Science.gov

Sample records for acyl thiourea derivatives

  1. Ferrocene-modified pyrimidinyl acyl-thiourea derivatives: Synthesis, structures and electrochemistry

    NASA Astrophysics Data System (ADS)

    Duan, Xin-E.; Wei, Xue-Hong; Tong, Hong-Bo; Bai, Sheng-Di; Zhang, Yong-Bin; Liu, Dian-Sheng

    2011-11-01

    Two ferrocene-modified pyrimidinyl acyl-thiourea derivatives, N-ferrocenoyl- N'-(2-pyrimidinyl) thiourea 1 and N-ferrocenoyl- N'-(5-pyrimidinyl) thiourea 2 were prepared from the reactions of ferrocenoyl isothiocyanate with 2-aminopyrimidine or 5-aminopyrimidine, respectively. Both of the new compounds were characterized by 1H NMR, 13C NMR, IR, elemental analyses and single-crystal X-ray diffraction. Comparing with ferrocene, compounds 1 and 2 show red-shift in the absorption peaks and increasing anodic peak potentials ( E pa) values in the cyclic voltammetry studies. Furthermore, the electrochemical data of compounds 1 and 2 correspondingly exhibit one-electron quasi-reversible and reversible electrochemical redox behaviors. In the solid-state, compound 1 forms a ladder-like assembly by hydrogen-bonding, whereas, compound 2 is assembled into two-dimensional network structure through hydrogen-bonding and unusual intermolecular O⋯π interactions between O-atoms of the carbonyl units and the cyclopentadienyl rings.

  2. Synthesis, crystal structure, and in vitro and in silico molecular docking of novel acyl thiourea derivatives

    NASA Astrophysics Data System (ADS)

    Haribabu, Jebiti; Subhashree, Govindarajulu Rangabashyam; Saranya, Sivaraj; Gomathi, Kannayiram; Karvembu, Ramasamy; Gayathri, Dasararaju

    2015-08-01

    In the present study, a series of six biologically active substituted acyl thiourea compounds (1-6) has been synthesized from cyclohexanecarbonyl isothiocyanate and various primary amines (2-methyl aniline, aniline, 4-methoxy aniline, 4-ethoxy aniline, benzyl amine and 2-methoxy aniline). The synthesized compounds were characterized by elemental analyses, UV-Visible, FT-IR, 1H & 13C NMR and mass spectroscopic techniques. Three dimensional molecular structure of two compounds (1 and 5) was determined by single crystal X-ray crystallography. All the synthesized compounds show good anti-oxidant and anti-haemolytic activities. In silico molecular docking studies were performed to screen against DprE1 and HSP90 enzymes targeting tuberculosis and cancer respectively.

  3. Synthesis and Biological Evaluation of Novel Dehydroabietic Acid Derivatives Conjugated with Acyl-Thiourea Peptide Moiety as Antitumor Agents

    PubMed Central

    Jin, Le; Qu, Hong-En; Huang, Xiao-Chao; Pan, Ying-Ming; Liang, Dong; Chen, Zhen-Feng; Wang, Heng-Shan; Zhang, Ye

    2015-01-01

    A series of dehydroabietic acid (DHAA) acyl-thiourea derivatives were designed and synthesized as potent antitumor agents. The in vitro pharmacological screening results revealed that the target compounds exhibited potent cytotoxicity against HeLa, SK-OV-3 and MGC-803 tumor cell lines, while they showed lower cytotoxicity against HL-7702 normal human river cells. Compound 9n (IC50 = 6.58 ± 1.11 μM) exhibited the best antitumor activity against the HeLa cell line and even displayed more potent inhibitory activity than commercial antitumor drug 5-FU (IC50 = 36.58 ± 1.55 μM). The mechanism of representative compound 9n was then studied by acridine orange/ethidium bromide staining, Hoechst 33,258 staining, JC-1 mitochondrial membrane potential staining, TUNEL assay and flow cytometry, which illustrated that this compound could induce apoptosis in HeLa cells. Cell cycle analysis indicated that compound 9n mainly arrested HeLa cells in the S phase stage. Further investigation demonstrated that compound 9n induced apoptosis of HeLa cells through a mitochondrial pathway. PMID:26132564

  4. DNA-binding studies and biological activities of new nitrosubstituted acyl thioureas

    NASA Astrophysics Data System (ADS)

    Tahir, Shaista; Badshah, Amin; Hussain, Raja Azadar; Tahir, Muhammad Nawaz; Tabassum, Saira; Patujo, Jahangir Ali; Rauf, Muhammad Khawar

    2015-11-01

    Four new nitrosubstituted acylthioureas i.e. 1-acetyl-3-(4-nitrophenyl)thiourea (TU1), 1-acetyl-3-(2-methyl-4-nitrophenyl)thiourea (TU2), 1-acetyl-3-(2-methoxy-4-nitrophenyl)thiourea (TU3) and 1-acetyl-3-(4-chloro-3-nitrophenyl)thiourea (TU4) have been synthesized and characterized (by C13 and H1 nuclear magnetic resonance, Fourier transform infrared spectroscopy and single crystal X-ray diffraction). As a preliminary investigation of the anti-cancer potencies of the said compounds, DNA interaction studies have been carried out using cyclic voltammetry and UV-vis spectroscopy along with verification from computational studies. The drug-DNA binding constants are found to be in the order, KTU3 9.04 × 106 M-1 > KTU4 8.57 × 106 M-1 > KTU2 6.05 × 106 M-1 > KTU1 1.16 × 106 M-1. Furthermore, the antioxidant, cytotoxic, antibacterial and antifungal activities have been carried out against DPPH (1,1-diphenyl-2-dipicrylhydrazyl), Brine shrimp eggs, gram positive (Micrococcus luteus, Staphylococcus aureus) and gram negative (Bordetella bronchiseptica, Salmonella typhimurium, Enterobacter aerogens) and fungal cultures (Aspergillus fumigatus, Mucor species, Aspergillus niger, Aspergillus flavus) respectively.

  5. On the cytotoxic activity of Pd(II) complexes of N,N-disubstituted-N'-acyl thioureas.

    PubMed

    Plutín, Ana M; Mocelo, Raúl; Alvarez, Anislay; Ramos, Raúl; Castellano, Eduardo E; Cominetti, Marcia R; Graminha, Angelica E; Ferreira, Antonio G; Batista, Alzir A

    2014-05-01

    The rational design of anticancer drugs is one of the most promising strategies for increasing their cytotoxicity and for minimizing their toxicity. Manipulation of the structure of ligands or of complexes represents a strategy for which is possible to modify the potential mechanism of their action against the cancer cells. Here we present the cytotoxicity of some new palladium complexes and our intention is to show the importance of non-coordinated atoms of the ligands in the cytotoxicity of the complexes. New complexes of palladium (II), with general formulae [Pd(PPh3)2(L)]PF6 or [PdCl(PPh3)(L)], where L=N,N-disubstituted-N'-acyl thioureas, were synthesized and characterized by elemental analysis, molar conductivity, melting points, IR, NMR((1)H, (13)C and (31)P{(1)H}) spectroscopy. The spectroscopic data are consistent with the complexes containing an O, S chelated ligand. The structures of complexes with N,N-dimethyl-N'-benzoylthiourea, N,N-diphenyl-N'-benzoylthiourea, N,N-diethyl-N'-furoylthiourea, and N,N-diphenyl-N'-furoylthiourea were determined by X-ray crystallography, confirming the coordination of the ligands with the metal through sulfur and oxygen atoms, forming distorted square-planar structures. The N,N-disubstituted-N'-acyl thioureas and their complexes were screened with respect to their antitumor cytotoxicity against DU-145 (human prostate cancer cells), MDA-MB-231 (human breast cancer cells) and their toxicity against the L929 cell line (health cell line from mouse). PMID:24561278

  6. Synthesis, cholinesterase inhibition and molecular modelling studies of coumarin linked thiourea derivatives.

    PubMed

    Saeed, Aamer; Zaib, Sumera; Ashraf, Saba; Iftikhar, Javeria; Muddassar, Muhammad; Zhang, Kam Y J; Iqbal, Jamshed

    2015-12-01

    Alzheimer's disease is among the most widespread neurodegenerative disorder. Cholinesterases (ChEs) play an indispensable role in the control of cholinergic transmission and thus the acetylcholine level in the brain is enhanced by inhibition of ChEs. Coumarin linked thiourea derivatives were designed, synthesized and evaluated biologically in order to determine their inhibitory activity against acetylcholinesterases (AChE) and butyrylcholinesterases (BChE). The synthesized derivatives of coumarin linked thiourea compounds showed potential inhibitory activity against AChE and BChE. Among all the synthesized compounds, 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(3-chlorophenyl)thiourea (2e) was the most potent inhibitor against AChE with an IC50 value of 0.04±0.01μM, while 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(2-methoxyphenyl)thiourea (2b) showed the most potent inhibitory activity with an IC50 value of 0.06±0.02μM against BChE. Molecular docking simulations were performed using the homology models of both cholinesterases in order to explore the probable binding modes of inhibitors. Results showed that the novel synthesized coumarin linked thiourea derivatives are potential candidates to develop for potent and efficacious acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors.

  7. Experimental, density function theory calculations and molecular dynamics simulations to investigate the adsorption of some thiourea derivatives on iron surface in nitric acid solutions

    NASA Astrophysics Data System (ADS)

    Khaled, K. F.

    2010-09-01

    The effects of thiourea derivatives, namely N-methyl thiourea (MTU), N-propyl thiourea (PTU) and N-allyl thiourea (ATU) on the corrosion behaviour of iron in 1.0 M solution of HNO 3 have been investigated in relation to the concentration of thiourea derivatives. The experimental data obtained using the techniques of weight loss, Tafel polarization and electrochemical impedance spectroscopy, EIS. The results showed that these compounds revealed a good corrosion inhibition, (ATU) being the most efficient and (MTU) the least. Computational studies have been used to find the most stable adsorption sites for thiourea derivatives. This information help to gain further insight about corrosion system, such as the most likely point of attack for corrosion on iron (1 1 0), the most stable site for thiourea derivatives adsorption and the binding energy of the adsorbed layer. The efficiency order of the inhibitors obtained by experimental results was verified by theoretical analysis.

  8. Intra- and intermolecular hydrogen bonding and conformation in 1-acyl thioureas: an experimental and theoretical approach on 1-(2-chlorobenzoyl)thiourea.

    PubMed

    Saeed, Aamer; Khurshid, Asma; Bolte, Michael; Fantoni, Adolfo C; Erben, Mauricio F

    2015-05-15

    The vibrational analysis (FT-IR and FT-Raman) for the new 1-(2-chlorobenzoyl)thiourea species suggests that strong intramolecular interactions affect the conformational properties. The X-ray structure determination corroborates that an intramolecular N-H⋯OC hydrogen bond occurs between the carbonyl (-CO) and thioamide (-NH2) groups. Moreover, periodic system electron density and topological analysis have been applied to characterize the intermolecular interactions in the crystal. Extended N-H⋯SC hydrogen-bonding networks between both the thioamide (N-H) and carbamide (NH2) groups and the thiocarbonyl bond (CS) determine the crystal packing. The Natural Bond Orbital (NBO) population analysis demonstrates that strong hyperconjugative remote interactions are responsible for both, intra and intermolecular interactions. The Atom in Molecule (AIM) results also show that the N-H⋯Cl intramolecular hydrogen bond between the 2-Cl-phenyl ring and the amide group characterized in the free molecule changes to an N⋯Cl interaction as a consequence of crystal packing. PMID:25710115

  9. Design, synthesis and biological evaluation of novel HSP70 inhibitors: N, N'-disubstituted thiourea derivatives.

    PubMed

    Zeng, Yan-Qun; Cao, Rui-Yuan; Yang, Jian-Ling; Li, Xing-Zhou; Li, Song; Zhong, Wu

    2016-08-25

    As novel heat shock protein 70 (HSP70) inhibitors, N, N'-disubstituted thiourea derivatives were designed and synthesized based on the X-ray structure of the ATPase domain (nucleotide binding domain, NBD). An ATPase activity inhibition assay revealed that these compounds effectively inhibited HSP70 ATPase activity. The results revealed that the compounds 370/371/374/379/380//392/394/397/404/405 and 407 can inhibit the HSP70 ATPase turnover with high percentages of inhibition: 50.42, 38.46, 50.45, 44.12, 47.13, 50.50, 40.95, 65.36, 46.23, 35.78, and 58.37 in 200 μM, respectively. Significant synergies with lapatinib were observed for compound 379 and compound 405 in the BT474 breast cancer cell line. A structure-function analysis revealed that most of the thiourea derivatives exhibited cooperative action with lapatinib in the BT474 cancer cell line and the BT/Lap(R)1.0 lapatinib-resistant cell line. HSP70 inhibitors may be developed as synergetic drugs in drug-resistant cancer therapy. PMID:27155465

  10. Ru(II)-based complexes with N-(acyl)-N',N'-(disubstituted)thiourea ligands: Synthesis, characterization, BSA- and DNA-binding studies of new cytotoxic agents against lung and prostate tumour cells.

    PubMed

    Correa, Rodrigo S; de Oliveira, Katia M; Delolo, Fábio G; Alvarez, Anislay; Mocelo, Raúl; Plutin, Ana M; Cominetti, Marcia R; Castellano, Eduardo E; Batista, Alzir A

    2015-09-01

    Four ruthenium(II)-based complexes with N-(acyl)-N',N'-(disubstituted)thiourea derivatives (Th) were obtained. The compounds, with the general formula trans-[Ru(PPh3)2(Th)(bipy)]PF6, interact with bovine serum albumin (BSA) and DNA. BSA-binding constants, which were in the range of 3.3-6.5×10(4) M(-1), and the thermodynamic parameters (ΔG, ΔH and ΔS), suggest spontaneous interactions with this protein by electrostatic forces due to the positive charge of the complexes. Also, binding constant by spectrophotometric DNA titration (Kb = 0.8-1.8×10(4) M(-1)) and viscosity studies indicate weak interactions between the complexes and DNA. Cytotoxicity assays against DU-145 (prostate cancer) and A549 (lung cancer) tumour cells revealed that the complexes are more active in tumour cells than in normal (L929) cells, and that they present high cytotoxicity (low IC50 values) compared with the reference metallodrug, cisplatin.

  11. Ru(II)-based complexes with N-(acyl)-N',N'-(disubstituted)thiourea ligands: Synthesis, characterization, BSA- and DNA-binding studies of new cytotoxic agents against lung and prostate tumour cells.

    PubMed

    Correa, Rodrigo S; de Oliveira, Katia M; Delolo, Fábio G; Alvarez, Anislay; Mocelo, Raúl; Plutin, Ana M; Cominetti, Marcia R; Castellano, Eduardo E; Batista, Alzir A

    2015-09-01

    Four ruthenium(II)-based complexes with N-(acyl)-N',N'-(disubstituted)thiourea derivatives (Th) were obtained. The compounds, with the general formula trans-[Ru(PPh3)2(Th)(bipy)]PF6, interact with bovine serum albumin (BSA) and DNA. BSA-binding constants, which were in the range of 3.3-6.5×10(4) M(-1), and the thermodynamic parameters (ΔG, ΔH and ΔS), suggest spontaneous interactions with this protein by electrostatic forces due to the positive charge of the complexes. Also, binding constant by spectrophotometric DNA titration (Kb = 0.8-1.8×10(4) M(-1)) and viscosity studies indicate weak interactions between the complexes and DNA. Cytotoxicity assays against DU-145 (prostate cancer) and A549 (lung cancer) tumour cells revealed that the complexes are more active in tumour cells than in normal (L929) cells, and that they present high cytotoxicity (low IC50 values) compared with the reference metallodrug, cisplatin. PMID:26160296

  12. Enantioselective Michael addition of 3-aryloxindoles to a vinyl bisphosphonate ester catalyzed by a cinchona alkaloid derived thiourea catalyst.

    PubMed

    Zhao, Mei-Xin; Dai, Tong-Lei; Liu, Ran; Wei, Deng-Ke; Zhou, Hao; Ji, Fei-Hu; Shi, Min

    2012-10-21

    A highly enantioselective Michael addition of 3-aryloxindole to vinyl bisphosphonate ester catalyzed by a cinchonidine derived thiourea catalyst has been investigated. The corresponding adducts, containing a chiral quaternary carbon center and geminal bisphosphonate ester fragment at the 3-position of the oxindole, were obtained in moderate to good yields (65-92%) and moderate to good enantioselectivities (up to 92% ee).

  13. Naphthalene Derivatives Induce Acyl Chain Interdigitation in Dipalmitoylphosphatidylcholine Bilayers.

    PubMed

    Kamal, Md Arif; Raghunathan, V A

    2016-01-14

    The interdigitated phase of the lipid bilayer results when acyl chains from opposing monolayers fully interpenetrate such that the terminal methyl groups of the respective lipid chains are located at the interfacial region on the opposite sides of the bilayer. Usually, chain interdigitation is not encountered in a symmetric chain phosphatidylcholine (PC) membrane but can be induced under certain special conditions. In this article, we elucidate the contribution of small amphiphatic molecules in altering the physical properties of a symmetric chain PC bilayer membrane, which results in acyl chain interdigitation. Using small-angle X-ray scattering (SAXS), we have carried out a systematic investigation of the physical interactions of three naphthalene derivatives containing hydroxyl groups: β-naphthol, 2,3-dihydroxynaphthalene, and 2,7-dihydroxynaphthalene, with dipalmitoylphosphatidylcholine (DPPC) bilayers. On the basis of the diffraction patterns, we have determined the temperature-composition phase diagrams of these binary mixtures. The present study not only enables us to gain insight into the role played by small molecules in altering the packing arrangement of the acyl chains of the constituting PC lipids of the bilayer but also brings to light some important features that have not yet been reported hitherto. One such feature is the stabilization of the enigmatic asymmetric ripple phase over a wide temperature and concentration range. The results presented here strongly point toward a clear correlation between chain interdigitation and the stability of the ripple phase.

  14. Isoprenyl-thiourea and urea derivatives as new farnesyl diphosphate analogues: synthesis and in vitro antimicrobial and cytotoxic activities.

    PubMed

    Vega-Pérez, José M; Periñán, Ignacio; Argandoña, Montserrat; Vega-Holm, Margarita; Palo-Nieto, Carlos; Burgos-Morón, Estefanía; López-Lázaro, Miguel; Vargas, Carmen; Nieto, Joaquín J; Iglesias-Guerra, Fernando

    2012-12-01

    A series of new isoprenyl-thiourea and urea derivatives were synthesized by the reaction of alkyl or aryl isothiocyanate or isocyanate and primary amines. The structures of the compounds were established by (1)H NMR, (13)C NMR, MS, HRMS and elemental analysis. The new compounds were screened for in vitro antimicrobial activity against seven strains representing different types of gram-positive and gram-negative bacteria. More than a third of the synthesized compounds showed variable inhibition activities against the tested strains. Best antimicrobial activities were found for those thiourea analogues with 3-methyl-2-butenyl, isobutyl or isopentyl groups and aromatic rings possessing electron withdrawing substituents. The new compounds were also subjected to a preliminary screening for antitumoral activity. The presence of a highly lipophilic group and an electron withdrawing group in the aromatic rings enhanced anticancer activity of the synthesized compounds, showing in most cases more activity than that of the controls.

  15. Synthesis of acyl derivatives of salicin, salirepin, and arbutin.

    PubMed

    Stepanova, Elena V; Belyanin, Maxim L; Filimonov, Victor D

    2014-03-31

    The total synthesis of two natural phenolglycosides of the family Salicaceae, namely: populoside and 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3-methoxy-4-hydroxy) cinnamoate and nine not found yet in plants acyl derivatives of phenoglycosides: 2-(β-d-glucopyranosyloxy)-benzylcinnamoate, 2-(β-d-glucopyranosyloxy)-benzyl (4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-benzyl (3-methoxy-4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3,4-dihydroxy) cinnamoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzylcinnamoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-hydroxy benzyl (3-methoxy-4-hydroxy) benzoate, 2-(β-d-glucopyranosyloxy)-5-benzoyloxy benzylbenzoate and 4-(β-d-glucopyranosyloxy)-phenylbenzoate, starting from readily available phenols and glucose was developed for the first time.

  16. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting...

  17. Synthesis and evaluation of novel acyl derivatives from jatropha oil as potential lubricant basestocks.

    PubMed

    Sammaiah, Arukali; Padmaja, Korlipara V; Prasad, Rachapudi B N

    2014-05-21

    A novel class of jatropha oil-based acylated derivatives from hydroxy alkyl esters of jatropha fatty acids (C1, C3, C4, and C8) and various anhydrides (C2, C3, C4, and C6) were synthesized and their physicochemical and lubricant properties reported. Jatropha fatty acid alkyl esters were dihydroxylated using the in situ performic acid method and further acylated with different anhydrides to produce acylated derivatives. Acylated derivatives of dihydroxy jatropha fatty acid alkyl esters were charaterized by NMR, FTIR, GC, and GC-MS analysis and were evaluated for their viscosity, viscosity index, pour and flash points, and oxidation stability. Most of the derivatives are either in ISO VG 22 or 32 viscosity grade with good viscosity index. It was observed that increase in acyl chain length and branching in the end-chain ester improved the pour point of the diacyl derivatives. All of the hexanoylated esters exhibited better oxidation stability compared to other acylated products, and their pour points are comparable to those of synthetic esters such as TMP trioleates. In general, isoalcohol esters with longer acyl chains showed promise as potential candidates for hydraulic fluids and metal-working fluids in ISO VG 22 and 32 viscosity range.

  18. Novel urea and thiourea derivatives of thiazole-glutamic acid conjugate as potential inhibitors of microbes and fungi.

    PubMed

    Sharma, A; Suhas, R; Chandan, S; Gowda, D C

    2013-01-01

    Since discovery and development of effective as well as safe drugs has brought a progressive era in human healthcare that is accompanied by the appearance of drug resistant bacterial strains, there is constant need of new antibacterial agent having novel mechanisms of action to act against the harmful pathogens. In the present study, several N-terminal substituted urea/thiourea derivatives were synthesized by the reaction of glutamic acid and 3-(1-piperazinyl)-1,2-benzisothiazole with various substituted phenyl isocyanates/isothiocyanates. Elemental analysis, IR, 1H NMR, 13C NMR and mass spectral data confirmed the structure of the newly synthesized compounds. The derivatives were investigated for their antibacterial and antifungal activities against various pathogens of human origin by agar well diffusion method and microdilution method. The preliminary antimicrobial bioassay reveals that the compounds containing fluoro and bromo as substituents showed promising antimicrobial activity.

  19. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl...

  20. Mechanistic insights on organocatalytic enantioselective decarboxylative protonation by epicinchona-thiourea hybrid derivatives.

    PubMed

    Sengupta, Arkajyoti; Sunoj, Raghavan B

    2012-12-01

    Mechanism and the origin of enantioselectivity in the decarboxylative protonation of α-amino malonate hemiester promoted by epicinchona-thiourea hybrid organocatalyst is established by using the DFT(M06-2X/6-311+G**//ONIOM2) computational methods. The origin of stereoselectivity rendered by this hybrid bifunctional catalyst in asymmetric protonation is investigated for the first time using suitable transition-state models. A detailed conformational analysis of N-[3,5-bis(trifluoromethyl)]phenylthiourea-based epicinchonidine reveals the potential for a bifunctional mode of activation of the substrate α-amino malonate hemiester through hydrogen bonding. Six different conformer families differing in characteristic dihedral angles are identified within a range of 16 kcal/mol with respect to the lowest energy conformer. Different likely mechanistic pathways obtained through detailed analysis of the transition states and intermediates are compared. It is identified that in the preferred pathway, the decarboxylation is followed by a direct proton transfer from the chiral quinuclidinium moiety to the enolate carbon as opposed to a conventional protonation at the enolate oxygen followed by a keto-enol tautomerization. The factors responsible for high levels of observed stereoselectivity are traced to interesting hydrogen-bonding interactions offered by the thiourea-cinchona bifunctional framework. The predicted stereoselectivities using computed Gibbs free energies of diastereomeric transition states are in fair agreement with the experimental stereoselectivities.

  1. Synthesis, characterization, X-ray crystal structure, DFT calculation and antibacterial activities of new vanadium(IV, V) complexes containing chelidamic acid and novel thiourea derivatives.

    PubMed

    Farzanfar, Javad; Ghasemi, Khaled; Rezvani, Ali Reza; Delarami, Hojat Samareh; Ebrahimi, Ali; Hosseinpoor, Hona; Eskandari, Amir; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2015-06-01

    Three new thiourea ligands derived from the condensation of aroyl- and aryl-isothiocyanate derivatives with 2,6-diaminopyridine, named 1,1'-(pyridine-2,6-diyl)bis(3-(benzoyl)thiourea) (L1), 1,1'-(pyridine-2,6-diyl)bis(3-(2-chlorobenzoyl)thiourea) (L2) and 1,1'-(pyridine-2,6-diyl)bis(3-(4-chlorophenyl)thiourea) (L3), their oxido-vanadium(IV) complexes, namely [VO(L1('))(H2O)] (C1), [VO(L2('))(H2O)] (C2) and [VO(L3('))(H2O)] (C3), and also, dioxo-vanadium(V) complex containing 4-hydroxy-2,6-pyridine dicarboxylic acid (chelidamic acid, H2dipic-OH) and metformin (N,N-dimethylbiguanide, Met), named [H2Met][VO2(dipic-OH)]2·H2O (C4), were synthesized and characterized by elemental analysis, FTIR and (1)H NMR and UV-visible spectroscopies. Proposed structures for free thiourea ligands and their vanadium complexes were corroborated by applying geometry optimization and conformational analysis. Solid state structure of complex [H2Met][VO2(dipic-OH)]2·H2O (triclinic, Pī) was fully determined by single crystal X-ray diffraction analysis. In this complex, metformin is double protonated and acted as counter ion. The antibacterial properties of these compounds were investigated in vitro against standard Gram-positive and Gram-negative bacterial strains. The experiments showed that vanadium(IV) complexes had the superior antibacterial activities than novel thiourea derivatives and vanadium(V) complex against all Gram-positive and Gram-negative bacterial strains. PMID:25770009

  2. Synthesis, characterization, X-ray crystal structure, DFT calculation and antibacterial activities of new vanadium(IV, V) complexes containing chelidamic acid and novel thiourea derivatives.

    PubMed

    Farzanfar, Javad; Ghasemi, Khaled; Rezvani, Ali Reza; Delarami, Hojat Samareh; Ebrahimi, Ali; Hosseinpoor, Hona; Eskandari, Amir; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2015-06-01

    Three new thiourea ligands derived from the condensation of aroyl- and aryl-isothiocyanate derivatives with 2,6-diaminopyridine, named 1,1'-(pyridine-2,6-diyl)bis(3-(benzoyl)thiourea) (L1), 1,1'-(pyridine-2,6-diyl)bis(3-(2-chlorobenzoyl)thiourea) (L2) and 1,1'-(pyridine-2,6-diyl)bis(3-(4-chlorophenyl)thiourea) (L3), their oxido-vanadium(IV) complexes, namely [VO(L1('))(H2O)] (C1), [VO(L2('))(H2O)] (C2) and [VO(L3('))(H2O)] (C3), and also, dioxo-vanadium(V) complex containing 4-hydroxy-2,6-pyridine dicarboxylic acid (chelidamic acid, H2dipic-OH) and metformin (N,N-dimethylbiguanide, Met), named [H2Met][VO2(dipic-OH)]2·H2O (C4), were synthesized and characterized by elemental analysis, FTIR and (1)H NMR and UV-visible spectroscopies. Proposed structures for free thiourea ligands and their vanadium complexes were corroborated by applying geometry optimization and conformational analysis. Solid state structure of complex [H2Met][VO2(dipic-OH)]2·H2O (triclinic, Pī) was fully determined by single crystal X-ray diffraction analysis. In this complex, metformin is double protonated and acted as counter ion. The antibacterial properties of these compounds were investigated in vitro against standard Gram-positive and Gram-negative bacterial strains. The experiments showed that vanadium(IV) complexes had the superior antibacterial activities than novel thiourea derivatives and vanadium(V) complex against all Gram-positive and Gram-negative bacterial strains.

  3. [Synthesis of some thiourea derivatives and their influence on biological and genetic effects of gamma rays].

    PubMed

    Mehandjiev, A D; Vassilev, G N; Shevchenko, V A

    2003-07-01

    The synthesis of the new radioprotective compounds ATB (I, 2-allylthioureidobenzoic acid), PTB (II, 2-phenylthioureidobenzoic acid), A-2-PTU (III, N-allyl-N'-2-pyridylthiourea), and P-2-PTU (IV, N-phenyl-N'-2-pyridylthiourea) and their influence on biological and genetic effects of gamma rays was studied. In result of investigations it must be noted that PTB displayed radioprotective effect as a result of which more plants in M1 germination and survive in M2 of the induced mutations is increased. The cytological analysis reveals that the studied substance (PTB) decreases chromosome aberration in meristem cells of pea roots almost twice as a result of postirradiation treatment. The effect of A-2-PTU in the experiments with peas greatly depends on the dose of irradiation, i.e., on the degree of damaging of the processes of cell restoration and the possibility of their partial restoration after the treatment with the protector. The results obtained suggest that chemical compounds of N,N'-disubstituted thiourea group (A-2-PTU and P-2-PTU) exert strong radioprotective effect in the experiments with peas. This is of great importance to modern radiobiology and radiation mutagenesis and also to protect hereditary structures against radiation. PMID:12942777

  4. Action of N-acylated ambroxol derivatives on secretion of chloride ions in human airway epithelia.

    PubMed

    Yamada, Takahiro; Takemura, Yoshizumi; Niisato, Naomi; Mitsuyama, Etsuko; Iwasaki, Yoshinobu; Marunaka, Yoshinori

    2009-03-13

    We report the effects of new N-acylated ambroxol derivatives (TEI-588a, TEI-588b, TEI-589a, TEI-589b, TEI-602a and TEI-602b: a, aromatic amine-acylated derivative; b, aliphatic amine-acylated derivative) induced from ambroxol (a mucolytic agent to treat human lung diseases) on Cl(-) secretion in human submucosal serous Calu-3 cells under a Na(+)/K(+)/2Cl(-) cotransporter-1 (NKCC1)-mediated hyper-secreting condition. TEI-589a, TEI-589b and TEI-602a diminished hyper-secretion of Cl(-) by diminishing the activity of NKCC1 without blockade of apical Cl(-) channel (TEI-589a>TEI-602a>TEI-589b), while any other tested compounds including ambroxol had no effects on Cl(-) secretion. These indicate that the inhibitory action of an aromatic amine-acylated derivative on Cl(-) secretion is stronger that that of an aliphatic amine-acylated derivative, and that 3-(2,5-dimethyl)furoyl group has a strong action in inhibition of Cl(-) secretion than cyclopropanoyl group. We here indicate that TEI-589a, TEI-589b and TEI-602a reduce hyper-secretion to an appropriate level in the airway, providing a possibility that the compound can be an effective drug in airway obstructive diseases including COPD by reducing the airway resistance under a hyper-secreting condition.

  5. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.

    PubMed

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  6. Statistical Analysis of the Impact of Molecular Descriptors on Cytotoxicity of Thiourea Derivatives Incorporating 2-Aminothiazole Scaffold.

    PubMed

    Filipowska, Anna; Filipowski, Wojciech; Tkacz, Ewaryst; Nowicka, Grażyna; Struga, Marta

    2016-01-01

    Chemical reactivity descriptors and lipophilicyty (log P) were evaluated via semi-empirical method for the quantum calculation of molecular electronic structure (PM3) in order to clarify the structure-cytotoxic activity relationships of disubstutited thioureas. Analysed compounds were obtained by the linkage of 2-aminothiazole ring, thiourea and substituted phenyl ring. The detailed examination was carried out to establish correlation between descriptors and cytotoxic activity against the MT-4 cells for 11 compounds. For the most active compounds (6 compounds) cytotoxic activity against three cancer cell lines (CCRF-CEM, WIL-2NS, CCRF-SB) and normal human cell (HaCaT) was determined. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release were assessed. Regression analysis revealed that electrophilicity index and chemical potential significantly contributed to expain the thioureas cytotoxic potential. PMID:27477660

  7. Thiourea derivatives, methods of their preparation and their use in neutron capture therapy of malignant melanoma

    DOEpatents

    Gabel, D.

    1991-06-04

    The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy. No Drawings

  8. 40 CFR 721.10174 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. 721.10174 Section 721.10174 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. (a) Chemical substance...-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts (PMN...

  9. 40 CFR 721.10174 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. 721.10174 Section 721.10174 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. (a) Chemical substance...-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts (PMN...

  10. 40 CFR 721.10193 - 1-Butanaminium, N-(3-aminopropyl)-N-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts. 721.10193 Section 721.10193 Protection of...-aminopropyl)-N-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts. (a) Chemical substance and...-aminopropyl)-N-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts (PMN P-06-263, Chemical B; CAS...

  11. 40 CFR 721.10174 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. 721.10174 Section 721.10174 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. (a) Chemical substance...-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts (PMN...

  12. 40 CFR 721.10174 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. 721.10174 Section 721.10174 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. (a) Chemical substance...-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts (PMN...

  13. 40 CFR 721.10174 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. 721.10174 Section 721.10174 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. (a) Chemical substance...-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts (PMN...

  14. Synergetic inhibition of thermochemical formation of chlorinated aromatics by sulfur and nitrogen derived from thiourea: Multielement characterizations.

    PubMed

    Fujimori, Takashi; Nakamura, Madoka; Takaoka, Masaki; Shiota, Kenji; Kitajima, Yoshinori

    2016-07-01

    Nitrogen and sulfur (N/S)-containing compounds inhibit the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and furans (PCDFs) in thermal processes. However, few studies have examined the inhibition mechanisms of N/S-containing compounds. In the present study, we focused on thiourea [(NH2)2CS] as such a compound and investigated its inhibition effects and mechanisms. The production of PCDD/Fs, polychlorinated biphenyls (PCBs), and chlorobenzenes (CBzs) were inhibited by >99% in the model fly ash in the presence of 1.0% thiourea after heating at 300 °C. Experimental results using real fly ash series were indicative of the thermal destruction of these chlorinated aromatics by thiourea. Multielement characterization using K-edge X-ray absorption fine structures of copper, chlorine, sulfur, nitrogen, and carbon revealed three possible inhibition paths, namely, (a) sulfidization of the copper catalyst to CuS, Cu2S, and CuSO4; (b) blocking the chlorination of carbon via the reaction of chlorine with N-containing compounds to generate ammonium chloride and other minor compounds; and (c) changing the carbon frame involved in attacking the carbon matrix by sulfur and nitrogen. Thus, thiourea plays a role as a sulfur and nitrogen donor to achieve multiple and synergistic inhibition of chlorinated aromatics. Our results suggest that other N/S-containing inhibitors function based on similar mechanisms.

  15. Synergetic inhibition of thermochemical formation of chlorinated aromatics by sulfur and nitrogen derived from thiourea: Multielement characterizations.

    PubMed

    Fujimori, Takashi; Nakamura, Madoka; Takaoka, Masaki; Shiota, Kenji; Kitajima, Yoshinori

    2016-07-01

    Nitrogen and sulfur (N/S)-containing compounds inhibit the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and furans (PCDFs) in thermal processes. However, few studies have examined the inhibition mechanisms of N/S-containing compounds. In the present study, we focused on thiourea [(NH2)2CS] as such a compound and investigated its inhibition effects and mechanisms. The production of PCDD/Fs, polychlorinated biphenyls (PCBs), and chlorobenzenes (CBzs) were inhibited by >99% in the model fly ash in the presence of 1.0% thiourea after heating at 300 °C. Experimental results using real fly ash series were indicative of the thermal destruction of these chlorinated aromatics by thiourea. Multielement characterization using K-edge X-ray absorption fine structures of copper, chlorine, sulfur, nitrogen, and carbon revealed three possible inhibition paths, namely, (a) sulfidization of the copper catalyst to CuS, Cu2S, and CuSO4; (b) blocking the chlorination of carbon via the reaction of chlorine with N-containing compounds to generate ammonium chloride and other minor compounds; and (c) changing the carbon frame involved in attacking the carbon matrix by sulfur and nitrogen. Thus, thiourea plays a role as a sulfur and nitrogen donor to achieve multiple and synergistic inhibition of chlorinated aromatics. Our results suggest that other N/S-containing inhibitors function based on similar mechanisms. PMID:26954475

  16. [Antibacterial Activity of Alkylated and Acylated Derivatives of Low-Molecular Weight Chitosan].

    PubMed

    Shagdarova, B Ts; Il'ina, A V; Varlamov, V P

    2016-01-01

    A number of alkylated (quaternized) and acylated derivatives of low-molecular weight chitosan were obtained. The structure and composition of the compounds were confirmed by the results of IR and PMR spectroscopy, as well as conductometric titration. The effect of the acyl substituent and the degree of substitution of N-(2-hydroxy-3-trimethylammonium) with the propyl fragment appended to amino groups of the C2 atom of polymer chains on antibacterial activity against typical representatives of gram-positive and gram-negative microorganisms (Staphylococcus epidermidis and Escherichia coli) was studied. The highest activity was in the case of N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride with the maximal substitution (98%). The minimal inhibitory concentration of the derivative was 0.48 µg/mL and 3.90 µg/mL for S. epidermis and E. coli, respectively. PMID:27266254

  17. Selectivity of pyripyropene derivatives in inhibition toward acyl-CoA:cholesterol acyltransferase 2 isozyme.

    PubMed

    Ohshiro, Taichi; Ohte, Satoshi; Matsuda, Daisuke; Ohtawa, Masaki; Nagamitsu, Tohru; Sunazuka, Toshiaki; Harigaya, Yoshihiro; Rudel, Lawrence L; Omura, Satoshi; Tomoda, Hiroshi

    2008-08-01

    Selectivity of 96 semisynthetic derivatives prepared from fungal pyripyropene A, originally isolated as a potent inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT), toward ACAT1 and ACAT2 isozymes was investigated in the cell-based assay using ACAT1- and ACAT2-expressing CHO cells. Eighteen derivatives including PR-71 (7-O-isocaproyl derivative) showed much more potent ACAT2 inhibition (IC50: 6.0 to 62 nM) than pyripyropene A (IC50: 70 nM). Among them, however, natural pyripyropene A showed the highest selectivity toward ACAT2 with a selectivity index (SI) of >1000, followed by PR-71 (SI, 667). PMID:18997389

  18. Permeation and metabolism of a series of novel lipophilic ascorbic acid derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids with a branched-acyl chain, in a human living skin equivalent model.

    PubMed

    Tai, Akihiro; Goto, Satomi; Ishiguro, Yutaka; Suzuki, Kazuko; Nitoda, Teruhiko; Yamamoto, Itaru

    2004-02-01

    A series of novel lipophilic vitamin C derivatives, 6-O-acyl-2-O-alpha-D-glucopyranosyl-L-ascorbic acids possessing a branched-acyl chain of varying length from C(8) to C(16) (6-bAcyl-AA-2G), were evaluated as topical prodrugs of ascorbic acid (AA) with transdermal activity in a human living skin equivalent model. The permeability of 6-bAcyl-AA-2G was compared with those of the derivatives having a straight-acyl chain (6-sAcyl-AA-2G). Out of 10 derivatives of 6-sAcyl-AA-2G and 6-bAcyl-AA-2G, 6-sDode-AA-2G and 6-bDode-AA-2G exhibited most excellent permeability in this model. Measurement of the metabolites permeated from the skin model suggested that 6-bDode-AA-2G was mainly hydrolyzed via 6-O-acyl AA to AA by tissue enzymes, while 6-sDode-AA-2G was hydrolyzed via 2-O-alpha-D-glucopyranosyl-L-ascorbic acid to AA. The former metabolic pathway seems to be advantageous for a readily available source of AA, because 6-O-acyl AA, as well as AA, is able to show vitamin C activity.

  19. Toluene derivatives as simple coupling precursors for cascade palladium-catalyzed oxidative C-H bond acylation of acetanilides.

    PubMed

    Wu, Yinuo; Choy, Pui Ying; Mao, Fei; Kwong, Fuk Yee

    2013-01-25

    A palladium-catalyzed cascade cross-coupling of acetanilide and toluene for the synthesis of ortho-acylacetanilide is described. Toluene derivatives can act as effective acyl precursors (upon sp(3)-C-H bond oxidation by a Pd/TBHP system) in the oxidative coupling between two C-H bonds. This dehydrogenative Pd-catalyzed ortho-acylation proceeds under mild reaction conditions. PMID:23230572

  20. First evidence of Okadaic acid acyl-derivative and Dinophysistoxin-3 in mussel samples collected in Chiloe Island, Southern Chile.

    PubMed

    García, Carlos; Pruzzo, Matías; Rodríguez-Unda, Nelson; Contreras, Cristóbal; Lagos, Néstor

    2010-06-01

    This paper shows the detection of Diarrhetic Shellfish Poison (DSP) phycotoxins, using HPLC-FLD with pre-column derivatization procedure and HPLC-MS methods, in the analysis of shellfish extracts tested positive with the official DSP mouse bioassay. The shellfish samples were collected in Chiloe Island, Southern of Chile. The amount of Dinophysistoxin-3 (DTX-3) measured in the shellfish extracts were in average above the international safe limits for DSP content in the shellfish extracts analyzed. As internal control of detection and recovery, DTX-1 analytical standard was spiked into dichloromethane-clean shellfish extracts in order to calculate de extraction recovery of DTX-1. The average recovery was 97%. From all DSP toxins analyzed, the hydrolyzed extract samples appeared mainly DTX-3 in concentrations ranging from 99.40 +/- 1.22 to 257.73 +/- 12.46 ng/g digestive-glands. The acyl-Okadaic Acid (acyl-OA) was also detected in some samples, ranging from 1.02 +/- 1.4 to 3.07. +/- 1.6 ng of DSP toxin/g digestive-glands. This is the first report of acyl-OA ever found in Chilean shellfish samples. This data shows that shellfish samples were contaminated with a complex DSP toxins profile, in which DTX-3 is the major DSP toxin component, followed by DTX-1 and the acyl-OA as the minor one. The important findings showed in this study are the presence of both acyl-derivates (DTX-3 and Acyl-OA) which are the product of a main metabolic biotransformation that occurred inside the shellfish, in order to chelate DTX-1 and OA, transforming them into DTX-3 and the acyl-OA respectively. This metabolic biotransformation must be performed to avoid self-inhibition of their Protein Phosphatase 2A done by DTX-1 and OA, since both acyl-derivates (DTX-3 and acyl-OA) do not inhibit Protein Phosphatase 2A. This complex DSP toxins profile and the permanent presence of both acyl-derivates (DTX-3 and Acyl-OA) could explain the permanent diarrhea symptoms that experience patients who have

  1. Investigation of some characteristics of polyhydroxy milkweed triglycerides and their acylated derivatives in relation to lubricity.

    PubMed

    Harry-O'kuru, Rogers E; Biresaw, Girma; Cermak, Steven C; Gordon, Sherald H; Vermillion, Karl

    2011-05-11

    Most industrial lubricants are derived from nonrenewable petroleum-based sources. As useful as these lubricants are, their unintended consequences are the pollution of the Earth's environment as a result of the slow degradation of the spent materials. Native seed oils, on the other hand, are renewable and are also biodegradable in the environment, but these oils often suffer a drawback in having lower thermal stability and a shorter shelf life because of the intrinsic -C═C- unsaturation in their structures. This drawback can be overcome, yet the inherent biodegradative property retained, by appropriate derivatization of the oil. Pursuant to this, this study investigated derivatized polyhydroxy milkweed oil to assess its suitability as lubricant. The milkweed plant is a member of the Asclepiadaceae, a family with many genera including the common milkweeds, Asclepias syriaca L., Asclepias speciosa L., Asclepias tuberosa L., etc. The seeds of these species contain mainly C-18 triglycerides that are highly unsaturated, 92%. The olefinic character of this oil has been chemically modified by generating polyhydroxy triglycerides (HMWO) that show high viscosity and excellent moisturizing characteristics. In this work, HMWO have been chemically modified by esterifying their hydroxyl groups with acyl groups of various chain lengths (C2-C5). The results of investigation into the effect of the acyl derivatives' chemical structure on kinematic and dynamic viscosity, oxidation stability, cold-flow (pour point, cloud point) properties, coefficient of friction, wear, and elastohydrodynamic film thickness are discussed.

  2. Investigation of some characteristics of polyhydroxy milkweed triglycerides and their acylated derivatives in relation to lubricity.

    PubMed

    Harry-O'kuru, Rogers E; Biresaw, Girma; Cermak, Steven C; Gordon, Sherald H; Vermillion, Karl

    2011-05-11

    Most industrial lubricants are derived from nonrenewable petroleum-based sources. As useful as these lubricants are, their unintended consequences are the pollution of the Earth's environment as a result of the slow degradation of the spent materials. Native seed oils, on the other hand, are renewable and are also biodegradable in the environment, but these oils often suffer a drawback in having lower thermal stability and a shorter shelf life because of the intrinsic -C═C- unsaturation in their structures. This drawback can be overcome, yet the inherent biodegradative property retained, by appropriate derivatization of the oil. Pursuant to this, this study investigated derivatized polyhydroxy milkweed oil to assess its suitability as lubricant. The milkweed plant is a member of the Asclepiadaceae, a family with many genera including the common milkweeds, Asclepias syriaca L., Asclepias speciosa L., Asclepias tuberosa L., etc. The seeds of these species contain mainly C-18 triglycerides that are highly unsaturated, 92%. The olefinic character of this oil has been chemically modified by generating polyhydroxy triglycerides (HMWO) that show high viscosity and excellent moisturizing characteristics. In this work, HMWO have been chemically modified by esterifying their hydroxyl groups with acyl groups of various chain lengths (C2-C5). The results of investigation into the effect of the acyl derivatives' chemical structure on kinematic and dynamic viscosity, oxidation stability, cold-flow (pour point, cloud point) properties, coefficient of friction, wear, and elastohydrodynamic film thickness are discussed. PMID:21428293

  3. Structure, stability, and antiplatelet activity of O-acyl derivatives of salicylic acid and lipophilic esters of acetylsalicylate.

    PubMed

    Zavodnik, Ilya B; Lapshina, Elena; Sudnikovich, Elena; Boncler, Magdalena; Luzak, Bogusława; Rózalski, Marcin; Helińska, Magdalena; Watała, Cezary

    2009-01-01

    The anti-thrombotic activity of acetylsalicylic acid (ASA) has been shown to be due to specific irreversible acetylation of blood platelet cyclooxygenase. The aim of our study was to investigate the associations between the antiplatelet activities of derivatives of both ASA and salicylic acid (SA), as well as the structure, stability, and molecular properties of these compounds. Homologous series of O-acyl derivatives of salicylic acid (propionyl-, butyrylsalicylic acids, PSA, BSA) and lipophilic dodecyl (C12)-, hexadecyl (C16)-, and cholesteryl acetylsalicylates were synthesized and tested for structure-activity relationships. The molecular properties (heat of formation, molecular surface area, dipole moment) of ASA and SA derivatives obtained by theoretical calculations changed with the increasing length of the acyl or alkyl residue. The inhibition of whole blood platelet aggregation and the reduction in thromboxane (TX) generation by O-acyl derivatives were concentration-dependent and decreased along with increasing the length of acyl hain. These effects correlated with the extent of platelet reactivity and P-selectin expression inhibition in collagen-activated platelets. In contrast to ASA and O-acyl derivatives of SA, none of the lipophilic ASA derivatives had a significant inhibitory effect on platelet aggregation. In conclusion, all SA and ASA derivatives studied under in vitro conditions showed much lower antiplatelet activities than ASA itself, despite their higher affinity to plasma proteins or membrane components and their equivalent ability to acetylate protein free amino groups.We suggest the significance of the carboxylic group, dipole moment, geometry, and size of these pharmaceuticals in their ability to bind to the active site of cyclooxygenase and their antiplatelet efficacy.

  4. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10056 Benzenemethanaminium,...

  5. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.7270 1-propanaminium, 3-amino-,...

  6. Iminothiol/thiourea tautomeric equilibrium in thiourea lipids impacts DNA compaction by inducing a cationic nucleation for complex assembly.

    PubMed

    Breton, Marie; Bessodes, Michel; Bouaziz, Serge; Herscovici, Jean; Scherman, Daniel; Mignet, Nathalie

    2009-11-01

    Our research on lipidic vectors for transfection led us to develop thiourea lipids able to interact with DNA. Hence, we developed a series of lipopolythioureas based on the strong hydrogen bond donor ability of thiourea. More recently we have reported a branched hydroxylated bis-thiourea derivative with interesting transfecting properties. The last step of the syntheses involved a strong acidic condition, leading to an unstable product upon storage. Therefore we designed a new synthesis in mild acidic conditions. Though they exhibit the same mass, the lipids obtained in the two different conditions differ by their interaction with DNA. We therefore explored the physicochemical properties of these two lipids by different means that we describe in this article. In order to insure easier and reliable (13)C-NMR studies of the thiourea group we have designed the synthesis of the corresponding (13)C-labeled thiourea lipids. We have thus shown that when the lipid was submitted to mildly acidic medium; only the thiourea group was observed; while a thiourea/charged and/or uncharged iminothiol tautomeric equilibrium formed when the last step of the synthesis was submitted to low pH. NMR experiments showed that this tautomeric equilibrium could not form in polar solvents. However, UV experiments on the liposomal form of the lipopolythiourea showed the presence of the tautomers. Lipid/DNA interaction consequently differed according to the acidic treatment applied. Eventually, these results revealed that on this particular thiourea lipid, electrostatic interactions due to cationic thioureas are likely to be responsible for DNA compaction and that this tautomeric form of the thiourea could be stabilised by hydrogen bonds in a supramolecular assembly. Nevertheless, this does not reflect a general thiourea lipid/DNA interaction as other thiourea lipids that are able to compact DNA do not undergo an acidic treatment during the final stage of their synthesis.

