech Connect

    Chen, J.J.S.; Dubin, E.; Margolis, S.

    1986-05-01

    To examine whether hepatic neutral cholesterol ester hydrolase (CEH) is regulated by phosphorylation, the authors have assayed CEH activity from pig liver cytosol by measuring /sup 14/C-oleate release from labeled cholesteryl oleate at pH 7.4. When pig liver cytosol was incubated with 2 mM Mg and 0.5 mM ATP, CEH activity was increased (141 +/- 8% of control, mean +/- SEM). Addition of 25..mu..M cyclic AMP (cAMP) further activated CEH activity (164 +/- 4% of control) as compared to incubation with Mg and ATP (p < 0.02). In the presence of 5 mM EDTA or in the absence of either Mg or ATP, no activation of CEH was observed. The activation was completely abolished by further incubation of activated cytosol with E. coli alkaline phosphatase. Activation of CEH activity was partially prevented by the addition of protein kinase inhibitor (p < 0.02) and this effect was completely reversed in the presence of exogenous cAMP-dependent protein kinase (p < 0.05). To examine further the role of the cAMP-dependent protein kinase, CEH activity was purified 240-fold by 35% (NH/sub 4/)/sub 2/SO/sub 4/ precipitation and Sepharose 4B chromatography. Incubation of partially purified CEH fractions with Mg, ATP and cAMP did not increase CEH activity. Addition of exogenous cAMP-dependent protein kinase activated CEH activity of partially purified fractions. The authors observations indicate that pig liver CEH is activated by phosphorylation mediated by cAMP-dependent protein kinase.

  19. Balancing the stability and the catalytic specificities of OP hydrolases with enhanced V-agent activities.

    PubMed

    Reeves, T E; Wales, M E; Grimsley, J K; Li, P; Cerasoli, D M; Wild, J R

    2008-06-01

    Rational site-directed mutagenesis and biophysical analyses have been used to explore the thermodynamic stability and catalytic capabilities of organophosphorus hydrolase (OPH) and its genetically modified variants. There are clear trade-offs in the stability of modifications that enhance catalytic activities. For example, the H254R/H257L variant has higher turnover numbers for the chemical warfare agents VX (144 versus 14 s(-1) for the native enzyme (wild type) and VR (Russian VX, 465 versus 12 s(-1) for wild type). These increases are accompanied by a loss in stability in which the total Gibb's free energy for unfolding is 19.6 kcal/mol, which is 5.7 kcal/mol less than that of the wild-type enzyme. X-ray crystallographic studies support biophysical data that suggest amino acid residues near the active site contribute to the chemical and thermal stability through hydrophobic and cation-pi interactions. The cation-pi interactions appear to contribute an additional 7 kcal/mol to the overall global stability of the enzyme. Using rational design, it has been possible to make amino acid changes in this region that restored the stability, yet maintained effective V-agent activities, with turnover numbers of 68 and 36 s(-1) for VX and VR, respectively. This study describes the first rationally designed, stability/activity balance for an OPH enzyme with a legitimate V-agent activity, and its crystal structure. PMID:18434422

  20. Targeted acylation for all the hydroxyls of (+)-catechin and evaluation of their individual contribution to radical scavenging activity.

    PubMed

    Hong, Shan; Liu, Songbai

    2016-04-15

    The reactivity profile of all the hydroxyl groups in (+)-catechin towards acylation and their respective contribution to radical scavenging activity were systematically explored in this work. Selective acylation of the hydroxyls on different rings was carried out employing either a basic or acidic activation strategy. Monoacylation of B ring was achieved effectively with the aid of dimethyltin dichloride. Monoacylation of A ring was accomplished by sequential protection and deprotection of B and C rings. Based on specific acylation of all the individual hydroxyls of (+)-catechins, the structure radical scavenging activity relationship of each hydroxyl of (+)-catechin was established. It was demonstrated that the vicinal phenolic hydroxyls on B ring played the most important role in the ABTS radical scavenging activity and those on A and C rings made a much smaller contribution. This study has laid solid groundwork for further modification of the catechins and improvement of their properties. PMID:26616969

  1. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    SciTech Connect

    Reindl, W.; Deng, K.; Gladden, J.M.; Cheng, G.; Wong, A.; Singer, S.W.; Singh, S.; Lee, J.-C.; Yao, J.-S.; Hazen, T.C.; Singh, A.K; Simmons, B.A.; Adams, P.D.; Northen, T.R.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation of the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.

  2. The Structural Basis of Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase

    SciTech Connect

    Abbott,D.; Boraston, A.

    2007-01-01

    Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 {angstrom} resolution) and a digalacturonic acid product complex (solved to 2.10 {angstrom} resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.

  3. Oxidative acylation using thioacids

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.

    1997-01-01

    Several important prebiotic reactions, including the coupling of amino acids into polypeptides by the formation of amide linkages, involve acylation. Theae reactions present a challenge to the understanding of prebiotic synthesis. Condensation reactions relying on dehydrating agents are either inefficient in aqueous solution or require strongly acidic conditions and high temperatures. Activated amino acids such as thioester derivatives have therefore been suggested as likely substrates for prebiotic peptide synthesis. Here we propose a closely related route to amide bond formation involving oxidative acylation by thioacids. We find that phenylalanine, leucine and phenylphosphate are acylated efficiently in aqueous solution by thioacetic acid and an oxidizing agent. From a prebiotic point of view, oxidative acylation has the advantage of proceeding efficiently in solution and under mild conditions. We anticipate that oxidative acylation should prove to be a general method for activating carboxylic acids, including amino acids.

  4. Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis).

    PubMed

    Chen, Chu; Xu, Xue-Min; Chen, Yang; Yu, Meng-Yao; Wen, Fei-Yan; Zhang, Hao

    2013-12-01

    A novel acylated flavonol glycoside: isorhamnetin (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (1), together with two known acylated flavonol glycosides: quercetin (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (2) and kaempferol (3-O-[(6-O-E-sinapoyl)-β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside) (3) were isolated from the n-butanol fraction of sea buckthorn (Hippophae rhamnoides ssp. sinensis) berries for the first time by chromatographic methods, and their structures were elucidated using UV, MS, (1)H and (13)C NMR, and 2D NMR. Compounds 1-3 showed good scavenging activities, with respective IC50 values of 8.91, 4.26 and 30.90 μM toward the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical; respective Trolox equivalent antioxidant capacities of 2.89, 4.04 and 2.44 μM μM(-1) toward 2,2'-azino-bis-3-ethyl-benzothiazoline-6-sulphonate (ABTS) radical. The quantitative analysis of the isolated acylated flavonol glycosides was performed by HPLC-DAD method. The contents of compounds 1-3 were in the range of 12.2-31.4, 4.0-25.3, 7.5-59.7 mg/100 g dried berries and 9.1-34.5, 75.1-182.1, 29.2-113.4 mg/100 g dried leaves, respectively. PMID:23870862

  5. Conformational Disorganization within the Active Site of a Recently Evolved Organophosphate Hydrolase Limits Its Catalytic Efficiency.

    PubMed

    Mabbitt, Peter D; Correy, Galen J; Meirelles, Tamara; Fraser, Nicholas J; Coote, Michelle L; Jackson, Colin J

    2016-03-01

    The evolution of new enzymatic activity is rarely observed outside of the laboratory. In the agricultural pest Lucilia cuprina, a naturally occurring mutation (Gly137Asp) in α-esterase 7 (LcαE7) results in acquisition of organophosphate hydrolase activity and confers resistance to organophosphate insecticides. Here, we present an X-ray crystal structure of LcαE7:Gly137Asp that, along with kinetic data, suggests that Asp137 acts as a general base in the new catalytic mechanism. Unexpectedly, the conformation of Asp137 observed in the crystal structure obstructs the active site and is not catalytically productive. Molecular dynamics simulations reveal that alternative, catalytically competent conformers of Asp137 are sampled on the nanosecond time scale, although these states are less populated. Thus, although the mutation introduces the new reactive group responsible for organophosphate detoxification, the catalytic efficiency appears to be limited by conformational disorganization: the frequent sampling of low-energy nonproductive states. This result is consistent with a model of molecular evolution in which initial function-changing mutations can result in enzymes that display only a fraction of their catalytic potential due to conformational disorganization. PMID:26881849

  6. Peptide hydrolase activities in seedlings and hormone-treated cotyledons of pumpkin (Cucurbita pepo).

    PubMed

    Weidhase, R A; Parthier, B

    1983-01-01

    Enzymes hydrolyzing Gly-Ala-, Met-Met- and Pro-4-phenylazo-phenylamides, and N-benzoyl-L-arginine-4-nitroanilide have been identified in germinating seeds and cotyledons of pumpkin (Cucurbita pepo). The enzyme activities per cotyledon increase markedly during the germination process, but the proportion of enhancement depends on the type of enzyme species. The increase in enzyme activities is due to de novo synthesis as shown by cycloheximide treatment and is influenced by phytohormones (cytokinins and abscissic acid). In isolated cotyledons exogenous cytokinin (benzyladenine) obviously can replace the effect of the embryo as the source of endogenous hormone. Abscissic acid counteracts the cytokinin effect. It is suggested that aminopeptidases have a biological function in reserve protein degradation of the cotyledons during seed germination. Our results do not support the assumption that the embryonic axis of the growing seedling serves as a "sink" of proteolytic products resulting in an activation of peptide hydrolases in the cotyledons, but rather de novo synthesis of these enzymes seems to be controlled by substances (phytohormones) originating from the embryo. PMID:6360167

  7. First Glycoside Hydrolase Family 2 Enzymes from Thermus antranikianii and Thermus brockianus with β-Glucosidase Activity

    PubMed Central

    Schröder, Carola; Blank, Saskia; Antranikian, Garabed

    2015-01-01

    Two glycoside hydrolase encoding genes (tagh2 and tbgh2) were identified from different Thermus species using functional screening. Based on amino acid similarities, the enzymes were predicted to belong to glycoside hydrolase (GH) family 2. Surprisingly, both enzymes (TaGH2 and TbGH2) showed twofold higher activities for the hydrolysis of nitrophenol-linked β-D-glucopyranoside than of -galactopyranoside. Specific activities of 3,966 U/mg for TaGH2 and 660 U/mg for TbGH2 were observed. In accordance, Km values for both enzymes were significantly lower when β-D-glucopyranoside was used as substrate. Furthermore, TaGH2 was able to hydrolyze cellobiose. TaGH2 and TbGH2 exhibited highest activity at 95 and 90°C at pH 6.5. Both enzymes were extremely thermostable and showed thermal activation up to 250% relative activity at temperatures of 50 and 60°C. Especially, TaGH2 displayed high tolerance toward numerous metal ions (Cu2+, Co2+, Zn2+), which are known as glycoside hydrolase inhibitors. In this study, the first thermoactive GH family 2 enzymes with β-glucosidase activity have been identified and characterized. The hydrolysis of cellobiose is a unique property of TaGH2 when compared to other enzymes of GH family 2. Our work contributes to a broader knowledge of substrate specificities in GH family 2. PMID:26090361

  8. Dimerization and activation of porcine pancreatic phospholipase A2 via substrate level acylation of lysine 56.

    PubMed

    Tomasselli, A G; Hui, J; Fisher, J; Zürcher-Neely, H; Reardon, I M; Oriaku, E; Kézdy, F J; Heinrikson, R L

    1989-06-15

    The porcine pancreatic phospholipase A2-catalyzed hydrolysis of the water-soluble chromogenic substrate 4-nitro-3-octanoyloxybenzoate shows an initial latency phase similar to the one observed in the hydrolysis of aggregated phospholipids by the same enzyme. We report here that during the latency phase the enzyme undergoes a slow, autocatalytic, substrate-level acylation whereby in a few of the catalytic events the scissile octanoyl group of the substrate, normally transferred to water, is transferred to the epsilon-amino group of lysine 56. The N epsilon 56-octanoylphospholipase shows a strong tendency to dimerize in solution and thus may be separated from the monomeric native enzyme by gel filtration. Octanoylation of Lys-56 activates the enzyme some 180-fold toward 4-nitro-3-octanoyloxybenzoate and more than 100-fold toward monolayers of 1,2-didecanoyl-sn-glycero-3-phosphocholine. Acylation also attends the enzymatic hydrolysis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine with the incorporation of 1 eq of palmitate. Kinetic analysis of the early phase of reaction with 4-nitro-3-octanoyloxybenzoate shows that in this initial step the rate of activation is first order with respect to enzyme and substrate. A much more rapid, autocatalytic activation occurs in the later phases of the reaction where the activation of the enzyme is catalyzed by the activated enzyme itself. These findings with porcine pancreatic phospholipase A2, together with those relative to a snake venom enzyme monomer (Cho, W., Tomasselli, A. G., Heinrikson, R. L., and Kézdy, F. J. (1988) J. Biol. Chem. 263, 11237-11241), strongly support the proposal that interfacial activation of monomeric phospholipases is due to substrate-level autoacylation resulting in fully potentiated dimeric enzymes. PMID:2498336

  9. Effects of ciprofibrate and 2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA) on the distribution of carnitine and CoA and their acyl-esters and on enzyme activities in rats. Relation between hepatic carnitine concentration and carnitine acetyltransferase activity.

    PubMed Central

    Bhuiyan, A K; Bartlett, K; Sherratt, H S; Agius, L

    1988-01-01

    The effects of feeding the peroxisome proliferators ciprofibrate (a hypolipidaemic analogue of clofibrate) or POCA (2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate) (an inhibitor of CPT I) to rats for 5 days on the distribution of carnitine and acylcarnitine esters between liver, plasma and muscle and on hepatic CoA concentrations (free and acylated) and activities of carnitine acetyltransferase and acyl-CoA hydrolases were determined. Ciprofibrate and POCA increased hepatic [total CoA] by 2 and 2.5 times respectively, and [total carnitine] by 4.4 and 1.9 times respectively, but decreased plasma [carnitine] by 36-46%. POCA had no effect on either urinary excretion of acylcarnitine esters or [acylcarnitine] in skeletal muscle. By contrast, ciprofibrate decreased [acylcarnitine] and [total carnitine] in muscle. In liver, ciprofibrate increased the [carnitine]/[CoA] ratio and caused a larger increase in [acylcarnitine] (7-fold) than in [carnitine] (4-fold), thereby increasing the [short-chain acylcarnitine]/[carnitine] ratio. POCA did not affect the [carnitine]/[CoA] and the [short-chain acylcarnitine]/[carnitine] ratios, but it decreased the [long-chain acylcarnitine]/[carnitine] ratio. Ciprofibrate and POCA increased the activities of acyl-CoA hydrolases, and carnitine acetyltransferase activity was increased 28-fold and 6-fold by ciprofibrate and POCA respectively. In cultures of hepatocytes, ciprofibrate caused similar changes in enzyme activity to those observed in vivo, although [carnitine] decreased with time. The results suggest that: (1) the reactions catalysed by the short-chain carnitine acyltransferases, but not by the carnitine palmitoyltransferases, are near equilibrium in liver both before and after modification of metabolism by administration of ciprofibrate or POCA; (2) the increase in hepatic [carnitine] after ciprofibrate or POCA feeding can be explained by redistribution of carnitine between tissues; (3) the activity of carnitine

  10. Purification of Pseudomonas putida acyl coenzyme A ligase active with a range of aliphatic and aromatic substrates.

    PubMed Central

    Fernández-Valverde, M; Reglero, A; Martinez-Blanco, H; Luengo, J M

    1993-01-01

    Acyl coenzyme A (acyl-CoA) ligase (acyl-CoA synthetase [ACoAS]) from Pseudomonas putida U was purified to homogeneity (252-fold) after this bacterium was grown in a chemically defined medium containing octanoic acid as the sole carbon source. The enzyme, which has a mass of 67 kDa, showed maximal activity at 40 degrees C in 10 mM K2PO4H-NaPO4H2 buffer (pH 7.0) containing 20% (wt/vol) glycerol. Under these conditions, ACoAS showed hyperbolic behavior against acetate, CoA, and ATP; the Kms calculated for these substrates were 4.0, 0.7, and 5.2 mM, respectively. Acyl-CoA ligase recognizes several aliphatic molecules (acetic, propionic, butyric, valeric, hexanoic, heptanoic, and octanoic acids) as substrates, as well as some aromatic compounds (phenylacetic and phenoxyacetic acids). The broad substrate specificity of ACoAS from P. putida was confirmed by coupling it with acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum to study the formation of several penicillins. Images PMID:8476289

  11. Analysis of the key active subsites of glycoside hydrolase 13 family members.

    PubMed

    Kumar, Vikash

    2010-05-01

    alpha-Amylase, pullulanase, neopullulanase, cyclomaltodextrinase (CDase), cyclomaltodextin glucanotransferase (CGTase), etc. are some of the amylolytic enzymes that act on polysaccharides. These enzymes differ from each other with respect to substrate and linkage specificities. These enzymes have been grouped into the GH13 (GH, Glycoside Hydrolase) family in the CAZy database on the basis of similarity in amino acid sequence. Members of this family share three domains viz., A, B, and C, which have several binding subsites to accommodate monomeric units of the polysaccharide substrate. Among these subsites, -2, -1, +1, and +2 subsites are the most critical subsites for catalytic activity. In the present study, the substrate analog-, inhibitor-, or product-bound 3-D structures of 24 members of GH13 family have been analyzed to identify the features of the -2, -1, +1, and +2 subsites shared by all the members for recognition of the common substrate. It is found that neither the number nor the nature of the potential hydrogen bond-forming residues is conserved with the exception of the presence of tyrosine as a stacking residue in the -1 subsite. The relative spatial disposition of the conserved subsite residues are conserved as judged by distance matrices. The backbone of the -2, -1, +1, and +2 subsites does not undergo conformational change for the recognition of the substrate. This analysis suggests that these enzymes recognize their substrate on the basis of shape of the substrate rather than on the basis of specific interactions within the binding site. PMID:20227065

  12. Inhibition of soluble epoxide hydrolase activity by compounds isolated from the aerial parts of Glycosmis stenocarpa.

    PubMed

    Kim, Jang Hoon; Morgan, Abubaker M A; Tai, Bui Huu; Van, Doan Thi; Cuong, Nguyen Manh; Kim, Young Ho

    2016-08-01

    The aim of this study is to search for soluble epoxide hydrolase (sEH) inhibitors from natural plants, bioassay-guided fractionation of lipophilic n-hexane and chloroform layers of an extract of the aerial parts of Glycosmis stenocarpa led to the isolation of 12 compounds (1-12) including murrayafoline-A (1), isomahanine (2), bisisomahanine (3), saropeptate (4), (24 S)-ergost-4-en-3,6-dione (5), stigmasta-4-en-3,6-dion (6), stigmast-4-en-3-one (7), β-sitosterol (8), 24-methylpollinastanol (9), trans-phytol (10), neosarmentol III (11) and (+)-epiloliolide (12). Their structures were elucidated on the basis of spectroscopic data. Among them, neosarmentol III (11) was isolated from nature for the first time. All the isolated compounds were evaluated for their inhibitory activity against sEH. Among isolated carbazole-type compounds, isomahanine (2) and bisisomahanine (3) were identified as a potent inhibitor of sEH, with IC50 values of 22.5 ± 1.7 and 7.7 ± 1.2 µM, respectively. Moreover, the inhibitory action of 2 and 3 represented mixed-type enzyme inhibition. PMID:26444316

  13. Structural Insights into an Oxalate-producing Serine Hydrolase with an Unusual Oxyanion Hole and Additional Lyase Activity.

    PubMed

    Oh, Juntaek; Hwang, Ingyu; Rhee, Sangkee

    2016-07-15

    In Burkholderia species, the production of oxalate, an acidic molecule, is a key event for bacterial growth in the stationary phase. Oxalate plays a central role in maintaining environmental pH, which counteracts inevitable population-collapsing alkaline toxicity in amino acid-based culture medium. In the phytopathogen Burkholderia glumae, two enzymes are responsible for oxalate production. First, the enzyme oxalate biosynthetic component A (ObcA) catalyzes the formation of a tetrahedral C6-CoA adduct from the substrates acetyl-CoA and oxaloacetate. Then the ObcB enzyme liberates three products from the C6-CoA adduct: oxalate, acetoacetate, and CoA. Interestingly, these two stepwise reactions are catalyzed by a single bifunctional enzyme, Obc1, from Burkholderia thailandensis and Burkholderia pseudomallei Obc1 has an ObcA-like N-terminal domain and shows ObcB activity in its C-terminal domain despite no sequence homology with ObcB. We report the crystal structure of Obc1 in its apo and glycerol-bound form at 2.5 Å and 2.8 Å resolution, respectively. The Obc1 N-terminal domain is essentially identical both in structure and function to that of ObcA. Its C-terminal domain has an α/β hydrolase fold that has a catalytic triad for oxalate production and a novel oxyanion hole distinct from the canonical HGGG motif in other α/β hydrolases. Functional analyses through mutagenesis studies suggested that His-934 is an additional catalytic acid/base for its lyase activity and liberates two additional products, acetoacetate and CoA. These results provide structural and functional insights into bacterial oxalogenesis and an example of divergent evolution of the α/β hydrolase fold, which has both hydrolase and lyase activity. PMID:27226606

  14. Insights into Exo- and Endoglucanase Activities of Family 6 Glycoside Hydrolases from Podospora anserina

    PubMed Central

    Poidevin, Laetitia; Feliu, Julia; Doan, Annick; Berrin, Jean-Guy; Bey, Mathieu; Coutinho, Pedro M.; Henrissat, Bernard; Record, Eric

    2013-01-01

    The ascomycete Podospora anserina is a coprophilous fungus that grows at late stages on droppings of herbivores. Its genome encodes a large diversity of carbohydrate-active enzymes. Among them, four genes encode glycoside hydrolases from family 6 (GH6), the members of which comprise putative endoglucanases and exoglucanases, some of them exerting important functions for biomass degradation in fungi. Therefore, this family was selected for functional analysis. Three of the enzymes, P. anserina Cel6A (PaCel6A), PaCel6B, and PaCel6C, were functionally expressed in the yeast Pichia pastoris. All three GH6 enzymes hydrolyzed crystalline and amorphous cellulose but were inactive on hydroxyethyl cellulose, mannan, galactomannan, xyloglucan, arabinoxylan, arabinan, xylan, and pectin. PaCel6A had a catalytic efficiency on cellotetraose comparable to that of Trichoderma reesei Cel6A (TrCel6A), but PaCel6B and PaCel6C were clearly less efficient. PaCel6A was the enzyme with the highest stability at 45°C, while PaCel6C was the least stable enzyme, losing more than 50% of its activity after incubation at temperatures above 30°C for 24 h. In contrast to TrCel6A, all three studied P. anserina GH6 cellulases were stable over a wide range of pHs and conserved high activity at pH values of up to 9. Each enzyme displayed a distinct substrate and product profile, highlighting different modes of action, with PaCel6A being the enzyme most similar to TrCel6A. PaCel6B was the only enzyme with higher specific activity on carboxymethylcellulose (CMC) than on Avicel and showed lower processivity than the others. Structural modeling predicts an open catalytic cleft, suggesting that PaCel6B is an endoglucanase. PMID:23645193

  15. Probing Mechanisms for Enzymatic Activity Enhancement of Organophosphorus Hydrolase in Functionalized Mesoporous Silica

    SciTech Connect

    Chen, Baowei; Lei, Chenghong; Shin, Yongsoon; Liu, Jun

    2009-12-25

    We have previously reported that organophosphorus hydrolase (OPH) can be spontaneously entrapped in functionalized mesoporous silica (FMS) with HOOC - as the functional groups and the entrapped OPH in HOOC-FMS showed enhanced enzyme specific activity. This work is to study the mechanisms that why OPH entrapped in FMS displayed the enhanced activity in views of OPH-FMS interactions using spectroscopic methods. The circular dichroism (CD) spectra show that, comparing to the secondary structure of OPH free in solution, OPH in HOOC-FMS displayed increased a-helix/b-strand transition of OPH with increased OPH loading density. The fluorescence emission spectra of Trp residues were used to assess the tertiary structural changes of the enzyme. There was a 42% increase in fluorescence. This is in agreement with the fact that the fluorescence intensity of OPH was increased accompanying with the increased OPH activity when decreasing urea concentrations in solution. The steady-state anisotropy was increased after OPH entrapping in HOOC-FMS comparing to the free OPH in solution, indicating that protein mobility was reduced upon entrapment. The solvent accessibility of Trp residues of OPH was probed by using acrylamide as a collisional quencher. Trp residues of OPH-FMS had less solvent exposure comparing with free OPH in solution due to its electrostatical binding to HOOC-FMS thereby displaying the increased fluorescence intensity. These results suggest the interactions of OPH with HOOC-FMS resulted in the protein immobilization and a favorable conformational change for OPH in the crowded confinement space and accordingly the enhanced activity.

  16. Structural elucidation and biological activity of acyl-homoserine lactones from the phytopathogen Pantoea ananatis Serrano 1928.

    PubMed

    Pomini, Armando M; Araújo, Welington L; Marsaioli, Anita J

    2006-08-01

    In Gram-negative bacteria, the acyl-homoserine lactones (acyl-HSLs) are the main signaling substances employed in cell-to-cell communication systems. This paper describes the chemical characterization of acyl-HSLs produced by the worldwide-spread phytopathogen Pantoea ananatis (Serrano 1928) by using gas chromatography-electron impact mass spectrometry. The absolute configuration of the major identified substance, (S)-(--)-N-hexanoyl-HSL, was determined with gas chromatography-flame ionization detection with a chiral capillary column. Biological activities of extracts, fractions, and synthetic products were evaluated with the specific reporter Agrobacterium tumefaciensNTL4(pZLR4) in beta-galactosidase expression assays. PMID:16900431

  17. Activity-Based Protein Profiling of Organophosphorus and Thiocarbamate Pesticides Reveals Multiple Serine Hydrolase Targets in Mouse Brain

    PubMed Central

    NOMURA, DANIEL K.; CASIDA, JOHN E.

    2010-01-01

    Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, we used a chemoproteomic platform, termed activity-based protein profiling, to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in degradation of endocannabinoid signaling lipids, monoacylglycerol lipase and fatty acid amide hydrolase, were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants. PMID:21341672

  18. Expression and activity of microsomal epoxide hydrolase in follicles isolated from mouse ovaries.

    PubMed

    Cannady, Ellen A; Dyer, Cheryl A; Christian, Patricia J; Sipes, I Glenn; Hoyer, Patricia B

    2002-07-01

    Microsomal epoxide hydrolase (mEH) is involved in the detoxification of xenobiotics that are or can form epoxide metabolites, including the ovotoxicant, 4-vinylcyclohexene (VCH). This industrial chemical is bioactivated by hepatic CYP450 to the diepoxide metabolite, VCD, which destroys mouse small preantral follicles (F1). Since ovarian mEH may play a role in VCD detoxification, these studies investigated the expression and activity of mEH in isolated ovarian fractions. Mice were given 1 or 15 daily doses (ip) of VCH (7.4 mmol/kg/day) or VCD (0.57 mmol/kg/day); 4 h following the final dose, ovaries were removed, distinct populations of intact follicles (F1, 25-100 microm; F2, 100-250 microm; F3, > 250 microm) and interstitial cells (Int) were isolated, and total RNA and protein were extracted. Real-time polymerase chain reaction and the substrate cis-stilbene oxide (CSO; 12.5 microM) were used to evaluate expression and specific activity of mEH, respectively. Confocal microscopy evaluated ovarian distribution of mEH protein. Expression of mRNA encoding mEH was increased in F1 (410 +/- 5% VCH; 292 +/- 5% VCD) and F2 (1379 +/- 4% VCH; 381 +/- 11% VCD) follicles following repeated dosing with VCH or VCD. Catalytic activity of mEH increased in F1 follicles following repeated dosing with VCH/VCD (381 +/- 11% VCH; 384 +/- 27% VCD). Visualized by confocal microscopy, mEH protein was distributed throughout the ovary with the greatest staining intensity in the interstitial cells and staining in the theca cells that was increased by dosing (56 +/- 0.8% VCH; 29 +/- 0.9% VCD). We conclude that mEH is expressed and is functional in mouse ovarian follicles. Additionally,in vivo dosing with VCH and VCD affects these parameters. PMID:12075107

  19. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors.

    PubMed

    Hu, Huizhi; He, Junguo; Liu, Jian; Yu, Huarong; Zhang, Jie

    2016-07-01

    This study verified the effect of N-acyl homoserine lactone (AHL) concentrations on mature biofilm systems. Three concentrations of an AHL mixture were used in the batch test. Introducing of 5nM AHLs significantly increased biofilm activity and increased sludge characteristics, which resulted in better pollutant removal performance, whereas exogenous 50nM and 500nM AHLs limited pollutant removal, especially COD and nitrogen removal. To further identify how exogenous signal molecular affects biofilm system nitrogen removal, analyzing of nitrifying bacteria through real-time polymerase chain reaction (RT-PCR) revealed that these additional signal molecules affect nitrifying to total bacteria ratio. In addition, the running state of the system was stable during 15days of operation without an AHL dose, which suggests that the changes in the system due to AHL are irreversible. PMID:27030953

  20. Securiosides A and B, novel acylated triterpene bisdesmosides with selective cytotoxic activity against M-CSF-stimulated macrophages.

    PubMed

    Kuroda, M; Mimaki, Y; Sashida, Y; Kitahara, M; Yamazaki, M; Yui, S

    2001-02-12

    We report the discovery of securiosides A (1) and B (2), novel acylated triterpene bisdesmosides, isolated from the roots of Securidaca inappendiculata. Securiosides A and B showed potent selective cytotoxic activity against M-CSF-stimulated macrophages and were suggested to have potential as new agents for the treatment of inflammatory diseases such as RA and atherosclerosis. PMID:11212113

  1. Highly active β-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates.

    PubMed

    Jordan, Douglas B; Wagschal, Kurt; Grigorescu, Arabela A; Braker, Jay D

    2013-05-01

    The hemicellulose xylan constitutes a major portion of plant biomass, a renewable feedstock available for conversion to biofuels and other bioproducts. β-xylosidase operates in the deconstruction of the polysaccharide to fermentable sugars. Glycoside hydrolase family 43 is recognized as a source of highly active β-xylosidases, some of which could have practical applications. The biochemical details of four GH43 β-xylosidases (those from Alkaliphilus metalliredigens QYMF, Bacillus pumilus, Bacillus subtilis subsp. subtilis str. 168, and Lactobacillus brevis ATCC 367) are examined here. Sedimentation equilibrium experiments indicate that the quaternary states of three of the enzymes are mixtures of monomers and homodimers (B. pumilus) or mixtures of homodimers and homotetramers (B. subtilis and L. brevis). k cat and k cat/K m values of the four enzymes are higher for xylobiose than for xylotriose, suggesting that the enzyme active sites comprise two subsites, as has been demonstrated by the X-ray structures of other GH43 β-xylosidases. The K i values for D-glucose (83.3-357 mM) and D-xylose (15.6-70.0 mM) of the four enzymes are moderately high. The four enzymes display good temperature (K t (0.5) ∼ 45 °C) and pH stabilities (>4.6 to <10.3). At pH 6.0 and 25 °C, the enzyme from L. brevis ATCC 367 displays the highest reported k cat and k cat/K m on natural substrates xylobiose (407 s(-1), 138 s(-1) mM(-1)), xylotriose (235 s(-1), 80.8 s(-1) mM(-1)), and xylotetraose (146 s(-1), 32.6 s(-1) mM(-1)). PMID:23053115

  2. Contribution of active-site glutamine to rate enhancement in ubiquitin carboxy terminal hydrolases

    PubMed Central

    Boudreaux, David; Chaney, Joseph; Maiti, Tushar K.; Das, Chittaranjan

    2012-01-01

    Ubiquitin carboxy terminal hydrolases (UCHs) are cysteine proteases featuring a classical cysteine-histidine-aspartate catalytic triad, also a highly conserved glutamine thought to be a part of the oxyanion hole. However, the contribution of this side chain to the catalysis by UCH enzymes is not known. Herein, we demonstrate that the glutamine side chain contributes to rate enhancement in UCHL1, UCHL3 and UCHL5. Mutation of the glutamine to alanine in these enzymes impairs the catalytic efficiency mainly due to a 16 to 30-fold reduction in kcat, which is consistent with a loss of approximately 2 kcal/mol in transition-state stabilization. However, the contribution to transition-state stabilization observed here is rather modest for the side chain’s role in oxyanion stabilization. Interestingly, we discovered that the carbonyl oxygen of this side chain is engaged in a C—H•••O hydrogen-bonding contact with the CεH group of the catalytic histidine. Upon further analysis, we found that this interaction is a common active-site structural feature in most cysteine proteases, including papain, belonging to families with the QCH(N/D) type of active-site configuration. It is possible that removal of the glutamine side chain might have abolished the C—H•••O interaction, which typically accounts for 2 kcal/mol of stabilization, leading to the effect on catalysis observed here. Additional studies performed on UCHL3 by mutating the glutamine to glutamate (strong C—H•••O acceptor but oxyanion destabilizer) and to lysine (strong oxyanion stabilizer but lacking C—H•••O hydrogen-bonding property) suggest that the C—H•••O hydrogen bond could contribute to catalysis. PMID:22284438

  3. Acyl-coenzyme A:cholesterol O-acyltransferase is not identical to liver microsomal carboxylesterase.

    PubMed

    Diczfalusy, M A; Björkhem, I; Einarsson, K; Alexson, S E

    1996-04-01

    Acyl-coenzyme A (CoA):cholesterol O-acyltransferase (ACAT) is responsible for esterification of cholesterol in the cell. The enzyme has never been purified, but two cDNA sequences coding for this enzyme were recently reported. One of the sequences was identical to human liver carboxylesterase. We have used inhibitors to elucidate the relation between microsomal carboxylesterase, acyl-CoA hydrolase (ACH), and ACAT activities in rat liver. Low concentrations of serine esterase inhibitors strongly inhibited carboxylesterase and acyl-CoA hydrolase activities but stimulated ACAT activity. At higher concentrations, ACAT activity was also inhibited. A sulfhydryl-modifying agent was found to be a potent inhibitor of ACAT without affecting carboxylesterase activity. Similarly, two specific ACAT inhibitors, DL-melinamide and PD 138142-15, inhibited ACAT activity but did not affect carboxylesterase or ACH activities. Our data thus exclude ACAT as a liver microsomal carboxylesterase. The complex inhibition patterns observed with serine esterase inhibitors indicate that carboxylesterases and ACHs may interfere with ACAT activity by competing for the substrate. It is obvious that final identification of ACAT requires demonstration of an active homogenous protein. PMID:8624784

  4. Highly active ß-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hemicellulose xylan constitutes a major portion of plant biomass, a renewable feedstock available for conversion to biofuels and other bioproducts. ß-xylosidase operates in the deconstruction of the polysaccharide to fermentable sugars. Glycoside hydrolase family 43 has been identified as a so...

  5. Structure-activity relationships of the plasminogen modulator SMTP with respect to the inhibition of soluble epoxide hydrolase.

    PubMed

    Matsumoto, Naoki; Suzuki, Eriko; Tsujihara, Kota; Nishimura, Yuuichi; Hasumi, Keiji

    2015-11-01

    A family of fungal metabolites, SMTP, is a small-molecule plasminogen modulator that enhances plasminogen activation, leading to thrombolysis. We recently demonstrated that SMTP-7 effectively treats ischemic stroke due to its thrombolytic activity as well as anti-inflammatory action, which is attributable to soluble epoxide hydrolase (sEH) inhibition. In this paper, we studied detailed structure-activity relationships of plasminogen modulation and sEH inhibition using 25 SMTP congeners including six newly synthesized ones. The results clearly demonstrate that the structure of the N-linked side chain of SMTP congeners markedly affect their activities toward plasminogen modulation and inhibitions of the two activities of sEH (C-terminal epoxide hydrolase and N-terminal phosphatase). A slight change in the N-linked side chain results in affording selectivity of SMTP congeners. Many congeners, which lacked plasminogen modulation activity, differently inhibited the two sEH activities depending on the structures of the N-linked side chain. Some congeners were active in plasminogen modulation and inhibition of both activities of sEH. These results help comprehensive understanding of ideal design of a drug useful for ischemic diseases that are associated with inflammation, such as stroke. PMID:25966853

  6. [Thrombocyte lysosomal hydrolase activity in patients with ischemic heart disease, hyperlipidemia and obesity against a background of different diets].

    PubMed

    Vasil'ev, A V; Shimanovskaia, N P; Pogozheva, A V; Samsonov, M A; Tutel'ian, V A

    1987-01-01

    Investigation of lysosomal hydrolase activity in platelets of patients has revealed drastic activation of cathepsins B, C and phospholipase A1, the degree of which rose in the following range: coronary heart disease; coronary heart disease aggravated by obesity: obesity and hyperlipidemia (type II). Administration of the adequate dietotherapy resulted in normalization of enzymologic parameters, whereas the results of the clinico-biochemical analysis of the blood were less informative in all cases. The data obtained could be used in the evaluation of the dietotherapy effectiveness, as well as for the early diagnosis of the corresponding diseases. PMID:3439081

  7. Glycoside Hydrolase Activities in Cell Walls of Sclerenchyma Cells in the Inflorescence Stems of Arabidopsis thaliana Visualized in Situ.

    PubMed

    Banasiak, Alicja; Ibatullin, Farid M; Brumer, Harry; Mellerowicz, Ewa J

    2014-01-01

    Techniques for in situ localization of gene products provide indispensable information for understanding biological function. In the case of enzymes, biological function is directly related to activity, and therefore, knowledge of activity patterns is central to understanding the molecular controls of plant development. We have previously developed a novel type of fluorogenic substrate for revealing glycoside hydrolase activity in planta, based on resorufin β-glycosides Here, we explore a wider range of such substrates to visualize glycoside hydrolase activities in Arabidopsis inflorescence stems in real time, especially highlighting distinct distribution patterns of these activities in the secondary cell walls of sclerenchyma cells. The results demonstrate that β-1,4-glucosidase, β-1,4-glucanase and β-1,4-galactosidase activities accompany secondary wall deposition. In contrast, xyloglucanase activity follows a different pattern, with the highest signal observed in mature cells, concentrated in the middle lamella. These data further the understanding of the process of cell wall deposition and function in sclerenchymatic tissues of plants. PMID:27135517

  8. PehN, a Polygalacturonase Homologue with a Low Hydrolase Activity, Is Coregulated with the Other Erwinia chrysanthemi Polygalacturonases

    PubMed Central

    Hugouvieux-Cotte-Pattat, Nicole; Shevchik, Vladimir E.; Nasser, William

    2002-01-01

    Erwinia chrysanthemi 3937 secretes an arsenal of pectinolytic enzymes, including at least eight endo-pectate lyases encoded by pel genes, which play a major role in the soft-rot disease caused by this bacterium on various plants. E. chrysanthemi also produces some hydrolases that cleave pectin. Three adjacent hydrolase genes, pehV, pehW, and pehX, encoding exo-poly-α-d-galacturonosidases, have been characterized. These enzymes liberate digalacturonides from the nonreducing end of pectin. We report the identification of a novel gene, named pehN, encoding a protein homologous to the glycosyl hydrolases of family 28, which includes mainly polygalacturonases. PehN has a low hydrolase activity on polygalacturonate and on various pectins. PehN action favors the activity of the secreted endo-pectate lyases, mainly PelB and PelC, and that of the periplasmic exo-pectate lyase PelX. However, removal of the pehN gene does not significantly alter the virulence of E. chrysanthemi. Regulation of pehN transcription was analyzed by using gene fusions. Like other pectinase genes, pehN transcription is dependent on several environmental conditions. It is induced by pectic catabolic products and is affected by growth phase, catabolite repression, osmolarity, anaerobiosis, nitrogen starvation, and the presence of calcium ions. The transcription of pehN is modulated by the repressor KdgR, which controls almost all the steps of pectin catabolism, and by cyclic AMP receptor protein (CRP), the global activator of sugar catabolism. The regulator PecS, which represses the transcription of the pel genes but activates that of pehV, pehW, and pehX, also activates transcription of pehN. The three regulators KdgR, PecS, and CRP act by direct interaction with the pehN promoter region. The sequences involved in the binding of these three regulators and of RNA polymerase have been precisely defined. Analysis of the simultaneous binding of these proteins indicates that CRP and RNA polymerase bind

  9. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5.

    PubMed

    Brigidi, G Stefano; Santyr, Brendan; Shimell, Jordan; Jovellar, Blair; Bamji, Shernaz X

    2015-01-01

    Synaptic plasticity is mediated by the dynamic localization of proteins to and from synapses. This is controlled, in part, through activity-induced palmitoylation of synaptic proteins. Here we report that the ability of the palmitoyl-acyl transferase, DHHC5, to palmitoylate substrates in an activity-dependent manner is dependent on changes in its subcellular localization. Under basal conditions, DHHC5 is bound to PSD-95 and Fyn kinase, and is stabilized at the synaptic membrane through Fyn-mediated phosphorylation of a tyrosine residue within the endocytic motif of DHHC5. In contrast, DHHC5's substrate, δ-catenin, is highly localized to dendritic shafts, resulting in the segregation of the enzyme/substrate pair. Neuronal activity disrupts DHHC5/PSD-95/Fyn kinase complexes, enhancing DHHC5 endocytosis, its translocation to dendritic shafts and its association with δ-catenin. Following DHHC5-mediated palmitoylation of δ-catenin, DHHC5 and δ-catenin are trafficked together back into spines where δ-catenin increases cadherin stabilization and recruitment of AMPA receptors to the synaptic membrane. PMID:26334723

  10. Peptidyl - tRNA hydrolase and RNase activities in cell fractions of rat liver used in in vitro reconstitution of rough membrane.

    PubMed Central

    Hochberg, A A; Czosnek, H H; Ziv, E

    1975-01-01

    Peptidyl-tRNA hydrolase and RNase activities have been studied in those fractions of rat liver, which are used in in vitro reconstitution of rough membrane, because these enzymes may interfere with the in vitro reconstitution. It was found that smooth membrane has an active peptidyl-tRNA hydrolase, while the other fractions tested, polyribosomes, rough membrane, stripped rough membrane and the post-microsomal supernatant had no, or very low, peptidyl-tRNA hydrolase activity. Polyribosomes, rough and stripped rough membrane have RNase activity; this activity could be completely inhibited by rat liver RNase inhibitor. It is shown that RNase inhibitor is an obligatory component in in vitro experiments, in which rough membrane is reconstituted from stripped rough membrane, ribosomes and mRNA. PMID:1144067

  11. Relationship between plasma lipids and palmitoyl-CoA hydrolase and synthetase activities with peroxisomal proliferation in rats treated with fibrates.

    PubMed Central

    Alegret, M.; Ferrando, R.; Vázquez, M.; Adzet, T.; Merlos, M.; Laguna, J. C.

    1994-01-01

    1. The time-course of the effect of clofibrate (CFB), bezafibrate (BFB) and gemfibrozil (GFB) on lipid plasma levels and palmitoyl-CoA hydrolase and synthetase activities, as well as the correlations with the peroxisomal proliferation phenomenon have been studied in male Sprague-Dawley rats. 2. The administration of the three drugs caused a significant reduction in body weight gain, accompanied with a paradoxical increase in food intake in groups treated with BFB and GFB. 3. Drug treatment produced gross hepatomegaly and increase in peroxisomal beta-oxidation, and these parameters were strongly correlated. The order of potency was BFB > CFB > or = GFB. 4. Both plasma cholesterol (BFB approximately CFB > GFB) and triglyceride (BFB approximately GFB > CFB) levels were reduced in treated animals. There was an inverse correlation between these parameters and peroxisomal beta-oxidation, although the peroxisomal proliferation seemed to explain only a small part of the hypolipidemic effect observed. 5. Cytosolic and microsomal (but not mitochondrial) palmitoyl-CoA hydrolase activities were increased by the three drugs (BFB > CFB > GFB), probably by inducing the hydrolase I isoform, which is insensitive to inhibition by fibrates in vitro. The increased hydrolase activities were directly and strongly correlated with peroxisomal beta-oxidation. 6. Palmitoyl-CoA synthetase activity was also increased by the treatment with fibrates (BFB > CFB > GFB), probably as a consequence of the enhancement of hydrolase activities.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7915611

  12. The small intestinal apical hydrolase activities are decreased in the piglet with bowel inflammation induced by dextran sodium sulfate.

    PubMed

    Lackeyram, D; Mine, Y; Archbold, T; Fan, M Z

    2012-12-01

    Inflammatory bowel disease (IBD) is characterized by cramping, abdominal pain, bloating, constipation, and diarrhea. We tested the hypothesis that compromised activities of the major small intestinal apical hydrolases contribute to the symptoms of IBD. Changes in hydrolytic kinetics, target protein abundances, and mRNA expression of intestinal alkaline phosphatase (IAP), lactase, maltase, sucrase-isomaltase (SI), maltase-glucoamylase (MGA), and aminopeptidase N (APN) in piglets with colonic inflammation chemically induced by dextran sodium sulfate (DSS) were investigated. Yorkshire piglets at 5 d of age, with an average initial BW of about 3 kg, were fitted with intragastric catheters and were divided into control (CON; n = 6) and treatment groups (DSS; n = 5). Both groups were infused with an equal volume of either saline or 1.25 g of DSS · kg BW(-1) · d(-1) in saline, respectively, for 10 d. Enzyme kinetic experiments for IAP, lactase, maltase, SI, MGA, and APN were measured at 37°C with isolated proximal jejunal apical membrane. Target hydrolase protein abundances in the apical membrane were analyzed by Western blotting and their mRNA abundances in the jejunum were measured by quantitative real-time reverse transcription (RT-) PCR with β-actin as the housekeeping gene. Expressed as percentage of the CON, DSS treatment decreased (P < 0.05) the maximal specific activities of IAP (53%), lactase (78%), maltase (56%), SI (72%), MGA (29%), and APN (22%) as well as the target hydrolase protein abundances of IAP (39%), lactase (35%), SI (36%), and APN (54%), respectively. Decreases (P < 0.05) in the mRNA abundances (% of the CON) for lactase (25%), SI (52%), MGA (75%), and APN (39%) were observed in the DSS group. However, DSS treatment increased (P < 0.05) the jejunal IAP mRNA abundance by 3.5 fold. We conclude that decreases in the small intestinal apical activities of these examined hydrolases likely contribute to overgrowth of pathogenic bacterial populations in

  13. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity.

    PubMed

    Amitai, Gabi; Adani, Rellie; Yacov, Guy; Yishay, Shelly; Teitlboim, Shai; Tveria, Liat; Limanovich, Osnat; Kushnir, Moshe; Meshulam, Haim

    2007-04-20

    In order to enhance the enzymatic detoxification rate of organophosphorus (OP) nerve agents we have searched for more active variants of recombinant mammalian paraoxonase (PON1). We have previously identified three key positions in PON1 that affect OP hydrolysis: Leu69, Val346 and His115, that significantly enhance the hydrolysis of cyclosarin (GF), soman, chlorpyrifos-oxon (ChPo), O-isopropyl-O-(p-nitrophenyl)methylphosphonate (IMP-pNP) and diisopropyl fluorophosphate (DFP). GC/FPD analysis compared to residual AChE inhibition assay displayed stereoselective hydrolysis of GF, soman and IMP-pNP, indicating that wild type PON1 and its variant V346A are more active toward the less toxic P(+) optical isomer. In order to obtain new PON1 variants with reversed stereoselectivity, displaying augmented activity toward the more toxic isomer P(-) of nerve agents, we synthesized new asymmetric fluorogenic OPs (Flu-OPs). Six Flu-OPs were prepared containing either ethyl (E), cyclohexyl (C) or pinacolyl (P) alkyl radicals attached to methyl-phosphonyl (MP) moiety analogous to the structure of VX, GF and soman, respectively. The fluorescent moieties are either 3-cyano-4-methyl-7-hydroxy coumarin (MeCyC) or 1,3-dichloro-7-hydroxy-9,9-dimethyl-9H-acridin-2-one (DDAO). The kinetics of AChE and BChE inhibition by these new Flu-OPs display k(i) values 8.5x10(4) to 8.5x10(7) and 5x10(4) to 2x10(6)M(-1)min(-1), respectively. EMP-MeCyC and EMP-DDAO are the most active inhibitors of AChE whereas CMP-MeCyC and CMP-DDAO are better inhibitors of BChE than AChE, indicating accommodation of bulky cyclohexyl group inside the active site of BChE. PMP-MeCyC and PMP-DDAO are the least active inhibitors of both AChE and BChE. CMP-MeCyC and CMP-DDAO were significantly detoxified only by the five-site mutations PON1 variant L69V/S138L/S193P/N287D/V346A. Degradation kinetics of Flu-OPs measured by increase in absorbance of the released fluorogenic group was fit by a two exponential function

  14. Peptidoglycan Hydrolases of Escherichia coli

    PubMed Central

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  15. Synthesis, crystal structure and biological activity of two Mn complexes with 4-acyl pyrazolone derivatives.

    PubMed

    Li, Yue; Zhao, Jing; He, Chuan-Chuan; Zhang, Li; Sun, Su-Rong; Xu, Guan-Cheng

    2015-09-01

    In order to study the biological activities of transitional metal complexes based on 4-acyl pyrazolone derivatives, two Mn complexes [Mn(HLa)(La)]·(CH3CN)1.5·H2O (1) and [Mn2(Lb)2(μ-EtO)2(EtOH)2] (2) (H2La = N-(1-phenyl-3-methyl-4-benzoyl-5-pyrazolone)-2-thiophenecarboxylic acid hydrazide, H2Lb = N-(1-phenyl-3-methyl-4-propenylidene-5-pyrazolone)-2-thiophenecarboxylic acid hydrazide) have been synthesized and characterized. Single crystal X-ray diffraction analysis indicated that 1 is a mononuclear complex and 2 exhibits a dinuclear centrosymmetric structure. Binding of the complexes with Herring Sperm DNA (HS-DNA) showed that complexes 1 and 2 could intercalate to DNA with quenching constant of 5.3×10(4) M(-1) and 4.9×10(4) M(-1), respectively. The interactions of the complexes with bovine serum albumin (BSA) indicated that complexes 1 and 2 could quench the intrinsic fluorescence of BSA in a static quenching process. Further, the inhibitory effects of the complexes on the cell population growth of the human esophageal cancer Eca-109 cells and the cervical cancer HeLa cells were determined by MTT assay, which indicated that both 1 and 2 significantly inhibited the growth of Eca-109 and HeLa cells, the inhibitory activity of complex 1 is stronger than that of 2. We further observed that complex 1 inhibited the growth of HeLa cells through inducing the apoptosis and arresting cell cycle at S phase. Our results suggested that both complexes 1 and 2 have DNA- and protein-binding capacity and antitumor activity. PMID:26074379

  16. Membrane anchoring of diacylglycerol-lactones substituted with rigid hydrophobic acyl domains correlates with biological activities

    PubMed Central

    Raifman, Or; Kolusheva, Sofiya; Comin, Maria J.; Kedei, Noemi; Lewin, Nancy E.; Blumberg, Peter M.; Marquez, Victor E.; Jelinek, Raz

    2009-01-01

    Summary Synthetic diacylglycerol lactones (DAG-lactones) are effective modulators of critical cellular signaling pathways, downstream of the lipophilic second messenger diacylglycerol, that activate a host of protein kinase C (PKC) isozymes as well as other non-kinase proteins that share with PKC similar C1 membrane-targeting domains. A fundamental determinant of the biological activity of these amphiphilic molecules is the nature of their interactions with cellular membranes. This study characterizes the membrane interactions and bilayer anchoring of a series of DAG-lactones in which the hydrophobic moiety is a “molecular rod”, namely a rigid 4-[2-(R-phenyl)ethynyl]benzoate moiety in the acyl position. Application of assays employing chromatic biomimetic vesicles and biophysical techniques reveals that the mode of membrane anchoring of the DAG-lactone derivatives was markedly affected by the presence of the hydrophobic diphenyl rod and by the size of the functional unit displayed at the terminus of the rod. Two primary mechanisms of interaction were observed: surface binding of the DAG-lactones at the lipid/water interface and deep insertion of the ligands into the alkyl core of the lipid bilayer. These membrane-insertion properties could explain the different patterns of PKC translocation from cytosol to membranes induced by the molecular-rod DAG-lactones. This investigation emphasizes that the side-residues of DAG-lactones, rather than simply conferring hydrophobicity, profoundly influence membrane interactions and in that fashion may further contribute to the diversity of biological actions of these synthetic biomimetic ligands. PMID:19961537

  17. Structural Enzymology of Cellvibrio japonicus Agd31B Protein Reveals α-Transglucosylase Activity in Glycoside Hydrolase Family 31*

    PubMed Central

    Larsbrink, Johan; Izumi, Atsushi; Hemsworth, Glyn R.; Davies, Gideon J.; Brumer, Harry

    2012-01-01

    The metabolism of the storage polysaccharides glycogen and starch is of vital importance to organisms from all domains of life. In bacteria, utilization of these α-glucans requires the concerted action of a variety of enzymes, including glycoside hydrolases, glycoside phosphorylases, and transglycosylases. In particular, transglycosylases from glycoside hydrolase family 13 (GH13) and GH77 play well established roles in α-glucan side chain (de)branching, regulation of oligo- and polysaccharide chain length, and formation of cyclic dextrans. Here, we present the biochemical and tertiary structural characterization of a new type of bacterial 1,4-α-glucan 4-α-glucosyltransferase from GH31. Distinct from 1,4-α-glucan 6-α-glucosyltransferases (EC 2.4.1.24) and 4-α-glucanotransferases (EC 2.4.1.25), this enzyme strictly transferred one glucosyl residue from α(1→4)-glucans in disproportionation reactions. Substrate hydrolysis was undetectable for a series of malto-oligosaccharides except maltose for which transglycosylation nonetheless dominated across a range of substrate concentrations. Crystallographic analysis of the enzyme in free, acarbose-complexed, and trapped 5-fluoro-β-glucosyl-enzyme intermediate forms revealed extended substrate interactions across one negative and up to three positive subsites, thus providing structural rationalization for the unique, single monosaccharide transferase activity of the enzyme. PMID:23132856

  18. How water molecules affect the catalytic activity of hydrolases - A XANES study of the local structures of peptide deformylase

    NASA Astrophysics Data System (ADS)

    Cui, Peixin; Wang, Yu; Chu, Wangsheng; Guo, Xiaoyun; Yang, Feifei; Yu, Meijuan; Zhao, Haifeng; Dong, Yuhui; Xie, Yaning; Gong, Weimin; Wu, Ziyu

    2014-12-01

    Peptide deformylase (PDF) is a prokaryotic enzyme that catalyzes the deformylation of nascent peptides generated during protein synthesis and water molecules play a key role in these hydrolases. Using X-ray absorption near edge spectroscopy (XANES) and ab initio calculations we accurately probe the local atomic environment of the metal ion binding in the active site of PDF at different pH values and with different metal ions. This new approach is an effective way to monitor existing correlations among functions and structural changes. We show for the first time that the enzymatic activity depends on pH values and metal ions via the bond length of the nearest coordinating water (Wat1) to the metal ion. Combining experimental and theoretical data we may claim that PDF exhibits an enhanced enzymatic activity only when the distance of the Wat1 molecule with the metal ion falls in the limited range from 2.15 to 2.55 Å.

  19. Morphological and metabolic changes in transgenic wheat with altered glycerol-3-phosphate acyltransferase or acyl-acyl carrier protein (ACP) thioesterase activities.

    PubMed

    Edlin, D A; Kille, P; Wilkinson, M D; Jones, H D; Harwood, J L

    2000-12-01

    We have transformed varieties of wheat with a Pisum sativum glycerol-3-phosphate acyltransferase gene, and also with an Arabidopsis thaliana acyl-ACP thioesterase gene. Morphological (growth, organelle development) and metabolic changes (fatty acid labelling of chloroplast and non-chloroplast lipids) have been observed in transgenics with altered gene expression for either enzyme. PMID:11171169

  20. Anti-Tumor Effects of Novel 5-O-Acyl Plumbagins Based on the Inhibition of Mammalian DNA Replicative Polymerase Activity

    PubMed Central

    Kawamura, Moe; Kuriyama, Isoko; Maruo, Sayako; Kuramochi, Kouji; Tsubaki, Kazunori; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2014-01-01

    We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone) inhibits the activity of human mitochondrial DNA polymerase γ (pol γ). In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins). These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin) showed the strongest suppression of human colon carcinoma (HCT116) cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM) among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin. PMID:24520419

  1. Enhanced staphylolytic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 HydH5 virion associated peptidoglycan hydrolase: fusions, deletions and synergy with LysH5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virion-associated peptidoglycan hydrolases have a potential as antimicrobial agents due to their ability to lyse Gram positive bacteria on contact. In this work, our aim was to improve the lytic activity of HydH5, a virion associated peptidoglycan hydrolase from the Staphylococcus aureus bacteriopha...