  7. Thiourea as a melanoma targeting agent.

    PubMed

    Mårs, U; Larsson, B S

    1996-04-01

    It has previously been shown that various thiourea derivatives are incorporated into nascent melanin, and a few of these substances, e.g. 2-thiouracil and its radioiodinated analogue, have been used for selective targeting of melanotic melanoma. Possible localization of thiourea itself in melanoma, however, has not been investigated so far. We have therefore performed the present autoradiographic and impulse counting study on the disposition of 14C-thiourea in mice transplanted with B16 melanoma. The results demonstrated a pronounced, but partly heterogeneous, uptake of radioactivity in the melanoma tissue, with the highest concentration 4 h after the injection. Four days after the administration of a single dose, the retention of label was still high in certain tumoral areas. The lung was the only normal tissue with a similarly high uptake of radioactivity. Additional experiments in vitro showed that the incorporation of thiourea into melanin was dose-dependent. The binding to performed melanin was found to be low, which strongly indicates that the incorporation of thiourea into melanin mainly is due to interaction with intermediates of the melanin synthetic pathway.

  8. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Yang, Yu-Shun; Yang, Na; Li, Guigen; Zhu, Hai-Liang

    2016-06-01

    A series of novel dioxin-containing pyrazoline derivatives with thiourea skeleton have been designed, synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. A majority of them displayed selective HER-2 inhibitory activity against EGFR inhibitory activity. Compound C20 displayed the most potent activity against HER-2 and MDA-MB-453 human breast cancer cell line (IC50 = 0.03 μM and GI50 = 0.15 μM), being slightly more potent than the positive control Erlotinib (IC50 = 0.16 μM and GI50 = 1.56 μM) and comparable with Lapatinib (IC50 = 0.01 μM and GI50 = 0.03 μM). It is a more exciting result that C20 was over 900 times more potent against HER-2 than against EGFR while this value was 0.19 for Erlotinib and 1.00 for Lapatinib, indicating high selectivity. The results of docking simulation indicate that the dioxin moiety occupied the exit of the active pocket and pushed the carbothioamide deep into the active site. QSAR models have been built with activity data and binding conformations to begin our work in this paper as well as to provide a reliable tool for reasonable design of EGFR/HER-2 inhibitors in future.

  9. N-acyl dopamine derivates as lead compound for implementation in transplantation medicine.

    PubMed

    Wedel, Johannes; Pallavi, Prama; Stamellou, Eleni; Yard, Benito A

    2015-07-01

    Conjugates of fatty acids with ethanolamine, amino acids or monoamine neurotransmitters occur widely in nature giving rise to so-called endocannabinoids. Anandamide and 2-arachidonoyl glycerol are the best characterized endocannabinoids activating both cannabinoid receptors (CB1 and CB2) and transient receptor potential vanilloid type 1 (TRPV1) channels (anandamide) or activating cannabinoid receptors only (2-arachidonoyl glycerol). TRPV1 is also activated by vanilloids, such as capsaicin, and endogenous neurolipins, e.g. N-arachidonoyl dopamine (NADA) and N-oleoyl dopamine (OLDA). Because donor dopamine treatment has shown to improve transplantation outcome in renal and heart recipients, this review will mainly focus on the biological activities of N-acyl dopamine derivates (NADD) as potential non-hemodynamic alternative for implementation in transplantation medicine. Hence the influence of NADD on transplantation relevant entities, i.e. cold inflicted injury, cytoprotection, I/R-injury, immune-modulation and inflammation will be summarized. The cytoprotective properties of endogenous endocannabinoids in this context will be briefly touched upon.

  10. Ethylene thiourea (ETU)

    Integrated Risk Information System (IRIS)

    Ethylene thiourea ( ETU ) ; CASRN 96 - 45 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  11. (1) H and (13) C NMR spectral assignment of N,N'-disubstituted thiourea and urea derivatives active against nitric oxide synthase.

    PubMed

    Chayah, Mariem; Camacho, M Encarnación; Carrión, M Dora; Gallo, Miguel A

    2016-10-01

    The (1) H and (13) C NMR resonances of seventeen N-alkyl and aryl-N'-[3-hydroxy-3-(2-nitro-5-substitutedphenyl)propyl]-thioureas and ureas (1-17), and seventeen N-alkyl or aryl-N'-[3-(2-amino-5-substitutedphenyl)-3-hydroxypropyl]-thioureas and ureas (18-34), designed as NOS inhibitors, were assigned completely using the concerted application of one- and two-dimensional experiments (DEPT, HSQC and HMBC). NOESY studies confirm the preferred conformation of these compounds. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Enzymatic Synthesis of Sorboyl-Polydatin Prodrug in Biomass-Derived 2-Methyltetrahydrofuran and Antiradical Activity of the Unsaturated Acylated Derivatives

    PubMed Central

    Yang, Rongling; Zhao, Xiangjie; Jiang, Ling; Zhu, Chun; Zhao, Yuping; Jia, Jianbo

    2016-01-01

    Efficient and highly regioselective synthesis of the potential 6′′-O-sorboyl-polydatin prodrug in biomass-derived 2-methyltetrahydrofuran (2-MeTHF) was achieved using Candida antarctica lipase B for the first time. Under the optimal conditions, the initial reaction rate, maximum substrate conversion, and 6′′-regioselectivity were as high as 8.65 mM/h, 100%, and 100%, respectively. Kinetic and operational stability investigations evidently demonstrated excellent enzyme compatibility of the 2-MeTHF compared to the traditional organic solvents. With respect to the antioxidant properties, three unsaturated ester derivatives showed slightly lower DPPH radical scavenging activities than the parent agent. Interestingly, further studies also revealed that the antiradical capacities of the acylates decreased with the elongation of the unsaturated aliphatic chain length from C4 to C11. The reason might be attributed to the increased steric hindrance derived from the acyl residues in derivatives. PMID:27668253

  13. Enzymatic Synthesis of Sorboyl-Polydatin Prodrug in Biomass-Derived 2-Methyltetrahydrofuran and Antiradical Activity of the Unsaturated Acylated Derivatives

    PubMed Central

    Yang, Rongling; Zhao, Xiangjie; Jiang, Ling; Zhu, Chun; Zhao, Yuping; Jia, Jianbo

    2016-01-01

    Efficient and highly regioselective synthesis of the potential 6′′-O-sorboyl-polydatin prodrug in biomass-derived 2-methyltetrahydrofuran (2-MeTHF) was achieved using Candida antarctica lipase B for the first time. Under the optimal conditions, the initial reaction rate, maximum substrate conversion, and 6′′-regioselectivity were as high as 8.65 mM/h, 100%, and 100%, respectively. Kinetic and operational stability investigations evidently demonstrated excellent enzyme compatibility of the 2-MeTHF compared to the traditional organic solvents. With respect to the antioxidant properties, three unsaturated ester derivatives showed slightly lower DPPH radical scavenging activities than the parent agent. Interestingly, further studies also revealed that the antiradical capacities of the acylates decreased with the elongation of the unsaturated aliphatic chain length from C4 to C11. The reason might be attributed to the increased steric hindrance derived from the acyl residues in derivatives.

  14. Chromatographic investigation on acyl migration in betacyanins and their decarboxylated derivatives.

    PubMed

    Wybraniec, Sławomir

    2008-01-01

    Chemopreventive and antioxidant action of betalain pigments can differ in dependence on their stereoselective properties, therefore, it is necessary to use relevant methods for monitoring of their possible stereoisomers. Chromatographic characterisation of a group of new isomers of various 6'-O-acylated betacyanins and decarboxylated betacyanins which were generated at low concentration by intramolecular pH-dependent acyl migration was studied in aqueous solutions by HPLC separation with diode-array and mass spectrometric detection. Under alkaline conditions (pH 10.5) the rate of migration was dramatically accelerated, however, always favouring the 6'-O-position and it was much less prominent at lower pH (under 7.0). The possible products of the partial rearrangement were tentatively identified as the 3'-O- and 4'-O-acylated forms and their relative retention times were provided. In malonylated betacyanins and 17-decarboxy-betacyanins the 4'-O-forms were characterised in RP-HPLC by higher retention than the 6'-O forms, whereas the 3'-O-forms were always the most polar. In contrast, the isomerisation of hylocerenin and 17-decarboxy-hylocerenin resulted in different chromatographic profiles of the migration products. In 2-decarboxy- and 2,17-bidecarboxy-betacyanins the 3'-O- and 4'-O-acylated forms eluted always before the 6'-O-acylated betacyanins. The investigations on acyl migration in isolated 4'-O-malonyl-betanin confirmed the strong tendency of reverse acyl migration (4'-->6') and also partial 4'-->3' rearrangement which were leading to the final monoester regioisomeric distribution (%) close to 87:7:6 (6'-O-, 4'-O-, 3'-O-).

  15. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors

    PubMed Central

    Yang, Bing; Yang, Yu-Shun; Yang, Na; Li, Guigen; Zhu, Hai-Liang

    2016-01-01

    A series of novel dioxin-containing pyrazoline derivatives with thiourea skeleton have been designed, synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. A majority of them displayed selective HER-2 inhibitory activity against EGFR inhibitory activity. Compound C20 displayed the most potent activity against HER-2 and MDA-MB-453 human breast cancer cell line (IC50 = 0.03 μM and GI50 = 0.15 μM), being slightly more potent than the positive control Erlotinib (IC50 = 0.16 μM and GI50 = 1.56 μM) and comparable with Lapatinib (IC50 = 0.01 μM and GI50 = 0.03 μM). It is a more exciting result that C20 was over 900 times more potent against HER-2 than against EGFR while this value was 0.19 for Erlotinib and 1.00 for Lapatinib, indicating high selectivity. The results of docking simulation indicate that the dioxin moiety occupied the exit of the active pocket and pushed the carbothioamide deep into the active site. QSAR models have been built with activity data and binding conformations to begin our work in this paper as well as to provide a reliable tool for reasonable design of EGFR/HER-2 inhibitors in future. PMID:27273260

  16. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors.

    PubMed

    Yang, Bing; Yang, Yu-Shun; Yang, Na; Li, Guigen; Zhu, Hai-Liang

    2016-01-01

    A series of novel dioxin-containing pyrazoline derivatives with thiourea skeleton have been designed, synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. A majority of them displayed selective HER-2 inhibitory activity against EGFR inhibitory activity. Compound C20 displayed the most potent activity against HER-2 and MDA-MB-453 human breast cancer cell line (IC50 = 0.03 μM and GI50 = 0.15 μM), being slightly more potent than the positive control Erlotinib (IC50 = 0.16 μM and GI50 = 1.56 μM) and comparable with Lapatinib (IC50 = 0.01 μM and GI50 = 0.03 μM). It is a more exciting result that C20 was over 900 times more potent against HER-2 than against EGFR while this value was 0.19 for Erlotinib and 1.00 for Lapatinib, indicating high selectivity. The results of docking simulation indicate that the dioxin moiety occupied the exit of the active pocket and pushed the carbothioamide deep into the active site. QSAR models have been built with activity data and binding conformations to begin our work in this paper as well as to provide a reliable tool for reasonable design of EGFR/HER-2 inhibitors in future. PMID:27273260

  17. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    PubMed

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  18. Quinine-derived thiourea and squaramide catalyzed conjugate addition of α-nitrophosphonates to enones: asymmetric synthesis of quaternary α-aminophosphonates.

    PubMed

    Bera, Kalisankar; Namboothiri, Irishi N N

    2015-02-01

    Conjugate addition of α-nitrophosphonates to enones was carried out in the presence of two sets of organocatalysts, viz. a quinine-thiourea and a quinine-squaramide. The quinine-thiourea provided the products possessing an α-quaternary chiral center in high enantioselectivities only in the case of electron rich enones. On the other hand, the quinine-squaramide was more efficient in that a wide variety of electron rich and electron poor enones underwent Michael addition of nitrophosphonates to afford the quaternary α-nitrophosphonates in excellent yields and enantioselectivities. The hydrogen bonding donor ability of the bifunctional catalyst, as shown in the proposed transition states, appears primarily responsible for the observed selectivity. However, a favorable π-stacking between the aryl groups of thiourea/squaramide and aryl vinyl ketone also appeared favorable. The reaction was amenable to scale up, and the enantioenriched quaternary α-nitrophosphonates could be easily transformed to synthetically and biologically useful quaternary α-aminophosphonates and other multifunctional molecules.

  19. Structural influence on the solid state intermolecular hydrogen bonding of substituted thioureas

    NASA Astrophysics Data System (ADS)

    Venkatachalam, T. K.; Sudbeck, E.; Uckun, F. M.

    2005-09-01

    Several thiourea derivatives have been found to possess biological activity. In particular, phenethyl thiazolyl thiourea derivatives with a heterocyclic ring exhibit potent antiviral activity. These thiourea derivatives were also found to inhibit RT, the reverse transcriptase enzyme, by binding the non-nucleoside inhibitor site of RT. To better understand the nature of the binding of these compounds a detailed crystal structure analysis on these thiourea compounds was undertaken. Here, we report, the results of our X-ray crystal structure study of substituted thiourea compounds. Comparison of the hydrogen bonding characteristics exhibited by structurally distinct thiourea analogs was informative concerning their inter- and intramolecular hydrogen bonding. Additionally, we found that among the thioureas studied, the 2,5-dimethoxy substituted phenethyl thiourea had strong intramolecular hydrogen bonding forming a nine-member ring in the crystal lattice that was absent in the other methoxy substituted phenethyl thioureas examined. Comparison of the structures demonstrated that the presence of a heterocyclic nitrogen atom in the ring results in the formation of a stable six-member ring rather than a nine-member ring.

  20. Amino acid motifs in natural products: synthesis of O-acylated derivatives of (2S,3S)-3-hydroxyleucine

    PubMed Central

    Ries, Oliver; Büschleb, Martin; Granitzka, Markus; Stalke, Dietmar

    2014-01-01

    Summary (2S,3S)-3-Hydroxyleucine can be found in an increasing number of bioactive natural products. Within the context of our work regarding the total synthesis of muraymycin nucleoside antibiotics, we have developed a synthetic approach towards (2S,3S)-3-hydroxyleucine building blocks. Application of different protecting group patterns led to building blocks suitable for C- or N-terminal derivatization as well as for solid-phase peptide synthesis. With respect to according motifs occurring in natural products, we have converted these building blocks into 3-O-acylated structures. Utilizing an esterification and cross-metathesis protocol, (2S,3S)-3-hydroxyleucine derivatives were synthesized, thus opening up an excellent approach for the synthesis of bioactive natural products and derivatives thereof for structure activity relationship (SAR) studies. PMID:24991264

  1. Metabolic transformation of dinophysistoxin-3 into dinophysistoxin-1 causes human intoxication by consumption of O-acyl-derivatives dinophysistoxins contaminated shellfish.

    PubMed

    García, Carlos; Truan, Dominique; Lagos, Marcelo; Santelices, Juan Pablo; Díaz, Juan Carlos; Lagos, Néstor

    2005-12-01

    This paper describes for the first time a massive intoxication episode due to consumption of shellfish contaminated with 7-O-acyl-derivative dinophysistoxin-1, named Dinophysistoxin-3 (DTX-3). 7-O-acyl-derivative dinophysistoxin-1, a compound recently described in the literature, was found in shellfish samples collected in the Chilean Patagonia fjords. This compound does not inhibit Protein Phosphatases and also does not elicit the symptoms described for Diarrheic Shellfish Poisoning (DSP). The data showed here, give evidence of metabolic transformation of 7-O-acyl-derivative dinophysistoxin-1 (DTX-3) into Dinophysistoxin-1 (DTX-1, Methyl-Okadaic acid) in intoxicated patients. This metabolic transformation is responsible for the diarrheic symptoms and the intoxication syndrome showed by patients that consumed contaminated shellfish, which showed only the presence of 7-O-acyl-derivative dinophysistoxin-1. Patients fecal bacterial analysis for the presence of enteropathogens was negative and the mouse bioassay for DSP, performed as described for regulatory testing, was also negative. The HPLC-FLD and HPLC-MS analysis showed only the presence of DTX-3 as the only compound associated to DSP toxins in the contaminated shellfish samples. No other DSP toxins were found in the shellfish sample extracts. However, the patient fecal samples showed DTX-1 as the only DSP toxins detected in fecal. Moreover, the patient fecal samples did not show DTX-3. Since 7-O-acyl-derivative dinophysistoxin-1 (DTX-3) was the only compound associated to DSP toxins detected in the shellfish samples, an explanation for the diarrheic symptoms in the intoxicated patients would be the metabolic transformation of DTX-3 into DTX-1. This transformation should occur in the stomach of the poisoned patients after consuming 7-O-acyl-derivatives dinophysistoxin-1 (DTX-3) contaminated bivalves. PMID:16404137

  2. Oxidative acylation using thioacids

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.

    1997-01-01

    Several important prebiotic reactions, including the coupling of amino acids into polypeptides by the formation of amide linkages, involve acylation. Theae reactions present a challenge to the understanding of prebiotic synthesis. Condensation reactions relying on dehydrating agents are either inefficient in aqueous solution or require strongly acidic conditions and high temperatures. Activated amino acids such as thioester derivatives have therefore been suggested as likely substrates for prebiotic peptide synthesis. Here we propose a closely related route to amide bond formation involving oxidative acylation by thioacids. We find that phenylalanine, leucine and phenylphosphate are acylated efficiently in aqueous solution by thioacetic acid and an oxidizing agent. From a prebiotic point of view, oxidative acylation has the advantage of proceeding efficiently in solution and under mild conditions. We anticipate that oxidative acylation should prove to be a general method for activating carboxylic acids, including amino acids.

  3. Solution-phase microwave assisted parallel synthesis of N,N'-disubstituted thioureas derived from benzoic acid: biological evaluation and molecular docking studies.

    PubMed

    Rauf, Muhammad Khawar; Talib, Ammara; Badshah, Amin; Zaib, Sumera; Shoaib, Khurram; Shahid, Mohammad; Flörke, Ulrich; Imtiaz-ud-Din; Iqbal, Jamshed

    2013-01-01

    An efficient and facile microwave-assisted solution phase parallel synthesis for a 26-member library of N,N'-disubstituted thiourea analogs were accomplished successfully. The reaction time for synthesis of analogs was drastically reduced from a reported 8-12 h to only 10 min. Compounds were more than 95% pure, as characterized by modern analytical techniques, i.e. (1)H &(13)C NMR and FT-IR. The solid phase structural analysis has also been performed by single crystal XRD analysis. Synthesized compounds were preliminary screened for their in vitro urease inhibition and antifungal activity. Most of the compounds were found to be potent inhibitors of urease. However, the most significant activity was found for 11 with IC₅₀ of 1.67 μM. The docking scores correlate with the IC₅₀ values of inhibitors. PMID:24185379

  4. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10055 1-Propanaminium,...

  5. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10055 1-Propanaminium,...

  6. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10055 1-Propanaminium,...

  7. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10055 1-Propanaminium,...

  8. 40 CFR 721.10193 - 1-Butanaminium, N-(3-aminopropyl)-N-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1-Butanaminium, N-(3-aminopropyl)-N-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts. 721.10193 Section 721.10193 Protection of... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10193 1-Butanaminium,...

  9. Enantioselective acylation of β-phenylalanine acid and its derivatives catalyzed by penicillin G acylase from Alcaligenes faecalis.

    PubMed

    Li, Dengchao; Ji, Lilian; Wang, Xinfeng; Wei, Dongzhi

    2013-01-01

    This study developed a simple, efficient method for producing racemic β-phenylalanine acid (BPA) and its derivatives via the enantioselective acylation catalyzed by the penicillin G acylase from Alcaligenes faecalis (Af-PGA). When the reaction was run at 25°C and pH 10 in an aqueous medium containing phenylacetamide and BPA in a molar ratio of 2:1, 8 U/mL enzyme and 0.1 M BPA, the maximum BPA conversion efficiency at 40 min only reached 36.1%, which, however, increased to 42.9% as the pH value and the molar ratio of phenylacetamide to BPA were elevated to 11 and 3:1, respectively. Under the relatively optimum reaction conditions, the maximum conversion efficiencies of BPA derivatives all reached about 50% in a relatively short reaction time (45-90 min). The enantiomeric excess value of product (ee(p)) and enantiomeric excess value of substrate (ee(s)) were all above 98% and 95%, respectively. These results suggest that the method established in this study is practical, effective, and environmentally benign and may be applied to industrial production of enantiomerically pure BPA and its derivatives. PMID:23302108

  10. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia.

    PubMed

    Tang, Kaihao; Su, Ying; Brackman, Gilles; Cui, Fangyuan; Zhang, Yunhui; Shi, Xiaochong; Coenye, Tom; Zhang, Xiao-Hua

    2015-01-01

    Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 10(5) s(-1) M(-1). Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the "HXHXDH" motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent.

  11. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives

    PubMed Central

    Volvert, Marie-Laure; Seyen, Sandrine; Piette, Marie; Evrard, Brigitte; Gangolf, Marjorie; Plumier, Jean-Christophe; Bettendorff, Lucien

    2008-01-01

    Background Lipid-soluble thiamine precursors have a much higher bioavailability than genuine thiamine and therefore are more suitable for therapeutic purposes. Benfotiamine (S-benzoylthiamine O-monophosphate), an amphiphilic S-acyl thiamine derivative, prevents the progression of diabetic complications, probably by increasing tissue levels of thiamine diphosphate and so enhancing transketolase activity. As the brain is particularly sensitive to thiamine deficiency, we wanted to test whether intracellular thiamine and thiamine phosphate levels are increased in the brain after oral benfotiamine administration. Results Benfotiamine that is practically insoluble in water, organic solvents or oil was solubilized in 200 mM hydroxypropyl-β-cyclodextrin and the mice received a single oral administration of 100 mg/kg. Though thiamine levels rapidly increased in blood and liver to reach a maximum after one or two hours, no significant increase was observed in the brain. When mice received a daily oral administration of benfotiamine for 14 days, thiamine derivatives were increased significantly in the liver but not in the brain, compared to control mice. In addition, incubation of cultured neuroblastoma cells with 10 μM benfotiamine did not lead to increased intracellular thiamine levels. Moreover, in thiamine-depleted neuroblastoma cells, intracellular thiamine contents increased more rapidly after addition of thiamine to the culture medium than after addition of benfotiamine for which a lag period was observed. Conclusion Our results show that, though benfotiamine strongly increases thiamine levels in blood and liver, it has no significant effect in the brain. This would explain why beneficial effects of benfotiamine have only been observed in peripheral tissues, while sulbutiamine, a lipid-soluble thiamine disulfide derivative, that increases thiamine derivatives in the brain as well as in cultured cells, acts as a central nervous system drug. We propose that

  12. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions

    PubMed Central

    Ceballos, Miriam; Maestro, Alicia; Sanz, Isabel

    2016-01-01

    Summary The catalytic activity of different supported bifunctional thioureas on sulfonylpolystyrene resins has been studied in the nitro-Michael addition of different nucleophiles to trans-β-nitrostyrene derivatives. The activity of the catalysts depends on the length of the tether linking the chiral thiourea to the polymer. The best results were obtained with the thiourea derived from (L)-valine and 1,6-hexanediamine. The catalysts can be used in only 2 mol % loading, and reused for at least four cycles in neat conditions. The ball milling promoted additions also worked very well. PMID:27340453

  13. Characteristics of polyhydroxy milkweed triglycerides and their acylated derivatives in relation to lubricity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industrial lubricants are derived from non-renewable petroleum-based resources that can cause pollution due to poor degradation. Seed oils, however, are both renewable and readily biodegradable, but have lower thermal stability and shorter shelf-life. This drawback can be overcome and yet retain the...

  14. Investigation of some characteristics of polyhydroxy milkweed triglycerides and their acylated derivatives in relation to lubricity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most industrial lubricants are derived from non-renewable petroleum-based sources. As useful as these lubricants are, their unintended consequences are the pollution of our environment as a result of the very slow degradation of the spent materials. Native seed oils, on the other hand, are renewa...

  15. Surface active molecules: preparation and properties of long chain n-acyl-l-alpha-amino-omega-guanidine alkyl acid derivatives.

    PubMed

    Infante, R; Dominguez, J G; Erra, P; Julia, R; Prats, M

    1984-12-01

    Synopsis A new route for the synthesis of long chain N(alpha)-acyl-l-alpha-amino-omega-guamdine alkyl acid derivatives, with cationic or amphoteric character has been established. The general formula of these compounds is shown below. A physico-chemical and antimicrobial study of these products as a function of the alkyl ester or sodium salt (R), the straight chain length of the fatty acid residue (x) and the number of carbons between the omega-guanidine and omega-carboxyl group (n) has been investigated. The water solubility, surface tension, critical micelle concentration (c.m.c.) and minimum inhibitory concentration (MIC) against Gram-positive and Gram-negative bacteria (including Pseudomonas) has been determined. Dicyclohexylcarbodiimide has been used to condense fatty acids and alpha-amino-omega-guanidine alkyl acids. In these conditions protection of the omega-guanidine group is not necessary. The main characteristic of this synthetic procedure is the use of very mild experimental conditions (temperature, pH) to form the amide linkage which leads to pure optical compounds in high yield in the absence of electrolytes. The results show that some structural modifications, particularly the protection of the carboxyl group, promote variations of the surfactant and antimicrobial properties. Only those molecules with the blocked carboxyl group (cationic molecules, where R = Me, Et or Pr) showed a good surfactant and antimicrobial activity. When the carboxyl group was unprotected (amphoteric molecules, where R = Na(+)) the resulting compounds were inactive.

  16. Role of mitochondria in the leishmanicidal effects and toxicity of acyl phloroglucinol derivatives: nemorosone and guttiferone A.

    PubMed

    Monzote, Lianet; Lackova, Alexandra; Staniek, Katrin; Cuesta-Rubio, Osmany; Gille, Lars

    2015-08-01

    Nemorosone (Nem) and guttiferone A (GutA) are acyl phloroglucinol derivatives (APD) that are present in different natural products. For both compounds anti-cancer and anti-microbial properties have been reported. In particular, an anti-leishmanial activity of both compounds was demonstrated. The aim of this study was to explore the possible role of mitochondria in the anti-leishmanial activity of Nem and GutA in comparison with their action on mammalian mitochondria. Both APD inhibited the growth of promastigotes of Leishmania tarentolae (LtP) with half maximal inhibitory concentration (IC50) values of 0·67 ± 0·17 and 6·2 ± 2·6 μ m; while IC50 values for cytotoxicity against peritoneal macrophages from BALB/c mice were of 29·5 ± 3·7 and 9·2 ± 0·9 μ m, respectively. Nemorosone strongly inhibited LtP oxygen consumption, caused species-specific inhibition (P < 0·05) of succinate:ubiquinone oxidoreductase (complex II) from LtP-mitochondria and significantly increased (P < 0·05) the mitochondrial superoxide production. In contrast, GutA caused only a moderate reduction of respiration in LtP and triggered less superoxide radical production in LtP compared with Nem. In addition, GutA inhibited mitochondrial complex III in bovine heart submitochondrial particles, which is possibly involved in its mammalian toxicity. Both compounds demonstrated at low micromolar concentrations an effect on the mitochondrial membrane potential in LtP. The present study suggests that Nem caused its anti-leishmanial action due to specific inhibition of complexes II/III of mitochondrial respiratory chain of Leishmania parasites that could be responsible for increased production of reactive oxygen species that triggers parasite death. PMID:26027642

  17. Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups.

    PubMed

    Li, Zhihan; Yang, Fei; Yang, Rendang

    2015-04-01

    With the aim to discover chitosan derivatives with enhanced antibacterial activity and good water solubility compared with natural chitosan, a novel O-quaternary ammonium N-acyl thiourea chitosan (OQCATUCS) bearing double antibacterial groups with different degrees of substitution has been synthesized. The derivative was characterized by FTIR, (13)C NMR, elemental analysis, XRD, TGA and zeta potential analysis. Water solubility was also investigated. The antimicrobial activities of chitosan and its derivatives were investigated by assessing the mortality rates of Staphyloccocus aureus, Escherichia coli, Aspergillus niger, Pseudomonas aeruginosa and Bacillus subtilis. The order of antibacterial activities was O-quaternary ammonium N-acyl thiourea chitosan (OQCATUCS)>O-quaternary ammonium chitosan (OQCS)>chitosan (CS). The zeta potential and antibacterial results indicated that the introduced quaternary ammonium and thiourea groups increased the positive charge of chitosan derivative, thereby enhanced its antibacterial activity. The mechanism of chitosan derivatives against E. coli and S. aureus was evaluated via analyzing integrity of cell membranes and transmission electron microscopy data. These results demonstrated that OQCATUCS killed the bacteria via disrupting the cell membrane.

  18. Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation.

    PubMed

    Weinhold, Alexander; Baldwin, Ian Thomas

    2011-05-10

    Plant glandular trichomes exude secondary metabolites with defensive functions, but these epidermal protuberances are surprisingly the first meal of Lepidopteran herbivores on Nicotiana attenuata. O-acyl sugars, the most abundant metabolite of glandular trichomes, impart a distinct volatile profile to the body and frass of larvae that feed on them. The headspace composition of Manduca sexta larvae is dominated by the branched chain aliphatic acids hydrolyzed from ingested O-acyl sugars, which waxes and wanes rapidly with trichome ingestion. In native habitats a ground-hunting predator, the omnivorous ant Pogonomyrmex rugosus, but not the big-eyed bug Geocoris spp., use these volatile aliphatic acids to locate their prey.

  19. Thiourea-catalyzed enantioselective iso-Pictet-Spengler reactions.

    PubMed

    Lee, Yunmi; Klausen, Rebekka S; Jacobsen, Eric N

    2011-10-21

    A one-pot condensation of isotryptamines and aldehydes that affords enantiomerically enriched 4-substituted tetrahydro-γ-carbolines is reported. The reaction is induced by a chiral thiourea/benzoic acid dual catalyst system. Purification of the N-Boc-protected products by trituration or crystallization provides the optically pure tetrahydro-γ-carboline derivatives in a scalable and highly practical procedure. PMID:21919478

  20. Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation

    PubMed Central

    Weinhold, Alexander; Baldwin, Ian Thomas

    2011-01-01

    Plant glandular trichomes exude secondary metabolites with defensive functions, but these epidermal protuberances are surprisingly the first meal of Lepidopteran herbivores on Nicotiana attenuata. O-acyl sugars, the most abundant metabolite of glandular trichomes, impart a distinct volatile profile to the body and frass of larvae that feed on them. The headspace composition of Manduca sexta larvae is dominated by the branched chain aliphatic acids hydrolyzed from ingested O-acyl sugars, which waxes and wanes rapidly with trichome ingestion. In native habitats a ground-hunting predator, the omnivorous ant Pogonomyrmex rugosus, but not the big-eyed bug Geocoris spp., use these volatile aliphatic acids to locate their prey. PMID:21518882

  1. Acylation of Streptomyces type II polyketide synthase acyl carrier proteins.

    PubMed

    Crosby, J; Byrom, K J; Hitchman, T S; Cox, R J; Crump, M P; Findlow, I S; Bibb, M J; Simpson, T J

    1998-08-14

    Acyl derivatives of type II PKS ACPs are required for in vitro studies of polyketide biosynthesis. The presence of an exposed cysteine residue prevented specific chemical acylation of the phosphopantetheine thiol of the actinorhodin PKS holo ACP. Acylation studies were further complicated by intramolecular disulphide formation between cysteine 17 and the phosphopantetheine. The presence of this intramolecular disulphide was confirmed by tryptic digestion of the ACP followed by ESMS analysis of the fragments. An act Cys17Ser ACP was engineered by site-directed mutagenesis. S-Acyl adducts of act C17S, oxytetracycline and griseusin holo ACPs were rapidly formed by reaction with hexanoyl, 5-ketohexanoyl and protected acetoacetyl imidazolides. Comparisons with type 11 FAS ACPs were made.

  2. Base-promoted C→N acyl rearrangement: an unconventional approach to α-amino acid derivatives.

    PubMed

    Ugarriza, Iratxe; Uria, Uxue; Carrillo, Luisa; Vicario, Jose L; Reyes, Efraim

    2014-09-01

    We have discovered that N-alkyl aminomalonates undergo a fast and selective intramolecular C→N acyl rearrangement reaction in the presence of a strong base, leading to N-protected glycinates in excellent yield. Moreover, the fact that the reaction proceeds through a nucleophilic enolate intermediate has been used for implementing a tandem rearrangement/alkylation sequence that has been applied to the preparation of synthetically relevant nonproteinogenic tertiary and quaternary N-alkyl α-amino acids in a very simple and reliable way.

  3. The substrate promiscuity of a phosphopantetheinyl transferase SchPPT for coenzyme A derivatives and acyl carrier proteins.

    PubMed

    Wang, Yue-Yue; Luo, Hong-Dou; Zhang, Xiao-Sheng; Lin, Tao; Jiang, Hui; Li, Yong-Quan

    2016-03-01

    Phosphopantetheinyl transferases (PPTases) catalyze the posttranslational modification of acyl carrier proteins (ACPs) in fatty acid synthases (FASs), ACPs in polyketide synthases, and peptidyl carrier proteins (PCPs) in nonribosomal peptide synthetases (NRPSs) in all organisms. Some bacterial PPTases have broad substrate specificities for ACPs/PCPs and/or coenzyme A (CoA)/CoA analogs, facilitating their application in metabolite production in hosts and/or labeling of ACPs/PCPs, respectively. Here, a group II PPTase SchPPT from Streptomyces chattanoogensis L10 was characterized to accept a heterologous ACP and acetyl-CoA. Thus, SchPPT is a promiscuous PPTase and may be used on polyketide production in heterologous bacterial host and labeling of ACPs.

  4. Synthesis of alpha-acyl-functionalized azacycles by Pd-catalyzed cross-coupling reactions of alpha-alkoxyboronates with lactam-derived vinyl triflates.

    PubMed

    Occhiato, Ernesto G; Prandi, Cristina; Ferrali, Alessandro; Guarna, Antonio; Deagostino, Annamaria; Venturello, Paolo

    2002-10-01

    Alkoxydienyl- and alkoxystyrylboronates were used for Pd-catalyzed cross-coupling reactions with lactam-derived vinyl triflates. The hydrolysis of the coupling products with alkoxystyrylboronates provided the corresponding alpha-acyl-substituted 3,4-dihydro-(2H)-pyridines and 2,3,4,5-tetrahydroazepines in good to high yields. The hydrolysis of the coupling products with alkoxydienylboronates, performed in the presence of Amberlyst 15, resulted in a Nazarov-type cyclization that afforded hexahydro[1]pyrindin-7-ones and 3,4,5,6,7,8-hexahydro-(2H)-cyclopenta[b]azepin-8-ones. This methodology represents a novel and efficient procedure for the preparation of these classes of azacyclic compounds. PMID:12354013

  5. Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors.

    PubMed

    Wang, Yan-Ting; Qin, Ya-Juan; Yang, Na; Zhang, Ya-Liang; Liu, Chang-Hong; Zhu, Hai-Liang

    2015-06-24

    A series of 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives were designed, synthesized and evaluated as potential tubulin polymerization inhibitors and for the cytotoxicity against anthropic cancer cell lines. Among the novel compounds, compound 11f was demonstrated the most potent tubulin polymerization inhibitory activity (IC50 = 1.5 μM) and antiproliferative activity against A549, HepG2 and MCF-7 (GI50 = 2.4, 3.8 and 5.1 μM, respectively), which was compared with the positive control colchicine and CA-4. We also evaluated that compound 11f could effectively induce apoptosis of A549 associated with G2/M phase cell cycle arrest. Docking simulation and 3D-QSAR model in these studies provided more information that could be applied to design new molecules with more potent tubulin inhibitory activity.

  6. Anti-cancer agents based on N-acyl-2, 3-dihydro-1H-pyrrolo[2,3-b] quinoline derivatives and a method of making

    DOEpatents

    Gakh, Andrei; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V

    2013-04-16

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. In particular, the invention relates to N-acyl derivatives of 2,3-dihydro-1H-pyrrolo[2,3-b]quinolines having the structural Formula (I), ##STR00001## stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. The meaning of R1 is independently selected from H; C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl substituents; R2 is selected from C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl; substituted or non-substituted, fused or non-fused to substituted or non-substituted aromatic ring, aryl or heteroaryl groups. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  7. Theoretical and NMR experimental insights on urea, thiourea and diindolyurea as fluoride carriers

    NASA Astrophysics Data System (ADS)

    Mendonça, João Guilherme P.; Silla, Josué M.; Andrade, Laize A. F.; Fernandes, Sergio A.; Cormanich, Rodrigo A.; Freitas, Matheus P.

    2016-06-01

    Urea and thiourea derivatives are widely known as anion transporters. The pristine urea and thiourea compounds were theoretically and spectroscopically evaluated as fluoride ligands, since transportation of F- is involved in many biochemical processes and this anion is suitable to be analyzed through NMR. Conformational changes induced by anions can be useful to probe ligand-anion complexation, but urea and thiourea do not undergo conformational isomerization. Thus, diindolylurea (DIU) was computationally investigated to search for its conformational preferences upon complexation with fluoride. Overall, the NMR proton signal for urea and thiourea moved downfield and broadened upon addition of one equivalent of fluoride anion in DMSO solution, indicating complexation. The 19F signal for the thiourea-F- mixture also shifted relative to the anion source. However, a J(N)H,F coupling constant was not observed, probably because of entropy and bulk solvation effects. In addition, the conformational preference of DIU changed drastically after simulated complexation with fluoride, in agreement with previous studies with other anions. This confirms the potential of urea derivatives as fluoride carriers.

  8. Prioritization of active antimalarials using structural interaction profile of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR)-triclosan derivatives.

    PubMed

    Kumar, S P; George, L B; Jasrai, Y T; Pandya, H A

    2015-01-01

    An empirical relationship between the experimental inhibitory activities of triclosan derivatives and its computationally predicted Plasmodium falciparum enoyl-acyl carrier protein (ACP) reductase (PfENR) dock poses was developed to model activities of known antimalarials. A statistical model was developed using 57 triclosan derivatives with significant measures (r = 0.849, q(2) = 0.619, s = 0.481) and applied on structurally related and structurally diverse external datasets. A substructure-based search on ChEMBL malaria dataset (280 compounds) yielded only two molecules with significant docking energy, whereas eight active antimalarials (EC(50) < 100 nM, tested on 3D7 strain) with better predicted activities (pIC(50) ~ 7) from Open Access Malaria Box (400 compounds) were prioritized. Further, calculations on the structurally diverse rhodanine molecules (known PfENR inhibitors) distinguished actives (experimental IC(50) = 0.035 μM; predicted pIC(50) = 6.568) and inactives (experimental IC(50) = 50 μM; predicted pIC50 = -4.078), which showed that antimalarials possessing dock poses similar to experimental interaction profiles can be used as leads to test experimentally on enzyme assays.

  9. 21 CFR 189.190 - Thiourea.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... used for detecting thiourea are in sections 20.115-20.126 of the “Official Methods of Analysis of the Association of Official Analytical Chemists,” 13th Ed. (1980), which is incorporated by reference. Copies may..., CH4N2S. It is a synthetic chemical, is not found in natural products at levels detectable by the...

  10. 21 CFR 189.190 - Thiourea.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Thiourea. 189.190 Section 189.190 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... methodology, and has been proposed as an antimycotic for use in dipping citrus. (b) Food containing any...

  11. Occupational allergic contact dermatitis caused by thiourea compounds.

    PubMed

    Kanerva, L; Estlander, T; Jolanki, R

    1994-10-01

    Thiourea compounds are mainly used as accelerators in the rubber industry, but also in other industries, e.g., as antioxidants in the graphics industry. Thiourea compounds may provoke allergic contact dermatitis, although the number of reported cases is relatively low. During 1985-1991, we had 5 patients with allergic patch test reactions caused by thiourea compounds. 1 of our patients had to use a knee brace after an occupational accident. He developed allergic contact dermatitis caused by the knee brace, probably because he had become sensitized to diethylthiourea. 2 patients were probably sensitized by diphenylthiourea in neoprene gloves. A florist had an allergic patch test reaction to diphenylthiourea and might have been sensitized by fungicides or pesticides, which break down into thioureas. It is often difficult, however, to detect the source of thiourea compound sensitization. If the patient has contact dermatitis and has been exposed to products that may contain thiourea compounds (or compounds that break down into thiourea compounds), such as rubber, PVC plastic or adhesive, diazo paper, paints or glue remover, anticorrosive agents, fungicides or pesticides, patch testing with a series of thiourea compounds needs to be performed. If patch testing with thiourea compounds is not performed, allergic contact dermatitis caused by thiourea compounds is not likely to be diagnosed. PMID:7842680

  12. Efficient Inhibition of Hepatitis B Virus Infection by Acylated Peptides Derived from the Large Viral Surface Protein†

    PubMed Central

    Gripon, Philippe; Cannie, Isabelle; Urban, Stephan

    2005-01-01

    The lack of an appropriate in vitro infection system for the major human pathogen hepatitis B virus (HBV) has prevented a molecular understanding of the early infection events of HBV. We used the novel HBV-infectible cell line HepaRG and primary human hepatocytes to investigate the interference of infection by HBV envelope protein-derived peptides. We found that a peptide consisting of the authentically myristoylated N-terminal 47 amino acids of the pre-S1 domain of the large viral envelope protein (L protein) specifically prevented HBV infection, with a 50% inhibitory concentration (IC50) of 8 nM. The replacement of myristic acid with other hydrophobic moieties resulted in changes in the inhibitory activity, most notably by a decrease in the IC50 to picomolar concentrations for longer unbranched fatty acids. The obstruction of HepaRG cell susceptibility to HBV infection after short preincubation times with the peptides suggested that the peptides efficiently target and inactivate a receptor at the hepatocyte surface. Our data both shed light on the molecular mechanism of HBV entry into hepatocytes and provide a basis for the development of potent hepadnaviral entry inhibitors as a novel therapeutic concept for the treatment of hepatitis Β. PMID:15650187

  13. Novel 2-amino-1,3,4-thiadiazoles and their acyl derivatives: Synthesis, structural characterization, molecular docking studies and comparison of experimental and computational results

    NASA Astrophysics Data System (ADS)

    Er, Mustafa; Isildak, Gamze; Tahtaci, Hakan; Karakurt, Tuncay

    2016-04-01

    This study aims to synthesize and characterize compounds containing 2-amino-1,3,4-thiadiazole and compare experimental results to theoretical results. For this purpose, firstly mono, di and tetra 2-amino-1,3,4-thiadiazole compounds (2a-c, 14, 20 and 25) were synthesized in relatively high yields (74-87%). The target compounds (3-11, 15-17, 21-23 and 26-28) were then synthesized in moderate to high yields (65-85%) from the reactions of 2-amino-1,3,4-thiadiazole compounds with various acyl chloride derivatives. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses and mass spectroscopy techniques. The structures of 2b (C9H8N4O2S) and 2c (C11H13N3O2S) were also elucidated by X-ray diffraction analysis. Lastly, IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital (FMO) values of these molecules containing heteroatoms were examined using the Becke-3- Lee-Yang-Parr (B3LYP) method with the 6-31G(d) basis set. Two different molecular structures containing 2-amino-1,3,4-thiadiazole (2b, 2c) were used in our study to examine these properties. Also, compounds 2b and 2c form a stable complex with beta-Lactamase as can be understood from the binding affinity values and the results show that the compound might inhibit the beta-Lactamase enzyme. It was found that theoretical and experimental results obtained in the experiment were compatible with each other and with the values found in the literature.

  14. Quantitative analysis of autoradiographic image intensification using Thiourea-S35

    NASA Technical Reports Server (NTRS)

    Askins, B. S.; Odell, C. R.

    1980-01-01

    Photographic images enhanced by the method of Thiourea-S35 autoradiography are evaluated in terms of signal-to-noise ratio, detective quantum efficiency (DQE), and Wiener spectrum analysis using digitized images. It is determined that the original signal-to-noise ratio is not degraded by the intensification process which allows an increase in the practical working DQE as a function of density. These results apply at all spatial frequencies that were tested. The advantage given by autoradiography is the ability to produce usable images from emulsions originally exposed to the low densities corresponding to maximum DQE and movement of faint image densities above the level of the threshold for detection.

  15. Lipid thioesters derived from acylated proteins accumulate in infantile neuronal ceroid lipofuscinosis: correction of the defect in lymphoblasts by recombinant palmitoyl-protein thioesterase.

    PubMed Central

    Lu, J Y; Verkruyse, L A; Hofmann, S L

    1996-01-01

    Palmitoyl-protein thioesterase is a lysosomal long-chain fatty acyl hydrolase that removes fatty acyl groups from modified cysteine residues in proteins. Mutations in palmitoyl-protein thioesterase were recently found to cause the neurodegenerative disorder infantile neuronal ceroid lipofuscinosis, a disease characterized by accumulation of amorphous granular deposits in cortical neurons, leading to blindness, seizures, and brain death by the age of three. In the current study, we demonstrate that [35S]cysteine-labeled lipid thioesters accumulate in immortalized lymphoblasts of patients with infantile neuronal ceroid lipofuscinosis. The accumulation in cultured cells is reversed by the addition of recombinant palmitoyl-protein thioesterase that is competent for lysosomal uptake through the mannose-6-phosphate receptor. The [35S]cysteine-labeled lipids are substrates for palmitoyl-protein thioesterase in vitro, and their formation requires prior protein synthesis. These data support a role for palmitoyl-protein thioesterase in the lysosomal degradation of S-acylated proteins and define a major new pathway for the catabolism of acylated proteins in the lysosome. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8816748

  16. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    ERIC Educational Resources Information Center

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  17. The Synthesis and Anion Recognition Property of Symmetrical Chemosensors Involving Thiourea Groups: Theory and Experiments

    PubMed Central

    Shang, Xuefang; Yang, Zhenhua; Fu, Jiajia; Zhao, Peipei; Xu, Xiufang

    2015-01-01

    The synthesis of four symmetrical compounds containing urea/thiourea and anthracene/nitrobenzene groups was optimized. N,N’-Di((anthracen-9-yl)-methylene)thio-carbonohydrazide showed sensitive and selective binding ability for acetate ion among the studied anions. The presence of other competitive anions including F−, H2PO4−, Cl−, Br− and I− did not interfere with the strong binding ability. The mechanism of the host-guest interaction was through multiple hydrogen bonds due to the conformational complementarity and higher basicity. A theoretical investigation explained that intra-molecular hydrogen bonds existed in the compound which could strengthen the anion binding ability. In addition, molecular frontier orbitals in molecular interplay were introduced in order to explain the red-shift phenomenon in the host-guest interaction process. Compounds based on thiourea and anthracene derivatives can thus be used as a chemosensor for detecting acetate ion in environmental and pharmaceutical samples. PMID:26561816

  18. Transformation of herbicide propachlor by an agrochemical thiourea.

    PubMed

    Zheng, Wei; Yates, Scott R; Papiernik, Sharon K; Guo, Mingxin

    2004-12-15

    Propachlor and other chloroacetanilide herbicides are frequently detected contaminants of groundwater and surface water in agricultural regions. The purpose of this work was to develop a new approach to remove propachlor residues from the environment via chemical remediation by the nitrification inhibitor thiourea. The transformation processes of propachlor and thiourea mixed in aqueous solution, sand, and soil were elucidated. Analysis of transformation products and reaction kinetics indicated that an S(N)2 nucleophilic substitution reaction occurred, in which the chlorine of propachlor was replaced by thiourea, detoxifying the herbicide. It appears that propachlor undergoes a catalytic reaction in sand or soil amended with thiourea, which results in a significantly accelerated transformation rate as compared to the reaction in aqueous solution. The second-order reaction process was examined at different temperatures to investigate the role of the activation energy. The enthalpy of activation (deltaH) for the reaction of propachlor with thiourea was demonstrated to be significantly lower in sand than in aqueous solution, which provides evidence that a catalytic transformation mechanism occurs in thiourea-amended sand. The chemical reaction rate increased proportionally to the amount of thiourea added to the sand. Column experiments further suggested that the remediation strategy could be used to remove propachlor residues from sand or soil to reduce leaching and prevent contamination of surface water and groundwater.

  19. Repositioning of Thiourea-Containing Drugs as Tyrosinase Inhibitors

    PubMed Central

    Choi, Joonhyeok; Jee, Jun-Goo

    2015-01-01

    Tyrosinase catalyzes two distinct sequential reactions in melanin biosynthesis: The hydroxylation of tyrosine to dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to dopaquinone. Developing functional modulators of tyrosinase is important for therapeutic and cosmetic purposes. Given the abundance of thiourea moiety in known tyrosinase inhibitors, we studied other thiourea-containing drugs as potential tyrosinase inhibitors. The thiourea-containing drugs in clinical use were retrieved and tested for their ability to inhibit tyrosinase. We observed that methimazole, thiouracil, methylthiouracil, propylthiouracil, ambazone, and thioacetazone inhibited mushroom tyrosinase. Except for methimazole, there was limited information regarding the activity of other drugs against tyrosinase. Both thioacetazone and ambazone significantly inhibited tyrosinase, with IC50 of 14 and 15 μM, respectively. Ambazone decreased melanin content without causing cellular toxicity at 20 μM in B16F10 cells. The activity of ambazone was stronger than that of kojic acid both in enzyme and melanin content assays. Kinetics of enzyme inhibition assigned the thiourea-containg drugs as non-competitive inhibitors. The complex models by docking simulation suggested that the intermolecular hydrogen bond via the nitrogen of thiourea and the contacts via thione were equally important for interacting with tyrosinase. These data were consistent with the results of enzyme assays with the analogues of thiourea. PMID:26633377

  20. Repositioning of Thiourea-Containing Drugs as Tyrosinase Inhibitors.

    PubMed

    Choi, Joonhyeok; Jee, Jun-Goo

    2015-01-01

    Tyrosinase catalyzes two distinct sequential reactions in melanin biosynthesis: The hydroxylation of tyrosine to dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to dopaquinone. Developing functional modulators of tyrosinase is important for therapeutic and cosmetic purposes. Given the abundance of thiourea moiety in known tyrosinase inhibitors, we studied other thiourea-containing drugs as potential tyrosinase inhibitors. The thiourea-containing drugs in clinical use were retrieved and tested for their ability to inhibit tyrosinase. We observed that methimazole, thiouracil, methylthiouracil, propylthiouracil, ambazone, and thioacetazone inhibited mushroom tyrosinase. Except for methimazole, there was limited information regarding the activity of other drugs against tyrosinase. Both thioacetazone and ambazone significantly inhibited tyrosinase, with IC50 of 14 and 15 μM, respectively. Ambazone decreased melanin content without causing cellular toxicity at 20 μM in B16F10 cells. The activity of ambazone was stronger than that of kojic acid both in enzyme and melanin content assays. Kinetics of enzyme inhibition assigned the thiourea-containg drugs as non-competitive inhibitors. The complex models by docking simulation suggested that the intermolecular hydrogen bond via the nitrogen of thiourea and the contacts via thione were equally important for interacting with tyrosinase. These data were consistent with the results of enzyme assays with the analogues of thiourea. PMID:26633377

  1. Discovery of a potent and orally available acyl-CoA: cholesterol acyltransferase inhibitor as an anti-atherosclerotic agent: (4-phenylcoumarin)acetanilide derivatives.