  2. Variants of glycoside hydrolases

    SciTech Connect

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2013-02-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  3. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  4. Hydrolase-catalyzed biotransformations in deep eutectic solvents.

    PubMed

    Gorke, Johnathan T; Srienc, Friedrich; Kazlauskas, Romas J

    2008-03-14

    Hydrolases show good catalytic activity in deep eutectic solvents, despite the presence of urea, which can denature enzymes, or alcohols, which can interfere with hydrolase-catalyzed reactions. PMID:18309428

  5. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs)

    PubMed Central

    Recuero-Checa, Maria A.; Sharma, Manu; Lau, Constance; Watkins, Paul A.; Gaydos, Charlotte A.; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3–6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  6. Modulating effects of acyl-CoA synthetase 5-derived mitochondrial Wnt2B palmitoylation on intestinal Wnt activity

    PubMed Central

    Klaus, Christina; Schneider, Ursula; Hedberg, Christian; Schütz, Anke K; Bernhagen, Jürgen; Waldmann, Herbert; Gassler, Nikolaus; Kaemmerer, Elke

    2014-01-01

    AIM: To investigate the role of acyl-CoA synthetase 5 (ACSL5) activity in Wnt signaling in intestinal surface epithelia. METHODS: Several cell lines were used to investigate the ACSL5-dependent expression and synthesis of Wnt2B, a mitochondrially expressed protein of the Wnt signaling family. Wnt activity was functionally assessed with a luciferase reporter assay. ACSL5-related biochemical Wnt2B modifications were investigated with a modified acyl-exchange assay. The findings from the cell culture models were verified using an Apcmin/+ mouse model as well as normal and neoplastic diseased human intestinal tissues. RESULTS: In the presence of ACSL5, Wnt2B was unable to translocate into the nucleus and was enriched in mitochondria, which was paralleled by a significant decrease in Wnt activity. ACSL5-dependent S-palmitoylation of Wnt2B was identified as a molecular reason for mitochondrial Wnt2B accumulation. In cell culture systems, a strong relation of ACSL5 expression, Wnt2B palmitoylation, and degree of malignancy were found. Using normal mucosa, the association of ACSL5 and Wnt2B was seen, but in intestinal neoplasias the mechanism was only rudimentarily observed. CONCLUSION: ACSL5 mediates antiproliferative activities via Wnt2B palmitoylation with diminished Wnt activity. The molecular pathway is probably relevant for intestinal homeostasis, overwhelmed by other pathways in carcinogenesis. PMID:25356045

  7. Crystal structure of human mitochondrial acyl-CoA thioesterase (ACOT2)

    SciTech Connect

    Mandel, Corey R.; Tweel, Benjamin; Tong, Liang

    2009-08-13

    Acyl-CoA thioesterases (ACOTs) catalyze the hydrolysis of CoA esters to free CoA and carboxylic acids and have important functions in lipid metabolism and other cellular processes. Type I ACOTs are found only in animals and contain an {alpha}/{beta} hydrolase domain, through currently no structural information is available on any of these enzymes. We report here the crystal structure at 2.1 {angstrom} resolution of human mitochondrial ACOT2, a type I enzyme. The structure contains two domains, N and C domains. The C domain has the {alpha}/{beta} hydrolase fold, with the catalytic triad Ser294-His422-Asp388. The N domain contains a seven-stranded {beta}-sandwich, which has some distant structural homologs in other proteins. The active site is located in a large pocket at the interface between the two domains. The structural information has significant relevance for other type I ACOTs and related enzymes.

  8. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site.

    PubMed

    Bharathi, Sivakama S; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E; Rardin, Matthew J; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W; Hirschey, Matthew D; Goetzman, Eric S

    2013-11-22

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  9. Sirtuin 3 (SIRT3) Protein Regulates Long-chain Acyl-CoA Dehydrogenase by Deacetylating Conserved Lysines Near the Active Site

    PubMed Central

    Bharathi, Sivakama S.; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E.; Rardin, Matthew J.; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W.; Hirschey, Matthew D.; Goetzman, Eric S.

    2013-01-01

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  10. Host Acyl Coenzyme A Binding Protein Regulates Replication Complex Assembly and Activity of a Positive-Strand RNA Virus

    PubMed Central

    Zhang, Jiantao; Diaz, Arturo; Mao, Lan; Ahlquist, Paul

    2012-01-01

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their replication complexes. Similarly, brome mosaic virus (BMV) induces two alternate forms of membrane-bound RNA replication complexes: vesicular spherules and stacks of appressed double-membrane layers. The mechanisms by which these membrane rearrangements are induced, however, remain unclear. We report here that host ACB1-encoded acyl coenzyme A (acyl-CoA) binding protein (ACBP) is required for the assembly and activity of both BMV RNA replication complexes. ACBP is highly conserved among eukaryotes, specifically binds to long-chain fatty acyl-CoA, and promotes general lipid synthesis. Deleting ACB1 inhibited BMV RNA replication up to 30-fold and resulted in formation of spherules that were ∼50% smaller but ∼4-fold more abundant than those in wild-type (wt) cells, consistent with the idea that BMV 1a invaginates and maintains viral spherules by coating the inner spherule membrane. Furthermore, smaller and more frequent spherules were preferentially formed under conditions that induce layer formation in wt cells. Conversely, cellular karmella structures, which are arrays of endoplasmic reticulum (ER) membranes formed upon overexpression of certain cellular ER membrane proteins, were formed normally, indicating a selective inhibition of 1a-induced membrane rearrangements. Restoring altered lipid composition largely complemented the BMV RNA replication defect, suggesting that ACBP was required for maintaining lipid homeostasis. Smaller and more frequent spherules are also induced by 1a mutants with specific substitutions in a membrane-anchoring amphipathic α-helix, implying that the 1a-lipid interactions play critical roles in viral replication complex assembly. PMID:22345450

  11. Acylation Enhances, but Is Not Required for, the Cytotoxic Activity of Mannheimia haemolytica Leukotoxin in Bighorn Sheep

    PubMed Central

    Batra, Sai A.; Shanthalingam, Sudarvili; Munske, Gerhard R.; Raghavan, Bindu; Kugadas, Abirami; Bavanthasivam, Jegarubee; Highlander, Sarah K.

    2015-01-01

    Mannheimia haemolytica causes pneumonia in domestic and wild ruminants. Leukotoxin (Lkt) is the most important virulence factor of the bacterium. It is encoded within the four-gene lktCABD operon: lktA encodes the structural protoxin, and lktC encodes a trans-acylase that adds fatty acid chains to internal lysine residues in the protoxin, which is then secreted from the cell by a type 1 secretion system apparatus encoded by lktB and lktD. It has been reported that LktC-mediated acylation is necessary for the biological effects of the toxin. However, an LktC mutant that we developed previously was only partially attenuated in its virulence for cattle. The objective of this study was to elucidate the role of LktC-mediated acylation in Lkt-induced cytotoxicity. We performed this study in bighorn sheep (Ovis canadensis) (BHS), since they are highly susceptible to M. haemolytica infection. The LktC mutant caused fatal pneumonia in 40% of inoculated BHS. On necropsy, a large number of necrotic polymorphonuclear leukocytes (PMNs) were observed in the lungs. Lkt from the mutant was cytotoxic to BHS PMNs in an in vitro cytotoxicity assay. Flow cytometric analysis of mutant Lkt-treated PMNs revealed the induction of necrosis. Scanning electron microscopic analysis revealed the presence of pores and blebs on mutant-Lkt-treated PMNs. Mass spectrometric analysis confirmed that the mutant secreted an unacylated Lkt. Taken together, these results suggest that acylation is not necessary for the cytotoxic activity of M. haemolytica Lkt but that it enhances the potency of the toxin. PMID:26216418

  12. Syntheses and biological evaluation of 2-amino-3-acyl-tetrahydrobenzothiophene derivatives; antibacterial agents with antivirulence activity

    PubMed Central

    Dang, Hung The; Chorell, Erik; Uvell, Hanna; Pinkner, Jerome S.; Hultgren, Scott J.

    2014-01-01

    Developing new compounds targeting virulence factors (e.g., inhibition of pilus assembly by pilicides) is a promising approach to combating bacterial infection. A high-throughput screening campaign of a library of 17,500 small molecules identified 2-amino-3-acyl-tetrahydrobenzothiophene derivatives (hits 2 and 3) as novel inhibitors of pili-dependent biofilm formation in an uropathogenic Escherichia coli strain UTI89. Based on compounds 2 and 3 as a starting point, we designed and synthesized a series of structurally related analogs and investigated their activity against biofilm formation of E.coli UTI89. Systematic structural modification of the initial hits provided valuable information on their SARs for further optimization. In addition, small structural changes to the parent molecules resulted in low micromolar inhibitors (20–23) of E.coli biofilm development without effect on bacterial growth. The hit compound 3 and its analog 20 were confirmed to prevent pili formation in a hemagglutination (HA) titer assay and electron microscopy (EM) measurements. These findings suggest that 2-amino-3-acyl-tetrahydrobenzothiophenes may serve as a new class of compounds for further elaboration as antibacterial agents with antivirulence activity. PMID:24531242

  13. Synthesis and biological evaluation of acylated oligorhamnoside derivatives structurally related to mezzettiaside-6 with cytotoxic activity.

    PubMed

    Song, Gaopeng; Li, Sumei; Lei, Zhiwei; Li, Yibin; Li, Junhua; Liao, Yixian; Cui, Zi-Ning

    2016-07-12

    Two partially acylated oligorhamnoside derivatives 1 and 2 structurally related to the natural product mezzettiaside-6 were synthesized via a '2 + 1 + 1' convergent strategy. The bioassay results showed that the introduction of the acetyl groups to the 2-position of the terminal l-rhamnose was helpful to improve in vitro cytotoxicity. Compound 1 showed both extensive in vitro cytotoxicity in tumor cell lines and potential antimultidrug resistance capability. Preliminary mechanistic studies demonstrated that compound 1 could inhibit cell growth by inducing apoptosis, arresting cell cycle progression at the S phase in K562 cells. PMID:27241813

  14. Synthesis and characterization of some acyl thiourea derivatives of chitosan and their biocidal activities.

    PubMed

    Elkholy, Said S; Salem, Hend A; Eweis, Mohamed; Elsabee, Maher Z

    2014-09-01

    Three acyl derivatives of chitosan (CS) with different side chains were synthesized and their structures were characterized. Their swelling behavior was investigated. The antifungal behavior of these chitosan derivatives was investigated in vitro on the mycelial growth, sporulation and germination of conidia or sclerotia of the sugar-beet pathogens, Rhizoctonia solani K"uhn (AG2-2) and Sclerotium rolfsii Sacc. All the prepared derivatives had a significant inhibiting effect on the different stages of development on the germination of conidia or sclerotia of all the investigated fungi. In the absence of chitosan and its derivative, R. solani exhibited the fastest growth of the fungi studied. PMID:25002014

  15. Structural and Functional Analyses of a Glycoside Hydrolase Family 5 Enzyme with an Unexpected [beta]-Fucosidase Activity

    SciTech Connect

    Yoshida, Shosuke; Park, David S.; Bae, Brian; Mackie, Roderick; Cann, Isaac K.O.; Nair, Satish K.

    2012-02-15

    We present characterization of PbFucA, a family 5 glycoside hydrolase (GH5) from Prevotella bryantii B{sub 1}4. While GH5 members typically are xylanases, PbFucA shows no activity toward xylan polysaccharides. A screen against a panel of p-nitrophenol coupled sugars identifies PbFucA as a {beta}-D-fucosidase. We also present the 2.2 {angstrom} resolution structure of PbFucA and use structure-based mutational analysis to confirm the role of catalytically essential residues. A comparison of the active sites of PbFucA with those of family 5 and 51 glycosidases reveals that while the essential catalytic framework is identical between these enzymes, the steric contours of the respective active site clefts are distinct and likely account for substrate discrimination. Our results show that members of this cluster of orthologous group (COG) 5520 have {beta}-D-fucosidase activities, despite showing an overall sequence and structural similarity to GH-5 xylanases.

  16. Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting.

    PubMed

    Wang, Mengfan; Lv, Yuqi; Liu, Xiaojing; Qi, Wei; Su, Rongxin; He, Zhimin

    2016-06-01

    In this study, an artificial hydrolase was developed by combining the catalytic Ser/His/Asp triad with N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF), followed by coassembly of the peptides into nanofibers (CoA-HSD). The peptide-based nanofibers provide an ideal supramolecular framework to support the functional groups. Compared with the self-assembled catalytic nanofibers (SA-H), which contain only the catalytic histidine residue, the highest activity of CoA-HSD occurs when histidine, serine, and aspartate residues are at a ratio of 40:1:1. This indicates that the well-ordered nanofiber structure and the synergistic effects of serine and aspartate residues contribute to the enhancement in activity. Additionally, for the first time, molecular imprinting was applied to further enhance the activity of the peptide-based artificial enzyme (CoA-HSD). p-NPA was used as the molecular template to arrange the catalytic Ser/His/Asp triad residues in the proper orientation. As a result, the activity of imprinted coassembled CoA-HSD nanofibers is 7.86 times greater than that of nonimprinted CoA-HSD and 13.48 times that of SA-H. PMID:27191381

  17. Structural requirements of acylated Gly-l-Ala-d-Glu analogs for activation of the innate immune receptor NOD2.

    PubMed

    Gobec, Martina; Mlinarič-Raščan, Irena; Dolenc, Marija Sollner; Jakopin, Žiga

    2016-06-30

    The fragment of bacterial peptidoglycan muramyl dipeptide (MDP) has long been known for its adjuvant activity, however the underlying mechanism of this action has only recently been elucidated. It is ascribed to its agonist action on the nucleotide-binding oligomerization domain-containing protein 2 (NOD2). In spite of the pressing need for novel adjuvants for human use, this discovery is hampered, by not knowing the structural requirements underlying the immunostimulatory activity. We have investigated how minor modifications of hit compound acyl Gly-L-Ala-D-Glu derivative I modulate the molecular recognition by NOD2. A series of novel desmuramyldipeptides has been designed and synthesized leading to the identification of compound 16, in which the sugar moiety is replaced by a 6-phenylindole moiety, that exhibits the strongest NOD2 activation to date sans the carbohydrate moiety. The results have enabled a deeper understanding of the structural requirements of desmuramylpeptides for NOD2 activation. PMID:27039337

  18. How water molecules affect the catalytic activity of hydrolases--a XANES study of the local structures of peptide deformylase.

    PubMed

    Cui, Peixin; Wang, Yu; Chu, Wangsheng; Guo, Xiaoyun; Yang, Feifei; Yu, Meijuan; Zhao, Haifeng; Dong, Yuhui; Xie, Yaning; Gong, Weimin; Wu, Ziyu

    2014-01-01

    Peptide deformylase (PDF) is a prokaryotic enzyme that catalyzes the deformylation of nascent peptides generated during protein synthesis and water molecules play a key role in these hydrolases. Using X-ray absorption near edge spectroscopy (XANES) and ab initio calculations we accurately probe the local atomic environment of the metal ion binding in the active site of PDF at different pH values and with different metal ions. This new approach is an effective way to monitor existing correlations among functions and structural changes. We show for the first time that the enzymatic activity depends on pH values and metal ions via the bond length of the nearest coordinating water (Wat1) to the metal ion. Combining experimental and theoretical data we may claim that PDF exhibits an enhanced enzymatic activity only when the distance of the Wat1 molecule with the metal ion falls in the limited range from 2.15 to 2.55 Å. PMID:25503313

  19. Genetic and Biochemical Characterization of the Cell Wall Hydrolase Activity of the Major Secreted Protein of Lactobacillus rhamnosus GG

    PubMed Central

    Claes, Ingmar J. J.; Schoofs, Geert; Regulski, Krzysztof; Courtin, Pascal; Chapot-Chartier, Marie-Pierre; Rolain, Thomas; Hols, Pascal; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Vanderleyden, Jos; De Keersmaecker, Sigrid C. J.; Lebeer, Sarah

    2012-01-01

    Lactobacillus rhamnosus GG (LGG) produces two major secreted proteins, designated here Msp1 (LGG_00324 or p75) and Msp2 (LGG_00031 or p40), which have been reported to promote the survival and growth of intestinal epithelial cells. Intriguingly, although each of these proteins shares homology with cell wall hydrolases, a physiological function that correlates with such an enzymatic activity remained to be substantiated in LGG. To investigate the bacterial function, we constructed knock-out mutants in the corresponding genes aiming to establish a genotype to phenotype relation. Microscopic examination of the msp1 mutant showed the presence of rather long and overly extended cell chains, which suggests that normal daughter cell separation is hampered. Subsequent observation of the LGG wild-type cells by immunofluorescence microscopy revealed that the Msp1 protein accumulates at the septum of exponential-phase cells. The cell wall hydrolyzing activity of the Msp1 protein was confirmed by zymogram analysis. Subsequent analysis by RP-HPLC and mass spectrometry of the digestion products of LGG peptidoglycan (PG) by Msp1 indicated that the Msp1 protein has D-glutamyl-L-lysyl endopeptidase activity. Immunofluorescence microscopy and the failure to construct a knock-out mutant suggest an indispensable role for Msp2 in priming septum formation in LGG. PMID:22359601

  20. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115.

    PubMed

    Nakamichi, Yusuke; Oiki, Sayoko; Mikami, Bunzo; Murata, Kousaku; Hashimoto, Wataru

    2016-08-01

    Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst. PMID:27402448

  1. RNA SHAPE chemistry with aromatic acylating reagents.

    PubMed

    Nodin, Laura; Noël, Olivier; Chaminade, Françoise; Maskri, Ouerdia; Barbier, Vincent; David, Olivier; Fossé, Philippe; Xie, Juan

    2015-02-01

    As chemical methods for RNA secondary structure determination, SHAPE chemistry (selective 2'-hydroxyl acylation analyzed by primer extension) has been developed to specifically target flexible nucleotides (often unpaired nucleotides) independently to their purine or pyrimidine nature. In order to improve the specificity of acylating reagents towards unpaired nucleotides, we have explored the reactivity of symmetric anhydrides, acyl fluorides, active esters like succinimidyl ester and cyanomethyl esters for 2'-O-acylation reaction. Among the tested compounds, only the acyl fluoride 4 showed a low reactivity (compared to NMIA). However, this study is the first to show that nucleophilic catalysts like DMAP greatly improved the selective 2'-hydroxyl acylation by symmetric anhydrides, acyl fluorides and succinimidyl ester, with the 2-fluorobenzoic anhydride 5 being the most reactive. PMID:25557357

  2. The Activation of Phytophthora Effector Avr3b by Plant Cyclophilin is Required for the Nudix Hydrolase Activity of Avr3b

    PubMed Central

    Kong, Guanghui; Zhao, Yao; Jing, Maofeng; Huang, Jie; Yang, Jin; Xia, Yeqiang; Kong, Liang; Ye, Wenwu; Xiong, Qin; Qiao, Yongli; Dong, Suomeng; Ma, Wenbo; Wang, Yuanchao

    2015-01-01

    Plant pathogens secrete an arsenal of effector proteins to impair host immunity. Some effectors possess enzymatic activities that can modify their host targets. Previously, we demonstrated that a Phytophthora sojae RXLR effector Avr3b acts as a Nudix hydrolase when expressed in planta; and this enzymatic activity is required for full virulence of P. sojae strain P6497 in soybean (Glycine max). Interestingly, recombinant Avr3b produced by E. coli does not have the hydrolase activity unless it was incubated with plant protein extracts. Here, we report the activation of Avr3b by a prolyl-peptidyl isomerase (PPIase), cyclophilin, in plant cells. Avr3b directly interacts with soybean cyclophilin GmCYP1, which activates the hydrolase activity of Avr3b in a PPIase activity-dependent manner. Avr3b contains a putative Glycine-Proline (GP) motif; which is known to confer cyclophilin-binding in other protein substrates. Substitution of the Proline (P132) in the putative GP motif impaired the interaction of Avr3b with GmCYP1; as a result, the mutant Avr3bP132A can no longer be activated by GmCYP1, and is also unable to promote Phytophthora infection. Avr3b elicits hypersensitive response (HR) in soybean cultivars producing the resistance protein Rps3b, but Avr3bP132A lost its ability to trigger HR. Furthermore, silencing of GmCYP1 rendered reduced cell death triggered by Avr3b, suggesting that GmCYP1-mediated Avr3b maturation is also required for Rps3b recognition. Finally, cyclophilins of Nicotiana benthamiana can also interact with Avr3b and activate its enzymatic activity. Overall, our results demonstrate that cyclophilin is a “helper” that activates the enzymatic activity of Avr3b after it is delivered into plant cells; as such, cyclophilin is required for the avirulence and virulence functions of Avr3b. PMID:26317500

  3. Regulation of JH epoxide hydrolase versus JH esterase activity in the cabbage looper, Trichoplusia ni, by juvenile hormone and xenobiotics.

    PubMed

    Anspaugh, Douglas D; Roe, R Michael

    2005-05-01

    JH III esterase and JH III epoxide hydrolase (EH) in vitro activity was compared in whole body Trichoplusia ni homogenates at each stage of development (egg, larva, pupa and adult). While activity of both enzymes was detected at all ages tested, JH esterase was significantly higher than EH activity except for day three of the fifth (last) stadium (L5D3). For both enzymes, activity was highest in eggs. Adult virgin females had 4.6- and 4.0-fold higher JH esterase and EH activities, respectively, than adult virgin males. JH III metabolic activity also was measured in whole body homogenates of fifth stadium T. ni that were fed a nutritive diet (control) or starved on a non-nutritive diet of alphacel, agar and water. With larvae that were starved for 6, 28 and 52 h, EH activity per insect equivalent was 48%, 5% and 1%, respectively, of the control insects. At the same time points, JH esterase activity levels in starved T. ni were 29%, 4% and 3% of that of insects fed the nutritive diet. Selected insect hormones and xenobiotics were administered topically or orally to fifth stadium larvae for up to 52 h, and the effects on whole body EH and JH esterase activity analyzed. JH III increased the JH III esterase activity as high as 2.2-fold, but not the JH III EH activity. The JH analog, methoprene, increased both JH esterase and EH activity as high as 2.5-fold. The JH esterase inhibitor, 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP), had no impact on EH activity. The epoxides trans- and cis-stilbene oxide (TSO and CSO) in separate experiments increased the EH activity approximately 2.0-fold. TSO did not alter JH esterase levels when topically applied, but oral administration reduced activity to 70% of the control at 28 h, and then increased the activity 1.8-fold at 52 h after the beginning of treatment. CSO had no effect on JH esterase activity. Phenobarbital increased EH activity by 1.9-fold, but did not change JH esterase levels. Clofibrate and cholesterol 5alpha,6alpha

  4. Subsite-specific contributions of different aromatic residues in the active site architecture of glycoside hydrolase family 12

    PubMed Central

    Zhang, Xiaomei; Wang, Shuai; Wu, Xiuyun; Liu, Shijia; Li, Dandan; Xu, Hao; Gao, Peiji; Chen, Guanjun; Wang, Lushan

    2015-01-01

    The active site architecture of glycoside hydrolase (GH) is a contiguous subregion of the enzyme constituted by residues clustered in the three-dimensional space, recognizing the monomeric unit of ligand through hydrogen bonds and hydrophobic interactions. Mutations of the key residues in the active site architecture of the GH12 family exerted different impacts on catalytic efficiency. Binding affinities between the aromatic amino acids and carbohydrate rings were quantitatively determined by isothermal titration calorimetry (ITC) and the quantum mechanical (QM) method, showing that the binding capacity order of Tyr>Trp>His (and Phe) was determined by their side-chain properties. The results also revealed that the binding constant of a certain residue remained unchanged when altering its location, while the catalytic efficiency changed dramatically. Increased binding affinity at a relatively distant subsite, such as the mutant of W7Y at the −4 subsite, resulted in a marked increase in the intermediate product of cellotetraose and enhanced the reactivity of endoglucanase by 144%; while tighter binding near the catalytic center, i.e. W22Y at the −2 subsite, enabled the enzyme to bind and hydrolyze smaller oligosaccharides. Clarification of the specific roles of the aromatics at different subsites may pave the way for a more rational design of GHs. PMID:26670009

  5. Isolation, Identification and Partial Characterization of a Lactobacillus casei Strain with Bile Salt Hydrolase Activity from Pulque.

    PubMed

    González-Vázquez, R; Azaola-Espinosa, A; Mayorga-Reyes, L; Reyes-Nava, L A; Shah, N P; Rivera-Espinoza, Y

    2015-12-01

    The aim of this study was to isolate, from pulque, Lactobacillus spp. capable of survival in simulated gastrointestinal stress conditions. Nine Gram-positive rods were isolated; however, only one strain (J57) shared identity with Lactobacillus and was registered as Lactobacillus casei J57 (GenBank accession: JN182264). The other strains were identified as Bacillus spp. The most significant observation during the test of tolerance to simulated gastrointestinal conditions (acidity, gastric juice and bile salts) was that L. casei J57 showed a rapid decrease (p ≤ 0.05) in the viable population at 0 h. Bile salts were the stress condition that most affected its survival, from which deoxycholic acid and the mix of bile salts (oxgall) were the most toxic. L. casei J57 showed bile salt hydrolase activity over primary and secondary bile salts as follows: 44.91, 671.72, 45.27 and 61.57 U/mg to glycocholate, taurocholate, glycodeoxycholate and taurodeoxycholate. In contrast, the control strain (L. casei Shirota) only showed activity over tauroconjugates. These results suggest that L. casei J57 shows potential for probiotic applications. PMID:26566892

  6. Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds.

    PubMed

    Moreno-Pérez, Antonio Javier; Venegas-Calerón, Mónica; Vaistij, Fabián E; Salas, Joaquin J; Larson, Tony R; Garcés, Rafael; Graham, Ian A; Martínez-Force, Enrique

    2014-03-01

    The substrate specificity of the acyl-acyl carrier protein (ACP) thioesterases significantly determines the type of fatty acids that are exported from plastids. Thus, designing acyl-ACP thioesterases with different substrate specificities or kinetic properties would be of interest for plant lipid biotechnology to produce oils enriched in specialty fatty acids. In the present work, the FatA thioesterase from Helianthus annuus was used to test the impact of changes in the amino acids present in the binding pocket on substrate specificity and catalytic efficiency. Amongst all the mutated enzymes studied, Q215W was especially interesting as it had higher specificity towards saturated acyl-ACP substrates and higher catalytic efficiency compared to wild-type H. annuus FatA. Null, wild type and high-efficiency alleles were transiently expressed in tobacco leaves to check their effect on lipid biosynthesis. Expression of active FatA thioesterases altered the composition of leaf triacylglycerols but did not alter total lipid content. However, the expression of the wild type and the high-efficiency alleles in Arabidopsis thaliana transgenic seeds resulted in a strong reduction in oil content and an increase in total saturated fatty acid content. The role and influence of acyl-ACP thioesterases in plant metabolism and their possible applications in lipid biotechnology are discussed. PMID:24327259

  7. Crystal Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Inhibitory Factor Cif Reveals Novel Active-Site Features of an Epoxide Hydrolase Virulence Factor

    SciTech Connect

    Bahl, C.; Morisseau, C; Bomberger, J; Stanton, B; Hammock, B; O' Toole, G; Madden, D

    2010-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other {alpha}/{beta} hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-{angstrom} resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across the family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of {alpha}/{beta} hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.

  8. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs.

    PubMed

    Mathew, Basil; Nagaraj, Ramakrishnan

    2015-09-01

    Human α-defensin 5 (HD5) exhibits broad spectrum antimicrobial activity and plays an important role in mucosal immunity of the small intestine. Although there have been several studies, the structural requirements for activity and mechanism of bacterial killing is yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD5 and linear analogs. Cysteine deletions attenuated the antibacterial activity considerably. Candidacidal activity was affected to a lesser extent. Fatty acid conjugated linear analogs showed antimicrobial activity comparable activity to HD5. Effective surface charge neutralization of bacteria was observed for HD5 as compared to the non-fatty acylated linear analogs. Our results show that HD5 and non-fatty acylated linear analogs enter the bacterial cytoplasm without causing damage to the bacterial inner membrane. Although fatty acylated peptides exhibited antimicrobial activity comparable to HD5, their mechanism of action involved permeabilization of the Escherichia coli inner membrane. HD5 and analogs had the ability to bind plasmid DNA. HD5 had greater binding affinity to plasmid DNA as compared to the analogs. The three dimensional structure of HD5 favors greater interaction with the bacterial cell surface and also with DNA. Antibacterial activity of HD5 involves entry into bacterial cytoplasm and binding to DNA which would result in shut down of the bacterial metabolism leading to cell death. We show how a moderately active linear peptide derived from the α-defensin HD5 can be engineered to enhance antimicrobial activity almost comparable to the native peptide. PMID:26206286

  9. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    SciTech Connect

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  10. Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose.

    PubMed

    Deng, Sha; Huang, Rui; Zhou, Mi; Chen, Feng; Fu, Qiang

    2016-12-10

    Cellulose films with excellent mechanical strength are of interest to many researchers, but unfortunately they often lack the ductility and water resistance. This work demonstrates an efficient and easily industrialized method for hydrophobic cellulose films made of modified microfibrillated cellulose (MFC). Prior to film fabrication, the simultaneous exfoliation and acylation of MFC was achieved through the synergetic effect of mechanical and chemical actions generated from ball milling in the presence of hexanoyl chloride. Largely enhanced tensile strength and elongation at break have been achieved (4.98MPa, 4.37% for original MFC films, 140MPa, 21.3% for modified ones). Due to hydrophobicity and compact structure, modified films show excellent water resistance and decreased water vapor permeability. Moreover, optical performance of modified films is also improved compared with the original MFC films. Our work can largely expand the application of this biodegradable resource and ultimately reduce the need for petroleum-based plastics. PMID:27577904

  11. Comparative gene identification-58/α/β hydrolase domain 5: more than just an adipose triglyceride lipase activator?

    PubMed Central

    Zierler, Kathrin A.; Zechner, Rudolf; Haemmerle, Guenter

    2014-01-01

    Purpose of review Comparative gene identification-58 (CGI-58) is a lipid droplet-associated protein that controls intracellular triglyceride levels by its ability to activate adipose triglyceride lipase (ATGL). Additionally, CGI-58 was described to exhibit lysophosphatidic acid acyl transferase (LPAAT) activity. This review focuses on the significance of CGI-58 in energy metabolism in adipose and nonadipose tissue. Recent findings Recent studies with transgenic and CGI-58-deficient mouse strains underscored the importance of CGI-58 as a regulator of intracellular energy homeostasis by modulating ATGL-driven triglyceride hydrolysis. In accordance with this function, mice and humans that lack CGI-58 accumulate triglyceride in multiple tissues. Additionally, CGI-58-deficient mice develop an ATGL-independent severe skin barrier defect and die soon after birth. Although the premature death prevented a phenotypical characterization of adult global CGI-58 knockout mice, the characterization of mice with tissue-specific CGI-58 deficiency revealed new insights into its role in neutral lipid and energy metabolism. Concerning the ATGL-independent function of CGI-58, a recently identified LPAAT activity for CGI-58 was shown to be involved in the generation of signaling molecules regulating inflammatory processes and insulin action. Summary Although the function of CGI-58 in the catabolism of cellular triglyceride depots via ATGL is well established, further studies are required to consolidate the function of CGI-58 as LPAAT and to clarify the involvement of CGI-58 in the metabolism of skin lipids. PMID:24565921

  12. In vivo activity of epoxide hydrolase according to sequence variation affects the progression of human IgA nephropathy.

    PubMed

    Lee, Jung Pyo; Yang, Seung Hee; Kim, Dong Ki; Lee, Hajeong; Kim, Bora; Cho, Joo-Youn; Yu, Kyung-Sang; Paik, Jin Ho; Kim, Myounghee; Lim, Chun Soo; Kim, Yon Su

    2011-06-01

    Epoxyeicosatrienoic acid (EET) regulates the functional integrity of the endothelium. It is hypothesized that the activity of epoxide hydrolase (EPHX2), which determines EET concentration through hydrolysis, may affect the progression of glomerulonephritis. Here, we evaluated the relationship between genetic variations, the in vivo activity of EPHX2, and progression of IgA nephropathy (IgAN). Three single-nucleotide polymorphisms (SNPs) [rs41507953 (K55R), rs751141 (R287Q), and rs1042032] were traced in 401 IgAN patients and 402 normal healthy controls. The in vivo activity of EPHX2 was assessed by measuring substrates/metabolites of the enzyme. None of the polymorphism frequencies differed significantly between patients and controls. However, patients carrying the variant allele (A) of rs751141 possessed better kidney survival than those with the wild-type allele (G; P < 0.001). This association remained significant after adjustment for several risk factors (hazard ratio 1.83, 95% confidence interval 1.13-2.96, P = 0.014). Vascular damage was more prominent in kidney biopsies from patients carrying the G allele of rs751141. The in vivo activity of EPHX2, assessed by the epoxyoctadecenoic acid/dihydroxyoctadecenoic acid ratio using liquid chromatography/mass spectrometry analysis, was elevated in patients with the G allele. The expression of EPHX2 in the human kidney was independent of the sequence variation of the rs751141 allele. Variant rs41507953 was not present in this cohort, and rs1042032 was not associated with progression. Thus the specific measures which regulate EPHX2 activity should be designed for potential therapeutics. PMID:21429967

  13. Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile

    PubMed Central

    2010-01-01

    Background Staphylococcus epidermidis has emerged as one of the most important nosocomial pathogens, mainly because of its ability to colonize implanted biomaterials by forming a biofilm. Extensive studies are focused on the molecular mechanisms involved in biofilm formation. The LytSR two-component regulatory system regulates autolysis and biofilm formation in Staphylococcus aureus. However, the role of LytSR played in S. epidermidis remained unknown. Results In the present study, we demonstrated that lytSR knock-out in S. epidermidis did not alter susceptibility to Triton X-100 induced autolysis. Quantitative murein hydrolase assay indicated that disruption of lytSR in S. epidermidis resulted in decreased activities of extracellular murein hydrolases, although zymogram showed no apparent differences in murein hydrolase patterns between S. epidermidis strain 1457 and its lytSR mutant. Compared to the wild-type counterpart, 1457ΔlytSR produced slightly more biofilm, with significantly decreased dead cells inside. Microarray analysis showed that lytSR mutation affected the transcription of 164 genes (123 genes were upregulated and 41 genes were downregulated). Specifically, genes encoding proteins responsible for protein synthesis, energy metabolism were downregulated, while genes involved in amino acid and nucleotide biosynthesis, amino acid transporters were upregulated. Impaired ability to utilize pyruvate and reduced activity of arginine deiminase was observed in 1457ΔlytSR, which is consistent with the microarray data. Conclusions The preliminary results suggest that in S. epidermidis LytSR two-component system regulates extracellular murein hydrolase activity, bacterial cell death and pyruvate utilization. Based on the microarray data, it appears that lytSR inactivation induces a stringent response. In addition, LytSR may indirectly enhance biofilm formation by altering the metabolic status of the bacteria. PMID:21073699

  14. The Antioxidant and Starch Hydrolase Inhibitory Activity of Ten Spices in an In Vitro Model of Digestion: Bioaccessibility of Anthocyanins and Carotenoids.

    PubMed

    Jayawardena, Nilakshi; Watawana, Mindani I; Jayathilaka, Ruchini T; Waisundara, Viduranga Y

    2015-01-01

    The antioxidant and starch hydrolase inhibitory activities of cardamom, cloves, coriander, cumin seeds, curry leaves, fenugreek, mustard seeds, nutmeg, sweet cumin, and star anise extracts were investigated in an in vitro model of digestion mimicking the gastric and duodenal conditions. The total phenolic contents in all spice extracts had statistically significantly (P < 0.05) increased following both gastric and duodenal digestion. This was also in correlation with the antioxidant assays quantifying the water-soluble antioxidant capacity of the extracts. The lipophilic Oxygen Radical Absorbance Capacity assay did not indicate a statistically significant change in the values during any of the digestion phases. Statistically significant (P < 0.05) reductions in the anthocyanin contents were observed during the digestion phases in contrast to the carotenoid contents. With the exception of the cumin seed extract, none of the spice extracts showed statistically significant changes in the initial starch hydrolase enzyme inhibitory values prior to gastric and duodenal digestion. In conclusion, this study was able to prove that the 10 spices were a significant source of total phenolics, antioxidant, and starch hydrolase inhibitory activities. PMID:26693245

  15. The Antioxidant and Starch Hydrolase Inhibitory Activity of Ten Spices in an In Vitro Model of Digestion: Bioaccessibility of Anthocyanins and Carotenoids

    PubMed Central

    Jayawardena, Nilakshi; Watawana, Mindani I.; Jayathilaka, Ruchini T.; Waisundara, Viduranga Y.

    2015-01-01

    The antioxidant and starch hydrolase inhibitory activities of cardamom, cloves, coriander, cumin seeds, curry leaves, fenugreek, mustard seeds, nutmeg, sweet cumin, and star anise extracts were investigated in an in vitro model of digestion mimicking the gastric and duodenal conditions. The total phenolic contents in all spice extracts had statistically significantly (P < 0.05) increased following both gastric and duodenal digestion. This was also in correlation with the antioxidant assays quantifying the water-soluble antioxidant capacity of the extracts. The lipophilic Oxygen Radical Absorbance Capacity assay did not indicate a statistically significant change in the values during any of the digestion phases. Statistically significant (P < 0.05) reductions in the anthocyanin contents were observed during the digestion phases in contrast to the carotenoid contents. With the exception of the cumin seed extract, none of the spice extracts showed statistically significant changes in the initial starch hydrolase enzyme inhibitory values prior to gastric and duodenal digestion. In conclusion, this study was able to prove that the 10 spices were a significant source of total phenolics, antioxidant, and starch hydrolase inhibitory activities. PMID:26693245

  16. An orphan esterase ABHD10 modulates probenecid acyl glucuronidation in human liver.

    PubMed

    Ito, Yusuke; Fukami, Tatsuki; Yokoi, Tsuyoshi; Nakajima, Miki

    2014-12-01

    Probenecid, a widely used uricosuric agent, is mainly metabolized to probenecid acyl glucuronide (PRAG), which is considered a causal substance of severe allergic or anaphylactoid reactions. PRAG can be hydrolyzed (deglucuronidated) to probenecid. The purpose of this study was to identify enzymes responsible for probenecid acyl glucuronidation and PRAG deglucuronidation in human livers and to examine the effect of deglucuronidation in PRAG formation. In human liver homogenates (HLHs), the intrinsic clearance (CLint) of PRAG deglucuronidation was much greater (497-fold) than that of probenecid acyl glucuronidation. Evaluation of PRAG formation by recombinant UDP-glucuronosyltransferase (UGT) isoforms and an inhibition study using HLHs as an enzyme source demonstrated that multiple UGT isoforms, including UGT1A1, UGT1A9, and UGT2B7, catalyzed probenecid acyl glucuronidation. We found that recombinant α/β hydrolase domain containing 10 (ABHD10) substantially catalyzed PRAG deglucuronidation activity, whereas carboxylesterases did not. Similar inhibitory patterns by chemicals between HLHs and recombinant ABHD10 supported the major contribution of ABHD10 to PRAG deglucuronidation in human liver. Interestingly, it was demonstrated that the CLint value of probenecid acyl glucuronidation in HLHs was increased by 1.7-fold in the presence of phenylmethylsulfonyl fluoride, which potently inhibited ABHD10 activity. In conclusion, we found that PRAG deglucuronidation catalyzed by ABHD10 suppressively regulates PRAG formation via multiple UGT enzymes in human liver. The balance of activities by these enzymes is important for the formation of PRAG, which may be associated with the adverse reactions observed after probenecid administration. PMID:25217485

  17. Synthesis of N-acyl homoserine lactone analogues reveals strong activators of SdiA, the Salmonella enterica serovar Typhimurium LuxR homologue.

    PubMed

    Janssens, Joost C A; Metzger, Kristine; Daniels, Ruth; Ptacek, Dave; Verhoeven, Tine; Habel, Lothar W; Vanderleyden, Jos; De Vos, Dirk E; De Keersmaecker, Sigrid C J

    2007-01-01

    N-Acyl homoserine lactones (AHLs) are molecules that are synthesized and detected by many gram-negative bacteria to monitor the population density, a phenomenon known as quorum sensing. Salmonella enterica serovar Typhimurium is an exceptional species since it does not synthesize its own AHLs, while it does encode a LuxR homologue, SdiA, which enables this bacterium to detect AHLs that are produced by other species. To obtain more information about the specificity of the ligand binding by SdiA, we synthesized and screened a limited library of AHL analogues. We identified two classes of analogues that are strong activators of SdiA: the N-(3-oxo-acyl)-homocysteine thiolactones (3O-AHTLs) and the N-(3-oxo-acyl)-trans-2-aminocyclohexanols. To our knowledge, this is the first report of compounds (the 3O-AHTLs) that are able to activate a LuxR homologue at concentrations that are lower than the concentrations of the most active AHLs. SdiA responds with greatest sensitivity to AHTLs that have a keto modification at the third carbon atom and an acyl chain that is seven or eight carbon atoms long. The N-(3-oxo-acyl)-trans-2-aminocyclohexanols were found to be less sensitive to deactivation by lactonase and alkaline pH than the 3O-AHTLs and the AHLs are. We also examined the activity of our library with LuxR of Vibrio fischeri and identified three new inhibitors of LuxR. Finally, we performed preliminary binding experiments which suggested that SdiA binds its activators reversibly. These results increase our understanding of the specificity of the SdiA-ligand interaction, which could have uses in the development of anti-quorum-sensing-based antimicrobials. PMID:17085703

  18. Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.

    PubMed

    Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio

    2016-04-19

    Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. PMID:26954624

  19. Acyl-homoserine Lactone from Saccharum × officinarum with Stereochemistry-Dependent Growth Regulatory Activity.

    PubMed

    Olher, Vanessa G A; Ferreira, Nagela P; Souza, Alan G; Chiavelli, Lucas U R; Teixeira, Aline F; Santos, Wanderley D; Santin, Silvana M O; Ferrarese Filho, Osvaldo; Silva, Cleuza C; Pomini, Armando M

    2016-05-27

    Acyl-homoserine lactones (AHLs) are a class of compounds produced by Gram-negative bacteria that are used in a process of chemical communication called quorum sensing. Much is known about how bacteria use these chemical compounds to control the expression of important factors; however, there have been few reports about the presence and effects of AHLs in plants. In this study, the phytochemical study of leaves and culms of sugar cane (Saccharum × officinarum) led to the identification of N-(3-oxo-octanoyl)homoserine lactone. Since the absolute configuration of the natural product could not be determined, both R and S enantiomers of N-(3-oxo-octanoyl)homoserine lactone were synthesized and tested in sugar cane culms. The enantiomers caused changes in the mass and length of buds and roots when used at micromolar concentrations. Using the sugar cane RB96-6928 variety, the S enantiomer increased sprouting of roots more effectively than the R enantiomer. Furthermore, scanning electron microscopy showed that both the R and S enantiomers led to more stretched root cells compared with the control. PMID:27192014

  20. Intestinal acyl-CoA synthetase 5: activation of long chain fatty acids and behind.

    PubMed

    Klaus, Christina; Jeon, Min Kyung; Kaemmerer, Elke; Gassler, Nikolaus

    2013-11-14

    The intestinal mucosa is characterized by a high complexity in terms of structure and functions and allows for a controlled demarcation towards the gut lumen. On the one hand it is responsible for pulping and selective absorption of alimentary substances ensuring the immunological tolerance, on the other hand it prevents the penetration of micro-organisms as well as bacterial outgrowth. The continuous regeneration of surface epithelia along the crypt-villus-axis in the small intestine is crucial to assuring these various functions. The core phenomena of intestinal epithelia regeneration comprise cell proliferation, migration, differentiation, and apoptosis. These partly contrarily oriented processes are molecularly balanced through numerous interacting signaling pathways like Wnt/β-catenin, Notch and Hedgehog, and regulated by various modifying factors. One of these modifiers is acyl-CoA synthetase 5 (ACSL5). It plays a key role in de novo lipid synthesis, fatty acid degradation and membrane modifications, and regulates several intestinal processes, primarily through different variants of protein lipidation, e.g., palmitoylation. ACSL5 was shown to interact with proapoptotic molecules, and besides seems to inhibit proliferation along the crypt-villus-axis. Because of its proapoptotic and antiproliferative characteristics it could be of significant relevance for intestinal homeostasis, cellular disorder and tumor development. PMID:24259967

  1. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242.

    PubMed

    Martoni, Christopher J; Labbé, Alain; Ganopolsky, Jorge G; Prakash, Satya; Jones, Mitchell L

    2015-01-01

    The size and composition of the circulating bile acid (BA) pool are important factors in regulating the human gut microbiota. Disrupted regulation of BA metabolism is implicated in several chronic diseases. Bile salt hydrolase (BSH)-active Lactobacillus reuteri NCIMB 30242, previously shown to decrease LDL-cholesterol and increase circulating BA, was investigated for its dose response effect on BA profile in a pilot clinical study. Ten otherwise healthy hypercholesterolemic adults, recruited from a clinical trial site in London, ON, were randomized to consume delayed release or standard release capsules containing L. reuteri NCIMB 30242 in escalating dose over 4 weeks. In another aspect, 4 healthy normocholesterolemic subjects with LDL-C below 3.4 mmol/l received delayed release L. reuteri NCIMB 30242 at a constant dose over 4 weeks. The primary outcome measure was the change in plasma BA profile over the intervention period. Additional outcomes included circulating fibroblast growth factor (FGF)-19, plant sterols and LDL-cholesterol as well as fecal microbiota and bsh gene presence. After one week of intervention subjects receiving delayed release L. reuteri NCIMB 30242 increased total BA by 1.13 ± 0.67 μmol/l (P = 0.02), conjugated BA by 0.67 ± 0.39 μmol/l (P = 0.02) and unconjugated BA by 0.46 ± 0.43 μmol/l (P = 0.07), which represented a greater than 2-fold change relative to baseline. Increases in BA were largely maintained post-week 1 and were generally correlated with FGF-19 and inversely correlated with plant sterols. This is the first clinical support showing that a BSH-active probiotic can significantly and rapidly influence BA metabolism and may prove useful in chronic diseases beyond hypercholesterolemia. PMID:25612224

  2. Silica Gel for Enhanced Activity and Hypochlorite Protection of Cyanuric Acid Hydrolase in Recombinant Escherichia coli

    PubMed Central

    Radian, Adi; Aukema, Kelly G.; Aksan, Alptekin

    2015-01-01

    ABSTRACT Chlorinated isocyanuric acids are widely used water disinfectants that generate hypochlorite, but with repeated application, they build up cyanuric acid (CYA) that must be removed to maintain disinfection. 3-Aminopropyltriethoxysilane (APTES)-treated Escherichia coli cells expressing cyanuric acid hydrolase (CAH) from Moorella thermoacetica exhibited significantly high CYA degradation rates and provided protection against enzyme inactivation by hypochlorite (chlorine). APTES coating or encapsulation of cells had two benefits: (i) overcoming diffusion limitations imposed by the cell wall and (ii) protecting against hypochlorite inactivation of CAH activity. Cells encapsulated in APTES gels degraded CYA three times faster than nonfunctionalized tetraethoxysilane (TEOS) gels, and cells coated with APTES degraded CYA at a rate of 29 µmol/min per mg of CAH protein, similar to the rate with purified enzyme. UV spectroscopy, fluorescence spectroscopy, and scanning electron microscopy showed that the higher rates were due to APTES increasing membrane permeability and enhancing cyanuric acid diffusion into the cytoplasm to reach the CAH enzyme. Purified CAH enzyme was shown to be rapidly inactivated by hypochlorite. APTES aggregates surrounding cells protected via the amine groups reacting with hypochlorite as shown by pH changes, zeta potential measurements, and infrared spectroscopy. APTES-encapsulated E. coli cells expressing CAH degraded cyanuric acid at high rates in the presence of 1 to 10 ppm hypochlorite, showing effectiveness under swimming pool conditions. In contrast, CAH activity in TEOS gels or free cells was completely inactivated by hypochlorite. These studies show that commercially available silica materials can selectively enhance, protect, and immobilize whole-cell biocatalysts for specialized applications. PMID:26530383

  3. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242

    PubMed Central

    Martoni, Christopher J; Labbé, Alain; Ganopolsky, Jorge G; Prakash, Satya; Jones, Mitchell L

    2015-01-01

    The size and composition of the circulating bile acid (BA) pool are important factors in regulating the human gut microbiota. Disrupted regulation of BA metabolism is implicated in several chronic diseases. Bile salt hydrolase (BSH)-active Lactobacillus reuteri NCIMB 30242, previously shown to decrease LDL-cholesterol and increase circulating BA, was investigated for its dose response effect on BA profile in a pilot clinical study. Ten otherwise healthy hypercholesterolemic adults, recruited from a clinical trial site in London, ON, were randomized to consume delayed release or standard release capsules containing L. reuteri NCIMB 30242 in escalating dose over 4 weeks. In another aspect, 4 healthy normocholesterolemic subjects with LDL-C below 3.4 mmol/l received delayed release L. reuteri NCIMB 30242 at a constant dose over 4 weeks. The primary outcome measure was the change in plasma BA profile over the intervention period. Additional outcomes included circulating fibroblast growth factor (FGF)-19, plant sterols and LDL-cholesterol as well as fecal microbiota and bsh gene presence. After one week of intervention subjects receiving delayed release L. reuteri NCIMB 30242 increased total BA by 1.13 ± 0.67 μmol/l (P = 0.02), conjugated BA by 0.67 ± 0.39 μmol/l (P = 0.02) and unconjugated BA by 0.46 ± 0.43 μmol/l (P = 0.07), which represented a greater than 2-fold change relative to baseline. Increases in BA were largely maintained post-week 1 and were generally correlated with FGF-19 and inversely correlated with plant sterols. This is the first clinical support showing that a BSH-active probiotic can significantly and rapidly influence BA metabolism and may prove useful in chronic diseases beyond hypercholesterolemia. PMID:25612224

  4. Characterisation of the antibacterial properties of a bacterial derived peptidoglycan hydrolase (LysCs4), active against C. sakazakii and other Gram-negative food-related pathogens.

    PubMed

    Endersen, Lorraine; Coffey, Aidan; Ross, R Paul; McAuliffe, Olivia; Hill, Colin; O'Mahony, Jim

    2015-12-23

    Illness caused by the consumption of contaminated food products continues to represent one of the main challenges facing food manufacturers worldwide. Even with current intervention technologies and increased hygiene measures, foodborne illness remains a significant threat to public health. This coupled with the increasing emergence of multidrug resistant pathogens has increased the need for the development of novel technologies for pathogen control. Bacterial derived peptidoglycan hydrolases represent a vast and highly diverse group of enzymes with potential for biocontrol of a range of Gram-positive and Gram-negative foodborne pathogens. In this study, we describe the identification, cloning, expression and purification of a peptidoglycan hydrolase (LysCs4) derived from Cronobacter sakazakii for biocontrol of the aforementioned infant formula pathogen itself. In silico analysis of LysCs4 revealed the gene to display greatest sequence similarity to a putative lysozyme encoded by the lytic Cronobacter phage ES2. Conserved domain analysis of LysCs4 revealed the presence of a single catalytic domain predicted to display O-Glycosyl hydrolase activity and to be a member of the GH24 family. The ability of this enzyme to hydrolyse the peptidoglycan of 25 Gram-negative strains, across 4 different genera, highlights its potential as a novel candidate for biocontrol of C. sakazakii and other Gram-negative food related pathogens. PMID:26342306

  5. [Anticoagulant activity of low-molecular-weight heparins obtained using a hydrolase complex].

    PubMed

    Drozd, N N; Tolstenkov, A S; Bannikova, G E; Miftakhova, N T; Lapikova, E S; Makarov, V A; Varlamov, V P

    2007-01-01

    The anticoagulant activity of low-molecular weight heparins (LMWH-PC) with average distribution of molecular weights within 3.4-5.8 kD was investigated. The samples of LMWH-PC were obtained from unfractionated heparin using immobilized enzyme complex of protease C. The LMWH-PC derivatives inhibited the activity of blood coagulation factors IIa (thrombin) and Xa. The LMWH-PC derivatives had an anti-factor-Xa activity up to 131-208 IU/mg and anti-factor-IIa activity up to 81-175 IU/mg. All LMWH-PC derivatives form complexes with protamine sulfate during electrophoresis in agarose gel. The anticoagulant activity of rabbit plasma exhibits a doze-dependent increase upon the intravenous or subcutaneous injection of LMWH-PC with a molecular weight of 5.4 kD. PMID:18318190

  6. Long-Chain Acyl CoA Synthetase 4A regulates Smad activity and dorsoventral patterning in the zebrafish embryo

    PubMed Central

    Miyares, Rosa Linda; Stein, Cornelia; Renisch, Björn; Anderson, Jennifer Lynn; Hammerschmidt, Matthias; Farber, Steven Arthur

    2013-01-01

    Summary Long-chain polyunsaturated fatty acids (LC-PUFA) and their metabolites are critical players in cell biology and embryonic development. Here we show that long-chain acyl CoA synthetase 4a (Acsl4a), an LC-PUFA activating enzyme, is essential for proper patterning of the zebrafish dorsoventral axis. Loss of Acsl4a results in dorsalized embryos due to attenuated Bmp signaling. We demonstrate that Acsl4a modulates the activity of Smad transcription factors, the downstream mediators of Bmp signaling. Acsl4a promotes the inhibition of p38 MAPK and the Akt-mediated inhibition of glycogen synthase kinase 3 (GSK3), critical inhibitors of Smad activity. Consequently, introduction of a constitutively active Akt can rescue the dorsalized phenotype of Acsl4a deficient embryos. Our results reveal a critical role for Acsl4a in modulating Bmp-Smad activity and provide a potential avenue for LC-PUFAs to influence a variety of developmental processes. PMID:24332754

  7. Structure-activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 4: Role of acyl side chains on d-mannose.

    PubMed

    Tsutsui, Nozomi; Tanabe, Genzoh; Ikeda, Nami; Okamura, Saika; Ogawa, Marika; Miyazaki, Kuniko; Kita, Ayako; Sugiura, Reiko; Muraoka, Osamu

    2016-10-01

    As part of an ongoing study on the structure-activity relationship of acremomannolipin A (1)-the novel glycolipid isolated from Acremonium strictum possessing potent calcium signal-modulating activity-the role of acyl substituents on the d-mannose moiety was examined. Three partially deacylated homologs (2a-2c) and 20 homologs (2d-2w) bearing different acyloxy side chains were synthesized via the stereoselective β-mannosylation of appropriately protected mannosyl sulfoxides (3) with d-mannitol derivatives (4), and their calcium signal-modulating activities were examined. The activities of 2a-2c were completely lost. Homologs bearing relatively short acyloxy groups at C-3, C-4, and C-6 positions (2t-2v) exhibited less activity than 1, whereas a heptanoyl homolog (2w: C7) maintained activity nearly equal to that of 1. When the acyl groups at these three positions were substituted by an octanoyl group (2i: C8), the activity was completely lost. On the other hand, of the 10 homologs in which the octanoyl at C-2 was substituted by other acyloxy moieties (2j-2s), three (2m: C7, 2n: C9, 2o: C10) maintained potent activity. These results suggested that peracylated mannose structure is critical for calcium signal-modulating activity, and this activity is precisely dependent on the length of four acyl side chains on d-mannose. PMID:27243802

  8. The adjuvant activity of fatty acid esters. The role of acyl chain length and degree of saturation.

    PubMed Central

    Bomford, R

    1981-01-01

    Water-in-oil emulsions of metabolizable fatty acid esters, with the non-toxic surfactant Pluronic L122 as emulsifying agent, potentiated the humoral response to bovine serum albumin and staphylococcal toxoid in the mouse. Adjuvant activity was increased by changing the chemical nature of the esters as follows: (i) using a series of ethyl esters, adjuvant activity appeared when the acyl chain length of the fatty acid component was 16 or greater; (ii) isobutyl and isopropyl esters of palmitic acid (C16:0) were superior to ethyl; (iii) the ethyl esters of oleic (C18:1) and linoleic (C18:2) acids were better than stearic (C18:0). Since emulsions prepared with longer chain saturated esters are very viscous or solid at room temperature, and unsaturated esters are chemically reactive, emulsions were prepared with differing proportions of ethyl caprate (C10:0) and butyl stearate. At a ratio of 9:1 the emulsions possessed the low viscosity of ethyl caprate, but gained the adjuvant activity of butyl stearate. 125I-labelled BSA was retained in the footpad to a significantly greater extent than with a caprate emulsion, but reasons are given for believing that slow release of antigen is not the only mechanism of adjuvant activity. The ester emulsions caused more acute but less chronic local inflammation (footpad swelling) than Freund's incomplete adjuvant. PMID:7275184

  9. Dramatic differences in organophosphorus hydrolase activity between human and chimeric recombinant mammalian paraoxonase-1 enzymes†

    PubMed Central

    Otto, Tamara C.; Harsch, Christina K.; Yeung, David T.; Magliery, Thomas J.; Cerasoli, Douglas M.; Lenz, David E.