    PubMed

    Ogino, Masaki; Fukui, Seiji; Nakada, Yoshihisa; Tokunoh, Ryosuke; Itokawa, Shigekazu; Kakoi, Yuichi; Nishimura, Satoshi; Sanada, Tsukasa; Fuse, Hiromitsu; Kubo, Kazuki; Wada, Takeo; Marui, Shogo

    2011-01-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) is an intracellular enzyme that catalyzes cholesterol esterification. ACAT inhibitors are expected to be potent therapeutic agents for the treatment of atherosclerosis. A series of potent ACAT inhibitors based on an (4-phenylcoumarin)acetanilide scaffold was identified. Evaluation of the structure-activity relationships of a substituent on this scaffold, with an emphasis on improving the pharmacokinetic profile led to the discovery of 2-[7-chloro-4-(3-chlorophenyl)-6-methyl-2-oxo-2H-chromen-3-yl]-N-[4-chloro-2-(trifluoromethyl)phenyl]acetamide (23), which exhibited potent ACAT inhibitory activity (IC50=12 nM) and good pharmacokinetic profile in mice. Compound 23 also showed regressive effects on atherosclerotic plaques in apolipoprotein (apo)E knock out (KO) mice at a dose of 0.3 mg/kg per os (p.o.). PMID:21963637

  2. Acyl-ACP Substrate Recognition in Burkholderia mallei BmaI1 Acyl-Homoserine Lactone Synthase

    PubMed Central

    2015-01-01

    The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates virulence in several pathogenic bacteria. The hallmark of an efficient quorum sensing system relies on the tight specificity in the signal generated by each bacterium. Since AHL signal specificity is derived from the acyl-chain of the acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must recognize and react with the native acyl-ACP with high catalytic efficiency while keeping reaction rates with non-native acyl-ACPs low. The mechanism of acyl-ACP substrate recognition in these enzymes, however, remains elusive. In this study, we investigated differences in catalytic efficiencies for shorter and longer chain acyl-ACP substrates reacting with an octanoyl-homoserine lactone synthase Burkholderia mallei BmaI1. With the exception of two-carbon shorter hexanoyl-ACP, the catalytic efficiencies of butyryl-ACP, decanoyl-ACP, and octanoyl-CoA reacting with BmaI1 decreased by greater than 20-fold compared to the native octanoyl-ACP substrate. Furthermore, we also noticed kinetic cooperativity when BmaI1 reacted with non-native acyl-donor substrates. Our kinetic data suggest that non-native acyl-ACP substrates are unable to form a stable and productive BmaI1·acyl-ACP·SAM ternary complex and are thus effectively discriminated by the enzyme. These results offer insights into the molecular basis of substrate recognition for the BmaI1 enzyme. PMID:25215658

  3. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  4. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  5. Acyl-lipid metabolism.

    PubMed

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X; Arondel, Vincent; Bates, Philip D; Baud, Sébastien; Bird, David; Debono, Allan; Durrett, Timothy P; Franke, Rochus B; Graham, Ian A; Katayama, Kenta; Kelly, Amélie A; Larson, Tony; Markham, Jonathan E; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  6. Emulsifying properties of acylated rapeseed (Brassica napus L.) peptides.

    PubMed

    Sánchez-Vioque, Raúl; Bagger, Christian L; Larré, Colette; Guéguen, Jacques

    2004-03-01

    A peptide fraction having an average size of 5.6 amino acids has been purified from a rapeseed hydrolyzate, acylated using C(10)-C(14) acyl chlorides, and the surface tension values at the air-water interface and emulsifying properties studied. As compared with standard surface-active proteins, such as bovine serum albumin (BSA), and with detergents such as sodium dodecyl sulfate (SDS), acylated peptides exhibited particular surface characteristics. The surface tension at air-water interface of acylated peptides ranged from 29.1 to 37.8 mN/m at equilibrium; these values were considerably lower than those for BSA and closer those for SDS, suggesting that acylated peptides pack at the air-water interface more like detergents than like proteins. The adsorption of acylated peptides to the oil-water interface was slower than for SDS or BSA, as deduced from the rather large size of oil droplets in emulsions (31-17 microm). Consequently, these emulsions creamed extensively during aging. Nevertheless, emulsions generated from acylated peptides were in general more stable to phase separation than those prepared from SDS. The C(14) acylated peptides were more effective for generating emulsions than the C(10) and C(12) derivatives, especially concerning the stability of emulsions against coalescence and phase separation, which was better than SDS and close to BSA.

  7. Biological evaluation of potent triclosan-derived inhibitors of the enoyl-acyl carrier protein reductase InhA in drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis.

    PubMed

    Stec, Jozef; Vilchèze, Catherine; Lun, Shichun; Perryman, Alexander L; Wang, Xin; Freundlich, Joel S; Bishai, William; Jacobs, William R; Kozikowski, Alan P

    2014-11-01

    New triclosan (TRC) analogues were evaluated for their activity against the enoyl-acyl carrier protein reductase InhA in Mycobacterium tuberculosis (Mtb). TRC is a well-known inhibitor of InhA, and specific modifications to its positions 5 and 4' afforded 27 derivatives; of these compounds, seven derivatives showed improved potency over that of TRC. These analogues were active against both drug-susceptible and drug-resistant Mtb strains. The most active compound in this series, 4-(n-butyl)-1,2,3-triazolyl TRC derivative 3, had an MIC value of 0.6 μg mL(-1) (1.5 μM) against wild-type Mtb. At a concentration equal to its MIC, this compound inhibited purified InhA by 98 %, and showed an IC50 value of 90 nM. Compound 3 and the 5-methylisoxazole-modified TRC 14 were able to inhibit the biosynthesis of mycolic acids. Furthermore, mc(2) 4914, an Mtb strain overexpressing inhA, was found to be less susceptible to compounds 3 and 14, supporting the notion that InhA is the likely molecular target of the TRC derivatives presented herein.

  8. Acyl-acyl carrier protein: Lysomonogalactosyldiacylglycerol acyl transferase in Anabaena variabilis

    SciTech Connect

    Chen, H.H.

    1989-01-01

    Monogalactosyldiacylglycerol was produced when membranes isolated from the cyanobacterium, Anabaena variabilis, and washed free of soluble endogenous constituents, were incubated with ({sup 14}C)acyl-acyl carrier protein. This enzymatic synthesis of monogalactosyldiacylglycerol localized in the membranes was not dependent on any added cofactors, such as ATP, coenzyme A, and dithiothreitol. Palmitoyl-, stearoyl-, and oleoyl-acyl carrier proteins were approximately equally active as substrates with Km of 0.37, 0.36, and 0.23 {mu}M, respectively. The ({sup 14}C)acyl group was exclusively transferred to the sn-1 hydroxyl of the glycerol backbone of monogalactosyldiacylglycerol as demonstrated by hydrolysis of all incorporated acyl groups by the lipase from Rhizopus arrhizus delamar. Using a double labelled ({sup 14}C)acyl-({sup 14}C)acyl carrier protein, this enzyme catalyzed the direct transfer of the acyl group from acyl-acyl carrier protein to an endogenous lysomonogalactosyldiacylglycerol to form monogalactosyldiacylglycerol. The transfer reaction mechanism was also confirmed by the increased activity with the addition of the lysomonogalactosyldiacylglycerol suspension. A specific galactolipid acyl hydrolase activity was released into the soluble protein fraction when the membranes of Anabaena variabilis were treated with 2% Triton X-100. The positional specificity of this acyl hydrolase was demonstrated to be similar to that of Rhizopus lipase, i.e. only the acyl group at the sn-1 position was hydrolyzed. The acyl hydrolase which was also localized in the membrane fraction of Anabaena variabilis was presumably responsible for producing endogenous lysomonogalactosyldiacylglycerol used by the acyltransferase.

  9. Assessment of the hydrolysis process for the determination of okadaic acid-group toxin ester: presence of okadaic acid 7-O-acyl-ester derivates in Spanish shellfish.

    PubMed

    Villar-González, A; Rodríguez-Velasco, M L; Ben-Gigirey, B; Yasumoto, T; Botana, L M

    2008-04-01

    The contamination of different types of shellfish by okadaic acid (OA)-group toxin esters is an important problem that presents serious risk for human health. During previous investigations carried out in our laboratory by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS), the occurrence of a high percentage of esters in relation to the total OA equivalents has been observed in several shellfish species. The determination of these kinds of toxins using LC/MS or other chemical methods requires a hydrolysis step in order to convert the sterified compounds into the parent toxins, OA, dinophysistoxins-1 (DTX-1) and dinophysistoxins-2 (DTX-2). Most of the hydrolysis procedures are based on an alkaline hydrolysis reaction. However, despite hydrolysis being a critical step within the analysis, it has not been studied in depth up to now. The present paper reports the results obtained after evaluating the hydrolysis process of an esterified form of OA by using a standard of 7-O-acyl ester with palmitoyl as the fatty acid (palOA). Investigations were focused on checking the effectiveness of the hydrolysis for palOA using methanol as solvent standard and matrices matched standards. From the results obtained, no matrix influence on the hydrolysis process was observed and the quantity of palOA converted into OA was always above 80%. The analyses of different Spanish shellfish samples showed percentages of palOA in relation to the total OA esters ranging from 27% to 90%, depending on the shellfish specie. PMID:18243269

  10. Assessment of the hydrolysis process for the determination of okadaic acid-group toxin ester: presence of okadaic acid 7-O-acyl-ester derivates in Spanish shellfish.

    PubMed

    Villar-González, A; Rodríguez-Velasco, M L; Ben-Gigirey, B; Yasumoto, T; Botana, L M

    2008-04-01

    The contamination of different types of shellfish by okadaic acid (OA)-group toxin esters is an important problem that presents serious risk for human health. During previous investigations carried out in our laboratory by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS), the occurrence of a high percentage of esters in relation to the total OA equivalents has been observed in several shellfish species. The determination of these kinds of toxins using LC/MS or other chemical methods requires a hydrolysis step in order to convert the sterified compounds into the parent toxins, OA, dinophysistoxins-1 (DTX-1) and dinophysistoxins-2 (DTX-2). Most of the hydrolysis procedures are based on an alkaline hydrolysis reaction. However, despite hydrolysis being a critical step within the analysis, it has not been studied in depth up to now. The present paper reports the results obtained after evaluating the hydrolysis process of an esterified form of OA by using a standard of 7-O-acyl ester with palmitoyl as the fatty acid (palOA). Investigations were focused on checking the effectiveness of the hydrolysis for palOA using methanol as solvent standard and matrices matched standards. From the results obtained, no matrix influence on the hydrolysis process was observed and the quantity of palOA converted into OA was always above 80%. The analyses of different Spanish shellfish samples showed percentages of palOA in relation to the total OA esters ranging from 27% to 90%, depending on the shellfish specie.

  11. Urea- and Thiourea-Catalyzed Aminolysis of Carbonates.

    PubMed

    Blain, Marine; Yau, Honman; Jean-Gérard, Ludivine; Auvergne, Rémi; Benazet, Dominique; Schreiner, Peter R; Caillol, Sylvain; Andrioletti, Bruno

    2016-08-23

    The aminolysis of (poly)carbonates by (poly)amines provides access to non-isocyanate polyurethanes (NIPUs) that are toxic-reagent-free analogues of polyurethanes (PUs). Owing to their low reactivity, the ring opening of cyclic carbonates requires the use of a catalyst. Herein, we report that the more available and cheaper ureas could advantageously be used for catalyzing the formation of NIPUs at the expense of the thiourea analogues. In addition, we demonstrate a medium-range pKa of the (thio)urea and an unqeual substitution pattern is critical for controlling the efficiency of the carbonate opening. PMID:27467779

  12. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 1.

    PubMed

    Ohtawa, Masaki; Yamazaki, Hiroyuki; Ohte, Satoshi; Matsuda, Daisuke; Ohshiro, Taichi; Rudel, Lawrence L; Omura, Satoshi; Tomoda, Hiroshi; Nagamitsu, Tohru

    2013-03-01

    In an effort to develop potent and selective inhibitors toward ACAT2, structure-activity relationship studies were carried out using derivatives based on pyripyropene A (PPPA, 1). We have successfully developed novel PPPA derivatives with a 7-O-substituted benzoyl substituent that significantly exhibit more potent ACAT2 inhibitory activity and higher ACAT2 isozyme selectivity than 1. PMID:23369538

  13. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 3.

    PubMed

    Ohtawa, Masaki; Yamazaki, Hiroyuki; Ohte, Satoshi; Matsuda, Daisuke; Ohshiro, Taichi; Rudel, Lawrence L; Ōmura, Satoshi; Tomoda, Hiroshi; Nagamitsu, Tohru

    2013-07-01

    In an effort to develop potent and selective inhibitors toward ACAT2, structure-activity relationship studies were carried out using derivatives based on pyripyropene A (PPPA, 1). In particular, we investigated the possibility of introducing appropriate 1,11-O-benzylidene and 7-O-substituted benzoyl moieties into PPPA (1). The new o-substituted benzylidene derivatives showed higher selectivity for ACAT2 than PPPA (1). Among them, 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl PPPA derivative 7q and 1,11-O-o,o-dimethylbenzylidene-7-O-p-cyanobenzoyl PPPA derivative 7z proved to be potent ACAT2 inhibitors with unprecedented high isozyme selectivity. PMID:23711919

  14. Thiourea recognition by 2,6-bis(2-benzimidazolyl)pyridine using spectroscopic techniques and DFT

    NASA Astrophysics Data System (ADS)

    Chetia, Bolin; Goutam, Prasanta J.; Chipem, Francis A. S.; Iyer, Parameswar K.

    2013-06-01

    Recognition of thiourea by 2,6-bis(2-benzimidazolyl)pyridine, bbp, a neutral tridentate ligand was studied by UV visible and fluorescence spectroscopic techniques. FTIR spectroscopy and supportive DFT calculations established that, thiourea molecule, while bound to the binding site of bbp took up a near perpendicular orientation to the plane of the receptor. While forming the complex, the two imidazole H atoms present in the binding site of bbp formed two weak interactions with S atom of thiourea, which has low electronegativity. Moreover, bigger size of S atom restricted approach of thiourea inside the binding site. Stability of the bbp:thiourea complex basically increased as one of the imine H atom of thiourea is involved in a hydrogen bond with the pyridine N atom of bbp, which forced the near perpendicular orientation of thiourea on the plane of bbp. This binding mode is significantly different from the binding mode of urea with bbp as reported earlier.

  15. Crystal Engineering with Urea and Thiourea Hydrogen-Bonding Groups

    SciTech Connect

    Custelcean, Radu

    2008-01-01

    The utilization of N,N{prime}-disubstituted ureas and thioureas as design elements in the synthesis of crystalline organic solids is reviewed. These hydrogen-bonding units are versatile yet predictable building blocks that can be rationally employed in both crystal assembly and functionalization.

  16. Isothiocyanates of Phosphorus Acids, N-Phosphorylated Thiocarbamates and Thioureas

    NASA Astrophysics Data System (ADS)

    Kamalov, R. M.; Zimin, M. G.; Pudovik, A. N.

    1985-12-01

    Current data on the synthesis, structures, the activities, and practical applications of the isothiocyanates of tricoordinate, tetracoordinate, pentacoordinate, and hexacoordinate phosphorus acids and N-phosphorylated and N-thiophosphorylated thiocarbamates, dithiocarbamates, and thioureas are examined and surveyed. The bibliography includes 223 references.

  17. Comparative electrophilicity, mutagenicity, DNA repair induction activity, and carcinogenicity of some N- and O-acyl derivatives of N-hydroxy-2-aminoflourene.

    PubMed

    Bartsch, H; Malaveille, C; Stich, H F; Miller, E C; Miller, J A

    1977-05-01

    N-Myristoyloxy-N-acetyl-2-aminofluorene, N-acetoxy-N-myristoyl-2-aminofluorene, N-myristoyloxy-N-myristoyl-2-aminofluorene, and N-hydroxy-N-myristoyl-2-aminofluorene each yielded a high incidence of sarcomas in male rats within 5 to 7 months after s.c. injection of 64 micronmoles in divided doses. N-Acetoxy-N-acetyl-2-aminofluorene and N-hydroxy-2-acetylaminofluorene, although potent carcinogens at the s.c. site, were less active than the above derivatives with a myristoyl substituent. N-Sulfonoxy-N-acety--2-aminofluorene (purity larger than or equal to 70%) had little or no carcinogenic activity when administered in large amounts by s.c. injection to rats. The low incidence of tumors could have resulted from N-hydroxy-2-acetylaminofluorene or other decompostion products of the N-sulfonozy derivative. Each of the N-acetoxy and N-myristoyloxy derivatives of N-acetyl-2-aminofluorene and of N-myristoyl-2-aminofluorene showed electrophilic activity toward methionine; N-acetoxy-N-acetyl-2-aminofluorene was the most reactive and N-myristoyloxy-N-myristoyl-2-aminofluorine was the least reactive. Each of these esters also induced unscheduled tritiated thymidine incorportation in nondividing cultured human fibroblasts and thus appeared to induce lesions in DNA that lead to repair synthesis. EACH OF THE N-acetoxy derivatives was highly mutagenic for Salmonella typhimurium strains TA98 and TA1538 without tissue activation; neither N-myristoyloxy derivative was mutagenic under these conditions. While there was a qualitative correspondence between several of the above activities of these 2-aminofluorene derivatives, the quantitative differences and the lack of detectable mutagenicity of the 2N-myristoyloxy derivatives for S. typhimurium indicate the need for multiple short-term tests in the qualitative prediction of potential carcinogenic activity. PMID:322856

  18. Synthesis and structure-activity relationship of pyripyropene A derivatives as potent and selective acyl-CoA:cholesterol acyltransferase 2 (ACAT2) inhibitors: part 2.

    PubMed

    Ohtawa, Masaki; Yamazaki, Hiroyuki; Matsuda, Daisuke; Ohshiro, Taichi; Rudel, Lawrence L; Ōmura, Satoshi; Tomoda, Hiroshi; Nagamitsu, Tohru

    2013-05-01

    Synthesis and structure-activity relationships of 7-O-p-cyanobenzoyl pyripyropene A derivatives with modification at C1 and 11 are described. Regioselective mono-deprotection of di-tert-butylsilylene acetal was critical in their synthesis. PMID:23535327

  19. Discovery of a novel acyl-CoA: cholesterol acyltransferase inhibitor: the synthesis, biological evaluation, and reduced adrenal toxicity of (4-phenylcoumarin)acetanilide derivatives with a carboxylic acid moiety.

    PubMed

    Ogino, Masaki; Nakada, Yoshihisa; Negoro, Nobuyuki; Itokawa, Shigekazu; Nishimura, Satoshi; Sanada, Tsukasa; Satomi, Tomoko; Kita, Shunbun; Kubo, Kazuki; Marui, Shogo

    2011-01-01

    As a part of our research for novel potent and orally available acyl-CoA: cholesterol acyltransferase (ACAT) inhibitors that can be used as anti-atherosclerotic agents, we recently reported the discovery of the (4-phenylcoumarine)acetanilide derivative 1. However, compound 1 showed adrenal toxicity in animal models. In order to search for safer ACAT inhibitors that do not have adrenal toxicity, we examined the inhibitory activity of ACAT in human macrophage and adrenal cells. The introduction of a carboxylic acid moiety on the pendant phenyl ring and the adjustment of the lipophilicity led to the discovery of (2E)-3-[7-chloro-3-[2-[[4-fluoro-2-(trifluoromethyl)phenyl]amino]-2-oxoethyl]-6-methyl-2-oxo-2H-chromen-4-yl]phenyl]acrylic acid (21e), which showed potent ACAT inhibitory activity in macrophages and a selectivity of around 30-fold over adrenal cells. In addition, compound 21e showed high adrenal safety in guinea pigs. PMID:22041073

  20. Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure-activity relationship study of a quinoline thiourea.

    PubMed

    Dolan, Niamh; Gavin, Declan P; Eshwika, Ahmed; Kavanagh, Kevin; McGinley, John; Stephens, John C

    2016-01-15

    We report the synthesis, antibacterial evaluation of a series of thiourea-containing compounds. 1-(3,5-Bis(trifluoromethyl)phenyl)-3-((S)-(6-methoxyquinolin-4-yl)-((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)thiourea 5, was the most active against a range of Gram-positive and Gram-negative bacteria, and exhibited bacteriostatic activity against methicillin resistant Staphylococcus aureus (MRSA) comparable to that of the well-known antibacterial agent vancomycin. Quinoline thiourea 5 was subjected to a detailed structure-activity relationship study, with 5 and its derivatives evaluated for their bacteriostatic activity against both Gram-negative and Gram-positive bacteria. A number of structural features important for the overall activity of quinoline thiourea 5 have been identified. A selection of compounds, including 5, was also evaluated for their in vivo toxicity using the larvae of the Greater wax moth, Galleria mellonella. Compound 5, and a number of derivatives, were found to be non-toxic to the larvae of Galleria mellonella. A new class of antibiotic can result from the further development of this family of compounds.

  1. Nicotinic α7 receptor inhibits the acylation stimulating protein-induced production of monocyte chemoattractant protein-1 and keratinocyte-derived chemokine in adipocytes by modulating the p38 kinase and nuclear factor-κB signaling pathways

    PubMed Central

    Jiao, Zhou-Yang; Wu, Jing; Liu, Chao; Wen, Bing; Zhao, Wen-Zeng; Du, Xin-Ling

    2016-01-01

    Obesity is associated with chronic low-grade inflammation, which is characterized by increased infiltration of macrophages into adipose tissue. Acylation stimulating protein (ASP) is an adipokine derived from the immune complement system, which constitutes a link between adipocytes and macrophages, and is involved in energy homeostasis and inflammation. The purpose of the present study was to preliminarily investigate in vitro, whether functional α7nAChR in adipocytes may suppress ASP-induced inflammation and determine the possible signaling mechanism. Studies have reported associations between the expression of α7 nicotinic acetylcholine receptor (α7nAChR) and obesity, insulin resistance and diabetes. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, which is a key contributor to health problems in obesity. The primary aim of the present study was to evaluate the impact of exogenous ASP and α7nAChR on macrophage infiltration in adipose tissue and to examine the potential underlying molecular mechanism. Western blot analysis revealed that recombinant ASP increased the expression levels of monocyte chemoattractant protein-1 (MCP-1) and keratinocyte-derived chemokine (KC) by 3T3-L1 adipocytes. However, nicotine significantly inhibited the production of ASP-induced cytokines via the stimulation of α7nAChR. It was also found that α7nAChR inhibited the ASP-induced activation of p38 kinase and nuclear factor-κB (NF-κB), and the production of MCP-1 and KC. These data indicated that α7nAChR caused the inhibition of ASP-induced activation of p38 kinase and NF-κB to inhibit the production of MCP-1 and KC. PMID:27572255

  2. Nicotinic α7 receptor inhibits the acylation stimulating protein‑induced production of monocyte chemoattractant protein‑1 and keratinocyte‑derived chemokine in adipocytes by modulating the p38 kinase and nuclear factor‑κB signaling pathways.

    PubMed

    Jiao, Zhou-Yang; Wu, Jing; Liu, Chao; Wen, Bing; Zhao, Wen-Zeng; Du, Xin-Ling

    2016-10-01

    Obesity is associated with chronic low‑grade inflammation, which is characterized by increased infiltration of macrophages into adipose tissue. Acylation stimulating protein (ASP) is an adipokine derived from the immune complement system, which constitutes a link between adipocytes and macrophages, and is involved in energy homeostasis and inflammation. The purpose of the present study was to preliminarily investigate in vitro, whether functional α7nAChR in adipocytes may suppress ASP‑induced inflammation and determine the possible signaling mechanism. Studies have reported associations between the expression of α7 nicotinic acetylcholine receptor (α7nAChR) and obesity, insulin resistance and diabetes. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, which is a key contributor to health problems in obesity. The primary aim of the present study was to evaluate the impact of exogenous ASP and α7nAChR on macrophage infiltration in adipose tissue and to examine the potential underlying molecular mechanism. Western blot analysis revealed that recombinant ASP increased the expression levels of monocyte chemoattractant protein‑1 (MCP‑1) and keratinocyte‑derived chemokine (KC) by 3T3‑L1 adipocytes. However, nicotine significantly inhibited the production of ASP‑induced cytokines via the stimulation of α7nAChR. It was also found that α7nAChR inhibited the ASP‑induced activation of p38 kinase and nuclear factor‑κB (NF‑κB), and the production of MCP‑1 and KC. These data indicated that α7nAChR caused the inhibition of ASP‑induced activation of p38 kinase and NF‑κB to inhibit the production of MCP‑1 and KC. PMID:27572255

  3. Nicotinic α7 receptor inhibits the acylation stimulating protein‑induced production of monocyte chemoattractant protein‑1 and keratinocyte‑derived chemokine in adipocytes by modulating the p38 kinase and nuclear factor‑κB signaling pathways.

    PubMed

    Jiao, Zhou-Yang; Wu, Jing; Liu, Chao; Wen, Bing; Zhao, Wen-Zeng; Du, Xin-Ling

    2016-10-01

    Obesity is associated with chronic low‑grade inflammation, which is characterized by increased infiltration of macrophages into adipose tissue. Acylation stimulating protein (ASP) is an adipokine derived from the immune complement system, which constitutes a link between adipocytes and macrophages, and is involved in energy homeostasis and inflammation. The purpose of the present study was to preliminarily investigate in vitro, whether functional α7nAChR in adipocytes may suppress ASP‑induced inflammation and determine the possible signaling mechanism. Studies have reported associations between the expression of α7 nicotinic acetylcholine receptor (α7nAChR) and obesity, insulin resistance and diabetes. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, which is a key contributor to health problems in obesity. The primary aim of the present study was to evaluate the impact of exogenous ASP and α7nAChR on macrophage infiltration in adipose tissue and to examine the potential underlying molecular mechanism. Western blot analysis revealed that recombinant ASP increased the expression levels of monocyte chemoattractant protein‑1 (MCP‑1) and keratinocyte‑derived chemokine (KC) by 3T3‑L1 adipocytes. However, nicotine significantly inhibited the production of ASP‑induced cytokines via the stimulation of α7nAChR. It was also found that α7nAChR inhibited the ASP‑induced activation of p38 kinase and nuclear factor‑κB (NF‑κB), and the production of MCP‑1 and KC. These data indicated that α7nAChR caused the inhibition of ASP‑induced activation of p38 kinase and NF‑κB to inhibit the production of MCP‑1 and KC.

  4. Synthesis of 2-Acylphenol and Flavene Derivatives from the Ruthenium-Catalyzed Oxidative C–H Acylation of Phenols with Aldehydes

    PubMed Central

    Lee, Hanbin

    2015-01-01

    The cationic ruthenium hydride complex [(C6H6)(PCy3)(CO)RuH]+BF4− has been found to be an effective catalyst for the oxidative C–H coupling reaction of phenols with aldehydes to give 2-acylphenol compounds. The coupling of phenols with α,β-unsaturated aldehydes selectively gives the flavene derivatives. The catalytic method mediates direct oxidative C–H coupling of phenol and aldehyde substrates without using any metal oxidants or forming wasteful byproducts. PMID:26167129

  5. Acylation of Ferrocene: A Greener Approach

    ERIC Educational Resources Information Center

    Birdwhistell, Kurt R.; Nguyen, Andy; Ramos, Eric J.; Kobelja, Robert

    2008-01-01

    The acylation of ferrocene is a common reaction used in organic laboratories to demonstrate Friedel-Crafts acylation and the purification of compounds using column chromatography. This article describes an acylation of ferrocene experiment that is more eco-friendly than the conventional acylation experiment. The traditional experiment was modified…

  6. Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same

    SciTech Connect

    Hayashi, K.

    1986-06-24

    A lubricant composition is described comprising a major amount of oil of lubricating viscosity and a minor amount of the reaction product of: (A) one or more alpha-beta olefinically unsaturated carboxylic reagents containing two to about 20 carbon atoms exclusive of the carboxyl-based groups with (B) one or more olefin polymers of at least 30 carbon atoms selected from the group consisting of (i) polymers of C/sub 12/-C/sub 30/ mono-olefins with the proviso that the polymers include polymers derived from ethylene and (ii) chlorinated or brominated analogs of (i); reacted with (II) one or more amines, one or more alcohols, or a mixture of one or more amines and/or one or more alcohols.

  7. Possible Role of Different Yeast and Plant Lysophospholipid:Acyl-CoA Acyltransferases (LPLATs) in Acyl Remodelling of Phospholipids.

    PubMed

    Jasieniecka-Gazarkiewicz, Katarzyna; Demski, Kamil; Lager, Ida; Stymne, Sten; Banaś, Antoni

    2016-01-01

    Recent results have suggested that plant lysophosphatidylcholine:acyl-coenzyme A acyltransferases (LPCATs) can operate in reverse in vivo and thereby catalyse an acyl exchange between the acyl-coenzyme A (CoA) pool and the phosphatidylcholine. We have investigated the abilities of Arabidopsis AtLPCAT2, Arabidopsis lysophosphatidylethanolamine acyltransferase (LPEAT2), S. cerevisiae lysophospholipid acyltransferase (Ale1) and S. cerevisiae lysophosphatidic acid acyltransferase (SLC1) to acylate lysoPtdCho, lysoPtdEtn and lysoPtdOH and act reversibly on the products of the acylation; the PtdCho, PtdEtn and PtdOH. The tested LPLATs were expressed in an S. cervisiae ale1 strain and enzyme activities were assessed in assays using microsomal preparations of the different transformants. The results show that, despite high activity towards lysoPtdCho, lysoPtdEtn and lysoPtdOH by the ALE1, its capacities to operate reversibly on the products of the acylation were very low. Slc1 readily acylated lysoPtdOH, lysoPtdCho and lysoPtdEtn but showed no reversibility towards PtdCho, very little reversibility towards PtdEtn and very high reversibility towards PtdOH. LPEAT2 showed the highest levels of reversibility towards PtdCho and PtdEtn of all LPLATs tested but low ability to operate reversibly on PtdOH. AtLPCAT2 showed good reversible activity towards PtdCho and PtdEtn and very low reversibility towards PtdOH. Thus, it appears that some of the LPLATs have developed properties that, to a much higher degree than other LPLATs, promote the reverse reaction during the same assay conditions and with the same phospholipid. The results also show that the capacity of reversibility can be specific for a particular phospholipid, albeit the lysophospholipid derivatives of other phospholipids serve as good acyl acceptors for the forward reaction of the enzyme. PMID:26643989

  8. Pressure-induced reversible phase transition in thiourea dioxide crystal

    SciTech Connect

    Wang, Qinglei; Yan, Tingting; Zhu, Hongyang; Cui, Qiliang; Zou, Bo E-mail: zoubo@jlu.edu.cn; Wang, Kai E-mail: zoubo@jlu.edu.cn

    2015-06-28

    The effect of high pressure on the crystal structure of thiourea dioxide has been investigated by Raman spectroscopy and angle-dispersive X-ray diffraction (ADXRD) in a diamond anvil cell up to 10.3 GPa. The marked changes in the Raman spectra at 3.7 GPa strongly indicated a structural phase transition associated with the distortions of hydrogen bonding. There were no further changes up to the maximum pressure of 10.3 GPa and the observed transition was completely reversible when the system was brought back to ambient pressure. This transition was further confirmed by the changes of ADXRD spectra. The high-pressure phase was indexed and refined to an orthorhombic structure with a possible space group Pbam. The results from the first-principles calculations suggested that this phase transition was mainly related to the changes of hydrogen-bonded networks in thiourea dioxide.

  9. Thioureas as reporting elements for metal-responsive fluorescent chemosensors.

    PubMed

    Vonlanthen, Mireille; Finney, Nathaniel S

    2013-04-19

    Proof that sulfur is a viable reporting element for the development of fluorescent chemosensors for metal ions is presented. To date, the majority of metal-responsive fluorescent chemosensors have relied on metal-nitrogen coordination to provide a fluorescence response, most commonly by suppressing photoinduced electron transfer (PET) quenching. While chemosensors with direct application to biology, medicine, and analytical chemistry have been so developed, reliance on the coordination chemistry of nitrogen remains a practical and conceptual limitation. Building on the fact that thioureas can quench fluorescence emission by PET, it is shown that the quenched emission of thiourea-appended naphthalimides can be restored by metal binding and that metal affinity and selectivity can be controlled through structural modification of the thiourea substituents. Further, such chemosensors can function in aqueous media and, unlike nitrogen-based chemosensors, are unresponsive to increases in [H(+)]. Given that the coordination properties of sulfur are distinct from those of nitrogen, this work lays the foundation for the development of a new class of interesting and useful metal-responsive fluorescent probes. PMID:23470031

  10. Evolution of Acyl-Substrate Recognition by a Family of Acyl-Homoserine Lactone Synthases

    PubMed Central

    Christensen, Quin H.; Brecht, Ryan M.; Dudekula, Dastagiri; Greenberg, E. Peter; Nagarajan, Rajesh

    2014-01-01

    Members of the LuxI protein family catalyze synthesis of acyl-homoserine lactone (acyl-HSL) quorum sensing signals from S-adenosyl-L-methionine and an acyl thioester. Some LuxI family members prefer acyl-CoA, and others prefer acyl-acyl carrier protein (ACP) as the acyl-thioester substrate. We sought to understand the evolutionary history and mechanisms mediating this substrate preference. Our phylogenetic and motif analysis of the LuxI acyl-HSL synthase family indicates that the acyl-CoA-utilizing enzymes evolved from an acyl-ACP-utilizing ancestor. To further understand how acyl-ACPs and acyl-CoAs are recognized by acyl-HSL synthases we studied BmaI1, an octanoyl-ACP-dependent LuxI family member from Burkholderia mallei, and BjaI, an isovaleryl-CoA-dependent LuxI family member from Bradyrhizobium japonicum. We synthesized thioether analogs of their thioester acyl-substrates to probe recognition of the acyl-phosphopantetheine moiety common to both acyl-ACP and acyl-CoA substrates. The kinetics of catalysis and inhibition of these enzymes indicate that they recognize the acyl-phosphopantetheine moiety and they recognize non-preferred substrates with this moiety. We find that CoA substrate utilization arose through exaptation of acyl-phosphopantetheine recognition in this enzyme family. PMID:25401334

  11. The ɛ-Amino Group of Protein Lysine Residues Is Highly Susceptible to Nonenzymatic Acylation by Several Physiological Acyl-CoA Thioesters.

    PubMed

    Simic, Zeljko; Weiwad, Matthias; Schierhorn, Angelika; Steegborn, Clemens; Schutkowski, Mike

    2015-11-01

    Mitochondrial enzymes implicated in the pathophysiology of diabetes, cancer, and metabolic syndrome are highly regulated by acetylation. However, mitochondrial acetyltransferases have not been identified. Here, we show that acetylation and also other acylations are spontaneous processes that depend on pH value, acyl-CoA concentration and the chemical nature of the acyl residue. In the case of a peptide derived from carbamoyl phosphate synthetase 1, the rates of succinylation and glutarylation were up to 150 times than for acetylation. These results were confirmed by using the protein substrate cyclophilin A (CypA). Deacylation experiments revealed that SIRT3 exhibits deacetylase activity but is not able to remove any of the succinyl groups from CypA, whereas SIRT5 is an effective protein desuccinylase. Thus, the acylation landscape on lysine residues might largely depend on the enzymatic activity of specific sirtuins, and the availability and reactivity of acyl-CoA compounds. PMID:26382620

  12. Toxicity of Carboxylic Acid-Containing Drugs: The Role of Acyl Migration and CoA Conjugation Investigated.

    PubMed

    Lassila, Toni; Hokkanen, Juho; Aatsinki, Sanna-Mari; Mattila, Sampo; Turpeinen, Miia; Tolonen, Ari

    2015-12-21

    Many carboxylic acid-containing drugs are associated with idiosyncratic drug toxicity (IDT), which may be caused by reactive acyl glucuronide metabolites. The rate of acyl migration has been earlier suggested as a predictor of acyl glucuronide reactivity. Additionally, acyl Coenzyme A (CoA) conjugates are known to be reactive. Here, 13 drugs with a carboxylic acid moiety were incubated with human liver microsomes to produce acyl glucuronide conjugates for the determination of acyl glucuronide half-lives by acyl migration and with HepaRG cells to monitor the formation of acyl CoA conjugates, their further conjugate metabolites, and trans-acylation products with glutathione. Additionally, in vitro cytotoxicity and mitochondrial toxicity experiments were performed with HepaRG cells to compare the predictability of toxicity. Clearly, longer acyl glucuronide half-lives were observed for safe drugs compared to drugs that can cause IDT. Correlation between half-lives and toxicity classification increased when "relative half-lives," taking into account the formation of isomeric AG-forms due to acyl migration and eliminating the effect of hydrolysis, were used instead of plain disappearance of the initial 1-O-β-AG-form. Correlation was improved further when a daily dose of the drug was taken into account. CoA and related conjugates were detected primarily for the drugs that have the capability to cause IDT, although some exceptions to this were observed. Cytotoxicity and mitochondrial toxicity did not correlate to drug safety. On the basis of the results, the short relative half-life of the acyl glucuronide (high acyl migration rate), high daily dose and detection of acyl CoA conjugates, or further metabolites derived from acyl CoA together seem to indicate that carboxylic acid-containing drugs have a higher probability to cause drug-induced liver injury (DILI). PMID:26558897

  13. Lubricity characteristics of seed oils modified by acylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemically modified seed oils via acylation of epoxidized and polyhydroxylated derivatives were investigated for their potential as candidates for lubrication. The native oil was preliminarily epoxidized and ring-opened in a one-pot reaction using formic acid-H2O2 followed by aqueous HCl treatment t...

  14. Mammalian acyl-CoA:lysophosphatidylcholine acyltransferase enzymes.

    PubMed

    Soupene, Eric; Fyrst, Henrik; Kuypers, Frans A

    2008-01-01

    The mammalian RBC lacks de novo lipid synthesis but maintains its membrane composition by rapid turnover of acyl moieties at the sn-2 position of phospholipids. Plasma-derived fatty acids are esterified to acyl-CoA by acyl-CoA synthetases and transferred to lysophospholipids by acyl-CoA:lysophospholipid acyltransferases. We report the characterization of three lysophosphatidylcholine (lysoPC) acyltransferases (LPCATs), products of the AYTL1, -2, and -3 genes. These proteins are three members of a LPCAT family, of which all three genes are expressed in an erythroleukemic cell line. Aytl2 mRNA was detected in mouse reticulocytes, and the presence of the product of the human ortholog was confirmed in adult human RBCs. The three murine Aytl proteins generated phosphatidylcholine from long-chain acyl-CoA and lysoPC when expressed in Escherichia coli membranes. Spliced variants of Aytl1, affecting a conserved catalytic motif, were identified. Calcium and magnesium modulated LPCAT activity of both Aytl1 and -2 proteins that exhibit EF-hand motifs at the C terminus. Characterization of the product of the Aytl2 gene as the phosphatidylcholine reacylating enzyme in RBCs represents the identification of a plasma membrane lysophospholipid acyltransferase and establishes the function of a LPCAT protein.

  15. Structures of the reaction products of the AZADO radical with TCNQF4 or thiourea

    PubMed Central

    Suzuki, Hideto; Kawahara, Yuta; Akutsu, Hiroki; Yamada, Jun-ichi

    2013-01-01

    Summary While an addition product was formed by the reaction of AZADO (2-azaadamantane N-oxyl) with TCNQF4 (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane), the reaction of AZADO with thiourea provided an inclusion compound, in which AZADO molecules are incorporated in cylindrical channels formed by thiourea molecules. PMID:23946847

  16. Stereoselective amine-thiourea-catalysed sulfa-Michael/nitroaldol cascade approach to 3,4,5-substituted tetrahydrothiophenes bearing a quaternary stereocenter

    PubMed Central

    Meninno, Sara; Volpe, Chiara; Della Sala, Giorgio; Capobianco, Amedeo

    2016-01-01

    Summary An investigation on the stereoselective cascade sulfa-Michael/aldol reaction of nitroalkenes and commercially available 1,4-dithiane-2,5-diol to 3,4,5-substituted tetrahydrothiophenes, bearing a quaternary stereocenter, is presented. A secondary amine thiourea derived from (R,R)-1,2-diphenylethylamine was found to be the most effective catalyst when using trans-β-methyl-β-nitrostyrenes affording the heterocyclic products in good yields and moderate stereoselectivities. PMID:27340455

  17. Synthesis, growth, structure and characterization of molybdenum zinc thiourea complex crystals.

    PubMed

    Rajasekar, M; Muthu, K; Aditya Prasad, A; Agilandeshwari, R; Meenakshisundaram, S P

    2015-06-01

    Single crystals of molybdenum-incorporated tris(thiourea)zinc(II) sulfate (MoZTS) are grown by the slow evaporation solution growth technique. Crystal composition as determined by single-crystal X-ray diffraction analysis reveals that it belongs to the orthorhombic system with space group Pca21 and cell parameters a = 11.153 (2), b = 7.7691 (14), c = 15.408 (3) Å, V = 1335.14 (4) Å(3) and Z = 4. The surface morphological changes are studied by scanning electron microscopy. The vibrational patterns in FT-IR are used to identify the functional group and TGA/DTA (thermogravimetric analysis/differential thermal analysis) indicates the stability of the material. The structure and the crystallinity of the material were confirmed by powder X-ray diffraction analysis and the simulated X-ray diffraction (XRD) closely matches the experimental one with varied intensity patterns. The band gap energy is estimated using diffuse reflectance data by the application of the Kubelka-Munk algorithm. The relative second harmonic generation (SHG) efficiency measurements reveal that MoZTS has an efficiency comparable to that of tris(thiourea)zinc(II) sulfate (ZTS). Hirshfeld surfaces were derived using single-crystal X-ray diffraction data. Investigation of the intermolecular interactions and crystal packing via Hirshfeld surface analysis reveal that the close contacts are associated with strong interactions. Intermolecular interactions as revealed by the fingerprint plot and close packing could be the possible reasons for facile charge transfer leading to SHG activity.

  18. [Effects of thiourea on pH and availability of metal ions in acid red soil].

    PubMed

    Yang, Bo; Wang, Wen; Zeng, Qing-Ru; Zhou, Xi-Hong

    2014-03-01

    Through the simulation research, the effects of application of thiourea and urea on pH and availability of metal ions in acid red soil were studied, and the results showed that after applying urea, the soil pH increased in the first experimental stage and then reduced gradually to a low level, however, decreased trends of soil pH values were inhibited by the application of thiourea, especially when the concentration of thiourea reached to 5.0 mmol x kg(-1) dry soil, the soil pH was stable at high level, which exceeded to 6.0. It proved that the application of thiourea could inhibit the soil acidification due to urea application. After applying urea with different concentrations of thiourea, the available contents of Zn and Al decreased with the increasing concentration of thiourea, nevertheless, when the concentration of thiourea reached to 5.0 mmol x kg(-1), the available content of Mn was stable at high level which was over 110 mg x kg(-1). In addition, the results showed a highly significant negative correlation between the soil pH and the available content of Cu, Zn and Al, but for Mn, no discipline was found between the soil pH and the availability after applying thiourea. Moreover, the soil pH became higher after applying urea with thiourea compared to add urea only, which led to the decreasing of available content of Al, and it was benefited for the control of the phytotoxic effect of Al. The available content of Mn in the soil not only depended on soil pH but also the content of thiourea due to its redox and complexing reaction with Mn.

  19. Discovery of novel ureas and thioureas of 3-decladinosyl-3-hydroxy 15-membered azalides active against efflux-mediated resistant Streptococcus pneumoniae.

    PubMed

    Bukvić Krajačić, Mirjana; Dumić, Miljenko; Novak, Predrag; Cindrić, Mario; Koštrun, Sanja; Fajdetić, Andrea; Alihodžić, Sulejman; Brajša, Karmen; Kujundžić, Nedjeljko

    2011-01-15

    A series of novel ureas and thioureas of 3-decladinosyl-3-hydroxy 15-membered azalides, were discovered, structurally characterized and biologically evaluated. They have shown good antibacterial activity against selected Gram-positive and Gram-negative bacterial strains. These include N″ substituted 9a-(N'-carbamoyl-γ-aminopropyl)- (6a,c), 9a-(N'-thiocarbamoyl-γ-aminopropyl)- (7a,e), 9a-[N'-(β-cyanoethyl)-N'-(carbamoyl-γ-aminopropyl)]- (9a-c, 9g) 9a-[N'-(β-cyanoethyl)-N'-(thiocarbamoyl-γ-aminopropyl)]-derivatives (10d-f) of 5-O-desosaminyl-9-deoxo-9-dihydro-9a-aza-9a-homoerythronolide A (3). Among the synthesized compounds thiourea 7a and urea 9b have shown substantially improved activity comparable to azithromycin (1) and significantly better activity than the 3-decladinosyl-azithromycin (2) and the parent 3-cladinosyl analogues against efflux-mediated resistant S. pneumoniae.

  20. Selective incorporation of the prototype melanoma seeker thiourea into nascent melanin: a chemical insight.

    PubMed

    Palumbo, A; Mårs, U; De Martino, L; d'Ischia, M; Napolitano, A; Larsson, B S; Prota, G

    1997-12-01

    The mechanism of selective incorporation of thiourea into melanotic melanoma was investigated by model experiments in which the effect of the compound was examined at various stages of melanogenesis in vitro. Up to 50% inhibition of dopachrome formation was observed in the tyrosinase-dopa reaction in the presence of thiourea at a 2:1 molar ratio with respect to the substrate. Under these conditions, a major product was formed which was isolated and identified as a 1:1 dopa-thiourea adduct (adduct I). Subsequent stages of the oxidation were characterized by the development of a yellow chromophore (lambdamax 440-460nm), virtually identical to that obtained by separate oxidation of the adduct I. A less remarkable effect of thiourea was observed on the oxidative polymerization of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) which was apparent on spectrophotometric and high pressure liquid chromatography (HPLC) analysis. Radiolabelling experiments with 14C-thiourea showed that the label was initially incorporated into the adduct I, while in the subsequent stages of the oxidation it was associated with pigmented materials which escaped direct analysis. Incorporation of labelled thiourea into dopa-melanins was found to be significantly higher than incorporation into synthetic pigments from indole precursors. These results provide a chemical basis for the interpretation of the selective accumulation of thiourea in those melanoma areas with high rates of melanin synthesis seen in autoradiographic experiments.

  1. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase*

    PubMed Central

    Yao, Jiangwei; Dodson, V. Joshua; Frank, Matthew W.; Rock, Charles O.

    2015-01-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  2. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.

    PubMed

    Yao, Jiangwei; Dodson, V Joshua; Frank, Matthew W; Rock, Charles O

    2015-09-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  3. Hybrid molecules of carvacrol and benzoyl urea/thiourea with potential applications in agriculture and medicine.

    PubMed

    Pete, Umesh D; Zade, Chetan M; Bhosale, Jitendra D; Tupe, Santosh G; Chaudhary, Preeti M; Dikundwar, Amol G; Bendre, Ratnamala S

    2012-09-01

    Benzoyl phenyl urea, a class of insect growth regulator's acts by inhibiting chitin synthesis. Carvacrol, a naturally occurring monoterpenoid is an effective antifungal agent. We have structurally modified carvacrol (2-methyl-5-[1-methylethyl] phenol) by introducing benzoylphenyl urea linkage. Two series of benzoylcarvacryl thiourea (BCTU, 4a-f) and benzoylcarvacryl urea (BCU, 5a-f) derivatives were prepared and characterized by elemental analysis, IR, (1)H and (13)C NMR and Mass spectroscopy. Derivatives 4b, 4d, 4e, 4f and 5d, 5f showed comparable insecticidal activity with the standard BPU lufenuron against Dysdercus koenigii. BCTU derivatives 4c, 4e and BCU 5c showed good antifungal activity against phytopathogenic fungi viz. Magnaporthe grisae, Fusarium oxysporum, Dreschlera oryzae; food spoilage yeasts viz. Debaromyces hansenii, Pichia membranifaciens; and human pathogens viz. Candida albicans and Cryptococcus neoformans. Compounds 5d, 5e and 5f showed potent activity against human pathogens. Moderate and selective activity was observed for other compounds. All the synthesized compounds were non-haemolytic. These compounds have potential application in agriculture and medicine. PMID:22850211

  4. Preparation and Characterization of O-Acylated Fucosylated Chondroitin Sulfate from Sea Cucumber

    PubMed Central

    Gao, Na; Wu, Mingyi; Liu, Shao; Lian, Wu; Li, Zi; Zhao, Jinhua

    2012-01-01

    Fucosylated chondroitin sulfate (FuCS), a kind of complex glycosaminoglycan from sea cucumber, has potent anticoagulant activity. In order to understand the relationship between structures and activity, the depolymerized FuCS (dFuCS) was chosen to prepare its derivates by selective substitution at OH groups. Its O-acylation was carried out in a homogeneous way using carboxylic acid anhydrides. The structures of O-acylated derivatives were characterized by NMR. The results indicated that the 4-O-sulfated fucose residues may be easier to be acylated than the other ones in the sulfated fucose branches. But the O-acylation was always accompanied by the β-elimination, and the degree of elimination was higher as that of acylation was higher. The results of clotting assay indicated that the effect of partial O-acylation of the dFuCS on their anticoagulant potency was not significant and the O-acylation of 2-OH groups of 4-O-sulfated fucose units did not affect the anticoagulant activity. PMID:23015767

  5. Preparation and characterization of O-acylated fucosylated chondroitin sulfate from sea cucumber.

    PubMed

    Gao, Na; Wu, Mingyi; Liu, Shao; Lian, Wu; Li, Zi; Zhao, Jinhua

    2012-08-01

    Fucosylated chondroitin sulfate (FuCS), a kind of complex glycosaminoglycan from sea cucumber, has potent anticoagulant activity. In order to understand the relationship between structures and activity, the depolymerized FuCS (dFuCS) was chosen to prepare its derivates by selective substitution at OH groups. Its O-acylation was carried out in a homogeneous way using carboxylic acid anhydrides. The structures of O-acylated derivatives were characterized by NMR. The results indicated that the 4-O-sulfated fucose residues may be easier to be acylated than the other ones in the sulfated fucose branches. But the O-acylation was always accompanied by the β-elimination, and the degree of elimination was higher as that of acylation was higher. The results of clotting assay indicated that the effect of partial O-acylation of the dFuCS on their anticoagulant potency was not significant and the O-acylation of 2-OH groups of 4-O-sulfated fucose units did not affect the anticoagulant activity.