    2009-01-01

    Human serum paraoxonase-1 (HuPON1) has the capacity to hydrolyze aryl esters, lactones, oxidized phospholipids, and organophosphorus (OP) compounds. HuPON1 and bacterially expressed chimeric recombinant PON1s (G2E6 and G3C9) differ by multiple amino acids, none of which are in the putative enzyme active site. To address the importance of these amino acid differences, the abilities of HuPON1, G2E6, G3C9, and several variants to hydrolyze phenyl acetate, paraoxon, and V-type OP nerve agents were examined. HuPON1 and G2E6 have a ten-fold greater catalytic efficiency toward phenyl acetate than G3C9. In contrast, bacterial PON1s are better able to promote hydrolysis of paraoxon, whereas HuPON1 is considerably better at catalyzing the hydrolysis of the nerve agents VX and VR. These studies demonstrate that mutations distant from the active site of PON1 have large and unpredictable effects on the substrate specificities and possibly the hydrolytic mechanisms of HuPON1, G2E6, and G3C9. The replacement of residue H115 in the putative active site with tryptophan (H115W) has highly disparate effects on HuPON1 and G2E6. In HuPON1, variant H115W loses the ability to hydrolyze VR but has improved activity toward paraoxon and VX. The H115W variant of G2E6 has similar paraoxonase activity to wild type G2E6, modest activity with phenyl acetate and VR, and increased VX hydrolysis. VR inhibits H115W HuPON1 competitively when paraoxon is the substrate and non-competitively when VX is the substrate. We have identified the first variant of HuPON1, H115W, that displays significantly enhanced catalytic activity against an authentic V-type nerve agent. PMID:19764813

  10. Acute and subacute effects of miconazole nitrate on hepatic styrene oxide hydrolase and cytochrome P-450-dependent monooxygenase activities in male and female AKR/J mice.

    PubMed

    James, M O

    1988-08-01

    The imidazole-containing anti-fungal drug, miconazole nitrate, was shown to enhance hepatic microsomal styrene oxide hydrolase and inhibit several cytochrome P-450-dependent monooxygenase activities in the AKR/J mouse. Miconazole was a more potent inhibitor of cytochrome P-450-dependent monooxygenase activities in microsomes from male than female mice, and inhibitory potency also varied with substrate. When administered in vivo miconazole nitrate stimulated epoxide hydrolase activity, but had a substrate-dependent biphasic effect on cytochrome P-450-dependent monooxygenase activities. Monooxygenase activities with benzo[a]pyrene and benzphetamine were inhibited to varying degrees in liver homogenate and hepatic microsomes from mice sacrificed 45 min after miconazole administration. After repeated administration of miconazole, liver weight, microsomal protein yield and cytochrome P-450 were increased, as were specific monooxygenase activities with ethoxycoumarin and ethoxyresorufin, but benzphetamine N-demethylase activity was decreased. These results suggested that a metabolite of miconazole was responsible for the inhibition of benzphetamine N-demethylase. It was of special interest that ethoxyresorufin O-deethylase activity was induced in the AKR/J mouse by miconazole, since the AKR/J mouse is not responsive to induction by aromatic hydrocarbons. PMID:3394155

  11. An Extracellular Tetrathionate Hydrolase from the Thermoacidophilic Archaeon Acidianus Ambivalens with an Activity Optimum at pH 1

    PubMed Central

    Protze, Jonas; Müller, Fabian; Lauber, Karin; Naß, Bastian; Mentele, Reinhard; Lottspeich, Friedrich; Kletzin, Arnulf

    2011-01-01

    Background: The thermoacidophilic and chemolithotrophic archaeon Acidianus ambivalens is routinely grown with sulfur and CO2-enriched air. We had described a membrane-bound, tetrathionate (TT) forming thiosulfate:quinone oxidoreductase. Here we describe the first TT hydrolase (TTH) from Archaea. Results: A. ambivalens cells grown aerobically with TT as sole sulfur source showed doubling times of 9 h and final cell densities of up to 8 × 108/ml. TTH activity (≈0.28 U/mg protein) was found in cell-free extracts of TT-grown but not of sulfur-grown cells. Differential fractionation of freshly harvested cells involving a pH shock showed that about 92% of the TTH activity was located in the pseudo-periplasmic fraction associated with the surface layer, while 7.3% and 0.3% were present in the soluble and membrane fractions, respectively. The enzyme was enriched 54-fold from the cytoplasmic fraction and 2.1-fold from the pseudo-periplasmic fraction. The molecular mass of the single subunit was 54 kDa. The optimal activity was at or above 95°C at pH 1. Neither PQQ nor divalent cations had a significant effect on activity. The gene (tth1) was identified following N-terminal sequencing of the protein. Northern hybridization showed that tth1 was transcribed in TT-grown cells in contrast to a second paralogous tth2 gene. The deduced amino acid sequences showed similarity to the TTH from Acidithiobacillus and other proteins from the PQQ dehydrogenase superfamily. It displayed a β-propeller structure when being modeled, however, important residues from the PQQ-binding site were absent. Conclusion: The soluble, extracellular, and acidophilic TTH identified in TT-grown A. ambivalens cells is essential for TT metabolism during growth but not for the downstream processing of the TQO reaction products in S°-grown cells. The liberation of TTH by pH shock from otherwise intact cells strongly supports the pseudo-periplasm hypothesis of the S-layer of Archaea. PMID

  12. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor.

    PubMed

    Schiebel, Johannes; Chang, Andrew; Shah, Sonam; Lu, Yang; Liu, Li; Pan, Pan; Hirschbeck, Maria W; Tareilus, Mona; Eltschkner, Sandra; Yu, Weixuan; Cummings, Jason E; Knudson, Susan E; Bommineni, Gopal R; Walker, Stephen G; Slayden, Richard A; Sotriffer, Christoph A; Tonge, Peter J; Kisker, Caroline

    2014-06-01

    Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms. PMID:24739388

  13. O-Glycosylation as a Novel Control Mechanism of Peptidoglycan Hydrolase Activity*

    PubMed Central

    Rolain, Thomas; Bernard, Elvis; Beaussart, Audrey; Degand, Hervé; Courtin, Pascal; Egge-Jacobsen, Wolfgang; Bron, Peter A.; Morsomme, Pierre; Kleerebezem, Michiel; Chapot-Chartier, Marie-Pierre; Dufrêne, Yves F.; Hols, Pascal

    2013-01-01

    Acm2, the major autolysin of Lactobacillus plantarum, is a tripartite protein. Its catalytic domain is surrounded by an O-glycosylated N-terminal region rich in Ala, Ser, and Thr (AST domain), which is of low complexity and unknown function, and a C-terminal region composed of five SH3b peptidoglycan (PG) binding domains. Here, we investigate the contribution of these two accessory domains and of O-glycosylation to Acm2 functionality. We demonstrate that Acm2 is an N-acetylglucosaminidase and identify the pattern of O-glycosylation (21 mono-N-acetylglucosamines) of its AST domain. The O-glycosylation process is species-specific as Acm2 purified from Lactococcus lactis is not glycosylated. We therefore explored the functional role of O-glycosylation by purifying different truncated versions of Acm2 that were either glycosylated or non-glycosylated. We show that SH3b domains are able to bind PG and are responsible for Acm2 targeting to the septum of dividing cells, whereas the AST domain and its O-glycosylation are not involved in this process. Notably, our data reveal that the lack of O-glycosylation of the AST domain significantly increases Acm2 enzymatic activity, whereas removal of SH3b PG binding domains dramatically reduces this activity. Based on this antagonistic role, we propose a model in which access of the Acm2 catalytic domain to its substrate may be hindered by the AST domain where O-glycosylation changes its conformation and/or mediates interdomain interactions. To the best of our knowledge, this is the first time that O-glycosylation is shown to control the activity of a bacterial enzyme. PMID:23760506

  14. Alkylphloroglucinol derivatives and triterpenoids with soluble epoxide hydrolase inhibitory activity from Callistemon citrinus.

    PubMed

    Khanh, Pham Ngoc; Duc, Ho Viet; Huong, Tran Thu; Son, Ninh The; Ha, Vu Thi; Van, Doan Thi; Tai, Bui Huu; Kim, Ji Eun; Jo, Ah Reum; Kim, Young Ho; Cuong, Nguyen Manh

    2016-03-01

    Phytochemical analysis of the leaves and stems of Callistemon citrinus (Curtis) Skeels led to the isolation of two new alkylphloroglucinols, gallomyrtucommulone E and F (1 and 2), along with four other known alkylphloroglucinol derivatives, gallomyrtucommulone A (3), endoperoxide G3 (4), myrtucommulone B (5), callistenone B (6) and five known triterpenoids, including betulinic acid (7), 3β-acetylmorolic acid (8), 3β-hydroxy-urs-11-en-13(28)-olide (9), diospyrolide (10) and ursolic acid (11). The structures of the natural compounds were determined from the spectroscopic evidences including 1D-/2D-NMR and HR-MS spectrometry. All the isolated compounds were assessed for the effects on the sEH inhibitory activity. The acylphloroglucinols myrtucommulone B (5)/callistenone B (6) (in mixture), and two triterpenoids, ursolic acid (11) and 3β-hydroxy-urs-11-en-13(28)-olide (9) displayed strong inhibition of sEH activity, with IC50 values of 0.7, 11.2 and 24.8 μM, respectively. PMID:26548595

  15. Improving the promiscuous nerve agent hydrolase activity of a thermostable archaeal lactonase.

    PubMed

    Merone, Luigia; Mandrich, Luigi; Porzio, Elena; Rossi, Mosé; Müller, Susanne; Reiter, Georg; Worek, Franz; Manco, Giuseppe

    2010-12-01

    The thermostable Phosphotriesterase-Like Lactonase from Sulfolobus solfataricus (SsoPox) hydrolyzes lactones and, at a lower rate, neurotoxic organophosphorus compounds. The persistent demand of detoxification tools in the field of agricultural wastes and restoring of conditions after terrorist acts prompted us to exploit SsoPox as a "starter" to evolve its ancillary nerve agents hydrolytic capability. A directed evolution strategy yielded, among several variants, the single mutant W263F with k(cat) and specificity constant against paraoxon 16- and 6-fold enhanced, respectively, compared to the wild type. Furthermore, a phenomenon of enzyme activation by SDS has been observed, which allowed to increase those values 150- and 28-fold, respectively. The activity of SsoPox against the deadly nerve gas Cyclosarin has been reported for the first time and proved to be substantially unaffected for variant W263F. Finally, outperforming efficiency of W263F was demonstrated, under severe stressing conditions, with respect to the best known phosphotriesterase PTE from Brevundimonas diminuta. PMID:20667718

  16. Purification and characterization of a cytoplasmic enzyme component of the Na+-activated malonate decarboxylase system of Malonomonas rubra: acetyl-S-acyl carrier protein: malonate acyl carrier protein-SH transferase.

    PubMed

    Hilbi, H; Dimroth, P

    1994-01-01

    Malonate decarboxylation by crude extracts of Malonomonas rubra was specifically activated by Na+ and less efficiently by Li+ ions. The extracts contained an enzyme catalyzing CoA transfer from malonyl-CoA to acetate, yielding acetyl-CoA and malonate. After about a 26-fold purification of the malonyl-CoA:acetate CoA transferase, an almost pure enzyme was obtained, indicating that about 4% of the cellular protein consisted of the CoA transferase. This abundance of the transferase is in accord with its proposed role as an enzyme component of the malonate decarboxylase system, the key enzyme of energy metabolism in this organism. The apparent molecular weight of the polypeptide was 67,000 as revealed from SDS-polyacrylamide gel electrophoresis. A similar molecular weight was estimated for the native transferase by gel chromatography, indicating that the enzyme exists as a monomer. Kinetic analyses of the CoA transferase yielded the following: pH-optimum at pH 5.5, an apparent Km for malonyl-CoA of 1.9mM, for acetate of 54mM, for acetyl-CoA of 6.9mM, and for malonate of 0.5mM. Malonate or citrate inhibited the enzyme with an apparent Ki of 0.4mM and 3.0mM, respectively. The isolated CoA transferase increased the activity of malonate decarboxylase of a crude enzyme system, in which part of the endogenous CoA transferase was inactivated by borohydride, about three-fold. These results indicate that the CoA transferase functions physiologically as a component of the malonate decarboxylase system, in which it catalyzes the transfer of acyl carrier protein from acetyl acyl carrier protein and malonate to yield malonyl acyl carrier protein and acetate. Malonate is thus activated on the enzyme by exchange for the catalytically important enzymebound acetyl thioester residues noted previously. This type of substrate activation resembles the catalytic mechanism of citrate lyase and citramalate lyase. PMID:18251085

  17. Comparative Analysis of Glycoside Hydrolases Activities from Phylogenetically Diverse Marine Bacteria of the Genus Arenibacter

    PubMed Central

    Bakunina, Irina; Nedashkovskaya, Olga; Balabanova, Larissa; Zvyagintseva, Tatyana; Rasskasov, Valery; Mikhailov, Valery

    2013-01-01

    A total of 16 marine strains belonging to the genus Arenibacter, recovered from diverse microbial communities associated with various marine habitats and collected from different locations, were evaluated in degradation of natural polysaccharides and chromogenic glycosides. Most strains were affiliated with five recognized species, and some presented three new species within the genus Arenibacter. No strains contained enzymes depolymerizing polysaccharides, but synthesized a wide spectrum of glycosidases. Highly active β-N-acetylglucosaminidases and α-N-acetylgalactosaminidases were the main glycosidases for all Arenibacter. The genes, encoding two new members of glycoside hydrolyses (GH) families, 20 and 109, were isolated and characterized from the genomes of Arenibacter latericius. Molecular genetic analysis using glycosidase-specific primers shows the absence of GH27 and GH36 genes. A sequence comparison with functionally-characterized GH20 and GH109 enzymes shows that both sequences are closest to the enzymes of chitinolytic bacteria Vibrio furnissii and Cellulomonas fimi of marine and terrestrial origin, as well as human pathogen Elisabethkingia meningoseptica and simbionts Akkermansia muciniphila, gut and non-gut Bacteroides, respectively. These results revealed that the genus Arenibacter is a highly taxonomic diverse group of microorganisms, which can participate in degradation of natural polymers in marine environments depending on their niche and habitat adaptations. They are new prospective candidates for biotechnological applications due to their production of unique glycosidases. PMID:23752354

  18. Community dynamics and glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass

    SciTech Connect

    Gladden, J.M.; Allgaier, M.; Miller, C.S.; Hazen, T.C.; VanderGheynst, J.S.; Hugenholtz, P.; Simmons, B.A.; Singer, S.W.

    2011-05-01

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60 C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80 C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  19. Methyl-donor supplementation in obese mice prevents the progression of NAFLD, activates AMPK and decreases acyl-carnitine levelsa

    PubMed Central

    Dahlhoff, Christoph; Worsch, Stefanie; Sailer, Manuela; Hummel, Björn A.; Fiamoncini, Jarlei; Uebel, Kirsten; Obeid, Rima; Scherling, Christian; Geisel, Jürgen; Bader, Bernhard L.; Daniel, Hannelore

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) results from increased hepatic lipid accumulation and steatosis, and is closely linked to liver one-carbon (C1) metabolism. We assessed in C57BL6/N mice whether NAFLD induced by a high-fat (HF) diet over 8 weeks can be reversed by additional 4 weeks of a dietary methyl-donor supplementation (MDS). MDS in the obese mice failed to reverse NAFLD, but prevented the progression of hepatic steatosis associated with major changes in key hepatic C1-metabolites, e.g. S-adenosyl-methionine and S-adenosyl-homocysteine. Increased phosphorylation of AMPK-α together with enhanced β-HAD activity suggested an increased flux through fatty acid oxidation pathways. This was supported by concomitantly decreased hepatic free fatty acid and acyl-carnitines levels. Although HF diet changed the hepatic phospholipid pattern, MDS did not. Our findings suggest that dietary methyl-donors activate AMPK, a key enzyme in fatty acid β-oxidation control, that mediates increased fatty acid utilization and thereby prevents further hepatic lipid accumulation. PMID:25061561

  20. The Structure and Function of an Arabinan-specific [alpha]-1,2-Arabinofuranosidase Identified from Screening the Activities of Bacterial GH43 Glycoside Hydrolases

    SciTech Connect

    Cartmell, Alan; McKee, Lauren S.; Pena, Maria J.; Larsbrink, Johan; Brumer, Harry; Kaneko, Satoshi; Ichinose, Hitomi; Lewis, Richard J.; Vikso-Nielsen, Anders; Gilbert, Harry; Marles-Wright, Jon

    2012-03-26

    Reflecting the diverse chemistry of plant cell walls, microorganisms that degrade these composite structures synthesize an array of glycoside hydrolases. These enzymes are organized into sequence-, mechanism-, and structure-based families. Genomic data have shown that several organisms that degrade the plant cell wall contain a large number of genes encoding family 43 (GH43) glycoside hydrolases. Here we report the biochemical properties of the GH43 enzymes of a saprophytic soil bacterium, Cellvibrio japonicus, and a human colonic symbiont, Bacteroides thetaiotaomicron. The data show that C. japonicus uses predominantly exo-acting enzymes to degrade arabinan into arabinose, whereas B. thetaiotaomicron deploys a combination of endo- and side chain-cleaving glycoside hydrolases. Both organisms, however, utilize an arabinan-specific {alpha}-1,2-arabinofuranosidase in the degradative process, an activity that has not previously been reported. The enzyme can cleave {alpha}-1,2-arabinofuranose decorations in single or double substitutions, the latter being recalcitrant to the action of other arabinofuranosidases. The crystal structure of the C. japonicus arabinan-specific {alpha}-1,2-arabinofuranosidase, CjAbf43A, displays a five-bladed {beta}-propeller fold. The specificity of the enzyme for arabinan is conferred by a surface cleft that is complementary to the helical backbone of the polysaccharide. The specificity of CjAbf43A for {alpha}-1,2-L-arabinofuranose side chains is conferred by a polar residue that orientates the arabinan backbone such that O2 arabinose decorations are directed into the active site pocket. A shelflike structure adjacent to the active site pocket accommodates O3 arabinose side chains, explaining how the enzyme can target O2 linkages that are components of single or double substitutions.

  1. Mutational analysis of the AtNUDT7 Nudix hydrolase from Arabidopsis thaliana reveals residues required for protein quaternary structure formation and activity.

    PubMed

    Olejnik, Kamil; Płochocka, Danuta; Grynberg, Marcin; Goch, Grazyna; Gruszecki, Wiesław I; Basińska, Teresa; Kraszewska, Elzbieta

    2009-01-01

    Arabidopsis thaliana AtNUDT7, a homodimeric Nudix hydrolase active on ADP-ribose and NADH, exerts negative control on the major signaling complex involved in plant defense activation and programmed cell death. The structural and functional consequences of altering several amino-acid residues of the AtNUDT7 protein have been examined by site-directed mutagenesis, far-UV circular dichroism (CD), attenuated total reflection-Fourier transform infrared (ATR-FTIR) and photon correlation (PCS) spectroscopy, biochemical analysis and protein-protein interaction studies. Alanine substitutions of F73 and V168 disallowed dimer formation. Both the F73A- and V168A-mutated proteins displayed no observable enzymatic activity. Alanine substitution of the V69 residue did not significantly alter the enzyme activity and had no influence on dimer arrangement. The non-conserved V26 residue, used as a negative control, did not contribute to the enzyme quaternary structure or activity. Detailed biophysical characterization of the wild-type and mutant proteins indicates that the mutations do not considerably alter the secondary structure of the enzyme but they affect dimer assembly. In addition, mutating residues V69, F73 and V168 disrupted the binding of AtNUDT7 to the regulatory 14.3.3 protein. These are the first studies of the structure-function relationship of AtNUDT7, a Nudix hydrolase of important regulatory function. PMID:19448856

  2. Modification of the activity of some C cycle hydrolases in soils afforested with Populus alba L. Preliminary results

    NASA Astrophysics Data System (ADS)

    Zorita, Félix; García-Campos, Elena; Gil-Sotres, Fernando; Leirós, Mā Carmen; Trasar-Cepeda, Carmen

    2010-05-01

    Since 1992 a large part of the agricultural land in Galicia (NW Spain) has disappeared as a result of the EU policy of providing grants and aid for transforming marginal land into forest terrain. In Galicia, this policy (EU Regulation 2080/1992) has mainly been applied to good quality agricultural land rather than to marginal land. As a result, the land has undergone a change in use, so that previously good quality agricultural land is now planted with various species of trees, usually of young age. Despite the large area of land transformed, until now the environmental cost of such changes has not been evaluated. Taking into account that one of the possible environmental effects derived from land transformation is changes in emissions of CO2 (a major greenhouse gas), it is therefore essential to evaluate any possible modifications undergone in such soils, with special attention given to biochemical properties, i.e. the properties that determine edaphic metabolism. With this aim, we are currently investigating the effect of afforestation on diverse biochemical properties, including the activity of hydrolytic enzymes involved in the C, N, P and S cycles, in a large number of afforested soils, planted with different trees and located in different areas throughout Galicia. In each case, an agricultural soil located close to the afforested soil, but under the original land use (usually maize cropped soils or pasture soils), is also collected and analysed, and the results obtained for afforested soils compared with those for the corresponding agricultural soils. Here we report some preliminary results on modifications in the activities of some C cycle hydrolases in six soils now planted with poplars, Populus alba L, but originally cropped with maize. Samples of all soils were collected in autumn, after harvesting and before any other agricultural activities were carried out. In all cases, the upper 10 cm of the soils were collected. The soils were sieved (4 mm) prior to

  3. The Role of the β5-α11 Loop in the Active-Site Dynamics of Acylated Penicillin-Binding Protein A from Mycobacterium tuberculosis

    SciTech Connect

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher

    2013-04-22

    Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in Mycobacterium tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of apoenzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured the second-order acylation rate constants for the antibiotics imipenem, penicillin G, and ceftriaxone. Of these, imipenem, which has demonstrable anti-tubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined, and all show conformational differences in the β5–α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5–α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that penicillin-binding proteins in apo form can occupy different conformational states.

  4. The role of the β5-α11 loop in the active-site dynamics of acylated penicillin-binding protein A from Mycobacterium tuberculosis

    PubMed Central

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher

    2012-01-01

    Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in M. tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of the apo enzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured second-order acylation rate constants for the antibiotics, imipenem, penicillin G and ceftriaxone. Of these, imipenem, which has demonstrable antitubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined and all show conformational differences in the β5-α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5-α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that PBPs in apo form can occupy different conformational states. PMID:22365933

  5. Preparation of fatty-acylated derivatives of acyl carrier protein using Vibrio harveyi acyl-ACP synthetase.

    PubMed

    Shen, Z; Fice, D; Byers, D M

    1992-07-01

    A simple two-step purification of Vibrio harveyi fatty acyl-acyl carrier protein (acyl-ACP) synthetase, which is useful for the quantitative preparation and analysis of fatty-acylated derivatives of ACP, is described. Acyl-ACP synthetase can be partially purified from extracts of this bioluminescent bacterium by Cibacron blue chromatography and Sephacryl S-300 gel filtration and is stable for months at -20 degrees C in the presence of glycerol. Incubation of ACP from Escherichia coli with ATP and radiolabeled fatty acids (6 to 16 carbons in length) in the presence of the enzyme resulted in quantitative conversion to biologically active acylated derivatives. The enzyme reaction can be monitored by a filter disk assay to quantitate levels of ACP or by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography to detect ACP in cell extracts. With its broad fatty acid chain length specificity and optimal activity in mild nondenaturing buffers, the soluble V. harveyi acyl-ACP synthetase provides an attractive alternative to current chemical and enzymatic methods of acyl-ACP preparation and analysis. PMID:1514693

  6. Surface active molecules: preparation and properties of long chain n-acyl-l-alpha-amino-omega-guanidine alkyl acid derivatives.

    PubMed

    Infante, R; Dominguez, J G; Erra, P; Julia, R; Prats, M

    1984-12-01

    Synopsis A new route for the synthesis of long chain N(alpha)-acyl-l-alpha-amino-omega-guamdine alkyl acid derivatives, with cationic or amphoteric character has been established. The general formula of these compounds is shown below. A physico-chemical and antimicrobial study of these products as a function of the alkyl ester or sodium salt (R), the straight chain length of the fatty acid residue (x) and the number of carbons between the omega-guanidine and omega-carboxyl group (n) has been investigated. The water solubility, surface tension, critical micelle concentration (c.m.c.) and minimum inhibitory concentration (MIC) against Gram-positive and Gram-negative bacteria (including Pseudomonas) has been determined. Dicyclohexylcarbodiimide has been used to condense fatty acids and alpha-amino-omega-guanidine alkyl acids. In these conditions protection of the omega-guanidine group is not necessary. The main characteristic of this synthetic procedure is the use of very mild experimental conditions (temperature, pH) to form the amide linkage which leads to pure optical compounds in high yield in the absence of electrolytes. The results show that some structural modifications, particularly the protection of the carboxyl group, promote variations of the surfactant and antimicrobial properties. Only those molecules with the blocked carboxyl group (cationic molecules, where R = Me, Et or Pr) showed a good surfactant and antimicrobial activity. When the carboxyl group was unprotected (amphoteric molecules, where R = Na(+)) the resulting compounds were inactive. PMID:19467126

  7. Peroxisome proliferator-activated receptor gamma 2 and acyl-CoA synthetase 5 polymorphisms influence diet response.

    PubMed

    Adamo, Kristi B; Dent, Robert; Langefeld, Carl D; Cox, Miranda; Williams, Kathryn; Carrick, Kevin M; Stuart, Joan S; Sundseth, Scott S; Harper, Mary-Ellen; McPherson, Ruth; Tesson, Frédérique

    2007-05-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) and its response gene, Acyl CoA synthetase 5 (ACSL5), which has an important role in fatty acid metabolism, may affect weight loss in response to caloric restriction. Therefore, we aimed to determine whether these genes were involved in the interindividual response to dietary treatment. Genotypic/phenotypic comparisons were made between selected obese women from the quintiles losing the most (diet responsive, n = 74) and the quintiles losing the least (diet-resistant, n = 67) weight in the first 6 weeks of a 900-kcal formula diet. Two common PPARgamma single nucleotide polymorphisms, Pro(12)Ala and C1431T, and eight polymorphisms across the ACSL5 gene were selected for single locus and haplotypic association analyses. The PPARgamma Pro(12)Ala single nucleotide polymorphism was associated with diet resistance (odds ratio = 3.48, 95% confidence interval = 1.41 to 8.56, p = 0.03), and the rs2419621, located in the 5'untranslated region of the ACSL5 gene, displayed the strongest association with diet response (odds ratio = 3.45, 95% confidence interval = 1.61 to 7.69, p = 0.001). Skeletal muscle ACSL5 mRNA expression was significantly lower in carriers of the wildtype compared with the variant rs2419621 allele (p = 0.03). Our results suggest a link between PPARgamma2 and ACSL5 genotype and diet responsiveness. PMID:17495181

  8. ω-Imidazolyl- and ω-Tetrazolylalkylcarbamates as Inhibitors of Fatty Acid Amide Hydrolase: Biological Activity and in vitro Metabolic Stability.

    PubMed

    Terwege, Tobias; Hanekamp, Walburga; Garzinsky, David; König, Simone; Koch, Oliver; Lehr, Matthias

    2016-02-17

    Fatty acid amide hydrolase (FAAH) is a serine hydrolase that terminates the analgesic and anti-inflammatory effects of endocannabinoids such as anandamide. Herein, structure-activity relationship studies on a new series of aryl N-(ω-imidazolyl- and ω-tetrazolylalkyl)carbamate inhibitors of FAAH were investigated. As one result, a pronounced increase in inhibitory potency was observed if a phenyl residue attached to the carbamate oxygen atom was replaced by a pyridin-3-yl moiety. The most active compounds exhibited IC50 values in the low nanomolar range. In addition, investigations on the metabolic properties of these inhibitors were performed. In rat liver homogenate and in porcine plasma, the extent of their degradation was shown to be strongly dependent on the kind of aryl residue bound to the carbamate as well as on the length and type of the alkyl spacer connecting the carbamate group with the heterocyclic system. With the aid of esterase inhibitors it was shown that in porcine plasma, carboxylesterase-like enzymes and paraoxonase are involved in carbamate cleavage. Moreover, it was found that highly active pyridin-3-yl carbamates reacted with albumin, which led to covalent albumin adducts. PMID:26732805

  9. Hierarchical classification of glycoside hydrolases.

    PubMed

    Naumoff, D G

    2011-06-01

    This review deals with structural and functional features of glycoside hydrolases, a widespread group of enzymes present in almost all living organisms. Their catalytic domains are grouped into 120 amino acid sequence-based families in the international classification of the carbohydrate-active enzymes (CAZy database). At a higher hierarchical level some of these families are combined in 14 clans. Enzymes of the same clan have common evolutionary origin of their genes and share the most important functional characteristics such as composition of the active center, anomeric configuration of cleaved glycosidic bonds, and molecular mechanism of the catalyzed reaction (either inverting, or retaining). There are now extensive data in the literature concerning the relationship between glycoside hydrolase families belonging to different clans and/or included in none of them, as well as information on phylogenetic protein relationship within particular families. Summarizing these data allows us to propose a multilevel hierarchical classification of glycoside hydrolases and their homologs. It is shown that almost the whole variety of the enzyme catalytic domains can be brought into six main folds, large groups of proteins having the same three-dimensional structure and the supposed common evolutionary origin. PMID:21639842

  10. Identification and Characterization of a New Alkaline SGNH Hydrolase from a Thermophilic Bacterium Bacillus sp. K91.

    PubMed

    Yu, Tingting; Ding, Junmei; Zheng, Qingxia; Han, Nanyu; Yu, Jialin; Yang, Yunjuan; Li, Junjun; Mu, Yuelin; Wu, Qian; Huang, Zunxi

    2016-04-28

    est19 is a gene from Bacillus sp. K91 that encodes a new esterase. A comparison of the amino acid sequence showed that Est19 has typical Ser-Gly-Asn-His (SGNH) family motifs and could be grouped into the SGNH hydrolase family. The Est19 protein was functionally cloned, and expressed and purified from Escherichia coli BL21(DE3). The enzyme activity was optimal at 60°C and pH 9.0, and displayed esterase activity towards esters with short-chain acyl esters (C₂-C₆). A structural model of Est19 was constructed using phospholipase A1 from Streptomyces albidoflavus NA297 as a template. The structure showed an α/β-hydrolase fold and indicated the presence of the typical catalytic triad Ser49-Asp227-His230, which were further investigated by site-directed mutagenesis. To the best of our knowledge, Est19 is a new member of the SGNH hydrolase family identified from thermophiles, which may be applicable in the industrial production of semisynthetic β-lactam antibiotics after modification. PMID:26699742

  11. Cytotoxic activity of acyl phloroglucinols isolated from the leaves of Eucalyptus cinerea F. Muell. ex Benth. cultivated in Egypt

    PubMed Central

    Soliman, Fathy M.; Fathy, Magda M.; Salama, Maha M.; Al-Abd, Ahmed M.; Saber, Fatema R.; El-Halawany, Ali M.

    2014-01-01

    Two acyl phloroglucinol compounds namely; Sideroxylonal B (1) and Macrocarpal A (2) were isolated from the Sideroxylonal-Rich Extract (SRE) of the juvenile leaves of Eucalyptus cinerea; F. Muell. ex Benth cultivated in Egypt. Identification of the isolated compounds was established on the basis of physico-chemical properties and spectral analysis (1D & 2D NMR). The two compounds were isolated for the first time from this species. The SRE alongside with the isolated compounds were tested against three human cancer cell lines; MCF7 (breast carcinoma cell line), HEP2 (laryngeal carcinoma), CaCo (colonic adenocarcinoma) and one type of normal human cell line;10 FS (fibroblast cells). The SRE, (1), and (2) showed cytotoxic activity with IC50 13.6 ± 0.62, 7.2 ± 0.5, 14.8 ± 0.55 μg mL−1 against HEP2 respectively, 11.6 ± 0.47, 4 ± 0.36, 11.4 ± 0.45 μg mL−1 against CaCo, respectively, and 8.6 ± 0.29, 4.4 ± 0.25, and 7.8 ± 0.3 μg mL−1 against MCF7, respectively. Meanwhile, the (SRE) together with (1) and (2) exhibited low cytotoxicity against normal cell line 10 FS, with IC50 55.4 ± 1.4, 43 ± 0.8 and 50.1 ± 1.12 μg mL−1, respectively. The antiprofilerative activity of the tested compounds was evaluated. The cell cycle profile of cells treated with Sideroxylonal-B and Macrocarpal-A indicates possible S-phase specific effects. PMID:24986654

  12. Isolation and characterization of a Lactobacillus amylovorus mutant depleted in conjugated bile salt hydrolase activity: relation between activity and bile salt resistance.

    PubMed

    Grill, J P; Cayuela, C; Antoine, J M; Schneider, F

    2000-10-01

    Growth experiments were conducted on Lactobacillus amylovorus DN-112 053 in batch culture, with or without pH regulation. Conjugated bile salt hydrolase (CBSH) activity was examined as a function of culture growth. The CBSH activity increased during growth but its course depended on bile salts type and culture conditions. A Lact. amylovorus mutant was isolated from the wild-type strain of Lact. amylovorus DN-112 053 after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. An agar plate assay was used to detect mutants without CBSH activity. In resting cell experiments, the strain showed reduced activity. Differences between growth parameters determined for wild-type and mutant strains were not detected. Comparative native gel electrophoresis followed by CBSH activity staining demonstrated the loss of proteins harbouring this activity in the mutant. Four protein bands corresponding to CBSH were observed in the wild-type strain but only one was detected in the mutant. The specific growth rate of the mutant strain was affected more by bile salts than the wild-type strain. Nevertheless, bile was more toxic for the wild-type strain. In viability studies in the presence of nutrients, it was demonstrated that glycodeoxycholic acid exerted a higher toxicity than taurodeoxycholic acid in a pH-dependent manner. No difference was apparent between the two strains. In the absence of nutrients, the wild-type strain died after 2 h whereas no effect was observed for the mutant. The de-energization experiments performed using the ionophores nigericin and valinomycin suggested that the chemical potential of protons (ZDeltapH) was involved in Lactobacillus bile salt resistance. PMID:11054157

  13. Effects of Inhibiting Acylated Homoserine Lactones (AHLs) on Anammox Activity and Stability of Granules'.

    PubMed

    Zhao, Ran; Zhang, Hanmin; Zou, Xiang; Yang, Fenglin

    2016-07-01

    In this study, the effects of AHL-based QS signals on anammox activity and stability of granules' were investigated. Results clearly showed that the vanillin and porcine kidney acylase I could reduce the AHLs in anammox bacteria. Inactivation of AHLs by vanillin and porcine kidney acylase I depressed the nitrogen removal ability of anammox bacteria. A significant inhibition of specific anammox activity was observed when the concentration of vanillin and porcine kidney acylase I increased to 1 g/L. Anammox activity was depressed on enzyme level. Moreover, degradation of AHLs under vanillin and AHL-acylase exposure could result in anammox granules' disintegration. Further research showed that the contents of protein (PN) and polysaccharides (PS) in extracellular polymeric substances were reduced with AHLs blocked, and it further explained the instability and weakening strength of the anammox granules. The results of our investigation provided new insight into the AHL-based QS-regulated anammox activity, leading a potential way to enhance stability of anammox granules. PMID:27061587

  14. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  15. α-Acyl lactams in the synthesis of physiologically active compounds

    NASA Astrophysics Data System (ADS)

    Nenajdenko, Valentin G.; Zakurdaev, Eugene P.; Balenkova, Elizabeth S.

    2009-05-01

    Published data on the methods of synthesis and reactivity of α-acyllactams are described systematically and generalized. The attention is focused on the recent achievements in the synthesis of heterocyclic compounds and biologically active products from α-acyllactams and cyclic imines obtained from α-acyllactams. Bibliography — 168 references.

  16. The Human Asparaginase-Like Protein 1 hASRGL1is an Ntn Hydrolase with β-aspartyl Peptidase Activity

    PubMed Central

    Cantor, Jason R.; Stone, Everett M.; Chantranupong, Lynne; Georgiou, George

    2009-01-01

    Herein we report the bacterial expression, purification, and enzymatic characterization of the human asparaginase-like protein 1 (hASRGL1). We present evidence that hASRGL1 exhibits β-aspartyl peptidase activity consistent with enzymes designated as plant-type asparaginases, which had thus far only been found in plants and bacteria. Similar to non-mammalian plant-type asparaginases, hASRGL1 is shown to be an Ntn hydrolase for which Thr168 serves as the essential N-terminal nucleophile for intramolecular processing and catalysis, corroborated in part by abolishment of both activities through the point-mutation Thr168Ala. In light of the activity profile reported here, ASRGL1s may act synergistically with protein L-isoaspartyl methyl transferase to relieve accumulation of potentially toxic isoaspartyl peptides in mammalian brain and other tissues. PMID:19839645

  17. Cytotoxic, Antiangiogenic and Antitelomerase Activity of Glucosyl- and Acyl- Resveratrol Prodrugs and Resveratrol Sulfate Metabolites.

    PubMed

    Falomir, Eva; Lucas, Ricardo; Peñalver, Pablo; Martí-Centelles, Rosa; Dupont, Alexia; Zafra-Gómez, Alberto; Carda, Miguel; Morales, Juan C

    2016-07-15

    Resveratrol (RES) is a natural polyphenol with relevant and varied biological activity. However, its low bioavailability and rapid metabolism to its glucuronate and sulfate conjugates has opened a debate on the mechanisms underlying its bioactivity. RES prodrugs are being developed to overcome these problems. We have synthesized a series of RES prodrugs and RES sulfate metabolites (RES-S) and evaluated their biological activities. RES glucosylated prodrugs (RES-Glc) were more cytotoxic in HT-29 and MCF-7 cells than RES itself whereas RES-S showed similar or higher cytotoxicity than RES. VEGF production was decreased by RES-Glc, and RES-disulfate (RES-diS) diminished it even more than RES. Finally, RES-Glc and RES-diS inhibited hTERT gene expression to a higher extent than RES. In conclusion, resveratrol prodrugs are promising candidates as anticancer drugs. In addition, RES-S showed distinct biological activity, thus indicating they are not simply RES reservoirs. PMID:27147200

  18. Ricinus communis contains and acyl-CoA synthetase that preferentially activates ricinoleate to its CoA thioester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of our effort to identify enzymes that are critical for producing large amounts of ricinoleate in castor oil, we have isolated three cDNAs encoding acyl-CoA synthetase (ACS) in the castor plant. Analysis of the cDNA sequences reveals that two of them, designated RcACS 2 and RcACS 4, contain...

  19. Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae

    PubMed Central

    Hou, Jing; Zheng, Heping; Chruszcz, Maksymilian; Zimmerman, Matthew D.; Shumilin, Igor A.; Osinski, Tomasz; Demas, Matt; Grimshaw, Sarah

    2015-01-01

    ABSTRACT β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants. IMPORTANCE This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae. PMID:26553852

  20. Reversible Cysteine Acylation Regulates the Activity of Human Palmitoyl-Protein Thioesterase 1 (PPT1)

    PubMed Central

    Segal-Salto, Michal; Sapir, Tamar; Reiner, Orly

    2016-01-01

    Mutations in the depalmitoylating enzyme gene, PPT1, cause the infantile form of Neuronal Ceroid Lipofuscinosis (NCL), an early onset neurodegenerative disease. During recent years there have been different therapeutic attempts including enzyme replacement. Here we show that PPT1 is palmitoylated in vivo and is a substrate for two palmitoylating enzymes, DHHC3 and DHHC7. The palmitoylated protein is detected in both cell lysates and medium. The presence of PPT1 with palmitoylated signal peptide in the cell medium suggests that a subset of the protein is secreted by a nonconventional mechanism. Using a mutant form of PPT1, C6S, which was not palmitoylated, we further demonstrate that palmitoylation does not affect intracellular localization but rather that the unpalmitoylated form enhanced the depalmitoylation activity of the protein. The calculated Vmax of the enzyme was significantly affected by the palmitoylation, suggesting that the addition of a palmitate group is reminiscent of adding a noncompetitive inhibitor. Thus, we reveal the existence of a positive feedback loop, where palmitoylation of PPT1 results in decreased activity and subsequent elevation in the amount of palmitoylated proteins. This positive feedback loop is likely to initiate a vicious cycle, which will enhance disease progression. The understanding of this process may facilitate enzyme replacement strategies. PMID:26731412

  1. Acyl carrier protein-specific 4'-phosphopantetheinyl transferase activates 10-formyltetrahydrofolate dehydrogenase.

    PubMed

    Strickland, Kyle C; Hoeferlin, L Alexis; Oleinik, Natalia V; Krupenko, Natalia I; Krupenko, Sergey A

    2010-01-15

    4'-Phosphopantetheinyl transferases (PPTs) catalyze the transfer of 4'-phosphopantetheine (4-PP) from coenzyme A to a conserved serine residue of their protein substrates. In humans, the number of pathways utilizing the 4-PP post-translational modification is limited and may only require a single broad specificity PPT for all phosphopantetheinylation reactions. Recently, we have shown that one of the enzymes of folate metabolism, 10-formyltetrahydrofolate dehydrogenase (FDH), requires a 4-PP prosthetic group for catalysis. This moiety acts as a swinging arm to couple the activities of the two catalytic domains of FDH and allows the conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. In the current study, we demonstrate that the broad specificity human PPT converts apo-FDH to holoenzyme and thus activates FDH catalysis. Silencing PPT by small interfering RNA in A549 cells prevents FDH modification, indicating the lack of alternative enzymes capable of accomplishing this transferase reaction. Interestingly, PPT-silenced cells demonstrate significantly reduced proliferation and undergo strong G(1) arrest, suggesting that the enzymatic function of PPT is essential and nonredundant. Our study identifies human PPT as the FDH-modifying enzyme and supports the hypothesis that mammals utilize a single enzyme for all phosphopantetheinylation reactions. PMID:19933275

  2. Oral IGF-I alters the posttranslational processing but not the activity of lactase-phlorizin hydrolase in formula-fed neonatal pigs.

    PubMed

    Burrin, D G; Stoll, B; Fan, M Z; Dudley, M A; Donovan, S M; Reeds, P J

    2001-09-01

    To determine the cellular mechanism whereby oral insulin-like growth factor I (IGF-I) increases intestinal lactase-phlorizin hydrolase (LPH) activity, we studied 2-d-old pigs fed cow's milk formula (control, n = 5), formula + low IGF-I (0.5 mg/L; n = 6) or formula + high IGF-I (12.0 mg/L, n = 6) for 15 d. On d 15, intestinal protein synthesis and lactase processing were measured in vivo in fed pigs using a 6-h intravenous, overlapping infusion of multiple stable isotopes (2H(3)-Leu, 13C(1)-Leu, 13C(1)-Phe, 2H(5)-Phe, 13C(6)-Phe and 13C(9)-Phe). Morphometry and cell proliferation also were measured in the jejunum and ileum. Neither dose of IGF-I affected the masses of wet tissue, protein or DNA, or the villus height, cell proliferation or LPH-specific activity. Oral IGF-I decreased the synthesis and abundance of prolactase-phlorizin hydrolase (pro-LPH), but increased brush-border (BB)-LPH synthesis in the ileum. The BB-LPH processing efficiency was twofold to threefold greater in IGF-fed than in control pigs. In all pigs, villus height and the total mucosal and specific activity of LPH activity were greater in the ileum than in the jejunum, yet the synthesis of BB-LPH were significantly lower in the ileum than in the jejunum. We conclude that oral IGF-I increases the processing efficiency of pro-LPH to BB-LPH but does not affect LPH activity. Moreover, the posttranslational processing of BB-LPH is markedly lower in the ileum than in the jejunum. PMID:11533260

  3. DNA-binding studies and biological activities of new nitrosubstituted acyl thioureas

    NASA Astrophysics Data System (ADS)

    Tahir, Shaista; Badshah, Amin; Hussain, Raja Azadar; Tahir, Muhammad Nawaz; Tabassum, Saira; Patujo, Jahangir Ali; Rauf, Muhammad Khawar

    2015-11-01

    Four new nitrosubstituted acylthioureas i.e. 1-acetyl-3-(4-nitrophenyl)thiourea (TU1), 1-acetyl-3-(2-methyl-4-nitrophenyl)thiourea (TU2), 1-acetyl-3-(2-methoxy-4-nitrophenyl)thiourea (TU3) and 1-acetyl-3-(4-chloro-3-nitrophenyl)thiourea (TU4) have been synthesized and characterized (by C13 and H1 nuclear magnetic resonance, Fourier transform infrared spectroscopy and single crystal X-ray diffraction). As a preliminary investigation of the anti-cancer potencies of the said compounds, DNA interaction studies have been carried out using cyclic voltammetry and UV-vis spectroscopy along with verification from computational studies. The drug-DNA binding constants are found to be in the order, KTU3 9.04 × 106 M-1 > KTU4 8.57 × 106 M-1 > KTU2 6.05 × 106 M-1 > KTU1 1.16 × 106 M-1. Furthermore, the antioxidant, cytotoxic, antibacterial and antifungal activities have been carried out against DPPH (1,1-diphenyl-2-dipicrylhydrazyl), Brine shrimp eggs, gram positive (Micrococcus luteus, Staphylococcus aureus) and gram negative (Bordetella bronchiseptica, Salmonella typhimurium, Enterobacter aerogens) and fungal cultures (Aspergillus fumigatus, Mucor species, Aspergillus niger, Aspergillus flavus) respectively.

  4. Expression, purification, crystallization and preliminary crystallographic study of a potential metal-dependent hydrolase with cyclase activity from Thermoanaerobacter tengcongensis

    PubMed Central

    Liu, Sen; Wu, Guangteng; Huang, Qichen; Lai, Luhua; Tang, Youqi; Unno, Hideaki; Kusunoki, Masami

    2005-01-01

    The putative metal-dependent hydrolase gene TTE1006 from Thermoanaerobacter tengcongensis strain MB4T (T = type strain; Genbank accession No. AE008691) was heterologously expressed in Escherichia coli. The 205-amino-acid gene product was purified and crystallized. The crystal used for data collection belongs to space group P21, with unit-cell parameters a = 85.2, b = 62.1, c = 172.4 Å, β = 104.2°. Using a synchrotron-radiation source, the resolution limit of the data reached 1.87 Å. Eight molecules were estimated to be present in the asymmetric unit, with a solvent content of 48%. Structure determination is ongoing using the multiple-wavelength anomalous diffraction (MAD) method and also the molecular-replacement (MR) method. PMID:16508100

  5. The S-acyl-2-thioethyl pronucleotide approach applied to acyclovir: part I. Synthesis and in vitro anti-hepatitis B virus activity of bis(S-acyl-2-thioethyl)phosphotriester derivatives of acyclovir.

    PubMed

    Périgaud, C; Gosselin, G; Girardet, J L; Korba, B E; Imbach, J L

    1999-01-01

    The synthesis and in vitro anti-hepatitis B virus (HBV) activity of two mononucleoside phosphotriester derivatives of acyclovir incorporating S-acyl-2-thioethyl (SATE) groups are reported. In contrast to the parent nucleoside, the described phosphotriesters emerged as potent and selective inhibitors of HBV replication in HepG2.2.15 cells. This result can be attributed to the unique cellular metabolism of the SATE pronucleotides giving rise to the delivery to acyclovir 5'-monophosphate inside the infected cells. Moreover, the in vitro anti-HBV activities of one of these bis(SATE)phosphotriesters and of (-)-beta-L-2',3'-dideoxy-3'-thiacytidine (lamivudine, 3TC) were compared alone and in combination. Analysis of the combination data indicates that 3TC and the studied SATE pronucleotide of acyclovir exhibited strong synergistic interactions. The present study provides an example where the use of a pronucleotide approach extends the antiviral spectrum of a nucleoside analogue. Given the potency of SATE pronucleotides of acyclovir against HBV in HepG2.2.15 cells, further studies including animal experiments seem warranted to evaluate the potential of these compounds as anti-HBV agents. PMID:10027651

  6. Structural characterization and high throughput screening of inhibitors of PvdQ, an NTN hydrolase involved in pyoverdine synthesis

    PubMed Central

    Drake, Eric J.; Gulick, Andrew M.

    2011-01-01

    The human pathogen Pseudomonas aeruginosa produces a variety of virulence factors including pyoverdine, a non-ribosomally produced peptide siderophore. The maturation pathway of the pyoverdine peptide is complex and provides a unique target for inhibition. Within the pyoverdine biosynthetic cluster is a periplasmic hydrolase, PvdQ, that is required for pyoverdine production. However, the precise role of PvdQ in the maturation pathway has not been biochemically characterized. We demonstrate herein that the initial module of the nonribosomal peptide synthetase PvdL adds a myristate moiety to the pyoverdine precursor. We extracted this acylated precursor, called PVDIq, from a pvdQ mutant strain and show that the PvdQ enzyme removes the fatty acid catalyzing one of the final steps in pyoverdine maturation. Incubation of PVDIq with crystals of PvdQ allowed us to capture the acylated enzyme and confirm through structural studies the chemical composition of the incorporated acyl chain. Finally, because inhibition of siderophore synthesis has been identified as a potential antibiotic strategy, we developed a high throughput screening assay and tested a small chemical library for compounds that inhibit PvdQ activity. Two compounds that block PvdQ have been identified and their binding within the fatty acid binding pocket structurally characterized. PMID:21892836

  7. Structure-activity relationship studies on 1-heteroaryl-3-phenoxypropan-2-ones acting as inhibitors of cytosolic phospholipase A2α and fatty acid amide hydrolase: replacement of the activated ketone group by other serine traps.

    PubMed

    Sundermann, Tom; Hanekamp, Walburga; Lehr, Matthias

    2016-08-01

    Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are serine hydrolases. cPLA2α is involved in the generation of pro-inflammatory lipid mediators, FAAH terminates the anti-inflammatory effects of endocannabinoids. Therefore, inhibitors of these enzymes may represent new drug candidates for the treatment of inflammation. We have reported that certain 1-heteroarylpropan-2-ones are potent inhibitors of cPLA2α and FAAH. The serine reactive ketone group of these compounds, which is crucial for enzyme inhibition, is readily metabolized resulting in inactive alcohol derivatives. In order to obtain metabolically more stable inhibitors, we replaced this moiety by α-ketoheterocyle, cyanamide and nitrile serine traps. Investigations on activity and metabolic stability of these substances revealed that in all cases an increased metabolic stability was accompanied by a loss of inhibitory potency against cPLA2α and FAAH, respectively. PMID:26153239

  8. Friedel-Crafts Acylation with Amides

    PubMed Central

    Raja, Erum K.; DeSchepper, Daniel J.; Nilsson Lill, Sten O.; Klumpp, Douglas A.

    2012-01-01

    Friedel-Crafts acylation has been known since the 1870s and it is an important organic synthetic reaction leading to aromatic ketone products. Friedel-Crafts acylation is usually done with carboxylic acid chlorides or anhydrides while amides are generally not useful substrates in these reactions. Despite being the least reactive carboxylic acid derivative, we have found a series of amides capable of providing aromatic ketones in good yields (55–96%, 17 examples). We propose a mechanism involving diminished C-N resonance through superelectrophilic activation and subsequent cleavage to acyl cations. PMID:22690740

  9. A novel bioassay for high-throughput screening microorganisms with N-acyl homoserine lactone degrading activity.

    PubMed

    Liu, Pengfu; Gao, Yang; Huang, Wei; Shao, Zongze; Shi, Jiping; Liu, Ziduo

    2012-05-01

    A novel biosensor strain (Escherichia coli ALM403) that responded to N-acyl homoserine lactone (AHL) was constructed using a luxR-Plux cassette as a regulatory sequence and β-mannanase as a reporter gene. Dinitrosalicylic acid method was used to detect the response of the sensor strain to N-acyl homoserine lactone. By investigating the response to a range of concentrations of N-β-oxooctanoyl-L-homoserine lactone (OOHL), it was demonstrated that the expression of mannanase in E. coli ALM403 could be greatly enhanced by OOHL and resulted in an assayable phenotype. A high-throughput screening approach was developed to isolate AHL-degrading microorganisms, and a marine Halomonas sp. S66-4 showing a marked AHL-degrading ability was successfully isolated. In conclusion, the bioassay system provided a simple and efficient approach to isolate AHL-degrading bacteria. PMID:22528649

  10. LIGNIN ACYLATION IN GRASSES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acylation of lignin during growth and development is a commonly found among some plant species. Grasses form unique acylated lignins involving p-coumarate (pCA). In corn rind tissue, it is exclusively attached to the gamma-carbon of lignin monomers, with a strong preference (over 90%) for attachment...

  11. Synthesis and structure-activity relationship studies of O-biphenyl-3-yl carbamates as peripherally restricted fatty acid amide hydrolase inhibitors.

    PubMed

    Moreno-Sanz, Guillermo; Duranti, Andrea; Melzig, Laurin; Fiorelli, Claudio; Ruda, Gian Filippo; Colombano, Giampiero; Mestichelli, Paola; Sanchini, Silvano; Tontini, Andrea; Mor, Marco; Bandiera, Tiziano; Scarpelli, Rita; Tarzia, Giorgio; Piomelli, Daniele

    2013-07-25

    The peripherally restricted fatty acid amide hydrolase (FAAH) inhibitor URB937 (3, cyclohexylcarbamic acid 3'-carbamoyl-6-hydroxybiphenyl-3-yl ester) is extruded from the brain and spinal cord by the Abcg2 efflux transporter. Despite its inability to enter the central nervous system (CNS), 3 exerts profound antinociceptive effects in mice and rats, which result from the inhibition of FAAH in peripheral tissues and the consequent enhancement of anandamide signaling at CB1 cannabinoid receptors localized on sensory nerve endings. In the present study, we examined the structure-activity relationships (SAR) for the biphenyl region of compound 3, focusing on the carbamoyl and hydroxyl groups in the distal and proximal phenyl rings. Our SAR studies generated a new series of peripherally restricted FAAH inhibitors and identified compound 35 (cyclohexylcarbamic acid 3'-carbamoyl-5-hydroxybiphenyl-3-yl ester) as the most potent brain-impermeant FAAH inhibitor disclosed to date. PMID:23822179

  12. In Vitro Cytotoxic Effects of Gold Nanoparticles Coated with Functional Acyl Homoserine Lactone Lactonase Protein from Bacillus licheniformis and Their Antibiofilm Activity against Proteus Species

    PubMed Central

    Vinoj, Gopalakrishnan; Pati, Rashmirekha; Sonawane, Avinash

    2014-01-01

    N-acylated homoserine lactonases are known to inhibit the signaling molecules of the biofilm-forming pathogens. In this study, gold nanoparticles were coated with N-acylated homoserine lactonase proteins (AiiA AuNPs) purified from Bacillus licheniformis. The AiiA AuNPs were characterized by UV-visible spectra, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The synthesized AiiA AuNPs were found to be spherical in shape and 10 to 30 nm in size. Treatment with AiiA protein-coated AuNPs showed maximum reduction in exopolysaccharide production, metabolic activities, and cell surface hydrophobicity and potent antibiofilm activity against multidrug-resistant Proteus species compared to treatment with AiiA protein alone. AiiA AuNPs exhibited potent antibiofilm activity at 2 to 8 μM concentrations without being harmful to the macrophages. We conclude that at a specific dose, AuNPs coated with AiiA can kill bacteria without harming the host cells, thus representing a potential template for the design of novel antibiofilm and antibacterial protein drugs to decrease bacterial colonization and to overcome the problem of drug resistance. In summary, our data suggest that the combined effect of the lactonase and the gold nanoparticles of the AiiA AuNPs has promising antibiofilm activity against biofilm-forming and multidrug-resistant Proteus species. PMID:25403677

  13. Mutagenesis and crystallographic studies of the catalytic residues of the papain family protease bleomycin hydrolase: new insights into active-site structure

    PubMed Central

    O'Farrell, Paul A.; Joshua-Tor, Leemor

    2006-01-01

    Bleomycin hydrolase (BH) is a hexameric papain family cysteine protease which is involved in preparing peptides for antigen presentation and has been implicated in tumour cell resistance to bleomycin chemotherapy. Structures of active-site mutants of yeast BH yielded unexpected results. Replacement of the active-site asparagine with alanine, valine or leucine results in the destabilization of the histidine side chain, demonstrating unambiguously the role of the asparagine residue in correctly positioning the histidine for catalysis. Replacement of the histidine with alanine or leucine destabilizes the asparagine position, indicating a delicate arrangement of the active-site residues. In all of the mutants, the C-terminus of the protein, which lies in the active site, protrudes further into the active site. All mutants were compromised in their catalytic activity. The structures also revealed the importance of a tightly bound water molecule which stabilizes a loop near the active site and which is conserved throughout the papain family. It is displaced in a number of the mutants, causing destabilization of this loop and a nearby loop, resulting in a large movement of the active-site cysteine. The results imply that this water molecule plays a key structural role in this family of enzymes. PMID:17007609

  14. Characterization of the propanil biodegradation pathway in Sphingomonas sp. Y57 and cloning of the propanil hydrolase gene prpH.