  6. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives’ Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps

    PubMed Central

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  7. Second-harmonic generation in zinc tris(thiourea) sulfate

    SciTech Connect

    Marcy, H.O.; Warren, L.F. ); Webb, M.S.; Ebbers, C.A.; Velsko, S.P. ); Kennedy, G.C.; Catella, G.C. )

    1992-08-20

    The linear and second-order nonlinear optical properties of single-crystal zinc tris(thiourea) sulfate, or ZTS, are determined. The deduced nonlinear coefficients are {vert bar} {ital d}{sub 31} {vert bar}=0.31, {vert bar} {ital d}{sub 32} {vert bar}=0.35, and {vert bar} {ital d}{sub 33} {vert bar}=0.23 pm/V compared with a {vert bar} {ital d}{sub 14} {vert bar} value of 0.39 pm/V for potassium dihydrogen phosphate. Because it exhibits a low angular sensitivity ({delta}{Delta}{ital k}/{delta}{theta}), ZTS may prove useful for type-II second-harmonic generation from 1.06 to 1.027 {mu}m. We present the phase-matching measurement data for ZTS and compare the calculated frequency conversion efficiency for ZTS with that of several other well-characterized materials.

  8. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindgvist, Ylva; Schneider, Gunter

    1998-01-06

    Disclosed is a methods for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  9. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindqvist, Ylva; Schneider, Gunter

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  10. A novel synthetic 1,3-phenyl bis-thiourea compound targets microtubule polymerization to cause cancer cell death.

    PubMed

    Shing, Jennifer C; Choi, Jae Won; Chapman, Robert; Schroeder, Mark A; Sarkaria, Jann N; Fauq, Abdul; Bram, Richard J

    2014-07-01

    Microtubules are essential cytoskeletal components with a central role in mitosis and have been particularly useful as a cancer chemotherapy target. We synthesized a small molecule derivative of a symmetrical 1,3-phenyl bis-thiourea, (1,1'-[1,3-phenylene]bis[3-(3,5-dimethylphenyl)thiourea], named "41J"), and identified a potent effect of the compound on cancer cell survival. 41J is cytotoxic to multiple cancer cell lines at nanomolar concentrations. Cell death occurred by apoptosis and was preceded by mitotic arrest in prometaphase. Prometaphase arrest induced by 41J treatment was accompanied by dissociation of cyclin B1 levels from the apparent mitotic stage and by major spindle abnormalities. Polymerization of purified tubulin in vitro was directly inhibited by 41J, suggesting that the compound works by directly interfering with microtubule function. Compound 41J arrested the growth of glioblastoma multiforme xenografts in nude mice at doses that were well-tolerated, demonstrating a relatively specific antitumor effect. Importantly, 41J overcame drug resistance due to β-tubulin mutation and P-glycoprotein overexpression. Compound 41J may serve as a useful new lead compound for anticancer therapy development. PMID:24755487

  11. Mechanistic studies of malonic acid-mediated in situ acylation.

    PubMed

    Chandra, Koushik; Naoum, Johnny N; Roy, Tapta Kanchan; Gilon, Chaim; Gerber, R Benny; Friedler, Assaf

    2015-09-01

    We have previously introduced an easy to perform, cost-effective and highly efficient acetylation technique for solid phase synthesis (SPPS). Malonic acid is used as a precursor and the reaction proceeds via a reactive ketene that acetylates the target amine. Here we present a detailed mechanistic study of the malonic acid-mediated acylation. The influence of reaction conditions, peptide sequence and reagents was systematically studied. Our results show that the methodology can be successfully applied to different types of peptides and nonpeptidic molecules irrespective of their structure, sequence, or conformation. Using alkyl, phenyl, and benzyl malonic acid, we synthesized various acyl peptides with almost quantitative yields. The ketenes obtained from the different malonic acid derived precursors were characterized by in situ (1) H-NMR. The reaction proceeded in short reaction times and resulted in excellent yields when using uronium-based coupling agents, DIPEA as a base, DMF/DMSO/NMP as solvents, Rink amide/Wang/Merrifield resins, temperature of 20°C, pH 8-12 and 5 min preactivation at inert atmosphere. The reaction was unaffected by Lewis acids, transition metal ions, surfactants, or salt. DFT studies support the kinetically favorable concerted mechanism for CO2 and ketene formation that leads to the thermodynamically stable acylated products. We conclude that the malonic acid-mediated acylation is a general method applicable to various target molecules. PMID:25846609

  12. Novel tacrine/acridine anticholinesterase inhibitors with piperazine and thiourea linkers.

    PubMed

    Hamulakova, Slavka; Imrich, Jan; Janovec, Ladislav; Kristian, Pavol; Danihel, Ivan; Holas, Ondrej; Pohanka, Miroslav; Böhm, Stanislav; Kozurkova, Maria; Kuca, Kamil

    2014-09-01

    A new series of substituted tacrine/acridine and tacrine/tacrine dimers with aliphatic or alkylene-thiourea linkers was synthesized and the potential of these compounds as novel human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE) inhibitors with nanomolar inhibition activity was evaluated. The most potent AChE inhibitor was found to be homodimeric tacrine derivative 14a, which demonstrated an IC50 value of 2 nM; this value indicates an activity rate which is 250-times higher than that of tacrine 1 and 7500-times higher than 7-MEOTA 15, the compounds which were used as standards in the study. IC50 values of derivatives 1, 9, 10, 14b and 15 were compared with the dissociation constants of the enzyme-inhibitor complex, Ki1, and the enzyme-substrate-inhibitor complex, Ki2, for. A dual binding site is presumed for the synthesized compounds which possess two tacrines or tacrine and acridine as terminal moieties show evidence of dual site binding. DFT calculations of theoretical desolvation free energies, ΔΔGtheor, and docking studies elucidate these suggestions in more detail.

  13. Effect of thiourea on PCMBS inhibition of osmotic water transport in human red cells.

    PubMed

    Chasan, B; Lukacovic, M F; Toon, M R; Solomon, A K

    1984-11-21

    The organomercurial reagent p-chloromercuribenzene sulfonate (PCMBS) is an inhibitor of osmotic water permeability in the human red cell membrane. We have found that thiourea, when added along with PCMBS to a red cell suspension, interferes with this inhibition and at high enough concentrations prevents the inhibition from developing altogether. For a 2 mM PCMBS concentration Ki = 3 +/- 1 mM. When thiourea is added at a later time, the PCMBS inhibition, which normally takes about 20 min to develop fully, is halted and remains fixed at the value attained by that time. Thiourea also inhibits the reversal of PCMBS inhibition by a 10 mM concentration of cysteine, the half-time for reversal increasing by more than an order of magnitude when [thiourea] = 50 mM. Possible implications for the nature of the water and urea transport pathways across the red cell membrane are discussed. PMID:6093879

  14. Thermodynamics of Complexation between Thiourea-based Receptor and Acetate in Water/Acetonitrile Mixture.

    PubMed

    Suzuki, Takaya; Shibuya, Yuuta; Sato, Takaya; Nishizawa, Seiichi; Sato, Itaru; Yamaguchi, Akira

    2016-01-01

    A thiourea-based receptor has been extensively studied for selective anion recognition for reasons of its strong hydrogen bond donor ability. In the present study, the thermodynamics of complexation between a thiourea-based receptor and acetate was examined in a water/acetonitrile mixture. The receptor used in this study was N,N'-bis(p-nitrophenyl)thiourea (BNPTU). UV/vis spectroscopic titration and isothermal titration calorimetry (ITC) experiments clearly revealed endothermic and entropy-driven complexation of BNPTU with acetate in water/acetonitrile mixtures. Since the endothermic peaks found in water/acetonitrile mixtures were about three times greater than those in acetonitrile, it appears that preferential hydration of both receptor and acetate was responsible for the endothermic and entropy-driven complexation reaction. The thermodynamic properties found in this study have the potential to contribute to the design of a thiourea-based anion receptor. PMID:27396654

  15. Stearoyl-Acyl Carrier Protein and Unusual Acyl-Acyl Carrier Protein Desaturase Activities Are Differentially Influenced by Ferredoxin1

    PubMed Central

    Schultz, David J.; Suh, Mi Chung; Ohlrogge, John B.

    2000-01-01

    Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Δ9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [14C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium × hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Δ9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction. PMID:11027717

  16. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed Central

    Jones, A; Davies, H M; Voelker, T A

    1995-01-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase. PMID:7734968

  17. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed

    Jones, A; Davies, H M; Voelker, T A

    1995-03-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase.

  18. The behavior of thiourea and flotation reagents in zinc electrowinning circuits

    NASA Astrophysics Data System (ADS)

    MacKinnon, D. J.; Dutrizac, J. E.; Brannen, J. M.; Hardy, D. J.

    1988-04-01

    The effect of thiourea and flotation reagents on the electrowinning of zinc from industrial electrolytes was studied, and all the compounds were found to reduce the zinc deposition current efficiency and to change the properties of the zinc deposits. The effectiveness of activated carbon, two-stage cementation, and hot acid leaching on the destruction/removal of the organic compounds also was addressed. Activated carbon pretreatment of thiourea-containing electrolytes restored the current efficiency for 1-hour zinc deposits to values comparable to those obtained for thiourea-free electrolytes. The activated carbon pretreatment, however, altered the deposit morphology and orientation, but produced a cyclic voltammogram similar to that of the thiourea-free solution. Two-stage cementation did not counteract the harmful effects of thiourea. Hot acid leaching destroyed the thiourea but generated large concentrations of ferrous ion that reduced the current efficiency. The ferrous concentrations, however, were readily controlled by KMnO4 or MnO2 oxidation. None of the treatment options (activated carbon, two-stage cementation, or hot acid leaching) was effective in controlling the flotation reagents, and their moderately harmful effect on zinc electrowinning persisted. Even low concentrations of these reagents polarized zinc deposition, and this resulted in a “glue-type” zinc deposit.

  19. The extraction characteristic of Au-Ag from Au concentrate by thiourea solution

    NASA Astrophysics Data System (ADS)

    Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung

    2013-04-01

    The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.

  20. The Physiology of Protein S-acylation

    PubMed Central

    Chamberlain, Luke H.; Shipston, Michael J.

    2015-01-01

    Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field. PMID:25834228

  1. Topology and acylation of spiralin.

    PubMed Central

    Wróblewski, H; Nyström, S; Blanchard, A; Wieslander, A

    1989-01-01

    Of the 51 polypeptides detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the plasma membrane of the helical mollicute Spiroplasma melliferum, 21 are acylated, predominantly with myristic (14:0) and palmitic (16:0) chains. This is notably the case for spiralin, the major membrane protein of this bacterium, which contains an average of 0.7 acyl chains per polypeptide, attached very probably by ester bonds to alcohol amino acids. The amphiphilicity of spiralin was demonstrated by the behavior of the protein in charge-shift electrophoresis, its incorporation into liposomes, and its ability to form in the absence of lipids and detergents, globular protein micelles (diameter, approximately 15 nm). The presence of epitopes on the two faces of the cell membrane, as probed by antibody adsorption and crossed immunoelectrophoresis, and the strong interaction between spiralin and the intracytoplasmic fibrils show that spiralin is a transmembrane protein. The mean hydropathy of the amino acid composition of spiralin (-0.30) is on the hydrophilic side of the scale. Surprisingly, the water-insoluble core of spiralin micelles, which is the putative membrane anchor, has a still more hydrophilic amino acid composition (mean hydropathy, -0.70) and is enriched in glycine and serine residues. Taking into account all these properties, we propose a topological model for spiralin featuring a transbilayer localization with hydrophilic domains protruding on the two faces of the membrane and connected by a small domain embedded within the apolar region of the lipid bilayer. In this model, the membrane anchoring of the protein is strengthened by a covalently bound acyl chain. Images PMID:2768198

  2. Versatility of acyl-acyl carrier protein synthetases.

    PubMed

    Beld, Joris; Finzel, Kara; Burkart, Michael D

    2014-10-23

    The acyl carrier protein (ACP) requires posttranslational modification with a 4'-phosphopantetheine arm for activity, and this thiol-terminated modification carries cargo between enzymes in ACP-dependent metabolic pathways. We show that acyl-ACP synthetases (AasSs) from different organisms are able to load even, odd, and unnatural fatty acids onto E. coli ACP in vitro. Vibrio harveyi AasS not only shows promiscuity for the acid substrate, but also is active upon various alternate carrier proteins. AasS activity also extends to functional activation in living organisms. We show that exogenously supplied carboxylic acids are loaded onto ACP and extended by the E. coli fatty acid synthase, including unnatural fatty acid analogs. These analogs are further integrated into cellular lipids. In vitro characterization of four different adenylate-forming enzymes allowed us to disambiguate CoA-ligases and AasSs, and further in vivo studies show the potential for functional application in other organisms. PMID:25308274

  3. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindqvist, Y.; Schneider, G.

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 2 figs.

  4. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.

    1998-01-06

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.

  5. Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system.

    PubMed

    Calla-Choque, D; Nava-Alonso, F; Fuentes-Aceituno, J C

    2016-11-01

    The recovery of silver from hazardous jarosite residues was studied employing thiourea as leaching agent at acid pH and 90°C. The stability of the thiourea in synthetic solutions was evaluated in the presence of some cations that can be present in this leaching system: cupric and ferric ions as oxidant species, and zinc, lead and iron as divalent ions. Two silver leaching methods were studied: the simultaneous jarosite decomposition-silver leaching, and the jarosite decomposition followed by the silver leaching. The study with synthetic solutions demonstrated that cupric and ferric ions have a negative effect on thiourea stability due to their oxidant properties. The effect of cupric ions is more significant than the effect of ferric ions; other studied cations (Fe(2+), Zn(2+), Pb(2+)) had no effect on the stability of thiourea. When the decomposition of jarosite and the silver leaching are carried out simultaneously, 70% of the silver can be recovered. When the acid decomposition was performed at pH 0.5 followed by the leaching step at pH 1, total silver recovery increased up to 90%. The zinc is completely dissolved with any of these processes while the lead is practically insoluble with these systems producing a lead-rich residue.

  6. Lipid Acyl Chain Remodeling in Yeast

    PubMed Central

    Renne, Mike F.; Bao, Xue; De Smet, Cedric H.; de Kroon, Anton I. P. M.

    2015-01-01

    Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed. PMID:26819558

  7. Stability-increasing effects of anthocyanin glycosyl acylation.

    PubMed

    Zhao, Chang-Ling; Yu, Yu-Qi; Chen, Zhong-Jian; Wen, Guo-Song; Wei, Fu-Gang; Zheng, Quan; Wang, Chong-De; Xiao, Xing-Lei

    2017-01-01

    This review comprehensively summarizes the existing knowledge regarding the chemical implications of anthocyanin glycosyl acylation, the effects of acylation on the stability of acylated anthocyanins and the corresponding mechanisms. Anthocyanin glycosyl acylation commonly refers to the phenomenon in which the hydroxyl groups of anthocyanin glycosyls are esterified by aliphatic or aromatic acids, which is synthetically represented by the acylation sites as well as the types and numbers of acyl groups. Generally, glycosyl acylation increases the in vitro and in vivo chemical stability of acylated anthocyanins, and the mechanisms primarily involve physicochemical, stereochemical, photochemical, biochemical or environmental aspects under specific conditions. Additionally, the acylation sites as well as the types and numbers of acyl groups influence the stability of acylated anthocyanins to different degrees. This review could provide insight into the optimization of the stability of anthocyanins as well as the application of suitable anthocyanins in food, pharmaceutical and cosmetic industries. PMID:27507456

  8. Design, synthesis and biological evaluation of di-substituted cinnamic hydroxamic acids bearing urea/thiourea unit as potent histone deacetylase inhibitors.

    PubMed

    Ning, Chengqing; Bi, Yanjing; He, Yujun; Huang, WenYuan; Liu, Lifei; Li, Yi; Zhang, Sihan; Liu, Xiaoyu; Yu, Niefang

    2013-12-01

    A novel class of di-substituted cinnamic hydroxamic acid derivatives containing urea or thiourea unit was designed, synthesized and evaluated as HDAC inhibitors. All tested compounds demonstrated significant HDAC inhibitory activities and anti-proliferative effects against diverse human tumor cell lines. Among them, 7l exhibited most potent pan-HDAC inhibitory activity, with an IC50 value of 130 nM. It also showed strong cellular inhibition against diverse cell lines including HCT-116, MCF-7, MDB-MB-435 and NCI-460, with GI50 values of 0.35, 0.22, 0.51 and 0.48 μM, respectively.

  9. Molecular docking guided structure based design of symmetrical N,N'-disubstituted urea/thiourea as HIV-1 gp120-CD4 binding inhibitors.

    PubMed

    Sivan, Sree Kanth; Vangala, Radhika; Manga, Vijjulatha

    2013-08-01

    Induced fit molecular docking studies were performed on BMS-806 derivatives reported as small molecule inhibitors of HIV-1 gp120-CD4 binding. Comprehensive study of protein-ligand interactions guided in identification and design of novel symmetrical N,N'-disubstituted urea and thiourea as HIV-1 gp120-CD4 binding inhibitors. These molecules were synthesized in aqueous medium using microwave irradiation. Synthesized molecules were screened for their inhibitory ability by HIV-1 gp120-CD4 capture enzyme-linked immunosorbent assay (ELISA). Designed compounds were found to inhibit HIV-1 gp120-CD4 binding in micromolar (0.013-0.247 μM) concentrations.

  10. Design, synthesis and biological evaluation of new peptide-based ureas and thioureas as potential antagonists of the thrombin receptor PAR1.

    PubMed

    Ventosa-Andrés, Pilar; Valdivielso, Angel M; Pappos, Ioannis; García-López, M Teresa; Tsopanoglou, Nikos E; Herranz, Rosario

    2012-12-01

    By applying a diversity oriented synthesis strategy for the search of new antagonists of the thrombin receptor PAR1, a series of peptide-based ureas and thioureas, including analogues of the PAR1 reference antagonist RWJ-58259, has been designed and synthesized. The general synthetic scheme involves reduction of basic amino acid-derived amino nitriles by hydrogen transfer from hydrazine monohydrate in the presence of Raney Ni, followed by reaction with diverse isocyanates and isothiocyanates, and protecting group removal. All new compounds have been evaluated as inhibitors of human platelet aggregation induced by the PAR1 agonist SFLLRN. Some protected peptide-based ureas displayed significant antagonist activity. PMID:23123726

  11. Temperature-Dependent Structural Properties and Crystal Twinning in the Fluorocyclohexane/Thiourea Inclusion Compound

    NASA Astrophysics Data System (ADS)

    Yeo, Lily; Harris, Kenneth D. M.; Kariuki, Benson M.

    2001-01-01

    Structural properties of the fluorocyclohexane/thiourea inclusion compound have been investigated as a function of temperature by single-crystal X-ray diffraction. The inclusion compound exhibits different forms of crystal twinning, and we focus on the implementation of methodology for handling twinning in the structure determination process. Differential scanning calorimetry indicates that fluorocyclohexane/thiourea undergoes a solid state phase transition at about 107 K (on cooling). In the high-temperature phase (ambient temperature), fluorocyclohexane/thiourea has the conventional rhombohedral (Roverline3c) thiourea tunnel structure and the crystal is twinned through coexistence of domains of the obverse and reverse settings of the rhombohedral structure. The guest molecules are substantially disordered, although there is evidence that they are located preferentially in certain regions along the tunnel. In the low-temperature phase, the thiourea tunnel structure is monoclinic (P21/n), based on a lattice that is close to the orthohexagonal cell of the structure in the high-temperature phase. The host structure is distorted from the rhombohedral tunnel structure of the high-temperature phase, and the guest molecules adopt a preferred orientation with respect to the host structure. The strategy for structure determination of twinned crystals of inclusion compounds applied in this paper should find wider applications to other solid inclusion compounds.

  12. Acyl-acyl-carrier protein: lysomonogalactosyldiacylglycerol acyltransferase from the cyanobacterium Anabaena variabilis.

    PubMed

    Chen, H H; Wickrema, A; Jaworski, J G

    1988-12-16

    Membranes isolated from the cyanobacterium, Anabaena variabilis, and washed free of soluble endogenous constituents, were capable of catalyzing the direct transfer of the acyl group from acyl-acyl-carrier protein to an endogenous lysomonogalactosyldiacylglycerol to form monogalactosyldiacylglycerol. Other glycolipids including monoglucosyldiacylglycerol and digalactosyldiacylglycerol were not products of this reaction. The transfer was not dependent on any added cofactors. Palmitoyl-, stearoyl- and oleoyl-acyl-carrier protein were approximately equally active as substrates. Transfer was exclusively to the C-1 of the glycerol, as demonstrated by hydrolysis of all incorporated acyl groups by the lipase from Rhizopus arrhizus delamar. In addition to the single galactolipid, a second minor reaction product was free fatty acid, presumably due to hydrolysis of the acyl-acyl-carrier protein. Using a double-labelled [14C]acyl-[14C]acyl-carrier protein, the reaction was demonstrated to be a transfer reaction, rather than a simple exchange of acyl groups with endogenous monogalactosyldiacylglycerol. The transfer reaction mechanism was also confirmed by increasing activity with the addition of liposomes of lysomonogalactosyldiacylglycerol.

  13. Metabolism of acyl-lipids in Chlamydomonas reinhardtii.

    PubMed

    Li-Beisson, Yonghua; Beisson, Fred; Riekhof, Wayne

    2015-05-01

    Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.

  14. Thiourea-catalyzed Diels–Alder reaction of a naphthoquinone monoketal dienophile

    PubMed Central

    Kramer, Carsten S

    2013-01-01

    Summary A variety of organocatalysts were screened for the catalysis of the naphthoquinone monoketal Diels–Alder reaction. In this study we found that Schreiner's thiourea catalyst 10 and Jacobson's thiourea catalyst 12 facilitate the cycloaddition of the sterically hindered naphthoquinone monoketal dienophile 3 with diene 4. The use of thiourea catalysis allowed for the first time the highly selective synthesis of the exo-product 2a in up to 63% yield. In this reaction a new quaternary center was built. The so formed cycloaddition product 2a represents the ABC tricycle of beticolin 0 (1) and is also a valuable model substrate for the total synthesis of related natural products. PMID:23946836

  15. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins.

    PubMed

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T; Goss, Rebecca J M; Field, Robert A; Osbourn, Anne

    2013-02-01

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.

  16. Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli.

    PubMed

    Heath, R J; Rock, C O

    1996-01-26

    Long chain acyl-acyl carrier protein (acyl-ACP) has been implicated as a physiological inhibitor of fatty acid biosynthesis since acyl-ACP degradation by thioesterase overexpression leads to constitutive, unregulated fatty acid production. The biochemical targets for acyl-ACP inhibition were unknown, and this work identified two biosynthetic enzymes that were sensitive to acyl-ACP feedback inhibition. Palmitoyl-ACP inhibited the incorporation of [14C]malonyl-CoA into long chain fatty acids in cell-free extracts of Escherichia coli. A short chain acyl-ACP species with the electrophoretic properties of beta-hydroxybutyryl-ACP accumulated concomitant with the overall decrease in the amount of [14C]malonyl-CoA incorporation, indicating that the first elongation cycle was targeted by acyl-ACP. All of the proteins required to catalyze the first round of fatty acid synthesis from acetyl-CoA plus malonyl-CoA in vitro were isolated, and the first fatty acid elongation cycle was reconstituted with these purified components. Analysis of the individual enzymes and the pattern of intermediate accumulation in the reconstituted system identified initiation of fatty acid synthesis by beta-ketoacyl-ACP synthase III (fabH) and enoyl-ACP reductase (fabI) in the elongation cycle as two steps attenuated by long chain acyl-ACP.

  17. Antifibrotic Activity of Acylated and Unacylated Ghrelin

    PubMed Central

    Angelino, Elia; Reano, Simone; Ferrara, Michele; Agosti, Emanuela; Graziani, Andrea; Filigheddu, Nicoletta

    2015-01-01

    Fibrosis can affect almost all tissues and organs, it often represents the terminal stage of chronic diseases, and it is regarded as a major health issue for which efficient therapies are needed. Tissue injury, by inducing necrosis/apoptosis, triggers inflammatory response that, in turn, promotes fibroblast activation and pathological deposition of extracellular matrix. Acylated and unacylated ghrelin are the main products of the ghrelin gene. The acylated form, through its receptor GHSR-1a, stimulates appetite and growth hormone (GH) release. Although unacylated ghrelin does not bind or activate GHSR-1a, it shares with the acylated form several biological activities. Ghrelin peptides exhibit anti-inflammatory, antioxidative, and antiapoptotic activities, suggesting that they might represent an efficient approach to prevent or reduce fibrosis. The aim of this review is to summarize the available evidence regarding the effects of acylated and unacylated ghrelin on different pathologies and experimental models in which fibrosis is a predominant characteristic. PMID:25960743

  18. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  19. Acylated flavonol tri- and tetraglycosides in the flavonoid metabolome of Cladrastis kentukea (Leguminosae).

    PubMed

    Kite, Geoffrey C; Rowe, Emily R; Lewis, Gwilym P; Veitch, Nigel C

    2011-04-01

    The foliar metabolome of Cladrastis kentukea (Leguminosae) contains a complex mixture of flavonoids including acylated derivatives of the 3-O-rhamnosyl(1→2)[rhamnosyl(1→6)]-galactosides of kaempferol and quercetin and their 7-O-rhamnosides, together with an array of non-acylated kaempferol and quercetin di-, tri- and tetraglycosides. Thirteen of the acylated flavonoids, 12 of which had not been reported previously, were characterised by spectroscopic and chemical methods. Eight of these were the four isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) and their 7-O-α-l-rhamnopyranosides, and three were isomers of quercetin 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) - the remaining 4Z isomer was identified by LC-UV-MS analysis of a crude extract. The final two acylated flavonoids characterised by NMR were the 3E and 4E isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E-feruloyl-β-d-galactopyranoside)-7-O-α-l-rhamnopyranoside while the 3Z and 4Z isomers were again detected by LC-UV-MS. Using the observed fragmentation behaviour of the isolated compounds following a variety of MS experiments, a further 18 acylated flavonoids were given tentative structures by LC-MS analysis of a crude extract. Acylated flavonoids were absent from the flowers of C. kentukea, which contained an array of non-acylated kaempferol and quercetin glycosides. Immature fruits contained kaempferol 3-O-α-rhamnopyranosyl(1→2)[α-rhamnopyranosyl(1→6)]-β-galactopyranoside and its 7-O-α-rhamnopyranoside as the major flavonoids with acylated flavonoids, different from those in the leaves, only present as minor constituents. The presence of acylated flavonoids distinguishes the foliar flavonoid metabolome of C. kentukea from that of a closely related legume, Styphnolobium japonicum, which contains a similar

  20. Synthesis, characterization and antitumor activity of new ferrocene incorporated N,N'-disubstituted thioureas.

    PubMed

    Lal, Bhajan; Badshah, Amin; Altaf, Ataf Ali; Tahir, Muhammad Nawaz; Ullah, Shafiq; Huq, Fazlul

    2012-12-28

    We report herein the synthesis, structural characterization and activity against human ovarian tumour models: A2780 (parent), A2780(cisR) (resistant to cisplatin) and A2780(ZD0473R) (resistant to the cisplatin analogue denoted as ZD0473) of two ferrocene incorporated N,N'-disubstituted thioureas {1-benzoyl-3-(4-ferrocenylphenyl)thiourea, B16, and 1-acetyl-3-(4-ferrocenylphenyl)thiourea, B3}. Structural characterization has been based on FT-IR, multinuclear ((1)H and (13)C) NMR, elemental analysis and single crystal X-ray diffractometry. Ferrocene-incorporated thioureas may present themselves as a new class of metal-based tumour active compounds. The cyclic voltammetric measurements indicate that B16 undergoes partial intercalation with the CT-DNA whereas B3 undergoes only electrostatic interaction with the same. Partial prevention of BamH1 digestion of pBR322 plasmid DNA that has been interacted with high concentrations of both B16 and B3 indicates that even non-covalent interactions can induce significant conformational changes in the DNA.

  1. Synthesis, characterization and antibacterial studies of 2-chloro-5-fluoro-N-[dibenzyl carbamothioyl] benzamide thiourea

    SciTech Connect

    Sapari, Suhaila; Yamin, Bohari M.; Hasbullah, Aishah; Ibrahim, Nazlina

    2014-09-03

    Synthesis, characterization and antibacterial studies of 2-chloro-5-fluoro-N-[dibenzyl carbamothioyl] benzamide thiourea has been reported. The compound characterized by using elementary analysis CHNS, IR, {sup 1}H NMR and {sup 13}C NMR spectroscopies. The compounds have been screened for their antibacterial studies.

  2. Asymmetric Michael addition reactions of nitroalkanes to 2-furanones catalyzed by bifunctional thiourea catalysts.

    PubMed

    Bai, Zhushuang; Ji, Ling; Ge, Zemei; Wang, Xin; Li, Runtao

    2015-05-21

    The first bifunctional thiourea catalyzed asymmetric Michael addition reactions of nitroalkanes to 2-furanones are described. The highly functionalized γ-lactones with two or three consecutive stereogenic carbons were obtained in high yields (up to 99%), high diastereoselectivities (up to >20 : 1 dr) and enantioselectivities (up to >99% ee).

  3. Polarization effects on the electric properties of urea and thiourea molecules in solid phase

    NASA Astrophysics Data System (ADS)

    Santos, O. L.; Fonseca, T. L.; Sabino, J. R.; Georg, H. C.; Castro, M. A.

    2015-12-01

    We present theoretical results for the dipole moment, linear polarizability, and first hyperpolarizability of the urea and thiourea molecules in solid phase. The in-crystal electric properties were determined by applying a supermolecule approach in combination with an iterative electrostatic scheme, in which the surrounding molecules are represented by point charges. It is found for both urea and thiourea molecules that the influence of the polarization effects is mild for the linear polarizability, but it is marked for the dipole moment and first hyperpolarizability. The replacement of oxygen atoms by sulfur atoms increases, in general, the electric responses. Our second-order Møller-Plesset perturbation theory based iterative scheme predicts for the in-crystal dipole moment of urea and thiourea the values of 7.54 and 9.19 D which are, respectively, increased by 61% and 58%, in comparison with the corresponding isolated values. The result for urea is in agreement with the available experimental result of 6.56 D. In addition, we present an estimate of macroscopic quantities considering explicit unit cells of urea and thiourea crystals including environment polarization effects. These supermolecule calculations take into account partially the exchange and dispersion effects. The results illustrate the role played by the electrostatic interactions on the static second-order nonlinear susceptibility of the urea crystal.

  4. DETERMINATION OF CARBAMATE, UREA, AND THIOUREA PESTICIDES AND HERBICIDES IN WATER

    EPA Science Inventory

    Microbe liquid chromatography and positive ion electrospray mass spectrometry are applied to the determination of 16 carbamate, urea, and thiourea pesticides and herbicides in water. The electrospray mass spectra of the analytes were measured and are discussed and mobile phase m...

  5. Polarization effects on the electric properties of urea and thiourea molecules in solid phase

    SciTech Connect

    Santos, O. L.; Fonseca, T. L. Sabino, J. R.; Georg, H. C.; Castro, M. A.

    2015-12-21

    We present theoretical results for the dipole moment, linear polarizability, and first hyperpolarizability of the urea and thiourea molecules in solid phase. The in-crystal electric properties were determined by applying a supermolecule approach in combination with an iterative electrostatic scheme, in which the surrounding molecules are represented by point charges. It is found for both urea and thiourea molecules that the influence of the polarization effects is mild for the linear polarizability, but it is marked for the dipole moment and first hyperpolarizability. The replacement of oxygen atoms by sulfur atoms increases, in general, the electric responses. Our second-order Møller–Plesset perturbation theory based iterative scheme predicts for the in-crystal dipole moment of urea and thiourea the values of 7.54 and 9.19 D which are, respectively, increased by 61% and 58%, in comparison with the corresponding isolated values. The result for urea is in agreement with the available experimental result of 6.56 D. In addition, we present an estimate of macroscopic quantities considering explicit unit cells of urea and thiourea crystals including environment polarization effects. These supermolecule calculations take into account partially the exchange and dispersion effects. The results illustrate the role played by the electrostatic interactions on the static second-order nonlinear susceptibility of the urea crystal.

  6. Oxidimetric determination of thiourea, thiosulphate and sulphite with thallic perchlorate in acid medium.

    PubMed

    Sharma, P D; Gupta, Y K

    1974-02-01

    Conditions have been established for the titrimetric estimation of thiourea, thiosulphate and sulphite with thallic perchlorate, with visual end-points, in perchloric and sulphuric acid medium. In the direct determination, chloride and bromide interfere. In the indirect iodometric determination. Cu(2+) and Fe(2+) interfere, but chloride and bromide do not.

  7. Quinidine thiourea-catalyzed enantioselective synthesis of β-nitrophosphonates: Beneficial effects of molecular sieves

    PubMed Central

    Abbaraju, Santhi; Bhanushali, Mayur; Zhao, Cong-Gui

    2011-01-01

    An efficient method for enantioselective synthesis of β-nitrophosphonates via the Michael addition of diphenyl phosphite to nitroalkenes using the readily available quinidine thiourea organocatalyst has been developed. The desired β-nitrophosphonates were obtained in good ee values. Molecular sieves were found to be crucial for achieving high reproducible yields in this reaction. PMID:21921970

  8. Monogalactosyldiacylglycerol biosynthesis by direct acyl transfer in Anabaene variabilis

    SciTech Connect

    Chen, H.H.; Wickrema, A.; Jaworski, J.

    1987-04-01

    The authors previously reported the direct acylation of monogalactosyldiacylglycerol (MGDG) by an enzyme in the membranes of the cyanobacterium Anabaena variabilis. The enzyme requires acyl-acyl carrier protein (acyl-ACP) as substrate, but had no other additional cofactor requirements. Palmitoyl-, stearoyl- and oleoyl-ACP were all effective substrates. The A. variabilis membranes also had a hydrolase activity which metabolized the acyl-ACP to yield free fatty acid and ACP. Possible mechanisms for the acylation reaction include either acyl exchange with existing MGDG or direct acyl transfer to a lyso-MGDG, with concomitant release of free ACP. The mechanism of this reaction has been resolved using a double labelled (/sup 14/C)acyl-(/sup 14/)ACP substrate prepared with E. coli acyl-ACP synthetase. Following incubation with the enzyme, the unreacted (/sup 14/)acyl-(/sup 14/)ACP was isolated and the (/sup 14/)acyl/(/sup 14/)ACP ratio determined. Comparison of this ratio to that of the original substrate indicated no change and eliminated acyl exchange as a possible mechanism. Therefore, the direct acylation of lyso-MGDG is the proposed mechanism for this enzyme.

  9. Aberrant protein acylation is a common observation in inborn errors of acyl-CoA metabolism.

    PubMed

    Pougovkina, Olga; Te Brinke, Heleen; Wanders, Ronald J A; Houten, Sander M; de Boer, Vincent C J

    2014-09-01

    Inherited disorders of acyl-CoA metabolism, such as defects in amino acid metabolism and fatty acid oxidation can present with severe clinical symptoms either neonatally or later in life, but the pathophysiological mechanisms are often incompletely understood. We now report the discovery of a novel biochemical mechanism that could contribute to the pathophysiology of these disorders. We identified increased protein lysine butyrylation in short-chain acyl-CoA dehydrogenase (SCAD) deficient mice as a result of the accumulation of butyryl-CoA. Similarly, in SCAD deficient fibroblasts, lysine butyrylation was increased. Furthermore, malonyl-CoA decarboxylase (MCD) deficient patient cells had increased levels of malonylated lysines and propionyl-CoA carboxylase (PCC) deficient patient cells had increased propionylation of lysines. Since lysine acylation can greatly impact protein function, aberrant lysine acylation in inherited disorders associated with acyl-CoA accumulation may well play a role in their disease pathophysiology. PMID:24531926

  10. Microbial Tailoring of Acyl Peptidic Siderophores

    PubMed Central

    2015-01-01

    Marine bacteria produce an abundance of suites of acylated siderophores characterized by a unique, species-dependent headgroup that binds iron(III) and one of a series of fatty acid appendages. Marinobacter sp. DS40M6 produces a suite of seven acylated marinobactins, with fatty acids ranging from saturated and unsaturated C12–C18 fatty acids. In the present study, we report that in the late log phase of growth, the fatty acids are hydrolyzed by an amide hydrolase producing the peptidic marinobactin headgroup. Halomonas aquamarina str. DS40M3, another marine bacterium isolated originally from the same sample of open ocean water as Marinobacter sp. DS40M6, produces the acyl aquachelins, also as a suite composed of a peptidic headgroup distinct from that of the marinobactins. In contrast to the acyl marinobactins, hydrolysis of the suite of acyl aquachelins is not detected, even when H. aquamarina str. DS40M3 is grown into the stationary phase. The Marinobacter cell-free extract containing the acyl amide hydrolase is active toward exogenous acyl-peptidic siderophores (e.g., aquachelin C, loihichelin C, as well as octanoyl homoserine lactone used in quorum sensing). Further, when H. aquamarina str. DS40M3 is cultured together with Marinobacter sp. DS40M6, the fatty acids of both suites of siderophores are hydrolyzed, and the aquachelin headgroup is also produced. The present study demonstrates that coculturing bacteria leads to metabolically tailored metabolites compared to growth in a single pure culture, which is interesting given the importance of siderophore-mediated iron acquisition for bacterial growth and that Marinobacter sp. DS40M6 and H. aquamarina str. DS40M3 were isolated from the same sample of seawater. PMID:24735218

  11. Investigation of electroless tin deposition from acidic thiourea-type bath

    NASA Astrophysics Data System (ADS)

    Araźna, A.; Bieliński, J.

    2006-10-01

    The constant tendency of miniaturization in electronic products and developments in surface assembly techniques creates requirement to prepare new techniques and processes also in the range of metallic coatings. An additional factor which influences the evolution of preservatives coatings technology is the necessity to adapt Polish law to European directive. From 1 st July 2006 there will be an obligatory RoHS directive banning applying lead in electronics. Electroless tin deposition is one of an alternative for Sn/Pb lead free preservative films on copper surface in PCB technology. Electroless deposition of tin coatings on copper can be made in two ways: from an alkaline bath - the process disproportionation of Sn(II) compounds and from acidic bath contain complex compound such as thiourea - the displacement of copper by tin in Sn(II). Alkaline baths are not used in printed circuit board technology because it has destructive influence on resists. Besides acidic baths complex compounds contain additional stability solution composition which modify structure of obtained tin film. Quality and thickness tin layer are fundamental parameters which determine its protective character. The research test were done in thiourea-type electroless tin bath. The influence of different parameters on n rate of tin deposition and thickness of Sn coating were determined: temperature of the bath, Sn(II)-salt, thiourea and HCl concentration. Tin layers were depositioned on electrolytical copper foil. The thickness of Sn coating was determined by coulometry in 2M HCl. The rate deposition process depends mainly on the thiourea and HCl concentrations in solution. The temperature is also a very important parameter. The thickness of tin layer grows when the temperature increase. Although above 70°C appear undesirable thiourea decomposition. The results of the investigation show that further investigations are necessary for this solution.

  12. Enantioselective tandem reaction of chromone-derived Morita-Baylis-Hillman carbonates with benzylamines catalyzed by a trifunctional organocatalyst: the synthesis of chiral 3-aminomethylene-flavanones.

    PubMed

    Zhong, Neng-jun; Liu, Li; Wang, Dong; Chen, Yong-Jun

    2013-05-01

    An enantioselective tandem reaction of chromones-derived MBH carbonates (1) with benzylamines (2) catalyzed by a trifunctional organocatalyst, cinchonidine-amide-thiourea, has been developed in moderate to good yields (50-87%) and enantioselectivities (up to 89% ee).

  13. Combined theoretical and experimental studies on the molecular structure, spectral and Hirshfeld surface studies of NLO tris(thiourea)zinc(II) sulfate crystals

    NASA Astrophysics Data System (ADS)

    Muthu, K.; Meenatchi, V.; Rajasekar, M.; Aditya Prasad, A.; Meena, K.; Agilandeshwari, R.; Kanagarajan, V.; Meenakshisundaram, SP.

    2015-07-01

    Transparent single crystals of tris(thiourea)zinc(II) sulfate (ZTS) were grown by slow evaporation technique at room temperature from an aqueous solution containing zinc sulfate and thiourea in the molar ratio 1:3. The experimental and theoretical studies on the molecular structure and vibrational spectra of ZTS were investigated by single crystal X-ray diffraction, FT-IR and density functional theory (DFT). The recorded X-ray diffraction bond parameters are compared with theoretical values calculated at B3LYP/LANL2DZ level. The observed vibrational patterns were compared with the computed wave numbers. The energy and oscillator strength calculated by TD-DFT results complement with the experimental findings. The first-order molecular hyperpolarizability, polarizability, dipole moment and HOMO-LUMO band gap energies were derived. The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO). Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density with molecular electrostatic potential (MEP) using the same level of basis set. Intermolecular hydrogen bonding was investigated by means of the Hirshfeld surfaces, and the role of the Nsbnd H⋯O interactions as driving force for crystal structure formation has been demonstrated. The percentages of hydrogen bonding interactions are analyzed by Fingerprint plots of Hirshfeld surface.

  14. Covalent binding of (/sup 14/C)thiourea to protein in lungs from endotoxin-treated rats

    SciTech Connect

    Hollinger, M.A.

    1983-08-01

    Administration of thiourea to mature male rats at a dosage of 3.5 mg/kg (ip) produced marked pleural effusion by 2 hr (3-4 ml). Pretreatment with bacterial lipopolysaccharide (endotoxin) significantly reduced this pleural effusion (less than 0.5 ml). Despite this unequivocal effect, there was no corresponding reduction in the covalent binding of (/sup 14/C)thiourea to lung protein. These data indicate that the protective effect of endotoxin against the initial stages of thiourea pneumotoxicity does not involve a reduction in binding of the (/sup 14/C)thiourea or a metabolite to lung protein. However, alterations in low levels of binding to specific cell types or particular protein(s) relative to covalent binding cannot be ruled out.

  15. Acyl-coenzyme A:cholesterol acyltransferases

    PubMed Central

    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C. Y.; Urano, Yasuomi

    2009-01-01

    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease. PMID:19141679

  16. Acyl silicates and acyl aluminates as activated intermediates in peptide formation on clays

    NASA Technical Reports Server (NTRS)

    White, D. H.; Kennedy, R. M.; Macklin, J.

    1984-01-01

    Glycine reacts with heating on dried clays and other minerals to give peptides in much better yield than in the absence of mineral. This reaction was proposed to occur by way of an activated intermediate such as an acyl silicate or acyl aluminate analogous to acyl phosphates involved in several biochemical reactions including peptide bond synthesis. The proposed mechanism has been confirmed by trapping the intermediate, as well as by direct spectroscopic observation of a related intermediate. The reaction of amino acids on periodically dried mineral surfaces represents a widespead, geologically realistic setting for prebiotic peptide formation via in situ activation.

  17. Identification of N-Acyl Phosphatidylserine Molecules in Eukaryotic Cells

    PubMed Central

    Guan, Ziqiang; Li, Shengrong; Smith, Dale C.; Shaw, Walter A.; Raetz, Christian R. H.

    2008-01-01

    While profiling the lipidome of the mouse brain by mass spectrometry, we discovered a novel family of N-acyl phosphatidylserine (N-acyl-PS) molecules. These N-acyl-PS species were enriched by DEAE-cellulose column chromatography, and they were then characterized by accurate mass measurements, tandem mass spectrometry, liquid chromatography/mass spectrometry, and comparison to an authentic standard. Mouse brain N-acyl-PS molecules are heterogeneous and constitute about 0.1 % of the total lipid. In addition to various ester-linked fatty acyl chains on their glycerol backbones, the complexity of the N-acyl-PS series is further increased by the presence of diverse amide-linked N-acyl chains, which include saturated, mono-unsaturated and poly-unsaturated species. N-acyl-PS molecular species were also detected in the lipids of pig brain, mouse RAW264.7 macrophage tumor cells and yeast, but not E. coli. N-acyl-PSs may be biosynthetic precursors of N-acyl serine molecules, such as the recently reported signaling lipid N-arachidonoyl serine from bovine brain. We suggest that a phospholipase D might cleave N-acyl-PS to generate N-acyl serine, in analogy to the biosynthesis of the endocannabinoid N-arachidonoyl ethanolamine (anadamide) from N-arachidonoyl phosphatidylethanolamine. PMID:18031065

  18. Study of Visible Light Reactive Photocatalyst TIO2 Prepared with Thiourea

    NASA Astrophysics Data System (ADS)

    Murai, Kei-Ichiro; Endo, Kazuki; Nakagawa, Taisuke; Yamahata, Akiko; Moriga, Toshihiro

    Visible light reactive N-doped TiO2 samples were prepared with thiourea in the sol-gel method. They had the single anatase-type crystal structure. N-doped TiO2 synthesized with thiourea (T-TiO2) had a higher catalytic activity than that synthesized with urea (U-TiO2). The S2p peak observed on the surface of T-TiO2 was assigned to S6+ by XPS measurement. It was estimated that sulfuric acid species exist on the surface of T-TiO2. However, it was concluded that sulfuric acid species do not have the catalytic activity directly, but depress the crystallinity, the decrease of specific surface area and the decrease of visible light absorption.

  19. Novel Route to Transition Metal Isothiocyanate Complexes Using Metal Powders and Thiourea

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Eckles, William E.; Hepp, Aloysius F.; Duraj, Stan A.; Hehemann, David G.; Fanwick, Phillip E.; Richardson, John

    2003-01-01

    A new synthetic route to isothiocyanate-containing materials is presented. Eight isothiocyanate- 4-methylpyridine (y-picoline) compounds were prepared by refluxing metal powders (Mn, Fe, Co, Ni, and Cu) with thiourea in y-picoline. With the exception of compound 5,prepared with Co, the isothiocyanate ligand was generated in situ by the isomerization of thiourea to NH4+SCN- at reflux temperatures. The complexes were characterized by x-ray crystallography. Compounds 1,2, and 8 are the first isothiocyanate- 4-methylpyridine anionic compounds ever prepared and structurally characterized. Compounds 1 and 2 are isostructural with four equatorially bound isothiocyanate ligands and two axially bound y-picoline molecules. Compound 8 is a five-coordinate copper(II) molecule with a distorted square-pyramidal geometry. Coordinated picoline and two isothiocyanates form the basal plane and the remaining isothiocyanate is bound at the apex. Structural data are presented for all compounds.

  20. Origins of the Stereoselectivity in a Thiourea-Primary Amine-Catalyzed Nazarov Cyclization.

    PubMed

    Asari, Austin H; Lam, Yu-hong; Tius, Marcus A; Houk, K N

    2015-10-14

    The origins of stereoselectivity of the Nazarov reactions of α-hydroxydivinylketones catalyzed by a vicinal thiourea-primary amine first reported by Tius have been explored with density functional theory. The electrocyclization transition structures in which the thiourea group of the catalyst donates two hydrogen bonds to the keto carbonyl group of the Nazarov reactant and the primary amine accepts a hydrogen bond from the hydroxyl group of the reactant have been modeled. The enantiomeric Nazarov transition structures, which are conventionally described by the absolute sense of conrotation of the dienone termini ("clockwise" or "counterclockwise") in the literature, are nonplanar and adopt helically chiral conformations. The interactions of these helical electrocyclization transition structures with the chiral catalyst are studied in detail. The organocatalyst is found to employ a combination of hydrogen bonding and steric effects to achieve helical recognition of the Nazarov transition state. PMID:26426475

  1. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals

    NASA Astrophysics Data System (ADS)

    Hendricks, Mark P.; Campos, Michael P.; Cleveland, Gregory T.; Jen-La Plante, Ilan; Owen, Jonathan S.

    2015-06-01

    Controlling the size of colloidal nanocrystals is essential to optimizing their performance in optoelectronic devices, catalysis, and imaging applications. Traditional synthetic methods control size by terminating the growth, an approach that limits the reaction yield and causes batch-to-batch variability. Herein we report a library of thioureas whose substitution pattern tunes their conversion reactivity over more than five orders of magnitude and demonstrate that faster thiourea conversion kinetics increases the extent of crystal nucleation. Tunable kinetics thereby allows the nanocrystal concentration to be adjusted and a desired crystal size to be prepared at full conversion. Controlled precursor reactivity and quantitative conversion improve the batch-to-batch consistency of the final nanocrystal size at industrially relevant reaction scales.