    PubMed

    Zhang, Ji; Sun, Ji-Quan; Yuan, Qiao-Yun; Li, Chao; Yan, Xin; Hong, Qing; Li, Shun-Peng

    2011-11-30

    In our previous study, the isoproturon-degrading strain Sphingomonas sp. Y57 was isolated from the wastewater treatment system of an herbicide factory. Interestingly, this strain also showed the ability to degrade propanil (3,4-dichloropropionamilide). The present work reveals that Y57 degrades propanil via the following pathway: propanil was initially hydrolyzed to 3,4-dichloroaniline (3,4-DCA) and then converted to 4,5-dichlorocatechol, which was then subjected to aromatic ring cleavage and further processing. N-acylation and N-deacylation of 3,4-DCA also occurred, and among N-acylation products, 3,4-dichloropropionanilide was found for the first time. The gene encoding the propanil hydrolase responsible for transforming propanil into 3,4-DCA was cloned from Y57 and was designated as prpH. PrpH was expressed in Escherichia coli BL21 and purified using Ni-nitrilotriacetic acid affinity chromatography. PrpH displayed the highest activity against propanil at 40°C and at pH 7.0. The effect of metal ions on the propanil-degrading activity of PrpH was also determined. To our knowledge, this is the first report of a strain that can degrade both propanil and 3,4-DCA and the first identification of a gene encoding a propanil hydrolase in bacteria. PMID:21974851

  15. Identification of the conserved spatial position of key active-site atoms in glycoside hydrolase 13 family members.

    PubMed

    Kumar, Vikash

    2010-07-19

    A computational study on the glycoside hydrolase 13 (GH13) family of the CAZy database has been carried out at the atomic level in order to identify the conserved positions that may be responsible for recognition of the substrate. Analysis with substrate analog-, inhibitor-, or product-bound 3D structures was carried out to find the atomic spatial arrangement of the amino acids that make -2, -1, +1, and +2 subsites and water oxygen atoms around the ligand. The identified conserved positions of subsites were independent from the nature of the amino acid. The -1 and +1 subsites have more conserved positions than the -2 and +2 subsites. Some of the clusters of the -1 and +1 subsites have atoms of the same chemical nature. A spatially conserved position for water, which is stabilized by a hydrogen bond with the carboxyl group of a proton donor (Glu) and Asp of the catalytic triad, was found in the -1 subsite of 75% of the enzymes subjected to analysis. This position could be the region of hydrolytic water. PMID:20557875

  16. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindgvist, Ylva; Schneider, Gunter

    1998-01-06

    Disclosed is a methods for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  17. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindqvist, Ylva; Schneider, Gunter

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  18. Thermostable Cyanuric Acid Hydrolase from Moorella thermoacetica ATCC 39073▿

    PubMed Central

    Li, Qingyan; Seffernick, Jennifer L.; Sadowsky, Michael J.; Wackett, Lawrence P.

    2009-01-01

    Cyanuric acid, a metabolic intermediate in the degradation of many s-triazine compounds, is further metabolized by cyanuric acid hydrolase. Cyanuric acid also accumulates in swimming pools due to the breakdown of the sanitizing agents di- and trichloroisocyanuric acid. Structurally stable cyanuric acid hydrolases are being considered for usage in pool water remediation. In this study, cyanuric acid hydrolase from the thermophile Moorella thermoacetica ATCC 39073 was cloned, expressed in Escherichia coli, and purified to homogeneity. The recombinant enzyme was found to have a broader temperature range and greater stability, at both elevated and low temperatures, than previously described cyanuric acid hydrolases. The enzyme had a narrow substrate specificity, acting only on cyanuric acid and N-methylisocyanuric acid. The M. thermoacetica enzyme did not require metals or other discernible cofactors for activity. Cyanuric acid hydrolase from M. thermoacetica is the most promising enzyme to use for cyanuric acid remediation applications. PMID:19767460

  19. SIRT3 and SIRT5 Regulate the Enzyme Activity and Cardiolipin Binding of Very Long-Chain Acyl-CoA Dehydrogenase

    PubMed Central

    Zhang, Yuxun; Bharathi, Sivakama S.; Rardin, Matthew J.; Uppala, Radha; Verdin, Eric; Gibson, Bradford W.; Goetzman, Eric S.

    2015-01-01

    SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane. PMID:25811481

  20. Antiproliferative activity of long chain acylated esters of quercetin-3-O-glucoside in hepatocellular carcinoma HepG2 cells.

    PubMed

    Sudan, Sudhanshu; Rupasinghe, Hp Vasantha

    2015-11-01

    Despite their strong role in human health, poor bioavailability of flavonoids limits their biological effects in vivo. Enzymatically catalyzed acylation of fatty acids to flavonoids is one of the approaches of increasing cellular permeability and hence, biological activities. In this study, six long chain fatty acid esters of quercetin-3-O-glucoside (Q3G) acylated enzymatically and were used for determining their antiproliferative action in hepatocellular carcinoma cells (HepG2) in comparison to precursor compounds and two chemotherapy drugs (Sorafenib and Cisplatin). Fatty acid esters of Q3G showed significant inhibition of HepG2 cell proliferation by 85 to 90% after 6 h and 24 h of treatment, respectively. The cell death due to these novel compounds was associated with cell-cycle arrest in S-phase and apoptosis observed by DNA fragmentation, fluorescent microscopy and elevated caspase-3 activity and strong DNA topoisomerase II inhibition. Interestingly, Q3G esters showed significantly low toxicity to normal liver cells than Sorafenib (P < 0.05), a chemotherapy drug for hepatocellular carcinoma. Among all, oleic acid ester of Q3G displayed the greatest antiproliferation action and a high potential as an anti-cancer therapeutic. Overall, the results of the study suggest strong antiproliferative action of these novel food-derived compounds in treatment of cancer. PMID:25681471

  1. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase.

    PubMed

    Zhang, Yuxun; Bharathi, Sivakama S; Rardin, Matthew J; Uppala, Radha; Verdin, Eric; Gibson, Bradford W; Goetzman, Eric S

    2015-01-01

    SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane. PMID:25811481

  2. A Methylated Phosphate Group and Four Amide-linked Acyl Chains in Leptospira interrogans Lipid A. The Membrane Anchor of an Unusual Lipopolysaccharide that Activates TLR2*

    PubMed Central

    Que-Gewirth, Nanette L. S.; Ribeiro, Anthony A.; Kalb, Suzanne R.; Cotter, Robert J.; Bulach, Dieter M.; Adler, Ben; Girons, Isabelle Saint; Werts, Catherine; Raetz, Christian R. H.

    2008-01-01

    Leptospira interrogans differs from other spirochetes in that it contains homologs of all the Escherichia coli lpx genes required for the biosynthesis of the lipid A anchor of lipopolysaccharide (LPS). LPS from L. interrogans cells is unusual in that it activates TLR2 rather than TLR4. The structure of L. interrogans lipid A has now been determined by a combination of matrix-assisted laser desorption ionization time-of-flight mass spectrometry, NMR spectroscopy, and biochemical studies. Lipid A was released from LPS of L. interrogans serovar Pomona by 100 °C hydrolysis at pH 4.5 in the presence of SDS. Following purification by anion exchange and thin layer chromatography, the major component was shown to have a molecular weight of 1727. Mild hydrolysis with dilute NaOH reduced this to 1338, consistent with the presence of four N-linked and two O-linked acyl chains. The lipid A molecules of both the virulent and nonvirulent forms of L. interrogans serovar Icterohaemorrhagiae (strain Verdun) were identical to those of L. interrogans Pomona by the above criteria. Given the selectivity of L. interrogans LpxA for 3-hydroxylaurate, we propose that L. interrogans lipid A is acylated with R-3-hydroxylaurate at positions 3 and 3′ and with R-3-hydroxypalmitate at positions 2 and 2′. The hydroxyacyl chain composition was validated by gas chromatography and mass spectrometry of fatty acid methyl esters. Intact hexa-acylated lipid A of L. interrogans Pomona was also analyzed by NMR, confirming the presence a β-1′,6-linked disaccharide of 2,3-diamino-2,3-dideoxy-D-glucopyranose units. Two secondary unsaturated acyl chains are attached to the distal residue. The 1-position of the disaccharide is derivatized with an axial phosphate moiety, but the 4′-OH is unsubstituted. 1H and 31P NMR analyses revealed that the 1-phosphate group is methylated. Purified L. interrogans lipid A is inactive against human THP-1 cells but does stimulate tumor necrosis factor production by

  3. Endogenous N-acyl taurines regulate skin wound healing.

    PubMed

    Sasso, Oscar; Pontis, Silvia; Armirotti, Andrea; Cardinali, Giorgia; Kovacs, Daniela; Migliore, Marco; Summa, Maria; Moreno-Sanz, Guillermo; Picardo, Mauro; Piomelli, Daniele

    2016-07-26

    The intracellular serine amidase, fatty acid amide hydrolase (FAAH), degrades a heterogeneous family of lipid-derived bioactive molecules that include amides of long-chain fatty acids with taurine [N-acyl-taurines (NATs)]. The physiological functions of the NATs are unknown. Here we show that genetic or pharmacological disruption of FAAH activity accelerates skin wound healing in mice and stimulates motogenesis of human keratinocytes and differentiation of human fibroblasts in primary cultures. Using untargeted and targeted lipidomics strategies, we identify two long-chain saturated NATs-N-tetracosanoyl-taurine [NAT(24:0)] and N-eicosanoyl-taurine [NAT(20:0)]-as primary substrates for FAAH in mouse skin, and show that the levels of these substances sharply decrease at the margins of a freshly inflicted wound to increase again as healing begins. Additionally, we demonstrate that local administration of synthetic NATs accelerates wound closure in mice and stimulates repair-associated responses in primary cultures of human keratinocytes and fibroblasts, through a mechanism that involves tyrosine phosphorylation of the epidermal growth factor receptor and an increase in intracellular calcium levels, under the permissive control of transient receptor potential vanilloid-1 receptors. The results point to FAAH-regulated NAT signaling as an unprecedented lipid-based mechanism of wound-healing control in mammalian skin, which might be targeted for chronic wound therapy. PMID:27412859

  4. A Novel Three Domains Glycoside Hydrolase Family 3 from Sclerotinia sclerotiorum Exhibits β-Glucosidase and Exoglucanase Activities: Molecular, Biochemical, and Transglycosylation Potential Analysis.

    PubMed

    Chahed, Haifa; Ezzine, Aymen; Mlouka, Mohamed Amine Ben; Rihouey, Christophe; Hardouin, Julie; Jouenne, Thierry; Marzouki, M Nejib

    2015-12-01

    The filamentous fungus Sclerotinia sclerotiorum produces a complete set of cellulolytic enzymes. We report here the purification and the biochemical characterization of a new β-glucosidase from S. sclerotiorum which belongs to the family 3 of glycoside hydrolases and that was named as SsBgl3. After two size-exclusion chromatography steps, purified protein bands of 80 and 90 kDa from SDS-PAGE were subjected to a mass spectrometry analysis. The results displayed four peptides from the upper band belonging to a polypeptide of 777 amino acids having a calculated molecular weight of 83.7 kDa. Biochemical analysis has been carried out to determine some properties. We showed that this SsBgl3 protein displayed both β-glucosidase and exoglucanase activities with optimal activity at 55 °C and at pH 5. The transglycosylation activity was investigated using gluco-oligosaccharides TLC analysis. The molecular modeling and comparison with different crystal structures of β-glucosidases showed that SsBgl3 putative protein present three domains. They correspond to an (α/β)8 domain TIM barrel, a five-stranded α/β sandwich domain (both of which are important for active-site organization), and a C-terminal fibronectin type III domain. Enzyme engineering will be soon investigated to identify the key residues for the catalytic reactions. PMID:26385478

  5. Role of lecithin-cholesterol acyltransferase in the metabolism of oxidized phospholipids in plasma: studies with platelet-activating factor-acetyl hydrolase-deficient plasma.

    PubMed

    Subramanian, V S; Goyal, J; Miwa, M; Sugatami, J; Akiyama, M; Liu, M; Subbaiah, P V

    1999-07-01

    To determine the relative importance of platelet-activating factor-acetylhydrolase (PAF-AH) and lecithin-cholesterol acyltransferase (LCAT) in the hydrolysis of oxidized phosphatidylcholines (OXPCs) to lyso-phosphatidylcholine (lyso-PC), we studied the formation and metabolism of OXPCs in the plasma of normal and PAF-AH-deficient subjects. Whereas the loss of PC following oxidation was similar in the deficient and normal plasmas, the formation of lyso-PC was significantly lower, and the accumulation of OXPC was higher in the deficient plasma. Isolated LDL from the PAF-AH-deficient subjects was more susceptible to oxidation, and stimulated adhesion molecule synthesis in endothelial cells, more than the normal LDL. Oxidation of 16:0-[1-14C]-18:2 PC, equilibrated with plasma PC, resulted in the accumulation of labeled short- and long-chain OXPCs, in addition to the labeled aqueous products. The formation of the aqueous products decreased by 80%, and the accumulation of short-chain OXPC increased by 110% in the deficient plasma, compared to the normal plasma, showing that PAF-AH is predominantly involved in the hydrolysis of the truncated OXPCs. Labeled sn-2-acyl group from the long-chain OXPC was not only hydrolyzed to free fatty acid, but was preferentially transferred to diacylglycerol, in both the normal and deficient plasmas. In contrast, the acyl group from unoxidized PC was transferred only to cholesterol, showing that the specificity of LCAT is altered by OXPC. It is concluded that, while PAF-AH carries out the hydrolysis of mainly truncated OXPCs, LCAT hydrolyzes and transesterifies the long-chain OXPCs. PMID:10395969

  6. Bacterial Expression and HTS Assessment of Soluble Epoxide Hydrolase Phosphatase.

    PubMed

    Klingler, Franca-Maria; Wolf, Markus; Wittmann, Sandra; Gribbon, Philip; Proschak, Ewgenij

    2016-08-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that possesses an epoxide hydrolase and lipid phosphatase activity (sEH-P) at two distinct catalytic domains. While the physiological role of the epoxide hydrolase domain is well understood, the consequences of the phosphatase activity remain unclear. Herein we describe the bacterial expression of the recombinant N-terminal domain of sEH-P and the development of a high-throughput screening protocol using a sensitive and commercially available substrate fluorescein diphosphate. The usability of the assay system was demonstrated and novel inhibitors of sEH-P were identified. PMID:27009944

  7. Cholesterol-Lowering Potentials of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism In Vitro and In Vivo

    PubMed Central

    Lin, Pei-Pei; Hsieh, You-Miin; Zhang, Zi-yi; Wu, Hui-Ching; Huang, Chun-Chih

    2014-01-01

    This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG) and apolipoprotein B (apo B) secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities of Pediococcus acidilactici NBHK002, Bifidobacterium adolescentis NBHK006, Lactobacillus rhamnosus NBHK007, and Lactobacillus acidophilus NBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease. PMID:25538960

  8. Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNF{alpha}-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

    SciTech Connect

    Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu; Potts, Jay D.; Tang, Dong-Qi; Li, Dong-Sheng; Cui, Taixing

    2010-01-01

    Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNF{alpha})-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNF{alpha}-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNF{alpha} hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.

  9. Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo.

    PubMed

    Tsai, Cheng-Chih; Lin, Pei-Pei; Hsieh, You-Miin; Zhang, Zi-yi; Wu, Hui-Ching; Huang, Chun-Chih

    2014-01-01

    This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG) and apolipoprotein B (apo B) secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities of Pediococcus acidilactici NBHK002, Bifidobacterium adolescentis NBHK006, Lactobacillus rhamnosus NBHK007, and Lactobacillus acidophilus NBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease. PMID:25538960

  10. Pseudo-enzymatic S-acylation of a myristoylated yes protein tyrosine kinase peptide in vitro may reflect non-enzymatic S-acylation in vivo.

    PubMed Central

    Bañó, M C; Jackson, C S; Magee, A I

    1998-01-01

    Covalent attachment of a variety of lipid groups to proteins is now recognized as a major group of post-translational modifications. S-acylation of proteins at cysteine residues is the only modification considered dynamic and thus has the potential for regulating protein function and/or localization. The activities that catalyse reversible S-acylation have not been well characterized and it is not clear whether both the acylation and the deacylation steps are regulated, since in principle it would be sufficient to control only one of them. Both apparently enzymatic and non-enzymatic S-acylation of proteins have previously been reported. Here we show that a synthetic myristoylated c-Yes protein tyrosine kinase undecapeptide undergoes spontaneous S-acylation in vitro when using a long chain acyl-CoA as acyl donor in the absence of any protein. The S-acylation was dependent on myristoylation of the substrate, the length of the incubation period, temperature and substrate concentration. When COS cell fractions were added to the S-acylation reaction no additional peptide:S-acyltransferase activity was detected. These results are consistent with the possibility that membrane-associated proteins may undergo S-acylation in vivo by non-enzymatic transfer of acyl groups from acyl-CoA. In this case, the S-acylation-deacylation process could be controlled by a regulated depalmitoylation mechanism. PMID:9480882

  11. Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles

    PubMed Central

    Scott, Alison J.; Ford, Lauren A.; Pei, Zhengtong; Watkins, Paul A.; Ernst, Robert K.; Belov, George A.

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be

  12. New players in the fatty acyl ethanolamide metabolism.

    PubMed

    Rahman, Iffat Ara Sonia; Tsuboi, Kazuhito; Uyama, Toru; Ueda, Natsuo

    2014-08-01

    Fatty acyl ethanolamides represent a class of endogenous bioactive lipid molecules and are generally referred to as N-acylethanolamines (NAEs). NAEs include palmitoylethanolamide (anti-inflammatory and analgesic substance), oleoylethanolamide (anorexic substance), and anandamide (endocannabinoid). The endogenous levels of NAEs are mainly regulated by enzymes responsible for their biosynthesis and degradation. In mammalian tissues, the major biosynthetic pathway starts from glycerophospholipids and is composed of two enzyme reactions. The first step is N-acylation of ethanolamine phospholipids catalyzed by Ca(2+)-dependent N-acyltransferase and the second step is the release of NAEs from N-acylated ethanolamine phospholipids by N-acylphosphatidylethanolamine (NAPE)-hydrolyzing phospholipase D (NAPE-PLD). As for the degradation of NAEs, fatty acid amide hydrolase plays the central role. However, recent studies strongly suggest the involvement of other enzymes in the NAE metabolism. These enzymes include members of the HRAS-like suppressor family (also called phospholipase A/acyltransferase family), which were originally discovered as tumor suppressors but can function as Ca(2+)-independent NAPE-forming N-acyltransferases; multiple enzymes involved in the NAPE-PLD-independent multi-step pathways to generate NAE from NAPE, which came to light by the analysis of NAPE-PLD-deficient mice; and a lysosomal NAE-hydrolyzing acid amidase as a second NAE hydrolase. These newly recognized enzymes may become the targets for the development of new therapeutic drugs. Here, we focus on recent enzymological findings in this area. PMID:24747663

  13. X-ray Crystallographic Analysis of α-Ketoheterocycle Inhibitors Bound to a Humanized Variant of Fatty Acid Amide Hydrolase

    PubMed Central

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine; Kimball, F. Scott; Cravatt, Benjamin F.; Stevens, Raymond C.; Boger, Dale L.

    2009-01-01

    Three cocrystal X-ray structures of the α-ketoheterocycle inhibitors 3–5 bound to a humanized variant of fatty acid amide hydrolase (FAAH) are disclosed and comparatively discussed alongside those of 1 (OL-135) and its isomer 2. These five X-ray structures systematically probe each of the three active site regions key to substrate or inhibitor binding: (1) the conformationally mobile acyl chain-binding pocket and membrane access channel responsible for fatty acid amide substrate and inhibitor acyl chain binding, (2) the atypical active site catalytic residues and surrounding oxyanion hole that covalently binds the core of the α-ketoheterocycle inhibitors captured as deprotonated hemiketals mimicking the tetrahedral intermediate of the enzyme catalyzed reaction, and (3) the cytosolic port and its uniquely important imbedded ordered water molecules and a newly identified anion binding site. The detailed analysis of their key active site interactions and their implications on the interpretation of the available structure–activity relationships are discussed providing important insights for future design. PMID:19924997

  14. X-ray Crystallographic Analysis of [alpha]-Ketoheterocycle Inhibitors Bound to a Humanized Variant of Fatty Acid Amide Hydrolase

    SciTech Connect

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine; Kimball, F.Scott; Cravatt, Benjamin F.; Stevens, Raymond C.; Boger, Dale L.

    2010-11-03

    Three cocrystal X-ray structures of the {alpha}-ketoheterocycle inhibitors 3-5 bound to a humanized variant of fatty acid amide hydrolase (FAAH) are disclosed and comparatively discussed alongside those of 1 (OL-135) and its isomer 2. These five X-ray structures systematically probe each of the three active site regions key to substrate or inhibitor binding: (1) the conformationally mobile acyl chain-binding pocket and membrane access channel responsible for fatty acid amide substrate and inhibitor acyl chain binding, (2) the atypical active site catalytic residues and surrounding oxyanion hole that covalently binds the core of the {alpha}-ketoheterocycle inhibitors captured as deprotonated hemiketals mimicking the tetrahedral intermediate of the enzyme-catalyzed reaction, and (3) the cytosolic port and its uniquely important imbedded ordered water molecules and a newly identified anion binding site. The detailed analysis of their key active site interactions and their implications on the interpretation of the available structure-activity relationships are discussed providing important insights for future design.

  15. [Activation of the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones in the presence of nitrofurans and NO generators].

    PubMed

    Zaĭtseva, Iu V; Granik, V G; Belik, A S; Koksharova, O A; Khmel', I A

    2010-01-01

    Nitrofurans (nitrofurazone, nitrofurantoin, furazidin, nifuroxazide), and nitric oxide generators (sodium nitroprusside and isosorbide mononitrate) in subinhibitory concentrations were shown to significantly increase the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones, signaling molecules of Quorum Sensing (QS) regulatory systems. The highest activation of bioluminescence (up to 250-400 fold) was observed in the presence of nitrofurazone on E. coli DH5alpha biosensors containing lux-reporter plasmids pSB401 or pSB536. However, this activation was not specifically associated with the functioning of QS systems. We suggest that the effect observed results from a direct action of nitrofurans and NO donors on the process of bioluminescence. The data indicate the necessity of using the biosensors that make it possible to detect specific effects of substances tested on QS regulation. PMID:20540359

  16. Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172

    PubMed Central

    Fegley, D.; Kathuria, S.; Mercier, R.; Li, C.; Goutopoulos, A.; Makriyannis, A.; Piomelli, D.

    2004-01-01

    The endogenous cannabinoid anandamide is removed from the synaptic space by a high-affinity transport system present in neurons and astrocytes, which is inhibited by N-(4-hydroxyphenyl)-arachidonamide (AM404). After internalization, anandamide is hydrolyzed by fatty-acid amide hydrolase (FAAH), an intracellular membrane-bound enzyme that also cleaves AM404. Based on kinetic evidence, it has recently been suggested that anandamide internalization may be mediated by passive diffusion driven by FAAH activity. To test this possibility, in the present study, we have investigated anandamide internalization in wild-type and FAAH-deficient (FAAH–/–) mice. Cortical neurons from either mouse strain internalized [3H]anandamide through a similar mechanism, i.e., via a rapid temperature-sensitive and saturable process, which was blocked by AM404. Moreover, systemic administration of AM404 to either wild-type or FAAH–/– mice enhanced the hypothermic effects of exogenous anandamide, a response that was prevented by the CB1 cannabinoid antagonist rimonabant (SR141716A). The results indicate that anandamide internalization in mouse brain neurons is independent of FAAH activity. In further support of this conclusion, the compound N-(5Z, 8Z, 11Z, 14Z eicosatetraenyl)-4-hydroxybenzamide (AM1172) blocked [3H]anandamide internalization in rodent cortical neurons and human astrocytoma cells without acting as a FAAH substrate or inhibitor. AM1172 may serve as a prototype for novel anandamide transport inhibitors with increased metabolic stability. PMID:15138300

  17. N-Benzylbenzamides: A Novel Merged Scaffold for Orally Available Dual Soluble Epoxide Hydrolase/Peroxisome Proliferator-Activated Receptor γ Modulators.

    PubMed

    Blöcher, René; Lamers, Christina; Wittmann, Sandra K; Merk, Daniel; Hartmann, Markus; Weizel, Lilia; Diehl, Olaf; Brüggerhoff, Astrid; Boß, Marcel; Kaiser, Astrid; Schader, Tim; Göbel, Tamara; Grundmann, Manuel; Angioni, Carlo; Heering, Jan; Geisslinger, Gerd; Wurglics, Mario; Kostenis, Evi; Brüne, Bernhard; Steinhilber, Dieter; Schubert-Zsilavecz, Manfred; Kahnt, Astrid S; Proschak, Ewgenij

    2016-01-14

    Metabolic syndrome (MetS) is a multifactorial disease cluster that consists of dyslipidemia, cardiovascular disease, type 2 diabetes mellitus, and obesity. MetS patients are strongly exposed to polypharmacy; however, the number of pharmacological compounds required for MetS treatment can be reduced by the application of multitarget compounds. This study describes the design of dual-target ligands that target soluble epoxide hydrolase (sEH) and the peroxisome proliferator-activated receptor type γ (PPARγ). Simultaneous modulation of sEH and PPARγ can improve diabetic conditions and hypertension at once. N-Benzylbenzamide derivatives were determined to fit a merged sEH/PPARγ pharmacophore, and structure-activity relationship studies were performed on both targets, resulting in a submicromolar (sEH IC50 = 0.3 μM/PPARγ EC50 = 0.3 μM) modulator 14c. In vitro and in vivo evaluations revealed good ADME properties qualifying 14c as a pharmacological tool compound for long-term animal models of MetS. PMID:26595749

  18. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes.

    PubMed

    Stout, Jake M; Boubakir, Zakia; Ambrose, Stephen J; Purves, Randy W; Page, Jonathan E

    2012-08-01

    The psychoactive and analgesic cannabinoids (e.g. Δ(9) -tetrahydrocannabinol (THC)) in Cannabis sativa are formed from the short-chain fatty acyl-coenzyme A (CoA) precursor hexanoyl-CoA. Cannabinoids are synthesized in glandular trichomes present mainly on female flowers. We quantified hexanoyl-CoA using LC-MS/MS and found levels of 15.5 pmol g(-1) fresh weight in female hemp flowers with lower amounts in leaves, stems and roots. This pattern parallels the accumulation of the end-product cannabinoid, cannabidiolic acid (CBDA). To search for the acyl-activating enzyme (AAE) that synthesizes hexanoyl-CoA from hexanoate, we analyzed the transcriptome of isolated glandular trichomes. We identified 11 unigenes that encoded putative AAEs including CsAAE1, which shows high transcript abundance in glandular trichomes. In vitro assays showed that recombinant CsAAE1 activates hexanoate and other short- and medium-chained fatty acids. This activity and the trichome-specific expression of CsAAE1 suggest that it is the hexanoyl-CoA synthetase that supplies the cannabinoid pathway. CsAAE3 encodes a peroxisomal enzyme that activates a variety of fatty acid substrates including hexanoate. Although phylogenetic analysis showed that CsAAE1 groups with peroxisomal AAEs, it lacked a peroxisome targeting sequence 1 (PTS1) and localized to the cytoplasm. We suggest that CsAAE1 may have been recruited to the cannabinoid pathway through the loss of its PTS1, thereby redirecting it to the cytoplasm. To probe the origin of hexanoate, we analyzed the trichome expressed sequence tag (EST) dataset for enzymes of fatty acid metabolism. The high abundance of transcripts that encode desaturases and a lipoxygenase suggests that hexanoate may be formed through a pathway that involves the oxygenation and breakdown of unsaturated fatty acids. PMID:22353623

  19. [Effect of anti-arteriosclerosis diet, containing soya protein isolate and omega-3 polyunsaturated fatty acids on the activity of mononuclear and platelet lysosomal hydrolases in patients with hypertension and ischemic heart disease].

    PubMed

    Samsonov, M A; Pogozhaeva, A V; Vasilév, A V; Bogdanova, S N; Pokrovskaia, G R; Varsanovich, E A; Orlova, L A

    1993-01-01

    In response to antiatherosclerosis dietotherapy containing 20 g of ichthyenic oil, coronary and hypertensive subjects showed lowered serum levels of cholesterol, triglycerides and atherogenic index, elevated HDLP cholesterol and corrected immunochemical shifts. SPI-containing diet resulted in changes of CIC IgM levels only. Shifts in the activity of mononuclear and platelet lysosomal hydrolases which occurred in the above patients due to relevant diets reflect higher sensitivity of this parameter in assessment of the dietotherapy effectiveness. PMID:7975402

  20. The Wood Rot Ascomycete Xylaria polymorpha Produces a Novel GH78 Glycoside Hydrolase That Exhibits α-l-Rhamnosidase and Feruloyl Esterase Activities and Releases Hydroxycinnamic Acids from Lignocelluloses

    PubMed Central

    Nghi, Do Huu; Bittner, Britta; Kellner, Harald; Jehmlich, Nico; Ullrich, René; Pecyna, Marek J.; Nousiainen, Paula; Sipilä, Jussi; Huong, Le Mai; Hofrichter, Martin

    2012-01-01

    Soft rot (type II) fungi belonging to the family Xylariaceae are known to substantially degrade hardwood by means of their poorly understood lignocellulolytic system, which comprises various hydrolases, including feruloyl esterases and laccase. In the present study, several members of the Xylariaceae were found to exhibit high feruloyl esterase activity during growth on lignocellulosic materials such as wheat straw (up to 1,675 mU g−1) or beech wood (up to 80 mU g−1). Following the ester-cleaving activity toward methyl ferulate, a hydrolase of Xylaria polymorpha was produced in solid-state culture on wheat straw and purified by different steps of anion-exchange and size-exclusion chromatography to apparent homogeneity (specific activity, 2.2 U mg−1). The peptide sequence of the purified protein deduced from the gene sequence and verified by de novo peptide sequencing shows high similarity to putative α-l-rhamnosidase sequences belonging to the glycoside hydrolase family 78 (GH78; classified under EC 3.2.1.40). The purified enzyme (98 kDa by SDS-PAGE, 103 kDa by size-exclusion chromatography; pI 3.7) converted diverse glycosides (e.g., α-l-rhamnopyranoside and α-l-arabinofuranoside) but also natural and synthetic esters (e.g., chlorogenic acid, hydroxycinnamic acid glycoside esters, veratric acid esters, or p-nitrophenyl acetate) and released free hydroxycinnamic acids (ferulic and coumaric acid) from arabinoxylan and milled wheat straw. These catalytic properties strongly suggest that X. polymorpha GH78 is a multifunctional enzyme. It is the first fungal enzyme that combines glycosyl hydrolase with esterase activities and may help this soft rot fungus to degrade lignocelluloses. PMID:22544251

  1. The Immunoreactive Exo-1,3-β-Glucanase from the Pathogenic Oomycete Pythium insidiosum Is Temperature Regulated and Exhibits Glycoside Hydrolase Activity

    PubMed Central

    Keeratijarut, Angsana; Lohnoo, Tassanee; Rujirawat, Thidarat; Yingyong, Wanta; Kalambaheti, Thareerat; Miller, Shannon; Phuntumart, Vipaporn; Krajaejun, Theerapong

    2015-01-01

    The oomycete organism, Pythium insidiosum, is the etiologic agent of the life-threatening infectious disease called “pythiosis”. Diagnosis and treatment of pythiosis is difficult and challenging. Novel methods for early diagnosis and effective treatment are urgently needed. Recently, we reported a 74-kDa immunodominant protein of P. insidiosum, which could be a diagnostic target, vaccine candidate, and virulence factor. The protein was identified as a putative exo-1,3-ß-glucanase (Exo1). This study reports on genetic, immunological, and biochemical characteristics of Exo1. The full-length exo1 coding sequence (2,229 bases) was cloned. Phylogenetic analysis showed that exo1 is grouped with glucanase-encoding genes of other oomycetes, and is far different from glucanase-encoding genes of fungi. exo1 was up-regulated upon exposure to body temperature, and its gene product is predicted to contain BglC and X8 domains, which are involved in carbohydrate transport, binding, and metabolism. Based on its sequence, Exo1 belongs to the Glycoside Hydrolase family 5 (GH5). Exo1, expressed in E. coli, exhibited ß-glucanase and cellulase activities. Exo1 is a major intracellular immunoreactive protein that can trigger host immune responses during infection. Since GH5 enzyme-encoding genes are not present in human genomes, Exo1 could be a useful target for drug and vaccine development against this pathogen. PMID:26263509

  2. The Immunoreactive Exo-1,3-β-Glucanase from the Pathogenic Oomycete Pythium insidiosum Is Temperature Regulated and Exhibits Glycoside Hydrolase Activity.

    PubMed

    Keeratijarut, Angsana; Lohnoo, Tassanee; Rujirawat, Thidarat; Yingyong, Wanta; Kalambaheti, Thareerat; Miller, Shannon; Phuntumart, Vipaporn; Krajaejun, Theerapong

    2015-01-01

    The oomycete organism, Pythium insidiosum, is the etiologic agent of the life-threatening infectious disease called "pythiosis". Diagnosis and treatment of pythiosis is difficult and challenging. Novel methods for early diagnosis and effective treatment are urgently needed. Recently, we reported a 74-kDa immunodominant protein of P. insidiosum, which could be a diagnostic target, vaccine candidate, and virulence factor. The protein was identified as a putative exo-1,3-ß-glucanase (Exo1). This study reports on genetic, immunological, and biochemical characteristics of Exo1. The full-length exo1 coding sequence (2,229 bases) was cloned. Phylogenetic analysis showed that exo1 is grouped with glucanase-encoding genes of other oomycetes, and is far different from glucanase-encoding genes of fungi. exo1 was up-regulated upon exposure to body temperature, and its gene product is predicted to contain BglC and X8 domains, which are involved in carbohydrate transport, binding, and metabolism. Based on its sequence, Exo1 belongs to the Glycoside Hydrolase family 5 (GH5). Exo1, expressed in E. coli, exhibited ß-glucanase and cellulase activities. Exo1 is a major intracellular immunoreactive protein that can trigger host immune responses during infection. Since GH5 enzyme-encoding genes are not present in human genomes, Exo1 could be a useful target for drug and vaccine development against this pathogen. PMID:26263509

  3. Potent Natural Soluble Epoxide Hydrolase Inhibitors from Pentadiplandra brazzeana Baillon: Synthesis, Quantification, and Measurement of Biological Activities In Vitro and In Vivo

    PubMed Central

    Kitamura, Seiya; Morisseau, Christophe; Inceoglu, Bora; Kamita, Shizuo G.; De Nicola, Gina R.; Nyegue, Maximilienne; Hammock, Bruce D.

    2015-01-01

    We describe here three urea-based soluble epoxide hydrolase (sEH) inhibitors from the root of the plant Pentadiplandra brazzeana. The concentration of these ureas in the root was quantified by LC-MS/MS, showing that 1, 3-bis (4-methoxybenzyl) urea (MMU) is the most abundant (42.3 μg/g dry root weight). All of the ureas were chemically synthesized, and their inhibitory activity toward recombinant human and recombinant rat sEH was measured. The most potent compound, MMU, showed an IC50 of 92 nM via fluorescent assay and a Ki of 54 nM via radioactivity-based assay on human sEH. MMU effectively reduced inflammatory pain in a rat nociceptive pain assay. These compounds are among the most potent sEH inhibitors derived from natural sources. Moreover, inhibition of sEH by these compounds may mechanistically explain some of the therapeutic effects of P. brazzeana. PMID:25659109

  4. Characterization of a Glycoside Hydrolase Family 27 α-Galactosidase from Pontibacter Reveals Its Novel Salt-Protease Tolerance and Transglycosylation Activity.

    PubMed

    Zhou, Junpei; Liu, Yu; Lu, Qian; Zhang, Rui; Wu, Qian; Li, Chunyan; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Han, Nanyu; Huang, Zunxi

    2016-03-23

    α-Galactosidases are of great interest in various applications. A glycoside hydrolase family 27 α-galactosidase was cloned from Pontibacter sp. harbored in a saline soil and expressed in Escherichia coli. The purified recombinant enzyme (rAgaAHJ8) was little or not affected by 3.5-30.0% (w/v) NaCl, 10.0-100.0 mM Pb(CH3COO)2, 10.0-60.0 mM ZnSO4, or 8.3-100.0 mg mL(-1) trypsin and by most metal ions and chemical reagents at 1.0 and 10.0 mM concentrations. The degree of synergy on enzymatic degradation of locust bean gum and guar gum by an endomannanase and rAgaAHJ8 was 1.22-1.54. In the presence of trypsin, the amount of reducing sugars released from soybean milk treated by rAgaAHJ8 was approximately 3.8-fold compared with that treated by a commercial α-galactosidase. rAgaAHJ8 showed transglycosylation activity when using sucrose, raffinose, and 3-methyl-1-butanol as the acceptors. Furthermore, potential factors for salt adaptation of the enzyme were presumed. PMID:26948050

  5. N-Acyl-Homoserine Lactone Confers Resistance toward Biotrophic and Hemibiotrophic Pathogens via Altered Activation of AtMPK61[C][W

    PubMed Central

    Schikora, Adam; Schenk, Sebastian T.; Stein, Elke; Molitor, Alexandra; Zuccaro, Alga; Kogel, Karl-Heinz

    2011-01-01

    Pathogenic and symbiotic bacteria rely on quorum sensing to coordinate the collective behavior during the interactions with their eukaryotic hosts. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as signals in such communication. Here we show that plants have evolved means to perceive AHLs and that the length of acyl moiety and the functional group at the γ position specify the plant’s response. Root treatment with the N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) reinforced the systemic resistance to the obligate biotrophic fungi Golovinomyces orontii in Arabidopsis (Arabidopsis thaliana) and Blumeria graminis f. sp. hordei in barley (Hordeum vulgare) plants. In addition, oxo-C14-HSL-treated Arabidopsis plants were more resistant toward the hemibiotrophic bacterial pathogen Pseudomonas syringae pv tomato DC3000. Oxo-C14-HSL promoted a stronger activation of mitogen-activated protein kinases AtMPK3 and AtMPK6 when challenged with flg22, followed by a higher expression of the defense-related transcription factors WRKY22 and WRKY29, as well as the PATHOGENESIS-RELATED1 gene. In contrast to wild-type Arabidopsis and mpk3 mutant, the mpk6 mutant is compromised in the AHL effect, suggesting that AtMPK6 is required for AHL-induced resistance. Results of this study show that AHLs commonly produced in the rhizosphere are crucial factors in plant pathology and could be an agronomic issue whose full impact has to be elucidated in future analyses. PMID:21940998

  6. Modulation of cellulase activity by charged lipid bilayers with different acyl chain properties for efficient hydrolysis of ionic liquid-pretreated cellulose.

    PubMed

    Mihono, Kai; Ohtsu, Takeshi; Ohtani, Mai; Yoshimoto, Makoto; Kamimura, Akio

    2016-10-01

    The stability of cellulase activity in the presence of ionic liquids (ILs) is critical for the enzymatic hydrolysis of insoluble cellulose pretreated with ILs. In this work, cellulase was incorporated in the liposomes composed of negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and zwitterionic phosphatidylcholines (PCs) with different length and degree of unsaturation of the acyl chains. The liposomal cellulase-catalyzed reaction was performed at 45°C in the acetate buffer solution (pH 4.8) with 2.0g/L CC31 as cellulosic substrate. The crystallinity of CC31 was reduced by treating with 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) at 120°C for 30min. The liposomal cellulase continuously catalyzed hydrolysis of the pretreated CC31 for 48h producing glucose in the presence of 15wt% [Bmim]Cl. The charged lipid membranes were interactive with [Bmim](+), as elucidated by the [Bmim]Cl-induced alterations in fluorescence polarization of the membrane-embedded 1,6-diphenyl-1,3,5-hexatriene (DPH) molecules. The charged membranes offered the microenvironment where inhibitory effects of [Bmim]Cl on the cellulase activity was relieved. The maximum glucose productivity GP of 10.8 mmol-glucose/(hmol-lipid) was obtained at the reaction time of 48h with the cellulase incorporated in the liposomes ([lipid]=5.0mM) composed of 50mol% POPG and 1,2-dilauroyl-sn-glycero-3-phosohocholine (DLPC) with relatively short and saturated acyl chains. PMID:27318965

  7. A Burkholderia thailandensis Acyl-Homoserine Lactone-Independent Orphan LuxR Homolog That Activates Production of the Cytotoxin Malleilactone

    PubMed Central

    Truong, Thao T.; Seyedsayamdost, Mohammad; Greenberg, E. Peter

    2015-01-01

    ABSTRACT Burkholderia thailandensis has three acyl-homoserine lactone (AHL) LuxR-LuxI quorum-sensing circuits and two orphan LuxR homologs. Orphans are LuxR-type transcription factors that do not have cognate LuxI-type AHL synthases. One of the orphans, MalR, is genetically linked to the mal gene cluster, which encodes enzymes required for production of the cytotoxic polyketide malleilactone. Under normal laboratory conditions the mal gene cluster is silent; however, antibiotics like trimethoprim induce mal transcription. We show that trimethoprim-dependent induction of the mal genes requires MalR. MalR has all of the conserved amino acid residues characteristic of AHL-responsive LuxR homologs, but in B. thailandensis, MalR activation of malleilactone synthesis genes is not responsive to AHLs. MalR can activate transcription from the mal promoter in E. coli without addition of AHLs or trimethoprim. Expression of malR in B. thailandensis is induced by trimethoprim. Our data indicate that MalR binds to a lux box-like element in the mal promoter and activates transcription of the mal genes in an AHL-independent manner. Antibiotics like trimethoprim appear to activate mal gene expression indirectly by somehow activating malR expression. MalR activation of the mal genes represents an example of a LuxR homolog that is not a receptor for an AHL quorum-sensing signal. Our evidence is consistent with the idea that mal gene activation depends solely on sufficient transcription of the malR gene. IMPORTANCE LuxR proteins are transcription factors that are typically activated by acyl-homoserine lactone (AHL) signals. We demonstrate that a conserved LuxR family protein, MalR, activates genes independently of AHLs. MalR is required for transcription of genes coding for synthesis of the cytotoxic polyketide malleilactone. These genes are not expressed when cells are grown under normal laboratory conditions. In laboratory culture, MalR induction of malleilactone requires certain

  8. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    SciTech Connect

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  9. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    ERIC Educational Resources Information Center

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  10. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindqvist, Y.; Schneider, G.

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 2 figs.

  11. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.

    1998-01-06

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.

  12. Acyl-lipid metabolism.

    PubMed

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X; Arondel, Vincent; Bates, Philip D; Baud, Sébastien; Bird, David; Debono, Allan; Durrett, Timothy P; Franke, Rochus B; Graham, Ian A; Katayama, Kenta; Kelly, Amélie A; Larson, Tony; Markham, Jonathan E; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  13. Acyl-lipid metabolism.

    PubMed

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X; Arondel, Vincent; Bates, Philip D; Baud, Sébastien; Bird, David; Debono, Allan; Durrett, Timothy P; Franke, Rochus B; Graham, Ian A; Katayama, Kenta; Kelly, Amélie A; Larson, Tony; Markham, Jonathan E; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  14. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  15. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  16. Antidepressant-like activity and cardioprotective effects of fatty acid amide hydrolase inhibitor URB694 in socially stressed Wistar Kyoto rats.

    PubMed

    Carnevali, Luca; Vacondio, Federica; Rossi, Stefano; Callegari, Sergio; Macchi, Emilio; Spadoni, Gilberto; Bedini, Annalida; Rivara, Silvia; Mor, Marco; Sgoifo, Andrea

    2015-11-01

    In humans, depression is often triggered by prolonged exposure to psychosocial stressors and is often associated with cardiovascular comorbidity. Mounting evidence suggests a role for endocannabinoid signaling in the regulation of both emotional behavior and cardiovascular function. Here, we examined cardiac activity in a rodent model of social stress-induced depression and investigated whether pharmacological inhibition of the enzyme fatty acid amide hydrolase (FAAH), which terminates signaling of the endocannabinoid anandamide, exerts antidepressant-like and cardioprotective effects. Male Wistar Kyoto rats were exposed to five weeks of repeated social stress or control procedure. Starting from the third week, they received daily administration of the selective FAAH inhibitor URB694 (0.1 mg/kg, i.p.) or vehicle. Cardiac electrical activity was recorded by radiotelemetry. Repeated social stress triggered biological and behavioral changes that mirror symptoms of human depression, such as (i) reductions in body weight gain and sucrose solution preference, (ii) hyperactivity of the hypothalamic-pituitary-adrenocortical axis, and (iii) increased immobility in the forced swim test. Moreover, stressed rats showed (i) alterations in heart rate daily rhythm and cardiac autonomic neural regulation, (ii) a larger incidence of spontaneous arrhythmias, and (iii) signs of cardiac hypertrophy. Daily treatment with URB694 (i) increased central and peripheral anandamide levels, (ii) corrected stress-induced alterations of biological and behavioral parameters, and (iii) protected the heart against the adverse effects of social stress. Repeated social stress in Wistar Kyoto rats reproduces aspects of human depression/cardiovascular comorbidity. Pharmacological enhancement of anandamide signaling might be a promising strategy for the treatment of these comorbid conditions. PMID:26391492

  17. New N-acyl-D-glucosamine 2-epimerases from cyanobacteria with high activity in the absence of ATP and low inhibition by pyruvate.

    PubMed

    Klermund, Ludwig; Groher, Anna; Castiglione, Kathrin

    2013-11-01

    N-Acetylneuraminic acid, an important component of glycoconjugates with various biological functions, can be produced from N-acetyl-D-glucosamine (GlcNAc) and pyruvate using a one-pot, two-enzyme system consisting of N-acyl-D-glucosamine 2-epimerase (AGE) and N-acetylneuraminate lyase (NAL). In this system, the epimerase catalyzes the conversion of GlcNAc into N-acetyl-D-mannosamine (ManNAc). However, all currently known AGEs have one or more disadvantages, such as a low specific activity, substantial inhibition by pyruvate and strong dependence on allosteric activation by ATP. Therefore, four novel AGEs from the cyanobacteria Acaryochloris marina MBIC 11017, Anabaena variabilis ATCC 29413, Nostoc sp. PCC 7120, and Nostoc punctiforme PCC 73102 were characterized. Among these enzymes, the AGE from the Anabaena strain showed the most beneficial characteristics. It had a high specific activity of 117±2 U mg(-1) at 37 °C (pH 7.5) and an up to 10-fold higher inhibition constant for pyruvate as compared to other AGEs indicating a much weaker inhibitory effect. The investigation of the influence of ATP revealed that the nucleotide has a more pronounced effect on the Km for the substrate than on the enzyme activity. At high substrate concentrations (≥200 mM) and without ATP, the enzyme reached up to 32% of the activity measured with ATP in excess. PMID:23850800

  18. Human platelets stimulated by thrombin produce platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when the degrading enzyme acetyl hydrolase is blocked.

    PubMed Central

    Touqui, L; Hatmi, M; Vargaftig, B B

    1985-01-01

    It has been shown [Touqui, Jacquemin & Vargaftig (1983) Thromb. Haemostasis 50, 163; Touqui, Jacquemin & Vargaftig (1983) Biochem. Biophys. Res. Commun. 110, 890-893; Alam, Smith & Melvin (1983) Lipids 18, 534-538; Pieroni & Hanahan (1983) Arch. Biochem. Biophys. 224, 485-493] that rabbit platelets inactivate exogenous PAF (platelet-activating factor, PAF-acether) by a deacetylation-reacylation mechanism. The deacetylation step is catalysed by an acetyl hydrolase sensitive to the serine-hydrolase inhibitor PMSF (phenylmethanesulphonyl fluoride) [Touqui, Jacquemin, Dumarey & Vargaftig (1985) Biochim. Biophys. Acta 833, 111-118]. We report here that human platelets can produce PAF on thrombin stimulation. This production is marginal and transient, reaching a maximum at 10 min and decreasing thereafter. In contrast, 10-12 times more PAF is produced when platelets are treated with PMSF and stimulated with thrombin. Under these conditions, the maximum formation is observed at 30 min and no decline occurs for up to 60 min after stimulation. In addition, these platelets (treated with PMSF and stimulated with thrombin) incorporate exogenous labelled acetate in the 2-position of PAF, probably by an acetyltransferase-dependent mechanism. Production of PAF by human platelets during physiological stimulation can be demonstrated when PAF degradation is suppressed by the acetyl-hydrolase inhibitor PMSF. PMID:4052028

  19. The pharmacological landscape and therapeutic potential of serine hydrolases.

    PubMed

    Bachovchin, Daniel A; Cravatt, Benjamin F

    2012-01-01

    Serine hydrolases perform crucial roles in many biological processes, and several of these enzymes are targets of approved drugs for indications such as type 2 diabetes, Alzheimer's disease and infectious diseases. Despite this, most of the human serine hydrolases (of which there are more than 200) remain poorly characterized with respect to their physiological substrates and functions, and the vast majority lack selective, in vivo-active inhibitors. Here, we review the current state of pharmacology for mammalian serine hydrolases, including marketed drugs, compounds that are under clinical investigation and selective inhibitors emerging from academic probe development efforts. We also highlight recent methodological advances that have accelerated the rate of inhibitor discovery and optimization for serine hydrolases, which we anticipate will aid in their biological characterization and, in some cases, therapeutic validation. PMID:22212679

  20. The Pharmacological Landscape and Therapeutic Potential of Serine Hydrolases

    PubMed Central

    Bachovchin, Daniel A.; Cravatt, Benjamin F.

    2013-01-01

    Serine hydrolases play critical roles in many biological processes, and several are targets of approved drugs for indications such as type 2 diabetes, Alzheimer’s disease, and infectious disease. Despite this, most of the 200+ human serine hydrolases remain poorly characterized with respect to their physiological substrates and functions, and the vast majority lack selective, in vivo-active inhibitors. Here, we review the current state of pharmacology for mammalian serine hydrolases, including marketed drugs, compounds under clinical investigation, and selective inhibitors emerging from academic probe development efforts. We also highlight recent methodological advances that have accelerated the rate of inhibitor discovery and optimization for serine hydrolases, which we anticipate will aid in their biological characterization and, in some cases, therapeutic validation. PMID:22212679

  1. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase.

    PubMed

    Sharma, Arvind; Yogavel, Manickam; Sharma, Amit

    2016-01-01

    Malaria symptoms are driven by periodic multiplication cycles of Plasmodium parasites in human red blood corpuscles (RBCs). Malaria infection still accounts for ~600,000 annual deaths, and hence discovery of both new drug targets and drugs remains vital. In the present study, we have investigated the malaria parasite enzyme diadenosine tetraphosphate (Ap4A) hydrolase that regulates levels of signalling molecules like Ap4A by hydrolyzing them to ATP and AMP. We have tracked the spatial distribution of parasitic Ap4A hydrolase in infected RBCs, and reveal its unusual localization on the infected RBC membrane in subpopulation of infected cells. Interestingly, enzyme activity assays reveal an interaction between Ap4A hydrolase and the parasite growth inhibitor suramin. We also present a high resolution crystal structure of Ap4A hydrolase in apo- and sulphate- bound state, where the sulphate resides in the enzyme active site by mimicking the phosphate of substrates like Ap4A. The unexpected infected erythrocyte localization of the parasitic Ap4A hydrolase hints at a possible role of this enzyme in purinerigic signaling. In addition, atomic structure of Ap4A hydrolase provides insights for selective drug targeting. PMID:26829485

  2. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase

    PubMed Central

    Sharma, Arvind; Yogavel, Manickam; Sharma, Amit

    2016-01-01

    Malaria symptoms are driven by periodic multiplication cycles of Plasmodium parasites in human red blood corpuscles (RBCs). Malaria infection still accounts for ~600,000 annual deaths, and hence discovery of both new drug targets and drugs remains vital. In the present study, we have investigated the malaria parasite enzyme diadenosine tetraphosphate (Ap4A) hydrolase that regulates levels of signalling molecules like Ap4A by hydrolyzing them to ATP and AMP. We have tracked the spatial distribution of parasitic Ap4A hydrolase in infected RBCs, and reveal its unusual localization on the infected RBC membrane in subpopulation of infected cells. Interestingly, enzyme activity assays reveal an interaction between Ap4A hydrolase and the parasite growth inhibitor suramin. We also present a high resolution crystal structure of Ap4A hydrolase in apo- and sulphate- bound state, where the sulphate resides in the enzyme active site by mimicking the phosphate of substrates like Ap4A. The unexpected infected erythrocyte localization of the parasitic Ap4A hydrolase hints at a possible role of this enzyme in purinerigic signaling. In addition, atomic structure of Ap4A hydrolase provides insights for selective drug targeting. PMID:26829485

  3. Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of staphylococcus aureus bacteriophage vB_SauS-phiIPLA88

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 (phiIPLA88) contains a virion-associated muralytic enzyme (HydH5) encoded by orf58, which is located in the morphogenetic module. Comparative bioinformatic analysis revealed that HydH5 significantly resembled other peptidoglycan hydrolases encode...

  4. Long-Term Reduction of Cocaine Self-Administration in Rats Treated with Adenoviral Vector-Delivered Cocaine Hydrolase: Evidence for Enzymatic Activity

    PubMed Central

    Zlebnik, Natalie E; Brimijoin, Stephen; Gao, Yang; Saykao, Amy T; Parks, Robin J; Carroll, Marilyn E

    2014-01-01

    A new pharmacokinetic approach treating cocaine addiction involves rapidly metabolizing cocaine before it reaches brain reward centers using mutated human butyrylcholinesterase (BChE) or cocaine hydrolase (CocH). Recent work has shown that helper-dependent adenoviral (hdAD) vector-mediated plasma CocH reduced the locomotor-activating effects of cocaine and prevented reinstatement of cocaine-seeking behavior up to 6 months in rats. The present study investigated whether hdAD-CocH could decrease ongoing intravenous cocaine (0.4 mg/kg) self-administration. The hdAD-CocH vector was injected into self-administering rats, and after accumulation of plasma CocH, there was a dramatic reduction in cocaine infusions earned under a fixed ratio 1 schedule of reinforcement that lasted for the length of the study (>2 months). Pretreatment with the selective BChE and CocH inhibitor iso-OMPA (1.5 mg/kg) restored cocaine intake; therefore, the decline in self-administration was likely due to rapid CocH-mediated cocaine metabolism. Direct measurements of cocaine levels in plasma and brain samples taken after the conclusion of behavioral studies provided strong support for this conclusion. Further, rats injected with hdAD-CocH did not experience a deficit in operant responding for drug reinforcement and self-administered methamphetamine (0.05 mg/kg) at control levels. Overall, these outcomes suggest that viral gene transfer can yield plasma CocH levels that effectively diminish long-term cocaine intake and may have potential treatment implications for cocaine-dependent individuals seeking to become and remain abstinent. PMID:24407266

  5. Inhibition of soluble epoxide hydrolase enhances the anti-inflammatory effects of aspirin and 5-lipoxygenase activation protein inhibitor in a murine model.

    PubMed

    Liu, Jun-Yan; Yang, Jun; Inceoglu, Bora; Qiu, Hong; Ulu, Arzu; Hwang, Sung-Hee; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2010-03-15

    Inflammation is a multi-staged process whose expansive phase is thought to be driven by acutely released arachidonic acid (AA) and its metabolites. Inhibition of cyclooxygenase (COX), lipoxygenase (LOX), or soluble epoxide hydrolase (sEH) is known to be anti-inflammatory. Inhibition of sEH stabilizes the cytochrome P450 (CYP450) products epoxyeicosatrienoic acids (EETs). Here we used a non-selective COX inhibitor aspirin, a 5-lipoxygenase activation protein (FLAP) inhibitor MK886, and a sEH inhibitor t-AUCB to selectively modulate the branches of AA metabolism in a lipopolysaccharide (LPS)-challenged murine model. We used metabolomic profiling to simultaneously monitor representative AA metabolites of each branch. In addition to the significant crosstalk among branches of the AA cascade during selective modulation of COX, LOX, or sEH, we demonstrated that co-administration of t-AUCB enhanced the anti-inflammatory effects of aspirin or MK886, which was evidenced by the observations that co-administration resulted in favorable eicosanoid profiles and better control of LPS-mediated hypotension as well as hepatic protein expression of COX-2 and 5-LOX. Targeted disruption of the sEH gene displayed a parallel profile to that produced by t-AUCB. These observations demonstrate a significant level of crosstalk among the three major branches of the AA cascade and that they are not simply parallel pathways. These data illustrate that inhibition of sEH by both pharmacological intervention and gene knockout enhances the anti-inflammatory effects of aspirin and MK886, suggesting the possibility of modulating multiple branches to achieve better therapeutic effects. PMID:19896470

  6. Long-Term Blockade of Cocaine Self-Administration and Locomotor Activation in Rats by an Adenoviral Vector-Delivered Cocaine Hydrolase.

    PubMed

    Smethells, John R; Swalve, Natashia; Brimijoin, Stephen; Gao, Yang; Parks, Robin J; Greer, Adam; Carroll, Marilyn E

    2016-05-01

    A promising approach in treating cocaine abuse is to metabolize cocaine in the blood using a mutated butyrylcholinesterase (BChE) that functions as a cocaine hydrolase (CocH). In rats, a helper-dependent adenoviral (hdAD) vector-mediated delivery of CocH abolished ongoing cocaine use and cocaine-primed reinstatement of drug-seeking for several months. This enzyme also metabolizes ghrelin, an effect that may be beneficial in maintaining healthy weights. The effect of a single hdAD-CocH vector injection was examined in rats on measures of anxiety, body weight, cocaine self-administration, and cocaine-induced locomotor activity. To examine anxiety, periadolescent rats were tested in an elevated-plus maze. Weight gain was then examined under four rodent diets. Ten months after CocH-injection, adult rats were trained to self-administer cocaine intravenously and, subsequently, cocaine-induced locomotion was tested. Viral gene transfer produced sustained plasma levels of CocH for over 13 months of testing. CocH-treated rats did not differ from controls in measures of anxiety, and only showed a transient reduction in weight gain during the first 3 weeks postinjection. However, CocH-treated rats were insensitive to cocaine. At 10 months postinjection, none of the CocH-treated rats initiated cocaine self-administration, unlike 90% of the control rats. At 13 months postinjection, CocH-treated rats showed no cocaine-induced locomotion, whereas control rats showed a dose-dependent enhancement of locomotion. CocH vector produced a long-term blockade of the rewarding and behavioral effects of cocaine in rats, emphasizing its role as a promising therapeutic intervention in cocaine abuse. PMID:26968195

  7. Ion channel regulation by protein S-acylation

    PubMed Central

    2014-01-01

    Protein S-acylation, the reversible covalent fatty-acid modification of cysteine residues, has emerged as a dynamic posttranslational modification (PTM) that controls the diversity, life cycle, and physiological function of numerous ligand- and voltage-gated ion channels. S-acylation is enzymatically mediated by a diverse family of acyltransferases (zDHHCs) and is reversed by acylthioesterases. However, for most ion channels, the dynamics and subcellular localization at which S-acylation and deacylation cycles occur are not known. S-acylation can control the two fundamental determinants of ion channel function: (1) the number of channels resident in a membrane and (2) the activity of the channel at the membrane. It controls the former by regulating channel trafficking and the latter by controlling channel kinetics and modulation by other PTMs. Ion channel function may be modulated by S-acylation of both pore-forming and regulatory subunits as well as through control of adapter, signaling, and scaffolding proteins in ion channel complexes. Importantly, cross-talk of S-acylation with other PTMs of both cysteine residues by themselves and neighboring sites of phosphorylation is an emerging concept in the control of ion channel physiology. In this review, I discuss the fundamentals of protein S-acylation and the tools available to investigate ion channel S-acylation. The mechanisms and role of S-acylation in controlling diverse stages of the ion channel life cycle and its effect on ion channel function are highlighted. Finally, I discuss future goals and challenges for the field to understand both the mechanistic basis for S-acylation control of ion channels and the functional consequence and implications for understanding the physiological function of ion channel S-acylation in health and disease. PMID:24821965

  8. Changes of oxidase and hydrolase activities in pecan leaves elicited by black pecan aphid (Hemiptera: Aphididae) feeding.

    PubMed

    Chen, Yigen; Ni, Xinzhi; Cottrell, Ted E; Wood, Bruce W; Buntin, G David

    2009-06-01

    The black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), is a foliar feeder of pecan, Carya illinoinensis (Wangenh.) K. Koch (Juglandaceae). The pest causes chlorosis of leaflet lamina, physiological damage to foliage and trees, and commonly limits the profitability of commercial pecan orchard enterprises. However, key aspects of this host-pest interaction are poorly understood. We report here the effects of M. caryaefoliae feeding on the foliar activity of oxidative (i.e., catalase, lipoxygenase [LOX]-1 and 3, and peroxidase) and hydrolytic (i.e., esterase) enzymes in relation to the degree of aphid resistance among pecan varieties. The 2-yr study showed that M. caryaefoliae-infested foliage exhibited elevated peroxidase activity only in susceptible ('Desirable', 'Sumner', and 'Schley'), but not in resistant ('Cape Fear', 'Gloria Grande', and 'Money Maker') genotypes. Susceptible genotypes also exhibited more severe leaf chlorosis in response to M. caryaefoliae feeding than the resistant genotypes; however, the aphid feeding did not influence catalase or esterase activity in all varieties, except the increase of esterase activity in Desirable and Gloria Grande. Melanocallis caryaefoliae feeding also influences activity of two lipoxygenase isozymes, with LOX3 being more frequently induced than LOX1. Foliar LOX3 activity was more frequently induced by M. caryaefoliae feeding in the moderately resistant 'Oconee' and highly resistant Money Maker and Cape Fear than in the susceptible genotypes. Therefore, the elevation of peroxidase is likely to be associated with aphid susceptibility and contributed to the severe leaf chlorosis, whereas the increase of LOX3 activity might be associated with aphid resistance in pecan. These findings contribute to our understanding of the etiology of M. caryaefoliae-elicited leaf chlorosis on pecan foliage. Such information may also be used to develop enzyme markers for identifying black pecan aphid resistance

  9. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    PubMed

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  10. Bacterial Cyanuric Acid Hydrolase for Water Treatment

    PubMed Central

    Yeom, Sujin; Mutlu, Baris R.; Aksan, Alptekin

    2015-01-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  11. Defective activity of acyl-CoA:cholesterol O-acyltransferase in Niemann-Pick type C and type D fibroblasts.

    PubMed Central

    Byers, D M; Rastogi, S R; Cook, H W; Palmer, F B; Spence, M W

    1989-01-01

    The activity of acyl-CoA:cholesterol acyltransferase (ACAT; EC 2.3.1.26) was measured in fibroblast homogenates from Niemann-Pick Type C (NPC) and Type D (NPD) patients to determine whether these cells exhibit similar defects in the regulation of cholesterol esterification. ACAT activity in normal cells cultured in the absence of serum lipoproteins responded rapidly (within 6 h) to the addition of serum and reached peak levels at 12-24 h, whereas little stimulation of activity in NPC cells was observed. In contrast, ACAT activity in NPD fibroblasts (cell lines from four different patients) began to increase between 6 and 12 h after serum addition, reaching levels up to 50% of normal values at 24 h. ACAT activity in NPC and NPD cell extracts could not be stimulated by preincubation with normal cell homogenates, nor was complementation between NPC and NPD homogenates observed. Addition of 25-hydroxycholesterol to fibroblasts cultured in delipidated serum increased ACAT activity for all three cell types, although stimulation in NPD cells was less than that observed in NPC cells. ACAT activity of deoxycholate-solubilized homogenates reconstituted into phosphatidylcholine vesicles was independent of the presence of serum lipoproteins during culture and dependent on cholesterol present in the vesicles for all cell types. However, ACAT activities of mutant fibroblasts in vesicles plus cholesterol were significantly (about 40%) lower than control levels. These results suggest that the metabolic lesions in NPC and NPD cells are biochemically distinct and that both may involve factors in addition to the availability of cholesterol substrate for the ACAT enzyme. PMID:2590161

  12. Superelectrophilic Activation of Crotonic/Methacrylic Acids: Direct Access to Thiochroman-4-ones from Benzenethiols by Microwave-Assisted One-Pot Alkylation/Cyclic Acylation.

    PubMed

    Vaghoo, Habiba; Prakash, G K Surya; Narayanan, Arjun; Choudhary, Rohit; Paknia, Farzaneh; Mathew, Thomas; Olah, George A

    2015-12-18

    An efficient microwave-assisted protocol for the synthesis of 2-/3-methylthiochroman-4-ones by superacid-catalyzed alkylation followed by cyclic acylation (cyclization via intramolecular acylation) is described. Using easily accessible benzenethiols and crotonic acid/methacrylic acid with triflic acid (as catalyst of choice for needed optimal acidity), the reaction was tuned toward the formation of the cyclized products in good selectivity and yield. A mechanism involving the formation of carbenium-carboxonium superelectrophilic species is suggested. PMID:26636718

  13. The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity

    PubMed Central

    Iordanov, Iordan; Mihályi, Csaba; Tóth, Balázs; Csanády, László

    2016-01-01

    Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca2+-permeable cation channel essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H) domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9. Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential for activity (kcat~4-9s-1), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 μM), confirming functionality of chimeric domains. Thus, TRPM2 is not a 'chanzyme'. Chimeras provide convenient soluble NUDT9H models for structural/biochemical studies. DOI: http://dx.doi.org/10.7554/eLife.17600.001 PMID:27383051

  14. The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity.

    PubMed

    Iordanov, Iordan; Mihályi, Csaba; Tóth, Balázs; Csanády, László

    2016-01-01

    Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca(2+)-permeable cation channel essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H) domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9. Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential for activity (kcat~4-9s(-1)), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 μM), confirming functionality of chimeric domains. Thus, TRPM2 is not a 'chanzyme'. Chimeras provide convenient soluble NUDT9H models for structural/biochemical studies. PMID:27383051

  15. Diversity of hydrolases from hydrothermal vent sediments of the Levante Bay, Vulcano Island (Aeolian archipelago) identified by activity-based metagenomics and biochemical characterization of new esterases and an arabinopyranosidase.

    PubMed

    Placido, Antonio; Hai, Tran; Ferrer, Manuel; Chernikova, Tatyana N; Distaso, Marco; Armstrong, Dale; Yakunin, Alexander F; Toshchakov, Stepan V; Yakimov, Michail M; Kublanov, Ilya V; Golyshina, Olga V; Pesole, Graziano; Ceci, Luigi R; Golyshin, Peter N

    2015-12-01

    A metagenomic fosmid expression library established from environmental DNA (eDNA) from the shallow hot vent sediment sample collected from the Levante Bay, Vulcano Island (Aeolian archipelago) was established in Escherichia coli. Using activity-based screening assays, we have assessed 9600 fosmid clones corresponding to approximately 350 Mbp of the cloned eDNA, for the lipases/esterases/lactamases, haloalkane and haloacid dehalogenases, and glycoside hydrolases. Thirty-four positive fosmid clones were selected from the total of 120 positive hits and sequenced to yield ca. 1360 kbp of high-quality assemblies. Fosmid inserts were attributed to the members of ten bacterial phyla, including Proteobacteria, Bacteroidetes, Acidobateria, Firmicutes, Verrucomicrobia, Chloroflexi, Spirochaetes, Thermotogae, Armatimonadetes, and Planctomycetes. Of ca. 200 proteins with high biotechnological potential identified therein, we have characterized in detail three distinct α/β-hydrolases (LIPESV12_9, LIPESV12_24, LIPESV12_26) and one new α-arabinopyranosidase (GLV12_5). All LIPESV12 enzymes revealed distinct substrate specificities tested against 43 structurally diverse esters and 4 p-nitrophenol carboxyl esters. Of 16 different glycosides tested, the GLV12_5 hydrolysed only p-nitrophenol-α-(L)-arabinopyranose with a high specific activity of about 2.7 kU/mg protein. Most of the α/β-hydrolases were thermophilic and revealed a high tolerance to, and high activities in the presence of, numerous heavy metal ions. Among them, the LIPESV12_24 was the best temperature-adapted, retaining its activity after 40 min of incubation at 90 °C. Furthermore, enzymes were active in organic solvents (e.g., >30% methanol). Both LIPESV12_24 and LIPESV12_26 had the GXSXG pentapeptides and the catalytic triads Ser-Asp-His typical to the representatives of carboxylesterases of EC 3.1.1.1. PMID:26266751

  16. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase

    PubMed Central

    Kawelke, Steffen; Feussner, Ivo

    2015-01-01

    Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2) and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2) was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity. PMID:26714272

  17. Conformational Changes in a Hyperthermostable Glycoside Hydrolase: Enzymatic Activity Is a Consequence of the Loop Dynamics and Protonation Balance

    PubMed Central

    de Oliveira, Leandro C.; da Silva, Viviam M.; Colussi, Francieli; Cabral, Aline D.; de Oliveira Neto, Mario; Squina, Fabio M.; Garcia, Wanius

    2015-01-01

    Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features. PMID:25723179

  18. Conformational changes in a hyperthermostable glycoside hydrolase: enzymatic activity is a consequence of the loop dynamics and protonation balance.

    PubMed

    de Oliveira, Leandro C; da Silva, Viviam M; Colussi, Francieli; Cabral, Aline D; de Oliveira Neto, Mario; Squina, Fabio M; Garcia, Wanius

    2015-01-01

    Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features. PMID:25723179

  19. The Nudix Hydrolase CDP-Chase, a CDP-Choline Pyrophosphatase, Is an Asymmetric Dimer with Two Distinct Enzymatic Activities

    SciTech Connect

    Duong-Ly, Krisna C.; Gabelli, Sandra B.; Xu, WenLian; Dunn, Christopher A.; Schoeffield, Andrew J.; Bessman, Maurice J.; Amzel, L. Mario

    2011-09-06

    A Nudix enzyme from Bacillus cereus catalyzes the hydrolysis of CDP-choline to produce CMP and phosphocholine. Here, we show that in addition, the enzyme has a 3{prime} {yields} 5{prime} RNA exonuclease activity. The structure of the free enzyme, determined to a 1.8-{angstrom} resolution, shows that the enzyme is an asymmetric dimer. Each monomer consists of two domains, an N-terminal helical domain and a C-terminal Nudix domain. The N-terminal domain is placed relative to the C-terminal domain such as to result in an overall asymmetric arrangement with two distinct catalytic sites: one with an 'enclosed' Nudix pyrophosphatase site and the other with a more open, less-defined cavity. Residues that may be important for determining the asymmetry are conserved among a group of uncharacterized Nudix enzymes from Gram-positive bacteria. Our data support a model where CDP-choline hydrolysis is catalyzed by the enclosed Nudix site and RNA exonuclease activity is catalyzed by the open site. CDP-Chase is the first identified member of a novel Nudix family in which structural asymmetry has a profound effect on the recognition of substrates.

  20. Persistent cystic fibrosis isolate Pseudomonas aeruginosa strain RP73 exhibits an under-acylated LPS structure responsible of its low inflammatory activity.

    PubMed

    Di Lorenzo, Flaviana; Silipo, Alba; Bianconi, Irene; Lore', Nicola Ivan; Scamporrino, Andrea; Sturiale, Luisa; Garozzo, Domenico; Lanzetta, Rosa; Parrilli, Michelangelo; Bragonzi, Alessandra; Molinaro, Antonio

    2015-02-01

    Pseudomonas aeruginosa, the major pathogen involved in lethal infections in cystic fibrosis (CF) population, is able to cause permanent chronic infections that can persist over the years. This ability to chronic colonize CF airways is related to a series of adaptive bacterial changes involving the immunostimulant lipopolysaccharide (LPS) molecule. The structure of LPSs isolated from several P. aeruginosa strains showed conserved features that can undergo chemical changes during the establishment of the chronic infection. In the present paper, we report the elucidation of the structure and the biological activity of the R-LPS (lipooligosaccharide, LOS) isolated from the persistent CF isolate P. aeruginosa strain RP73, in order to give further insights in the adaptation mechanism of the pathogen in the CF environment. The complete structural analysis of P. aeruginosa RP73 LOS was achieved by chemical analyses, NMR spectroscopy and MALDI MS spectrometry, while the assessment of the biological activity was attained testing the in vivo pro-inflammatory capacity of the isolated LOS molecule. While a typical CF LPS is able to trigger a high immune response and production of pro-inflammatory molecules, this P. aeruginosa RP73 LOS showed to possess a low pro-inflammatory capacity. This was possible due to a singular chemical structure possessing an under-acylated lipid A very similar to the LPS of P. aeruginosa found in chronic lung diseases such as bronchiectstasis. PMID:24856407

  1. Different effects of fibrates on the microsomal fatty acid chain elongation and the acyl composition of phospholipids in guinea-pigs.

    PubMed Central

    Vázquez, M.; Alegret, M.; López, M.; Rodríguez, C.; Adzet, T.; Merlos, M.; Laguna, J. C.

    1995-01-01

    1. The effects in vitro and in vivo of three fibric acid derivatives, clofibrate (CFB), bezafibrate (BFB) and gemfibrozil (GFB) on some enzyme activities related to fatty acid biosynthesis, namely palmitoyl-CoA synthetase and hydrolases (microsomal and cytosolic), NADH and NADPH cytochrome c reductases and acyl-CoA elongases were investigated in guinea-pigs. 2. The three fibrates inhibited acyl-CoA elongation in vitro, irrespective of the substrate of elongation used (saturated, monounsaturated, polyunsaturated) and with an order of potency GFB > BFB > CFB. In the case of GFB, inhibition occurred at concentrations that can be reached in vivo. 3. Microsomal palmitoyl-CoA hydrolase and synthetase were also inhibited in vitro (GFB > or = BFB > CFB), whereas NADH cytochrome c reductase activity was increased by GFB. Nevertheless, the magnitude of changes were lower than those observed in elongation activities. 4. Treatment with fibrates did not produce peroxisomal proliferation in guinea-pigs, as measured by peroxisomal beta-oxidation activity and liver weight/body weight ratio. Nevertheless, fibrates provoked a reduction in plasma cholesterol and triglycerides, at least in GFB- and BFB-treated animals. 5. Fatty acid elongation was significantly modified by GFB treatment in vivo. The remaining enzyme activities studied were only slightly changed by fibrate treatment. 6. Treatment with BFB and to a lesser extent with CFB, increased the relative proportion of MUFA (palmitoleic and oleic acids) in microsomal phospholipids, whereas PUFA (mainly linoleic acid) decreased. GFB behaved differently, increasing palmitic and linoleic acids and decreasing stearic and oleic acids. The latter changes are attributable to an inhibition of elongation activity by GFB. 7. The changes observed after fibrate treatment in both rats and guinea-pigs, as they are not directly related to peroxisome proliferation, could be more reliably extrapolated to man than those observed only in rats. PMID

  2. Purification and characterization of fatty acyl-acyl carrier protein synthetase from Vibrio harveyi.

    PubMed Central

    Fice, D; Shen, Z; Byers, D M

    1993-01-01

    A Vibrio harveyi enzyme which catalyzes the ATP-dependent ligation of fatty acids to acyl carrier protein (ACP) has been purified 6,000-fold to apparent homogeneity by anion-exchange, gel filtration, and ACP-Sepharose affinity chromatography. Purified acyl-ACP synthetase migrated as a single 62-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and as an 80-kDa protein by gel filtration under reducing conditions. Activity of the purified enzyme was lost within hours in the absence of glycerol and low concentrations of Triton X-100. Acyl-ACP synthetase exhibited Kms for myristic acid, ACP, and ATP of 7 microM, 18 microM, and 0.3 mM, respectively. The enzyme was specific for adenine-containing nucleotides, and AMP was the product of the reaction. No covalent acyl-enzyme intermediate was observed. Enzyme activity was stimulated up to 50% by iodoacetamide but inhibited > 80% by N-ethylmaleimide: inhibition by the latter was prevented by ATP and ACP but not myristic acid. Dithiothreitol and sulfhydryl-directed reagents also influenced enzyme size, activity, and elution pattern on anion-exchange resins. The function of acyl-ACP synthetase has not been established, but it may be related to the capacity of V. harveyi to elongate exogenous fatty acids by an ACP-dependent mechanism. Images PMID:8384617

  3. Calcium-myristoyl Tug is a new mechanism for intramolecular tuning of calcium sensitivity and target enzyme interaction for guanylyl cyclase-activating protein 1: dynamic connection between N-fatty acyl group and EF-hand controls calcium sensitivity.

    PubMed

    Peshenko, Igor V; Olshevskaya, Elena V; Lim, Sunghyuk; Ames, James B; Dizhoor, Alexander M

    2012-04-20

    Guanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca(2+) sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca(2+) binding to EF-hand 4. Inserting Phe residues in the cavity around the myristoyl group increased both the affinity of GCAP1 for RetGC and maximal activation of the cyclase. NMR spectra show that the myristoyl group in the L80F/L176F/V180F mutant remained sequestered inside GCAP1 in both Ca(2+)-bound and Mg(2+)-bound states. This mutant displayed much higher affinity for the cyclase but reduced Ca(2+) sensitivity of the cyclase regulation. The L176F substitution improved affinity of myristoylated and non-acylated GCAP1 for the cyclase but simultaneously reduced the affinity of Ca(2+) binding to EF-hand 4 and Ca(2+) sensitivity of the cyclase regulation by acylated GCAP1. The replacement of amino acids near both ends of the myristoyl moiety (Leu(80) and Val(180)) minimally affected regulatory properties of GCAP1. N-Lauryl- and N-myristoyl-GCAP1 activated RetGC in a similar fashion. Thus, protein interactions with the central region of the fatty acyl chain optimize GCAP1 binding to RetGC and maximize activation of the cyclase. We propose a dynamic connection (or "tug") between the fatty acyl group and EF-hand 4 via the C-terminal helix that attenuates the efficiency of RetGC activation in exchange for optimal Ca(2+) sensitivity. PMID:22383530

  4. Effect of One Year of Cryopreservation on the Activity of Lysosomal Hydrolases from EBV-Transformed Lymphocytes

    PubMed Central

    de Mello, A. S.; Mendes, F. B.; Michelin-Tireli, K.; Camelier, M. V.; Coelho, J. C.

    2011-01-01

    Background. The Epstein-Barr virus (EBV) was used as an agent of B lymphocyte proliferation for subsequent diagnosis of lysosomal storage disease. Due to the constant handling of long-preserved samples in our cell bank, we decided to observe the behavior and then compare cultured and frozen samples for at least one year's cryopreservation. Methods. Twenty-five samples from healthy individuals were used to assess the possible changes in activity of enzymes β-galactosidase, β-glucosidase, α-iduronidase, α-galactosidase, and α-glucosidase. Transmission electron microscopy was used to confirm cell transformation of B lymphocytes into EBV-infected cells, generating lymphoblastoid cell lines. Results. Transmission electron microscopy findings confirmed previous reports in the literature that is, significant and evident morphological changes in the nucleus occur after day 12 and the consequent cell transformation into EBV-infected cells. After thawing and subsequent treatment with the five enzymes utilized, we observed no significant changes in samples cryopreserved for more than one year, as compared to samples cultured for 12 days. PMID:21660133

  5. Structures and Mechanisms of Nudix Hydrolases

    SciTech Connect

    Mildvan,A.; Xia, Z.; Azurmendi, H.; saraswat, V.; Legler, P.; Massiah, M.; Gabelli, S.; Bianchet, M.; Kang, L.; Amzel, L.

    2005-01-01

    Nudix hydrolases are a family of proteins that contain the characteristic sequence GX(5)EX(7)REUXEEXG(I/L/V), the Nudix box. They catalyze the hydrolysis of a variety of nucleoside diphosphate derivatives such as ADP-ribose, Ap(n)A (3 hydrolases from several species, ranging from bacteria to humans, have been characterized, including, in some cases, the determination of their three-dimensional structures. The product of the Rv1700 gene of M. tuberculosis is a Nudix hydrolase specific for ADP-ribose (ADPR). We have determined the crystal structures of MT-ADPRase alone, and in complex with substrate, with substrate and the nonactivating metal ion Gd(3+), and in complex with a nonhydrolyzable ADPR analog and the activating metal ion Mn(2+). These structures, refined with data extending to resolutions between 2.0 and 2.3 A, showed that there are sequence differences in binding site residues between MT-ADPRase and a human homolog that may be exploited for antituberculosis drug development.

  6. Structure-activity relationships for degradation reaction of 1-beta-o-acyl glucuronides: kinetic description and prediction of intrinsic electrophilic reactivity under physiological conditions.

    PubMed

    Baba, Akiko; Yoshioka, Tadao

    2009-01-01

    1-beta-O-Acyl glucuronides (betaGAs) are potentially reactive metabolites capable of binding to proteins, and they have been implicated in adverse drug reactions of the carboxylic acid drugs. To explore their electrophilic reactivity, we studied structure-activity relationships (SARs) to characterize the factors affecting the degradation rate constants (k values) of betaGAs and ultimately to predict k values of structurally diverse betaGAs. Twenty-seven betaGAs and four related compounds were synthesized, and their k values were determined under physiological conditions (pH 7.4 and 37 degrees C). 1-beta-O-Benzoyl glucuronide (BAGA) and glucopyranoside (BAG) showed almost the same k values, whereas their 1-alpha-O-benzoyl isomers degraded approximately 40-fold faster than BAGA and BAG. BAGA methyl ester showed almost the same rate constant as BAGA in the cleavage of their 1-beta-O-benzoyl linkages. A pH-log k profile obtained indicated kinetics catalyzed by both specific and general bases. The log k of betaGAs derived from m- and p-substituted benzoic acids correlated with Hammett's sigma constants. A similar correlation was observed with delta(COOH), (1)H NMR chemical shifts of the parent benzoic acids including ones with less sterically bulky o-substituents. Alternative descriptors of delta(CO) and delta((CO)OH), (13)C chemical shifts for ester carbonyl carbons of betaGAs and for carbonyl carbons of the parent benzoic acids, respectively, correlated well with the log k of all 16 betaGAs derived from benzoic acids including ones with bulkier o-substituents. Of the betaGA isomers derived from (2R)- and (2S)-alpha-methyl-4-biphenylylacetic acid, the (2R)-isomer degraded approximately 2-fold faster than the (2S)-isomer. The alpha-methyl group in the (2S)-isomer would encumber the intramolecular acyl migration. The log k of betaGAs derived from n-aralkyl carboxylic acids and of the (2R)-isomer correlated with their delta(COOH). However, the log k of betaGAs derived

  7. Novel anti-Cryptosporidium activity of known drugs identified by high-throughput screening against parasite fatty acyl-CoA binding protein (ACBP)

    PubMed Central

    Fritzler, Jason M.; Zhu, Guan

    2012-01-01

    Background Cryptosporidium parvum causes an opportunistic infection in AIDS patients, and no effective treatments are yet available. This parasite possesses a single fatty acyl-CoA binding protein (CpACBP1) that is localized to the unique parasitophorous vacuole membrane (PVM). The major goal of this study was to identify inhibitors from known drugs against CpACBP1 as potential new anti-Cryptosporidium agents. Methods A fluorescence assay was developed to detect CpACBP1 activity and to identify inhibitors by screening known drugs. Efficacies of top CpACBP1 inhibitors against Cryptosporidium growth in vitro were evaluated using a quantitative RT–PCR assay. Results Nitrobenzoxadiazole-labelled palmitoyl-CoA significantly increased the fluorescent emission upon binding to CpACBP1 (excitation/emission 460/538 nm), which was quantified to determine the CpACBP1 activity and binding kinetics. The fluorescence assay was used to screen a collection of 1040 compounds containing mostly known drugs, and identified the 28 most active compounds that could inhibit CpACBP1 activity with sub-micromolar IC50 values. Among them, four compounds displayed efficacies against parasite growth in vitro with low micromolar IC50 values. The effective compounds were broxyquinoline (IC50 64.9 μM), cloxyquin (IC50 25.1 μM), cloxacillin sodium (IC50 36.2 μM) and sodium dehydrocholate (IC50 53.2 μM). Conclusions The fluorescence ACBP assay can be effectively used to screen known drugs or other compound libraries. Novel anti-Cryptosporidium activity was observed in four top CpACBP1 inhibitors, which may be further investigated for their potential to be repurposed to treat cryptosporidiosis and to serve as leads for drug development. PMID:22167242

  8. Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica.

    PubMed

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Sakai, Hideki; Kitamoto, Dai

    2007-09-01

    Mannosylerythritol lipids (MELs), which are glycolipid biosurfactants produced by Pseudozyma yeasts, show not only excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from glucose as the sole carbon source, P. antarctica was found to produce unknown glycolipids more hydrophilic than conventional "di-acylated MELs," which have two fatty acyl esters on the mannose moiety. Based on a detailed characterization, the most hydrophilic one was identified as 4-O-(3'-O-alka(e)noyl-beta-D: -mannopyranosyl)-D: -erythritol namely, "mono-acylated MEL." The mono-acylated MEL reduced the surface tension of water to 33.8 mN/m at a critical micelle concentration (CMC) of 3.6 x 10(-4) M, and its hydrophilic-lipophilic balance was tentatively calculated to be 12.15. The observed CMC was 100-fold higher than that of the MELs hitherto reported. Interestingly, of the yeast strains of the genus Pseudozyma, only P. antarctica and P. parantarctica gave the mono-acylated MEL from glucose, despite a great diversity of di-acylated MEL producers in the genus. These strains produced MELs including the mono-acylated one at a rate of 20-25%. From these results, the new MEL is likely to have great potential for use in oil-in-water-type emulsifiers and washing detergents because of its higher water solubility compared to conventional MELs and will thus contribute to facilitating a broad range of applications for the environmentally advanced surfactants. PMID:17607573

  9. Structures of the Michaelis Complex (1.2A) and the Covalent Acyl Intermediate (2.0A ) of Cefamandole Bound in the Active Sites of the Mycobacterium tuberculosis beta-Lactamase K72A and E166A Mutants

    SciTech Connect

    L Tremblay; h Xu; J Blanchard

    2011-12-31

    The genome of Mycobacterium tuberculosis (TB) contains a gene that encodes a highly active {beta}-lactamase, BlaC, that imparts TB with resistance to {beta}-lactam chemotherapy. The structure of covalent BlaC-{beta}-lactam complexes suggests that active site residues K73 and E166 are essential for acylation and deacylation, respectively. We have prepared the K73A and E166A mutant forms of BlaC and have determined the structures of the Michaelis complex of cefamandole and the covalently bound acyl intermediate of cefamandole at resolutions of 1.2 and 2.0 {angstrom}, respectively. These structures provide insight into the details of the catalytic mechanism.

  10. Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet.

    PubMed

    Mashek, Douglas G; Li, Lei O; Coleman, Rosalind A

    2006-09-01

    Distinct isoforms of long-chain acyl-CoA synthetases (ACSLs) may partition fatty acids toward specific metabolic cellular pathways. For each of the five members of the rat ACSL family, we analyzed tissue mRNA distributions, and we correlated the mRNA, protein, and activity of ACSL1 and ACSL4 after fasting and refeeding a 69% sucrose diet. Not only did quantitative real-time PCR analyses reveal unique tissue expression patterns for each ACSL isoform, but expression varied markedly in different adipose depots. Fasting increased ACSL4 mRNA abundance in liver, muscle, and gonadal and inguinal adipose tissues, and refeeding decreased ACSL4 mRNA. A similar pattern was observed for ACSL1, but both fasting and refeeding decreased ACSL1 mRNA in gonadal adipose. Fasting also decreased ACSL3 and ACSL5 mRNAs in liver and ACSL6 mRNA in muscle. Surprisingly, in nearly every tissue measured, the effects of fasting and refeeding on the mRNA abundance of ACSL1 and ACSL4 were discordant with changes in protein abundance. These data suggest that the individual ACSL isoforms are distinctly regulated across tissues and show that mRNA expression may not provide useful information about isoform function. They further suggest that translational or posttranslational modifications are likely to contribute to the regulation of ACSL isoforms. PMID:16772660

  11. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    PubMed Central

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3–7 μM; Vmax, 150–193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism. PMID:22217705

  12. Diabetes Mellitus Reduces Activity of Human UDP-Glucuronosyltransferase 2B7 in Liver and Kidney Leading to Decreased Formation of Mycophenolic Acid Acyl-Glucuronide Metabolite

    PubMed Central

    Dostalek, Miroslav; Court, Michael H.; Hazarika, Suwagmani

    2011-01-01

    Mycophenolic acid (MPA) is an immunosuppressive agent commonly used after organ transplantation. Altered concentrations of MPA metabolites have been reported in diabetic kidney transplant recipients, although the reason for this difference is unknown. We aimed to compare MPA biotransformation and UDP-glucuronosyltransferase (UGT) expression and activity between liver (n = 16) and kidney (n = 8) from diabetic and nondiabetic donors. Glucuronidation of MPA, as well as the expression and probe substrate activity of UGTs primarily responsible for MPA phenol glucuronide (MPAG) formation (UGT1A1 and UGT1A9), and MPA acyl glucuronide (AcMPAG) formation (UGT2B7), was characterized. We have found that both diabetic and nondiabetic human liver microsomes and kidney microsomes formed MPAG with similar efficiency; however, AcMPAG formation was significantly lower in diabetic samples. This finding is supported by markedly lower glucuronidation of the UGT2B7 probe zidovudine, UGT2B7 protein, and UGT2B7 mRNA in diabetic tissues. UGT genetic polymorphism did not explain this difference because UGT2B7*2 or *1c genotype were not associated with altered microsomal UGT2B7 protein levels or AcMPAG formation. Furthermore, mRNA expression and probe activities for UGT1A1 or UGT1A9, both forming MPAG but not AcMPAG, were comparable between diabetic and nondiabetic tissues, suggesting the effect may be specific to UGT2B7-mediated AcMPAG formation. These findings suggest that diabetes mellitus is associated with significantly reduced UGT2B7 mRNA expression, protein level, and enzymatic activity of human liver and kidney, explaining in part the relatively low circulating concentrations of AcMPAG in diabetic patients. PMID:21123165

  13. Expression, purification, crystallization and preliminary X-ray diffraction analysis of acylpeptide hydrolase from Deinococcus radiodurans

    PubMed Central

    Are, Venkata Narayana; Ghosh, Biplab; Kumar, Ashwani; Yadav, Pooja; Bhatnagar, Deepak; Jamdar, Sahayog N.; Makde, Ravindra D.

    2014-01-01

    Acylpeptide hydrolase (APH; EC 3.4.19.1), which belongs to the S9 family of serine peptidases (MEROPS), catalyzes the removal of an N-acylated amino acid from a blocked peptide. The role of this enzyme in mammalian cells has been suggested to be in the clearance of oxidatively damaged proteins as well as in the degradation of the β-amyloid peptides implicated in Alzheimer’s disease. Detailed structural information for the enzyme has been reported from two thermophilic archaea; both of the archaeal APHs share a similar monomeric structure. However, the mechanisms of substrate selectivity and active-site accessibility are totally different and are determined by inter-domain flexibility or the oligomeric structure. An APH homologue from a bacterium, Deinococcus radiodurans (APHdr), has been crystallized using microbatch-under-oil employing the random microseed matrix screening method. The protein crystallized in space group P21, with unit-cell parameters a = 77.6, b = 189.6, c = 120.4 Å, β = 108.4°. A Matthews coefficient of 2.89 Å3 Da−1 corresponds to four monomers, each with a molecular mass of ∼73 kDa, in the asymmetric unit. The APHdr structure will reveal the mechanisms of substrate selectivity and active-site accessibility in the bacterial enzyme. It will also be helpful in elucidating the functional role of this enzyme in D. radiodurans. PMID:25195912

  14. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses

    PubMed Central

    Parrent, Jeri Lynn; James, Timothy Y; Vasaitis, Rimvydas; Taylor, Andrew FS

    2009-01-01

    Background Many fungi are obligate biotrophs of plants, growing in live plant tissues, gaining direct access to recently photosynthesized carbon. Photosynthate within plants is transported from source to sink tissues as sucrose, which is hydrolyzed by plant glycosyl hydrolase family 32 enzymes (GH32) into its constituent monosaccharides to meet plant cellular demands. A number of plant pathogenic fungi also use GH32 enzymes to access plant-derived sucrose, but less is known about the sucrose utilization ability of mutualistic and commensal plant biotrophic fungi, such as mycorrhizal and endophytic fungi. The aim of this study was to explore the distribution and abundance of GH32 genes in fungi to understand how sucrose utilization is structured within and among major ecological guilds and evolutionary lineages. Using bioinformatic and PCR-based analyses, we tested for GH32 gene presence in all available fungal genomes and an additional 149 species representing a broad phylogenetic and ecological range of biotrophic fungi. Results We detected 9 lineages of GH32 genes in fungi, 4 of which we describe for the first time. GH32 gene number in fungal genomes ranged from 0–12. Ancestral state reconstruction of GH32 gene abundance showed a strong correlation with nutritional mode, and gene family expansion was observed in several clades of pathogenic filamentous Ascomycota species. GH32 gene number was negatively correlated with animal pathogenicity and positively correlated with plant biotrophy, with the notable exception of mycorrhizal taxa. Few mycorrhizal species were found to have GH32 genes as compared to other guilds of plant-associated fungi, such as pathogens, endophytes and lichen-forming fungi. GH32 genes were also more prevalent in the Ascomycota than in the Basidiomycota. Conclusion We found a strong signature of both ecological strategy and phylogeny on GH32 gene number in fungi. These data suggest that plant biotrophic fungi exhibit a wide range of ability

  15. Binding and Inactivation Mechanism of a Humanized Fatty Acid Amide Hydrolase by [alpha]-Ketoheterocycle Inhibitors Revealed from Cocrystal Structures

    SciTech Connect

    Mileni, Mauro; Garfunkle, Joie; DeMartino, Jessica K.; Cravatt, Benjamin F.; Boger, Dale L.; Stevens, Raymond C.

    2010-08-17

    The cocrystal X-ray structures of two isomeric {alpha}-ketooxazole inhibitors (1 (OL-135) and 2) bound to fatty acid amide hydrolase (FAAH), a key enzymatic regulator of endocannabinoid signaling, are disclosed. The active site catalytic Ser241 is covalently bound to the inhibitors electrophilic carbonyl groups, providing the first structures of FAAH bound to an inhibitor as a deprotonated hemiketal mimicking the enzymatic tetrahedral intermediate. The work also offers a detailed view of the oxyanion hole and an exceptional 'in-action' depiction of the unusual Ser-Ser-Lys catalytic triad. These structures capture the first picture of inhibitors that span the active site into the cytosolic port providing new insights that help to explain FAAH's interaction with substrate leaving groups and their role in modulating inhibitor potency and selectivity. The role for the activating central heterocycle is clearly defined and distinguished from that observed in prior applications with serine proteases, reconciling the large electronic effect of attached substituents found unique to this class of inhibitors with FAAH. Additional striking active site flexibility is seen upon binding of the inhibitors, providing insights into the existence of a now well-defined membrane access channel with the disappearance of a spatially independent portion of the acyl chain-binding pocket. Finally, comparison of the structures of OL-135 (1) and its isomer 2 indicates that they bind identically to FAAH, albeit with reversed orientations of the central activating heterocycle, revealing that the terminal 2-pyridyl substituent and the acyl chain phenyl group provide key anchoring interactions and confirming the distinguishing role of the activating oxazole.

  16. Polyglycine hydrolases secreted by pathogenic fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogens are known to produce proteases that target host defense proteins. Here we describe polyglycine hydrolases, fungal proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine interdomain linker of targeted plant defense chitinases. Polyglycine hydrolases were puri...

  17. Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids.

    PubMed Central

    Wadum, Majken C T; Villadsen, Jens K; Feddersen, Søren; Møller, Rikke S; Neergaard, Thomas B F; Kragelund, Birthe B; Højrup, Peter; Faergeman, Nils J; Knudsen, Jens

    2002-01-01

    Long-chain acyl-CoA esters are key metabolites in lipid synthesis and beta-oxidation but, at the same time, are important regulators of intermediate metabolism, insulin secretion, vesicular trafficking and gene expression. Key tools in studying the regulatory functions of acyl-CoA esters are reliable methods for the determination of free acyl-CoA concentrations. No such method is presently available. In the present study, we describe the synthesis of two acyl-CoA sensors for measuring free acyl-CoA concentrations using acyl-CoA-binding protein as a scaffold. Met24 and Ala53 of bovine acyl-CoA-binding protein were replaced by cysteine residues, which were covalently modified with 6-bromoacetyl-2-dimethylaminonaphthalene to make the two fluorescent acyl-CoA indicators (FACIs) FACI-24 and FACI-53. FACI-24 and FACI-53 showed fluorescence emission maximum at 510 and 525 nm respectively, in the absence of ligand (excitation 387 nm). Titration of FACI-24 and FACI-53 with hexadecanoyl-CoA and dodecanoyl-CoA increased the fluorescence yield 5.5-and 4.7-fold at 460 and 495 nm respectively. FACI-24 exhibited a high, and similar increase in, fluorescence yield at 460 nm upon binding of C14-C20 saturated and unsaturated acyl-CoA esters. Both indicators bind long-chain (>C14) acyl-CoA esters with high specificity and affinity (K(d)=0.6-1.7 nM). FACI-53 showed a high fluorescence yield for C8-C12 acyl chains. It is shown that FACI-24 acts as a sensitive acyl-CoA sensor for measuring the concentration of free acyl-CoA, acyl-CoA synthetase activity and the concentrations of free fatty acids after conversion of the fatty acid into their respective acyl-CoA esters. PMID:12071849

  18. Diminished acyl-CoA synthetase isoform 4 activity in INS 832/13 cells reduces cellular epoxyeicosatrienoic acid levels and results in impaired glucose-stimulated insulin secretion.

    PubMed

    Klett, Eric L; Chen, Shufen; Edin, Matthew L; Li, Lei O; Ilkayeva, Olga; Zeldin, Darryl C; Newgard, Christopher B; Coleman, Rosalind A

    2013-07-26

    Glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells is potentiated by fatty acids (FA). The initial step in the metabolism of intracellular FA is the conversion to acyl-CoA by long chain acyl-CoA synthetases (Acsls). Because the predominantly expressed Acsl isoforms in INS 832/13 cells are Acsl4 and -5, we characterized the role of these Acsls in beta-cell function by using siRNA to knock down Acsl4 or Acsl5. Compared with control cells, an 80% suppression of Acsl4 decreased GSIS and FA-potentiated GSIS by 32 and 54%, respectively. Knockdown of Acsl5 did not alter GSIS. Acsl4 knockdown did not alter FA oxidation or long chain acyl-CoA levels. With Acsl4 knockdown, incubation with 17 mm glucose increased media epoxyeicosatrienoic acids (EETs) and reduced cell membrane levels of EETs. Further, exogenous EETs reduced GSIS in INS 832/13 cells, and in Acsl4 knockdown cells, an EET receptor antagonist partially rescued GSIS. These results strongly suggest that Acsl4 activates EETs to form EET-CoAs that are incorporated into glycerophospholipids, thereby sequestering EETs. Exposing INS 832/13 cells to arachidonate or linoleate reduced Acsl4 mRNA and protein expression and reduced GSIS. These data indicate that Acsl4 modulates GSIS by regulating the levels of unesterified EETs and that arachidonate controls the expression of its activator Acsl4. PMID:23766516

  19. Labelling of endogenous target protein via N-S acyl transfer-mediated activation of N-sulfanylethylanilide.

    PubMed

    Denda, Masaya; Morisaki, Takuya; Kohiki, Taiki; Yamamoto, Jun; Sato, Kohei; Sagawa, Ikuko; Inokuma, Tsubasa; Sato, Youichi; Yamauchi, Aiko; Shigenaga, Akira; Otaka, Akira

    2016-07-14

    The ligand-dependent incorporation of a reporter molecule (e.g., fluorescence dye or biotin) onto a endogenous target protein has emerged as an important strategy for elucidating protein function using various affinity-based labelling reagents consisting of reporter, ligand and reactive units. Conventional labelling reagents generally use a weakly activated reactive unit, which can result in the non-specific labelling of proteins in a ligand-independent manner. In this context, the activation of a labelling reagent through a targeted protein-ligand interaction could potentially overcome the problems associated with conventional affinity-based labelling reagents. We hypothesized that this type of protein-ligand-interaction-mediated activation could be accomplished using N-sulfanylethylanilide (SEAlide) as the reactive unit in the labelling reagent. Electrophilically unreactive amide-type SEAlide can be activated by its conversion to the corresponding active thioester in the presence of a phosphate salt, which can act as an acid-base catalyst. It has been suggested that protein surfaces consisting of hydrophilic residues such as amino, carboxyl and imidazole groups could function as acid-base catalysts. We therefore envisioned that a SEAlide-based labelling reagent (SEAL) bearing SEAlide as a reactive unit could be activated through the binding of the SEAL with a target protein. Several SEALs were readily prepared in this study using standard 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase protocols. These SEAL systems were subsequently applied to the ligand-dependent labelling of human carbonic anhydrase (hCA) and cyclooxyganese 1. Although we have not yet obtained any direct evidence for the target protein-mediated activation of the SEAlide unit, our results for the reaction of these SEALs with hCA1 or butylamine indirectly support our hypothesis. The SEALs reported in this study represent valuable new entries to the field of affinity-based labelling reagents

  20. Carbocyclic pyrimidine nucleosides as inhibitors of S-adenosylhomocysteine hydrolase.

    PubMed

    Mosley, Sylvester L; Bakke, Brian A; Sadler, Joshua M; Sunkara, Naresh K; Dorgan, Kathleen M; Zhou, Zhaohui Sunny; Seley-Radtke, Katherine L

    2006-12-01

    The design, synthesis, and unexpected inhibitory activity against S-adenosyl-homocysteine (SAH) hydrolase (SAHase, EC 3.3.1.1) for a series of truncated carbocyclic pyrimidine nucleoside analogues is presented. Of the four nucleosides obtained, 10 was found to be active with a Ki value of 5.0 microM against SAHase. PMID:16904326

  1. Modulation Peroxisome Proliferators Activated Receptor alpha (PPAR α) and Acyl Coenzyme A: Cholesterol Acyltransferase1 (ACAT1) Gene expression by Fatty Acids in Foam cell

    PubMed Central

    Zavvar Reza, Javad; Doosti, Mahmoud; salehipour, Masoud; PackneJad, Malehieh; Mojarrad, Majed; Heidari, Mansour; Emamian, Effat S

    2009-01-01

    Background One of the most important factors in the initiation and progression of atherosclerosis is the default in macrophage cholesterol homeostasis. Many genes and transcription factors such as Peroxisome Proliferators Activated Receptors (PPARs) and Acyl Coenzyme A: Cholesterol Acyltransferase1 (ACAT1) are involved in cholesterol homeostasis. Fatty Acids are important ligands of PPARα and the concentration of them can effect expression of ACAT1. So this study designed to clarified on the role of these genes and fatty acids on the lipid metabolism in foam cells. Methods This study examined effects of c9, t11-Conjugated Linoleic Acid(c9, t11-CLA), Alpha Linolenic Acid (LA), Eicosapentaenoic Acid (EPA) on the PPARα and ACAT1 genes expression by using Real time PCR and cholesterol homeostasis in THP-1 macrophages derived foam cells. Results Incubation of c9, t11-CLA, LA cause a significant reduction in intracellular Total Cholesterol, Free Cholesterol, cellular and Estrified Cholesterol concentrations (P ≤ 0.05). CLA and LA had no significant effect on the mRNA levels of ACAT1, but EPA increased ACAT1 mRNA expression (P = 0.003). Treatment with EPA increased PPARα mRNA levels (P ≤ 0.001), although CLA, LA had no significant effect on PPARα mRNA expression. Conclusion In conclusion, it seems that different fatty acids have different effects on gene expression and lipid metabolism and for complete conception study of the genes involved in lipid metabolism in foam cell all at once maybe is benefit. PMID:19725980

  2. Easy preparation of enantiomerically enriched heteroaromatic alcohols through lipase-catalyzed acylation with succinic anhydride under unconventional activation.

    PubMed

    Melais, Nedjma; Boukachabia, Mourad; Aribi-Zouioueche, Louisa; Riant, Olivier

    2015-08-01

    This study reports the lipase-catalyzed resolution of heteroaromatic secondary alcohols by succinic anhydride under different activation conditions by convenient procedure with succinic anhydride. The effects of succinic anhydride and the nature of the heteroatom are discussed in standard conditions in the kinetic resolution with lipases. The results recorded under microwave activation and ultrasonication is compared. (R)-4-chromanol was obtained in optically pure form (ee > 99%) with a high selectivity E > 200 by Pseudomonas cepacia lipase (PCL) in diethyl ether, using microwave radiation and under ultrasonication. The reaction time is reduced compared to the conventional heating with a better control of the selectivity of the lipase PCL. A significant effect of the nature of the heteroatoms on the reactivity and selectivity of the lipase with succinic anhydride has been disclosed, regardless the conditions of activation. This method proved to be clean, fast, interesting alternative, and facilitates the use of a cyclic anhydride, by microwave or ultrasound especially with secondary alcohols. The process is a valuable prerequisite for the preparative scale production of enantiomerically heteroaromatic alcohols in sustainable chemistry. PMID:25957778

  3. C8-Selective Acylation of Quinoline N-Oxides with α-Oxocarboxylic Acids via Palladium-Catalyzed Regioselective C-H Bond Activation.

    PubMed

    Chen, Xiaopei; Cui, Xiuling; Wu, Yangjie

    2016-08-01

    A facile and efficient protocol for palladium-catalyzed C8-selective acylation of quinoline N-oxides with α-oxocarboxylic acids has been developed. In this approach, N-oxide was utilized as a stepping stone for the remote C-H functionalization. The reactions proceeded efficiently under mild reaction conditions with excellent regioselectivity and broad functional group tolerance. PMID:27441527

  4. TECHNOLOGY DEMONSTRATION UNDERWATER HYDROLASING PHASE 0 & 1 & 2 TECHNICAL REPORT

    SciTech Connect

    CHRONISTER, G.B.

    2005-06-08

    From September 10 through December 17th, 2003, S.A.Robotics executed Phases 0, I, and II of the Technology Demonstration - Underwater Hydrolasing. Phase 0 was performed at the S.A.Robotics facility in Loveland, Colorado, while Phases I and II were performed at the Hanford K-Basin East Site. The purpose of the demonstrations was to show (1) underwater hydrolasing is a feasible method of removing contaminated concrete underwater to a required depth, (2) the hydrolasing head could be controlled during operation, (3) the depth of contamination in the concrete structure could be accurately measured, and (4) a characterization of the waste stream during hydrolasing activities could be recorded. Video monitoring was also used during all demonstrations. All phases of the demonstration were completed and deemed a success by both the observers and the demonstration team. Single and multiple passes were made using variable cutting rates, different stand-off distances were tested, and stationary cuts were executed. Hot and cold hyrdolasing was performed with radiological and depth scans of the affected surfaces. Specially designed equipment was installed and operated within the contaminated environment of 100-K East Basin. Separate results are documented below by phase. The Phase II radiological demonstration was performed to determine the feasibility of underwater hydrolasing technology for decontamination of the DOE spent fuel basins at Hanford 100-K area. This project demonstration was conducted at 105 KE Basin with the expectation that, once proven, this technology can be implemented at Hanford and other DOE sites.

  5. Gulosibacter molinativorax ON4T Molinate Hydrolase, a Novel Cobalt-Dependent Amidohydrolase ▿ ‡

    PubMed Central

    Duarte, Márcia; Ferreira-da-Silva, Frederico; Lünsdorf, Heinrich; Junca, Howard; Gales, Luís; Pieper, Dietmar H.; Nunes, Olga C.

    2011-01-01

    A new pathway of molinate mineralization has recently been described. Among the five members of the mixed culture able to promote such a process, Gulosibacter molinativorax ON4T has been observed to promote the initial breakdown of the herbicide into ethanethiol and azepane-1-carboxylate. In the current study, the gene encoding the enzyme responsible for molinate hydrolysis was identified and heterologously expressed, and the resultant active protein was purified and characterized. Nucleotide sequence analysis revealed that the gene encodes a 465-amino-acid protein of the metal-dependent hydrolase A subfamily of the amidohydrolase superfamily with a predicted molecular mass of 50.9 kDa. Molinate hydrolase shares the highest amino acid sequence identity (48 to 50%) with phenylurea hydrolases of Arthrobacter globiformis and Mycobacterium brisbanense. However, in contrast to previously described members of the metal-dependent hydrolase A subfamily, molinate hydrolase contains cobalt as the only active-site metal. PMID:21840982

  6. Re-characterization of mono-2-ethylhexyl phthalate hydrolase belonging to the serine hydrolase family.

    PubMed

    Iwata, Makoto; Imaoka, Takuya; Nishiyama, Takashi; Fujii, Takao

    2016-08-01

    A novel bacterium assimilating di-2-ethylhexyl phthalate as a sole carbon source was isolated, and identified as a Rhodococcus species and the strain was named EG-5. The strain has a mono-2-ethylhexyl phthalate (MEHP) hydrolase (EG-5 MehpH), which exhibits some different enzymatic features when compared with the previously reported MEHP hydrolase (P8219 MehpH) from Gordonia sp. These differences include different pH optimum activity, maximal reaction temperature and heat stability. The Km and Vmax values of EG-5 MehpH were significantly higher than those of P8219 MehpH. The primary structure of EG-5 MehpH showed the highest sequence identity to that of P8219 MehpH (39%) among hydrolases. The phylogenetic tree suggested that EG-5 MehpH and P8219 MehpH were categorized in different groups of the novel MEHP hydrolase family. Mutation of a conserved R(109) residue of EG-5 MehpH to a hydrophobic residue resulted in a dramatic reduction in the Vmax value towards MEHP without affecting the Km value. These results indicate that this residue may neutralize the negative charge of a carboxylate anion of MEHP, and thus inhibit the catalytic nucleophile from attacking the ester bond. In other words, the R residue blocks inhibition from the carboxylate anion of MEHP. Recently, registered hypothetical proteins exhibiting 98% or 99% identities for EG-5 MehpH or for P8219 MehpH were found from some pathogens belonging to Actinomycetes. The protein may have other activities besides MEHP hydrolysis and function in other physiological reactions in some Actinomycetes. PMID:26868518

  7. A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate.

    PubMed

    Then, Johannes; Wei, Ren; Oeser, Thorsten; Gerdts, André; Schmidt, Juliane; Barth, Markus; Zimmermann, Wolfgang

    2016-05-01

    Elevated reaction temperatures are crucial for the efficient enzymatic degradation of polyethylene terephthalate (PET). A disulfide bridge was introduced to the polyester hydrolase TfCut2 to substitute its calcium binding site. The melting point of the resulting variant increased to 94.7 °C (wild-type TfCut2: 69.8 °C) and its half-inactivation temperature to 84.6 °C (TfCut2: 67.3 °C). The variant D204C-E253C-D174R obtained by introducing further mutations at vicinal residues showed a temperature optimum between 75 and 80 °C compared to 65 and 70 °C of the wild-type enzyme. The variant caused a weight loss of PET films of 25.0 ± 0.8% (TfCut2: 0.3 ± 0.1%) at 70 °C after a reaction time of 48 h. The results demonstrate that a highly efficient and calcium-independent thermostable polyester hydrolase can be obtained by replacing its calcium binding site with a disulfide bridge. PMID:27419048

  8. Anatomy of a simple acyl intermediate in enzyme catalysis: combined biophysical and modeling studies on ornithine acetyl transferase.