  2. A kinetic method for the determination of thiourea by its catalytic effect in micellar media.

    PubMed

    Abbasi, Shahryar; Khani, Hossein; Gholivand, Mohammad Bagher; Naghipour, Ali; Farmany, Abbas; Abbasi, Freshteh

    2009-03-01

    A highly sensitive, selective and simple kinetic method was developed for the determination of trace levels of thiourea based on its catalytic effect on the oxidation of janus green in phosphoric acid media and presence of Triton X-100 surfactant without any separation and pre-concentration steps. The reaction was monitored spectrophotometrically by tracing the formation of the green-colored oxidized product of janus green at 617 nm within 15 min of mixing the reagents. The effect of some factors on the reaction speed was investigated. Following the recommended procedure, thiourea could be determined with linear calibration graph in 0.03-10.00 microg/ml range. The detection limit of the proposed method is 0.02 microg/ml. Most of foreign species do not interfere with the determination. The high sensitivity and selectivity of the proposed method allowed its successful application to fruit juice and industrial waste water.

  3. GOAT induced ghrelin acylation regulates hedonic feeding.

    PubMed

    Davis, J F; Perello, M; Choi, D L; Magrisso, I J; Kirchner, H; Pfluger, P T; Tschoep, M; Zigman, J M; Benoit, S C

    2012-11-01

    Ghrelin is an orexigenic hormone that regulates homeostatic and reward-related feeding behavior. Recent evidence indicates that acylation of ghrelin by the gut enzyme ghrelin O-acyl transferase (GOAT) is necessary to render ghrelin maximally active within its target tissues. Here we tested the hypothesis that GOAT activity modulates food motivation and food hedonics using behavioral pharmacology and mutant mice deficient for GOAT and the ghrelin receptor (GHSR). We evaluated operant responding following pharmacological administration of acyl-ghrelin and assessed the necessity of endogenous GOAT activity for operant responding in GOAT and GHSR-null mice. Hedonic-based feeding behavior also was examined in GOAT-KO and GHSR-null mice using a "Dessert Effect" protocol in which the intake of a palatable high fat diet "dessert" was assessed in calorically-sated mice. Pharmacological administration of acyl-ghrelin augmented operant responding; notably, this effect was dependent on intact GHSR signaling. GOAT-KO mice displayed attenuated operant responding and decreased hedonic feeding relative to controls. These behavioral results correlated with decreased expression of the orexin-1 receptor in reward-related brain regions in GOAT-KO mice. In summary, the ability of ghrelin to stimulate food motivation is dependent on intact GHSR signaling and modified by endogenous GOAT activity. Furthermore, GOAT activity is required for hedonic feeding behavior, an effect potentially mediated by forebrain orexin signaling. These data highlight the significance of the GOAT-ghrelin system for the mediation of food motivation and hedonic feeding.

  4. Chemical and structural properties of Jordanian zeolitic tuffs and their admixtures with urea and thiourea: Potential scavengers for phenolics in aqueous medium

    SciTech Connect

    Yousef, R.I.; Tutunji, M.F.; Derwish, G.A.W.; Musleh, S.M.

    1999-08-15

    Native Jordanian zeolitic tuffs, rich in phillipsite, were treated with urea and thiourea. The chemical and structural properties of the tuffs and their urea and thiourea admixtures were studied using SEM, XRF, XRD, and FTIR techniques, and their adsorption capacities were estimated by the methylene blue method. The urea and thiourea treatment has not affected the mineral constitution of the tuffs. The results revealed that urea and thiourea were linked by hydrogen bonding through the NH{sub 2} moiety to the zeolite substrate, with urea showing the strongest effect. Experiments were carried out to investigate the possible use of the prepared materials for the removal of phenol and chlorinated phenols from aqueous solutions. Although thiourea caused a reduction in the relative surface area, both urea and thiourea admixtures were more effective than the free zeolitic tuff in the removal of phenol and chlorinated phenols from water, with urea admixture displaying the largest removal capacity.

  5. Thiourea catalyzed organocatalytic enantioselective Michael addition of diphenyl phosphite to nitroalkenes.

    PubMed

    Alcaine, Ana; Marqués-López, Eugenia; Merino, Pedro; Tejero, Tomás; Herrera, Raquel P

    2011-04-21

    Bifunctional thiourea catalyzes the enantioselective Michael addition reaction of diphenyl phosphite to nitroalkenes. This methodology provides a facile access to enantiomerically enriched β-nitrophosphonates, precursors for the preparation of synthetically and biologically useful β-aminophosphonic acids. DFT level of computational calculations invoke the attack of the diphenyl phosphite to the nitroolefin by the Re face, this give light to this scarcely explored process update in the literature. The computational calculations support the absolute configuration obtained in the final adducts.

  6. Technology for processing ammonium rhodanide of coking plants into high-purity ammonium thiocyanate and thiourea

    SciTech Connect

    Urakaev, F.K.

    2009-04-15

    The regularities of the reversible reaction of isomerization of ammonium thiocyanate (NH{sub 4}NCS) into thiourea (NH{sub 2}){sub 2}CS, and the reverse reaction, were analyzed. An ecologically clean and highly efficient method for the extraction, purification, separation, and production of isomers from the coal byproduct ammonium thiocyanate was developed based on the measured volatilities of NH{sub 4}NCS and (NH{sub 2}){sub 2}CS.

  7. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity.

    PubMed

    Wu, Xiaofeng; Fang, Shun; Zheng, Yang; Sun, Jie; Lv, Kangle

    2016-02-01

    Semiconductor TiO2 photocatalysis has attracted much attention due to its potential application in solving the problems of environmental pollution. In this paper, thiourea (CH4N2S) modified anatase TiO2 nanorods were fabricated by calcination of the mixture of TiO2 nanorods and thiourea at 600 °C for 2 h. It was found that only N element was doped into the lattice of TiO2 nanorods. With increasing the weight ratio of thiourea to TiO2 (R) from 0 to 8, the light-harvesting ability of the photocatalyst steady increases. Both the crystallization and photocatalytic activity of TiO2 nanorods increase first and then decrease with increase in R value, and R2 sample showed the highest crystallization and photocatalytic activity in degradation of Brilliant Red X3B (X3B) and Rhodamine B (RhB) dyes under visible light irradiation (λ > 420 nm). The increased visible-light photocatalytic activity of the prepared N-doped TiO2 nanorods is due to the synergistic effects of the enhanced crystallization, improved light-harvesting ability and reduced recombination rate of photo-generated electron-hole pairs. Note that the enhanced visible photocatalytic activity of N-doped nanorods is not based on the scarification of their UV photocatalytic activity.

  8. Crystal growth, characterization and theoretical studies of alkaline earth metal-doped tetrakis(thiourea)nickel(II) chloride.

    PubMed

    Agilandeshwari, R; Muthu, K; Meenatchi, V; Meena, K; Rajasekar, M; Aditya Prasad, A; Meenakshisundaram, S P

    2015-02-25

    The influence of Sr(II)-doping on the properties of tetrakis(thiourea)nickel(II) chloride (TTNC) has been described. The reduction in the intensity observed in powder X-ray diffraction of doped specimen and slight shifts in vibrational frequencies of doped specimens confirm the lattice stress as a result of doping. Surface morphological changes due to doping of the Sr(II) are observed by scanning electron microscopy. The incorporation of metal into the host crystal lattice was confirmed by energy dispersive X-ray spectroscopy. Lattice parameters are determined by single crystal XRD analysis. The thermogravimetric and differential thermal analysis studies reveal the purity of the materials and no decomposition is observed up to the melting point. The nonlinear optical properties of the doped and undoped specimens were studied. Theoretical calculations were performed using the Density functional theory (DFT) method with B3LYP/LANL2DZ as the basis set. The molecular geometry and vibrational frequencies of TTNC in the ground state were calculated and the observed structural parameters of TTNC are compared with parameters obtained from single crystal X-ray studies. The atomic charge distributions are obtained by Mulliken charge population analysis. The first-order molecular hyperpolarizability, polarizability and dipole moment were derived. PMID:25233030

  9. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress.

    PubMed

    Vu, Hieu Sy; Roth, Mary R; Tamura, Pamela; Samarakoon, Thilani; Shiva, Sunitha; Honey, Samuel; Lowe, Kaleb; Schmelz, Eric A; Williams, Todd D; Welti, Ruth

    2014-04-01

    Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection and thawing after snap-freezing. Here, lipidomic analysis using mass spectrometry showed that galactose-acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl-galactose components in response to the same stress. Additionally, the composition of the acyl-galactose component of Arabidopsis acMGDG (galactose-acylated monogalactosyldiacylglycerol) depends on the stress treatment. After sub-lethal freezing treatment, acMGDG contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose-acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses. PMID:24286212

  10. Discovery of a potent enoyl-acyl carrier protein reductase (FabI) inhibitor suitable for antistaphylococcal agent.

    PubMed

    Kim, Yun Gyeong; Seo, Jae Hong; Kwak, Jin Hwan; Shin, Kye Jung

    2015-10-15

    We report the discovery, synthesis, and biological activities of phenoxy-4-pyrone and phenoxy-4-pyridone derivatives as novel inhibitors of enoyl-acyl carrier protein reductase (FabI). Pyridone derivatives showed better activities than pyrone derivatives against FabI and Staphylococcus aureus strains, including methicillin-resistant Staphylococcus aureus (MRSA). Among the pyridone derivatives, compound 16l especially exhibited promising activities against the MRSA strain and good pharmacokinetic profiles. PMID:26343826

  11. Acylated but not des-acyl ghrelin is neuroprotective in an MPTP mouse model of Parkinson's disease.

    PubMed

    Bayliss, Jacqueline A; Lemus, Moyra; Santos, Vanessa V; Deo, Minh; Elsworth, John D; Andrews, Zane B

    2016-05-01

    The gut hormone ghrelin is widely beneficial in many disease states. However, ghrelin exists in two distinctive isoforms, each with its own metabolic profile. In Parkinson's Disease (PD) acylated ghrelin administration is neuroprotective, however, the role of des-acylated ghrelin remains unknown. In this study, we wanted to identify the relative contribution each isoform plays using the MPTP model of PD. Chronic administration of acylated ghrelin in mice lacking both isoforms of ghrelin (Ghrelin KO) attenuated the MPTP-induced loss on tyrosine hydroxylase (TH) neuronal number and volume and TH protein expression in the nigrostriatal pathway. Moreover, acylated ghrelin reduced the increase in glial fibrillary acidic protein and Ionized calcium binding adaptor molecule 1 microglia in the substantia nigra. However, injection of acylated ghrelin also elevated plasma des-acylated ghrelin, indicating in vivo deacetylation. Next, we chronically administered des-acylated ghrelin to Ghrelin KO mice and observed no neuroprotective effects in terms of TH cell number, TH protein expression, glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 cell number. The lack of a protective effect was mirrored in ghrelin-O-acyltransferase KO mice, which lack the ability to acylate ghrelin and consequently these mice have chronically increased plasma des-acyl ghrelin. Plasma corticosterone was elevated in ghrelin-O-acyltransferase KO mice and with des-acylated ghrelin administration. Overall, our studies suggest that acylated ghrelin is the isoform responsible for in vivo neuroprotection and that pharmacological approaches preventing plasma conversion from acyl ghrelin to des-acyl ghrelin may have clinical efficacy to help slow or prevent the debilitating effects of PD. Ghrelin exists in the plasma as acyl and des-acyl ghrelin. We determined the form responsible for in vivo neuroprotection in a mouse model of Parkinson's disease. Although exogenous acyl ghrelin

  12. Modified branched-chain amino acid pathways give rise to acyl acids of sucrose esters exuded from tobacco leaf trichomes.

    PubMed

    Kandra, G; Severson, R; Wagner, G J

    1990-03-10

    A major diversion of carbon from branched-chain amino acid biosynthesis/catabolism to form acyl moieties of sucrose esters (6-O-acetyl-2,3,4-tri-O-acyl-alpha-D-glucopyranosyl-beta-D- fructofuranosides) was observed to be associated with specialized trichome head cells which secrete large amounts of sucrose esters. Surface chemistry and acetyl and acyl substituent groups of tobacco (T.I. 1068) sucrose esters were identified and quantified by gas chromatography/mass spectrometry. Sucrose esters were prominent surface constituents and 3-methylvaleric acid, 2- and 3-methylbutyric acid, and methylpropionic acid accounted for 60%, 25% and 9%, respectively, of total C3--C7 acyl substituents. Radiolabeled Thr, Ile, Val, Leu, pyruvate and Asp, metabolites of branched-chain amino acid pathways, were compared with radioactively labeled acetate and sucrose as donors of carbon to sucrose, acetyl and acyl components of sucrose esters using epidermal peels with undisturbed trichomes. Preparations of biosynthetically competent trichome heads (site of sucrose ester formation) were also examined. Results indicate that 3-methylvaleryl and 2-methylbutyryl groups are derived from the Thr pathway of branched-chain amino acid metabolism, 3-methylbutyryl and methylpropionyl groups are formed via the pyruvate pathway, and that acetyl groups are principally formed directly via acetyl-CoA. Arguments are presented which rule out participation of fatty acid synthase in the formation of prominent acyl acids. Results suggest that the shunting of carbon away from the biosynthesis of Val, Leu and Ile may be due to a low level of amino acid utilization in protein synthesis in specialized glandular head cells of trichomes. This would result in the availability of corresponding oxo acids for CoA activation and esterification to form sucrose esters. Preliminary evidence was found for the involvement of cycling reactions in oxo-acid-chain lengthening and for utilization of pyruvate-derived 2

  13. Acyl glucuronides: the good, the bad and the ugly.

    PubMed

    Regan, Sophie L; Maggs, James L; Hammond, Thomas G; Lambert, Craig; Williams, Dominic P; Park, B Kevin

    2010-10-01

    Acyl glucuronidation is the major metabolic conjugation reaction of most carboxylic acid drugs in mammals. The physiological consequences of this biotransformation have been investigated incompletely but include effects on drug metabolism, protein binding, distribution and clearance that impact upon pharmacological and toxicological outcomes. In marked contrast, the exceptional but widely disparate chemical reactivity of acyl glucuronides has attracted far greater attention. Specifically, the complex transacylation and glycation reactions with proteins have provoked much inconclusive debate over the safety of drugs metabolised to acyl glucuronides. It has been hypothesised that these covalent modifications could initiate idiosyncratic adverse drug reactions. However, despite a large body of in vitro data on the reactions of acyl glucuronides with protein, evidence for adduct formation from acyl glucuronides in vivo is limited and potentially ambiguous. The causal connection of protein adduction to adverse drug reactions remains uncertain. This review has assessed the intrinsic reactivity, metabolic stability and pharmacokinetic properties of acyl glucuronides in the context of physiological, pharmacological and toxicological perspectives. Although numerous experiments have characterised the reactions of acyl glucuronides with proteins, these might be attenuated substantially in vivo by rapid clearance of the conjugates. Consequently, to delineate a relationship between acyl glucuronide formation and toxicological phenomena, detailed pharmacokinetic analysis of systemic exposure to the acyl glucuronide should be undertaken adjacent to determining protein adduct concentrations in vivo. Further investigation is required to ascertain whether acyl glucuronide clearance is sufficient to prevent covalent modification of endogenous proteins and consequentially a potential immunological response. PMID:20830700

  14. Identification and molecular characterization of acyl-CoA synthetase in human erythrocytes and erythroid precursors.

    PubMed

    Malhotra, K T; Malhotra, K; Lubin, B H; Kuypers, F A

    1999-11-15

    Full-length cDNA species encoding two forms of acyl-CoA synthetase from a K-562 human erythroleukaemic cell line were cloned, sequenced and expressed. The first form, named long-chain acyl-CoA synthetase 5 (LACS5), was found to be a novel, unreported, human acyl-CoA synthetase with high similarity to rat brain ACS2 (91% identical). The second form (66% identical with LACS5) was 97% identical with human liver LACS1. The LACS5 gene encodes a highly expressed 2.9 kb mRNA transcript in human haemopoietic stem cells from cord blood, bone marrow, reticulocytes and fetal blood cells derived from fetal liver. An additional 6.3 kb transcript is also found in these erythrocyte precursors; 2.9 and 9.6 kb transcripts of LACS5 are found in human brain, but transcripts are virtually absent from human heart, kidney, liver, lung, pancreas, spleen and skeletal muscle. The 78 kDa expressed LACS5 protein used the long-chain fatty acids palmitic acid, oleic acid and arachidonic acid as substrates. Antibodies directed against LACS5 cross-reacted with erythrocyte membranes. We conclude that early erythrocyte precursors express at least two different forms of acyl-CoA synthetase and that LACS5 is present in mature erythrocyte plasma membranes.

  15. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress

    PubMed Central

    Vu, Hieu Sy; Roth, Mary R.; Tamura, Pamela; Samarakoon, Thilani; Shiva, Sunitha; Honey, Samuel; Lowe, Kaleb; Schmelz, Eric A.; Williams, Todd D.; Welti, Ruth

    2014-01-01

    Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection, and thawing after snap-freezing. Here, lipidomic analysis using mass spectrometry showed that galactose-acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl-galactose components in response to the same stress. Additionally, the composition of the acyl-galactose component of Arabidopsis acMGDG depends on the stress treatment. After sub-lethal freezing treatment, acMGDG contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose-acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses. PMID:24286212

  16. On the mechanism of N-heterocyclic carbene-catalyzed reactions involving acyl azoliums.

    PubMed

    Mahatthananchai, Jessada; Bode, Jeffrey W

    2014-02-18

    , however, date back to the intense investigation of thiamine-dependent enzymatic processes in the 1960s. Acyl azoliums are remarkably reactive in acylation chemistry and are unusually chemoselective. These two properties have led to a new wave of reactions such as redox esterification reaction (1) and the catalytic kinetic resolution of challenging substrates (i.e., 3). Our group and others have also developed methods to generate and exploit α,β-unsaturated acyl azoliums, which have facilitated new C-C bond-forming annulations, including a catalytic, enantioselective variant of the Claisen rearrangement (2). From essentially one class of catalysts, the N-mesityl derived triazolium salts, researchers can easily prepare highly enantioenriched dihydropyranones and dihydropyridinones. Although this field is now one of the most explored areas of enantioselective C-C bond forming reactions, many mechanistic details remained unsolved and in dispute. In this Account, we address the mechanistic inquiries about the characterization of the unsaturated acyl triazolium species and its kinetic profile under catalytically relevant conditions. We also provide explanations for the requirement and effect of the N-mesityl group in NHC catalysis based on detailed experimental data within given specific reactions or conditions. We hope that our studies provide a roadmap for catalyst design/selection and new reaction discovery based on a fundamental understanding of the mechanistic course of NHC reactions.

  17. The synthesis, characterization and optical properties of novel 2-acyl 6-arylindolizines

    NASA Astrophysics Data System (ADS)

    Ge, Yan Qing; Gong, Xue Yong; Song, Guang Jie; Cao, Xiao Qun; Wang, Jian Wu

    2015-01-01

    A series of novel 2-acyl-6-aryl substituted indolizine derivatives was synthesized by a novel tandem reaction between 4-acyl-pyrrole-2-carbaldehyde derivatives and ethyl 4-bromo-3-arylbut-2-enoate under mild conditions. The compounds were characterized using IR, 1H NMR 13C NMR and HRMS. The crystal structure of 7a was determined using single crystal X-ray crystallography. The absorption results showed that compounds 7a-e presented their absorption maxima at ca. 270 nm, while compounds 7f and 7g with a larger conjugation system exhibited red-shifted absorption character (ca. 280 nm). Fluorescence spectra revealed that these compounds exhibited blue fluorescence (434-456 nm) in dilute solutions and showed quantum yields of fluorescence between 0.02 and 0.39 in dichloromethane.

  18. The role of acyl-glucose in anthocyanin modifications.

    PubMed

    Sasaki, Nobuhiro; Nishizaki, Yuzo; Ozeki, Yoshihiro; Miyahara, Taira

    2014-11-14

    Higher plants can produce a wide variety of anthocyanin molecules through modification of the six common anthocyanin aglycons that they present. Thus, hydrophilic anthocyanin molecules can be formed and stabilized by glycosylation and acylation. Two types of glycosyltransferase (GT) and acyltransferase (AT) have been identified, namely cytoplasmic GT and AT and vacuolar GT and AT. Cytoplasmic GT and AT utilize UDP-sugar and acyl-CoA as donor molecules, respectively, whereas both vacuolar GT and AT use acyl-glucoses as donor molecules. In carnation plants, vacuolar GT uses aromatic acyl-glucoses as the glucose donor in vivo; independently, vacuolar AT uses malylglucose, an aliphatic acyl-glucose, as the acyl-donor. In delphinium and Arabidopsis, p-hydroxybenzoylglucose and sinapoylglucose are used in vivo as bi-functional donor molecules by vacuolar GT and AT, respectively. The evolution of these enzymes has allowed delphinium and Arabidopsis to utilize unique donor molecules for production of highly modified anthocyanins.

  19. Physiological Consequences of Compartmentalized Acyl-CoA Metabolism*

    PubMed Central

    Cooper, Daniel E.; Young, Pamela A.; Klett, Eric L.; Coleman, Rosalind A.

    2015-01-01

    Meeting the complex physiological demands of mammalian life requires strict control of the metabolism of long-chain fatty acyl-CoAs because of the multiplicity of their cellular functions. Acyl-CoAs are substrates for energy production; stored within lipid droplets as triacylglycerol, cholesterol esters, and retinol esters; esterified to form membrane phospholipids; or used to activate transcriptional and signaling pathways. Indirect evidence suggests that acyl-CoAs do not wander freely within cells, but instead, are channeled into specific pathways. In this review, we will discuss the evidence for acyl-CoA compartmentalization, highlight the key modes of acyl-CoA regulation, and diagram potential mechanisms for controlling acyl-CoA partitioning. PMID:26124277

  20. Temperature-dependent, competitive 1,3-acyl shift versus decarbonylation of a cyclopropanone intermediate

    PubMed Central

    Erden, Ihsan; Ma, Jingxiang; Gärtner, Christian; Azimi, Saeed; Gronert, Scott

    2013-01-01

    Photooxygenation of 1,1,3-trimethyl-1,2-dihydropentalene gives an unstable endoperoxide which upon decomposition delivers a bicyclic cyclopropanone intermediate; this species either extrudes CO to give a cycloheptadienone or undergoes a 1,3-acyl shift, both processes occurring most likely in a stepwise manner via diradical intermediates. Alternatively, C3a-C4 cleavage in the dioxygen diradical derived from the endoperoxide yields a 2-cyclopropyl substituted cyclopentadienone epoxide. PMID:23956469

  1. Self-association of N,N‧-dialkylthiourea derivatives in non-polar solvents

    NASA Astrophysics Data System (ADS)

    Obrzud, Monika; Rospenk, Maria; Koll, Aleksander

    2012-06-01

    The paper consists of the joint studies of average molecular weight, dipole moments and the IR spectra of symmetric dialkyl, from dimethyl to dihexyl, thioureas, performed in function of concentration in low polar solvents, with the aim to determine those substances' relative ability of self-aggregation and the form of the subsequent aggregates. The studies were accompanied by the DFT calculations at B3PW91/6-31+G(d,p) level. It was demonstrated that association in CCl4 and benzene is much stronger than in chloroform and 1,2-dichloroethane, which results from the competition of interaction of acidic Csbnd H groups of solvent molecules with sulfur atom of thioureas. By way of comparing the association constant with the related values for urea derivatives it was shown that the aggregation ability of thioureas is clearly lower than of ureas. This results from the fact that the basicity of sulfur atom is lower than of the oxygen one. Interesting difference between urea and thiourea derivatives is the dependence of dipole moments on concentration, when in urea derivatives dipole moment systematically grow with concentration, showing predominance of near-linear aggregation, in thioureas with shorter chains dipole moments decrease with concentration. Increase the size of chains leads to some preference of linear aggregation - dipole moments increase in non-active solvents. It can be explained by change the conformation in direction of trans-trans forms. Such conclusion was supported by results of DFT calculations.

  2. Temperature evolution of nickel sulphide phases from thiourea complex and their exchange bias effect

    SciTech Connect

    Kumar, Nitesh; Raman, N.; Sundaresan, A.

    2013-12-15

    Considering the very complex phase diagram of nickel sulphide, it is quite challenging to stabilize pure phases from a single precursor. Here, we obtain nanoparticles of various phases of nickel sulphide by decomposing nickel–thiourea complex at different temperatures. The first phase in the evolution is the one with the maximum sulphur content, namely, NiS{sub 2} nanoparticles obtained at 400 °C. As the temperature is increased, nanoparticles of phases with lesser sulphur content, NiS (600 °C) and Ni{sub 3}S{sub 2} (800 °C) are formed. NiS{sub 2} nanoparticles exhibit weak ferromagnetic transition at 30 K and show a large exchange bias at 2 K. NiS nanoparticles are antiferromagnetic and show relatively smaller exchange bias effect. On the other hand, Ni{sub 3}S{sub 2} nanoparticles exhibit very weak temperature dependent magnetization. Electrical measurements show that both NiS{sub 2} and NiS are semiconductors whereas Ni{sub 3}S{sub 2} is a metal. - Graphical abstract: Pure phases of NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} have been obtained by thermal decomposition of nickel–thiourea complex wherein, NiS{sub 2} nanoparticles exhibit remarkable exchange bias effect at 2 K. - Highlights: • NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} nanoparticles are obtained by thermal decomposition of nickel–thiourea complex at different temperatures. • As the temperature is increased, nickel sulphide phase with lesser sulphur content is obtained. • NiS{sub 2} nanoparticles show good exchange bias property which can be explained by antiferromagnetic core and ferromagnetic shell model. • NiS{sub 2} and NiS are semiconducting while Ni{sub 3}S{sub 2} shows metallic behavior.

  3. Flavin-Containing Monooxygenase S-Oxygenation of a Series of Thioureas and Thiones

    PubMed Central

    Henderson, Marilyn C.; Siddens, Lisbeth K.; Krueger, Sharon K.; Stevens, J. Fred; Kedzie, Karen; Fang, Ken; Heidelbaugh, Todd; Nguyen, Phong; Chow, Ken; Garst, Michael; Gil, Daniel; Williams, David E.

    2014-01-01

    Mammalian flavin-containing monooxygenase (FMO) is active towards many drugs with a heteroatom having the properties of a soft nucleophile. Thiocarbamides and thiones are S-oxygenated to the sulfenic acid which can either react with glutathione and initiate a redox-cycle or be oxygenated a second time to the unstable sulfinic acid. In this study, we utilized LC-MS/MS to demonstrate that the oxygenation by hFMO of the thioureas under test terminated at the sulfenic acid. With thiones, hFMO catalyzed the second reaction and the sulfinic acid rapidly lost sulfite to form the corresponding imidazole. Thioureas are often pulmonary toxicants in mammals and, as previously reported by our laboratory, are excellent substrates for hFMO2. This isoform is expressed at high levels in the lung of most mammals, including non-human primates. Genotyping to date indicates that individuals of African (up to 49%) or Hispanic (2–7%) ancestry have at least one allele for functional hFMO2 in lung, but not Caucasians nor Asians. In this study the major metabolite formed by hFMO2 with thioureas from Allergan, Inc. was the sulfenic acid that reacted with glutathione. The majority of thiones were poor substrates for hFMO3, the major form in adult human liver. However, hFMO1, the major isoform expressed in infant and neonatal liver and adult kidney and intestine, readily S-oxygenated thiones under test, with Kms ranging from 7–160 μM and turnover numbers of 30–40 min−1. The product formed was identified by LC-MS/MS as the imidazole. The activities of the mouse and human FMO1 and FMO3 orthologs were in good agreement with the exception of some thiones for which activity was much greater with hFMO1 than mFMO1. PMID:24727368

  4. Flavin-containing monooxygenase S-oxygenation of a series of thioureas and thiones.

    PubMed

    Henderson, Marilyn C; Siddens, Lisbeth K; Krueger, Sharon K; Stevens, J Fred; Kedzie, Karen; Fang, Wenkui K; Heidelbaugh, Todd; Nguyen, Phong; Chow, Ken; Garst, Michael; Gil, Daniel; Williams, David E

    2014-07-15

    Mammalian flavin-containing monooxygenase (FMO) is active towards many drugs with a heteroatom having the properties of a soft nucleophile. Thiocarbamides and thiones are S-oxygenated to the sulfenic acid which can either react with glutathione and initiate a redox-cycle or be oxygenated a second time to the unstable sulfinic acid. In this study, we utilized LC-MS/MS to demonstrate that the oxygenation by hFMO of the thioureas under test terminated at the sulfenic acid. With thiones, hFMO catalyzed the second reaction and the sulfinic acid rapidly lost sulfite to form the corresponding imidazole. Thioureas are often pulmonary toxicants in mammals and, as previously reported by our laboratory, are excellent substrates for hFMO2. This isoform is expressed at high levels in the lung of most mammals, including non-human primates. Genotyping to date indicates that individuals of African (up to 49%) or Hispanic (2-7%) ancestry have at least one allele for functional hFMO2 in lung, but not Caucasians nor Asians. In this study the major metabolite formed by hFMO2 with thioureas from Allergan, Inc. was the sulfenic acid that reacted with glutathione. The majority of thiones were poor substrates for hFMO3, the major form in adult human liver. However, hFMO1, the major isoform expressed in infant and neonatal liver and adult kidney and intestine, readily S-oxygenated thiones under test, with Kms ranging from 7 to 160 μM and turnover numbers of 30-40 min(-1). The product formed was identified by LC-MS/MS as the imidazole. The activities of the mouse and human FMO1 and FMO3 orthologs were in good agreement with the exception of some thiones for which activity was much greater with hFMO1 than mFMO1. PMID:24727368

  5. Flavin-containing monooxygenase S-oxygenation of a series of thioureas and thiones

    SciTech Connect

    Henderson, Marilyn C.; Siddens, Lisbeth K.; Krueger, Sharon K.; Stevens, J. Fred; Kedzie, Karen; Fang, Wenkui K.; Heidelbaugh, Todd; Nguyen, Phong; Chow, Ken; Garst, Michael; Gil, Daniel; Williams, David E.

    2014-07-15

    Mammalian flavin-containing monooxygenase (FMO) is active towards many drugs with a heteroatom having the properties of a soft nucleophile. Thiocarbamides and thiones are S-oxygenated to the sulfenic acid which can either react with glutathione and initiate a redox-cycle or be oxygenated a second time to the unstable sulfinic acid. In this study, we utilized LC–MS/MS to demonstrate that the oxygenation by hFMO of the thioureas under test terminated at the sulfenic acid. With thiones, hFMO catalyzed the second reaction and the sulfinic acid rapidly lost sulfite to form the corresponding imidazole. Thioureas are often pulmonary toxicants in mammals and, as previously reported by our laboratory, are excellent substrates for hFMO2. This isoform is expressed at high levels in the lung of most mammals, including non-human primates. Genotyping to date indicates that individuals of African (up to 49%) or Hispanic (2–7%) ancestry have at least one allele for functional hFMO2 in lung, but not Caucasians nor Asians. In this study the major metabolite formed by hFMO2 with thioureas from Allergan, Inc. was the sulfenic acid that reacted with glutathione. The majority of thiones were poor substrates for hFMO3, the major form in adult human liver. However, hFMO1, the major isoform expressed in infant and neonatal liver and adult kidney and intestine, readily S-oxygenated thiones under test, with K{sub m}s ranging from 7 to 160 μM and turnover numbers of 30–40 min{sup −1}. The product formed was identified by LC–MS/MS as the imidazole. The activities of the mouse and human FMO1 and FMO3 orthologs were in good agreement with the exception of some thiones for which activity was much greater with hFMO1 than mFMO1.

  6. Isosteric substitutions of urea to thiourea and selenourea in aliphatic oligourea foldamers: site-specific perturbation of the helix geometry.

    PubMed

    Nelli, Yella Reddy; Antunes, Stéphanie; Salaün, Arnaud; Thinon, Emmanuelle; Massip, Stéphane; Kauffmann, Brice; Douat, Céline; Guichard, Gilles

    2015-02-01

    Nearly isosteric oxo to thioxo substitution was employed to interrogate the structure of foldamers with a urea backbone and explore the relationship between helical folding and hydrogen-bonding interactions. A series of oligomers with urea bonds substituted by thiourea bonds at discrete or all positions in the sequence have been prepared and their folding propensity was studied by using a combination of spectroscopic methods and X-ray diffraction. The outcome of oxo to thioxo replacements on the helical folding was found to depend on whether central or terminal ureas were modified. The canonical helix geometry was not affected upon insertion of thioureas close to the negative end of the helix dipole, whereas thioureas close to the positive pole were found to increase the terminal flexibility and cause helix fraying. Perturbation was amplified when a selenourea was incorporated instead, leading to a structure that is only partly folded.

  7. Influence of thiourea on the emission characteristics of a laser based on an aqueous solution of rhodamine 6G

    SciTech Connect

    Viktorova, A.A.; Savikin, A.P.; Tsaregradskii, V.B.

    1983-08-01

    An investigation was made of the spectral (luminescence and lasing) characteristics of an aqueous solution of rhodamine 6G with an addition of thiourea. When the thiourea concentration in the solvent was > or =30%, the absorption and fluorescence spectra changed greatly, the lasing threshold decreased approximately fourfold, and the output power increased by an order of magnitude. The good thermooptical properties of water as a solvent, in combination with the disaggregation properties of thiourea, made it possible to realize (without circulation of the solution) a pulse-periodic lasing regime at a repetition frequency of < or approx. =50 Hz and with output radiation parameters typical of a laser with continuous circulation of an ethanol solution of rhodamine 6G.

  8. Carbonic anhydrase inhibition by 1-aroyl-3-(4-aminosulfonylphenyl)thioureas.

    PubMed

    Saeed, Aamer; Al-Rashida, Mariya; Hamayoun, Mehwish; Mumtaz, Amara; Iqbal, Jamshed

    2014-12-01

    A series of 1-aroyl-3-(4-aminosulfonylphenyl)thioureas containing free sulfonamide group has been evaluated for their ability to inhibit bovine carbonic anhydrase II (bCA, EC 4.2.1.1). All compounds in the series were able to inhibit bCA II, the most active inhibitor had IC50 value of 0.26 ± 0.01 µM. Molecular docking studies and detailed structure-activity relationship studies were carried out. The absorption, distribution, metabolism, excretion (ADME) properties, as a predictor of oral absorption, were computationally calculated and compared with the clinically used drug acetazolamide. PMID:24666305

  9. Growth and Vibrational Spectroscopic Investigations of NLO Crystal Barium Thiourea Chloride

    NASA Astrophysics Data System (ADS)

    Kumari, M. Meena; Ravikumar, C.; Amalanathan, M.; Jayakumar, V. S.; Joe, I. Hubert

    2008-11-01

    The crystal of NLO interest, Barium thiourea chloride (BTC) has been crystallized and is subjected to FT-IR and NIR FT-Raman spectral studies along with the quantum chemical computations. The equilibrium geometry, first hyperpolarizability, various bonding features and vibrational wavenumbers have been calculated by B3LYP density functional theory (DFT) calculations at the LANL2DZ level. The predicted vibrational spectra are in fair agreement with the experiment. The broadening of NH2 stretching wavenumber indicates the intermolecular N-H…CI hydrogen bonding present in the molecule.

  10. Rhodium-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Carbonyl Compounds via Thiourea Hydrogen Bonding.

    PubMed

    Wen, Jialin; Jiang, Jun; Zhang, Xumu

    2016-09-16

    The strategy of secondary interaction enables enantioselectivity for homogeneous hydrogenation. By introducing hydrogen bonding of substrates with thiourea from the ligand, α,β-unsaturated carbonyl compounds, such as amides and esters, are hydrogenated with high enantiomeric excess. The substrate scope for this chemical transformation is broad with various substituents at the β-position. Control experiments revealed that each unit of the ligand ZhaoPhos is irreplaceable. No nonlinear effect was observed for this Rh/ZhaoPhos-catalyzed asymmetric hydrogenation. PMID:27574859

  11. Hydrothermal synthesis of uniform WO{sub 3} submicrospheres using thiourea as an assistant agent

    SciTech Connect

    Su, X.T.; Xiao, F.; Lin, J.L.; Jian, J.K.; Li, Y.N.; Sun, Q.J.; Wang, J.D.

    2010-08-15

    Nearly monodisperse tungsten trioxide submicrospheres have been synthesized with tungsten acid and HCl as the starting materials and thiourea as a structure-directing agent through a facile hydrothermal method. The obtained products were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and energy dispersive X-ray, respectively. The results show that the WO{sub 3} submicrospheres are monodisperse with a diameter of about 800-1000 nm. The morphology of the products gradually evolutes from rods to spheres with increase of the reaction time. The formation mechanism of the WO{sub 3} submicrospheres is primarily discussed.

  12. One-pot odourless synthesis of thioesters via in situ generation of thiobenzoic acids using benzoic anhydrides and thiourea

    PubMed Central

    Khalifeh, Reza

    2015-01-01

    Summary An efficient and odourless procedure for a one-pot synthesis of thioesters by the reaction of benzoic anhydrides, thiourea and various organic halides (primary, allylic, and benzylic) or structurally diverse, electron-deficient alkenes (ketones, esters, and nitriles) in the presence of Et3N has been developed. In this method, thiobenzoic acids were in situ generated from the reaction of thiourea with benzoic anhydrides, which were subjected to conjugate addition with electron-deficient alkenes or a nucleophilic displacement reaction with alkyl halides. PMID:26425185

  13. Acyl-acyl carrier protein as a source of fatty acids for bacterial bioluminescence

    SciTech Connect

    Byers, D.M.; Meighen, E.A.

    1985-09-01

    Pulse-chase experiments with (/sup 3/H)tetradecanoic acid and ATP showed that the bioluminescence-related 32-kDa acyltransferase from Vibrio harveyi can specifically catalyze the deacylation of a /sup 3/H-labeled 18-kDa protein observed in extracts of this bacterium. The 18-kDa protein has been partially purified and its physical and chemical properties strongly indicate that it is fatty acyl-acyl carrier protein (acyl-ACP). Both this V. harveyi (/sup 3/H)acylprotein and (/sup 3/H)palmitoyl-ACP from Escherichia coli were substrates in vitro for either the V. harveyi 32-kDa acyltransferase or the analogous enzyme (34K) from Photobacterium phosphoreum. TLC analysis indicated that the hexane-soluble product of the reaction is fatty acid. No significant cleavage of either E. coli or V. harveyi tetradecanoyl-ACP was observed in extracts of these bacteria unless the 32-kDa or 34K acyltransferase was present. Since these enzymes are believed to be responsible for the supply of fatty acids for reduction to form the aldehyde substrate of luciferase, the above results suggest that long-chain acyl-ACP is the source of fatty acids for bioluminescence.

  14. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors.

    PubMed

    Roessler, Claudia; Nowak, Theresa; Pannek, Martin; Gertz, Melanie; Nguyen, Giang T T; Scharfe, Michael; Born, Ilona; Sippl, Wolfgang; Steegborn, Clemens; Schutkowski, Mike

    2014-09-26

    Sirtuins are NAD(+)-dependent deacetylases acting as sensors in metabolic pathways and stress response. In mammals there are seven isoforms. The mitochondrial sirtuin 5 is a weak deacetylase but a very efficient demalonylase and desuccinylase; however, its substrate acyl specificity has not been systematically analyzed. Herein, we investigated a carbamoyl phosphate synthetase 1 derived peptide substrate and modified the lysine side chain systematically to determine the acyl specificity of Sirt5. From that point we designed six potent peptide-based inhibitors that interact with the NAD(+) binding pocket. To characterize the interaction details causing the different substrate and inhibition properties we report several X-ray crystal structures of Sirt5 complexed with these peptides. Our results reveal the Sirt5 acyl selectivity and its molecular basis and enable the design of inhibitors for Sirt5. PMID:25111069

  15. Acylated iridoids with cytotoxicity from Valeriana jatamansi.

    PubMed

    Lin, Sheng; Shen, Yun-Heng; Li, Hui-Liang; Yang, Xian-Wen; Chen, Tao; Lu, Long-Hai; Huang, Zheng-Sheng; Liu, Run-Hui; Xu, Xi-Ke; Zhang, Wei-Dong; Wang, Hui

    2009-04-01

    Thirteen new acylated iridoids, jatamanvaltrates A-M (1-13), together with nine known valepotriates (14-22), were isolated from the whole plants of Valeriana jatamansi (syn. Valeriana wallichii). The structures of these new compounds were assigned by detailed interpretation of spectroscopic data. Jatamanvaltrates D (4) and H (9) are the first examples of naturally occurring valepotriates containing an o-hydroxybenzoyloxy moiety at C-10. All isolated compounds were tested for their cytotoxicity against lung adenocarcinoma (A549), metastatic prostate cancer (PC-3M), colon cancer (HCT-8), and hepatoma (Bel7402) cell lines.

  16. Differential Recognition of Anions with Selectivity towards F(-) by a Calix[6]arene-Thiourea Conjugate Investigated by Spectroscopy, Microscopy, and Computational Modeling by DFT.

    PubMed

    Nehra, Anita; Bandaru, Sateesh; Yarramala, Deepthi S; Rao, Chebrolu Pulla

    2016-06-20

    Anion recognition studies were performed with triazole-appended thiourea conjugates of calix[6]arene (i.e., compound (6) L) by absorption and (1) H NMR spectroscopy by using nineteen different anions. The composition of the species of recognition was derived from ESI mass spectrometry. The absorption spectra of compound (6) L showed a new band at λ=455 nm in the presence of F(-) due to a charge transfer from the anion to the thiourea moiety and the absorbance increases almost linearly in the concentration range 5 to 200 μm. This is associated with a strong visual color change of the solution. Other anions, such as H2 PO4 (-) and HSO4 (-) , exhibit a redshift of the λ=345 nm band and the spectral changes are associated with the formation of an isosbestic point at λ=343 nm. (1) H NMR studies further confirm the binding of F(-) efficiently to the thiourea group among the halides by shifting the thiourea proton signals downfield followed by their disappearance after the addition of more than one equivalent of F(-) . The other anions also showed interactions with compound (6) L, however, their binding strength follows the order F(-) >CO3 (2-) >H2 PO4 (-) ≈CH3 COO(-) >HSO4 (-) . The NMR spectral changes clearly revealed the anion-binding region of the arms in case of all these anions. The anion binding to compound (6) L indeed stabilizes a flattened-cone conformation as deduced based on the calix-aromatic proton signals and was further confirmed by VT (1) H NMR experiments. The stabilization of the flattened-cone conformation was further augmented by the interaction of the butyl moiety of the nBu4 N(+) counterion. The structural features of the anion-bound species were demonstrated by DFT computations and the resultant structures carried the features that were predicted based on the (1) H NMR spectroscopic measurements. In addition, SEM images showed a marigold flower-type morphology for compound (6) L and this has been transformed into a chain

  17. Differential Recognition of Anions with Selectivity towards F(-) by a Calix[6]arene-Thiourea Conjugate Investigated by Spectroscopy, Microscopy, and Computational Modeling by DFT.

    PubMed

    Nehra, Anita; Bandaru, Sateesh; Yarramala, Deepthi S; Rao, Chebrolu Pulla

    2016-06-20

    Anion recognition studies were performed with triazole-appended thiourea conjugates of calix[6]arene (i.e., compound (6) L) by absorption and (1) H NMR spectroscopy by using nineteen different anions. The composition of the species of recognition was derived from ESI mass spectrometry. The absorption spectra of compound (6) L showed a new band at λ=455 nm in the presence of F(-) due to a charge transfer from the anion to the thiourea moiety and the absorbance increases almost linearly in the concentration range 5 to 200 μm. This is associated with a strong visual color change of the solution. Other anions, such as H2 PO4 (-) and HSO4 (-) , exhibit a redshift of the λ=345 nm band and the spectral changes are associated with the formation of an isosbestic point at λ=343 nm. (1) H NMR studies further confirm the binding of F(-) efficiently to the thiourea group among the halides by shifting the thiourea proton signals downfield followed by their disappearance after the addition of more than one equivalent of F(-) . The other anions also showed interactions with compound (6) L, however, their binding strength follows the order F(-) >CO3 (2-) >H2 PO4 (-) ≈CH3 COO(-) >HSO4 (-) . The NMR spectral changes clearly revealed the anion-binding region of the arms in case of all these anions. The anion binding to compound (6) L indeed stabilizes a flattened-cone conformation as deduced based on the calix-aromatic proton signals and was further confirmed by VT (1) H NMR experiments. The stabilization of the flattened-cone conformation was further augmented by the interaction of the butyl moiety of the nBu4 N(+) counterion. The structural features of the anion-bound species were demonstrated by DFT computations and the resultant structures carried the features that were predicted based on the (1) H NMR spectroscopic measurements. In addition, SEM images showed a marigold flower-type morphology for compound (6) L and this has been transformed into a chain

  18. Choline chloride-thiourea, a deep eutectic solvent for the production of chitin nanofibers.

    PubMed

    Mukesh, Chandrakant; Mondal, Dibyendu; Sharma, Mukesh; Prasad, Kamalesh

    2014-03-15

    Deep eutectic solvents (DESs) consisting of the mixtures of choline halide (chloride/bromide)-urea and choline chloride-thiourea were used as solvents to prepare α-chitin nanofibers (CNFs). CNFs of diameter 20-30 nm could be obtained using the DESs comprising of the mixture of choline chloride and thiourea (CCT 1:2); however, NFs could not be obtained using the DESs having urea (CCU 1:2) as hydrogen bond donor. The physicochemical properties of thus obtained NFs were compared with those obtained using a couple of imidazolium based ionic liquids namely, 1-butyl-3-methylimidazolium hydrogen sulphate [(Bmim)HSO4] and 1-methylimidazolium hydrogen sulphate [(Hmim)HSO4] as well as choline based bio-ILs namely, choline hydrogen sulphate [(Chol)HSO4] and choline acrylate. The CNFs obtained using the DES as a solvent were used to prepare calcium alginate bio-nanocomposite gel beads having enhanced elasticity in comparison to Ca-alginate beads. The bio-nanocomposite gel beads thus obtained were used to study slow release of 5-fluorouracil, an anticancer drug. PMID:24528755

  19. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density. PMID:26388182

  20. Effective and Selective Recovery of Precious Metals by Thiourea Modified Magnetic Nanoparticles

    PubMed Central

    Lin, Tai-Lin; Lien, Hsing-Lung

    2013-01-01

    Adsorption of precious metals in acidic aqueous solutions using thiourea modified magnetic magnetite nanoparticle (MNP-Tu) was examined. The MNP-Tu was synthesized, characterized and examined as a reusable adsorbent for the recovery of precious metals. The adsorption kinetics were well fitted with pseudo second-order equation while the adsorption isotherms were fitted with both Langmuir and Freundlich equations. The maximum adsorption capacity of precious metals for MNP-Tu determined by Langmuir model was 43.34, 118.46 and 111.58 mg/g for Pt(IV), Au(III) and Pd(II), respectively at pH 2 and 25 °C. MNP-Tu has high adsorption selectivity towards precious metals even in the presence of competing ions (Cu(II)) at high concentrations. In addition, the MNP-Tu can be regenerated using an aqueous solution containing 0.7 M thiourea and 2% HCl where precious metals can be recovered in a concentrated form. It was found that the MNP-Tu undergoing seven consecutive adsorption-desorption cycles still retained the original adsorption capacity of precious metals. A reductive adsorption resulting in the formation of elemental gold and palladium at the surface of MNP-Tu was observed. PMID:23698770

  1. Cold tolerance in thiourea primed capsicum seedlings is associated with transcript regulation of stress responsive genes.

    PubMed

    Patade, Vikas Yadav; Khatri, Deepti; Manoj, Kamble; Kumari, Maya; Ahmed, Zakwan

    2012-12-01

    Benefits of seed priming in seedling establishment and tolerance to subsequent stress exposure are well reported. However, the molecular mechanisms underlying the priming mediated benefits are not much discovered. Results of our earlier experiments established that thiourea (TU) seed priming imparts cold tolerance to capsicum seedlings. Therefore, to understand molecular mechanisms underlying priming mediated cold stress tolerance, quantitative transcript expression of stress responsive genes involved in transcript regulation (CaCBF1A, CaCBF1B, Zinc Finger protein, CaWRKY30), osmotic adjustment (PROX1, P5CS, Osmotin), antioxidant defence (CAT2, APX, GST, GR1, Cu/Zn SOD, Mn SOD, Fe SOD), signaling (Annexin), movement of solutes and water (CaPIP1), and metabolite biosynthesis through phenylpropanoid pathway (CAH) was studied in response to cold (4 °C; 4 and 24 h) stress in seedlings grown from the TU primed, hydroprimed and unsoaked seeds. The transcript expression of CaWRKY30, PROX1, Osmotin, Cu/Zn SOD and CAH genes was either higher or induced earlier on cold exposure in thiourea priming than that of hydroprimed and unsoaked over the respective unstressed controls. The results thus suggest that the TU priming modulate expression of these genes thereby imparting cold tolerance in capsicum seedlings.

  2. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density.

  3. Observation of crystallization and characterizations on thiourea cadmium iodide: A semi-organic optical material

    SciTech Connect

    Singh, Preeti; Hasmuddin, Mohd.; Abdullah, M.M.; Shkir, Mohd.; Wahab, M.A.

    2013-10-15

    Graphical abstract: - Highlights: • Thiourea cadmium iodide (TCI) was grown by slow evaporation solution technique. • Morphology and growth rate of the grown compound are determined with the help of inverted microscope. • Optical band gap has been determined. • Microstructure analysis has been reported. • Electrical study has been reported and discussed. - Abstract: In this work, the single crystals of thiourea cadmium iodide were grown by slow evaporation solution technique in two different ratios 2:1 and 1:1. During the formation of their single crystals the morphological features and its live growth process were recorded with the help of inverted microscope. Structural studies of the grown crystals have been carried out by powder X-ray diffraction to confirm the crystal system and vibrational modes by Raman spectroscopy. The optical energy band gaps were investigated through UV–vis spectroscopy study. The surface morphology of the grown single crystals was analyzed by using Scanning Electron Microscope and thermal analysis was carried out by using thermogravimetric analysis. The electrical properties were also studied as a function of frequency and the obtained results are discussed.

  4. Novel ureas and thioureas of 15-membered azalides with antibacterial activity against key respiratory pathogens.

    PubMed

    Bukvić Krajacić, Mirjana; Novak, Predrag; Dumić, Miljenko; Cindrić, Mario; Paljetak, Hana Cipcić; Kujundzić, Nedjeljko

    2009-09-01

    The new ureas and thioureas of 15-membered azalides, N''-substituted 9a-(N'-carbamoyl-gamma-aminopropyl) (4), 9a-(N'-thiocarbamoyl-gamma-aminopropyl) (6), 9a-[N'-(beta-cyanoethyl)-N'-(carbamoyl-gamma-aminopropyl)] (8) and 9a-[N'-(beta-cyanoethyl)-N'-(thiocarbamoyl-gamma-aminopropyl)] (10) of 9-deoxo-9-dihydro-9a-aza-9a-homoerythromycin A (2), were synthesized and structurally characterized by NMR and IR spectroscopic methods and mass spectrometry. The new compounds were evaluated in vitro against a panel of erythromycin susceptible and erythromycin-resistant gram-positive and gram-negative bacterial strains. These compounds displayed an excellent overall antibacterial in vitro activity against erythromycin sensitive gram-positive strains, Streptococcus pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and good against negative strains, Moraxella catarrhalis and Haemophilus influenzae. In addition, several ureas with naphthyl substituents (4f, 4g, 4h) showed better activity in comparison to azithromycin against inducible resistant S. pyogenes. Ureas with naphthyl substituents 4g, 4h and thiourea 8h displayed moderate activity against constitutively resistant S. pneumoniae.

  5. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution.

    PubMed

    Ruan, Dong; Zhang, Lina; Zhou, Jinping; Jin, Huiming; Chen, Hui

    2004-12-15

    Cellulose was dissolved rapidly in a NaOH/thiourea aqueous solution (9.5:4.5 in wt.-%) to prepare a transparent cellulose solution, which was employed, for the first time, to spin a new class of regenerated cellulose fibers by wet spinning. The structure and mechanical properties of the resulting cellulose fibers were characterized, and compared with those of commercially available viscose rayon, cuprammonium rayon and Lyocell fibers. The results from wide angle X-ray diffraction and CP/MAS 13C NMR indicated that the novel cellulose fibers have a structure typical for a family II cellulose and possessed relatively high degrees of crystallinity. Scanning electron microscopy (SEM) and optical microscopy images revealed that the cross-section of the fibers is circular, similar to natural silk. The new fibers have higher molecular weights and better mechanical properties than those of viscose rayon. This low-cost technology is simple, different from the polluting viscose process. The dissolution and regeneration of the cellulose in the NaOH/thiourea aqueous solutions were a physical process and a sol-gel transition rather than a chemical reaction, leading to the smoothness and luster of the fibers. This work provides a potential application in the field of functional fiber manufacturing.

  6. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    SciTech Connect

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  7. Are There Acyl-Homoserine Lactones within Mammalian Intestines?

    PubMed Central

    Swearingen, Matthew C.; Sabag-Daigle, Anice

    2013-01-01

    Many Proteobacteria are capable of quorum sensing using N-acyl-homoserine lactone (acyl-HSL) signaling molecules that are synthesized by LuxI or LuxM homologs and detected by transcription factors of the LuxR family. Most quorum-sensing species have at least one LuxR and one LuxI homolog. However, members of the Escherichia, Salmonella, Klebsiella, and Enterobacter genera possess only a single LuxR homolog, SdiA, and no acyl-HSL synthase. The most obvious hypothesis is that these organisms are eavesdropping on acyl-HSL production within the complex microbial communities of the mammalian intestinal tract. However, there is currently no evidence of acyl-HSLs being produced within normal intestinal communities. A few intestinal pathogens, including Yersinia enterocolitica, do produce acyl-HSLs, and Salmonella can detect them during infection. Therefore, a more refined hypothesis is that SdiA orthologs are used for eavesdropping on other quorum-sensing pathogens in the host. However, the lack of acyl-HSL signaling among the normal intestinal residents is a surprising finding given the complexity of intestinal communities. In this review, we examine the evidence for and against the possibility of acyl-HSL signaling molecules in the mammalian intestine and discuss the possibility that related signaling molecules might be present and awaiting discovery. PMID:23144246

  8. Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant.

    PubMed

    Kumar, Vinod; Jahan, Firdaus; Mahajan, Richi V; Saxena, Rajendra Kumar

    2016-10-01

    The present investigation describes the regioselective enzymatic acylation of quercetin with ferulic acid using Rhizopus oryzae lipase. Optimization of reaction parameters resulted in 93.2% yield of the ester synthesized using 750IU of lipase in cyclo-octane at a temperature of 45°C. The reaction was successfully carried out upto 25g scale. The ester synthesized was analyzed by (1)H Nuclear magnetic resonance spectroscopy. The ester synthesized (quercetin ferulate) showed higher antiradical activity as compared to ascorbic acid using the 2,2-diphenyl-1-picrylhydrazyl radical method. These results on enzyme-catalyzed acylation of quercetin might be used to prepare and scale-up other flavonoids derivatives. PMID:27372535

  9. Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant.

    PubMed

    Kumar, Vinod; Jahan, Firdaus; Mahajan, Richi V; Saxena, Rajendra Kumar

    2016-10-01

    The present investigation describes the regioselective enzymatic acylation of quercetin with ferulic acid using Rhizopus oryzae lipase. Optimization of reaction parameters resulted in 93.2% yield of the ester synthesized using 750IU of lipase in cyclo-octane at a temperature of 45°C. The reaction was successfully carried out upto 25g scale. The ester synthesized was analyzed by (1)H Nuclear magnetic resonance spectroscopy. The ester synthesized (quercetin ferulate) showed higher antiradical activity as compared to ascorbic acid using the 2,2-diphenyl-1-picrylhydrazyl radical method. These results on enzyme-catalyzed acylation of quercetin might be used to prepare and scale-up other flavonoids derivatives.

  10. Lysine fatty acylation promotes lysosomal targeting of TNF-α

    PubMed Central

    Jiang, Hong; Zhang, Xiaoyu; Lin, Hening

    2016-01-01

    Tumor necrosis factor-α (TNF-α) is a proinflammation cytokine secreted by various cells. Understanding its secretive pathway is important to understand the biological functions of TNF-α and diseases associated with TNF-α. TNF-α is one of the first proteins known be modified by lysine fatty acylation (e.g. myristoylation). We previously demonstrated that SIRT6, a member of the mammalian sirtuin family of enzymes, can remove the fatty acyl modification on TNF-α and promote its secretion. However, the mechanistic details about how lysine fatty acylation regulates TNF-α secretion have been unknown. Here we present experimental data supporting that lysine fatty acylation promotes lysosomal targeting of TNF-α. The result is an important first step toward understanding the biological functions of lysine fatty acylation. PMID:27079798

  11. Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications.

    PubMed

    Kem, Michelle P; Butler, Alison

    2015-06-01

    Acyl peptidic siderophores are produced by a variety of bacteria and possess unique amphiphilic properties. Amphiphilic siderophores are generally produced in a suite where the iron(III)-binding headgroup remains constant while the fatty acid appendage varies by length and functionality. Acyl peptidic siderophores are commonly synthesized by non-ribosomal peptide synthetases; however, the method of peptide acylation during biosynthesis can vary between siderophores. Following biosynthesis, acyl siderophores can be further modified enzymatically to produce a more hydrophilic compound, which retains its ferric chelating abilities as demonstrated by pyoverdine from Pseudomonas aeruginosa and the marinobactins from certain Marinobacter species. Siderophore hydrophobicity can also be altered through photolysis of the ferric complex of certain β-hydroxyaspartic acid-containing acyl peptidic siderophores. PMID:25677460

  12. Determination of mercury(II) in aquatic plants using quinoline-thiourea conjugates as a fluorescent probe.

    PubMed

    Feng, Guodong; Ding, Yuanyuan; Gong, Zhiyong; Dai, Yanna; Fei, Qiang

    2013-01-01

    In this study, a quinoline-thiourea conjugate (1-phenyl-3-(quinoline-8-yl) thiourea, PQT) was synthesized and used as a fluorescence sensor to detect mercury ion. The observation is coincident with the well-documented phenomenon that a thiocarbonyl-containing group on a fluorochrome quenches the fluorescence due to the heavy atom effect of the S atom. The large fluorescence enhancement of PQT in the buffered MeCN-water mixture (1/1 v/v; HEPES 100 mM; pH 8.0) was caused by the Hg(2+) induced transformation of the thiourea function into a urea group. As such, protic solvents can be ascribed to hydrogen bond formation on the carbonyl oxygen to reduce the internal conversion rate. The fluorescence intensity of PQT was enhanced quantitatively with an increase in the concentration of mercury ion. The limit of detection of Hg(2+) was 7.5 nM. The coexistence of other metal ions with mercury had no obvious influence on the detection of mercury. A quinolone-thiourea conjugate was used as a fluorescent probe to detect Hg(2+) in aquatic plants and the experimental results were satisfactory. PMID:23842417

  13. Thiourea-treated graphene aerogel as a highly selective gas sensor for sensing of trace level of ammonia.

    PubMed

    Alizadeh, Taher; Ahmadian, Farzaneh

    2015-10-15

    As a result of this study, a new and simple method was proposed for the fabrication of an ultra sensitive, robust and reversible ammonia gas sensor. The sensing mechanism was based upon the change in electrical resistance of a graphene aerogel as a result of sensor exposing to ammonia. Three-dimensional graphene hydrogel was first synthesized via hydrothermal method in the absence or presence of various amounts of thiourea. The obtained material was heated to obtain aerogel and then it was used as ammonia gas sensor. The materials obtained were characterized using different techniques such as Fourier transform infra red spectroscopy (FT-IR), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The thiourea-treated graphene aerogel was more porous (389 m(2) g(-1)) and thermally unstable and exhibited higher sensitivity, shorter response time and better selectivity toward ammonia gas, compared to the aerogel produced in the absence of thiourea. Thiourea amount, involved in the hydrogel synthesis step, was found to be highly effective factor in the sensing properties of finally obtained aerogel. The sensor response time to ammonia was short (100 s) and completely reversible (recovery time of about 500 s) in ambient temperature. The sensor response to ammonia was linear between 0.02 and 85 ppm and its detection limit was found to be 10 ppb (3S/N).

  14. An on-line spectrophotometric determination of trace amounts of thiourea in tap water, orange juice, and orange peel samples using multi-channel flow injection analysis.

    PubMed

    Arab Chamjangali, M; Goudarzi, N; Ghochani Moghadam, A; Amin, A H

    2015-01-01

    In this work, a flow injection analysis (FIA) method was introduced for the determination of trace amounts of thiourea in tap water. This method is based upon the inhibition effect of thiourea on the reaction between meta-cresol purple (MCP) and potassium bromate catalyzed by bromide ions in a sulfuric acid medium. In the presence of thiourea, an induction period appears in the reaction system, and as a result, the absorbance of MCP increases at 525 nm in the FIA manifold. The chemical and FIA variables are studied and optimized using the univariate and Simplex optimization methods. Under the optimum conditions, thiourea can be determined in the range of 0.100-13.0 μg mL(-1). The limit of detection (3σ) for thiourea was found to be 0.0310 μg mL(-1). The relative standard deviations (RSDs) for six replicate determinations of 0.500, 5.00, and 12.0 μg mL(-1) of thiourea were 4.0%, 1.8%, and 1.2%, respectively. The proposed method was also applied for the determination of thiourea in orange juice and orange peel samples with recoveries in the range of 98.0-101%. The analytical speed of the method was calculated to be about 120 sample per hour.

  15. K2CO3-promoted formation of aryl esters from primary aryl amides by the acyl-acyl exchange process.

    PubMed

    Bian, Yongjun; Qu, Xingyu

    2016-04-28

    A new acyl-acyl exchange reaction has been developed for the formation of aryl esters from primary aryl amides. The reaction could occur under mild reaction conditions with catalytic quantities of K2CO3, and could afford moderate to good yields of the desired products. PMID:27035611

  16. Semi-synthesis of acylated triterpenes from olive-oil industry wastes for the development of anticancer and anti-HIV agents.

    PubMed

    Parra, Andres; Martin-Fonseca, Samuel; Rivas, Francisco; Reyes-Zurita, Fernando J; Medina-O'Donnell, Marta; Martinez, Antonio; Garcia-Granados, Andres; Lupiañez, Jose A; Albericio, Fernando

    2014-03-01

    A broad set of potential bioactive conjugate compounds has been semi-synthesized through solution- and solid-phase organic procedures, coupling two natural pentacyclic triterpene acids, oleanolic (OA) and maslinic acids (MA), at the hydroxyl groups of the A-ring of the triterpene skeleton, with 10 different acyl groups. These acyl OA and MA derivatives have been tested for their anti-proliferative (against the b16f10 murine melanoma cancer cells) and antiviral (as inhibitors of the HIV-1-protease) effects. Several derivatives have shown high levels of early and total apoptosis (up to 90%). Most of the compounds that exhibited anti-proliferative effects also generated ROS, probably involving the activation of an intrinsic apoptotic route. The only four compounds that did not cause the release of ROS could be related to the participation of a probable extrinsic activation of the apoptosis mechanism. A great number of these acyl OA and MA derivatives have proved to be potent inhibitors of the HIV-1-protease, the most active inhibitors having IC50 values between 0.31 and 15.6 μM, these values being between 4 and 186 times lower than their non-acylated precursors. The potent activities exhibited in the apoptosis-activation processes and in the inhibition of the HIV-1-protease by some OA and MA acylated derivatives imply that these compounds could be used as new, safe, and effective anticancer and/or antiviral drugs.

  17. Friedel-Craft acylation of ar-himachalene: synthesis of acyl-ar-himachalene and a new acyl-hydroperoxide.

    PubMed

    Hossini, Issam; Harrad, Mohamed Anoir; Ait Ali, Mustapha; El Firdoussi, Larbi; Karim, Abdallah; Valerga, Pedro; Puerta, M Carmen

    2011-01-01

    Friedel-Craft acylation at 100 °C of 2,5,9,9-tetramethyl-6,7,8,9-tetrahydro-5H-benzocycloheptene [ar-himachalene], a sesquiterpenic hydrocarbon obtained by catalytic dehydrogenation of α-, β- and γ-himachalenes, produces a mixture of two compounds: (3,5,5,9-tetramethyl-6,7,8,9-tetrahydro-5H-benzocyclohepten-2-yl)-ethanone (2, in 69% yield), with a conserved reactant backbone, and 3, with a different skeleton, in 21% yield. The crystal structure of 3 reveals it to be 1-(8-ethyl-8-hydroperoxy-3,5,5-trimethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-ethanone. In this compound O-H…O bonds form dimers. These hydrogen-bonds, in conjunction with weaker C-H…O interactions, form a more extended supramolecular arrangement in the crystal. PMID:21760570

  18. Tunneling Spectroscopy Studies of Urea, Thiourea, and Selected Phosphonate Molecules Adsorbed on Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Crowder, Charles D.

    Experimental and calculated inelastic electron tunneling intensities were compared for several of the vibrational modes of thiourea adsorbed on aluminum oxide. The partial charge model of Kirtley, Scalapino, and Hansma was used to compute the theoretical intensities of each mode. The required partial charges were determined using a method developed by Momany. Essentially, the Coulomb potential resulting from point charges located at atom sites was fitted to the quantum mechanical electrostatic potential of a molecule calculated from Hartree-Fock theory. The effect of a vibrational mode pattern on the electrostatic potential of a molecule was investigated. This effect could not be acceptably modeled with a single point charge located on each atom, so one charge was used to represent the positive nucleus of each atom and a second charge was used to represent the valence cloud. The valence charge was allowed to move independently of the nuclear charge during a molecular vibration, and the motions of the two charges were found to be very different for hydrogen atoms. This model gave very reasonable agreement between the theoretical and observed relative intensities for the in plane vibrational modes of thiourea. An acceptable set of out of plane force constants could not be found. This caused problems in the interpretation of the out of plane relative intensities. Based on the in plane modes, it was concluded that thiourea bonded to aluminum oxide with the sulfur atom near the oxide and the sulfur-carbon bond perpendicular to the aluminum oxide surface. Quantum mechanical electrostatic potentials were also calculated for urea, phosphoric acid (PA), methylphosphonic acid (MPA), hydroxymethylphosphonic acid (HMP), and nitrotrismethylphosphonic acid (NTMP). Electron tunneling spectra were taken for PA, HMP and NTMP, and the observed frequencies were compared to values obtained from Fourier transform infrared, infrared and Raman spectroscopy. Upward shifts in the P=O and P

  19. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    PubMed

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered. PMID:26938582

  20. Acyl-acyl carrier protein thioesterase activity from sunflower (Helianthus annuus L.) seeds.

    PubMed

    Martínez-Force, E; Cantisán, S; Serrano-Vega, M J; Garcés, R

    2000-10-01

    During sunflower (Helianthus annuus L.) seed formation there was an active period of lipid biosynthesis between 12 and 28 days after flowering (DAF). The maximum in-vitro acyl-acyl carrier protein (ACP) thioesterase activities (EC 3.1.2.14) were found at 15 DAF, preceding the largest accumulation of lipid in the seed. Data from the apparent kinetic parameters, Vmax and Km, from seeds of 15 and 30 DAF, showed that changes in acyl-ACP thioesterase activity are not only quantitative, but also qualitative, since, although the preferred substrate was always oleoyl-ACP, the affinity for palmitoyl-ACP decreased, whereas that for stearoyl-ACP increased with seed maturation. Bisubstrate assays carried out at 30 DAF seemed to indicate that the total activity found in mature seeds is due to a single enzyme with 100/75/15 affinity for oleoyl-ACP/stearoyl-ACP/ palmitoyl-ACP. In contrast, at 15 DAF, enzymatic data together with partial sequences from cDNAs indicated the presence of at least two enzymes with different properties, a FatA-like thioesterase, with a high affinity for oleoyl-ACP, plus a FatB-like enzyme, with preference for long-chain saturated fatty acids, both being expressed during the active lipid biosynthesis period. Competition assays carried out with CAS-5, a mutant with a higher content of palmitic acid in the seed oil, indicated that a modified FatA-type thioesterase is involved in the mutant phenotype.

  1. Palladium-Catalyzed Environmentally Benign Acylation.

    PubMed

    Suchand, Basuli; Satyanarayana, Gedu

    2016-08-01

    Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp(2) C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone. PMID:27377566

  2. Synthesis and Characterization of AlCl3 Impregnated Molybdenum Oxide as Heterogeneous Nano-Catalyst for the Friedel-Crafts Acylation Reaction in Ambient Condition.

    PubMed

    Jadhav, Arvind H; Chinnappan, Amutha; Hiremath, Vishwanath; Seo, Jeong Gil

    2015-10-01

    Aluminum trichloride (AlCl3) impregnated molybdenum oxide heterogeneous nano-catalyst was prepared by using simple impregnation method. The prepared heterogeneous catalyst was characterized by powder X-ray diffraction, FT-IR spectroscopy, solid-state NMR spectroscopy, SEM imaging, and EDX mapping. The catalytic activity of this protocol was evaluated as heterogeneous catalyst for the Friedel-Crafts acylation reaction at room temperature. The impregnated MoO4(AlCl2)2 catalyst showed tremendous catalytic activity in Friedel-Crafts acylation reaction under solvent-free and mild reaction condition. As a result, 84.0% yield of acyl product with 100% consumption of reactants in 18 h reaction time at room temperature was achieved. The effects of different solvents system with MoO4(AlCl2)2 catalyst in acylation reaction was also investigated. By using optimized reaction condition various acylated derivatives were prepared. In addition, the catalyst was separated by simple filtration process after the reaction and reused several times. Therefore, heterogeneous MoO4(AlCl2)2 catalyst was found environmentally benign catalyst, very convenient, high yielding, and clean method for the Friedel-Crafts acylation reaction under solvent-free and ambient reaction condition. PMID:26726496

  3. Synthesis and Characterization of AlCl3 Impregnated Molybdenum Oxide as Heterogeneous Nano-Catalyst for the Friedel-Crafts Acylation Reaction in Ambient Condition.

    PubMed

    Jadhav, Arvind H; Chinnappan, Amutha; Hiremath, Vishwanath; Seo, Jeong Gil

    2015-10-01

    Aluminum trichloride (AlCl3) impregnated molybdenum oxide heterogeneous nano-catalyst was prepared by using simple impregnation method. The prepared heterogeneous catalyst was characterized by powder X-ray diffraction, FT-IR spectroscopy, solid-state NMR spectroscopy, SEM imaging, and EDX mapping. The catalytic activity of this protocol was evaluated as heterogeneous catalyst for the Friedel-Crafts acylation reaction at room temperature. The impregnated MoO4(AlCl2)2 catalyst showed tremendous catalytic activity in Friedel-Crafts acylation reaction under solvent-free and mild reaction condition. As a result, 84.0% yield of acyl product with 100% consumption of reactants in 18 h reaction time at room temperature was achieved. The effects of different solvents system with MoO4(AlCl2)2 catalyst in acylation reaction was also investigated. By using optimized reaction condition various acylated derivatives were prepared. In addition, the catalyst was separated by simple filtration process after the reaction and reused several times. Therefore, heterogeneous MoO4(AlCl2)2 catalyst was found environmentally benign catalyst, very convenient, high yielding, and clean method for the Friedel-Crafts acylation reaction under solvent-free and ambient reaction condition.

  4. Growth and characterization of pure and KCl doped zinc thiourea chloride (ZTC) single crystals.

    PubMed

    Ruby Nirmala, L; Thomas Joseph Prakash, J

    2013-02-01

    Potassium Chloride (KCl) as an additive is added into zinc thiourea chloride solution in a small amount (1M%) by the method of slow evaporation solution growth technique at room temperature to get a new crystal. Due to the doping of the impurities on the crystals, remarkable changes in the physical properties were obtained. The grown crystals have been subjected to different instrumentation methods. The incorporation of the amount of potassium and zinc in the crystal lattices has been determined by AAS method. The lattice dimensions have been identified from single crystal X-ray diffraction measurements. The presence of functional group for the grown crystals has been identified by FTIR analysis. The optical, thermal and mechanical behaviors have been assessed by UV-Vis, TG/DTA and Vickers hardness methods respectively. The presence of dislocations of atoms has been identified by etching studies. PMID:23220671

  5. Pattern formation in the thiourea-iodate-sulfite system: Spatial bistability, waves, and stationary patterns

    NASA Astrophysics Data System (ADS)

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2010-06-01

    We present a detailed study of the reaction-diffusion patterns observed in the thiourea-iodate-sulfite (TuIS) reaction, operated in open one-side-fed reactors. Besides spatial bistability and spatio-temporal oscillatory dynamics, this proton autoactivated reaction shows stationary patterns, as a result of two back-to-back Turing bifurcations, in the presence of a low-mobility proton binding agent (sodium polyacrylate). This is the third aqueous solution system to produce stationary patterns and the second to do this through a Turing bifurcation. The stationary pattern forming capacities of the reaction are explored through a systematic design method, which is applicable to other bistable and oscillatory reactions. The spatio-temporal dynamics of this reaction is compared with that of the previous ferrocyanide-iodate-sulfite mixed Landolt system.

  6. Protein fatty acid acylation: enzymatic synthesis of an N-myristoylglycyl peptide

    SciTech Connect

    Towler, D.; Glaser, L.

    1986-05-01

    Incubation of Saccharomyces cerevisiae strain JR153 with either (/sup 3/H)myristate or (/sup 3/H)palmitate demonstrates the synthesis of proteins that contain covalently bound fatty acids. A unique set of proteins is labeled by each fatty acid. Detailed analysis of a 20-kDa protein labeled with myristic acid demonstrates that myristate is linked to the amino-terminal glycine. We describe an enzymatic activity in yeast that will transfer myristic acid to the amino terminus of the octapeptide Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg, whose sequence was derived from a known N-myristoylated acyl protein, the catalytic subunit of cAMP-dependent protein kinase of bovine cardiac muscle. The acylation reaction is dependent on ATP and CoA, is enriched in a crude membrane fraction, and will use myristate but not palmitate as the acyl donor. Specificity of the glycyl peptide substrate is demonstrated by the observation that other glycyl peptides do not competitively inhibit myristoylation of Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg.

  7. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    PubMed Central

    Chankhamhaengdecha, Surang; Hongvijit, Suphatra; Srichaisupakit, Akkaraphol; Charnchai, Pattra; Panbangred, Watanalai

    2013-01-01

    Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9%) and 68 (51.5%) of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30 ± 3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces. PMID:23484156

  8. Endophytic actinomycetes: a novel source of potential acyl homoserine lactone degrading enzymes.

    PubMed

    Chankhamhaengdecha, Surang; Hongvijit, Suphatra; Srichaisupakit, Akkaraphol; Charnchai, Pattra; Panbangred, Watanalai

    2013-01-01

    Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9%) and 68 (51.5%) of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30 ± 3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.

  9. Role of acyl carrier protein isoforms in plant lipid metabolism

    SciTech Connect

    Not Available

    1990-01-01

    Although acyl carrier protein (ACP) is the best studied protein in plant fatty acid biosynthesis, the in vivo forms of ACPs and their steady state pools have not been examined previously in either seed or leaf. Information about the relative pool sizes of free ACP and its acyl-ACP intermediates is essential for understanding regulation of de novo fatty acid biosynthesis in plants. In this study we utilized antibodies directed against spinach ACP as a sensitive assay to analyze the acyl groups while they were still covalently attached to ACPs. 4 refs., 4 figs.

  10. Dormancy and Impotency of Cocklebur Seeds: IV. Effects of Gibberellic Acid, Benzyladenine, Thiourea, and Potassium Nitrate on the Growth of Embryonic Axis and Cotyledon Segments.

    PubMed

    Esashi, Y; Katoh, H

    1977-02-01

    Germination of nondormant but impotent small cocklebur seeds (Xanthium pennsylvanicum Wallr.) was promoted profoundly with thiourea or benzyladenine, and slightly with gibberellic acid. Gibberellic acid was ineffective in causing the germination of dormant cocklebur seeds, although thiourea and benzyladenine were effective. Experiments with excised seed pieces showed that the promotive effects of thiourea, benzyladenine, and gibberellic acid on cocklebur seed germination were associated with the enhancement of growth of seed parts; thiourea stimulated predominantly the axial growth, whereas benzyladenine stimulated predominantly the cotyledonary growth.Potassium nitrate or indoleacetic acid had little effect on the initial growth of either axes or cotyledons. Except for gibberellic acid, all of the compounds employed enhanced ethylene production, but in general, the ethylene production seemed more likely to be a consequence of growth rather than a cause of it. We concluded that the chemical regulation of seed germination may be a consequence of the alteration of growth capabilities in either the axes or cotyledons, or both.

  11. Endogenous N-acyl taurines regulate skin wound healing.

    PubMed

    Sasso, Oscar; Pontis, Silvia; Armirotti, Andrea; Cardinali, Giorgia; Kovacs, Daniela; Migliore, Marco; Summa, Maria; Moreno-Sanz, Guillermo; Picardo, Mauro; Piomelli, Daniele

    2016-07-26

    The intracellular serine amidase, fatty acid amide hydrolase (FAAH), degrades a heterogeneous family of lipid-derived bioactive molecules that include amides of long-chain fatty acids with taurine [N-acyl-taurines (NATs)]. The physiological functions of the NATs are unknown. Here we show that genetic or pharmacological disruption of FAAH activity accelerates skin wound healing in mice and stimulates motogenesis of human keratinocytes and differentiation of human fibroblasts in primary cultures. Using untargeted and targeted lipidomics strategies, we identify two long-chain saturated NATs-N-tetracosanoyl-taurine [NAT(24:0)] and N-eicosanoyl-taurine [NAT(20:0)]-as primary substrates for FAAH in mouse skin, and show that the levels of these substances sharply decrease at the margins of a freshly inflicted wound to increase again as healing begins. Additionally, we demonstrate that local administration of synthetic NATs accelerates wound closure in mice and stimulates repair-associated responses in primary cultures of human keratinocytes and fibroblasts, through a mechanism that involves tyrosine phosphorylation of the epidermal growth factor receptor and an increase in intracellular calcium levels, under the permissive control of transient receptor potential vanilloid-1 receptors. The results point to FAAH-regulated NAT signaling as an unprecedented lipid-based mechanism of wound-healing control in mammalian skin, which might be targeted for chronic wound therapy. PMID:27412859

  12. Amine, Alcohol and Phosphine Catalysts for Acyl Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Spivey, Alan C.; Arseniyadis, Stellios

    An overview of the area of organocatalytic asymmetric acyl transfer processes is presented including O- and N-acylation. The material has been ordered according to the structural class of catalyst employed rather than reaction type with the intention to draw mechanistic parallels between the manner in which the various reactions are accelerated by the catalysts and the concepts employed to control transfer of chiral information from the catalyst to the substrates.

  13. Characterization of an acyl-coenzyme A binding protein predominantly expressed in human primitive progenitor cells*s⃞

    PubMed Central

    Soupene, Eric; Serikov, Vladimir; Kuypers, Frans A.

    2008-01-01

    Human acyl-coenzyme A binding domain-containing member 6 (ACBD6) is a modular protein that carries an acyl-CoA binding domain at its N terminus and two ankyrin motifs at its C terminus. ACBD6 binds long-chain acyl-CoAs with a strong preference for unsaturated, C18:1-CoA and C20:4-CoA, over saturated, C16:0-CoA, acyl species. Deletion of the C terminus, which is not conserved among the members of this family, did not affect the binding capacity or the substrate specificity of the protein. ACBD6 is not a ubiquitous protein, and its expression is restricted to tissues and progenitor cells with functions in blood and vessel development. ACBD6 was detected in bone marrow, spleen, placenta, cord blood, circulating CD34+ progenitors, and embryonic-like stem cells derived from placenta. In placenta, the protein was only detected in CD34+ progenitor cells present in blood and in CD31+ endothelial cells surrounding the blood vessels. These cells were also positive for the marker CD133, and they probably constitute hemangiogenic stem cells, precursors of both blood and vessels. We propose that human ACBD6 represents a cellular marker for primitive progenitor cells with functions in hematopoiesis and vascular endothelium development. PMID:18268358

  14. The adsorption stability & inhibition by allyl-thiourea of bulk nanocrystalline ingot iron in dilute HCl solution

    NASA Astrophysics Data System (ADS)

    Shen, C. B.; Wang, S. G.; Yang, H. Y.; Long, K.; Wang, F. H.

    2006-12-01

    The inhibitive effect of thiourea's (TU) alkyl derivative—allyl-thiourea (ATU) on the corrosion behaviors of bulk nanocrystalline and conventional polycrystalline ingot iron (BNII & CPII) was tested. Results indicate that BNII is less prone to get corrosive than its coarse grain counterpart in blank 1 mol L -1 HCl at room temperature. When CPII and BNII were immersed for a very short time in the corrosive solution inhibited by ATU, namely, 5 min, no inductive loop appears at different concentrations. When time became prolonged, for BNII, a Warburg impedance appeared. Inhibited by ATU, the electrodes composed of the samples are polarized anodically during the potentiodynamic polarization tests, the phenomena of desorption happens at the concentration of 100 mg L -1, but the variation between potential Edes is obvious. The inhibition effect of ATU for BNII is very limited by comparison with CPII in dilute HCl.

  15. LC-quadrupole/Orbitrap high-resolution mass spectrometry enables stable isotope-resolved simultaneous quantification and ¹³C-isotopic labeling of acyl-coenzyme A thioesters.

    PubMed

    Frey, Alexander J; Feldman, Daniel R; Trefely, Sophie; Worth, Andrew J; Basu, Sankha S; Snyder, Nathaniel W

    2016-05-01

    Acyl-coenzyme A (acyl-CoA) thioesters are evolutionarily conserved, compartmentalized, and energetically activated substrates for biochemical reactions. The ubiquitous involvement of acyl-CoA thioesters in metabolism, including the tricarboxylic acid cycle, fatty acid metabolism, amino acid degradation, and cholesterol metabolism highlights the broad applicability of applied measurements of acyl-CoA thioesters. However, quantitation of acyl-CoA levels provides only one dimension of metabolic information and a more complete description of metabolism requires the relative contribution of different precursors to individual substrates and pathways. Using two distinct stable isotope labeling approaches, acyl-CoA thioesters can be labeled with either a fixed [(13)C3(15)N1] label derived from pantothenate into the CoA moiety or via variable [(13)C] labeling into the acyl chain from metabolic precursors. Liquid chromatography-hybrid quadrupole/Orbitrap high-resolution mass spectrometry using parallel reaction monitoring, but not single ion monitoring, allowed the simultaneous quantitation of acyl-CoA thioesters by stable isotope dilution using the [(13)C3(15)N1] label and measurement of the incorporation of labeled carbon atoms derived from [(13)C6]-glucose, [(13)C5(15)N2]-glutamine, and [(13)C3]-propionate. As a proof of principle, we applied this method to human B cell lymphoma (WSU-DLCL2) cells in culture to precisely describe the relative pool size and enrichment of isotopic tracers into acetyl-, succinyl-, and propionyl-CoA. This method will allow highly precise, multiplexed, and stable isotope-resolved determination of metabolism to refine metabolic models, characterize novel metabolism, and test modulators of metabolic pathways involving acyl-CoA thioesters. PMID:26968563

  16. Photon correlation spectroscopic and spectrophotometric studies of the formation of cadmium sulfide nanoparticles in ammonia-thiourea solutions

    NASA Astrophysics Data System (ADS)

    Bulavchenko, A. I.; Kolodin, A. N.; Podlipskaya, T. Yu.; Demidova, M. G.; Maksimovskii, E. A.; Beizel', N. F.; Larionov, S. V.; Okotrub, A. V.

    2016-05-01

    Nucleation of CdS in an aqueous ammonia solution of thiourea and cadmium chloride was studied by photon correlation spectroscopy (PCS), static light scattering, and spectrophotometry. The hydrodynamic diameter of nanoparticles, light scattering intensity, and optical density of the solutions increased with temperature and synthesis time. The processes of formation, growth, and coagulation of nanoparticles can be transferred from solution to the filter surface by continuously filtering the reaction mixture through a 200-nm filter.

  17. Synthesis, spectroscopic characterisation, thermal analysis, DNA interaction and antibacterial activity of copper(I) complexes with N, N‧- disubstituted thiourea

    NASA Astrophysics Data System (ADS)

    Chetana, P. R.; Srinatha, B. S.; Somashekar, M. N.; Policegoudra, R. S.

    2016-02-01

    copper(I) complexes [Cu(4MTU)2Cl] (2), [Cu(4MTU) (B)Cl] (3), [Cu(6MTU)2Cl] (5) and [Cu(6MTU) (B)Cl] (6) where 4MTU = 1-Benzyl-3-(4-methyl-pyridin-2-yl)-thiourea (1) and 6MTU = 1-Benzyl-3-(6-methyl-pyridin-2-yl)-thiourea (4), B is a N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 3, 6), were synthesized, characterized by various physico-chemical and spectroscopic techniques. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand) for 2, 5 1:1:1 (metal:ligand:B) for 3, 6. X-ray powder diffraction illustrates that the complexes have crystalline nature. IR data coupled with electronic spectra and molar conductance values suggest that the complex 2, 5 show the presence of a trigonal planar geometry and the complex 3, 6 show the presence of a tetrahedral geometry about the Cu(I) centre. The binding affinity towards calf thymus (CT) DNA was determined using UV-Vis, fluorescence spectroscopic titrations and viscosity studies. These studies showed that the tested phen complexes 3, 6 bind moderately (in the order of 105 M-1) to CT DNA. The complex 2, 5 does not show any apparent binding to the DNA and hence poor cleavage efficiency. Complex 3, 6 shows efficient oxidative cleavage of plasmid DNA in the presence of H2O2 involving hydroxyl radical species as evidenced from the control data showing inhibition of DNA cleavage in the presence of DMSO and KI. The in vitro antibacterial assay indicates that these complexes are good antimicrobial agents against various pathogens. Anti-bacterial activity is higher when thiourea coordinates to metal ion than the thiourea alone.

  18. Synthesis, spectroscopic characterisation, thermal analysis, DNA interaction and antibacterial activity of copper(I) complexes with N, N‧- disubstituted thiourea

    NASA Astrophysics Data System (ADS)

    Chetana, P. R.; Srinatha, B. S.; Somashekar, M. N.; Policegoudra, R. S.

    2016-02-01

    copper(I) complexes [Cu(4MTU)2Cl] (2), [Cu(4MTU) (B)Cl] (3), [Cu(6MTU)2Cl] (5) and [Cu(6MTU) (B)Cl] (6) where 4MTU = 1-Benzyl-3-(4-methyl-pyridin-2-yl)-thiourea (1) and 6MTU = 1-Benzyl-3-(6-methyl-pyridin-2-yl)-thiourea (4), B is a N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 3, 6), were synthesized, characterized by various physico-chemical and spectroscopic techniques. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand) for 2, 5 1:1:1 (metal:ligand:B) for 3, 6. X-ray powder diffraction illustrates that the complexes have crystalline nature. IR data coupled with electronic spectra and molar conductance values suggest that the complex 2, 5 show the presence of a trigonal planar geometry and the complex 3, 6 show the presence of a tetrahedral geometry about the Cu(I) centre. The binding affinity towards calf thymus (CT) DNA was determined using UV-Vis, fluorescence spectroscopic titrations and viscosity studies. These studies showed that the tested phen complexes 3, 6 bind moderately (in the order of 105 M-1) to CT DNA. The complex 2, 5 does not show any apparent binding to the DNA and hence poor cleavage efficiency. Complex 3, 6 shows efficient oxidative cleavage of plasmid DNA in the presence of H2O2 involving hydroxyl radical species as evidenced from the control data showing inhibition of DNA cleavage in the presence of DMSO and KI. The in vitro antibacterial assay indicates that these complexes are good antimicrobial agents against various pathogens. Anti-bacterial activity is higher when thiourea coordinates to metal ion than the thiourea alone.

  19. Synthesis and structure-activity relationship of trimebutine derivatives.

    PubMed

    Sai, H; Ozaki, Y; Hayashi, K; Onoda, Y; Yamada, K

    1996-06-01

    Trimebutine derivatives were synthesized by utilizing alkylation or acylation of isonitriles and nitrile as a key step. The colonic contractile effects of these compounds were examined, and T-1815 was found to have strong colonic propulsive activity. PMID:8814947

  20. [Determination of thiourea dioxide in lotus seed paste fillings by solid phase extraction-liquid chromatography-tandem mass spectrometry].

    PubMed

    Wang, Hui; Zeng, Xiwen; Chang, Xiaotu; Peng, Xinkai; Xia, Lixin; Li, Yiwei

    2014-01-01

    A method of solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) was developed to determine thiourea dioxide which was illegally added into lotus seed paste fillings. An amount of 0.05% (v/v) acetic acid was used to extract thiourea dioxide from fillings, and the BOND ELUT PLEXA column (60 mg/3 mL) was used as the SPE column to clean-up the extraction. Then, an Agilent HILIC column (100 mm x 2.1 mm, 3.5 microm) was applied to separate target compounds by using the mobile phases of 0.01 mol/L ammonium acetate (pH 3.5) and acetonitrile. Qualitative and quantitative analyses were operated by the multiple reaction monitoring (MRM) mode. The calibration curve showed a good linearity for the target compound in the detection range of 10 - 1 000 microg/L. The limit of detection (LOD) and limit of quantitation (LOQ) of this method were 8.0 microg/kg and 30.0 microg/kg, respectively. The recoveries were in the ranges of 75.3% - 80.7% with the RSDs of no more than 4.83%. This proposed method was rapid, highly specific and suitable for the confirmation and quantitative determination of thiourea dioxide in lotus seed paste fillings.

  1. Identification of prostamides, fatty acyl ethanolamines, and their biosynthetic precursors in rabbit cornea[S

    PubMed Central

    Urquhart, Paula; Wang, Jenny; Woodward, David F.; Nicolaou, Anna

    2015-01-01

    Arachidonoyl ethanolamine (anandamide) and pros­taglandin ethanolamines (prostamides) are biologically active derivatives of arachidonic acid. Although available through different precursor phospholipids, there is considerable overlap between the biosynthetic pathways of arachidonic acid-derived eicosanoids and anandamide-derived prostamides. Prostamides exhibit physiological actions and are involved in ocular hypotension, smooth muscle contraction, and inflammatory pain. Although topical application of bimatoprost, a structural analog of prostaglandin F2α ethanolamide (PGF2α-EA), is currently a first-line treatment for ocular hypertension, the endogenous production of prostamides and their biochemical precursors in corneal tissue has not yet been reported. In this study, we report the presence of anandamide, palmitoyl-, stearoyl-, α-linolenoyl docosahexaenoyl-, linoleoyl-, and oleoyl-ethanolamines in rabbit cornea, and following treatment with anandamide, the formation of PGF2α-EA, PGE2-EA, PGD2-EA by corneal extracts (all analyzed by LC/ESI-MS/MS). A number of N-acyl phosphatidylethanolamines, precursors of anandamide and other fatty acyl ethanolamines, were also identified in corneal lipid extracts using ESI-MS/MS. These findings suggest that the prostamide and fatty acid ethanolamine pathways are operational in the cornea and may provide valuable insight into corneal physiology and their potential influence on adjacent tissues and the aqueous humor. PMID:26031663

  2. Accessibility of N-acyl-d-mannosamines to N-acetyl-d-neuraminic acid aldolase

    PubMed Central

    Pan, Yanbin; Ayani, Tiffany; Nadas, Janos; Wen, Shouming; Guo, Zhongwu

    2011-01-01

    N-Acetyl-d-neuraminic acid (NeuNAc) aldolase is an important enzyme for the metabolic engineering of cell surface NeuNAc using chemically modified d-mannosamines. To explore the optimal substrates for this application, eight N-acyl derivatives of d-mannosamine were prepared, and their accessibility to NeuNAc aldolase was investigated quantitatively. The N-propionyl-, N-butanoyl-, N-iso-butanoyl-, N-pivaloyl- and N-phenylacetyl-d-mannosamines proved to be as good substrates as, or even better than, the natural N-acetyl-d-mannosamine, while the N-trifluoropropionyl and benzoyl derivatives were poor. It was proposed that the electronic effects might have a significant influence on the enzymatic aldol condensation reaction of d-mannosamine derivatives, with electron-deficient acyl groups having a negative impact. The results suggest that N-propionyl-, N-butanoyl-, N-iso-butanoyl- and N-phenylacetyl-d-mannosamines may be employed to bioengineer NeuNAc on cells. PMID:15280054

  3. Identification of prostamides, fatty acyl ethanolamines, and their biosynthetic precursors in rabbit cornea.

    PubMed

    Urquhart, Paula; Wang, Jenny; Woodward, David F; Nicolaou, Anna

    2015-08-01

    Arachidonoyl ethanolamine (anandamide) and pros-taglandin ethanolamines (prostamides) are biologically active derivatives of arachidonic acid. Although available through different precursor phospholipids, there is considerable overlap between the biosynthetic pathways of arachidonic acid-derived eicosanoids and anandamide-derived prostamides. Prostamides exhibit physiological actions and are involved in ocular hypotension, smooth muscle contraction, and inflammatory pain. Although topical application of bimatoprost, a structural analog of prostaglandin F2α ethanolamide (PGF2α-EA), is currently a first-line treatment for ocular hypertension, the endogenous production of prostamides and their biochemical precursors in corneal tissue has not yet been reported. In this study, we report the presence of anandamide, palmitoyl-, stearoyl-, α-linolenoyl docosahexaenoyl-, linoleoyl-, and oleoyl-ethanolamines in rabbit cornea, and following treatment with anandamide, the formation of PGF2α-EA, PGE2-EA, PGD2-EA by corneal extracts (all analyzed by LC/ESI-MS/MS). A number of N-acyl phosphatidylethanolamines, precursors of anandamide and other fatty acyl ethanolamines, were also identified in corneal lipid extracts using ESI-MS/MS. These findings suggest that the prostamide and fatty acid ethanolamine pathways are operational in the cornea and may provide valuable insight into corneal physiology and their potential influence on adjacent tissues and the aqueous humor. PMID:26031663

  4. Monogalactosyldiacylglycerol biosynthesis by direct acyl transfer in Anabaena variabilis. [Anabaena variabilis

    SciTech Connect

    Chen, H.H.; Wickrema, A.; Jaworski, J.

    1987-05-01

    The authors previously reported the direct acylation of monogalactosyldiacylglycerol (MGDG) by an enzyme in the membranes of the cyanobacterium (Anabaena variabilis. The enzyme requires acyl-acyl carrier protein (acyl-ACP) as substrate, but had no other additional cofactor requirements. Palmitoyl-, stearoyl- and oleoyl-ACP were all effective substrates. The A. variabilis membranes also had a hydrolase activity which metabolized the acyl-ACP to yield free fatty acid and ACP. Possible mechanisms for the acylation reaction include either acyl exchange with existing MGDG or direct acyl transfer to a lyso-MGDG, with concomitant release of free ACP. The mechanism of this reaction has been resolved using a double labelled (/sup 14/C)acyl-(/sup 14/C)ACP substrate prepared with E. coli acyl-ACP synthetase. Following incubation with the enzyme, the unreacted (/sup 14/C)acyl-(/sup 14/C)ACP was isolated and the (/sup 14/C)acyl/(/sup 14/C)ACP ratio determined. Comparison of this ratio to that of the original substrate indicated no change and eliminated acyl exchange as a possible mechanism. Therefore, the direct acylation of lyso-MGDG is the proposed mechanism for this enzyme. The reaction is apparently specific for MGDG synthesis, as other glycolipids and phospholipids were not labelled during incubations.

  5. Asymmetric Homoenolate Additions to Acyl Phosphonates through Rational Design of a Tailored N-Heterocyclic Carbene Catalyst

    PubMed Central

    Jang, Ki Po; Hutson, Gerri E.; Johnston, Ryne C.; McCusker, Elizabeth O.; Cheong, Paul H.-Y.; Scheidt, Karl A.

    2014-01-01

    A highly selective NHC-catalyzed synthesis of γ-butyrolactones from the fusion of enals and α-ketophosphonates has been developed. Computational modeling of competing transition states was employed to guide a rational design strategy and achieve enhanced levels of enantioselectivity with a new tailored C1-symmetric biaryl saturated imidazolium-derived NHC catalyst. This new annulation is compatible with a wide range of acyl phosphonates and α,β-unsaturated aldehydes. PMID:24299299

  6. Regioselective Acylation of Diols and Triols: The Cyanide Effect.

    PubMed

    Peng, Peng; Linseis, Michael; Winter, Rainer F; Schmidt, Richard R

    2016-05-11

    Central topics of carbohydrate chemistry embrace structural modifications of carbohydrates and oligosaccharide synthesis. Both require regioselectively protected building blocks that are mainly available via indirect multistep procedures. Hence, direct protection methods targeting a specific hydroxy group are demanded. Dual hydrogen bonding will eventually differentiate between differently positioned hydroxy groups. As cyanide is capable of various kinds of hydrogen bonding and as it is a quite strong sterically nondemanding base, regioselective O-acylations should be possible at low temperatures even at sterically congested positions, thus permitting formation and also isolation of the kinetic product. Indeed, 1,2-cis-diols, having an equatorial and an axial hydroxy group, benzoyl cyanide or acetyl cyanide as an acylating agent, and DMAP as a catalyst yield at -78 °C the thermodynamically unfavorable axial O-acylation product; acyl migration is not observed under these conditions. This phenomenon was substantiated with 3,4-O-unproteced galacto- and fucopyranosides and 2,3-O-unprotected mannopyranosides. Even for 3,4,6-O-unprotected galactopyranosides as triols, axial 4-O-acylation is appreciably faster than O-acylation of the primary 6-hydroxy group. The importance of hydrogen bonding for this unusual regioselectivity could be confirmed by NMR studies and DFT calculations, which indicate favorable hydrogen bonding of cyanide to the most acidic axial hydroxy group supported by hydrogen bonding of the equatorial hydroxy group to the axial oxygen. Thus, the "cyanide effect" is due to dual hydrogen bonding of the axial hydroxy group which enhances the nucleophilicity of the respective oxygen atom, permitting an even faster reaction for diols than for mono-ols. In contrast, fluoride as a counterion favors dual hydrogen bonding to both hydroxy groups leading to equatorial O-acylation. PMID:27104625

  7. Site-specific S-Acylation of Influenza Virus Hemagglutinin

    PubMed Central

    Brett, Katharina; Kordyukova, Larisa V.; Serebryakova, Marina V.; Mintaev, Ramil R.; Alexeevski, Andrei V.; Veit, Michael

    2014-01-01

    S-Acylation of hemagglutinin (HA), the main glycoprotein of influenza viruses, is an essential modification required for virus replication. Using mass spectrometry, we have previously demonstrated specific attachment of acyl chains to individual acylation sites. Whereas the two cysteines in the cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to a cysteine positioned at the end of the transmembrane region (TMR). Here we analyzed recombinant viruses containing HA with exchange of conserved amino acids adjacent to acylation sites or with a TMR cysteine shifted to a cytoplasmic location to identify the molecular signal that determines preferential attachment of stearate. We first developed a new protocol for sample preparation that requires less material and might thus also be suitable to analyze cellular proteins. We observed cell type-specific differences in the fatty acid pattern of HA: more stearate was attached if human viruses were grown in mammalian compared with avian cells. No underacylated peptides were detected in the mass spectra, and even mutations that prevented generation of infectious virus particles did not abolish acylation of expressed HA as demonstrated by metabolic labeling experiments with [3H]palmitate. Exchange of conserved amino acids in the vicinity of an acylation site had a moderate effect on the stearate content. In contrast, shifting the TMR cysteine to a cytoplasmic location virtually eliminated attachment of stearate. Thus, the location of an acylation site relative to the transmembrane span is the main signal for stearate attachment, but the sequence context and the cell type modulate the fatty acid pattern. PMID:25349209

  8. Probing the Mechanism of the Mycobacterium tuberculosis [beta]-Ketoacyl-Acyl Carrier Protein Synthase III mtFabH: Factors Influencing Catalysis and Substrate Specificity

    SciTech Connect

    Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent; Lindenberg, Sandra; Dover, Lynn G.; Sacchettini, James C.; Besra, Gurdyal S.