    PubMed

    Iqbal, Aman; Clifton, Ian J; Bagonis, Maria; Kershaw, Nadia J; Domene, Carmen; Claridge, Timothy D W; Wharton, Christopher W; Schofield, Christopher J

    2009-01-21

    Acyl-enzyme complexes are intermediates in reactions catalyzed by many hydrolases and related enzymes which employ nucleophilic catalysis. However, most of the reported structural data on acyl-enzyme complexes has been acquired under noncatalytic conditions. Recent IR analyses have indicated that some acyl-enzyme complexes may be more flexible than most crystallographic analyses have implied. OAT2 is a member of the N-terminal nucleophile (Ntn) hydrolase enzyme superfamily and catalyzes the reversible transfer of an acetyl group between the alpha-amino groups of ornithine and glutamate in a mechanism proposed to involve an acyl-enzyme complex. We have carried out biophysical analyses on ornithine acetyl transferase (OAT2), both in solution and in the crystalline state. Mass spectrometric studies identified Thr-181 as the residue acetylated during OAT2 catalysis; (13)C NMR analyses implied the presence of an acyl-enzyme complex in solution. Crystallization of OAT2 in the presence of N-alpha-acetyl-L-glutamate led to a structure in which Thr-181 was acetylated; the carbonyl oxygen of the acyl-enzyme complex was located in an oxyanion hole and positioned to hydrogen bond with the backbone amide NH of Gly-112 and the alcohol of Thr-111. While the crystallographic analyses revealed only one structure, IR spectroscopy demonstrated the presence of two distinct acyl-enzyme complex structures with carbonyl stretching frequencies at 1691 and 1701 cm(-1). Modeling studies implied two possible acyl-enzyme complex structures, one of which correlates with that observed in the crystal structure and with the 1691 cm(-1) IR absorption. The second acyl-enzyme complex structure, which has only a single oxyanion hole hydrogen bond, is proposed to give rise to the 1701 cm(-1) IR absorption. The two acyl-enzyme complex structures can interconvert by movement of the Thr-111 side-chain alcohol hydrogen away from the oxyanion hole to hydrogen bond with the backbone carbonyl of the acylated

  9. The macamide N-3-methoxybenzyl-linoleamide is a time-dependent fatty acid amide hydrolase (FAAH) inhibitor.

    PubMed

    Almukadi, Haifa; Wu, Hui; Böhlke, Mark; Kelley, Charles J; Maher, Timothy J; Pino-Figueroa, Alejandro

    2013-10-01

    The Peruvian plant Lepidium meyenii (Maca) has been shown to possess neuroprotective activity both in vitro and in vivo. Previous studies have also demonstrated the activity of the pentane extract and its macamides, the most representative lipophilic constituents of Maca, in the endocannabinoid system as fatty acid amide hydrolase (FAAH) inhibitors. One of the most active macamides, N-3-methoxybenzyl-linoleamide, was studied to determine its mechanism of interaction with FAAH and whether it has inhibitory activity on mono-acyl glycerol lipase (MAGL), the second enzyme responsible for endocannabinoid degradation. Macamide concentrations from 1 to 100 μM were tested using FAAH and MAGL inhibitor assay methods and showed no effect on MAGL. Tests with other conditions were performed in order to characterize the inhibitory mechanism of FAAH inhibition. N-3-methoxybenzyl-linoleamide displayed significant time-dependent and dose-dependent FAAH inhibitory activity. The mechanism of inhibition was most likely irreversible or slowly reversible. These results suggest the potential application of macamides isolated from Maca as FAAH inhibitors, as they might act on the central nervous system to provide analgesic, anti-inflammatory, or neuroprotective effects, by modulating the release of neurotransmitters. PMID:23853040

  10. Acylation of Ferrocene: A Greener Approach

    ERIC Educational Resources Information Center

    Birdwhistell, Kurt R.; Nguyen, Andy; Ramos, Eric J.; Kobelja, Robert

    2008-01-01

    The acylation of ferrocene is a common reaction used in organic laboratories to demonstrate Friedel-Crafts acylation and the purification of compounds using column chromatography. This article describes an acylation of ferrocene experiment that is more eco-friendly than the conventional acylation experiment. The traditional experiment was modified…

  11. Possible Role of Different Yeast and Plant Lysophospholipid:Acyl-CoA Acyltransferases (LPLATs) in Acyl Remodelling of Phospholipids.

    PubMed

    Jasieniecka-Gazarkiewicz, Katarzyna; Demski, Kamil; Lager, Ida; Stymne, Sten; Banaś, Antoni

    2016-01-01

    Recent results have suggested that plant lysophosphatidylcholine:acyl-coenzyme A acyltransferases (LPCATs) can operate in reverse in vivo and thereby catalyse an acyl exchange between the acyl-coenzyme A (CoA) pool and the phosphatidylcholine. We have investigated the abilities of Arabidopsis AtLPCAT2, Arabidopsis lysophosphatidylethanolamine acyltransferase (LPEAT2), S. cerevisiae lysophospholipid acyltransferase (Ale1) and S. cerevisiae lysophosphatidic acid acyltransferase (SLC1) to acylate lysoPtdCho, lysoPtdEtn and lysoPtdOH and act reversibly on the products of the acylation; the PtdCho, PtdEtn and PtdOH. The tested LPLATs were expressed in an S. cervisiae ale1 strain and enzyme activities were assessed in assays using microsomal preparations of the different transformants. The results show that, despite high activity towards lysoPtdCho, lysoPtdEtn and lysoPtdOH by the ALE1, its capacities to operate reversibly on the products of the acylation were very low. Slc1 readily acylated lysoPtdOH, lysoPtdCho and lysoPtdEtn but showed no reversibility towards PtdCho, very little reversibility towards PtdEtn and very high reversibility towards PtdOH. LPEAT2 showed the highest levels of reversibility towards PtdCho and PtdEtn of all LPLATs tested but low ability to operate reversibly on PtdOH. AtLPCAT2 showed good reversible activity towards PtdCho and PtdEtn and very low reversibility towards PtdOH. Thus, it appears that some of the LPLATs have developed properties that, to a much higher degree than other LPLATs, promote the reverse reaction during the same assay conditions and with the same phospholipid. The results also show that the capacity of reversibility can be specific for a particular phospholipid, albeit the lysophospholipid derivatives of other phospholipids serve as good acyl acceptors for the forward reaction of the enzyme. PMID:26643989

  12. SREBP2 Activation Induces Hepatic Long-chain Acyl-CoA Synthetase 1 (ACSL1) Expression in Vivo and in Vitro through a Sterol Regulatory Element (SRE) Motif of the ACSL1 C-promoter.

    PubMed

    Singh, Amar Bahadur; Kan, Chin Fung Kelvin; Dong, Bin; Liu, Jingwen

    2016-03-01

    Long-chain acyl-CoA synthetase 1 (ACSL1) plays a key role in fatty acid metabolism. To identify novel transcriptional modulators of ACSL1, we examined ACSL1 expression in liver tissues of hamsters fed a normal diet, a high fat diet, or a high cholesterol and high fat diet (HCHFD). Feeding hamsters HCHFD markedly reduced hepatic Acsl1 mRNA and protein levels as well as acyl-CoA synthetase activity. Decreases in Acsl1 expression strongly correlated with reductions in hepatic Srebp2 mRNA level and mature Srebp2 protein abundance. Conversely, administration of rosuvastatin (RSV) to hamsters increased hepatic Acsl1 expression. These new findings were reproduced in mice treated with RSV or fed the HCHFD. Furthermore, the RSV induction of acyl-CoA activity in mouse liver resulted in increases in plasma and hepatic cholesterol ester concentrations and reductions in free cholesterol amounts. Investigations on different ACSL1 transcript variants in HepG2 cells revealed that the mRNA expression of C-ACSL1 was specifically regulated by the sterol regulatory element (SRE)-binding protein (SREBP) pathway, and RSV treatment increased the C-ACSL1 abundance from a minor mRNA species to an abundant transcript. We analyzed 5'-flanking sequence of exon 1C of the human ACSL1 gene and identified one putative SRE site. By performing a promoter activity assay and DNA binding assays, we firmly demonstrated the key role of this SRE motif in SREBP2-mediated activation of C-ACSL1 gene transcription. Finally, we demonstrated that knockdown of endogenous SREBP2 in HepG2 cells lowered ACSL1 mRNA and protein levels. Altogether, this work discovered an unprecedented link between ACSL1 and SREBP2 via the specific regulation of the C-ACSL1 transcript. PMID:26728456

  13. Rapid development of a potent photo-triggered inhibitor of the serine hydrolase RBBP9.

    PubMed

    Liu, Xiaodan; Dix, Melissa; Speers, Anna E; Bachovchin, Daniel A; Zuhl, Andrea M; Cravatt, Benjamin F; Kodadek, Thomas J

    2012-09-24

    The serine hydrolases constitute a large class of enzymes that play important roles in physiology. There is great interest in the development of potent and selective pharmacological inhibitors of these proteins. Traditional active-site inhibitors often have limited selectivity within this superfamily and are tedious and expensive to discover. Using the serine hydrolase RBBP9 as a model target, we designed a rapid and relatively inexpensive route to highly selective peptoid-based inhibitors that can be activated by visible light. This technology provides rapid access to photo-activated tool compounds capable of selectively blocking the function of particular serine hydrolases. PMID:22907802

  14. Rapid Development of a Potent Photo-Triggered Inhibitor of the Serine Hydrolase RBBP9

    PubMed Central

    Liu, Xiaodan; Dix, Melissa; Speers, Anna E.; Bachovchin, Daniel A.; Zuhl, Andrea M.

    2013-01-01

    The serine hydrolases constitute a large class of enzymes that play important roles in physiology. There is great interest in the development of potent and selective pharmacological inhibitors to these proteins. Traditional active site inhibitors often have limited selectivity within this superfamily and are tedious and expensive to discover. Using the serine hydrolase RBBP9 as a model target, we report here a rapid and relatively inexpensive route to highly selective peptoid-based inhibitors that can be activated with visible light. This technology provides rapid access to photo-activated tool compounds capable of selectively blocking the function of particular serine hydrolases. PMID:22907802

  15. Curation of characterized glycoside hydrolases of fungal origin.

    PubMed

    Murphy, Caitlin; Powlowski, Justin; Wu, Min; Butler, Greg; Tsang, Adrian

    2011-01-01

    Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes. Database URL: http://mycoCLAP.fungalgenomics.ca/. PMID:21622642

  16. Curation of characterized glycoside hydrolases of Fungal origin

    PubMed Central

    Murphy, Caitlin; Powlowski, Justin; Wu, Min; Butler, Greg; Tsang, Adrian

    2011-01-01

    Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes. Database URL: http://mycoCLAP.fungalgenomics.ca/ PMID:21622642

  17. Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases.

    PubMed Central

    Summerer, Stephan; Hanano, Abdulsamie; Utsumi, Shigeru; Arand, Michael; Schuber, Francis; Blée, Elizabeth

    2002-01-01

    cis-9,10-epoxystearic acid was used as a tool to probe the active sites of epoxide hydrolases (EHs) of mammalian and plant origin. We have compared the stereochemical features of the hydrolysis of this substrate catalysed by soluble and membrane-bound rat liver EHs, by soluble EH (purified to apparent homogeneity) obtained from maize seedlings or celeriac roots, and by recombinant soybean EH expressed in yeast. Plant EHs were found to differ in their enantioselectivity, i.e. their ability to discriminate between the two enantiomers of 9,10-epoxystearic acid. For example, while the maize enzyme hydrated both enantiomers at the same rate, the EH from soybean exhibited very high enantioselectivity in favour of 9R,10S-epoxystearic acid. This latter enzyme also exhibited a strict stereoselectivity, i.e. it hydrolysed the racemic substrate with a very high enantioconvergence, yielding a single chiral diol product, threo-9R,10R-dihydroxystearic acid. Soybean EH shared these distinctive stereochemical features with the membrane-bound rat liver EH. The stereochemical outcome of these enzymes probably results from a stereoselective attack by the nucleophilic residue on the oxirane ring carbon having the (S)-configuration, leading to the presumed (in plant EH) covalent acyl-enzyme intermediate. In sharp contrast, the reactions catalysed by cytosolic rat liver EH exhibited a complete absence of enantioselectivity and enantioconvergence; this latter effect might be ascribed to a regioselective formation of the acyl-enzyme intermediate involving C-10 of 9,10-epoxystearic acid, independent of its configuration. Thus, compared with soybean EH, the active site of rat liver soluble EH displays a very distinct means of anchoring the oxirane ring of the fatty acid epoxides, and therefore appears to be a poor model for mapping the catalytic domain of plant EHs. PMID:12020347

  18. Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases.

    PubMed

    Summerer, Stephan; Hanano, Abdulsamie; Utsumi, Shigeru; Arand, Michael; Schuber, Francis; Blée, Elizabeth

    2002-09-01

    cis-9,10-epoxystearic acid was used as a tool to probe the active sites of epoxide hydrolases (EHs) of mammalian and plant origin. We have compared the stereochemical features of the hydrolysis of this substrate catalysed by soluble and membrane-bound rat liver EHs, by soluble EH (purified to apparent homogeneity) obtained from maize seedlings or celeriac roots, and by recombinant soybean EH expressed in yeast. Plant EHs were found to differ in their enantioselectivity, i.e. their ability to discriminate between the two enantiomers of 9,10-epoxystearic acid. For example, while the maize enzyme hydrated both enantiomers at the same rate, the EH from soybean exhibited very high enantioselectivity in favour of 9R,10S-epoxystearic acid. This latter enzyme also exhibited a strict stereoselectivity, i.e. it hydrolysed the racemic substrate with a very high enantioconvergence, yielding a single chiral diol product, threo-9R,10R-dihydroxystearic acid. Soybean EH shared these distinctive stereochemical features with the membrane-bound rat liver EH. The stereochemical outcome of these enzymes probably results from a stereoselective attack by the nucleophilic residue on the oxirane ring carbon having the (S)-configuration, leading to the presumed (in plant EH) covalent acyl-enzyme intermediate. In sharp contrast, the reactions catalysed by cytosolic rat liver EH exhibited a complete absence of enantioselectivity and enantioconvergence; this latter effect might be ascribed to a regioselective formation of the acyl-enzyme intermediate involving C-10 of 9,10-epoxystearic acid, independent of its configuration. Thus, compared with soybean EH, the active site of rat liver soluble EH displays a very distinct means of anchoring the oxirane ring of the fatty acid epoxides, and therefore appears to be a poor model for mapping the catalytic domain of plant EHs. PMID:12020347

  19. Acylated monogalactosyl diacylglycerol: prevalence in the plant kingdom and identification of an enzyme catalyzing galactolipid head group acylation in Arabidopsis thaliana.

    PubMed

    Nilsson, Anders K; Johansson, Oskar N; Fahlberg, Per; Kommuri, Murali; Töpel, Mats; Bodin, Lovisa J; Sikora, Per; Modarres, Masoomeh; Ekengren, Sophia; Nguyen, Chi T; Farmer, Edward E; Olsson, Olof; Ellerström, Mats; Andersson, Mats X

    2015-12-01

    The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono- and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl-MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl-MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12-oxo-phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA-containing galactolipids in the plant kingdom. While acyl-MGDG was found to be ubiquitous in green tissue of plants ranging from non-vascular plants to angiosperms, OPDA-containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non-oxidized and OPDA-containing acyl-MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl-MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response. PMID:26566971

  20. N-Acetylanthranilate Amidase from Arthrobacter nitroguajacolicus Rü61a, an α/β-Hydrolase-Fold Protein Active towards Aryl-Acylamides and -Esters, and Properties of Its Cysteine-Deficient Variant▿ †

    PubMed Central

    Kolkenbrock, Stephan; Parschat, Katja; Beermann, Bernd; Hinz, Hans-Jürgen; Fetzner, Susanne

    2006-01-01

    N-acetylanthranilate amidase (Amq), a 32.8-kDa monomeric amide hydrolase, is involved in quinaldine degradation by Arthrobacter nitroguajacolicus Rü61a. Sequence analysis and secondary structure predictions indicated that Amq is related to carboxylesterases and belongs to the α/β-hydrolase-fold superfamily of enzymes; inactivation of (His6-tagged) Amq by phenylmethanesulfonyl fluoride and diethyl pyrocarbonate and replacement of conserved residues suggested a catalytic triad consisting of S155, E235, and H266. Amq is most active towards aryl-acetylamides and aryl-acetylesters. Remarkably, its preference for ring-substituted analogues was different for amides and esters. Among the esters tested, phenylacetate was hydrolyzed with highest catalytic efficiency (kcat/Km = 208 mM−1 s−1), while among the aryl-acetylamides, o-carboxy- or o-nitro-substituted analogues were preferred over p-substituted or unsubstituted compounds. Hydrolysis by His6Amq of primary amides, lactams, N-acetylated amino acids, azocoll, tributyrin, and the acylanilide and urethane pesticides propachlor, propham, carbaryl, and isocarb was not observed; propanil was hydrolyzed with 1% N-acetylanthranilate amidase activity. The catalytic properties of the cysteine-deficient variant His6AmqC22A/C63A markedly differed from those of His6Amq. The replacements effected some changes in Kms of the enzyme and increased kcats for most aryl-acetylesters and some aryl-acetylamides by factors of about three to eight while decreasing kcat for the formyl analogue N-formylanthranilate by several orders of magnitude. Circular dichroism studies indicated that the cysteine-to-alanine replacements resulted in significant change of the overall fold, especially an increase in α-helicity of the cysteine-deficient protein. The conformational changes may also affect the active site and may account for the observed changes in kinetic properties. PMID:17041061

  1. Acylpeptide Hydrolase Inhibition as Targeted Strategy to Induce Proteasomal Down-Regulation

    PubMed Central

    Luini, Alberto; Ruvo, Menotti; Gogliettino, Marta; Langella, Emma; Saviano, Michele; Hegde, Ramanath N.; Sandomenico, Annamaria; Rossi, Mose

    2011-01-01

    Acylpeptide hydrolase (APEH), one of the four members of the prolyl oligopeptidase class, catalyses the removal of N-acylated amino acids from acetylated peptides and it has been postulated to play a key role in protein degradation machinery. Disruption of protein turnover has been established as an effective strategy to down-regulate the ubiquitin-proteasome system (UPS) and as a promising approach in anticancer therapy. Here, we illustrate a new pathway modulating UPS and proteasome activity through inhibition of APEH. To find novel molecules able to down-regulate APEH activity, we screened a set of synthetic peptides, reproducing the reactive-site loop of a known archaeal inhibitor of APEH (SsCEI), and the conjugated linoleic acid (CLA) isomers. A 12-mer SsCEI peptide and the trans10-cis12 isomer of CLA, were identified as specific APEH inhibitors and their effects on cell-based assays were paralleled by a dose-dependent reduction of proteasome activity and the activation of the pro-apoptotic caspase cascade. Moreover, cell treatment with the individual compounds increased the cytoplasm levels of several classic hallmarks of proteasome inhibition, such as NFkappaB, p21, and misfolded or polyubiquitinylated proteins, and additive effects were observed in cells exposed to a combination of both inhibitors without any cytotoxicity. Remarkably, transfection of human bronchial epithelial cells with APEH siRNA, promoted a marked accumulation of a mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), herein used as a model of misfolded protein typically degraded by UPS. Finally, molecular modeling studies, to gain insights into the APEH inhibition by the trans10-cis12 CLA isomer, were performed. Our study supports a previously unrecognized role of APEH as a negative effector of proteasome activity by an unknown mechanism and opens new perspectives for the development of strategies aimed at modulation of cancer progression. PMID:22016782

  2. The ɛ-Amino Group of Protein Lysine Residues Is Highly Susceptible to Nonenzymatic Acylation by Several Physiological Acyl-CoA Thioesters.

    PubMed

    Simic, Zeljko; Weiwad, Matthias; Schierhorn, Angelika; Steegborn, Clemens; Schutkowski, Mike

    2015-11-01

    Mitochondrial enzymes implicated in the pathophysiology of diabetes, cancer, and metabolic syndrome are highly regulated by acetylation. However, mitochondrial acetyltransferases have not been identified. Here, we show that acetylation and also other acylations are spontaneous processes that depend on pH value, acyl-CoA concentration and the chemical nature of the acyl residue. In the case of a peptide derived from carbamoyl phosphate synthetase 1, the rates of succinylation and glutarylation were up to 150 times than for acetylation. These results were confirmed by using the protein substrate cyclophilin A (CypA). Deacylation experiments revealed that SIRT3 exhibits deacetylase activity but is not able to remove any of the succinyl groups from CypA, whereas SIRT5 is an effective protein desuccinylase. Thus, the acylation landscape on lysine residues might largely depend on the enzymatic activity of specific sirtuins, and the availability and reactivity of acyl-CoA compounds. PMID:26382620

  3. Development of the aza-crown ether metal complexes as artificial hydrolase.

    PubMed

    Yu, Lan; Li, Fang-zhen; Wu, Jiao-yi; Xie, Jia-qing; Li, Shuo

    2016-01-01

    Hydrolases play a crucial role in the biochemical process, which can catalyze the hydrolysis of various compounds like carboxylic esters, phosphoesters, amides, nucleic acids, peptides, and so on. The design of artificial hydrolases has attracted extensive attention due to their scientific significance and potential applications in the field of gene medicine and molecular biology. Numerous macrocyclic metal complexes have been used as artificial hydrolase in the catalytic hydrolysis of the organic substrate. Aza-crown ether for this comment is a special class of the macrocyclic ligand containing both the nitrogen atoms and oxygen atoms in the ring. The studies showed that the aza-crown complexes exhibited high activity of hydrolytic enzyme. However, the aza-crown ether metal complex as artificial hydrolase is still very limited because of its difficulty in synthesis. This review summarizes the development of the aza-crown ether metal complexes as the artificial hydrolase, including the synthesis and catalysis of the transition metal complexes and lanthanide metal complexes of aza-crown ethers. The purpose of this review is to highlight: (1) the relationship between the structure and hydrolytic activity of synthetic hydrolase; (2) the synergistic effect of metal sites and ligands in the course of organic compound hydrolysis; and (3) the design strategies of the aza-crown ethers as hydrolase. PMID:26460062

  4. Genetic and Biochemical Characterization of a Novel Monoterpene ɛ-Lactone Hydrolase from Rhodococcus erythropolis DCL14

    PubMed Central

    van der Vlugt-Bergmans, Cécile J. B; van der Werf, Mariët J.

    2001-01-01

    A monoterpene ɛ-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is active with (4R)-4-isopropenyl-7-methyl-2-oxo-oxepanone and (6R)-6-isopropenyl-3-methyl-2-oxo-oxepanone, lactones derived from (4R)-dihydrocarvone, and 7-isopropyl-4-methyl-2-oxo-oxepanone, the lactone derived from menthone. Both enantiomers of 4-, 5-, 6-, and 7-methyl-2-oxo-oxepanone were converted at equal rates, suggesting that the enzyme is not stereoselective. Maximal enzyme activity was measured at pH 9.5 and 30°C. Determination of the N-terminal amino acid sequence of purified MLH enabled cloning of the corresponding gene by a combination of PCR and colony screening. The gene, designated mlhB (monoterpene lactone hydrolysis), showed up to 43% similarity to members of the GDXG family of lipolytic enzymes. Sequencing of the adjacent regions revealed two other open reading frames, one encoding a protein with similarity to the short-chain dehydrogenase reductase family and the second encoding a protein with similarity to acyl coenzyme A dehydrogenases. Both enzymes are possibly also involved in the monoterpene degradation pathways of this microorganism. PMID:11157238

  5. Synthesis and Th1-immunostimulatory activity of α-galactosylceramide analogues bearing a halogen-containing or selenium-containing acyl chain.

    PubMed

    Hossain, Md Imran; Hanashima, Shinya; Nomura, Takuto; Lethu, Sébastien; Tsuchikawa, Hiroshi; Murata, Michio; Kusaka, Hiroki; Kita, Shunsuke; Maenaka, Katsumi

    2016-08-15

    A novel series of CD1d ligand α-galactosylceramides (α-GalCers) were synthesized by incorporation of the heavy atoms Br and Se in the acyl chain backbone of α-galactosyl-N-cerotoylphytosphingosine. The synthetic analogues are potent CD1d ligands and stimulate mouse invariant natural killer T (iNKT) cells to selectively enhance Th1 cytokine production. These synthetic analogues would be efficient X-ray crystallographic probes to disclose precise atomic positions of alkyl carbons and lipid-protein interactions in KRN7000/CD1d complexes. PMID:27325450

  6. Asymmetric Allylboration of Acyl Imines Catalyzed by Chiral Diols

    PubMed Central

    Lou, Sha; Moquist, Philip N.; Schaus, Scott E.

    2008-01-01

    Chiral BINOL-derived diols catalyze the enantioselective asymmetric allylboration of acyl imines. The reaction requires 15 mol% of (S)-3,3′-Ph2-BINOL as the catalyst and allyldiisopropoxyborane as the nucleophile. The reaction products are obtained in good yields (75 – 94%) and high enantiomeric ratios (95:5 – 99.5:0.5) for aromatic and aliphatic imines. High diastereoselectivities (dr > 98:2) and enantioselectivities (er > 98:2) are obtained in the reactions of acyl imines with crotyldiisopropoxyboranes. This asymmetric transformation is directly applied to the synthesis of maraviroc, the selective CCR5 antagonist with potent activity against HIV-1 infection. Mechanistic investigations of the allylboration reaction including IR, NMR, and mass spectrometry study indicate that acyclic boronates are activated by chiral diols via exchange of one of the boronate alkoxy groups with activation of the acyl imine via hydrogen bonding. PMID:18020334

  7. Cloning and characterization of two rhamnogalacturonan hydrolase genes from Aspergillus niger.

    PubMed Central

    Suykerbuyk, M E; Kester, H C; Schaap, P J; Stam, H; Musters, W; Visser, J

    1997-01-01

    A rhamnogalacturonan hydrolase gene of Aspergillus aculeatus was used as a probe for the cloning of two rhamnogalacturonan hydrolase genes of Aspergillus niger. The corresponding proteins, rhamnogalacturonan hydrolases A and B, are 78 and 72% identical, respectively, with the A. aculeatus enzyme. In A. niger cultures which were shifted from growth on sucrose to growth on apple pectin as a carbon source, the expression of the rhamnogalacturonan hydrolase A gene (rhgA) was transiently induced after 3 h of growth on apple pectin. The rhamnogalacturonan hydrolase B gene was not induced by apple pectin, but the rhgB gene was derepressed after 18 h of growth on either apple pectin or sucrose. Gene fusions of the A. niger rhgA and rhgB coding regions with the strong and inducible Aspergillus awamori exlA promoter were used to obtain high-producing A. awamori transformants which were then used for the purification of the two A. niger rhamnogalacturonan hydrolases. High-performance anion-exchange chromatography of oligomeric degradation products showed that optimal degradation of an isolated highly branched pectin fraction by A. niger rhamnogalacturonan hydrolases A and B occurred at pH 3.6 and 4.1, respectively. The specific activities of rhamnogalacturonan hydrolases A and B were then 0.9 and 0.4 U/mg, respectively, which is significantly lower than the specific activity of A. aculeatus rhamnogalacturonan hydrolase (2.5 U/mg at an optimal pH of 4.5). Compared to the A enzymes, the A. niger B enzyme appears to have a different substrate specificity, since additional oligomers are formed. PMID:9212401

  8. Isolation and characterization of Xenopus soluble epoxide hydrolase.

    PubMed

    Purba, Endang R; Oguro, Ami; Imaoka, Susumu

    2014-07-01

    Soluble epoxide hydrolase (sEH) contributes to cell growth, but the contribution of sEH to embryonic development is not well understood. In this study, Xenopus sEH cDNA was isolated from embryos of Xenopus laevis. The Xenopus sEH was expressed in Escherichia coli and was purified. The epoxide hydrolase and phosphatase activities of purified sEH were investigated. The Xenopus sEH did not show phosphatase activity toward 4-methylumbelliferyl phosphate or several lysophosphatidic acids although it had EH activity. The amino acid sequence of Xenopus sEH was compared with that reported previously. We found amino acid substitutions of the 29th Thr to Asn and the 146th Arg to His and prepared a sEH mutant (N29T/H146R), designed as mutant 1. Neither wild-type sEH nor mutant 1 had phosphatase activity. Additional substitution of the 11th Gly with Asp was found by comparison with human sEH which has phosphatase activity, but the Xenopus sEH mutant G11D prepared as mutant 2 did not have phosphatase activity. The epoxide hydrolase activity of sEH seemed to be similar to that of human sEH, while Xenopus sEH did not have phosphatase activity toward several substrates that human sEH metabolizes. PMID:24681163

  9. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes.

    PubMed

    Yang, Wei; Di Vizio, Dolores; Kirchner, Marc; Steen, Hanno; Freeman, Michael R

    2010-01-01

    Protein S-acylation (palmitoylation), a reversible post-translational modification, is critically involved in regulating protein subcellular localization, activity, stability, and multimeric complex assembly. However, proteome scale characterization of S-acylation has lagged far behind that of phosphorylation, and global analysis of the localization of S-acylated proteins within different membrane domains has not been reported. Here we describe a novel proteomics approach, designated palmitoyl protein identification and site characterization (PalmPISC), for proteome scale enrichment and characterization of S-acylated proteins extracted from lipid raft-enriched and non-raft membranes. In combination with label-free spectral counting quantitation, PalmPISC led to the identification of 67 known and 331 novel candidate S-acylated proteins as well as the localization of 25 known and 143 novel candidate S-acylation sites. Palmitoyl acyltransferases DHHC5, DHHC6, and DHHC8 appear to be S-acylated on three cysteine residues within a novel CCX(7-13)C(S/T) motif downstream of a conserved Asp-His-His-Cys cysteine-rich domain, which may be a potential mechanism for regulating acyltransferase specificity and/or activity. S-Acylation may tether cytoplasmic acyl-protein thioesterase-1 to membranes, thus facilitating its interaction with and deacylation of membrane-associated S-acylated proteins. Our findings also suggest that certain ribosomal proteins may be targeted to lipid rafts via S-acylation, possibly to facilitate regulation of ribosomal protein activity and/or dynamic synthesis of lipid raft proteins in situ. In addition, bioinformatics analysis suggested that S-acylated proteins are highly enriched within core complexes of caveolae and tetraspanin-enriched microdomains, both cholesterol-rich membrane structures. The PalmPISC approach and the large scale human S-acylated protein data set are expected to provide powerful tools to facilitate our understanding of the

  10. Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β-amyloid.

    PubMed

    Kang, Suna; Moon, Na Rang; Kim, Da Sol; Kim, Sung Hoon; Park, Sunmin

    2015-09-01

    Ghrelin is a gastric hormone released during the fasting state that targets the hypothalamus where it induces hunger; however, emerging evidence suggests it may also affect memory function. We examined the effect of central acylated-ghrelin and DES-acetylated ghrelin (native ghrelin) on memory function and glucose metabolism in an experimentally induced Alzheimer's disease (AD) rat model. AD rats were divided into 3 groups and Non-AD rats were used as a normal-control group. Each rat in the AD groups had intracerebroventricular (ICV) infusion of β-amyloid (25-35; 16.8nmol/day) into the lateral ventricle for 3 days, and then the pumps were changed to infuse either acylated-ghrelin (0.2nmol/h; AD-G), DES-acylated ghrelin (0.2nmol/h; AD-DES-G), or saline (control; AD-C) for 3 weeks. The Non-AD group had ICV infusion of β-amyloid (35-25) which does not deposit in the hippocampus. During the next 3 weeks memory function, food intake, body weight gain, body fat composition, and glucose metabolism were measured. AD-C exhibited greater β-amyloid deposition compared to Non-AD-C, and AD-G suppressed the increased β-amyloid deposition and potentiated the phosphorylation AMPK. In addition, AD-G increased the phosphorylation GSK and decreased the phosphorylation of Tau in comparison to AD-C and AD-DES-G. Cognitive function, measured by passive avoidance and water maze tests, was much lower in AD-C than Non-AD-C whereas AD-G but not AD-DES-G prevented the decrease (p<0.021). Body weight gain was lower in AD-C group than Non-AD-C group without changing epididymal fat mass. AD-G reversed the decrease in body weight which was due to increased energy intake and decreased energy expenditure. The AD-G group exhibited a decrease in the second part of serum glucose levels during an oral glucose tolerance test (OGTT) compared to the AD-C and AD-DES-G group (p<0.009). However, area under the curve of insulin during the first part of OGTT was higher in AD-DES-G than other groups

  11. Polyglycine hydrolases: fungal b-lactamase-like endoproteases that cleave polyglycine regions within plant class IV chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyglycine hydrolases are secreted fungal proteases that cleave glycine-glycine peptide bonds in the inter-domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es-cmp) and Cochli...

  12. Miniaturization of hydrolase assays in thermocyclers.

    PubMed

    Lucena, Severino A; Moraes, Caroline S; Costa, Samara G; de Souza, Wanderley; Azambuja, Patrícia; Garcia, Eloi S; Genta, Fernando A

    2013-03-01

    We adapted the protocols of reducing sugar measurements with dinitrosalicylic acid and bicinchoninic acid for thermocyclers and their use in enzymatic assays for hydrolases such as amylase and β-1,3-glucanase. The use of thermocyclers for these enzymatic assays resulted in a 10 times reduction in the amount of reagent and volume of the sample needed when compared with conventional microplate protocols. We standardized absorbance readings from the polymerase chain reaction plates, which allowed us to make direct readings of the techniques above, and a β-glycosidase assay was also established under the same conditions. Standardization of the enzymatic reaction in thermocyclers resulted in less time-consuming temperature calibrations and without loss of volume through leakage or evaporation from the microplate. Kinetic parameters were successfully obtained, and the use of the thermocycler allowed the measurement of enzymatic activities in biological samples from the field with a limited amount of protein. PMID:23123426

  13. Orally Bioavailable Potent Soluble Epoxide Hydrolase Inhibitors

    PubMed Central

    Hwang, Sung Hee; Tsai, Hsing-Ju; Liu, Jun-Yan; Morisseau, Christophe; Hammock, Bruce D.

    2008-01-01

    A series of N,N′-disubstituted ureas having a conformationally restricted cis- or trans-1,4-cyclohexane α to the urea were prepared and tested as soluble epoxide hydrolase (sEH) inhibitors. This series of compounds showed low nanomolar to picomolar activities against recombinant human sEH. Both isomers showed similar potencies, but the trans isomers were more metabolically stable in human hepatic microsomes. Furthermore, these new potent inhibitors show a greater metabolic stability in vivo than previously described sEH inhibitors. We demonstrated that trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid 13g (t-AUCB, IC50 = 1.3 ± 0.05 nM) had excellent oral bioavailability (98%, n = 2) and blood area under the curve in dogs and was effective in vivo to treat hypotension in lipopolysaccharide challenged murine models. PMID:17616115

  14. A simplified electrostatic model for hydrolase catalysis.

    PubMed

    Pessoa Filho, Pedro de Alcantara; Prausnitz, John M

    2015-07-01

    Toward the development of an electrostatic model for enzyme catalysis, the active site of the enzyme is represented by a cavity whose surface (and beyond) is populated by electric charges as determined by pH and the enzyme's structure. The electric field in the cavity is obtained from electrostatics and a suitable computer program. The key chemical bond in the substrate, at its ends, has partial charges with opposite signs determined from published force-field parameters. The electric field attracts one end of the bond and repels the other, causing bond tension. If that tension exceeds the attractive force between the atoms, the bond breaks; the enzyme is then a successful catalyst. To illustrate this very simple model, based on numerous assumptions, some results are presented for three hydrolases: hen-egg white lysozyme, bovine trypsin and bovine ribonuclease. Attention is given to the effect of pH. PMID:25881958

  15. The 2.1Å Crystal Structure of an Acyl-CoA Synthetase from Methanosarcina acetivorans reveals an alternate acyl binding pocket for small branched acyl substrates†,‡

    PubMed Central

    Shah, Manish B.; Ingram-Smith, Cheryl; Cooper, Leroy L.; Qu, Jun; Meng, Yu; Smith, Kerry S.; Gulick, Andrew M.

    2009-01-01

    The acyl-AMP forming family of adenylating enzymes catalyze two-step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X-ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140° to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl-CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl-CoA synthetase and 4-chlorobenzoate:CoA ligase. Most interestingly, the acyl binding pocket of the new structure is compared with other acyl- and aryl-CoA synthetases. A comparison of the acyl-binding pocket of the acyl-CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl binding pocket. PMID:19544569

  16. Characterization of N-Acyl Phosphatidylethanolamine-Specific Phospholipase-D Isoforms in the Nematode Caenorhabditis elegans

    PubMed Central

    Harrison, Neale; Lone, Museer A.; Kaul, Tiffany K.; Reis Rodrigues, Pedro; Ogungbe, Ifedayo Victor; Gill, Matthew S.

    2014-01-01

    N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans) where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-acylethanolamine levels. C. elegans has two N-acyl phosphatidylethanolamine-specific phospholipase-D orthologs, nape-1 and nape-2, that are likely to have arisen from a gene duplication event. Here, we find that recombinant C. elegans NAPE-1 and NAPE-2 are capable of generating N-acylethanolamines in vitro, confirming their functional conservation. In vivo, they exhibit overlapping expression in the pharynx and the nervous system, but are also expressed discretely in these and other tissues, suggesting divergent roles. Indeed, nape-1 over-expression results in delayed growth and shortened lifespan only at 25°C, while nape-2 over-expression results in significant larval arrest and increased adult lifespan at 15°C. Interestingly, deletion of the N-acylethanolamine degradation enzyme faah-1 exacerbates nape-1 over-expression phenotypes, but suppresses the larval arrest phenotype of nape-2 over-expression, suggesting that faah-1 is coupled to nape-2, but not nape-1, in a negative feedback loop. We also find that over-expression of either nape-1 or nape-2 significantly enhances recovery from the dauer larval stage in the insulin signaling mutant daf-2(e1368), but only nape-1 over-expression reduces daf-2 adult lifespan, consistent with increased levels of the N-acylethanolamine eicosapentaenoyl ethanolamine. These results provide evidence that N-acylethanolamine biosynthetic enzymes in C. elegans have conserved function and suggest a temperature-dependent, functional divergence between the two isoforms. PMID:25423491

  17. Plant Acyl-CoA:Lysophosphatidylcholine Acyltransferases (LPCATs) Have Different Specificities in Their Forward and Reverse Reactions*

    PubMed Central

    Lager, Ida; Yilmaz, Jenny Lindberg; Zhou, Xue-Rong; Jasieniecka, Katarzyna; Kazachkov, Michael; Wang, Peng; Zou, Jitao; Weselake, Randall; Smith, Mark A.; Bayon, Shen; Dyer, John M.; Shockey, Jay M.; Heinz, Ernst; Green, Allan; Banas, Antoni; Stymne, Sten

    2013-01-01

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles in acyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for seven LPCATs from five different species, including species accumulating hydroxylated acyl groups in their seed oil, with a preference for C18-unsaturated acyl-CoA and low activity with palmitoyl-CoA and ricinoleoyl (12-hydroxyoctadec-9-enoyl)-CoA. We showed that Arabidopsis LPCAT1 and LPCAT2 enzymes catalyzed the acylation and de-acylation of both sn positions of PC, with a preference for the sn-2 position. When acyl specificities of the Arabidopsis LPCATs were measured in the reverse reaction, sn-2-bound oleoyl, linoleoyl, and linolenoyl groups from PC were transferred to acyl-CoA to a similar extent. However, a ricinoleoyl group at the sn-2-position of PC was removed 4–6-fold faster than an oleoyl group in the reverse reaction, despite poor utilization in the forward reaction. The data presented, taken together with earlier published reports on in vivo lipid metabolism, support the hypothesis that plant LPCAT enzymes play an important role in regulating the acyl-CoA composition in plant cells by transferring polyunsaturated and hydroxy fatty acids produced on PC directly to the acyl-CoA pool for further metabolism or catabolism. PMID:24189065

  18. Two fatty acyl reductases involved in moth pheromone biosynthesis.

    PubMed

    Antony, Binu; Ding, Bao-Jian; Moto, Ken'Ichi; Aldosari, Saleh A; Aldawood, Abdulrahman S

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective 'single pgFARs' produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a 'single reductase' can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  19. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  20. Pleiotropic Effect of AccD5 and AccE5 Depletion in Acyl-Coenzyme A Carboxylase Activity and in Lipid Biosynthesis in Mycobacteria

    PubMed Central

    Bazet Lyonnet, Bernardo; Diacovich, Lautaro; Cabruja, Matías; Bardou, Fabienne; Quémard, Annaïk; Gago, Gabriela; Gramajo, Hugo

    2014-01-01

    Mycobacteria contain a large variety of fatty acids which are used for the biosynthesis of several complex cell wall lipids that have been implicated in the ability of the organism to resist host defenses. The building blocks for the biosynthesis of all these lipids are provided by a fairly complex set of acyl-CoA carboxylases (ACCases) whose subunit composition and roles within these organisms have not yet been clearly established. Previous biochemical and structural studies provided strong evidences that ACCase 5 from Mycobacterium tuberculosis is formed by the AccA3, AccD5 and AccE5 subunits and that this enzyme complex carboxylates acetyl-CoA and propionyl-CoA with a clear substrate preference for the latest. In this work we used a genetic approach to unambiguously demonstrate that the products of both accD5 and accE5 genes are essential for the viability of Mycobacterium smegmatis. By obtaining a conditional mutant on the accD5-accE5 operon, we also demonstrated that the main physiological role of this enzyme complex was to provide the substrates for fatty acid and mycolic acid biosynthesis. Furthermore, enzymatic and biochemical analysis of the conditional mutant provided strong evidences supporting the notion that AccD5 and/or AccE5 have an additional role in the carboxylation of long chain acyl-CoA prior to mycolic acid condensation. These studies represent a significant step towards a better understanding of the roles of ACCases in mycobacteria and confirm ACCase 5 as an interesting target for the development of new antimycobacterial drugs. PMID:24950047

  1. Identification of the C-Terminal GH5 Domain from CbCel9B/Man5A as the First Glycoside Hydrolase with Thermal Activation Property from a Multimodular Bifunctional Enzyme

    PubMed Central

    Wang, Rong; Gong, Li; Xue, Xianli; Qin, Xing; Ma, Rui; Luo, Huiying; Zhang, Yongjie; Yao, Bin; Su, Xiaoyun

    2016-01-01

    Caldicellulosiruptor bescii encodes at least six unique multimodular glycoside hydrolases crucial for plant cell wall polysaccharides degradation, with each having two catalytic domains separated by two to three carbohydrate binding modules. Among the six enzymes, three have one N- or C-terminal GH5 domain with identical amino acid sequences. Despite a few reports on some of these multimodular enzymes, little is known about how the conserved GH5 domains behave, which are believed to be important due to the gene duplication. We thus cloned a representative GH5 domain from the C-terminus of a multimodular protein, i.e. the bifunctional cellulase/mannanase CbCel9B/Man5A which has been reported, and expressed it in Escherichia coli. Without any appending CBMs, the recombinant CbMan5A was still able to hydrolyze a variety of mannan substrates with different backbone linkages or side-chain decorations. While CbMan5A displayed the same pH optimum as CbCel9B/Man5A, it had an increased optimal temperature (90°C) and moreover, was activated by heating at 70°C and 80°C, a property not ever reported for the full-length protein. The turnover numbers of CbMan5A on mannan substrates were, however, lower than those of CbCel9B/Man5A. These data suggested that evolution of CbMan5A and the other domains into a single polypeptide is not a simple assembly; rather, the behavior of one module may be affected by the other ones in the full-length enzyme. The differential scanning calorimetry analysis further indicated that heating CbMan5A was not a simple transition state process. To the best knowledge of the authors, CbMan5A is the first glycoside hydrolase with thermal activation property identified from a multimodular bifunctional enzyme. PMID:27258548

  2. Prunus serotina Amygdalin Hydrolase and Prunasin Hydrolase 1

    PubMed Central

    Li, Chun Ping; Swain, Elisabeth; Poulton, Jonathan E.

    1992-01-01

    In black cherry (Prunus serotina Ehrh.) seed homogenates, amygdalin hydrolase (AH) participates with prunasin hydrolase (PH) and mandelonitrile lyase in the sequential degradation of (R)-amygdalin to HCN, benzaldehyde, and glucose. Four isozymes of AH (designated AH I, I′, II, II′) were purified from mature cherry seeds by concanavalin A-Sepharose 4B chromatography, ion-exchange chromatography, and chromatofocusing. All isozymes were monomeric glycoproteins with native molecular masses of 52 kD. They showed similar kinetic properties (pH optima, Km, Vmax) but differed in their isoelectric points and N-terminal amino acid sequences. Analytical isoelectric focusing revealed the presence of subisozymes of each isozyme. The relative abundance of these isozymes and/or subisozymes varied from seed to seed. Three isozymes of PH (designated PH I, IIa, and IIb) were purified to apparent homogeneity by affinity, ion-exchange, and hydroxyapatite chromatography and by nondenaturing polyacrylamide gel electrophoresis. PH I and PH IIb are 68-kD monomeric glycoproteins, whereas PH IIa is dimeric (140 kD). The N-terminal sequences of all PH and AH isozymes showed considerable similarity. Polyclonal antisera raised in rabbits against deglycosylated AH I or a mixture of the three deglycosylated PH isozymes were not monospecific as judged by immunoblotting analysis, but also cross-reacted with the opposing glucosidase. Monospecific antisera deemed suitable for immunocytochemistry and screening of expression libraries were obtained by affinity chromatography. Each antiserum recognized all known isozymes of the specific glucosidase used as antigen. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 PMID:16652959

  3. Potent Urea and Carbamate Inhibitors of Soluble Epoxide Hydrolases

    NASA Astrophysics Data System (ADS)

    Morisseau, Christophe; Goodrow, Marvin H.; Dowdy, Deanna; Zheng, Jiang; Greene, Jessica F.; Sanborn, James R.; Hammock, Bruce D.

    1999-08-01

    The soluble epoxide hydrolase (sEH) plays a significant role in the biosynthesis of inflammation mediators as well as xenobiotic transformations. Herein, we report the discovery of substituted ureas and carbamates as potent inhibitors of sEH. Some of these selective, competitive tightbinding inhibitors with nanomolar Ki values interacted stoichiometrically with the homogenous recombinant murine and human sEHs. These inhibitors enhance cytotoxicity of trans-stilbene oxide, which is active as the epoxide, but reduce cytotoxicity of leukotoxin, which is activated by epoxide hydrolase to its toxic diol. They also reduce toxicity of leukotoxin in vivo in mice and prevent symptoms suggestive of acute respiratory distress syndrome. These potent inhibitors may be valuable tools for testing hypotheses of involvement of diol and epoxide lipids in chemical mediation in vitro or in vivo systems.

  4. Acylated sucroses and acylated quinic acids analogs from the flower buds of Prunus mume and their inhibitory effect on melanogenesis.

    PubMed

    Nakamura, Seikou; Fujimoto, Katsuyoshi; Matsumoto, Takahiro; Nakashima, Souichi; Ohta, Tomoe; Ogawa, Keiko; Matsuda, Hisashi; Yoshikawa, Masayuki

    2013-08-01

    The methanolic extract from the flower buds of Prunus mume, cultivated in Zhejiang Province, China, showed an inhibitory effect on melanogenesis in theophylline-stimulated B16 melanoma 4A5 cells. From the methanolic extract, five acylated sucroses, mumeoses A-E, and three acylated quinic acid analogs, 5-O-(E)-p-coumaroylquinic acid ethyl ester, and mumeic acid-A and its methyl ester, were isolated together with 13 known compounds. The chemical structures of the compounds were elucidated on the basis of chemical and physicochemical evidence. Inhibitory effects of the isolated compounds on melanogenesis in theophylline-stimulated B16 melanoma 4A5 cells were also investigated. Acylated quinic acid analogs substantially inhibited melanogenesis. In particular, 5-O-(E)-feruloylquinic acid methyl ester exhibited a potent inhibitory effect [inhibition (%): 21.5±1.0 (P<0.01) at 0.1 μM]. Moreover, its biological effect was much stronger than that of the reference compound, arbutin [inhibition (%): 10.6±0.6 (P<0.01) at 10 μM]. Interestingly, the obtained acylated quinic acid analogs displaying melanogenesis inhibitory activity showed no cytotoxicity [cell viability >97% at 10 μM]. It is concluded that acylated quinic acid analogs are promising therapeutic agents for the treatment of skin disorders. PMID:23693120

  5. Synthesis of Long-Chain Acyl-CoA in Chloroplast Envelope Membranes 1

    PubMed Central

    Joyard, Jacques; Stumpf, Paul K.

    1981-01-01

    The chloroplast envelope is the site of a very active long-chain acylcoenzyme A (CoA) synthetase. Furthermore, we have recently shown that an acyl CoA thioesterase is also associated with envelope membrane (Joyard J, PK Stumpf 1980 Plant Physiol 65: 1039-1043). To clarify the interacting roles of both the acyl-CoA thioesterase and the acyl-CoA synthetase, the formation of acyl-CoA in envelope membranes was examined with different techniques which permitted the measurement of the actual rates of acyl-CoA formation. Using [14C]ATP or [14C]oleic acid as labeled substrates, it can be shown that the envelope acyl-CoA synthetase required both Mg2+ and dithiothreitol. Triton X-100 slightly stimulated the activity. The specificity of the acyl-CoA synthetase was determined either with [14C]ATP or with [3H]CoA as substrates. The results obtained in both cases were similar, that is, as substrates, the unsaturated fatty acids were more effective than saturated fatty acids, the velocity of the reaction increased from lauric acid to palmitic acid, and the maximum velocity was obtained with unsaturated C18 fatty acids. The results obtained suggest that the acyl-CoA thioesterase associated with envelope membranes could be an ultimate control to prevent the transport (outside of the chloroplast) or the insertion (into chloroplast lipids) of fatty acids with chains shorter than C16. PMID:16661656

  6. Human valacyclovir hydrolase/biphenyl hydrolase-like protein is a highly efficient homocysteine thiolactonase.

    PubMed

    Marsillach, Judit; Suzuki, Stephanie M; Richter, Rebecca J; McDonald, Matthew G; Rademacher, Peter M; MacCoss, Michael J; Hsieh, Edward J; Rettie, Allan E; Furlong, Clement E

    2014-01-01

    Homocysteinylation of lysine residues by homocysteine thiolactone (HCTL), a reactive homocysteine metabolite, results in protein aggregation and malfunction, and is a well-known risk factor for cardiovascular, autoimmune and neurological diseases. Human plasma paraoxonase-1 (PON1) and bleomycin hydrolase (Blmh) have been reported as the physiological HCTL detoxifying enzymes. However, the catalytic efficiency of HCTL hydrolysis by Blmh is low and not saturated at 20 mM HCTL. The catalytic efficiency of PON1 for HCTL hydrolysis is 100-fold lower than that of Blmh. A homocysteine thiolactonase (HCTLase) was purified from human liver and identified by mass spectrometry (MS) as the previously described human biphenyl hydrolase-like protein (BPHL). To further characterize this newly described HCTLase activity, BPHL was expressed in Escherichia coli and purified. The sequence of the recombinant BPHL (rBPHL) and hydrolytic products of the substrates HCTL and valacyclovir were verified by MS. We found that the catalytic efficiency (kcat/Km) of rBPHL for HCTL hydrolysis was 7.7 × 10(4) M(-1)s(-1), orders of magnitude higher than that of PON1 or Blmh, indicating a more significant physiological role for BPHL in detoxifying HCTL. PMID:25333274

  7. Human Valacyclovir Hydrolase/Biphenyl Hydrolase-Like Protein Is a Highly Efficient Homocysteine Thiolactonase

    PubMed Central

    McDonald, Matthew G.; Rademacher, Peter M.; MacCoss, Michael J.; Hsieh, Edward J.; Rettie, Allan E.; Furlong, Clement E.

    2014-01-01

    Homocysteinylation of lysine residues by homocysteine thiolactone (HCTL), a reactive homocysteine metabolite, results in protein aggregation and malfunction, and is a well-known risk factor for cardiovascular, autoimmune and neurological diseases. Human plasma paraoxonase-1 (PON1) and bleomycin hydrolase (Blmh) have been reported as the physiological HCTL detoxifying enzymes. However, the catalytic efficiency of HCTL hydrolysis by Blmh is low and not saturated at 20 mM HCTL. The catalytic efficiency of PON1 for HCTL hydrolysis is 100-fold lower than that of Blmh. A homocysteine thiolactonase (HCTLase) was purified from human liver and identified by mass spectrometry (MS) as the previously described human biphenyl hydrolase-like protein (BPHL). To further characterize this newly described HCTLase activity, BPHL was expressed in Escherichia coli and purified. The sequence of the recombinant BPHL (rBPHL) and hydrolytic products of the substrates HCTL and valacyclovir were verified by MS. We found that the catalytic efficiency (kcat/Km) of rBPHL for HCTL hydrolysis was 7.7 × 104 M−1s−1, orders of magnitude higher than that of PON1 or Blmh, indicating a more significant physiological role for BPHL in detoxifying HCTL. PMID:25333274

  8. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.

    PubMed

    Zhang, Xiujun; Li, Mai; Agrawal, Arpita; San, Ka-Yiu

    2011-11-01

    Microbial biosynthesis of fatty acid-like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Free fatty acids can be produced by introducing an acyl-acyl carrier protein thioesterase gene into Escherichia coli. The presence of the acyl-ACP thioesterase will break the fatty acid elongation cycle and release free fatty acid. Depending on their sequence similarity and substrate specificity, class FatA thioesterase is active on unsaturated acyl-ACPs and class FatB prefers saturated acyl group. Different acyl-ACP thioesterases have different degrees of chain length specificity. Although some of these enzymes have been characterized from a number of sources, information on their ability to produce free fatty acid in microbial cells has not been extensively examined until recently. In this study, we examined the effect of the overexpression of acyl-ACP thioesterase genes from Diploknema butyracea, Gossypium hirsutum, Ricinus communis and Jatropha curcas on free fatty acid production. In particular, we are interested in studying the effect of different acyl-ACP thioesterase on the quantities and compositions of free fatty acid produced by an E. coli strain ML103 carrying these constructs. It is shown that the accumulation of free fatty acid depends on the acyl-ACP thioesterase used. The strain carrying the acyl-ACP thioesterase gene from D. butyracea produced approximately 0.2g/L of free fatty acid while the strains carrying the acyl-ACP thioesterase genes from R. communis and J. curcas produced the most free fatty acid at a high level of more than 2.0 g/L at 48 h. These two strains accumulated three major straight chain free fatty acids, C14, C16:1 and C16 at levels about 40%, 35% and 20%, respectively. PMID:22001432

  9. Assays for the classification of two types of esterases: carboxylic ester hydrolases and phosphoric triester hydrolases.

    PubMed

    Anspaugh, Douglas D; Roe, R Michael

    2002-11-01

    Assays for the Classification of Two Types of Esterases: Carboxylic Ester Hydrolase and Phosphoric Triester Hydrolase (Douglas D. Anspaugh and Michael Roe, North Carolina State University, Raleigh, North Carolina). This unit describes assays that quantitate two types of esterase the carboxylic ester hydrolases and the phosphoric triester hydrolases. Carboxylic ester hydrolases include the B-esterases, which are inhibited by organophosphorus compounds. Among the phosphoric triester hydrolases is aryldialkylphosphatase, which has been called A-esterase or paraoxonase due to its ability to oxidize paraoxon and other organophosphates. These assays are colorimetric and miniaturized for rapid simultaneous testing of multiple, small-volume samples in a microtiter plate format. There is also a discussion of the history of esterase nomenclature and the reasons why this large group of enzymes is so difficult to classify. PMID:20945297

  10. Isolation, characterization, and localization of AgaSGNH cDNA: a new SGNH-motif plant hydrolase specific to Agave americana L. leaf epidermis.

    PubMed

    Reina, José J; Guerrero, Consuelo; Heredia, Antonio

    2007-01-01

    GDSL and SGNH hydrolases are lipases involved in a wide range of functions, behaving in many cases as bifunctional enzymes. In this work, the isolation and characterization of AgaSGNH, a cDNA encoding a member of the SGNH-hydrolase superfamily from young leaf epidermis of the monocot Agave americana L., is reported. The protein possesses a typical signal peptide at its N-terminus that allows its secretion to the epidermis cell wall, as verified by immunolocalization experiments. In addition, the AgaSGNH sequence contains a His-Leu-Gly-Ala-Glu (HLGAE) motif which is similar to that observed in other plant acyltransferases. Expression levels by northern blot and in situ localization of the corresponding mRNA, as well as the immunolocalization of the protein in Agave young leaves indicate that the protein is specifically present in the epidermal cells. The detailed study performed in different parts of the Agave leaf confirms two aspects: first, the expression of AgaSGNH is limited to the epidermis, and second, the maximum mRNA levels are found in the epidermis of the youngest zones of the leaf which are especially active in cutin biosynthesis. These levels dramatically decrease in the oldest zone of the leaf, where the presence of AgaSGNH mRNA is undetectable, and the biosynthesis of different cuticle components is severely reduced. These data could be compatible with the hypothesis that AgaSGNH could carry out both the hydrolysis and the transfer, from an activated acyl-CoA to a crescent cutin in Agave americana leaves and, therefore, be involved in the still unknown mechanism of plant cutin biosynthesis. PMID:17609535

  11. SARS coronavirus protein 7a interacts with human Ap4A-hydrolase

    PubMed Central

    2010-01-01

    The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm. PMID:20144233

  12. S-Mercuration of ubiquitin carboxyl-terminal hydrolase L1 through Cys152 by methylmercury causes inhibition of its catalytic activity and reduction of monoubiquitin levels in SH-SY5Y cells.

    PubMed

    Toyama, Takashi; Abiko, Yumi; Katayama, Yuko; Kaji, Toshiyuki; Kumagai, Yoshito

    2015-01-01

    Methylmercury (MeHg) is an environmental electrophile that covalently modifies cellular proteins. In this study, we identified proteins that undergo S-mercuration by MeHg. By combining two-dimensional SDS-PAGE, atomic absorption spectrometry and ultra performance liquid chromatography mass spectrometry (UPLC/MS/MS), we revealed that ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is a target for S-mercuration in human neuroblastoma SH-SY5Y cells exposed to MeHg (1 µM, 9 hr). The modification site of UCH-L1 by MeHg was Cys152, as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. MeHg was shown to inhibit the catalytic activity of recombinant human UCH-L1 in a concentration-dependent manner. Knockdown of UCH-L1 indicated that this enzyme plays a critical role in regulating mono-ubiquitin (monoUb) levels in SH-SY5Y cells and exposure of SH-SY5Y cells to MeHg caused a reduction in the level of monoUb in these cells. These observations suggest that UCH-L1 readily undergoes S-mercuration by MeHg through Cys152 and this covalent modification inhibits UCH-L1, leading to the potential disruption of the maintenance of cellular monoUb levels. PMID:26558469

  13. [GH10 Family of Glycoside Hydrolases: Structure and Evolutionary Connections].

    PubMed

    Naumoff, D G

    2016-01-01

    Evolutionary connections were analyzed for endo-β-xylanases, which possess the GH10 family catalytic domains. A homology search yielded thrice as many proteins as are available from the Carbohydrate-Active Enzymes (CAZy) database. Lateral gene transfer was shown to play an important role in evolution of bacterial proteins of the family, especially in the phyla Acidobacteria, Cyanobacteria, Planctomycetes, Spirochaetes, and Verrucomicrobia. In the case of Verrucomicrobia, 23 lateral transfers from organisms of other phyla were detected. Evolutionary relationships were observed between the GH10 family domains and domains with the TIM-barrel tertiary structure from several other glycosidase families. The GH39 family of glycoside hydrolases showed the closest relationship. Unclassified homologs were grouped into 12 novel families of putative glycoside hydrolases (GHL51-GHL62). PMID:27028821

  14. Palladium-Catalyzed Environmentally Benign Acylation.

    PubMed

    Suchand, Basuli; Satyanarayana, Gedu

    2016-08-01

    Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp(2) C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone. PMID:27377566

  15. Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase 19 (AtNUDX19) gene.

    PubMed

    Corpas, Francisco J; Aguayo-Trinidad, Simeón; Ogawa, Takahisa; Yoshimura, Kazuya; Shigeoka, Shigeru

    2016-03-15

    NADPH is an important cofactor in cell growth, proliferation and detoxification. Arabidopsis thaliana Nudix hydrolase 19 (AtNUDX19) belongs to a family of proteins defined by the conserved amino-acid sequence GX5-EX7REUXEEXGU which has the capacity to hydrolyze NADPH as a physiological substrate in vivo. Given the importance of NADPH in the cellular redox homeostasis of plants, the present study compares the responses of the main NADPH-recycling systems including NADP-isocitrate dehydrogenase (ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and NADP-malic enzyme (ME) in the leaves and roots of Arabidopsis wild-type (Wt) and knock-out (KO) AtNUDX19 mutant (Atnudx19) plants under physiological and arsenic-induced stress conditions. Two major features were observed in the behavior of the main NADPH-recycling systems: (i) under optimal conditions in both organs, the levels of these activities were higher in nudx19 mutants than in Wt plants; and, (ii) under 500μM AsV conditions, these activities increase, especially in nudx19 mutant plants. Moreover, G6PDH activity in roots was the most affected enzyme in both Wt and nudx19 mutant plants, with a 4.6-fold and 5.0-fold increase, respectively. In summary, the data reveals a connection between the absence of chloroplastic AtNUDX19 and the rise in all NADP-dehydrogenase activities under physiological and arsenic-induced stress conditions, particularly in roots. This suggests that AtNUDX19 could be a key factor in modulating the NADPH pool in plants and consequently in redox homeostasis. PMID:26878367

  16. Multi-organ Abnormalities and mTORC1 Activation in Zebrafish Model of Multiple Acyl-CoA Dehydrogenase Deficiency

    PubMed Central

    Kim, Seok-Hyung; Scott, Sarah A.; Bennett, Michael J.; Carson, Robert P.; Fessel, Joshua; Brown, H. Alex; Ess, Kevin C.

    2013-01-01

    Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxavu463) that has an inactivating mutation in the etfa gene. dxavu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxavu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxavu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1) with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity. PMID:23785301

  17. Identification of oxidized protein hydrolase of human erythrocytes as acylpeptide hydrolase.

    PubMed

    Fujino, T; Watanabe, K; Beppu, M; Kikugawa, K; Yasuda, H

    2000-03-16

    Partial amino acid sequence of 80 kDa oxidized protein hydrolase (OPH), a serine protease present in human erythrocyte cytosol (Fujino et al., J. Biochem. 124 (1998) 1077-1085) that is adherent to oxidized erythrocyte membranes and preferentially degrades oxidatively damaged proteins (Beppu et al., Biochim. Biophys. Acta 1196 (1994) 81-87; Fujino et al., Biochim. Biophys. Acta 1374 (1998) 47-55) was determined. The N-terminal amino acid of diisopropyl fluorophosphate (DFP)-labeled OPH was suggested to be masked. Six peptide fragments of OPH obtained by digestion of DFP-labeled OPH with lysyl endopeptidase were isolated by use of reverse-phase high-performance liquid chromatography, and the sequence of more than eight amino acids from the N-terminal position of each peptide was determined. Results of homology search of amino acid sequence of each peptide strongly suggested that the protein was identical with human liver acylpeptide hydrolase (ACPH). OPH showed ACPH activity when N-acetyl-L-alanine p-nitroanilide and N-acetylmethionyl L-alanine were used as substrates. Glutathione S-transferase (GST)-tagged recombinant ACPH (rACPH) was prepared by use of baculovirus expression system as a 107-kDa protein from cDNA of human erythroleukemic cell line K-562. rACPH reacted with anti-OPH antiserum from rabbit. rACPH showed OPH activity when hydrogen peroxide-oxidized or glycated bovine serum albumin was used as substrates. As well as the enzyme activities of OPH, those of rACPH were inhibited by DFP. The results clearly demonstrate that ACPH, whose physiological function has not yet been well characterized, can play an important role as OPH in destroying oxidatively damaged proteins in living cells. PMID:10719179

  18. Discovery of Triterpenoids as Reversible Inhibitors of α/β-hydrolase Domain Containing 12 (ABHD12)

    PubMed Central

    Parkkari, Teija; Haavikko, Raisa; Laitinen, Tuomo; Navia-Paldanius, Dina; Rytilahti, Roosa; Vaara, Miia; Lehtonen, Marko; Alakurtti, Sami; Yli-Kauhaluoma, Jari; Nevalainen, Tapio; Savinainen, Juha R.; Laitinen, Jarmo T.

    2014-01-01

    Background α/β-hydrolase domain containing (ABHD)12 is a recently discovered serine hydrolase that acts in vivo as a lysophospholipase for lysophosphatidylserine. Dysfunctional ABHD12 has been linked to the rare neurodegenerative disorder called PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, cataract). In vitro, ABHD12 has been implicated in the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG). Further studies on ABHD12 function are hampered as no selective inhibitor have been identified to date. In contrast to the situation with the other endocannabinoid hydrolases, ABHD12 has remained a challenging target for inhibitor development as no crystal structures are available to facilitate drug design. Methodology/Principal Findings Here we report the unexpected discovery that certain triterpene-based structures inhibit human ABHD12 hydrolase activity in a reversible manner, the best compounds showing submicromolar potency. Based on structure activity relationship (SAR) data collected for 68 natural and synthetic triterpenoid structures, a pharmacophore model has been constructed. A pentacyclic triterpene backbone with carboxyl group at position 17, small hydrophobic substituent at the position 4, hydrogen bond donor or acceptor at position 3 accompanied with four axial methyl substituents was found crucial for ABHD12 inhibitor activity. Although the triterpenoids typically may have multiple protein targets, we witnessed unprecedented selectivity for ABHD12 among the metabolic serine hydrolases, as activity-based protein profiling of mouse brain membrane proteome indicated that the representative ABHD12 inhibitors did not inhibit other serine hydrolases, nor did they target cannabinoid receptors. Conclusions/Significance We have identified reversibly-acting triterpene-based inhibitors that show remarkable selectivity for ABHD12 over other metabolic serine hydrolases. Based on SAR data, we have constructed the first pharmacophore

  19. Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa

    PubMed Central

    Korneev, Kirill V.; Arbatsky, Nikolay P.; Molinaro, Antonio; Palmigiano, Angelo; Shaikhutdinova, Rima Z.; Shneider, Mikhail M.; Pier, Gerald B.; Kondakova, Anna N.; Sviriaeva, Ekaterina N.; Sturiale, Luisa; Garozzo, Domenico; Kruglov, Andrey A.; Nedospasov, Sergei A.; Drutskaya, Marina S.; Knirel, Yuriy A.; Kuprash, Dmitry V.

    2015-01-01

    Toll-like receptor 4 (TLR4) is required for activation of innate immunity upon recognition of lipopolysaccharide (LPS) of Gram-negative bacteria. The ability of TLR4 to respond to a particular LPS species is important since insufficient activation may not prevent bacterial growth while excessive immune reaction may lead to immunopathology associated with sepsis. Here, we investigated the biological activity of LPS from Burkholderia mallei that causes glanders, and from the two well-known opportunistic pathogens Acinetobacter baumannii and Pseudomonas aeruginosa (causative agents of nosocomial infections). For each bacterial strain, R-form LPS preparations were purified by hydrophobic chromatography and the chemical structure of lipid A, an LPS structural component, was elucidated by HR-MALDI-TOF mass spectrometry. The biological activity of LPS samples was evaluated by their ability to induce production of proinflammatory cytokines, such as IL-6 and TNF, by bone marrow-derived macrophages. Our results demonstrate direct correlation between the biological activity of LPS from these pathogenic bacteria and the extent of their lipid A acylation. PMID:26635809

  20. Des-acyl ghrelin prevents heatstroke-like symptoms in rats exposed to high temperature and high humidity.

    PubMed

    Inoue, Yoshiyuki; Hayashi, Yujiro; Kangawa, Kenji; Suzuki, Yoshihiro; Murakami, Noboru; Nakahara, Keiko

    2016-02-26

    We have shown previously that des-acyl ghrelin decreases body temperature in rats through activation of the parasympathetic nervous system. Here we investigated whether des-acyl ghrelin ameliorates heatstroke in rats exposed to high temperature. Peripheral administration of des-acyl ghrelin significantly attenuated hyperthermia induced by exposure to high-temperature (35°C) together with high humidity (70-80%). Although biochemical analysis revealed that exposure to high temperature significantly increased hematocrit and the serum levels of aspartate amino transferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and electrolytes (Na(+), K(+), Cl(-)), most of these heatstroke-associated reactions were significantly reduced by treatment with des-acyl ghrelin. The level of des-acyl ghrelin in plasma was also found to be significantly increased under high-temperature conditions. These results suggest that des-acyl ghrelin could be useful for preventing heatstroke under high temperature condition. PMID:26773867

  1. Enzyme-coupled assays for flip-flop of acyl-Coenzyme A in liposomes.

    PubMed

    Bavdek, Andrej; Vazquez, Hector M; Conzelmann, Andreas

    2015-11-01

    Acyl-Coenzyme A is made in the cytosol. Certain enzymes using acyl-CoA seem to operate in the lumen of the ER but no corresponding flippases for acyl-CoA or an activated acyl have been described. In order to test the ability of purified candidate flippases to operate the transport of acyl-CoA through lipid bilayers in vitro we developed three enzyme-coupled assays using large unilamellar vesicles (LUVs) obtained by detergent removal. The first assay uses liposomes encapsulating a water-soluble acyl-CoA:glycerol-3-phosphate acyl transferase plus glycerol-3-phosphate (G3P). It measures formation of [(3)H]lyso-phosphatidic acid inside liposomes after [(3)H]palmitoyl-CoA has been added from outside. Two other tests use empty liposomes containing [(3)H]palmitoyl-CoA in the inner membrane leaflet, to which either soluble acyl-CoA:glycerol-3-phosphate acyl transferase plus glycerol-3-phosphate or alkaline phosphatase are added from outside. Here one can follow the appearance of [(3)H]lyso-phosphatidic acid or of dephosphorylated [(3)H]acyl-CoA, respectively, both being made outside the liposomes. Although the liposomes may retain small amounts of detergent, all these tests show that palmitoyl-CoA crosses the lipid bilayer only very slowly and that the lipid composition of liposomes barely affects the flip-flop rate. Thus, palmitoyl-CoA cannot cross the membrane spontaneously implying that in vivo some transport mechanism is required. PMID:26325346

  2. The Physiology of Protein S-acylation

    PubMed Central

    Chamberlain, Luke H.; Shipston, Michael J.

    2015-01-01

    Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field. PMID:25834228

  3. In vivo acylation of proteolipid protein and DM-20 in myelin and myelin subfractions of developing rat brain: immunoblot identification of acylated PLP and DM-20

    SciTech Connect

    Garwood, M.M.; Gilbert, W.R.; Agrawal, H.C.

    1983-05-01

    The acylation of proteolipid protein (PLP) was examined in myelin and myelin subfractions from rat brain during the active period of myelination. Proteolipid protein and DM-20 in myelin and myelin subfractions were readily acylated in developing rat brain 22 hours after intracerebral injection of (/sup 3/H)palmitic acid. No differences in the relative specific activity of PLP in myelin from 9-, 15-, and 30-day-old rat brains was observed; however, the relative specific activity of PLP in the heavy myelin subfraction tended to be higher than that in the light myelin subfraction. The acylation of PLP was confirmed by fluorography of immuno-stained cellulose nitrate sheets, clearly establishing that the acylated protein is in fact the oligodendroglial cell- and myelin-specific protein, PLP. Since PLP is acylated in the 9-day-old animal, when little compact myelin is present, it is possible that the acylation of PLP is a prerequisite for the incorporation of this protein into the myelin membrane.

  4. Effect of the non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activity toward medium-chain, long-chain and polyunsaturated fatty acids in mitochondria of mouse liver and brain.

    PubMed

    Kasuya, Fumiyo; Kazuhiro, Misumi; Tatsuya, Hasegawa; Nakamoto, Kazuo; Tokuyama, Shogo; Masuyama, Teiichi

    2013-02-01

    Effect of eleven non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activities toward octanoic, palmitic, arachidonic and docosahexaenoic acids was evaluated in mouse liver and brain mitochondria. The drugs tested were aspirin, salicylic acid, diflunisal, mefenamic acid, indomethacin, etodolac, ibuprofen, ketoprofen, naproxen, loxoprofen, flurbiprofen. In mouse liver mitochondria, diflunisal and mefenamic acid exhibited the inhibitory activities not only for octanoic acid (IC(50) = 78.7 and 64.7 µM) and but also for palmitic acid (IC(50) = 236.5 and 284.4 µM), respectively. Aspirin was an inhibitor for the activation of octanoic acid only (IC(50) = 411.0 µM). In the brain, mefenamic acid and diflunisal inhibited strongly palmitoyl-CoA formation (IC(50) = 57.3 and 114.0 µM), respectively. The activation of docosahexaenoic acid in brain was sensitive to inhibition by diflunisal and mefenamic acid compared with liver. PMID:22299587

  5. Comparison of the lipase activity in hydrolysis and acyl transfer reactions of two latex plant extracts from babaco (Vasconcellea x Heilbornii Cv.) and Plumeria rubra: Effect of the Aqueous microenvironment.

    PubMed

    Cambon, Emmanuelle; Gouzou, Fanny; Pina, Michel; Barea, Bruno; Barouh, Nathalie; Lago, Regina; Ruales, Jenny; Tsai, Shau-Wei; Villeneuve, Pierre

    2006-04-01

    The enzymatic properties of Plumeria rubra latex have been evaluated for the first time, showing a high activity in both hydrolysis and synthesis reactions, and compared to the biocatalytic behavior of babaco (Vasconcellea x Heilbornii cv.) latex. Both biocatalysts have been optimized by studying the various parameters that influence reaction kinetics. The optimum temperatures for hydrolysis reactions were 50 and 55 degrees C for babaco and Plumeria, respectively. The optimum pH for babaco latex was 7, whereas for Plumeria latex, two optimal pH values (4 and 7) were observed. With regard to esterification and acyl transfer reactions such as alcoholysis and interesterification, the influence of thermodynamic water activity on reaction yields was determined and correlated with water sorption and desorption isotherms. When babaco latex is used as a biocatalyst, optimal synthesis reaction yields are obtained when the enzymatic extract is stabilized at a water activity value of 0.38, which corresponds to a water content of 5.7%. This optimal level of hydration is located on the linear portion of the biocatalyst's sorption isotherm, where the water molecules exhibit high-energy interactions with the protein network. In synthesis reactions (esterification, alcoholysis, and interesterification) biocatalyzed by Plumeria latex, correlation between best reaction yields and water activity cannot be done. Indeed, the sorption isotherm plot has an atypical shape, indicating that water might be trapped in the latex matrix and, consequently, that the water content of the biocatalyst is highly dependent on the hydration history of the latex. PMID:16569067

  6. Investigation of the mechanism of phosphonoacetaldehyde hydrolase

    SciTech Connect

    Hepburn, T.W.; Olsen, D.B.; Dunaway-Mariano, D.; Mariano, P.S.

    1986-05-01

    The authors are presently studying enzymes which catalyze the formation and cleavage of carbon phosphorous bonds. In 1970 LaNauze et. al. reported the isolation of one enzyme of interest - phosphonoacetaldehyde hydrolase from a mutant of Bacillus cereus. This enzyme catalyzes the hydrolysis of phosphonoaldehyde to acetaldehyde and inorganic phosphate. They have isolated phosphonatase from wild type B. cereus (grown on 2-aminoethylphosphonate as the P/sub i/ source) and have used /sup 1/H-NMR and /sup 31/P-NMR techniques to determine the products of the enzyme reaction as phosphate and acetaldehyde. The mechanism of the enzyme could involve the formation of a Schiff base between phosphonoacetaldehyde and lysine or it might only require Mg/sup + +/, an essential cofactor for activity. To distinguish between these possibilities they have begun to look at the Schiff base formation in more detail. NaBH/sub 4/ was found to inactivate the enzyme in the presence of substrate but not in its absence. This is consistent with results obtained for the enzyme isolated from the mutant bacteria. In addition treatment of the wild type enzyme with tritiated NaBH/sub 4/ resulted in significant incorporation of radiolabel into the protein as compared to the control. These results tentatively suggest that hydrolysis proceeds via a covalent imine intermediate.

  7. Protective actions of des-acylated ghrelin on brain injury and blood-brain barrier disruption after stroke in mice.

    PubMed

    Ku, Jacqueline M; Taher, Mohammadali; Chin, Kai Yee; Barsby, Tom; Austin, Victoria; Wong, Connie H Y; Andrews, Zane B; Spencer, Sarah J; Miller, Alyson A

    2016-09-01

    The major ghrelin forms, acylated ghrelin and des-acylated ghrelin, are novel gastrointestinal hormones. Moreover, emerging evidence indicates that these peptides may have other functions including neuro- and vaso-protection. Here, we investigated whether post-stroke treatment with acylated ghrelin or des-acylated ghrelin could improve functional and histological endpoints of stroke outcome in mice after transient middle cerebral artery occlusion (tMCAo). We found that des-acylated ghrelin (1 mg/kg) improved neurological and functional performance, reduced infarct and swelling, and decreased apoptosis. In addition, it reduced blood-brain barrier (BBB) disruption in vivo and attenuated the hyper-permeability of mouse cerebral microvascular endothelial cells after oxygen glucose deprivation and reoxygenation (OGD + RO). By contrast, acylated ghrelin (1 mg/kg or 5 mg/kg) had no significant effect on these endpoints of stroke outcome. Next we found that des-acylated ghrelin's vasoprotective actions were associated with increased expression of tight junction proteins (occludin and claudin-5), and decreased cell death. Moreover, it attenuated superoxide production, Nox activity and expression of 3-nitrotyrosine. Collectively, these results demonstrate that post-stroke treatment with des-acylated ghrelin, but not acylated ghrelin, protects against ischaemia/reperfusion-induced brain injury and swelling, and BBB disruption, by reducing oxidative and/or nitrosative damage. PMID:27303049

  8. Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22.

    PubMed

    Pan, Ronghua; Hu, Yimei; Long, Liangkun; Wang, Jing; Ding, Shaojun

    2016-09-01

    FmEG from Fomitiporia mediterranea is a non-modular endoglucanase composed of a 24-amino acids extension and 13-amino acids linker-like peptide at the N-terminus and a 312-amino acids GH5 catalytic domain (CD) at the C-terminus. In this study, six FmEG derivatives with deletion of N-terminal fragments or fusion with an extra family 1 carbohydrate-binding module (CBM1) was constructed in order to evaluate the contribution of CBM1 to FmEG processivity and catalytic activity. FmEG showed a weak processivity and released cellobiose (G2) and cellotriose (G3) as main end products, and cellotriose (G4) as minor end product from filter paper (FP), but more amount of G4 was released from regenerated amorphous cellulose (RAC). All derivatives had similar activity on carboxymethylcellulose (CMC) with the same optimal pH (7.0) and temperature (50°C). However, fusing an extra CBM1 to FmEG△24 or FmEG△37 with flexible peptide significantly improved its processivity and catalytic activity to FP and RAC. Overall, 1.79- and 1.84-fold increases in the soluble/insoluble product ratio on FP, and 1.38- and 1.39-fold increases on RAC, compared to FmEG△24, were recorded for CBM1-FmEG△24 and CBM1-linker-FmEG△24, respectively. Meanwhile, they displayed 2.64- and 2.67-fold more activity on RAC, and 1.68- and 1.77-fold on FP, respectively. Similar improvement was also obtained for CBM1-linker-FmEG△37 as compared with FmEG△37. Interestingly, fusion of an extra CBM1 with FmEG also caused an alteration of cleavage pattern on insoluble celluloses. Our results suggest that such improvements in processivity and catalytic activity may arise from CBM1 binding affinity. The N-terminal 24- or 37-amino acids may serve as linker for sufficient spatial separation of the two domains required for processivity and catalytic activity. In addition, deletion of the N-terminal 24- or 37-amino acids led to significant reduction in thermostability but not the enzymatic activity. PMID:27444328

  9. Cadmium-induced changes in hatchability and in the activity of aminotransaminases and selected lysosomal hydrolases in the blood plasma of Muscovy ducklings (Cairina moschata).

    PubMed

    Dżugan, Małgorzata; Lis, Marcin

    2016-06-01

    The aim of this study was to determine the effect of cadmium on Muscovy ducklings (Cairina moschata) based on hatching results and the activity of enzymes in the blood plasma. On day 6 of incubation, hatching eggs were injected into the egg albumen with 50 μl of saline solution containing Cd ions (CdCl2) at concentrations of 0 (control group), 1.3, 4.0, 7.5, 15.0 and 30 μg/egg, using 50 eggs per group. A gradual decrease in hatchability, from 52% in the control to 4% in the highest Cd dose group, was observed, with the LD50 calculated as 8 μg/egg. However, the impact of cadmium on the incidence of malformations of duck embryos has not been proven. Compared to the control group, N-acetyl-β-Dglucosaminidase activity increased by 30-50% (P ≤ 0.05) in the blood serum of ducklings in the groups receiving more than 7.5 μg Cd/egg, whereas an elevated activity of arylsulphatase (by 45%) was observed for a lower dose only (4 μg Cd/egg). A gradual increase in the activity of alanine and aspartate aminotransferases was observed (P ≤ 0.05), starting from the lowest exposure of 1.3 μg Cd/egg, by 155% and 53%, respectively. In conclusion, the results prove the dosedependent toxic impact of cadmium on embryogenesis and on the studied blood plasma enzyme activities of ducklings. PMID:27342095

  10. Fatty acylation of proteins: The long and the short of it.

    PubMed

    Resh, Marilyn D

    2016-07-01

    Long, short and medium chain fatty acids are covalently attached to hundreds of proteins. Each fatty acid confers distinct biochemical properties, enabling fatty acylation to regulate intracellular trafficking, subcellular localization, protein-protein and protein-lipid interactions. Myristate and palmitate represent the most common fatty acid modifying groups. New insights into how fatty acylation reactions are catalyzed, and how fatty acylation regulates protein structure and function continue to emerge. Myristate is typically linked to an N-terminal glycine, but recent studies reveal that lysines can also be myristoylated. Enzymes that remove N-terminal myristoyl-glycine or myristate from lysines have now been identified. DHHC proteins catalyze S-palmitoylation, but the mechanisms that regulate substrate recognition by individual DHHC family members remain to be determined. New studies continue to reveal thioesterases that remove palmitate from S-acylated proteins. Another area of rapid expansion is fatty acylation of the secreted proteins hedgehog, Wnt and Ghrelin, by Hhat, Porcupine and GOAT, respectively. Understanding how these membrane bound O-acyl transferases recognize their protein and fatty acyl CoA substrates is an active area of investigation, and is punctuated by the finding that these enzymes are potential drug targets in human diseases. PMID:27233110

  11. N-Acylation During Glidobactin Biosynthesis by the Tridomain Nonribosomal Peptide Synthetase Module GlbF

    PubMed Central

    Imker, Heidi J.; Krahn, Daniel; Clerc, Jérôme; Kaiser, Markus; Walsh, Christopher T.

    2011-01-01

    Summary Glidobactins are hybrid NRPS-PKS natural products that function as irreversible proteasome inhibitors. A variety of medium chain 2(E),4(E)-diene fatty acids N-acylate the peptidolactam core and contribute significantly to the potency of proteasome inhibition. We have expressed the initiation NRPS module GlbF (C-A-T) in Escherichia coli and observe soluble active protein only on co-expression with the 8 kDa MbtH-like protein, GlbE. Following adenylation and installation of Thr as a T-domain thioester, the starter condensation domain utilizes fatty acyl-CoA donors to acylate the Thr1 amino group and generate the fatty acyl-Thr1-S-pantetheinyl-GlbF intermediate to be used in subsequent chain elongation. Previously proposed to be mediated via acyl carrier protein fatty acid donors, direct utilization of fatty acyl-CoA donors for N-acylation of T-domain tethered amino acids is likely a common strategy for chain initiation in NRPS-mediated lipopeptide biosynthesis. PMID:21035730

  12. Lipid Acyl Chain Remodeling in Yeast

    PubMed Central

    Renne, Mike F.; Bao, Xue; De Smet, Cedric H.; de Kroon, Anton I. P. M.

    2015-01-01

    Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed. PMID:26819558

  13. 2-O-Acyl-3-O-(1-acyloxyalkyl) Prodrugs of 5,6-Isopropylidene-l-Ascorbic Acid and l-Ascorbic Acid: Antioxidant Activity and Ability to Permeate Silicone Membranes.

    PubMed

    Thiele, Nikki A; McGowan, Jennifer; Sloan, Kenneth B

    2016-01-01

    2-O-Acyl-3-O-(1-acyloxyalkyl) prodrug derivatives, 15, of 5,6-isopropylidene-l-ascorbic acid, VCA, and l-ascorbic acid, VC, have been characterized by measuring (1) their solubilities in water (SAQ) and in 1-octanol (SOCT); (2) the ability of one member of the homologous series, 15a, to diffuse through a silicone membrane from its application in propylene glycol:water (PG:AQ), 30:70; (3) the ability of another member of the series, 15e, to express cellular antioxidant activity (CAA) in HaCaT cells; and (4) the ability of 15e to support cell viability in HaCaT cells. All of the prodrugs were more soluble in 1-octanol than VC or VCA were. 15a, which exhibited a good balance between SOCT and SAQ, was found to deliver approximately 15 times more 15a than VCA delivered VCA through a silicone membrane from PG:AQ, 30:70. Under those conditions, no VC permeated the membrane. 15e, which hydrolyzed to release acetaldehyde as a byproduct instead of the toxin formaldehyde, exhibited approximately 30 times the antioxidant activity of VC in CaHaT cells and supported cell viability up to 900 μM in HaCaT cells. PMID:27438850

  14. Fatty acyl-CoA reductases of birds

    PubMed Central

    2011-01-01

    Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis. PMID:22151413

  15. Effects of farmyard manure and nitrogen fertilizers on mobility of phosphorus and sulphur in wheat and activity of selected hydrolases in soil

    NASA Astrophysics Data System (ADS)

    Lemanowicz, Joanna; Siwik-Ziomek, Anetta; Koper, Jan

    2014-03-01

    The paper demonstrates the results of research on the mobility of phosphorus and sulphur in winter wheat fertilized with several rates (0, 20, 40, 60, 80 t ha-1) of farmyard manure and nitrogen (0, 40, 80, 120 kg N ha-1). The content of these nutrients was related to the activity of acid phosphatase and arylsulphatase in a Haplic Luvisol. The highest content of available phosphorus (91.58 mg P kg-1) was reported in the soil amended with farmyard manure at the rate of 60 t ha-1. The content of sulphates (VI) in the Haplic Luvisol was high and, on average, equal to 25.22 mg kg-1. The activity of acid phosphatase in the soil increased with increasing mineral nitrogen rates. The highest content of sulphates (VI) and the lowest activity of arylsulphatase were identified at the nitrogen rate of 40 kg N ha-1. The mobility of phosphorus in winter wheat was the highest when farmyard manure at the rate of 60 t ha-1 and mineral nitrogen at the rate of 120 kg N ha-1 were incorporated into the soil. The greatest translocation of sulphur was reported at the high farmyard manure rates (40, 60 and 80 t ha-1) and the nitrogen rate of 80 kg N ha-1.

  16. Stability-increasing effects of anthocyanin glycosyl acylation.

    PubMed

    Zhao, Chang-Ling; Yu, Yu-Qi; Chen, Zhong-Jian; Wen, Guo-Song; Wei, Fu-Gang; Zheng, Quan; Wang, Chong-De; Xiao, Xing-Lei

    2017-01-01

    This review comprehensively summarizes the existing knowledge regarding the chemical implications of anthocyanin glycosyl acylation, the effects of acylation on the stability of acylated anthocyanins and the corresponding mechanisms. Anthocyanin glycosyl acylation commonly refers to the phenomenon in which the hydroxyl groups of anthocyanin glycosyls are esterified by aliphatic or aromatic acids, which is synthetically represented by the acylation sites as well as the types and numbers of acyl groups. Generally, glycosyl acylation increases the in vitro and in vivo chemical stability of acylated anthocyanins, and the mechanisms primarily involve physicochemical, stereochemical, photochemical, biochemical or environmental aspects under specific conditions. Additionally, the acylation sites as well as the types and numbers of acyl groups influence the stability of acylated anthocyanins to different degrees. This review could provide insight into the optimization of the stability of anthocyanins as well as the application of suitable anthocyanins in food, pharmaceutical and cosmetic industries. PMID:27507456

  17. A New Insight into the Physiological Role of Bile Salt Hydrolase among Intestinal Bacteria from the Genus Bifidobacterium

    PubMed Central

    Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław

    2014-01-01

    This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche. PMID:25470405

  18. Ring-opening metathesis polymerization-based recyclable magnetic acylation reagents.

    PubMed

    Kainz, Quirin M; Linhardt, Roland; Maity, Pradip K; Hanson, Paul R; Reiser, Oliver

    2013-04-01

    An operationally simple method for the acylation of amines utilizing carbon-coated metal nanoparticles as recyclable supports is reported. Highly magnetic carbon-coated cobalt (Co/C) and iron (Fe/C) nanobeads were functionalized with a norbornene tag (Nb-tag) through a "click" reaction followed by surface activation employing Grubbs-II catalyst and subsequent grafting of acylated N-hydroxysuccinimide ROMPgels (ROMP=ring-opening metathesis polymerization). The high loading (up to 2.6 mmolg(-1) ) hybrid material was applied in the acylation of various primary and secondary amines. The products were isolated in high yields (86-99%) and excellent purities (all >95 % by NMR spectroscopy) after rapid magnetic decantation and simple evaporation of the solvents. The spent resins were successfully re-acylated by acid chlorides, anhydrides, and carboxylic acids and reused for up to five consecutive cycles without considerable loss of activity. PMID:23427021

  19. Molecular Models to Emulate Confinement Effects on the Internal Dynamics of Organophosphorous Hydrolase

    SciTech Connect

    Gomes, Diego Enry B.; Lins, Roberto D.; Pascutti, Pedro G.; Straatsma, TP; Soares, Thereza A.

    2008-09-28

    The confinement of the metalloenzyme organophosphorous hydrolase in functionalized mesoporous silica (FMS) enhances the stability and increases catalytic specific activity by 200% compared to the enzyme in solution. The mechanism by which these processes take place is not well understood. We have developed two coarse-grain models of confinement to provide insights into how the nanocage environment steers enzyme conformational dynamics towards enhanced stability and enzymatic activity. The structural dynamics of organophosphorous hydrolase under the two confinement models are very distinct from each other. Comparisons of the present simulations show that only one model leads to an accurate depiction of the internal dynamics of the enzyme.

  20. Characterization of the bga1-encoded glycoside hydrolase family 35 beta-galactosidase of Hypocrea jecorina with galacto-beta-D-galactanase activity.

    PubMed

    Gamauf, Christian; Marchetti, Martina; Kallio, Jarno; Puranen, Terhi; Vehmaanperä, Jari; Allmaier, Günter; Kubicek, Christian P; Seiboth, Bernhard

    2007-04-01

    The extracellular bga1-encoded beta-galactosidase of Hypocrea jecorina (Trichoderma reesei) was overexpressed under the pyruvat kinase (pki1) promoter region and purified to apparent homogeneity. The monomeric enzyme is a glycoprotein with a molecular mass of 118.8 +/- 0.5 kDa (MALDI-MS) and an isoelectric point of 6.6. Bga1 is active with several disaccharides, e.g. lactose, lactulose and galactobiose, as well as with aryl- and alkyl-beta-D-galactosides. Based on the catalytic efficiencies, lactitol and lactobionic acid are the poorest substrates and o-nitrophenyl-beta-D-galactoside and lactulose are the best. The pH optimum for the hydrolysis of galactosides is approximately 5.0, and the optimum temperature was found to be 60 degrees C. Bga1 is also capable of releasing D-galactose from beta-galactans and is thus actually a galacto-beta-D-galactanase. beta-Galactosidase is inhibited by its reaction product D-galactose and the enzyme also shows a significant transferase activity which results in the formation of galacto-oligosaccharides. PMID:17381511

  1. Structure-guided engineering of molinate hydrolase for the degradation of thiocarbamate pesticides.

    PubMed

    Leite, José P; Duarte, Márcia; Paiva, Ana M; Ferreira-da-Silva, Frederico; Matias, Pedro M; Nunes, Olga C; Gales, Luís

    2015-01-01

    Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala) that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system. PMID:25905461

  2. Structure-Guided Engineering of Molinate Hydrolase for the Degradation of Thiocarbamate Pesticides

    PubMed Central

    Paiva, Ana M.; Ferreira-da-Silva, Frederico; Matias, Pedro M.; Nunes, Olga C.; Gales, Luís

    2015-01-01

    Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala) that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system. PMID:25905461

  3. Lipopolysaccharides with Acylation Defects Potentiate TLR4 Signaling and Shape T Cell Responses

    PubMed Central

    Martirosyan, Anna; Ohne, Yoichiro; Degos, Clara; Gorvel, Laurent; Moriyón, Ignacio; Oh, Sangkon; Gorvel, Jean-Pierre

    2013-01-01

    Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4+ T and CD8+ T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity. PMID:23390517

  4. Lipopolysaccharides with acylation defects potentiate TLR4 signaling and shape T cell responses.

    PubMed

    Martirosyan, Anna; Ohne, Yoichiro; Degos, Clara; Gorvel, Laurent; Moriyón, Ignacio; Oh, Sangkon; Gorvel, Jean-Pierre

    2013-01-01

    Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4(+) T and CD8(+) T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity. PMID:23390517

  5. Alkylation and acylation of cyclotriphosphazenes.

    PubMed

    Benson, Mark A; Zacchini, Stefano; Boomishankar, Ramamoorthy; Chan, Yuri; Steiner, Alexander

    2007-08-20

    Phosphazenes (RNH)6P3N3 (R = n-propyl, isobutyl, isopropyl, cyclohexyl, tert-butyl, benzyl) are readily alkylated at ring N sites by alkyl halides forming N-alkyl phosphazenium cations. Alkylation of two ring N sites occurred after prolonged heating in the presence of methyl iodide or immediately at room temperature with methyl triflate yielding N,N'-dimethyl phosphazenium dications. Geminal dichloro derivatives Cl2(RNH)4P3N3 are methylated by methyl iodide at the ring N site adjacent to both P centers carrying four RNH groups. X-ray crystal structures showed that the alkylation of ring N sites leads to substantial elongation of the associated P-N bonds. Both N-alkyl and N,N'-dialkyl phosphazenium salts form complex supramolecular networks in the solid state via NH...X interactions. Systems carrying less-bulky RNH groups show additional NH...N bonds between N-alkyl phosphazenium ions. N-Alkyl phosphazenium halides form complexes with silver ions upon treatment with silver nitrate. Depending on the steric demand of RNH substituents, either one or both of the vacant ring N sites engage in coordination to silver ions. Treatment of (RNH)6P3N3 (R = isopropyl) with acetyl chloride and benzoyl chloride, respectively, yielded N-acyl phosphazenium ions. X-ray crystal structures revealed that elongation of P-N bonds adjacent to the acylated ring N site is more pronounced than it is in the case of N-alkylated species. Salts containing N-alkyl phosphazenium ions are stable toward water and other mild nucleophiles, while N,N'-dialkyl and N-acyl phosphazenium salts are readily hydrolyzed. The reaction of (RNH)6P3N3 with bromoacetic acid led to N-alkylation at one ring N site in addition to formation of an amide via condensation of an adjacent RNH substituent with the carboxylic acid group. The resulting bromide salt contains mono cations of composition (RNH)5P3N3CH2CONR in which a CH2-C(O) unit is embedded between a ring N and an exocyclic N site of the phosphazene. PMID

  6. CREST - a large and diverse superfamily of putative transmembrane hydrolases

    PubMed Central

    2011-01-01

    Background A number of membrane-spanning proteins possess enzymatic activity and catalyze important reactions involving proteins, lipids or other substrates located within or near lipid bilayers. Alkaline ceramidases are seven-transmembrane proteins that hydrolyze the amide bond in ceramide to form sphingosine. Recently, a group of putative transmembrane receptors called progestin and adipoQ receptors (PAQRs) were found to be distantly related to alkaline ceramidases, raising the possibility that they may also function as membrane enzymes. Results Using sensitive similarity search methods, we identified statistically significant sequence similarities among several transmembrane protein families including alkaline ceramidases and PAQRs. They were unified into a large and diverse superfamily of putative membrane-bound hydrolases called CREST (alkaline ceramidase, PAQR receptor, Per1, SID-1 and TMEM8). The CREST superfamily embraces a plethora of cellular functions and biochemical activities, including putative lipid-modifying enzymes such as ceramidases and the Per1 family of putative phospholipases involved in lipid remodeling of GPI-anchored proteins, putative hormone receptors, bacterial hemolysins, the TMEM8 family of putative tumor suppressors, and the SID-1 family of putative double-stranded RNA transporters involved in RNA interference. Extensive similarity searches and clustering analysis also revealed several groups of proteins with unknown function in the CREST superfamily. Members of the CREST superfamily share seven predicted core transmembrane segments with several conserved sequence motifs. Conclusions Universal conservation of a set of histidine and aspartate residues across all groups in the CREST superfamily, coupled with independent discoveries of hydrolase activities in alkaline ceramidases and the Per1 family as well as results from previous mutational studies of Per1, suggests that the majority of CREST members are metal-dependent hydrolases

  7. Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism.

    PubMed

    Cheng, Gang; Shapir, Nir; Sadowsky, Michael J; Wackett, Lawrence P

    2005-08-01

    Growth substrates containing an s-triazine ring are typically metabolized by bacteria to liberate 3 mol of ammonia via the intermediate cyanuric acid. Over a 25-year period, a number of original research papers and reviews have stated that cyanuric acid is metabolized in two steps to the 2-nitrogen intermediate urea. In the present study, allophanate, not urea, was shown to be the 2-nitrogen intermediate in cyanuric acid metabolism in all the bacteria examined. Six different experimental results supported this conclusion: (i) synthetic allophanate was shown to readily decarboxylate to form urea under acidic extraction and chromatography conditions used in previous studies; (ii) alkaline extraction methods were used to stabilize and detect allophanate in bacteria actively metabolizing cyanuric acid; (iii) the kinetic course of allophanate formation and disappearance was consistent with its being an intermediate in cyanuric acid metabolism, and no urea was observed in those experiments; (iv) protein extracts from cells grown on cyanuric acid contained allophanate hydrolase activity; (v) genes encoding the enzymes AtzE and AtzF, which produce and hydrolyze allophanate, respectively, were found in several cyanuric acid-metabolizing bacteria; and (vi) TrzF, an AtzF homolog found in Enterobacter cloacae strain 99, was cloned, expressed in Escherichia coli, and shown to have allophanate hydrolase activity. In addition, we have observed that there are a large number of genes homologous to atzF and trzF distributed in phylogenetically distinct bacteria. In total, the data indicate that s-triazine metabolism in a broad class of bacteria proceeds through allophanate via allophanate hydrolase, rather than through urea using urease. PMID:16085834

  8. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition.

    PubMed

    Moreno-Pérez, Antonio J; Sánchez-García, Alicia; Salas, Joaquín J; Garcés, Rafael; Martínez-Force, Enrique

    2011-01-01

    The mechanisms by which macadamia nuts accumulate the unusual palmitoleic and asclepic acyl moieties, which constitute up to 20% of the fatty acids in some varieties, are still unknown. Acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) are intraplastidial enzymes that terminate the synthesis of fatty acids in plants and that facilitate the export of the acyl moieties to the endoplasmic reticulum where they can be used in the production of glycerolipids. Here, we have investigated the possible role of acyl-ACP thioesterase activity in the composition of macadamia kernel oil. Accordingly, two acyl-ACP thioesterases were cloned from developing macadamia kernels, one of the FatA type and the other of the FatB type. These enzymes were heterologously expressed in Escherichia coli, and the recombinant thioesterases were purified, characterized kinetically and assayed with a variety of substrates, demonstrating the high specificity of macadamia FatA towards 16:1-ACP. Acyl-ACP thioesterase activity was also characterized in crude extracts from two different varieties of macadamia, Cate and Beaumont, which accumulate different amounts of n-7 fatty acids. The impact of acyl-ACP thioesterase activities on the oil composition of these kernels is discussed in the light of these results. PMID:21071236

  9. High-Throughput In Vitro Glycoside Hydrolase (HIGH) Screening for Enzyme Discovery

    SciTech Connect

    Kim, Tae-Wan; Chokhawala, Harshal A.; Hess, Matthias; Dana, Craig M.; Baer, Zachary; Sczyrba, Alexander; Rubin, Edward M.; Blanch, Harvey W.; Clark, Douglas S.

    2011-09-16

    A high-throughput protein-expression and screening method (HIGH method, see picture) provides a rapid approach to the discovery of active glycoside hydrolases in environmental samples. Finally, HIGH screening combines cloning, protein expression, and enzyme hydrolysis in one pot; thus, the entire process from gene expression to activity detection requires only three hours.

  10. Effect of PCB's on plasma vitamin A (retinol) and hepatic retinyl palmitate hydrolase (RPH) activity in female Sprague-Dawley rats

    SciTech Connect

    Powers, R.H.; Gilbert, L.C.; Aust, S.D.

    1987-05-01

    A single i.p. dose of 15, 5 or 1 mg/kg 3,4,3',4'-tetrachlorobiphenyl (TCB) caused a dose-dependent depression of plasma retinol levels 24 hours after treatment of female Sprague-Dawley rats. The loss of plasma retinol appeared to be a function of depressed levels of the retinol-retinol binding protein (RBP)-transthyretin ternary complex. No free retinol-RBP was observed in plasma from treated animals. Hepatic RPH activity was also depressed, and highly and positively correlated to the plasma retinol levels. TCB was determined to be a non-competitive inhibitor of partially purified RPH with a KI of 91 uM. Metabolism of TCB by microsomes in vitro decreased the inhibition of RPH. Equimolar doses of either 2,4,5,2',4',5'-hexachlorobiphenyl (HCB) or 3,4,5,3',4',5'-HCB failed to cause a similar depression of plasma retinol of treated female rats. They conclude that, unlike other PCB congeners, TCB causes a depression of plasma retinol by inhibition of hepatic RPH.

  11. A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157.

    PubMed

    Preugschat, Frank; Carter, Luke H; Boros, Eric E; Porter, David J T; Stewart, Eugene L; Shewchuk, Lisa M

    2014-12-15

    hCD157 catalyzes the hydrolysis of nicotinamide riboside (NR) and nicotinic acid riboside (NAR). The release of nicotinamide or nicotinic acid from NR or NAR was confirmed by spectrophotometric, HPLC and NMR analyses. hCD157 is inactivated by a mechanism-based inhibitor, 2'-deoxy-2'-fluoro-nicotinamide arabinoside (fNR). Modification of the enzyme during the catalytic cycle by NR, NAR, or fNR increased the intrinsic protein fluorescence by approximately 50%. Pre-steady state and steady state data were used to derive a minimal kinetic scheme for the hydrolysis of NR. After initial complex formation a reversible step (360 and 30s(-1)) is followed by a slow irreversible step (0.1s(-1)) that defined the rate limiting step, or kcat. The calculated KMapp value for NR in the hydrolytic reaction is 6nM. The values of the kinetic constants suggest that one biological function of cell-surface hCD157 is to bind and slowly hydrolyze NR, possibly converting it to a ligand-activated receptor. Differences in substrate preference between hCD157 and hCD38 were rationalized through a comparison of the crystal structures of the two proteins. This comparison identified several residues in hCD157 (F108 and F173) that can potentially hinder the binding of dinucleotide substrates (NAD+). PMID:25250980

  12. Long-term consequences of perinatal fatty acid amino hydrolase inhibition

    PubMed Central

    Wu, Chia-Shan; Morgan, Daniel; Jew, Chris P; Haskins, Chris; Andrews, Mary-Jeanette; Leishman, Emma; Spencer, Corinne M; Czyzyk, Traci; Bradshaw, Heather; Mackie, Ken; Lu, Hui-Chen

    2014-01-01

    Background and PurposeFatty acid amide hydrolase inhibitors show promise as a treatment for anxiety, depression and pain. Here we investigated whether perinatal exposure to URB597, a fatty acid amide hydrolase inhibitor, alters brain development and affects behaviour in adult mice. Experimental ApproachMouse dams were treated daily from gestational day 10.5 to 16.5 with 1, 3 or 10 mg kg−1 URB597. MS was used to measure a panel of endocannabinoids and related lipid compounds and brain development was assessed at embryonic day 16.5. Separate cohorts of mouse dams were treated with 10 mg kg−1 URB597, from gestational day 10.5 to postnatal day 7, and the adult offspring were assessed with a battery of behavioural tests. Key ResultsPerinatal URB597 exposure elevated anandamide and related N-acyl amides. URB597 did not induce signs of toxicity or affect dam weight gain, neurogenesis or axonal development at embryonic day 16.5. It did lead to subtle behavioural deficits in adult offspring, manifested by reduced cocaine-conditioned preference, increased depressive behaviours and impaired working memory. Anxiety levels, motor function and sensory-motor gating were not significantly altered. Conclusions and ImplicationsTaken together, the present results highlight how exposure to elevated levels of anandamide and related N-acyl amides during brain development can lead to subtle alterations in behaviour in adulthood. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24730060

  13. 17,18-epoxyeicosatetraenoic acid targets PPARγ and p38 mitogen-activated protein kinase to mediate its anti-inflammatory effects in the lung: role of soluble epoxide hydrolase.

    PubMed

    Morin, Caroline; Sirois, Marco; Echavé, Vincent; Albadine, Roula; Rousseau, Eric

    2010-11-01

    This study sought to assess putative pathways involved in the anti-inflammatory effects of 17,18-epoxyeicosatetraenoic acid (17,18-EpETE), as measured by a decrease in the contractile reactivity and Ca(2+) sensitivity of TNF-α-pretreated human bronchi. Tension measurements performed in the presence of 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), a soluble epoxide hydrolase (sEH)-specific inhibitor, demonstrated that 17,18-EpETE reduced the reactivity of TNF-α-pretreated tissues. The overexpression of sEH detected in patients with asthma and TNF-α-treated bronchi contributed to the maintenance of hyperresponsiveness in our models, which involved intracellular proinflammatory cascades. The inhibition of peroxisome proliferator-activated receptor (PPAR)γ by GW9662 abolished 17,18-EpETE + AUDA-mediated anti-inflammatory effects by inducing IκBα degradation and cytokine synthesis, indicating that PPARγ is a molecular target of epoxy-eicosanoids. Western blot analysis revealed that 17,18-EpETE pretreatment reversed the phosphorylation of p38 mitogen-activated protein kinase (p38-MAPK) induced by TNF-α in human bronchi. The Ca(2+) sensitivity of human bronchial explants was also quantified on β-escin permeabilized preparations. The presence of SB203580, a p38-MAPK inhibitor, reversed the effect induced by epoxy-eicosanoid in the presence of AUDA on TNF-α-triggered Ca(2+) hypersensitivity by increasing the phosphorylation level of PKC Potentiated Inhibitor Protein-17 (CPI-17) regulatory protein. Moreover, PPARγ ligands, such as rosiglitazone and 17,18-EpETE, decreased the expression of CPI-17, both at the mRNA and protein levels, whereas this effect was countered by GW9662 treatment in TNF-α-treated bronchi. These results demonstrate that 17,18-EpETE is a potent regulator of human lung inflammation and concomitant hyperresponsiveness, and may represent a valuable asset against critical inflammatory bronchial disorder. PMID:20008283

  14. Acylation Type Determines Ghrelin's Effects on Energy Homeostasis in Rodents

    PubMed Central

    Heppner, Kristy M.; Chaudhary, Nilika; Müller, Timo D.; Kirchner, Henriette; Habegger, Kirk M.; Ottaway, Nickki; Smiley, David L.; DiMarchi, Richard; Hofmann, Susanna M.; Woods, Stephen C.; Sivertsen, Bjørn; Holst, Birgitte; Pfluger, Paul T.; Perez-Tilve, Diego

    2012-01-01

    Ghrelin is a gastrointestinal polypeptide that acts through the ghrelin receptor (GHSR) to promote food intake and increase adiposity. Activation of GHSR requires the presence of a fatty-acid (FA) side chain on amino acid residue serine 3 of the ghrelin molecule. However, little is known about the role that the type of FA used for acylation plays in the biological action of ghrelin. We therefore evaluated a series of differentially acylated peptides to determine whether alterations in length or stability of the FA side chain have an impact on the ability of ghrelin to activate GHSR in vitro or to differentially alter food intake, body weight, and body composition in vivo. Fatty acids principally available in the diet (such as palmitate C16) and therefore representing potential substrates for the ghrelin-activating enzyme ghrelin O-acyltransferase (GOAT) were used for dose-, time-, and administration/route-dependent effects of ghrelin on food intake, body weight, and body composition in rats and mice. Our data demonstrate that altering the length of the FA side chain of ghrelin results in the differential activation of GHSR. Additionally, we found that acylation of ghrelin with a long-chain FA (C16) delays the acute central stimulation of food intake. Lastly, we found that, depending on acylation length, systemic and central chronic actions of ghrelin on adiposity can be enhanced or reduced. Together our data suggest that modification of the FA side-chain length can be a novel approach to modulate the efficacy of pharmacologically administered ghrelin. PMID:22865372

  15. Structural basis for acyl-group discrimination by human Gcn5L2

    PubMed Central

    Ringel, Alison E.; Wolberger, Cynthia

    2016-01-01

    Gcn5 is a conserved acetyltransferase that regulates transcription by acetylating the N-terminal tails of histones. Motivated by recent studies identifying a chemically diverse array of lysine acyl modifications in vivo, the acyl-chain specificity of the acetyltransferase human Gcn5 (Gcn5L2) was examined. Whereas Gcn5L2 robustly catalyzes lysine acetylation, the acyltransferase activity of Gcn5L2 becomes progressively weaker with increasing acyl-chain length. To understand how Gcn5 discriminates between different acyl-CoA molecules, structures of the catalytic domain of human Gcn5L2 bound to propionyl-CoA and butyryl-CoA were determined. Although the active site of Gcn5L2 can accommodate propionyl-CoA and butyryl-CoA without major structural rearrangements, butyryl-CoA adopts a conformation incompatible with catalysis that obstructs the path of the incoming lysine residue and acts as a competitive inhibitor of Gcn5L2 versus acetyl-CoA. These structures demonstrate how Gcn5L2 discriminates between acyl-chain donors and explain why Gcn5L2 has weak activity for acyl moieties that are larger than an acetyl group. PMID:27377381

  16. Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase.

    PubMed

    Zimny, Jaroslaw; Sikora, Marta; Guranowski, Andrzej; Jakubowski, Hieronim

    2006-08-11

    Homocysteine (Hcy) editing by methionyl-tRNA synthetase results in the formation of Hcy-thiolactone and initiates a pathway that has been implicated in human disease. In addition to being cleared from the circulation by urinary excretion, Hcy-thiolactone is detoxified by the serum Hcy-thiolactonase/paraoxonase carried on high density lipoprotein. Whether Hcy-thiolactone is detoxified inside cells was unknown. Here we show that Hcy-thiolactone is hydrolyzed by an intracellular enzyme, which we have purified to homogeneity from human placenta and identified by proteomic analyses as human bleomycin hydrolase (hBLH). We have also purified an Hcy-thiolactonase from the yeast Saccharomyces cerevisiae and identified it as yeast bleomycin hydrolase (yBLH). BLH belongs to a family of evolutionarily conserved cysteine aminopeptidases, and its only known biologically relevant function was deamidation of the anticancer drug bleomycin. Recombinant hBLH or yBLH, expressed in Escherichia coli, exhibits Hcy-thiolactonase activity similar to that of the native enzymes. Active site mutations, C73A for hBLH and H369A for yBLH, inactivate Hcy-thiolactonase activities. Yeast blh1 mutants are deficient in Hcy-thiolactonase activity in vitro and in vivo, produce more Hcy-thiolactone, and exhibit greater sensitivity to Hcy toxicity than wild type yeast cells. Our data suggest that BLH protects cells against Hcy toxicity by hydrolyzing intracellular Hcy-thiolactone. PMID:16769724

  17. Catalysis of potato epoxide hydrolase, StEH1

    PubMed Central

    Elfström, Lisa T.; Widersten, Mikael

    2005-01-01

    The kinetic mechanism of epoxide hydrolase (EC 3.3.2.3) from potato, StEH1 (Solanum tuberosum epoxide hydrolase 1), was studied by presteady-state and steady-state kinetics as well as by pH dependence of activity. The specific activities towards the different enantiomers of TSO (trans-stilbene oxide) as substrate were 43 and 3 μmol·min−1·mg−1 with the R,R- or S,S-isomers respectively. The enzyme was, however, enantioselective in favour of the S,S enantiomer due to a lower Km value. The pH dependences of kcat with R,R or S,S-TSO were also distinct and supposedly reflecting the pH dependences of the individual kinetic rates during substrate conversion. The rate-limiting step for TSO and cis- and trans-epoxystearate was shown by rapid kinetic measurements to be the hydrolysis of the alkylenzyme intermediate. Functional characterization of point mutants verified residues Asp105, Tyr154, Tyr235 and His300 as crucial for catalytic activity. All mutants displayed drastically decreased enzymatic activities during steady state. Presteady-state measurements revealed the base-deficient H300N (His300→Asn) mutant to possess greatly reduced efficiencies in catalysis of both chemical steps (alkylation and hydrolysis). PMID:15882148

  18. LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa.

    PubMed

    Chugani, Sudha; Greenberg, Everett Peter

    2010-06-01

    Pseudomonas aeruginosa quorum control of gene expression involves three LuxR-type signal receptors LasR, RhlR, and QscR that respond to the LasI- and RhlI-generated acyl-homoserine lactone (acyl-HSL) signals 3OC12-HSL and C4-HSL. We found that a LasR-RhlR-QscR triple mutant responds to acyl-HSLs by regulating at least 37 genes. LuxR homolog-independent activation of the representative genes antA and catB also occurs in the wild type. Expression of antA was influenced the most by C10-HSL and to a lesser extent by other acyl-HSLs, including the P. aeruginosa 3OC12-HSL and C4-HSL signals. The ant and cat operons encode enzymes for the degradation of anthranilate to tricarboxylic acid cycle intermediates. Our results indicate that LuxR homolog-independent acyl-HSL control of the ant and cat operons occurs via regulation of antR, which codes for the transcriptional activator of the ant operon. Although P. aeruginosa has multiple pathways for anthranilate synthesis, one pathway-the kynurenine pathway for tryptophan degradation-is required for acyl-HSL activation of the ant operon. The kynurenine pathway is also the critical source of anthranilate for energy metabolism via the antABC gene products, as well as the source of anthranilate for synthesis of the P. aeruginosa quinolone signal. Our discovery of LuxR homolog-independent responses to acyl-HSLs provides insight into acyl-HSL signaling. PMID:20498077

  19. Long-chain acyl-homoserine lactones from Methylobacterium mesophilicum: synthesis and absolute configuration.

    PubMed

    Pomini, Armando M; Cruz, Pedro L R; Gai, Cláudia; Araújo, Welington L; Marsaioli, Anita J

    2009-12-01

    The acyl-homoserine lactones (acyl-HSLs) produced by Methylobacterium mesophilicum isolated from orange trees infected with the citrus variegated chlorosis (CVC) disease have been studied, revealing the occurrence of six long-chain acyl-HSLs, i.e., the saturated homologues (S)-N-dodecanoyl (1) and (S)-N-tetradecanoyl-HSL (5), the uncommon odd-chain N-tridecanoyl-HSL (3), the new natural product (S)-N-(2E)-dodecenoyl-HSL (2), and the rare unsaturated homologues (S)-N-(7Z)-tetradecenoyl (4) and (S)-N-(2E,7Z)-tetradecadienyl-HSL (6). The absolute configurations of all HSLs were determined as 3S. Compounds 2 and 6 were synthesized for the first time. Antimicrobial assays with synthetic acyl-HSLs against Gram-positive bacterial endophytes co-isolated with M. mesophilicum from CVC-infected trees revealed low or no antibacterial activity. PMID:19919062

  20. Twisting of glycosidic bonds by hydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of scissile bond twisting have been found in crystal structures of glycoside hydrolases (GHs) that are complexed with substrates and inhibitors. To estimate the increased potential energy in the substrates that results from this twisting, we have plotted torsion angles for the scissile bond...