    2010-11-30

    Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH was assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.

  9. Anti-Tumor Effects of Novel 5-O-Acyl Plumbagins Based on the Inhibition of Mammalian DNA Replicative Polymerase Activity

    PubMed Central

    Kawamura, Moe; Kuriyama, Isoko; Maruo, Sayako; Kuramochi, Kouji; Tsubaki, Kazunori; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2014-01-01

    We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone) inhibits the activity of human mitochondrial DNA polymerase γ (pol γ). In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins). These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin) showed the strongest suppression of human colon carcinoma (HCT116) cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM) among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin. PMID:24520419

  10. Cadmium(II) Complex Formation with Selenourea and Thiourea in Solution: An XAS and 113Cd NMR Study

    PubMed Central

    Jalilehvand, Farideh; Amini, Zahra; Parmar, Karnjit

    2012-01-01

    The complexes formed in methanol solutions of Cd(CF3SO3)2 with selenourea (SeU) or thiourea (TU), for thiourea also in aqueous solution, were studied by combining 113Cd NMR and X-ray absorption spectroscopy. At low temperature (~200 K) distinct 113Cd NMR signals were observed, corresponding to CdLn2+ species (n = 0 - 4, L = TU or SeU) in slow ligand exchange. Peak integrals were used to obtain the speciation in the methanol solutions, allowing stability constants to be estimated. For cadmium(II) complexes with thione (C=S) or selone (C=Se) groups coordinated in Cd(S/Se)O5 or Cd(S/Se)2O4 (O from MeOH or CF3SO3-) environments the 113Cd chemical shifts were quite similar, within 93-97 ppm and 189 – 193 ppm, respectively. However, the difference in the chemical shift for the Cd(SeU)42+ (578 pm) and Cd(TU)42+ (526 ppm) species, with CdSe4 and CdS4 coordination, respectively, shows less chemical shielding for the coordinated Se atoms than for S, in contrast to the common trend with increasing shielding in the order: O > N > Se >S. In solutions dominated by mono- and tetra-thiourea / selenourea complexes, their coordination and bond distances could be evaluated by Cd K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. At ~200 K and high excess of thiourea a minor amount (up to ~30%) of [Cd(TU)5-6]2+ species was detected by an upfield shift of the 113Cd NMR signal (up to 423 ppm) and an amplitude reduction of the EXAFS oscillation. The amount was estimated by fitting linear combinations of simulated EXAFS spectra for [Cd(TU)4]2+ and [Cd(TU)6]2+ complexes. At room temperature, [Cd(TU)4]2+ was the highest complex formed, also in aqueous solution. Cd L3-edge X-ray absorption near edge structure (XANES) spectra of cadmium(II) thiourea solutions in methanol were used to follow changes in the CdSxOy coordination at room temperature. The correlations found from the current and previous studies between 113Cd NMR chemical shifts and different Cd(II) coordination

  11. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, but the acyl-galactose acyl composition varies with the plant species and applied stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Head group acylation of monogalactosyldiacylglycerol is a plant lipid modification occurring during bacterial infection. Little is known about the range of stresses that induce this lipid modification, the molecular species induced, and the function of the modification. Lipidomic analysis using trip...

  12. Potential O-acyl-substituted (-)-Epicatechin gallate prodrugs as inhibitors of DMBA/TPA-induced squamous cell carcinoma of skin in Swiss albino mice.

    PubMed

    Vyas, Sandeep; Manon, Benu; Vir Singh, Tej; Dev Sharma, Pritam; Sharma, Manu

    2011-04-01

    (-)-Epicatechin-3-gallate (1) is one of the principal catechins of green tea and exhibits cancer-preventive activities in various animal models. However, this compound is unstable in neutral or alkaline medium and, therefore, has a poor bioavailability. To improve its stability, O-acyl derivatives of 1 were prepared by isolating the partially purified tea catechin fraction from green tea extract and treating it with a variety of acylating agents. The resulting derivatives, compounds 2-6, were screened for their antitumor potential against 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced squamous cell carcinogenesis of skin in mice. The results showed that the antitumor activity decreased with the increase in size of the chain length of the acyl groups, i.e., from compound 2, derivative with an Ac group, to compound 6, possessing a valeryl group. Moreover, the C(4) derivative with a branched acyl chain, 5, had a lower activity than the linear C(4) derivative 4. This reduction in the inhibitory activity may be due to the steric hindrance by the two Me groups. Moreover, significant increases in the protein levels analyzed by ELISA of c-Jun, p65, and p53 were observed in the skin of DMBA/TPA treated mice, whereas mice treated with 2 and DMBA/TPA had a similar expression of these transcription factors than the control mice. The prodrug potential of the O-acyl derivatives 2-6 showed that they were adequately stable to be absorbed intact from the intestine, more stable at gastric pH, and suitable for oral administration. PMID:21480506

  13. Habit modification of bis-thiourea zinc chloride (ZTC) semi organic crystals by impurities.

    PubMed

    Ruby Nirmala, L; Thomas Joseph Prakash, J

    2013-06-01

    Single crystals of bis-thiourea zinc chloride (ZTC) doped with metal ion (Li(+)) possess excellent nonlinear optical properties. These crystals were grown by slow evaporation solution growth technique. The effect of Li(+) dopant on the growth and properties of ZTC single crystal were investigated and reported. The grown crystals were crystallized in orthorhombic structure with non-centro symmetric space group Pn21a through the parent compound. The amount of dopant incorporated in the parent crystal was revealed by the inductively coupled plasma (ICP-OES) studies. The FT-IR spectroscopy study was done for finding and confirming the functional groups present in the compound. The UV-Visible spectral study was carried out to find the optical behavior and transparency nature of the grown crystal. TG/DTA measurements and Vickers microhardness measurements were traced to find out the thermal and mechanical stability of the grown crystals respectively. Using Nd:YAG laser, the Second harmonic generation (SHG) for the grown crystals were confirmed. PMID:23571088

  14. Drinking water guideline for ethylene thiourea, a metabolite of ethylene bisdithiocarbamate fungicides

    SciTech Connect

    Frakes, R.A.

    1988-06-01

    The ethylene bisdithiocarbamate fungicides are the most heavily used pesticides in Maine. Ethylene thiourea (ETU) is a metabolite and environmental decomposition product of these compounds, is highly water soluble, and has been detected in groundwater in the state. ETU is a recognized animal carcinogen and teratogen. When administered in the diet, ETU produced a significant increase in thyroid carcinomas in rats in two studies. Two strains of mice fed ETU in the diet developed an increased incidence of hepatomas and a slight increase in lymphomas. Application of the linearized multistage model resulted in virtually safe doses (10(-5) lifetime cancer risk) of 0.25 to 1.6 micrograms/kg/day. The major teratologic effect has been the development of hydrocephalus and other CNS defects postnatally, resulting in a high mortality rate among the offspring. The NOEL for this effect was 5 mg/kg in a single oral dose. Retarded parietal ossification was observed at 5 mg/kg/day. Serious nononcogenic thyroid effects, such as goiter, decreased 131I uptake, and reduced thyroxine production, have been observed. Thyroid hyperplasia was produced at doses as low as 0.3 mg/kg/day ETU ingested in the diet. Based on protection against thyroid and/or liver tumors and alteration in thyroid function, the recommended Drinking Water Guideline for ETU is determined to be 3 ppb. This will also provide protection against developmental effects, since these occur at doses that are one to two orders of magnitude higher. 37 references.

  15. Tris-thiourea tripodal-based molecules as chloride transmembrane transporters: insights from molecular dynamics simulations.

    PubMed

    Marques, Igor; Colaço, Ana R; Costa, Paulo J; Busschaert, Nathalie; Gale, Philip A; Félix, Vítor

    2014-05-28

    The interaction of six tripodal synthetic chloride transmembrane transporters with a POPC bilayer was investigated by means of molecular dynamics simulations using the general Amber force field (GAFF) for the transporters and the LIPID11 force field for phospholipids. These transporters are structurally simple molecules, based on the tris(2-aminoethyl)amine scaffold, containing three thiourea binding units coupled with three n-butyl (1), phenyl (2), fluorophenyl (3), pentafluorophenyl (4), trifluoromethylphenyl (5), or bis(trifluoromethyl)phenyl (6) substituents. The passive diffusion of 1-6⊃ Cl(-) was evaluated with the complexes initially positioned either in the water phase or inside the bilayer. In the first scenario the chloride is released in the water solution before the synthetic molecules achieve the water-lipid interface and permeate the membrane. In the latter one, only when the chloride complex reaches the interface is the anion released to the water phase, with the transporter losing the initial ggg tripodal shape. Independently of the transporter used in the membrane system, the bilayer structure is preserved and the synthetic molecules interact with the POPC molecules at the phosphate headgroup level, via N-H···O hydrogen bonds. Overall, the molecular dynamics simulations' results indicate that the small tripodal molecules in this series have a low impact on the bilayer and are able to diffuse with chloride inside the lipid environment. Indeed, these are essential conditions for these molecules to promote the transmembrane transport as anion carriers, in agreement with experimental efflux data. PMID:24663079

  16. Regioselective self-acylating cyclodextrins in organic solvent

    PubMed Central

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-01-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods. PMID:27020946

  17. Regioselective self-acylating cyclodextrins in organic solvent

    NASA Astrophysics Data System (ADS)

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-03-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods.

  18. Regioselective self-acylating cyclodextrins in organic solvent.

    PubMed

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D; Choi, Youngjin; Jung, Seunho

    2016-01-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods. PMID:27020946

  19. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  20. Two fatty acyl reductases involved in moth pheromone biosynthesis.

    PubMed

    Antony, Binu; Ding, Bao-Jian; Moto, Ken'Ichi; Aldosari, Saleh A; Aldawood, Abdulrahman S

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective 'single pgFARs' produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a 'single reductase' can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  1. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.

    PubMed

    Baldessari, Alicia; Iglesias, Luis E

    2012-01-01

    In this article, we describe the application of lipases in acylation and alcoholysis reactions on steroids and nucleosides. In the field of steroids, a variety of acetyl and fatty acid derivatives of androstanes, pregnanes, and cholestanes have been prepared through lipase-catalyzed acylation and alcoholysis reactions taking advantage of the high regio- and stereoselectivity of these enzymes. The substrates as well as the products show a high degree of biological activity as neurosteroids, hormones, and glucocorticoids. The regioselective preparation of diacylated nucleosides by means of an enzymatic alcoholysis allowed the synthesis of nucleosides prodrugs or modified nucleosides. The quantitative full deacylation and dealkoxycarbonylation of nucleosides and steroids is a mild synthetic method for the deprotection of these labile compounds. Some of the reported steroid and nucleoside products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. The advantages presented by this methodology, such as selectivity, mild reaction conditions, and low environmental impact, make the lipases an important tool in the application of the principles of Green Chemistry, offering a convenient way to prepare derivatives of natural compounds with a great potential in the pharmaceutical industry. PMID:22426734

  2. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.

    PubMed

    Baldessari, Alicia; Iglesias, Luis E

    2012-01-01

    In this article, we describe the application of lipases in acylation and alcoholysis reactions on steroids and nucleosides. In the field of steroids, a variety of acetyl and fatty acid derivatives of androstanes, pregnanes, and cholestanes have been prepared through lipase-catalyzed acylation and alcoholysis reactions taking advantage of the high regio- and stereoselectivity of these enzymes. The substrates as well as the products show a high degree of biological activity as neurosteroids, hormones, and glucocorticoids. The regioselective preparation of diacylated nucleosides by means of an enzymatic alcoholysis allowed the synthesis of nucleosides prodrugs or modified nucleosides. The quantitative full deacylation and dealkoxycarbonylation of nucleosides and steroids is a mild synthetic method for the deprotection of these labile compounds. Some of the reported steroid and nucleoside products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. The advantages presented by this methodology, such as selectivity, mild reaction conditions, and low environmental impact, make the lipases an important tool in the application of the principles of Green Chemistry, offering a convenient way to prepare derivatives of natural compounds with a great potential in the pharmaceutical industry.

  3. Influence of thiourea application on some physiological and molecular criteria of sunflower (Helianthus annuus L.) plants under conditions of heat stress.

    PubMed

    Akladious, Samia Ageeb

    2014-05-01

    High temperature is a major factor limiting the growth of plant species during summer. Understanding the mechanisms of plant tolerance to high temperature would help in developing effective management practices and heat-tolerant cultivars through breeding or biotechnology. The present investigation was carried out to study the role of thiourea in enhancing the tolerance of sunflower plants to heat stress. Sunflower plants were subjected to temperature stress by exposing plants to 35 or 45 °C for 12 h. Two levels of thiourea (10 and 20 mM) were applied before sowing (seed treatment). The results indicated that the plants exposed to temperature stress exhibited a significant decline in growth parameters, chlorophylls, relative leaf water content, oil content, leaf nutrient status, and nitrate reductase activity. Treatment with thiourea, especially when applied at 10 mM, improved the above parameters and induced non-enzymatic and enzymatic antioxidants responsible for antioxidation. SDS-PAGE of protein revealed that high-temperature treatments alone or in combination with thiourea were associated with the disappearance of some bands or the appearance of unique ones. The result of RAPD analysis using five primers showed variable qualitative and quantitative changes. These findings confirm the effectiveness of applying thiourea on alleviating heat injuries in sunflower plants.

  4. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases

    PubMed Central

    Guy, Jodie E.; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-01-01

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals. PMID:21930947

  5. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases.

    PubMed

    Guy, Jodie E; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-10-01

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals. PMID:21930947

  6. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    PubMed Central

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  7. Identification of Unusual Phospholipid Fatty Acyl Compositions of Acanthamoeba castellanii

    PubMed Central

    Palusinska-Szysz, Marta; Kania, Magdalena; Turska-Szewczuk, Anna; Danikiewicz, Witold; Russa, Ryszard; Fuchs, Beate

    2014-01-01

    Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL). The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0), octadecenoyl (18∶1 Δ9) and hexadecanoyl (16∶0). However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE), phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24) and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of these

  8. Quantum chemical study of penicillin: Reactions after acylation

    NASA Astrophysics Data System (ADS)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  9. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function.

    PubMed

    Dutta, Arnob; Abmayr, Susan M; Workman, Jerry L

    2016-08-18

    Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs. PMID:27540855

  10. Novel approach in LC-MS/MS using MRM to generate a full profile of acyl-CoAs: discovery of acyl-dephospho-CoAs[S

    PubMed Central

    Li, Qingling; Zhang, Shenghui; Berthiaume, Jessica M.; Simons, Brigitte; Zhang, Guo-Fang

    2014-01-01

    A metabolomic approach to selectively profile all acyl-CoAs was developed using a programmed multiple reaction monitoring (MRM) method in LC-MS/MS and was employed in the analysis of various rat organs. The programmed MRM method possessed 300 mass ion transitions with the mass difference of 507 between precursor ion (Q1) and product ion (Q3), and the precursor ion started from m/z 768 and progressively increased one mass unit at each step. Acyl-dephospho-CoAs resulting from the dephosphorylation of acyl-CoAs were identified by accurate MS and fragmentation. Acyl-dephospho-CoAs were also quantitatively scanned by the MRM method with the mass difference of 427 between Q1 and Q3 mass ions. Acyl-CoAs and dephospho-CoAs were assayed with limits of detection ranging from 2 to 133 nM. The accuracy of the method was demonstrated by assaying a range of concentrations of spiked acyl-CoAs with the results of 80–114%. The distribution of acyl-CoAs reflects the metabolic status of each organ. The physiological role of dephosphorylation of acyl-CoAs remains to be further characterized. The methodology described herein provides a novel strategy in metabolomic studies to quantitatively and qualitatively profile all potential acyl-CoAs and acyl-dephospho-CoAs. PMID:24367045

  11. Chemoenzymatic Synthesis of Acyl Coenzyme A Substrates Enables in Situ Labeling of Small Molecules and Proteins.

    PubMed

    Agarwal, Vinayak; Diethelm, Stefan; Ray, Lauren; Garg, Neha; Awakawa, Takayoshi; Dorrestein, Pieter C; Moore, Bradley S

    2015-09-18

    A chemoenzymatic approach to generate fully functional acyl coenzyme A molecules that are then used as substrates to drive in situ acyl transfer reactions is described. Mass spectrometry based assays to verify the identity of acyl coenzyme A enzymatic products are also illustrated. The approach is responsive to a diverse array of carboxylic acids that can be elaborated to their corresponding coenzyme A thioesters, with potential applications in wide-ranging chemical biology studies that utilize acyl coenzyme A substrates.

  12. Chemically modified N-acylated hyaluronan fragments modulate proinflammatory cytokine production by stimulated human macrophages.

    PubMed

    Babasola, Oladunni; Rees-Milton, Karen J; Bebe, Siziwe; Wang, Jiaxi; Anastassiades, Tassos P

    2014-09-01

    Low molecular mass hyaluronans are known to induce inflammation. To determine the role of the acetyl groups of low molecular mass hyaluronan in stimulating the production of proinflammatory cytokines, partial N-deacetylation was carried out by hydrazinolysis. This resulted in 19.7 ± 3.5% free NH2 functional groups, which were then acylated by reacting with an acyl anhydride, including acetic anhydride. Hydrazinolysis resulted in bond cleavage of the hyaluronan chain causing a reduction of the molecular mass to 30-214 kDa. The total NH2 and N-acetyl moieties in the reacetylated hyaluronan were 0% and 98.7 ± 1.5% respectively, whereas for butyrylated hyaluronan, the total NH2, N-acetyl, and N-butyryl moieties were 0, 82.2 ± 4.6, and 22.7 ± 3.8%, respectively, based on (1)H NMR. We studied the effect of these polymers on cytokine production by cultured human macrophages (THP-1 cells). The reacetylated hyaluronan stimulated proinflammatory cytokine production to levels similar to LPS, whereas partially deacetylated hyaluronan had no stimulatory effect, indicating the critical role of the N-acetyl groups in the stimulation of proinflammatory cytokine production. Butyrylated hyaluronan significantly reduced the stimulatory effect on cytokine production by the reacetylated hyaluronan or LPS but had no stimulatory effect of its own. The other partially N-acylated hyaluronan derivatives tested showed smaller stimulatory effects than reacetylated hyaluronan. Antibody and antagonist experiments suggest that the acetylated and partially butyrylated lower molecular mass hyaluronans exert their effects through the TLR-4 receptor system. Selectively N-butyrylated lower molecular mass hyaluronan shows promise as an example of a novel semisynthetic anti-inflammatory molecule.

  13. Chemically Modified N-Acylated Hyaluronan Fragments Modulate Proinflammatory Cytokine Production by Stimulated Human Macrophages*

    PubMed Central

    Babasola, Oladunni; Rees-Milton, Karen J.; Bebe, Siziwe; Wang, Jiaxi; Anastassiades, Tassos P.

    2014-01-01

    Low molecular mass hyaluronans are known to induce inflammation. To determine the role of the acetyl groups of low molecular mass hyaluronan in stimulating the production of proinflammatory cytokines, partial N-deacetylation was carried out by hydrazinolysis. This resulted in 19.7 ± 3.5% free NH2 functional groups, which were then acylated by reacting with an acyl anhydride, including acetic anhydride. Hydrazinolysis resulted in bond cleavage of the hyaluronan chain causing a reduction of the molecular mass to 30–214 kDa. The total NH2 and N-acetyl moieties in the reacetylated hyaluronan were 0% and 98.7 ± 1.5% respectively, whereas for butyrylated hyaluronan, the total NH2, N-acetyl, and N-butyryl moieties were 0, 82.2 ± 4.6, and 22.7 ± 3.8%, respectively, based on 1H NMR. We studied the effect of these polymers on cytokine production by cultured human macrophages (THP-1 cells). The reacetylated hyaluronan stimulated proinflammatory cytokine production to levels similar to LPS, whereas partially deacetylated hyaluronan had no stimulatory effect, indicating the critical role of the N-acetyl groups in the stimulation of proinflammatory cytokine production. Butyrylated hyaluronan significantly reduced the stimulatory effect on cytokine production by the reacetylated hyaluronan or LPS but had no stimulatory effect of its own. The other partially N-acylated hyaluronan derivatives tested showed smaller stimulatory effects than reacetylated hyaluronan. Antibody and antagonist experiments suggest that the acetylated and partially butyrylated lower molecular mass hyaluronans exert their effects through the TLR-4 receptor system. Selectively N-butyrylated lower molecular mass hyaluronan shows promise as an example of a novel semisynthetic anti-inflammatory molecule. PMID:25053413

  14. Thiourea, a ROS scavenger, regulates source-to-sink relationship to enhance crop yield and oil content in Brassica juncea (L.).

    PubMed

    Pandey, Manish; Srivastava, Ashish Kumar; D'Souza, Stanislaus Francis; Penna, Suprasanna

    2013-01-01

    In the present agricultural scenario, the major thrust is to increase crop productivity so as to ensure sustainability. In an earlier study, foliar application of thiourea (TU; a non physiological thiol based ROS scavenger) has been demonstrated to enhance the stress tolerance and yield of different crops under field condition. Towards this endeavor, present work deals with the effect of TU on photosynthetic efficiency and source-to-sink relationship of Indian mustard (Brassica juncea) for understanding its mode of action. The application of TU increased the efficiency of both PSI and PSII photosystems and vegetative growth of plant. The comparative analysis of sucrose to starch ratio and expression level of sugar transporters confirmed the higher source and sink strength in response to TU treatment. The biochemical evidence in support of this was derived from higher activities of sucrose phosphate synthase and fructose-1,6-bis-phosphatase at source; and sucrose synthase and different classes of invertases at both source and sink. This indicated an overall increase in photoassimilate level at sink. An additional contribution through pod photosynthesis was confirmed through the analysis of phosphoenol pyruvate carboxylase enzyme activity and level of organic acids. The increased photoassimilate level was also co-ordinated with acetyl coA carboxylase mediated oil biosynthesis. All these changes were ultimately reflected in the form of 10 and 20% increase in total yield and oil content, respectively under TU treatment as compared to control. Additionally, no change was observed in oil composition of seeds derived from TU treated plants. The study thus signifies the co-ordinated regulation of key steps of photosynthesis and source-to-sink relationship through the external application of TU resulting in increased crop yield and oil content. PMID:24058504

  15. Thiourea, a ROS Scavenger, Regulates Source-to-Sink Relationship to Enhance Crop Yield and Oil Content in Brassica juncea (L.)

    PubMed Central

    D'Souza, Stanislaus Francis; Penna, Suprasanna

    2013-01-01

    In the present agricultural scenario, the major thrust is to increase crop productivity so as to ensure sustainability. In an earlier study, foliar application of thiourea (TU; a non physiological thiol based ROS scavenger) has been demonstrated to enhance the stress tolerance and yield of different crops under field condition. Towards this endeavor, present work deals with the effect of TU on photosynthetic efficiency and source-to-sink relationship of Indian mustard (Brassica juncea) for understanding its mode of action. The application of TU increased the efficiency of both PSI and PSII photosystems and vegetative growth of plant. The comparative analysis of sucrose to starch ratio and expression level of sugar transporters confirmed the higher source and sink strength in response to TU treatment. The biochemical evidence in support of this was derived from higher activities of sucrose phosphate synthase and fructose-1,6-bis-phosphatase at source; and sucrose synthase and different classes of invertases at both source and sink. This indicated an overall increase in photoassimilate level at sink. An additional contribution through pod photosynthesis was confirmed through the analysis of phosphoenol pyruvate carboxylase enzyme activity and level of organic acids. The increased photoassimilate level was also co-ordinated with acetyl coA carboxylase mediated oil biosynthesis. All these changes were ultimately reflected in the form of 10 and 20% increase in total yield and oil content, respectively under TU treatment as compared to control. Additionally, no change was observed in oil composition of seeds derived from TU treated plants. The study thus signifies the co-ordinated regulation of key steps of photosynthesis and source-to-sink relationship through the external application of TU resulting in increased crop yield and oil content. PMID:24058504

  16. Synthesis of zinc sulphide nanoparticles by thiourea hydrolysis and their characterization for electrochemical capacitor applications

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, M.; Rao, M. Mohan

    A simple method is applied to prepare nanocrystalline ZnS using zinc nitrate and thiourea in aqueous solutions. Cubic sphalerite ZnS is obtained in phase pure form when S/Zn mole ratio is 1 and 2. A mixed phase of hexagonal wurtzite and cubic sphalerite ZnS is obtained when S/Zn mole ratio is 4. Transmission electron microscope and X-ray diffraction confirm the formation of ZnS nanoparticles. These nanoparticles are immobilized on the surface of paraffin impregnated graphite electrode (PIGE) and electrochemical characterization in neutral solutions by cyclic voltammetry revealed that the material is ideal to be used as electrode in electrochemical double layer capacitors. The most singularly interesting result is the voltages observed in 0.1 M LiCl, NaCl, NaI and KI solutions. They are 3.0, 2.7, 2.0 and 1.8 V versus Ag/AgCl and significantly higher than the expected value of 1.23 V (pH ∼ 7) in aqueous medium. Such a large voltages are usually obtained for non-aqueous electrolytes and the present study showed a surprising and significant interesting result that can be owed to the over potentials of H 2/O 2/Cl 2 gas evolutions. An attempt to understand these highly significant results in terms of band edge bendings (conduction band and valence band) associated with the positive and negative ion adsorption at the interface of semiconductor ZnS/solution is made.

  17. A composite guanyl thiourea (GTU), dicyandiamide (DCD) inhibitor improves the efficacy of nitrification inhibition in soil.

    PubMed

    Duncan, Elliott G; O'Sullivan, Cathryn A; Simonsen, Anna K; Roper, Margaret M; Treble, Karen; Whisson, Kelley

    2016-11-01

    This study investigated whether applying dicyandiamide (DCD) and guanyl thiourea (GTU) in conjunction with urea improves the efficacy of nitrification inhibition relative to traditional fertiliser application of urea or urea + DCD. Urea at a rate of 100 mg N kg(-1) soil was applied to soil microcosms (high nutrient tenosol and low nutrient hydrosol) which were treated with either no inhibitor (urea-only); 15 mg DCD kg(-1) soil or 15 mg DCD kg(-1) soil plus 21 mg GTU kg soil(-1). Mineral N (NH4(+) & NO3(-)) concentrations, potential nitrification rates (PNR) and abundances of ammonia oxidising bacteria (AOB) were measured over time. After 100-days incubation, ∼73 mg N kg(-1) soil was found as NH4(+) when urea + DCD + GTU were applied to the tenosol. NH4(+) concentrations were lower (11-32 mg N kg(-1) soil) when urea or urea + DCD were applied. This suggests that the application of GTU in conjunction with DCD elongated the effects of nitrification inhibition. In both soils, PNRs were faster and AOB abundances (gene copies g(-1) soil) were higher when urea was applied without nitrification inhibitors. There were, however, no differences in PNR or AOB abundances in either soil type when 'urea + DCD' or 'urea + DCD + GTU' were applied. The results indicate that the application of GTU with DCD may extend nitrification inhibition in certain soil types. This finding has the potential to improve the efficacy of commercially available and widely used inhibitors such as DCD. PMID:27517126

  18. Electrochemistry of N-n-undecyl-N'-(sodium-p-aminobenzenesulfonate) thiourea and its interaction with bovine serum albumin.

    PubMed

    Luo, Hongxia; Du, Yang; Guo, Zhi-Xin

    2009-02-01

    In pH 5.5 phosphate buffer solution, N-n-undecyl-N'-(sodium-p-aminobenzenesulfonate) thiourea (UPT) produced a pair of redox peaks on the bare glassy carbon electrode. At the multi-walled carbon nanotube (MWNT) modified electrode, the electrochemical behavior of UPT enhanced greatly. In the presence of bovine serum albumin (BSA), the peak currents of UPT decreased linearly due to the formation of a super-molecular complex. This method was successfully applied to the determination of BSA in a bovine serum sample.

  19. Acyl-CoA-Binding Proteins (ACBPs) in Plant Development.

    PubMed

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-01-01

    Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted.

  20. Preservation of polyunsaturated fatty acyl glycerides via intramolecular antioxidant coupling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferulic acid and its esters are known to be effective antioxidants. Feruloyl di-gamma-linolenoylglycerol was assessed for its ability to serve as an antioxidant for preventing the oxidation of its gamma-linolenoyl polyunsaturated fatty acyl groups in model membrane phospholipid vesicles. The molec...

  1. Acyl-CoA-Binding Proteins (ACBPs) in Plant Development.

    PubMed

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-01-01

    Acyl-CoA-binding proteins (ACBPs) play a pivotal role in fatty acid metabolism because they can transport medium- and long-chain acyl-CoA esters. In eukaryotic cells, ACBPs are involved in intracellular trafficking of acyl-CoA esters and formation of a cytosolic acyl-CoA pool. In addition to these ubiquitous functions, more specific non-redundant roles of plant ACBP subclasses are implicated by the existence of multigene families with variable molecular masses, ligand specificities, functional domains (e.g. protein-protein interaction domains), subcellular locations and gene expression patterns. In this chapter, recent progress in the characterization of ACBPs from the model dicot plant, Arabidopsis thaliana, and the model monocot, Oryza sativa, and their emerging roles in plant growth and development are discussed. The functional significance of respective members of the plant ACBP families in various developmental and physiological processes such as seed development and germination, stem cuticle formation, pollen development, leaf senescence, peroxisomal fatty acid β-oxidation and phloem-mediated lipid transport is highlighted. PMID:27023243

  2. A covalent adduct of MbtN, an acyl-ACP dehydrogenase from Mycobacterium tuberculosis, reveals an unusual acyl-binding pocket.

    PubMed

    Chai, Ai-Fen; Bulloch, Esther M M; Evans, Genevieve L; Lott, J Shaun; Baker, Edward N; Johnston, Jodie M

    2015-04-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Access to iron in host macrophages depends on iron-chelating siderophores called mycobactins and is strongly correlated with Mtb virulence. Here, the crystal structure of an Mtb enzyme involved in mycobactin biosynthesis, MbtN, in complex with its FAD cofactor is presented at 2.30 Å resolution. The polypeptide fold of MbtN conforms to that of the acyl-CoA dehydrogenase (ACAD) family, consistent with its predicted role of introducing a double bond into the acyl chain of mycobactin. Structural comparisons and the presence of an acyl carrier protein, MbtL, in the same gene locus suggest that MbtN acts on an acyl-(acyl carrier protein) rather than an acyl-CoA. A notable feature of the crystal structure is the tubular density projecting from N(5) of FAD. This was interpreted as a covalently bound polyethylene glycol (PEG) fragment and resides in a hydrophobic pocket where the substrate acyl group is likely to bind. The pocket could accommodate an acyl chain of 14-21 C atoms, consistent with the expected length of the mycobactin acyl chain. Supporting this, steady-state kinetics show that MbtN has ACAD activity, preferring acyl chains of at least 16 C atoms. The acyl-binding pocket adopts a different orientation (relative to the FAD) to other structurally characterized ACADs. This difference may be correlated with the apparent ability of MbtN to catalyse the formation of an unusual cis double bond in the mycobactin acyl chain.

  3. Separation and quantification of 2-acyl-1-lysophospholipids and 1-acyl-2-lysophospholipids in biological samples by LC-MS/MS

    PubMed Central

    Okudaira, Michiyo; Inoue, Asuka; Shuto, Akira; Nakanaga, Keita; Kano, Kuniyuki; Makide, Kumiko; Saigusa, Daisuke; Tomioka, Yoshihisa; Aoki, Junken

    2014-01-01

    Lysophospholipids (LysoGPs) serve as lipid mediators and precursors for synthesis of diacyl phospholipids (GPs). LysoGPs detected in cells have various acyl chains attached at either the sn-1 or sn-2 position of the glycerol backbone. In general, acyl chains at the sn-2 position of 2-acyl-1-LysoGPs readily move to the sn-1 position, generating 1-acyl-2-lyso isomers by a nonenzymatic reaction called intra-molecular acyl migration, which has hampered the detection of 2-acyl-1-LysoGPs in biological samples. In this study, we developed a simple and versatile method to separate and quantify 2-acyl-1- and 1-acyl-2-LysoGPs. The main point of the method was to extract LysoGPs at pH 4 and 4°C, conditions that were found to completely eliminate the intra-molecular acyl migration. Under the present conditions, the relative amounts of 2-acyl-1-LysoGPs and 1-acyl-2-LysoGPs did not change at least for 1 week. Further, in LysoGPs extracted from cells and tissues under the present conditions, most of the saturated fatty acids (16:0 and 18:0) were found in the sn-1 position of LysoGPs, while most of the PUFAs (18:2, 20:4, 22:6) were found in the sn-2 position. Thus the method can be used to elucidate the in vivo role of 2-acyl-1-LysoGPs. PMID:25114169

  4. PA-I lectin from Pseudomonas aeruginosa binds acyl homoserine lactones.

    PubMed

    Boteva, Raina N; Bogoeva, Vanya P; Stoitsova, Stoyanka R

    2005-03-14

    The study analyses the binding affinities of Pseudomonas aeruginosa PA-I lectin (PA-IL) to three N-acyl homoserine lactones (AHSL), quorum sensing signal molecules responsible for cell-cell communication in bacteria. It shows that like some plant lectins, PA-IL has a dual function and, besides its carbohydrate-binding capacity, can accommodate AHLS. Formation of complexes between PA-IL and AHSL with acyl side chains composed of 4, 6 or 12 methyl groups is characterized by changes in the emissions of two incorporated fluorescent markers, TNS and IAEDANS, both derivatives of naphthalene sulfonic acid. PA-IL shows increasing affinities to lactones with longer aliphatic side chains. The values of the apparent dissociation constants (K(d)), which are similar to the previously determined K(d) for the adenine high affinity binding, and the similar effects of lactones and adenine on the TNS emission indicate one identical binding site for these ligands, which is suggested to represent the central cavity of the oligomeric molecule formed after the association of the four identical subunits of PA-IL. Intramolecular distances between the fluorescent markers and protein Trp residues are determined by fluorescence resonance energy transfer (FRET).

  5. Recognition of Acyl Carrier Proteins by Ketoreductases in Assembly Line Polyketide Synthases

    PubMed Central

    Ostrowski, Matthew P.; Cane, David E.; Khosla, Chaitan

    2016-01-01

    Ketoreductases (KRs) are the most widespread tailoring domains found in individual modules of assembly line polyketide synthases (PKSs), and are responsible for controlling the configurations of both the α-methyl and β-hydroxyl stereogenic centers in the growing polyketide chain. Because they recognize substrates that are covalently bound to acyl carrier proteins (ACPs) within the same PKS module, we sought to quantify the extent to which protein-protein recognition contributes to the turnover of these oxidoreductive enzymes using stand-alone domains from the 6-deoxyerythronolide B synthase (DEBS). Reduced 2-methyl-3-hydroxyacyl-ACP substrates derived from two enantiomeric acyl chains and four distinct ACP domains were synthesized and presented to four distinct KR domains. Two KRs, from DEBS modules 2 and 5, displayed little preference for oxidation of substrates tethered to their cognate ACP domains over those attached to the other ACP domains tested. In contrast, the KR from DEBS module 1 showed a ca. 10-50-fold preference for substrate attached to its native ACP domain, whereas the KR from DEBS module 6 actually displayed a ca. 10-fold preference for the ACP from DEBS module 5. Our findings suggest that recognition of the ACP by a KR domain is unlikely to affect the rate of native assembly line polyketide biosynthesis. In some cases, however, unfavorable KR-ACP interactions may suppress the rate of substrate processing when KR domains are swapped to construct hybrid PKS modules. PMID:27118242

  6. Chlorsulfuron modifies biosynthesis of acyl Acid substituents of sucrose esters secreted by tobacco trichomes.

    PubMed

    Kandra, L; Wagner, G J

    1990-11-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  7. Chlorsulfuron Modifies Biosynthesis of Acyl Acid Substituents of Sucrose Esters Secreted by Tobacco Trichomes

    PubMed Central

    Kandra, Lili; Wagner, George J.

    1990-01-01

    Sucrose esters and duvatrienediol diterpenes are principal constituents formed in and secreted outside head cells of trichomes occurring on surfaces of Nicotiana tabacum. Using trichome-bearing epidermal peels prepared from midveins of N. tabacum cv T.I. 1068 leaves, we found that chlorsulfuron reduced and modified radiolabeling of sucrose ester acyl acids derived from branched-chain amino acid metabolism. The herbicide did not effect formation and exudation of diterpenes which are products of isoprenoid metabolism. Treatment with 1.0 micromolar chlorsulfuron affected 8.5- and 6.3-fold reductions in radiolabeling of methylvaleryl and methylbutyryl groups of sucrose esters, respectively, and concomitant increases of 9- and 9.8-fold in radiolabeling of straight chain valeryl and butyryl groups, respectively. These results and others indicate that inhibition of acetolactate synthase causes an accumulation of 2-oxo-butyric acid that is utilized by enzymes common to Leu biosynthesis to form 2-oxo-valeric acid. Coenzyme A (CoA) activation of this keto acid gives rise to butyryl CoA, which is utilized to form butyryl containing sucrose esters. Alternatively, reutilization of 2-oxo-valeric acid by the same enzymes followed by CoA activation leads to valeryl containing sucrose esters. We propose that in trichome secretory cells synthase, isomerase and dehydrogenase enzymes which catalyze Leu synthesis/degredation in most tissues, convert iso-branched, anteiso-branched and straight-chain keto acids in the formation of sucrose ester acyl groups. PMID:16667871

  8. Synthesis of 1-acyl-2-(3H)acetyl-SN-glycero-3-phosphocholine, a structural analog of platelet activating factor, by vascular endothelial cells

    SciTech Connect

    Mueller, H.W.; Nollert, M.U.; Eskin, S.G. )

    1991-05-15

    Human umbilical vein endothelial cells (HUVECS) were challenged with thrombin in the presence of (3H)acetate to stimulate the production of radiolabeled platelet activating factor (PAF, 1-O-alkyl-2-(3H)acetyl-sn-glycero-3-phosphocholine, 1-O-alkyl-2-(3H)acetyl-GPC). The 3H-product was isolated by thin-layer chromatography, and 1-radyl-2(3H),3- diacetylglycerols were prepared by phospholipase C digestion and subsequent acetylation at the sn-3 position. When the 1-radyl-2(3H),3-diacetylglycerols were analyzed by zonal thin-layer chromatography, 96-97% of the radiolabeled derivative migrated with 1-acyl-2,3-diacetylglycerol standard. Only minor amounts (3-4%) of 1-alkyl-2(3H),3-diacetylglycerol were observed, demonstrating that the predominant acetylated product synthesized by thrombin-stimulated HUVECS was 1-acyl-2-(3H)acetyl-GPC. This relative abundance of 1-acyl-2-(3H)-acetyl-GPC was not significantly affected by thrombin dose, incubation time, or cell passage, and was also observed in HUVECS challenged with ionophore A23187. In addition, the acetylated product from ionophore A23187- or bradykinin-stimulated bovine aortic endothelial cells contained 90% 1-acyl-2-(3H)acetyl-GPC, suggesting that the synthesis of the 1-acyl PAF analog is not unique to HUVECS. These findings demonstrate that PAF is a minor synthetic component of HUVECS and bovine aortic endothelial cells. In light of the integral role which the vascular endothelial cell plays in the regulation of thrombosis, these findings also suggest that the production of 1-acyl-2-acetyl-GPC may be biologically important.

  9. Ethanol Metabolism Modifies Hepatic Protein Acylation in Mice

    PubMed Central

    Fritz, Kristofer S.; Green, Michelle F.; Petersen, Dennis R.; Hirschey, Matthew D.

    2013-01-01

    Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated metabolism, induce specific

  10. Mammalian long-chain acyl-CoA synthetases.

    PubMed

    Soupene, Eric; Kuypers, Frans A

    2008-05-01

    Acyl-CoA synthetase enzymes are essential for de novo lipid synthesis, fatty acid catabolism, and remodeling of membranes. Activation of fatty acids requires a two-step reaction catalyzed by these enzymes. In the first step, an acyl-AMP intermediate is formed from ATP. AMP is then exchanged with CoA to produce the activated acyl-CoA. The release of AMP in this reaction defines the superfamily of AMP-forming enzymes. The length of the carbon chain of the fatty acid species defines the substrate specificity for the different acyl-CoA synthetases (ACS). On this basis, five sub-families of ACS have been characterized. The purpose of this review is to report on the large family of mammalian long-chain acyl-CoA synthetases (ACSL), which activate fatty acids with chain lengths of 12 to 20 carbon atoms. Five genes and several isoforms generated by alternative splicing have been identified and limited information is available on their localization. The structure of these membrane proteins has not been solved for the mammalian ACSLs but homology to a bacterial form, whose structure has been determined, points at specific structural features that are important for these enzymes across species. The bacterial form acts as a dimer and has a conserved short motif, called the fatty acid Gate domain, that seems to determine substrate specificity. We will discuss the characterization and identification of the different spliced isoforms, draw attention to the inconsistencies and errors in their annotations, and their cellular localizations. These membrane proteins act on membrane-bound substrates probably as homo- and as heterodimer complexes but have often been expressed as single recombinant isoforms, apparently purified as monomers and tested in Triton X-100 micelles. We will argue that such studies have failed to provide an accurate assessment of the activity and of the distinct function of these enzymes in mammalian cells.

  11. Acylated monogalactosyl diacylglycerol: prevalence in the plant kingdom and identification of an enzyme catalyzing galactolipid head group acylation in Arabidopsis thaliana.

    PubMed

    Nilsson, Anders K; Johansson, Oskar N; Fahlberg, Per; Kommuri, Murali; Töpel, Mats; Bodin, Lovisa J; Sikora, Per; Modarres, Masoomeh; Ekengren, Sophia; Nguyen, Chi T; Farmer, Edward E; Olsson, Olof; Ellerström, Mats; Andersson, Mats X

    2015-12-01

    The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono- and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl-MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl-MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12-oxo-phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA-containing galactolipids in the plant kingdom. While acyl-MGDG was found to be ubiquitous in green tissue of plants ranging from non-vascular plants to angiosperms, OPDA-containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non-oxidized and OPDA-containing acyl-MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl-MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response. PMID:26566971

  12. The Golgi S-acylation machinery comprises zDHHC enzymes with major differences in substrate affinity and S-acylation activity

    PubMed Central

    Lemonidis, Kimon; Gorleku, Oforiwa A.; Sanchez-Perez, Maria C.; Grefen, Christopher; Chamberlain, Luke H.

    2014-01-01

    S-acylation, the attachment of fatty acids onto cysteine residues, regulates protein trafficking and function and is mediated by a family of zDHHC enzymes. The S-acylation of peripheral membrane proteins has been proposed to occur at the Golgi, catalyzed by an S-acylation machinery that displays little substrate specificity. To advance understanding of how S-acylation of peripheral membrane proteins is handled by Golgi zDHHC enzymes, we investigated interactions between a subset of four Golgi zDHHC enzymes and two S-acylated proteins—synaptosomal-associated protein 25 (SNAP25) and cysteine-string protein (CSP). Our results uncover major differences in substrate recognition and S-acylation by these zDHHC enzymes. The ankyrin-repeat domains of zDHHC17 and zDHHC13 mediated strong and selective interactions with SNAP25/CSP, whereas binding of zDHHC3 and zDHHC7 to these proteins was barely detectable. Despite this, zDHHC3/zDHHC7 could S-acylate SNAP25/CSP more efficiently than zDHHC17, whereas zDHHC13 lacked S-acylation activity toward these proteins. Overall the results of this study support a model in which dynamic intracellular localization of peripheral membrane proteins is achieved by highly selective recruitment by a subset of zDHHC enzymes at the Golgi, combined with highly efficient S-acylation by other Golgi zDHHC enzymes. PMID:25253725

  13. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria.

    PubMed

    Yao, Jiangwei; Bruhn, David F; Frank, Matthew W; Lee, Richard E; Rock, Charles O

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria.

  14. Alkaloid-Derived Thioureas in Asymmetric Organocatalysis: A Cooperative Learning Activity in a Project-Based Laboratory Course

    ERIC Educational Resources Information Center

    Monge, David

    2015-01-01

    An experiment carried out by advanced undergraduate students in a project-based laboratory course is described. Taking into account the positive effects of working in teams, which has been key for successful research in industry and academia, a cooperative learning experience in the laboratory was developed. Students working in teams of four…

  15. Direct N-acylation of azoles via a metal-free catalyzed oxidative cross-coupling strategy.

    PubMed

    Zhao, Jingjing; Li, Pan; Xia, Chungu; Li, Fuwei

    2014-05-11

    The KI-catalyzed N-acylation of azoles via direct oxidative coupling of C-H and N-H bonds has been developed. It could be smoothly scaled up to gram synthesis of acyl azoles. The reaction occurred by the coupling of acyl radicals and azoles to form the acyl azole radical anion, followed by its further oxidation.

  16. Theoretical study on the mechanism and stereochemistry of the cinchona-thiourea organocatalytic hydrophosphonylation of an α-ketoester.

    PubMed

    Li, Weiyi; Huang, Dongfeng; Lv, Yajing

    2013-11-21

    The mechanism and stereochemistry of the hydrophosphonylation of an α-ketoester with dimethylphosphonate (DMHP) catalyzed by a thiourea-cinchona organocatalyst have been studied by the ONIOM method. The calculations show that the catalytic cycle is a three-step process, including the deprotonation of DMHP, C-P bond formation via nucleophilic addition and proton transfer with the regeneration of the catalyst. The deprotonation of DMHP mediated by the basicity of the quinuclidine nitrogen atom is the rate-determining step for the entire reaction. The activation of the α-ketoester by the thiourea or protonated cinchona moiety of the bifunctional catalyst is comparatively investigated, and the former is energy-preferred. AIM combined with NBO analysis indicate that the multiple hydrogen bonds play essential roles in activating substrates, facilitating charge transfer and stabilizing transition states and intermediates. The stereochemistry of the reaction is controlled by the C-P bond formation step and originated from the chiral induction of the multiple hydrogen-bonding interactions. The bulkier substituent groups on the chiral scaffold of the catalyst may increase rigidity of the catalyst and the asymmetric induction to the substrates. The calculations predict that alkyl substituted α-ketoesters might also be converted to chiral α-hydroxyl phosphonates with high enantioselectivity.

  17. Comparative studies of Acyl-CoA dehydrogenases for monomethyl branched chain substrates in amino acid metabolism.

    PubMed

    Liu, Xiaojun; Wu, Long; Deng, Guisheng; Chen, Gong; Li, Nan; Chu, Xiusheng; Li, Ding

    2013-04-01

    Short/branched chain acyl-CoA dehydrogenase (SBCAD), isovaleryl-CoA dehydrogenase (IVD), and isobutyryl-CoA dehydrogenase (IBD) are involved in metabolism of isoleucine, leucine, and valine, respectively. These three enzymes all belong to acyl-CoA dehydrogenase (ACD) family, and catalyze the dehydrogenation of monomethyl branched-chain fatty acid (mmBCFA) thioester derivatives. In the present work, the catalytic properties of rat SBCAD, IVD, and IBD, including their substrate specificity, isomerase activity, and enzyme inhibition, were comparatively studied. Our results indicated that SBCAD has its catalytic properties relatively similar to those of straight-chain acyl-CoA dehydrogenases in terms of their isomerase activity and enzyme inhibition, while IVD and IBD are different. IVD has relatively broader substrate specificity than those of the other two enzymes in accommodating various substrate analogs. The present study increased our understanding for the metabolism of monomethyl branched-chain fatty acids (mmBCFAs) and branched-chain amino acids (BCAAs), which should also be useful for selective control of a particular reaction through the design of specific inhibitors. PMID:23474214

  18. Structural definition of acylated phosphatidylinositol mannosides from Mycobacterium tuberculosis: definition of a common anchor for lipomannan and lipoarabinomannan.

    PubMed

    Khoo, K H; Dell, A; Morris, H R; Brennan, P J; Chatterjee, D

    1995-02-01

    Based on chemical analysis, we have previously concluded that the biologically important lipoarabinomannan (LAM) and lipomannan (LM) from Mycobacterium are multiglycosylated forms of the phosphatidylinositol mannosides (PIMs), the characteristic cell envelope mannophosphoinositides of mycobacteria. Using definitive analytical techniques, we have now re-examined the reported multiacylated nature of PIMs in order to gain a better insight into their possible roles as biosynthetic precursors of LM and LAM. High-sensitivity fast atom bombardment-mass spectrometry analyses of the perdeuteroacetyl and permethyl derivatives of PIMs from Mycobacterium tuberculosis and Mycobacterium leprae enabled us to define the exact fatty acyl compositions of the multiacylated, heterogeneous PIM families, notably the dimannoside (PIM2) and the hexamannoside (PIM6). Specifically, in conjunction with other chemical and gas chromatography-mass spectrometry (GC-MS) analyses, the additional C16 fatty acyl substituent on PIM2 and its lyso form were defined as attached to the C6 position of mannose. We also present evidence for triacylated mannophosphoinositide as a common lipid anchor for both LM and LAM, and further postulate that acylation of PIM2 may constitute a key regulatory step in their biosynthesis.

  19. Production of a Brassica napus low-molecular mass acyl-coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expressio...

  20. Synthesis of ferrocene derivatives with planar chirality via palladium-catalyzed enantioselective C-H bond activation.

    PubMed

    Pi, Chao; Cui, Xiuling; Liu, Xiuyan; Guo, Mengxing; Zhang, Hanyu; Wu, Yangjie

    2014-10-01

    The first catalytic and enantioselective C-H direct acylation of ferrocene derivatives has been developed. A series of 2-acyl-1-dimethylaminomethylferrocenes with planar chirality were provided under highly efficient and concise one-pot conditions with up to 85% yield and 98% ee. The products obtained could be easily converted to various chiral ligands via diverse transformations.

  1. A novel approach for predicting acyl glucuronide reactivity via Schiff base formation: development of rapidly formed peptide adducts for LC/MS/MS measurements.