  1. Structure and function of polyglycine hydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave polyglycine linkers of targeted plant defense chitinases. Unlike typical endoproteases that cleave a specific peptide bond, these 640 amino acid glycoproteins selectively cleave one of multiple peptide bonds within polyglyci...

  2. PLANT FATTY ACID (ETHANOL) AMIDE HYDROLASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amide hydrolase (FAAH) plays a central role in modulating endogenous N-acylethanolamine (NAE) levels in vertebrates, and, in part, constitutes an “endocannabinoid” signaling pathway that regulates diverse physiological and behavioral processes in animals. Recently, an Arabidopsis FAAH hom...

  3. Evaluation of NHS Carbamates as a Potent and Selective Class of Endocannabinoid Hydrolase Inhibitors

    PubMed Central

    2013-01-01

    Monoacylglycerol lipase (MAGL) is a principal metabolic enzyme responsible for hydrolyzing the endogenous cannabinoid (endocannabinoid) 2-arachidonoylglycerol (2-AG). Selective inhibitors of MAGL offer valuable probes to further understand the enzyme’s function in biological systems and may lead to drugs for treating a variety of diseases, including psychiatric disorders, neuroinflammation, and pain. N-Hydroxysuccinimidyl (NHS) carbamates have recently been identified as a promising class of serine hydrolase inhibitors that shows minimal cross-reactivity with other proteins in the proteome. Here, we explore NHS carbamates more broadly and demonstrate their potential as inhibitors of endocannabinoid hydrolases and additional enzymes from the serine hydrolase class. We extensively characterize an NHS carbamate 1a (MJN110) as a potent, selective, and in-vivo-active MAGL inhibitor. Finally, we demonstrate that MJN110 alleviates mechanical allodynia in a rat model of diabetic neuropathy, marking NHS carbamates as a promising class of MAGL inhibitors. PMID:23731016

  4. Structure Determination and Characterization of the Vitamin B[superscript 6] Degradative Enzyme (E)-2-(Acetamidomethylene)succinate Hydrolase

    SciTech Connect

    McCulloch, Kathryn M.; Mukherjee, Tathagata; Begley, Tadhg P.; Ealick, Steven E.

    2010-06-22

    The gene identification and kinetic characterization of (E)-2-(acetamidomethylene)succinate (E-2AMS) hydrolase has recently been described. This enzyme catalyzes the final reaction in the degradation of vitamin B{sub 6} and produces succinic semialdehyde, acetate, ammonia, and carbon dioxide from E-2AMS. The structure of E-2AMS hydrolase was determined to 2.3 {angstrom} using SAD phasing. E-2AMS hydrolase is a member of the {alpha}/{beta} hydrolase superfamily and utilizes a serine/histidine/aspartic acid catalytic triad. Mutation of either the nucleophilic serine or the aspartate resulted in inactive enzyme. Mutation of an additional serine residue in the active site causes the enzyme to be unstable and is likely structurally important. The structure also provides insight into the mechanism of hydrolysis of E-2AMS and identifies several potential catalytically important residues.

  5. Effects of hypothyroidism and high-fat feeding on mRNA concentrations for the low-density-lipoprotein receptor and on acyl-CoA:cholesterol acyltransferase activities in rat liver.

    PubMed Central

    Salter, A M; Hayashi, R; al-Seeni, M; Brown, N F; Bruce, J; Sorensen, O; Atkinson, E A; Middleton, B; Bleackley, R C; Brindley, D N

    1991-01-01

    1. Induction of hypothyroidism in rats by feeding propylthiouracil (PTU) significantly increased serum cholesterol concentrations, and the effect was more pronounced for cholesterol in low-density lipoproteins (LDL) rather than high-density lipoproteins (HDL). The concentrations of serum triacylglycerol were decreased in hypothyroidism. These effects on serum lipids were also seen when the normal rats were pair-fed with the PTU-treated group. 2. Feeding a diet rich in saturated fat and cholesterol further increased cholesterol concentrations in LDL and also elevated that in very-low-density lipoprotein (VLDL) of hypothyroid rats. In euthyroid rats such a diet resulted in a relatively small increase in VLDL cholesterol, whereas LDL cholesterol was decreased. 3. Steady-state concentrations of mRNA for the hepatic LDL receptor were significantly decreased in the livers of hypothyroid rats, but were not significantly changed by high-fat feeding in euthyroid or hypothyroid rats. 4. The expression of the LDL receptor in hepatocytes cultured from hypothyroid rats was decreased relative to the euthyroid controls. 5. Whereas the esterification of cholesterol with oleate in hepatocytes cultured from hypothyroid rats was decreased, the activity of acyl-CoA:cholesterol acyltransferase (ACAT) in the livers of these animals was not changed. 6. High-fat feeding increased the hepatic ACAT activity in normal and hypothyroid rats. 7. Incubation of rat hepatocytes with 10 nM-tri-iodothyronine for 4 h increased the relative concentration of the mRNA for the LDL receptor by 25%. 8. It is therefore concluded that thyroid hormones stimulate the synthesis and expression of the hepatic LDL receptor. Elevated cholesterol concentrations in LDL in hypothyroidism probably result from a primary defect in the expression of the hepatic receptor, rather than indirectly via changes in ACAT activity. Images Fig. 1. PMID:2064617

  6. Exploration of the chlorpyrifos escape pathway from acylpeptide hydrolases using steered molecular dynamics simulations.

    PubMed

    Wang, Dongmei; Jin, Hanyong; Wang, Junling; Guan, Shanshan; Zhang, Zuoming; Han, Weiwei

    2016-04-01

    Acylpeptide hydrolases (APH) catalyze the removal of an N-acylated amino acid from blocked peptides. APH is significantly more sensitive than acetylcholinesterase, a target of Alzheimer's disease, to inhibition by organophosphorus (OP) compounds. Thus, OP compounds can be used as a tool to probe the physiological functions of APH. Here, we report the results of a computational study of molecular dynamics simulations of APH bound to the OP compounds and an exploration of the chlorpyrifos escape pathway using steered molecular dynamics (SMD) simulations. In addition, we apply SMD simulations to identify potential escape routes of chlorpyrifos from hydrolase hydrophobic cavities in the APH-inhibitor complex. Two previously proposed APH pathways were reliably identified by CAVER 3.0, with the estimated relative importance of P1 > P2 for its size. We identify the major pathway, P2, using SMD simulations, and Arg526, Glu88, Gly86, and Asn65 are identified as important residues for the ligand leaving via P2. These results may help in the design of APH-targeting drugs with improved efficacy, as well as in understanding APH selectivity of the inhibitor binding in the prolyl oligopeptidase family. PMID:26155973

  7. Molecular Dynamics Simulations of Acylpeptide Hydrolase Bound to Chlorpyrifosmethyl Oxon and Dichlorvos

    PubMed Central

    Jin, Hanyong; Zhou, Zhenhuan; Wang, Dongmei; Guan, Shanshan; Han, Weiwei

    2015-01-01

    Acylpeptide hydrolases (APHs) catalyze the removal of N-acylated amino acids from blocked peptides. Like other prolyloligopeptidase (POP) family members, APHs are believed to be important targets for drug design. To date, the binding pose of organophosphorus (OP) compounds of APH, as well as the different OP compounds binding and inducing conformational changes in two domains, namely, α/β hydrolase and β-propeller, remain poorly understood. We report a computational study of APH bound to chlorpyrifosmethyl oxon and dichlorvos. In our docking study, Val471 and Gly368 are important residues for chlorpyrifosmethyl oxon and dichlorvos binding. Molecular dynamics simulations were also performed to explore the conformational changes between the chlorpyrifosmethyl oxon and dichlorvos bound to APH, which indicated that the structural feature of chlorpyrifosmethyl oxon binding in APH permitted partial opening of the β-propeller fold and allowed the chlorpyrifosmethyl oxon to easily enter the catalytic site. These results may facilitate the design of APH-targeting drugs with improved efficacy. PMID:25794283

  8. Metabolic and Tissue-Specific Regulation of Acyl-CoA Metabolism

    PubMed Central

    Ellis, Jessica M.; Bowman, Caitlyn E.; Wolfgang, Michael J.

    2015-01-01

    Acyl-CoA formation initiates cellular fatty acid metabolism. Acyl-CoAs are generated by the ligation of a fatty acid to Coenzyme A mediated by a large family of acyl-CoA synthetases (ACS). Conversely, acyl-CoAs can be hydrolyzed by a family of acyl-CoA thioesterases (ACOT). Here, we have determined the transcriptional regulation of all ACS and ACOT enzymes across tissues and in response to metabolic perturbations. We find patterns of coordinated regulation within and between these gene families as well as distinct regulation occurring in a tissue- and physiologically-dependent manner. Due to observed changes in long-chain ACOT mRNA and protein abundance in liver and adipose tissue, we determined the consequence of increasing cytosolic long-chain thioesterase activity on fatty acid metabolism in these tissues by generating transgenic mice overexpressing a hyperactive mutant of Acot7 in the liver or adipose tissue. Doubling cytosolic acyl-CoA thioesterase activity failed to protect mice from diet-induced obesity, fatty liver or insulin resistance, however, overexpression of Acot7 in adipocytes rendered mice cold intolerant. Together, these data suggest distinct modes of regulation of the ACS and ACOT enzymes and that these enzymes act in a coordinated fashion to control fatty acid metabolism in a tissue-dependent manner. PMID:25760036

  9. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 1.

    PubMed

    Ohtawa, Masaki; Yamazaki, Hiroyuki; Ohte, Satoshi; Matsuda, Daisuke; Ohshiro, Taichi; Rudel, Lawrence L; Omura, Satoshi; Tomoda, Hiroshi; Nagamitsu, Tohru

    2013-03-01

    In an effort to develop potent and selective inhibitors toward ACAT2, structure-activity relationship studies were carried out using derivatives based on pyripyropene A (PPPA, 1). We have successfully developed novel PPPA derivatives with a 7-O-substituted benzoyl substituent that significantly exhibit more potent ACAT2 inhibitory activity and higher ACAT2 isozyme selectivity than 1. PMID:23369538

  10. Site-Selective Acylations with Tailor-Made Catalysts.

    PubMed

    Huber, Florian; Kirsch, Stefan F

    2016-04-18

    The acylation of alcohols catalyzed by N,N-dimethylamino pyridine (DMAP) is, despite its widespread use, sometimes confronted with substrate-specific problems: For example, target compounds with multiple hydroxy groups may show insufficient selectivity for one hydroxyl, and the resulting product mixtures are hardly separable. Here we describe a concept that aims at tailor-made catalysts for the site-specific acylation. To this end, we introduce a catalyst library where each entry is constructed by connecting a variable and readily tuned peptide scaffold with a catalytically active unit based on DMAP. For selected examples, we demonstrate how library screening leads to the identification of optimized catalysts, and the substrates of interest can be converted with a markedly enhanced site-selectivity compared with only DMAP. Furthermore, substrate-optimized catalysts of this type can be used to selectively convert "their" substrate in the presence of structurally similar compounds, an important requisite for reactions with mixtures of substances. PMID:26970553

  11. Mutations in p53 change phosphatidylinositol acyl chain composition

    PubMed Central

    Naguib, Adam; Bencze, Gyula; Engle, Dannielle; Chio, Iok I. C.; Herzka, Tali; Watrud, Kaitlin; Bencze, Szilvia; Tuveson, David A.; Pappin, Darryl J; Trotman, Lloyd C.

    2014-01-01

    Phosphatidylinositol phosphate (PIP) second messengers relay extracellular growth cues through the phosphorylation status of the inositol sugar, a signal transduction system that is deregulated in cancer. In stark contrast to PIP inositol head group phosphorylation, changes in phosphatidylinositol (PI) lipid acyl chains in cancer have remained ill-defined. Here, we apply a mass spectrometry-based method capable of unbiased high-throughput identification and quantification of cellular PI acyl chain composition. Using this approach we find that PI lipid chains represent a cell-specific fingerprint and are unperturbed by serum-mediated signaling in contrast to the inositol head group. We find that mutation of Trp53 results in PIs containing reduced-length fatty acid moieties. Our results suggest that the anchoring tails of lipid second messengers form an additional layer of PIP signaling in cancer that operates independently of PTEN/PI3-Kinase activity, but is instead linked somehow to p53. PMID:25543136

  12. DHHC Protein S-Acyltransferases Use Similar Ping-Pong Kinetic Mechanisms but Display Different Acyl-CoA Specificities*

    PubMed Central

    Jennings, Benjamin C.; Linder, Maurine E.

    2012-01-01

    DHHC proteins catalyze the reversible S-acylation of proteins at cysteine residues, a modification important for regulating protein localization, stability, and activity. However, little is known about the kinetic mechanism of DHHC proteins. A high-performance liquid chromatography (HPLC), fluorescent peptide-based assay for protein S-acylation activity was developed to characterize mammalian DHHC2 and DHHC3. Time courses and substrate saturation curves allowed the determination of Vmax and Km values for both the peptide N-myristoylated-GCG and palmitoyl-coenzyme A. DHHC proteins acylate themselves upon incubation with palmitoyl-CoA, which is hypothesized to reflect a transient acyl enzyme transfer intermediate. Single turnover assays with DHHC2 and DHHC3 demonstrated that a radiolabeled acyl group on the enzyme transferred to the protein substrate, consistent with a two-step ping-pong mechanism. Enzyme autoacylation and acyltransfer to substrate displayed the same acyl-CoA specificities, further supporting a two-step mechanism. Interestingly, DHHC2 efficiently transferred acyl chains 14 carbons and longer, whereas DHHC3 activity was greatly reduced by acyl-CoAs with chain lengths longer than 16 carbons. The rate and extent of autoacylation of DHHC3, as well as the rate of acyl chain transfer to protein substrate, were reduced with stearoyl-CoA when compared with palmitoyl-CoA. This is the first observation of lipid substrate specificity among DHHC proteins and may account for the differential S-acylation of proteins observed in cells. PMID:22247542

  13. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61.

    PubMed

    Langston, James A; Shaghasi, Tarana; Abbate, Eric; Xu, Feng; Vlasenko, Elena; Sweeney, Matt D

    2011-10-01

    Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization. PMID:21821740

  14. Purification and Characterization of TrzF: Biuret Hydrolysis by Allophanate Hydrolase Supports Growth

    PubMed Central

    Shapir, Nir; Cheng, Gang; Sadowsky, Michael J.; Wackett, Lawrence P.

    2006-01-01

    TrzF, the allophanate hydrolase from Enterobacter cloacae strain 99, was cloned, overexpressed in the presence of a chaperone protein, and purified to homogeneity. Native TrzF had a subunit molecular weight of 65,401 and a subunit stoichiometry of α2 and did not contain significant levels of metals. TrzF showed time-dependent inhibition by phenyl phosphorodiamidate and is a member of the amidase signature protein family. TrzF was highly active in the hydrolysis of allophanate but was not active with urea, despite having been previously considered a urea amidolyase. TrzF showed lower activity with malonamate, malonamide, and biuret. The allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, was also shown to hydrolyze biuret slowly. Since biuret and allophanate are consecutive metabolites in cyanuric acid metabolism, the low level of biuret hydrolase activity can have physiological significance. A recombinant Escherichia coli strain containing atzD, encoding cyanuric acid hydrolase that produces biuret, and atzF grew slowly on cyanuric acid as a source of nitrogen. The amount of growth produced was consistent with the liberation of 3 mol of ammonia from cyanuric acid. In vitro, TrzF was shown to hydrolyze biuret to liberate 3 mol of ammonia. The biuret hydrolyzing activity of TrzF might also be physiologically relevant in native strains. E. cloacae strain 99 grows on cyanuric acid with a significant accumulation of biuret. PMID:16597948

  15. Vertebrate Acyl CoA synthetase family member 4 (ACSF4-U26) is a β-alanine-activating enzyme homologous to bacterial non-ribosomal peptide synthetase.

    PubMed

    Drozak, Jakub; Veiga-da-Cunha, Maria; Kadziolka, Beata; Van Schaftingen, Emile

    2014-03-01

    Mammalian ACSF4-U26 (Acyl CoA synthetase family member 4), a protein of unknown function, comprises a putative adenylation domain (AMP-binding domain) similar to those of bacterial non-ribosomal peptide synthetases, a putative phosphopantetheine attachment site, and a C-terminal PQQDH (pyrroloquinoline quinone dehydrogenase)-related domain. Orthologues comprising these three domains are present in many eukaryotes including plants. Remarkably, the adenylation domain of plant ACSF4-U26 show greater identity with Ebony, the insect enzyme that ligates β-alanine to several amines, than with vertebrate or insect ACSF4-U26, and prediction of its specificity suggests that it activates β-alanine. In the presence of ATP, purified mouse recombinant ACSF4-U26 progressively formed a covalent bond with radiolabelled β-alanine. The bond was not formed in a point mutant lacking the phosphopantetheine attachment site. Competition experiments with various amino acids indicated that the reaction was almost specific for β-alanine, and a KM of ~ 5 μm was calculated for this reaction. The loaded enzyme was used to study the formation of a potential end product. Among the 20 standard amino acids, only cysteine stimulated unloading of the enzyme. This effect was mimicked by cysteamine and dithiothreitol, and was unaffected by absence of the PQQDH-related domain, suggesting that β-alanine transfer onto thiols is catalysed by the ACSF4-U26 adenylation domain, but is physiologically irrelevant. We conclude that ACSF4-U26 is a β-alanine-activating enzyme, and hypothesize that it is involved in a rare intracellular reaction, possibly an infrequent post-translational or post-transcriptional modification. PMID:24467666

  16. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  17. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component

    PubMed Central

    Yuan, Yihui; Gao, Meiying

    2016-01-01

    Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall. PMID:27242758

  18. Expression of recombinant organophosphorus hydrolase in the original producer of the enzyme, Sphingobium fuliginis ATCC 27551.

    PubMed

    Nakayama, Kosuke; Ohmori, Takeshi; Ishikawa, Satoshi; Iwata, Natsumi; Seto, Yasuo; Kawahara, Kazuyoshi

    2016-05-01

    The plasmid encoding His-tagged organophosphorus hydrolase (OPH) cloned from Sphingobium fuliginis was modified to be transferred back to this bacterium. The replication function of S. amiense plasmid was inserted at downstream of OPH gene, and S. fuliginis was transformed with this plasmid. The transformant produced larger amount of active OPH with His-tag than E. coli. PMID:26784883

  19. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component.

    PubMed

    Yuan, Yihui; Gao, Meiying

    2016-01-01

    Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall. PMID:27242758

  20. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata

    PubMed Central

    2014-01-01

    Thermomonospora curvata is a thermophilic actinomycete phylogenetically related to Thermobifida fusca that produces extracellular hydrolases capable of degrading synthetic polyesters. Analysis of the genome of T. curvata DSM43183 revealed two genes coding for putative polyester hydrolases Tcur1278 and Tcur0390 sharing 61% sequence identity with the T. fusca enzymes. Mature proteins of Tcur1278 and Tcur0390 were cloned and expressed in Escherichia coli TOP10. Tcur1278 and Tcur0390 exhibited an optimal reaction temperature against p-nitrophenyl butyrate at 60°C and 55°C, respectively. The optimal pH for both enzymes was determined at pH 8.5. Tcur1278 retained more than 80% and Tcur0390 less than 10% of their initial activity following incubation for 60 min at 55°C. Tcur0390 showed a higher hydrolytic activity against poly(ε-caprolactone) and polyethylene terephthalate (PET) nanoparticles compared to Tcur1278 at reaction temperatures up to 50°C. At 55°C and 60°C, hydrolytic activity against PET nanoparticles was only detected with Tcur1278. In silico modeling of the polyester hydrolases and docking with a model substrate composed of two repeating units of PET revealed the typical fold of α/β serine hydrolases with an exposed catalytic triad. Molecular dynamics simulations confirmed the superior thermal stability of Tcur1278 considered as the main reason for its higher hydrolytic activity on PET. PMID:25405080

  1. Comparative electrophilicity, mutagenicity, DNA repair induction activity, and carcinogenicity of some N- and O-acyl derivatives of N-hydroxy-2-aminoflourene.

    PubMed

    Bartsch, H; Malaveille, C; Stich, H F; Miller, E C; Miller, J A

    1977-05-01

    N-Myristoyloxy-N-acetyl-2-aminofluorene, N-acetoxy-N-myristoyl-2-aminofluorene, N-myristoyloxy-N-myristoyl-2-aminofluorene, and N-hydroxy-N-myristoyl-2-aminofluorene each yielded a high incidence of sarcomas in male rats within 5 to 7 months after s.c. injection of 64 micronmoles in divided doses. N-Acetoxy-N-acetyl-2-aminofluorene and N-hydroxy-2-acetylaminofluorene, although potent carcinogens at the s.c. site, were less active than the above derivatives with a myristoyl substituent. N-Sulfonoxy-N-acety--2-aminofluorene (purity larger than or equal to 70%) had little or no carcinogenic activity when administered in large amounts by s.c. injection to rats. The low incidence of tumors could have resulted from N-hydroxy-2-acetylaminofluorene or other decompostion products of the N-sulfonozy derivative. Each of the N-acetoxy and N-myristoyloxy derivatives of N-acetyl-2-aminofluorene and of N-myristoyl-2-aminofluorene showed electrophilic activity toward methionine; N-acetoxy-N-acetyl-2-aminofluorene was the most reactive and N-myristoyloxy-N-myristoyl-2-aminofluorine was the least reactive. Each of these esters also induced unscheduled tritiated thymidine incorportation in nondividing cultured human fibroblasts and thus appeared to induce lesions in DNA that lead to repair synthesis. EACH OF THE N-acetoxy derivatives was highly mutagenic for Salmonella typhimurium strains TA98 and TA1538 without tissue activation; neither N-myristoyloxy derivative was mutagenic under these conditions. While there was a qualitative correspondence between several of the above activities of these 2-aminofluorene derivatives, the quantitative differences and the lack of detectable mutagenicity of the 2N-myristoyloxy derivatives for S. typhimurium indicate the need for multiple short-term tests in the qualitative prediction of potential carcinogenic activity. PMID:322856

  2. The chain-flipping mechanism of ACP (acyl carrier protein)-dependent enzymes appears universal.

    PubMed

    Cronan, John E

    2014-06-01

    ACPs (acyl carrier proteins) play essential roles in the synthesis of fatty acids, polyketides and non-ribosomal polypeptides. ACP function requires the modification of the protein by attachment of 4'-phosphopantetheine to a conserved serine residue. The phosphopantetheine thiol acts to tether the starting materials and intermediates as their thioesters. ACPs are small highly soluble proteins composed of four α-helices. The helices form a bundle that acts as a hydrophobic sleeve that sequesters the acyl chains and activated thioesters from solvent. However, in the synthesis of fatty acids and complex lipids the enzymes of the pathway must access the thioester and the proximal carbon atoms in order to perform the needed chemistry. How such access is provided without exposure of the acyl chains to solvent has been a longstanding question due to the lack of acyl-ACP-enzyme complexes, a situation generally attributed to the brevity of the interactions of acyl-ACPs with their cognate enzymes. As discussed in the present review the access question has now been answered by four recent crystal structures, each of which shows that the entire acyl chain plus the 4'-phosphopantetheine prosthetic group partitions from the ACP hydrophobic sleeve into a hydrophobic pocket or groove of the enzyme protein, a process termed chain flipping. PMID:24825445

  3. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 2.

    PubMed

    Ohtawa, Masaki; Yamazaki, Hiroyuki; Matsuda, Daisuke; Ohshiro, Taichi; Rudel, Lawrence L; Ōmura, Satoshi; Tomoda, Hiroshi; Nagamitsu, Tohru

    2013-05-01

    Synthesis and structure-activity relationships of 7-O-p-cyanobenzoyl pyripyropene A derivatives with modification at C1 and 11 are described. Regioselective mono-deprotection of di-tert-butylsilylene acetal was critical in their synthesis. PMID:23535327

  4. Trapping of the Enoyl-Acyl Carrier Protein Reductase–Acyl Carrier Protein Interaction

    PubMed Central

    Tallorin, Lorillee; Finzel, Kara; Nguyen, Quynh G.; Beld, Joris; La Clair, James J.; Burkart, Michael D.

    2016-01-01

    An ideal target for metabolic engineering, fatty acid biosynthesis remains poorly understood on a molecular level. These carrier protein-dependent pathways require fundamental protein–protein interactions to guide reactivity and processivity, and their control has become one of the major hurdles in successfully adapting these biological machines. Our laboratory has developed methods to prepare acyl carrier proteins (ACPs) loaded with substrate mimetics and cross-linkers to visualize and trap interactions with partner enzymes, and we continue to expand the tools for studying these pathways. We now describe application of the slow-onset, tight-binding inhibitor triclosan to explore the interactions between the type II fatty acid ACP from Escherichia coli, AcpP, and its corresponding enoyl-ACP reductase, FabI. We show that the AcpP–triclosan complex demonstrates nM binding, inhibits in vitro activity, and can be used to isolate FabI in complex proteomes. PMID:26938266

  5. The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata).

    PubMed

    Kuah, Meng-Kiat; Jaya-Ram, Annette; Shu-Chien, Alexander Chong

    2015-03-01

    The endogenous production of long-chain polyunsaturated fatty acids (LC-PUFA) in carnivorous teleost species inhabiting freshwater environments is poorly understood. Although a predatory lifestyle could potentially supply sufficient LC-PUFA to satisfy the requirements of these species, the nutrient-poor characteristics of the freshwater food web could impede this advantage. In this study, we report the cloning and functional characterisation of an elongase enzyme in the LC-PUFA biosynthesis pathway from striped snakehead (Channa striata), which is a strict freshwater piscivore that shows high deposition of LC-PUFA in its flesh. We also functionally characterised a previously isolated fatty acyl desaturase cDNA from this species. Results showed that the striped snakehead desaturase is capable of Δ4 and Δ5 desaturation activities, while the elongase showed the characteristics of Elovl5 elongases. Collectively, these findings reveal that striped snakehead exhibits the genetic resources to synthesise docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Both genes are expressed at considerable levels in the brain and the liver. In liver, both genes were up-regulated by dietary C18 PUFA, although this increase did not correspond to a significant rise in the deposition of muscle LC-PUFA. Brain tissue of fish fed with plant oil diets showed higher expression of fads2 gene compared to fish fed with fish oil-based diet, which could ensure DHA levels remain constant under limited dietary DHA intake. This suggests the importance of DHA production from EPA via the ∆4 desaturation step in order to maintain an optimal reserve of DHA in the neuronal tissues of carnivores. PMID:25542509

  6. Acylated oleanane-type triterpene saponins from the flowers of Bellis perennis show anti-proliferative activities against human digestive tract carcinoma cell lines.

    PubMed

    Ninomiya, Kiyofumi; Motai, Chiaki; Nishida, Eriko; Kitagawa, Niichiro; Yoshihara, Kazuya; Hayakawa, Takao; Muraoka, Osamu; Li, Xuezheng; Nakamura, Seikou; Yoshikawa, Masayuki; Matsuda, Hisashi; Morikawa, Toshio

    2016-07-01

    Seven oleanane-type triterpene saponin bisdesmosides, perennisaponins N-T (1-7), were newly isolated from a methanol extract of daisy, the flowers of Bellis perennis L. (Asteraceae). The structures were determined based on chemical and physicochemical data and confirmed using previously isolated related compounds as references. The isolates, including 13 previously reported perennisaponins A-M (8-20), exhibited anti-proliferative activities against human digestive tract carcinoma HSC-2, HSC-4, and MKN-45 cells. Among them, perennisaponin O (2, IC50 = 11.2, 14.3, and 6.9 μM, respectively) showed relatively strong activities. The mechanism of action of 2 against HSC-2 was found to involve apoptotic cell death. PMID:27178360

  7. Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins*

    PubMed Central

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K.; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T.; Goss, Rebecca J. M.; Field, Robert A.; Osbourn, Anne

    2013-01-01

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid. PMID:23258535

  8. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins.

    PubMed

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T; Goss, Rebecca J M; Field, Robert A; Osbourn, Anne

    2013-02-01

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid. PMID:23258535

  9. A method for the determination of the hepatic enzyme activity catalyzing bile acid acyl glucuronide formation by high-performance liquid chromatography with pulsed amperometric detection.

    PubMed

    Ikegawa, S; Oohashi, J; Murao, N; Goto, J

    2000-05-01

    A method for the determination of the activity of hepatic glucuronyltransferase catalyzing formation of bile acid 24-glucuronides using high-performance liquid chromatography (HPLC) with pulsed amperometric detection (PAD) has been developed. Bile acid 24-glucuronides were simultaneously separated on a semimicrobore column, Capcell Pak C18UG120, using 20 mM ammonium phosphate (pH 6.0)-acetonitrile (27:10 and 16:10) as the mobile phase in the stepwise gradient elution mode. A 1 M potassium hydroxide solution for the hydrolysis of the 24-glucuronides, which liberates the corresponding bile acids and glucuronic acid, was mixed with the mobile phase in a post-column mode, and the resulting eluant was heated at 90 degrees C, the 24-glucuronides being monitored using a pulsed amperometric detector; the limit of detection was 10 ng. The proposed method was applied to the determination of the hepatic enzyme activity catalyzing bile acid 24-glucuronide formation and the result exhibited the efficient 24-glucuronide formation of the monohydroxylated bile acid, lithocholic acid. PMID:10850616

  10. Mechanistic Investigations of Unsaturated Glucuronyl Hydrolase from Clostridium perfringens*

    PubMed Central

    Jongkees, Seino A. K.; Yoo, Hayoung; Withers, Stephen G.

    2014-01-01

    Experiments were carried out to probe the details of the hydration-initiated hydrolysis catalyzed by the Clostridium perfringens unsaturated glucuronyl hydrolase of glycoside hydrolase family 88 in the CAZy classification system. Direct 1H NMR monitoring of the enzymatic reaction detected no accumulated reaction intermediates in solution, suggesting that rearrangement of the initial hydration product occurs on-enzyme. An attempt at mechanism-based trapping of on-enzyme intermediates using a 1,1-difluoro-substrate was unsuccessful because the probe was too deactivated to be turned over by the enzyme. Kinetic isotope effects arising from deuterium-for-hydrogen substitution at carbons 1 and 4 provide evidence for separate first-irreversible and overall rate-determining steps in the hydration reaction, with two potential mechanisms proposed to explain these results. Based on the positioning of catalytic residues in the enzyme active site, the lack of efficient turnover of a 2-deoxy-2-fluoro-substrate, and several unsuccessful attempts at confirmation of a simpler mechanism involving a covalent glycosyl-enzyme intermediate, the most plausible mechanism is one involving an intermediate bearing an epoxide on carbons 1 and 2. PMID:24573682

  11. Mechanistic investigations of unsaturated glucuronyl hydrolase from Clostridium perfringens.

    PubMed

    Jongkees, Seino A K; Yoo, Hayoung; Withers, Stephen G

    2014-04-18

    Experiments were carried out to probe the details of the hydration-initiated hydrolysis catalyzed by the Clostridium perfringens unsaturated glucuronyl hydrolase of glycoside hydrolase family 88 in the CAZy classification system. Direct (1)H NMR monitoring of the enzymatic reaction detected no accumulated reaction intermediates in solution, suggesting that rearrangement of the initial hydration product occurs on-enzyme. An attempt at mechanism-based trapping of on-enzyme intermediates using a 1,1-difluoro-substrate was unsuccessful because the probe was too deactivated to be turned over by the enzyme. Kinetic isotope effects arising from deuterium-for-hydrogen substitution at carbons 1 and 4 provide evidence for separate first-irreversible and overall rate-determining steps in the hydration reaction, with two potential mechanisms proposed to explain these results. Based on the positioning of catalytic residues in the enzyme active site, the lack of efficient turnover of a 2-deoxy-2-fluoro-substrate, and several unsuccessful attempts at confirmation of a simpler mechanism involving a covalent glycosyl-enzyme intermediate, the most plausible mechanism is one involving an intermediate bearing an epoxide on carbons 1 and 2. PMID:24573682

  12. Aberrant protein acylation is a common observation in inborn errors of acyl-CoA metabolism.

    PubMed

    Pougovkina, Olga; Te Brinke, Heleen; Wanders, Ronald J A; Houten, Sander M; de Boer, Vincent C J

    2014-09-01

    Inherited disorders of acyl-CoA metabolism, such as defects in amino acid metabolism and fatty acid oxidation can present with severe clinical symptoms either neonatally or later in life, but the pathophysiological mechanisms are often incompletely understood. We now report the discovery of a novel biochemical mechanism that could contribute to the pathophysiology of these disorders. We identified increased protein lysine butyrylation in short-chain acyl-CoA dehydrogenase (SCAD) deficient mice as a result of the accumulation of butyryl-CoA. Similarly, in SCAD deficient fibroblasts, lysine butyrylation was increased. Furthermore, malonyl-CoA decarboxylase (MCD) deficient patient cells had increased levels of malonylated lysines and propionyl-CoA carboxylase (PCC) deficient patient cells had increased propionylation of lysines. Since lysine acylation can greatly impact protein function, aberrant lysine acylation in inherited disorders associated with acyl-CoA accumulation may well play a role in their disease pathophysiology. PMID:24531926

  13. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 3.

    PubMed

    Ohtawa, Masaki; Yamazaki, Hiroyuki; Ohte, Satoshi; Matsuda, Daisuke; Ohshiro, Taichi; Rudel, Lawrence L; Ōmura, Satoshi; Tomoda, Hiroshi; Nagamitsu, Tohru

    2013-07-01

    In an effort to develop potent and selective inhibitors toward ACAT2, structure-activity relationship studies were carried out using derivatives based on pyripyropene A (PPPA, 1). In particular, we investigated the possibility of introducing appropriate 1,11-O-benzylidene and 7-O-substituted benzoyl moieties into PPPA (1). The new o-substituted benzylidene derivatives showed higher selectivity for ACAT2 than PPPA (1). Among them, 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl PPPA derivative 7q and 1,11-O-o,o-dimethylbenzylidene-7-O-p-cyanobenzoyl PPPA derivative 7z proved to be potent ACAT2 inhibitors with unprecedented high isozyme selectivity. PMID:23711919

  14. [Design, synthesis and evaluation of N-acyl-4-phenylthiazole-2-amines as acetylcholinesterase inhibitors].

    PubMed

    Ma, Zheng-Yue; Yang, Qi; Zhang, Yuan-Gong; Li, Jun-Jie; Yang, Geng-Liang

    2014-06-01

    N-Acyl-4-phenylthiazole-2-amines were designed and synthesized, moreover their effects on acetylcholinesterase activities were tested. N-Acyl-4-phenylthiazole-2-amines were prepared from substituted 2-bromo-1-acetophenones by three steps reaction, and their AChE inhibitory activities were measured by Ellman method in vitro. The results showed that the target compounds had a certain inhibitory activity on AChE in vitro. Among them, 8c was the best, and IC50 of 8c was 0.51 micromol x L(-1), better than that of rivastigmine and Huperzine-A. The inhibitory activities of N-acyl-4-phenylthiazole-2-amines on acetylcholinesterase are worth while to be further studied. PMID:25212025

  15. Expanding the Catalytic Triad in Epoxide Hydrolases and Related Enzymes

    PubMed Central

    2015-01-01

    Potato epoxide hydrolase 1 exhibits rich enantio- and regioselectivity in the hydrolysis of a broad range of substrates. The enzyme can be engineered to increase the yield of optically pure products as a result of changes in both enantio- and regioselectivity. It is thus highly attractive in biocatalysis, particularly for the generation of enantiopure fine chemicals and pharmaceuticals. The present work aims to establish the principles underlying the activity and selectivity of the enzyme through a combined computational, structural, and kinetic study using the substrate trans-stilbene oxide as a model system. Extensive empirical valence bond simulations have been performed on the wild-type enzyme together with several experimentally characterized mutants. We are able to computationally reproduce the differences between the activities of different stereoisomers of the substrate and the effects of mutations of several active-site residues. In addition, our results indicate the involvement of a previously neglected residue, H104, which is electrostatically linked to the general base H300. We find that this residue, which is highly conserved in epoxide hydrolases and related hydrolytic enzymes, needs to be in its protonated form in order to provide charge balance in an otherwise negatively charged active site. Our data show that unless the active-site charge balance is correctly treated in simulations, it is not possible to generate a physically meaningful model for the enzyme that can accurately reproduce activity and selectivity trends. We also expand our understanding of other catalytic residues, demonstrating in particular the role of a noncanonical residue, E35, as a “backup base” in the absence of H300. Our results provide a detailed view of the main factors driving catalysis and regioselectivity in this enzyme and identify targets for subsequent enzyme design efforts. PMID:26527505

  16. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases

    PubMed Central

    Guy, Jodie E.; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-01-01

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals. PMID:21930947

  17. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases.

    PubMed

    Guy, Jodie E; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-10-01

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals. PMID:21930947

  18. Haptoglobin binding to apolipoprotein A-I prevents damage from hydroxyl radicals on its stimulatory activity of the enzyme lecithin-cholesterol acyl-transferase.

    PubMed

    Salvatore, Alfonso; Cigliano, Luisa; Bucci, Enrico M; Corpillo, Davide; Velasco, Silvia; Carlucci, Alessandro; Pedone, Carlo; Abrescia, Paolo

    2007-10-01

    Apolipoprotein A-I (ApoA-I), a major component of HDL, binds haptoglobin, a plasma protein transporting to liver or macrophages free Hb for preventing hydroxyl radical production. This work aimed to assess whether haptoglobin protects ApoA-I against this radical. Human ApoA-I structure, as analyzed by electrophoresis and MS, was found severely altered by hydroxyl radicals in vitro. Lower alteration of ApoA-I was found when HDL was oxidized in the presence of haptoglobin. ApoA-I oxidation was limited also when the complex of haptoglobin with both high-density lipoprotein and Hb, immobilized on resin beads, was exposed to hydroxyl radicals. ApoA-I function to stimulate cholesterol esterification was assayed in vitro by using ApoA-I-containing liposomes. Decreased stimulation was observed when liposomes oxidized without haptoglobin were used. Conversely, after oxidative stress in the presence of haptoglobin (0.5 microM monomer), the liposome activity did not change. Plasma of carrageenan-treated mice was analyzed by ELISA for the levels of haptoglobin and ApoA-I, and used to isolate HDL for MS analysis. Hydroxyproline-containing fragments of ApoA-I were found associated with low levels of haptoglobin (18 microM monomer), whereas they were not detected when the haptoglobin level increased (34-70 microM monomer). Therefore haptoglobin, when circulating at enhanced levels with free Hb during the acute phase of inflammation, might protect ApoA-I structure and function against hydroxyl radicals. PMID:17824618

  19. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils.

    PubMed

    Wang, Ya-Juan; Leadbetter, Jared Renton

    2005-03-01

    Signal degradation impacts all communications. Although acyl-homoserine lactone (acyl-HSL) quorum-sensing signals are known to be degraded by defined laboratory cultures, little is known about their stability in nature. Here, we show that acyl-HSLs are biodegraded in soils sampled from diverse U.S. sites and by termite hindgut contents. When amended to samples at physiologically relevant concentrations, 14C-labeled acyl-HSLs were mineralized to 14CO2 rapidly and, at most sites examined, without lag. A lag-free turf soil activity was characterized in further detail. Heating or irradiation of the soil prior to the addition of radiolabel abolished mineralization, whereas protein synthesis inhibitors did not. Mineralization exhibited an apparent Km of 1.5 microM acyl-HSL, ca. 1,000-fold lower than that reported for a purified acyl-HSL lactonase. Under optimal conditions, acyl-HSL degradation proceeded at a rate of 13.4 nmol x h(-1) x g of fresh weight soil(-1). Bioassays established that the final extent of signal inactivation was greater than for its full conversion to CO2 but that the two processes were well coupled kinetically. A most probable number of 4.6 x 10(5) cells . g of turf soil(-1) degraded physiologically relevant amounts of hexanoyl-[1-14C]HSL to 14CO2. It would take chemical lactonolysis months to match the level of signal decay achieved in days by the observed biological activity. Rapid decay might serve either to quiet signal cross talk that might otherwise occur between spatially separated microbial aggregates or as a full system reset. Depending on the context, biological signal decay might either promote or complicate cellular communications and the accuracy of population density-based controls on gene expression in species-rich ecosystems. PMID:15746331

  20. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria.

    PubMed Central

    Schlömann, M; Schmidt, E; Knackmuss, H J

    1990-01-01

    Of various benzoate-utilizing bacteria tested, Alcaligenes eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, A. eutrophus JMP134, Alcaligenes strain A7, and Pseudomonas cepacia were able to grow with 4-fluorobenzoate as the sole source of carbon and energy. P. cepacia also utilizes 3-fluorobenzoate. Except for A. eutrophus JMP134, which is known to grow with 2,4-dichlorophenoxyacetate and 3-chlorobenzoate (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981), the strains were unable to grow at the expense of these compounds or 4-chlorobenzoate. Assays of cell extracts revealed that all strains express dienelactone hydrolase and maleylacetate reductase activities in addition to enzymes of the catechol branch of the 3-oxoadipate pathway when growing with 4-fluorobenzoate. Induction of dienelactone hydrolase and maleylacetate reductase apparently is not necessarily connected to synthesis of catechol 1,2-dioxygenase type II and chloromuconate cycloisomerase activities, which are indispensable for the degradation of chlorocatechols. Substrate specificities of the dienelactone hydrolases provisionally differentiate among three types of this activity. (i) Extracts of A. eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, and Alcaligenes strain A7 convert trans-4-carboxymethylenebut-2-en-4-olide (trans-dienelactone) much faster than the cis-isomer (type I). (ii) The enzyme present in P. cepacia shows the opposite preference for the isomeric substrates (type II). (iii) Cell extracts of A. eutrophus JMP134, as well as purified dienelactone hydrolase from Pseudomonas strain B13 (E. Schmidt and H.-J. Knackmuss, Biochem. J. 192:339-347, 1980), hydrolyze both dienelactones at rates that are of the same order of magnitude (type III). This classification implies that A. eutrophus JMP134 possesses at least two different dienelactone hydrolases, one of type III encoded by the plasmid pJP4 and one of type I, which is also present in the cured strain JMP222. PMID

  1. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases.

    PubMed

    Nisha, M; Satyanarayana, T

    2016-07-01

    Pullulan hydrolyzing enzymes are endoacting, classified based on the substrate specificity and hydrolysis products as pullulanases (type I and II) and pullulan hydrolases (type I, II and III). Pullulanases and pullulan hydrolase type I are produced by bacteria and archaea. Among bacteria, many mesophilic, thermophilic and hyperthermophilic bacteria produce pullulanases and neopullulanases. While pullulan hydrolase type II and type III are produced by fungi and archaea, respectively. These are multi-domain proteins with three conserved catalytic acidic residues of the glycosyl hydrolases. The recent advances in molecular biology and protein engineering via mutagenesis and truncation led to improvement in thermostability, catalytic activity and substrate specificity. Pullulanases are debranching enzymes, which are widely employed in starch saccharification that minimizes the use of glucoamylase (approx. 50 %) and reduces the total reaction time of the industrial starch conversion process. The thermostable amylopullulanases are useful in one-step starch liquefaction and saccharification, which replaces amylolytic enzymes like α-amylase and glucoamylase, thus resulting in the reduction in the cost of sugar production. The enzymes also find application in making resistant starches and as an antistale in bread making. Panose and isopanose containing syrups are useful as prebiotics, while panose has also been reported to display anticarcinogenic activity. This review focuses on the distinguishing features of these enzymes based on the analysis of amino acid sequences and domain structure, besides highlighting recent advances in the molecular biology and protein engineering for enhancing their thermostability, catalytic activity and substrate specificity. This review also briefly summarizes the potential applications of pullulanases and pullulan hydrolases. PMID:27142298

  2. The effect of conformational variability of phosphotriesterase upon N-acyl-L-homoserine lactone and paraoxon binding: insights from molecular dynamics studies.

    PubMed

    Zhan, Dongling; Zhou, Zhenhuan; Guan, Shanshan; Han, Weiwei

    2013-01-01

    The organophosphorous hydrolase (PTE) from Brevundimonas diminuta is capable of degrading extremely toxic organophosphorous compounds with a high catalytic turnover and broad substrate specificity. Although the natural substrate for PTE is unknown, its loop remodeling (loop 7-2/H254R) led to the emergence of a homoserine lactonase (HSL) activity that is undetectable in PTE (kcat/km values of up to 2 × 10(4)), with only a minor decrease in PTE paraoxonase activity. In this study, homology modeling and molecular dynamics simulations have been undertaken seeking to explain the reason for the substrate specificity for the wild-type and the loop 7-2/H254R variant. The cavity volume estimated results showed that the active pocket of the variant was almost two fold larger than that of the wild-type (WT) enzyme. pKa calculations for the enzyme (the WT and the variant) showed a significant pKa shift from WT standard values (ΔpKa = 3.5 units) for the His254 residue (in the Arg254 variant). Molecular dynamics simulations indicated that the displacement of loops 6 and 7 over the active site in loop 7-2/H254R variant is useful for N-acyl-L-homoserine lactone (C4-HSL) with a large aliphatic chain to site in the channels easily. Thence the expanding of the active pocket is beneficial to C4-HSL binding and has a little effect on paraoxon binding. Our results provide a new theoretical contribution of loop remodeling to the rapid divergence of new enzyme functions. PMID:24352010

  3. Oxime esters as selective, covalent inhibitors of the serine hydrolase retinoblastoma-binding protein 9 (RBBP9).

    PubMed

    Bachovchin, Daniel A; Wolfe, Monique R; Masuda, Kim; Brown, Steven J; Spicer, Timothy P; Fernandez-Vega, Virneliz; Chase, Peter; Hodder, Peter S; Rosen, Hugh; Cravatt, Benjamin F

    2010-04-01

    We recently described a fluorescence polarization platform for competitive activity-based protein profiling (fluopol-ABPP) that enables high-throughput inhibitor screening for enzymes with poorly characterized biochemical activity. Here, we report the discovery of a class of oxime ester inhibitors for the unannotated serine hydrolase RBBP9 from a full-deck (200,000+ compound) fluopol-ABPP screen conducted in collaboration with the Molecular Libraries Screening Center Network (MLSCN). We show that these compounds covalently inhibit RBBP9 by modifying enzyme's active site serine nucleophile and, based on competitive ABPP in cell and tissue proteomes, are selective for RBBP9 relative to other mammalian serine hydrolases. PMID:20207142

  4. A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551

    SciTech Connect

    Khajamohiddin, Syed; Babu, Pakala Suresh; Chakka, Deviprasanna; Merrick, Mike; Bhaduri, Anirban; Sowdhamini, Ramanathan; Siddavattam, Dayananda . E-mail: sdsl@uohyd.ernet.in

    2006-12-22

    The organophosphate degrading (opd) gene cluster of plasmid pPDL2 of Flavobacterium sp. ATCC27551 contains a novel open-reading frame, orf243. This was predicted to encode an {alpha}/{beta} hydrolase distantly related to the meta-fission product (MFP) hydrolases such as XylF, PhnD, and CumD. By homology modeling Orf243 has most of the structural features of MFP hydrolases including the characteristic active site catalytic triad. The purified protein (designated MfhA) is a homotetramer and shows similar affinity for 2-hydroxy-6-oxohepta-2,4-dienoate (HOHD), 2-hydroxymuconic semialdehyde (HMSA), and 2-hydroxy-5-methylmuconic semialdehyde (HMMSA), the meta-fission products of 3-methyl catechol, catechol, and 4-methyl catechol. The unique catalytic properties of MfhA and the presence near its structural gene of cis-elements required for transposition suggest that mfhA has evolved towards encoding a common hydrolase that can act on meta-fission products containing either aldehyde or ketone groups.

  5. Esterase SeE of Streptococcus equi ssp. equi is a Novel Non-specific Carboxylic Ester Hydrolase

    PubMed Central

    Xie, Gang; Liu, Mengyao; Zhu, Hui; Lei, Benfang

    2009-01-01

    Extracellular carboxylic ester hydrolases are produced by many bacterial pathogens and have been shown recently to be important for virulence of some pathogens. However, these hydrolases are poorly characterized in enzymatic activity. This study prepared and characterized the secreted ester hydrolase of Streptococcus equi ssp. equi (designated SeE for S. equi esterase). SeE hydrolyzes ethyl acetate, acetylsalicylic acid, and tributyrin but not ethyl butyrate. This substrate specificity pattern does not match those of the three conventional types of non-specific carboxylic ester hydrolases (carboxylesterases, arylesterases, and acetylesterases). To determine whether SeE has lipase activity, a number of triglycerides and vinyl esters were tested in SeE-catalyzed hydrolysis. SeE does not hydrolyze triglycerides and vinyl esters of long chain carboxylic acids nor display interfacial activation, indicating that SeE is not a lipase. Like the conventional carboxylesterases, SeE is inhibited by diisopropylfluorophosphate. These findings indicate that SeE is a novel non-specific carboxylic ester hydrolase that has broader substrate specificity than the conventional carboxylesterases. PMID:19054107

  6. Acyl-coenzyme A:cholesterol acyltransferases

    PubMed Central

    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C. Y.; Urano, Yasuomi

    2009-01-01

    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease. PMID:19141679

  7. Proteomic Analysis of a Poplar Cell Suspension Culture Suggests a Major Role of Protein S-Acylation in Diverse Cellular Processes

    PubMed Central

    Srivastava, Vaibhav; Weber, Joseph R.; Malm, Erik; Fouke, Bruce W.; Bulone, Vincent

    2016-01-01

    S-acylation is a reversible post-translational modification of proteins known to be involved in membrane targeting, subcellular trafficking, and the determination of a great variety of functional properties of proteins. The aim of this work was to identify S-acylated proteins in poplar. The use of an acyl-biotin exchange method and mass spectrometry allowed the identification of around 450 S-acylated proteins, which were subdivided into three major groups of proteins involved in transport, signal transduction, and response to stress, respectively. The largest group of S-acylated proteins was the protein kinase superfamily. Soluble N-ethylmaleimide-sensitive factor-activating protein receptors, band 7 family proteins and tetraspanins, all primarily related to intracellular trafficking, were also identified. In addition, cell wall related proteins, including cellulose synthases and other glucan synthases, were found to be S-acylated. Twenty four of the identified S-acylated proteins were also enriched in detergent-resistant membrane microdomains, suggesting S-acylation plays a key role in the localization of proteins to specialized plasma membrane subdomains. This dataset promises to enhance our current understanding of the various functions of S-acylated proteins in plants. PMID:27148305

  8. Proteomic Analysis of a Poplar Cell Suspension Culture Suggests a Major Role of Protein S-Acylation in Diverse Cellular Processes.

    PubMed

    Srivastava, Vaibhav; Weber, Joseph R; Malm, Erik; Fouke, Bruce W; Bulone, Vincent

    2016-01-01

    S-acylation is a reversible post-translational modification of proteins known to be involved in membrane targeting, subcellular trafficking, and the determination of a great variety of functional properties of proteins. The aim of this work was to identify S-acylated proteins in poplar. The use of an acyl-biotin exchange method and mass spectrometry allowed the identification of around 450 S-acylated proteins, which were subdivided into three major groups of proteins involved in transport, signal transduction, and response to stress, respectively. The largest group of S-acylated proteins was the protein kinase superfamily. Soluble N-ethylmaleimide-sensitive factor-activating protein receptors, band 7 family proteins and tetraspanins, all primarily related to intracellular trafficking, were also identified. In addition, cell wall related proteins, including cellulose synthases and other glucan synthases, were found to be S-acylated. Twenty four of the identified S-acylated proteins were also enriched in detergent-resistant membrane microdomains, suggesting S-acylation plays a key role in the localization of proteins to specialized plasma membrane subdomains. This dataset promises to enhance our current understanding of the various functions of S-acylated proteins in plants. PMID:27148305

  9. The TIP GROWTH DEFECTIVE1 S-Acyl Transferase Regulates Plant Cell Growth in ArabidopsisW⃞

    PubMed Central

    Hemsley, Piers A.; Kemp, Alison C.; Grierson, Claire S.

    2005-01-01

    TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Δ, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1− mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells. PMID:16100337

  10. Identification of N-Acyl Phosphatidylserine Molecules in Eukaryotic Cells

    PubMed Central

    Guan, Ziqiang; Li, Shengrong; Smith, Dale C.; Shaw, Walter A.; Raetz, Christian R. H.

    2008-01-01

    While profiling the lipidome of the mouse brain by mass spectrometry, we discovered a novel family of N-acyl phosphatidylserine (N-acyl-PS) molecules. These N-acyl-PS species were enriched by DEAE-cellulose column chromatography, and they were then characterized by accurate mass measurements, tandem mass spectrometry, liquid chromatography/mass spectrometry, and comparison to an authentic standard. Mouse brain N-acyl-PS molecules are heterogeneous and constitute about 0.1 % of the total lipid. In addition to various ester-linked fatty acyl chains on their glycerol backbones, the complexity of the N-acyl-PS series is further increased by the presence of diverse amide-linked N-acyl chains, which include saturated, mono-unsaturated and poly-unsaturated species. N-acyl-PS molecular species were also detected in the lipids of pig brain, mouse RAW264.7 macrophage tumor cells and yeast, but not E. coli. N-acyl-PSs may be biosynthetic precursors of N-acyl serine molecules, such as the recently reported signaling lipid N-arachidonoyl serine from bovine brain. We suggest that a phospholipase D might cleave N-acyl-PS to generate N-acyl serine, in analogy to the biosynthesis of the endocannabinoid N-arachidonoyl ethanolamine (anadamide) from N-arachidonoyl phosphatidylethanolamine. PMID:18031065

  11. Remodeling of host phosphatidylcholine by Chlamydia acyltransferase is regulated by acyl-CoA binding protein ACBD6 associated with lipid droplets

    PubMed Central

    Soupene, Eric; Wang, Derek; Kuypers, Frans A

    2015-01-01

    The bacterial human pathogen Chlamydia trachomatis invades cells as an infectious elementary body (EB). The EB is internalized into a vacuole that is hidden from the host defense mechanism, and is modified to sustain the development of the replicative reticulate body (RB). Inside this parasitophorous compartment, called the inclusion, the pathogen survives supported by an active exchange of nutrients and proteins with the host cell. We show that host lipids are scavenged and modified into bacterial-specific lipids by the action of a shared human-bacterial acylation mechanism. The bacterial acylating enzymes for the essential lipids 1-acyl-sn-glycerol 3-phosphate and 1-acyl-sn-phosphatidylcholine were identified as CT453 and CT775, respectively. Bacterial CT775 was found to be associated with lipid droplets (LDs). During the development of C. trachomatis, the human acyl-CoA carrier hACBD6 was recruited to cytosolic LDs and translocated into the inclusion. hACBD6 protein modulated the activity of CT775 in an acyl-CoA dependent fashion and sustained the activity of the bacterial acyltransferase by buffering the concentration of acyl-CoAs. We propose that disruption of the binding activity of the acyl-CoA carrier might represent a new drug-target to prevent growth of C. trachomatis. PMID:25604091

  12. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ...

  13. The acylation state of mycobacterial lipomannans modulates innate immunity response through toll-like receptor 2.

    PubMed

    <