    PubMed

    Wang, Jianyao; Davis, Margaret; Li, Fangbiao; Azam, Farooq; Scatina, JoAnn; Talaat, Rasmy

    2004-09-01

    A novel technique to study the reactivity of acyl glucuronide metabolites to protein has been developed and is described herein. Considered here are acyl glucuronide metabolites, which have undergone the rearrangement of the glucuronic acid moiety at physiological temperature and pH. The investigation of the reactivity of these electrophilic metabolites was carried out by measuring the rate of reaction of rearranged AG metabolites in forming the corresponding acyl glucuronide-peptide adduct in the presence of Lys-Phe. This differs from the parallel technique used in forming AG adducts of proteins that have been previously reported. In the study described here, the Schiff base adduct, diclofenac acyl glucuronide-Lys-Phe product, was generated and structurally elucidated by liquid chromatography tandem mass spectrometry (LC/MS/MS) analysis. The product structure was proved to be a Schiff base adduct by chemical derivatization by nucleophilic addition of HCN and chemical reduction with NaCNBH(3), followed by LC/MS/MS analysis. It is proposed here that the degree of reactivity of acyl glucuronides as measured by covalent binding to protein is proportional to the amount of its peptide adduct generated with the peptide technique described. The application of this technique to the assessment of the degree of reactivity of acyl glucuronide metabolites was validated by developing a reactivity rank of seven carboxylic acid-containing drugs. Consistency was achieved between the ranking of reactivity in the peptide technique for these seven compounds and the rankings found in the literature. In addition, a correlation (R(2) = 0.95) was revealed between the formation of a peptide adduct and the rearrangement rate of the primary acyl glucuronide of seven tested compounds. A structure effect on the degree of reactivity has demonstrated the rate order: acetic acid > propionic acid > benzoic acid derivatives. A rational explanation of this order was proposed, based on the inherent

  2. Characterization of a Bifunctional Archaeal Acyl Coenzyme A Carboxylase

    PubMed Central

    Chuakrut, Songkran; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2003-01-01

    Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an α4β4γ4 subunit structure. The optimum temperature for the enzyme was 60 to 70°C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent Km for acetyl-CoA was 0.17 ± 0.03 mM, with a Vmax of 43.3 ± 2.8 U mg−1, and the Km for propionyl-CoA was 0.10 ± 0.008 mM, with a Vmax of 40.8 ± 1.0 U mg−1. This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit. PMID:12533469

  3. A general entry to linear, dendritic and branched thiourea-linked glycooligomers as new motifs for phosphate ester recognition in water.

    PubMed

    Jiménez Blanco, José L; Bootello, Purificación; Ortiz Mellet, Carmen; Gutiérrez Gallego, Ricardo; García Fernández, José M

    2004-01-01

    A blockwise iterative synthetic strategy for the preparation of linear, dendritic and branched full-carbohydrate architectures has been developed by using sugar azido(carbamate) isothiocyanates as key templates; the presence of intersaccharide thiourea bridges provides anchoring points for hydrogen bond-directed molecular recognition of phosphate esters in water.

  4. A novel nickel-thiourea-triethylamine complex adsorbed on graphitic C3N4 for low-cost solar hydrogen production.

    PubMed

    Wang, Donghong; Zhang, Yuewei; Chen, Wei

    2014-02-18

    A low-cost photocatalytic system composed of earth-abundant elements has been synthesized, with the nickel-thiourea-triethylamine catalyst in situ formed on the C3N4 photocatalyst, which exhibits a comparable H2 production with a C3N4-Pt photocatalytic system and a long term photocatalytic activity.

  5. Density fluctuations in saturated phospholipid bilayers increase as the acyl-chain length decreases.

    PubMed Central

    Ipsen, J H; Jørgensen, K; Mouritsen, O G

    1990-01-01

    A systematic computer simulation study is conducted for a model of the main phase transition of fully hydrated saturated diacyl phosphatidylcholine bilayers (DMPC, DPPC, and DSPC). With particular focus on the fluctuation effects on the thermal properties in the transition region, the study yields data for the specific heat, the lateral compressibility, and the lipid-domain size distribution. Via a simple model assumption the transmembrane passive ion permeability is derived from the lipid-domain interfacial measure. A comparative analysis of the various data shows, in agreement with a number of experiments, that the lateral density fluctuations and hence the response functions increase as the acyl-chain length is decreased. Images FIGURE 2 PMID:2291936

  6. New acylated anthocyanins from purple yam and their antioxidant activity.

    PubMed

    Moriya, Chiemi; Hosoya, Takahiro; Agawa, Sayuri; Sugiyama, Yasumasa; Kozone, Ikuko; Shin-Ya, Kazuo; Terahara, Norihiko; Kumazawa, Shigenori

    2015-01-01

    Purple yam (Dioscorea alata L.), which is widely distributed in tropical and subtropical regions, is characterized by its color and viscosity. Previous studies have shown that purple yams contain a variety of acylated anthocyanins that exhibit higher levels of antioxidant activity than the corresponding nonacylated compounds. In this study, the pigments found in purple yams from the Philippines (D. alata) were isolated and evaluated in terms of antioxidant activity. Four new acylated anthocyanins, alanins (1-4) were isolated from the MeOH extracts of purple yam, which were subsequently determined to be cyanidin (1, 2, and 4) and peonidin (3) type compounds, along with four known anthocyanins (5-8). The structures of 1-4 were determined by spectroscopic methods, including NMR and MS analyses. The antioxidant activities of anthocyanins 1-8 were investigated using oxygen radical absorbing capacity and ferric reducing antioxidant power assays. PMID:25848974

  7. Reaction of Acylated Homoserine Lactone Bacterial Signaling Molecules with Oxidized Halogen Antimicrobials

    PubMed Central

    Borchardt, S. A.; Allain, E. J.; Michels, J. J.; Stearns, G. W.; Kelly, R. F.; McCoy, W. F.

    2001-01-01

    Oxidized halogen antimicrobials, such as hypochlorous and hypobromous acids, have been used extensively for microbial control in industrial systems. Recent discoveries have shown that acylated homoserine lactone cell-to-cell signaling molecules are important for biofilm formation in Pseudomonas aeruginosa, suggesting that biofouling can be controlled by interfering with bacterial cell-to-cell communication. This study was conducted to investigate the potential for oxidized halogens to react with acylated homoserine lactone-based signaling molecules. Acylated homoserine lactones containing a 3-oxo group were found to rapidly react with oxidized halogens, while acylated homoserine lactones lacking the 3-oxo functionality did not react. The Chromobacterium violaceum CV026 bioassay was used to determine the effects of such reactions on acylated homoserine lactone activity. The results demonstrated that 3-oxo acyl homoserine lactone activity was rapidly lost upon exposure to oxidized halogens; however, acylated homoserine lactones lacking the 3-oxo group retained activity. Experiments with the marine alga Laminaria digitata demonstrated that natural haloperoxidase systems are capable of mediating the deactivation of acylated homoserine lactones. This may illustrate a natural defense mechanism to prevent biofouling on the surface of this marine alga. The Chromobacterium violaceum activity assay illustrates that reactions between 3-oxo acylated homoserine lactone molecules and oxidized halogens do occur despite the presence of biofilm components at much greater concentrations. This work suggests that oxidized halogens may control biofilm not only via a cidal mechanism, but also by possibly interfering with 3-oxo acylated homoserine lactone-based cell signaling. PMID:11425738

  8. Six new acylated anthocyanins from red radish (Raphanus sativus).

    PubMed

    Tamura, Satoru; Tsuji, Kouji; Yongzhen, Piao; Ohnishi-Kameyama, Mayumi; Murakami, Nobutoshi

    2010-09-01

    Six new acylated anthocyanins (1-6) were isolated along with the three known congeners (7-9) from the fresh roots of red radishes (Raphanus sativus L.) cultivated by our group. Their chemical structures were elucidated by spectroscopic properties. Among the six new anthocyanins, the five constituents (1, 2, 4-6) were shown to contain the malonyl function at 6-OH in the glucopyranosyl residue linked to C-5 in the pelargonidin nucleus.

  9. A new acylated flavonol glycoside from Derris triofoliata.

    PubMed

    Xu, Lu-Rong; Wu, Jun; Zhang, Si

    2006-01-01

    A new acylated flavonol glycoside, kaempferol 3-O-[(6''''-feruloyl)-beta-D-glucopyranosyl-(1 --> 3)]-[alpha-L-rhamnopyranosyl-(1 --> 6)]-beta-D-glucopyranoside and two known cyclolignan glycosides, (+)-lyoniresinol-3alpha-O-beta-D-glucopyranoside and ( - )-lyoniresinol-3alpha-O-beta-D-glucopyranoside were isolated from n-BuOH extracts of the aerial parts of Derris triofoliata, their structures were determined from spectroscopic and chemical evidences.

  10. Hexamethyldisilazane as an acylation generator for perfluorocarboxylic acids in quantitative derivatization of primary phenylalkyl amines confirmed by GC/MS and computations.

    PubMed

    Molnár, Borbála; Csámpai, Antal; Molnár-Perl, Ibolya

    2015-01-20

    A novel, selective acylation of primary phenylalkyl amines (PPAAs) using hexamethyldisilazane (HMDS) and perfluorocarboxylic acids (PFCAs) is noted. Couples, like HMDS and trifluoroacetic acid, HMDS and pentafluoropropionic acid, or HMDS and heptafluorobutyric acid trigger PPAAs’ quantitative acylation. Processes’ selectivity was characterized by applying all couples to derivatize benzyl, 2-phenylethyl, 3-phenylpropyl, 4-phenylbutyl amines, and their relevant substituted versions. Aliphatic amines were unreactive. Identification, quantification, proportionality, and stoichiometry in derivatization processes were determined by gas chromatography/mass spectrometry. Reaction conditions were optimized depending on reagents’ molar ratios, solvents, and temperatures applied. The new acylation method, in comparison to the traditional ones, obtained with trifluoroacetic anhydride, heptafluorobutyric anhydride, and N-methyl-bis(trifluoroacetamide), offers numerous advantages. Derivatives, provided by couples, can be directly injected onto the column, avoiding loss of species, saving time, work, and cost in the preparation process. Due to traditional reagents’ excess evaporation by nitrogen drying, the loss of trifluoroacylated species proved to be 65% or less. Regarding heptafluorobutyryl species, their losses varied between 25% and 5%. Unified huge responses, obtained with the HMDS and PFCA couples are attributable to their direct injection onto the column and to fragments sourced from the molecular ions and from their self-chemical ionization ([M]•+, [M+147]+, i.e., [M+(CH3)2–Si═O–Si–(CH3)3]+). The reaction mechanism, due to the HMDS symmetrical structure, acting HMDS as acylation generator for PFCAs, was confirmed by density functional theory (DFT) computation.

  11. The functional size of acyl-coenzyme A (CoA):cholesterol acyltransferase and acyl-CoA hydrolase as determined by radiation inactivation

    SciTech Connect

    Billheimer, J.T.; Cromley, D.A.; Kempner, E.S. )

    1990-05-25

    Frozen rat liver microsomes and rough endoplasmic reticulum were irradiated with high energy electrons. The surviving enzymatic activity of acyl-CoA:cholesterol acyltransferase and activity for esterification of 25-hydroxycholesterol decreased as a simple exponential function of radiation exposure, leading to a target size of 170-180 kDa. The loss of acyl-CoA hydrolase activity with a radiation dose was complex and resolved as a 45-kDa enzyme associated with a large inhibitor. It is interpreted that acyl-CoA hydrolase is the acyl-CoA-binding component and the inhibitor is the cholesterol-binding component of acyl-CoA:cholesterol acyltransferase.

  12. Gastrointestinal uptake of nasunin, acylated anthocyanin in eggplant.

    PubMed

    Ichiyanagi, Takashi; Terahara, Norihiko; Rahman, M Mamunur; Konishi, Tetsuya

    2006-07-26

    We previously showed that nasunin, acylated anthocyanins in eggplant peel, comprises two isomers, cis-nasunin and trans-nasunin. In this study, gastrointestinal absorption of cis- and trans-nasunins was studied in rats. Orally administered nasunins were quickly absorbed in their original acylated forms and maximally appeared in blood plasma after 15 min. When the maximum plasma concentration and area under the plasma concentration curve were normalized by orally administered dose (micromoles per kilogram), there was no significant difference in the uptake efficiency between two isomers and both exhibited a plasma level almost identical to that of delphinidin 3-O-beta-D-glucopyranoside. However, metabolites such as 4'-O-methyl analogues and extended glucuronides which were observed for delphinidin 3-O-beta-D-glucopyranoside and cyanidin 3-O-beta-D-glucopyranoside metabolisms were not detected in urine or blood plasma. Moreover, deacylated and glycolytic products of nasunins such as delphinidin 3-O-beta-D-glucopyranoside or delphinidin (aglycone) were also not detected in blood plasma even after oral administration for 8 h. These results indicated that nasunins were absorbed in their original acylated forms and exhibit a bioavailability almost identical to that of nonacylated anthocyanins. PMID:16848510

  13. Fatty acid acylation of salivary mucin in rat submandibular glands

    SciTech Connect

    Slomiany, B.L.; Murty, V.L.; Takagi, A.; Tsukada, H.; Kosmala, M.; Slomiany, A.

    1985-11-01

    The acylation of salivary mucin with fatty acids and its biosynthesis was investigated by incubating rat submandibular salivary gland cells with (/sup 3/H)palmitic acid and (/sup 3/H)proline. The elaborated extracellular and intracellular mucus glycoproteins following delipidation, Bio-Gel P-100 chromatography, and CsCl equilibrium density gradient centrifugation were analyzed for the distribution of the labeled tracers. The incorporation of both markers into mucus glycoprotein increased steadily with time up to 4 h, at which time about 65% of (/sup 3/H)palmitate and (/sup 3/H)proline were found in the extracellular glycoprotein and 35% in the intracellular glycoprotein. The incorporation ratio of proline/palmitate, while showing an increase with incubation time in the extracellular glycoprotein, remained essentially unchanged with time in the intracellular glycoprotein and at 4 h reached respective values of 0.14 and 1.12. The fact that the proline/palmitate incorporation ratio in the intracellular glycoprotein at 1 h of incubation was 22 times higher than in the extracellular and 8 times higher after 4 h suggests that acylation occurs intracellularly and that fatty acids are added after apomucin polypeptide synthesis. As the incorporation of palmitate within the intracellular mucin was greater in the mucus glycoprotein subunit, it would appear that fatty acid acylation of mucin subunits preceeds their assembly into the mucus glycoprotein polymer.

  14. CO extrusion in homogeneous gold catalysis: reactivity of gold acyl species generated through water addition to gold vinylidenes.

    PubMed

    Bucher, Janina; Stößer, Tim; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2015-01-26

    Herein, we describe a new gold-catalyzed decarbonylative indene synthesis. Synergistic σ,π-activation of diyne substrates leads to gold vinylidene intermediates, which upon addition of water are transformed into gold acyl species, a type of organogold compound hitherto only scarcely reported. The latter are shown to undergo extrusion of CO, an elementary step completely unknown for homogeneous gold catalysis. By tuning the electronic and steric properties of the starting diyne systems, this new reactivity could be exploited for the synthesis of indene derivatives in high yields.

  15. Antiproliferative effects of novel, nonanticoagulant heparin derivatives on vascular smooth muscle cells in vitro and in vivo.

    PubMed Central

    Pukac, L. A.; Hirsch, G. M.; Lormeau, J. C.; Petitou, M.; Choay, J.; Karnovsky, M. J.

    1991-01-01

    The proliferation of vascular smooth muscle cells (VSMC) is strongly inhibited by whole heparin both in vitro and in vivo. To identify and characterize antiproliferative, but nonanticoagulant heparin derivatives, heparin fragments made by periodate treatment were produced and acylated with 2-, 4-, or 6-carbon chain lengths. In culture, the 4- and 6-carbon acylated compounds were more effective than whole heparin in inhibiting serum stimulated VSMC growth at equal mass or approximately equal mean molar concentrations. Further testing was performed in the rat carotid balloon injury model. Myointimal VSMC proliferation produced by balloon catheterization of rat carotid arteries was inhibited by the 4-carbon acylated compound as effectively as heparin at the same mass dose. Importantly, unlike heparin, the 4-carbon acylated compound had no anticoagulant effect in vivo. These experiments suggest nonanticoagulant, acylated heparin derivatives may have a pharmacologic role in preventing myointimal proliferative lesions that are responsible for failures of vascular surgeries and angioplasties. Images Figure 3 PMID:1750515

  16. Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts.

    PubMed

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2007-07-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by Pseudozyma yeasts. They show not only the excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from soybean oil by P. antarctica and P. rugulosa, some new extracellular glycolipids (more hydrophobic than the previously reported di-acylated MELs) were found in the culture medium. The most hydrophobic one was identified as 1-O-alka(e)noyl-4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol, namely tri-acylated MEL. Others were tri-acylated MELs bearing only one acetyl group. The tri-acylated MEL could be prepared by the lipase-catalyzed esterification of a di-acylated MEL with oleic acid implying that the new glycolipids are synthesized from di-acylated MELs in the culture medium containing the residual fatty acids. PMID:17417694

  17. Uniaxial growth of <100> zinc (tris) thiourea sulphate (ZTS) single crystal by Sankaranarayanan-Ramasamy (SR) method and its characterizations.

    PubMed

    Iyanar, M; Muthamizhchelvan, C; Prakash, J Thomas Joseph; Inbanathan, S Stephen Rajkumar; Ponnusamy, S

    2012-08-01

    <100> directed single crystals of zinc (tris) thiourea sulphate, a semi-organic compound, have been grown at an average growth rate of 2mm per day by Sankaranarayanan-Ramasamy (SR) method. Transparent ZTS crystal of size 70mm length and 15mm diameter was grown. The growth conditions have been optimized. Chemical etching, Vickers microhardness, UV-Vis NIR, dielectric constant and dielectric loss analysis were made on conventional and SR method grown ZTS crystals. Thermo gravimetric and differential thermal analysis was carried out to determine the thermal properties of the grown crystal. The NLO efficiency of the crystal has been confirmed using the Kurtz powder technique. The comparative study indicates that the crystal quality of unidirectional grown ZTS crystal is better compared to conventional slow evaporation method grown crystal.

  18. Dithiocarbamate-thiourea hybrids useful as vaginal microbicides also show reverse transcriptase inhibition: design, synthesis, docking and pharmacokinetic studies.

    PubMed

    Bala, Veenu; Jangir, Santosh; Mandalapu, Dhanaraju; Gupta, Sonal; Chhonker, Yashpal S; Lal, Nand; Kushwaha, Bhavana; Chandasana, Hardik; Krishna, Shagun; Rawat, Kavita; Maikhuri, Jagdamba P; Bhatta, Rabi S; Siddiqi, Mohammad I; Tripathi, Rajkamal; Gupta, Gopal; Sharma, Vishnu L

    2015-02-15

    Prophylactic prevention is considered as the most promising strategy to tackle STI/HIV. Twenty-five dithiocarbamate-thiourea hybrids (14-38) were synthesized as woman controlled topical vaginal microbicides to counter Trichomonas vaginalis and sperm along with RT inhibition potential. The four promising compounds (18, 26, 28 and 33) were tested for safety through cytotoxic assay against human cervical cell line (HeLa) and compatibility with vaginal flora, Lactobacillus. Docking study of most promising vaginal microbicide (33) revealed that it docked in a position and orientation similar to known reverse transcriptase inhibitor Nevirapine. The preliminary in vivo pharmacokinetics of compound 33 was performed in NZ-rabbits to evaluate systemic toxicity in comparison to Nonoxynol-9. PMID:25592712

  19. Thiourea-succinonitrile based polymer matrix for efficient and stable quasi solid state dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Grover, Rakhi; Jauhari, Himanshi; Saxena, Kanchan

    2016-05-01

    Dye sensitized solar cells (DSSCs) are considered to be emerging alternatives to the low cost indoor photovoltaic technologies. However, to make the application of these cells economically feasible, the stability of the cells need to be enhanced. This can be achieved by employing solid or quasi solid state electrolytes to reduce the leakage and sealing problems in DSSCs. In the present work, a gel state electrolyte composition was successfully prepared using thiourea and solid state ionic conductor succinonitrile along with other components. The composition has been used for the fabrication of quasi solid state DSSCs using Eosin B as the sensitizer material. The cells fabricated exhibited consistent photovoltaic properties even after 24 hours of storage under ambient conditions without sealing. The present work therefore, demonstrates a rapid and simple preparation of electrolyte medium for quasi solid state DSSCs.

  20. Synthesis and antitumour activity of 4-aminoquinazoline derivatives

    NASA Astrophysics Data System (ADS)

    Lipunova, G. N.; Nosova, E. V.; Charushin, V. N.; Chupakhin, O. N.

    2016-07-01

    Pieces of data on the synthesis and antitumour activity of 4-aminoquinazolines are summarized and analyzed. Key methods for the synthesis of these compounds are considered, primarily cyclocondensation of carboxylic acid derivatives, as well as the oxidation of quinazolines and the cyclization of disubstituted thioureas. Improvements of synthetic schemes for erlotinib, gefitinib and lapatinib, which are the best-known pharmaceuticals based on compounds of the title class, are also considered. Synthetic strategies and biological activities for new 4-aminoquinazoline derivatives that are EGFR-tyrosine kinase inhibitors, multiactive compounds, and labelled compounds for use as positron emission tomography (PET) imaging agents are discussed. The bibliography includes 263 references.

  1. Improving surface functional properties of tofu whey-derived peptides by chemical modification with fatty acids.

    PubMed

    Matemu, Athanasia Oswald; Katayama, Shigeru; Kayahara, Hisataka; Murasawa, Hisashi; Nakamura, Soichiro

    2012-04-01

    Effect of acylation with saturated fatty acids on surface functional properties of tofu whey-derived peptides was investigated. Tofu whey (TW) and soy proteins (7S, 11S, and acid-precipitated soy protein [APP]) were hydrolyzed by Protease M 'Amano' G, and resulting peptide mixtures were acylated with esterified fatty acids of different chain length (6C to 18C) to form a covalent linkage between the carboxyl group of fatty acid and the free amino groups of peptide. Acylation significantly (P < 0.05) increased emulsifying properties of 7S, 11S, and APP peptides independent of fatty acid chain length. Acylation decreased water binding capacity although oil binding capacity of acylated tofu whey ultra filtered fraction (UFTW < 3 kDa), 7S- and 11S-peptides were improved compared to native peptides. 7S peptides acylated with long chain fatty acids had shown significant higher surface hydrophobicity as in contrast with acylated UFTW < 3 kDa and APP peptides. Fluorescence spectra studies revealed structural conformation of acylated soy peptides as compared to native peptides. This study shows that chemical modification with fatty acids can further affect functional properties of soy proteins.

  2. The Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase from Acinetobacter sp. Strain ADP1: Characterization of a Novel Type of Acyltransferase

    PubMed Central

    Stöveken, Tim; Kalscheuer, Rainer; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2005-01-01

    The wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) catalyzes the final steps in triacylglycerol (TAG) and wax ester (WE) biosynthesis in the gram-negative bacterium Acinetobacter sp. strain ADP1. It constitutes a novel class of acyltransferases which is fundamentally different from acyltransferases involved in TAG and WE synthesis in eukaryotes. The enzyme was purified by a three-step purification protocol to apparent homogeneity from the soluble fraction of recombinant Escherichia coli Rosetta (DE3)pLysS (pET23a::atfA). Purified WS/DGAT revealed a remarkably low substrate specificity, accepting a broad range of various substances as alternative acceptor molecules. Besides having DGAT and WS activity, the enzyme possesses acyl-CoA:monoacylglycerol acyltransferase (MGAT) activity. The sn-1 and sn-3 positions of acylglycerols are accepted with higher specificity than the sn-2 position. Linear alcohols ranging from ethanol to triacontanol are efficiently acylated by the enzyme, which exhibits highest specificities towards medium-chain-length alcohols. The acylation of cyclic and aromatic alcohols, such as cyclohexanol or phenylethanol, further underlines the unspecific character of this enzyme. The broad range of possible substrates may lead to biotechnological production of interesting wax ester derivatives. Determination of the native molecular weight revealed organization as a homodimer. The large number of WS/DGAT-homologous genes identified in pathogenic mycobacteria and their possible importance for the pathogenesis and latency of these bacteria makes the purified WS/DGAT from Acinetobacter sp. strain ADP1 a valuable model for studying this group of proteins in pathogenic mycobacteria. PMID:15687201

  3. Acyl-Protein Thioesterase 2 Catalizes the Deacylation of Peripheral Membrane-Associated GAP-43

    PubMed Central

    Tomatis, Vanesa M.; Trenchi, Alejandra; Gomez, Guillermo A.; Daniotti, Jose L.

    2010-01-01

    An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution. PMID:21152083

  4. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase.

    PubMed

    Chung, Jiwoung; Goo, Eunhye; Yu, Sangheon; Choi, Okhee; Lee, Jeehyun; Kim, Jinwoo; Kim, Hongsup; Igarashi, Jun; Suga, Hiroaki; Moon, Jae Sun; Hwang, Ingyu; Rhee, Sangkee

    2011-07-19

    Quorum sensing (QS) controls certain behaviors of bacteria in response to population density. In gram-negative bacteria, QS is often mediated by N-acyl-L-homoserine lactones (acyl-HSLs). Because QS influences the virulence of many pathogenic bacteria, synthetic inhibitors of acyl-HSL synthases might be useful therapeutically for controlling pathogens. However, rational design of a potent QS antagonist has been thwarted by the lack of information concerning the binding interactions between acyl-HSL synthases and their ligands. In the gram-negative bacterium Burkholderia glumae, QS controls virulence, motility, and protein secretion and is mediated by the binding of N-octanoyl-L-HSL (C8-HSL) to its cognate receptor, TofR. C8-HSL is synthesized by the acyl-HSL synthase TofI. In this study, we characterized two previously unknown QS inhibitors identified in a focused library of acyl-HSL analogs. Our functional and X-ray crystal structure analyses show that the first inhibitor, J8-C8, binds to TofI, occupying the binding site for the acyl chain of the TofI cognate substrate, acylated acyl-carrier protein. Moreover, the reaction byproduct, 5'-methylthioadenosine, independently binds to the binding site for a second substrate, S-adenosyl-L-methionine. Closer inspection of the mode of J8-C8 binding to TofI provides a likely molecular basis for the various substrate specificities of acyl-HSL synthases. The second inhibitor, E9C-3oxoC6, competitively inhibits C8-HSL binding to TofR. Our analysis of the binding of an inhibitor and a reaction byproduct to an acyl-HSL synthase may facilitate the design of a new class of QS-inhibiting therapeutic agents.

  5. Characterization of Ten Heterotetrameric NDP-Dependent Acyl-CoA Synthetases of the Hyperthermophilic Archaeon Pyrococcus furiosus

    DOE PAGES

    Scott, Joseph W.; Poole, Farris L.; Adams, Michael W. W.

    2014-01-01

    Tmore » he hyperthermophilic archaeon Pyrococcus furiosus grows by fermenting peptides and carbohydrates to organic acids. In the terminal step, acyl-CoA synthetase (ACS) isoenzymes convert acyl-CoA derivatives to the corresponding acid and conserve energy in the form of ATP. ACS1 and ACS2 were previously purified from P. furiosus and have α 2 β 2 structures but the genome contains genes encoding three additional α -subunits.he ten possible combinations of α and β genes were expressed in E. coli and each resulted in stable and active α 2 β 2 isoenzymes.he α -subunit of each isoenzyme determined CoA-based substrate specificity and between them they accounted for the CoA derivatives of fourteen amino acids.he β -subunit determined preference for adenine or guanine nucleotides.he GTP-generating isoenzymes are proposed to play a role in gluconeogenesis by producing GTP for GTP-dependent phosphoenolpyruvate carboxykinase and for other GTP-dependent processes.ranscriptional and proteomic data showed that all ten isoenzymes are constitutively expressed indicating that both ATP and GTP are generated from the metabolism of most of the amino acids. A phylogenetic analysis showed that the ACSs of P. furiosus and other members of thehermococcales are evolutionarily distinct from those found throughout the rest of biology, including those of other hyperthermophilic archaea.« less

  6. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells

    PubMed Central

    Golej, Deidre L.; Askari, Bardia; Kramer, Farah; Barnhart, Shelley; Vivekanandan-Giri, Anuradha; Pennathur, Subramaniam; Bornfeldt, Karin E.

    2011-01-01

    Long-chain acyl-CoA synthetases (ACSLs) catalyze the thioesterification of long-chain FAs into their acyl-CoA derivatives. Purified ACSL4 is an arachidonic acid (20:4)-preferring ACSL isoform, and ACSL4 is therefore a probable regulator of lipid mediator production in intact cells. Eicosanoids play important roles in vascular homeostasis and disease, yet the role of ACSL4 in vascular cells is largely unknown. In the present study, the ACSL4 splice variant expressed in human arterial smooth muscle cells (SMCs) was identified as variant 1. To investigate the function of ACSL4 in SMCs, ACSL4 variant 1 was overexpressed, knocked-down by small interfering RNA, or its enzymatic activity acutely inhibited in these cells. Overexpression of ACSL4 resulted in a markedly increased synthesis of arachidonoyl-CoA, increased 20:4 incorporation into phosphatidylethanolamine, phosphatidylinositol, and triacylglycerol, and reduced cellular levels of unesterified 20:4. Accordingly, secretion of prostaglandin E2 (PGE2) was blunted in ACSL4-overexpressing SMCs compared with controls. Conversely, acute pharmacological inhibition of ACSL4 activity resulted in increased release of PGE2. However, long-term downregulation of ACSL4 resulted in markedly reduced PGE2 secretion. Thus, ACSL4 modulates PGE2 release from human SMCs. ACSL4 may regulate a number of processes dependent on the release of arachidonic acid-derived lipid mediators in the arterial wall. PMID:21242590

  7. Comparative studies of the effect of thiourea and BHC on behaviour and mortality in adult snails of the species Lymnaea stagnalis and on their egg masses.

    PubMed

    Bhide, M

    1989-01-01

    When adult Lymnaea stagnalis specimens were treated with aqueous thiourea and BHC solutions for up to 30 days, they displayed hyperirritability after 3 +/- 2 days, manifested in climbing behaviour at the surface of the water to avoid contact with the treated medium and to take in fresh air. They remained clinging to the wall of the container for long intervals without feeding and their feeding rate as a whole was slow throughout the experiment. Owing to decalcification the shell became thin, fragile and semi-transparent. Egg mass production by the adults increased slightly, but there were fewer egg capsules (3-8/egg mass), indicating that the fertility rate was reduced. Mortality among the adult snails was high during prolonged treatment. The egg masses were swollen and were less sticky than in the controls. None of them survived. The effects of BHC treatment were more pronounced and faster than in thiourea treatment.

  8. Organocatalytic enantioselective Michael addition of 2,4-pentandione to nitroalkenes promoted by bifunctional thioureas with central and axial chiral elements.

    PubMed

    Peng, Fang-Zhi; Shao, Zhi-Hui; Fan, Bao-Min; Song, He; Li, Gan-Peng; Zhang, Hong-Bin

    2008-07-01

    Two novel bifunctional amine-thiourea organocatalysts 1 and 2, which both bear central and axial chiral elements, have been developed to promote enantioselective Michael reaction between 1,3-dicarbonyl compounds and nitro olefins. The catalyst 2 afforded the desired products with good levels of enantioselectivity (up to 96% ee), showing clearly that two chiral elements of 2 are matched, and enhance the stereochemical control.

  9. Optimization of the anti-cancer activity of phosphatidylinositol-3 kinase pathway inhibitor PITENIN-1: switching a thiourea with 1,2,3-triazole

    PubMed Central

    Kommagalla, Yadagiri; Cornea, Sinziana; Riehle, Robert; Torchilin, Vladimir; Degterev, Alexei; Ramana, Chepuri V.

    2014-01-01

    We previously reported encouraging in vitro and in vivoanti-cancer activity of N-((3-chloro-2-hydroxy-5-nitrophenyl)carbamothioyl)benzamide (termed PITENIN-1). In the current work, we describe the structure-activity relationship study of PIT-1 series, based on the replacement of central thiourea unit with a 1,2,3-triazole, which leads to increased liver microsomal stability, drug likeness and toxicity towards cancer cells. PMID:25505943

  10. Organocatalytic asymmetric Henry reaction of 1H-pyrrole-2,3-diones with bifunctional amine-thiourea catalysts bearing multiple hydrogen-bond donors

    PubMed Central

    Zhang, Ming-Liang; Yue, Deng-Feng; Wang, Zhen-Hua; Luo, Yuan; Zhang, Xiao-Mei

    2016-01-01

    Summary For the first time, a catalytic asymmetric Henry reaction of 1H-pyrrole-2,3-diones was achieved with a chiral bifunctional amine-thiourea as a catalyst possessing multiple hydrogen-bond donors. With this developed method, a range of 3-hydroxy-3-nitromethyl-1H-pyrrol-2(3H)-ones bearing quaternary stereocenters were obtained in acceptable yield (up to 75%) and enantioselectivity (up to 73% ee). PMID:26977188

  11. A rapid ultrasound-assisted thiourea extraction method for the determination of inorganic and methyl mercury in biological and environmental samples by CVAAS.

    PubMed

    Krishna, M V Balarama; Ranjit, Manjusha; Karunasagar, D; Arunachalam, J

    2005-07-15

    A rapid ultrasound-assisted extraction procedure for the determination of total mercury, inorganic and methyl mercury (MM) in various environmental matrices (animal tissues, samples of plant origin and coal fly ash) has been developed. The mercury contents were estimated by cold vapour atomic absorption spectrometry (CVAAS). Inorganic mercury (IM) was determined using SnCl(2) as reducing agent whereas total mercury was determined after oxidation of methyl mercury through UV irradiation. Operational parameters such as extractant composition (HNO(3) and thiourea), sonication time and sonication amplitude found to be different for different matrices and were optimized using IAEA-350 (Fish homogenate), IM and MM loaded moss and NIST-1633b (Coal fly ash) to get quantitative extraction of total mercury. The method was further validated through the analysis of additional certified reference materials (RM): NRCC-DORM2 (Dogfish muscle), NRCC-DOLT1 (Dogfish liver) and IAEA-336 (Lichen). Quantitative recovery of total Hg was achieved using mixtures of 5% HNO(3) and 0.02% thiourea, 10% HNO(3) and 0.02% thiourea, 20% HNO(3) and 0.2% thiourea for fish tissues, plant matrices and coal fly ash samples, respectively. The results obtained were in close agreement with certified values with an overall precision in the range of 5-15%. The proposed ultrasound-assisted extraction procedure significantly reduces the time required for sample treatment for the extraction of Hg species. The extracted mercury species are very stable even after 24h of sonication. Closed microwave digestion was also used for comparison purposes. The proposed method was applied for the determination of Hg in field samples of lichens, mosses, coal fly ash and coal samples.

  12. Ortho C-H Acylation of Aryl Iodides by Palladium/Norbornene Catalysis.

    PubMed

    Dong, Zhe; Wang, Jianchun; Ren, Zhi; Dong, Guangbin

    2015-10-19

    Reported herein is a palladium/norbornene-catalyzed ortho-arene acylation of aryl iodides by a Catellani-type C-H functionalization. This transformation is enabled by isopropyl carbonate anhydrides, which serve as both an acyl cation equivalent and a hydride source.

  13. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride.

    PubMed

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen.

  14. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers

    PubMed Central

    Bottomley, Peter J.

    2015-01-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS. PMID:26092466

  15. Synthesis of photoactivatable azido-acyl caged oxazine fluorophores for live-cell imaging.

    PubMed

    Anzalone, Andrew V; Chen, Zhixing; Cornish, Virginia W

    2016-07-19

    We report the design and synthesis of a photoactivatable azido-acyl oxazine fluorophore. Photoactivation is achieved cleanly and rapidly with UV light, producing a single fluorescent oxazine photoproduct. We demonstrate the utility of azido-acyl caged oxazines for protein specific labeling in living mammalian cells using the TMP-tag technology. PMID:27377037

  16. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers.

    PubMed

    Mellbye, Brett L; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2015-09-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.

  17. Turnover of the 4'-phosphopantetheine prosthetic group of acyl carrier protein.

    PubMed

    Jackowski, S; Rock, C O

    1984-02-10

    Acyl carrier protein is an essential cofactor in fatty acid biosynthesis, and in contrast to the stability of the protein moiety during growth, its 4'-phosphopantetheine prosthetic group is metabolically active. The biosynthetic incorporation of deuterium into nonexchangeable positions of acyl carrier protein was found to enhance the sensitivity of the protein to pH-induced hydrodynamic expansion. This constitutional isotope effect was exploited to separate deuterated from normal acyl carrier protein by conformationally sensitive gel electrophoresis, thus providing the analytical framework for separating pre-existing (deuterated) from newly synthesized acyl carrier protein in pulse-chase experiments. The rate of acyl carrier protein prosthetic group turnover was found to depend on the intracellular concentration of coenzyme A. At low coenzyme A levels, prosthetic group turnover was four times faster than the rate of new acyl carrier protein biosynthesis but at the higher coenzyme A concentrations characteristic of logarithmic growth, turnover was an order of magnitude slower, amounting to approximately 25% of the acyl carrier protein pool per generation. These observations suggest that the acyl carrier protein prosthetic group turnover cycle may be related to coenzyme A metabolism rather than to lipid biosynthesis.

  18. Measurement of tissue acyl-CoAs using flow-injection tandem mass spectrometry: acyl-CoA profiles in short-chain fatty acid oxidation defects

    PubMed Central

    Palladino, Andrew A.; Chen, Jie; Kallish, Staci; Stanley, Charles A.; Bennett, Michael J.

    2013-01-01

    The primary accumulating metabolites in fatty acid oxidation defects are intramitochondrial acyl-CoAs. Typically, secondary metabolites such as acylcarnitines, acylglycines and dicarboxylic acids are measured to study these disorders. Methods have not been adapted for tissue acyl-CoA measurement in defects with primarily acyl-CoA accumulation. Our objective was to develop a method to measure fatty acyl-CoA species that are present in tissues of mice with fatty acid oxidation defects using flow-injection tandem mass spectrometry. Following the addition of internal standards of [13C2] acetyl-CoA, [13C8] octanoyl-CoA, and [C17] heptadecanoic CoA, acyl-CoA’s are extracted from tissue samples and are injected directly into the mass spectrometer. Data is acquired using a 506.9 neutral loss scan and multiple reaction-monitoring (MRM). This method can identify all long, medium and short-chain acyl-CoA species in wild type mouse liver including predicted 3-hydroxyacyl-CoA species. We validated the method using liver of the short-chain-acyl-CoA dehydrogenase (SCAD) knock-out mice. As expected, there is a significant increase in [C4] butyryl-CoA species in the SCAD −/− mouse liver compared to wild type. We then tested the assay in liver from the short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD) deficient mice to determine the profile of acyl-CoA accumulation in this less predictable model. There was more modest accumulation of medium chain species including 3-hydroxyacyl-CoA’s consistent with the known chain-length specificity of the SCHAD enzyme. PMID:23117082

  19. Membrane Topology and Transient Acylation of Toxoplasma gondii Glycosylphosphatidylinositols

    PubMed Central

    Kimmel, Jürgen; Smith, Terry K.; Azzouz, Nahid; Gerold, Peter; Seeber, Frank; Lingelbach, Klaus; Dubremetz, Jean-François; Schwarz, Ralph T.

    2006-01-01

    Using hypotonically permeabilized Toxoplasma gondii tachyzoites, we investigated the topology of the free glycosylphosphatidylinositols (GPIs) within the endoplasmic reticulum (ER) membrane. The morphology and permeability of parasites were checked by electron microscopy and release of a cytosolic protein. The membrane integrity of organelles (ER and rhoptries) was checked by protease protection assays. In initial experiments, GPI biosynthetic intermediates were labeled with UDP-[6-3H]GlcNAc in permeabilized parasites, and the transmembrane distribution of the radiolabeled lipids was probed with phosphatidylinositol-specific phospholipase C (PI-PLC). A new early intermediate with an acyl modification on the inositol was identified, indicating that inositol acylation also occurs in T. gondii. A significant portion of the early GPI intermediates (GlcN-PI and GlcNAc-PI) could be hydrolyzed following PI-PLC treatment, indicating that these glycolipids are predominantly present in the cytoplasmic leaflet of the ER. Permeabilized T. gondii parasites labeled with either GDP-[2-3H]mannose or UDP-[6-3H]glucose showed that the more mannosylated and side chain (Glc-GalNAc)-modified GPI intermediates are also preferentially localized in the cytoplasmic leaflet of the ER. PMID:16896225

  20. Fatty acid hydrolysis of acyl marinobactin siderophores by Marinobacter acylases.

    PubMed

    Kem, Michelle P; Naka, Hiroaki; Iinishi, Akira; Haygood, Margo G; Butler, Alison

    2015-01-27

    The marine bacteria Marinobacter sp. DS40M6 and Marinobacter nanhaiticus D15-8W produce a suite of acyl peptidic marinobactin siderophores to acquire iron under iron-limiting conditions. During late-log phase growth, the marinobactins are hydrolyzed to form the marinobactin headgroup with release of the corresponding fatty acid tail. The bntA gene, a homologue of the Pseudomonas aeruginosa pyoverdine acylase gene, pvdQ, was identified from Marinobacter sp. DS40M6. A bntA knockout mutant of Marinobacter sp. DS40M6 produced the suite of acyl marinobactins A-E, without the usual formation of the marinobactin headgroup. Another marinobactin-producing species, M. nanhaiticus D15-8W, is predicted to have two pvdQ homologues, mhtA and mhtB. MhtA and MhtB have 67% identical amino acid sequences. MhtA catalyzes hydrolysis of the apo-marinobactin siderophores as well as the quorum sensing signaling molecule, dodecanoyl-homoserine lactone. In contrast to hydrolysis of the suite of apo-marinobactins by MhtA, hydrolysis of the iron(III)-bound marinobactins was not observed. PMID:25588131

  1. Site‐Selective Acylations with Tailor‐Made Catalysts

    PubMed Central

    Huber, Florian

    2016-01-01

    Abstract The acylation of alcohols catalyzed by N,N‐dimethylamino pyridine (DMAP) is, despite its widespread use, sometimes confronted with substrate‐specific problems: For example, target compounds with multiple hydroxy groups may show insufficient selectivity for one hydroxyl, and the resulting product mixtures are hardly separable. Here we describe a concept that aims at tailor‐made catalysts for the site‐specific acylation. To this end, we introduce a catalyst library where each entry is constructed by connecting a variable and readily tuned peptide scaffold with a catalytically active unit based on DMAP. For selected examples, we demonstrate how library screening leads to the identification of optimized catalysts, and the substrates of interest can be converted with a markedly enhanced site‐selectivity compared with only DMAP. Furthermore, substrate‐optimized catalysts of this type can be used to selectively convert “their” substrate in the presence of structurally similar compounds, an important requisite for reactions with mixtures of substances. PMID:26970553

  2. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement.

    PubMed

    Trier, Sofie; Linderoth, Lars; Bjerregaard, Simon; Strauss, Holger M; Rahbek, Ulrik L; Andresen, Thomas L

    2015-10-01

    Acylation of peptide drugs with fatty acid chains has proven beneficial for prolonging systemic circulation, as well as increasing enzymatic stability and interactions with lipid cell membranes. Thus, acylation offers several potential benefits for oral delivery of therapeutic peptides, and we hypothesize that tailoring the acylation may be used to optimize intestinal translocation. This work aims to characterize acylated analogues of the therapeutic peptide salmon calcitonin (sCT), which lowers blood calcium, by systematically increasing acyl chain length at two positions, in order to elucidate its influence on intestinal cell translocation and membrane interaction. We find that acylation drastically increases in vitro intestinal peptide flux and confers a transient permeability enhancing effect on the cell layer. The analogues permeabilize model lipid membranes, indicating that the effect is due to a solubilization of the cell membrane, similar to transcellular oral permeation enhancers. The effect is dependent on pH, with larger effect at lower pH, and is impacted by acylation chain length and position. Compared to the unacylated peptide backbone, N-terminal acylation with a short chain provides 6- or 9-fold increase in peptide translocation at pH 7.4 and 5.5, respectively. Prolonging the chain length appears to hamper translocation, possibly due to self-association or aggregation, although the long chain acylated analogues remain superior to the unacylated peptide. For K(18)-acylation a short chain provides a moderate improvement, whereas medium and long chain analogues are highly efficient, with a 12-fold increase in permeability compared to the unacylated peptide backbone, on par with currently employed oral permeation enhancers. For K(18)-acylation the medium chain acylation appears to be optimal, as elongating the chain causes greater binding to the cell membrane but similar permeability, and we speculate that increasing the chain length further may

  3. Interrogating alkyl and arylalkylpolyamino (bis)urea and (bis)thiourea isosteres as potent antimalarial chemotypes against multiple lifecycle forms of Plasmodium falciparum parasites.

    PubMed

    Verlinden, Bianca K; de Beer, Marna; Pachaiyappan, Boobalan; Besaans, Ethan; Andayi, Warren A; Reader, Janette; Niemand, Jandeli; van Biljon, Riette; Guy, Kiplin; Egan, Timothy; Woster, Patrick M; Birkholtz, Lyn-Marie

    2015-08-15

    A new series of potent potent aryl/alkylated (bis)urea- and (bis)thiourea polyamine analogues were synthesized and evaluated in vitro for their antiplasmodial activity. Altering the carbon backbone and terminal substituents increased the potency of analogues in the compound library 3-fold, with the most active compounds, 15 and 16, showing half-maximal inhibitory concentrations (IC50 values) of 28 and 30 nM, respectively, against various Plasmodium falciparum parasite strains without any cross-resistance. In vitro evaluation of the cytotoxicity of these analogues revealed marked selectivity towards targeting malaria parasites compared to mammalian HepG2 cells (>5000-fold lower IC50 against the parasite). Preliminary biological evaluation of the polyamine analogue antiplasmodial phenotype revealed that (bis)urea compounds target parasite asexual proliferation, whereas (bis)thiourea compounds of the same series have the unique ability to block transmissible gametocyte forms of the parasite, indicating pluripharmacology against proliferative and non-proliferative forms of the parasite. In this manuscript, we describe these results and postulate a refined structure-activity relationship (SAR) model for antiplasmodial polyamine analogues. The terminally aryl/alkylated (bis)urea- and (bis)thiourea-polyamine analogues featuring a 3-5-3 or 3-6-3 carbon backbone represent a structurally novel and distinct class of potential antiplasmodials with activities in the low nanomolar range, and high selectivity against various lifecycle forms of P. falciparum parasites.

  4. Interrogating alkyl and arylalkylpolyamino (bis)urea and (bis)thiourea isosteres as potent antimalarial chemotypes against multiple lifecycle forms of Plasmodium falciparum parasites

    PubMed Central

    Verlinden, Bianca K.; de Beer, Marna; Pachaiyappan, Boobalan; Besaans, Ethan; Andayi, Warren A.; Reader, Janette; Niemand, Jandeli; van Biljon, Riette; Guy, Kiplin; Egan, Timothy; Woster, Patrick M.; Birkholtz, Lyn-Marie

    2015-01-01

    A new series of potent potent aryl/alkylated (bis)urea- and (bis)thiourea polyamine analogues were synthesized and evaluated in vitro for their antiplasmodial activity. Altering the carbon backbone and terminal substituents increased the potency of analogues in the compound library 3-fold, with the most active compounds, 15 and 16, showing half-maximal inhibitory concentrations (IC50 values) of 28 and 30 nM, respectively, against various Plasmodium falciparum parasite strains without any cross-resistance. In vitro evaluation of the cytotoxicity of these analogues revealed marked selectivity towards targeting malaria parasites compared to mammalian HepG2 cells (>5000-fold lower IC50 against the parasite). Preliminary biological evaluation of the polyamine analogue antiplasmodial phenotype revealed that (bis)urea compounds target parasite asexual proliferation, whereas (bis)thiourea compounds of the same series have the unique ability to block transmissible gametocyte forms of the parasite, indicating pluripharmacology against proliferative and non-proliferative forms of the parasite. In this manuscript, we describe these results and postulate a refined structure-activity relationship (SAR) model for antiplasmodial polyamine analogues. The terminally aryl/alkylated (bis)urea- and (bis)thiourea-polyamine analogues featuring a 3-5-3 or 3-6-3 carbon backbone represent a structurally novel and distinct class of potential antiplasmodials with activities in the low nanomolar range, and high selectivity against various lifecycle forms of P. falciparum parasites. PMID:25684422

  5. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments.

    PubMed

    Blangetti, Marco; Rosso, Heléna; Prandi, Cristina; Deagostino, Annamaria; Venturello, Paolo

    2013-01-17

    Since the first report and due to its handiness and wide scope, the Suzuki-Miyaura (SM) cross coupling reaction has become a routine methodology in many laboratories worldwide. With respect to other common transition metal catalyzed cross couplings, the SM reaction has been so far less exploited as a tool to introduce an acyl function into a specific substrate. In this review, the various approaches found in the literature will be considered, starting from the direct SM acylative coupling to the recent developments of cross coupling between boronates and acyl chlorides or anhydrides. Special attention will be dedicated to the use of masked acyl boronates, alkoxy styryl and alkoxy dienyl boronates as coupling partners. A final section will be then focused on the acyl SM reaction as key synthetic step in the framework of natural products synthesis.

  6. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments.

    PubMed

    Blangetti, Marco; Rosso, Heléna; Prandi, Cristina; Deagostino, Annamaria; Venturello, Paolo

    2013-01-01

    Since the first report and due to its handiness and wide scope, the Suzuki-Miyaura (SM) cross coupling reaction has become a routine methodology in many laboratories worldwide. With respect to other common transition metal catalyzed cross couplings, the SM reaction has been so far less exploited as a tool to introduce an acyl function into a specific substrate. In this review, the various approaches found in the literature will be considered, starting from the direct SM acylative coupling to the recent developments of cross coupling between boronates and acyl chlorides or anhydrides. Special attention will be dedicated to the use of masked acyl boronates, alkoxy styryl and alkoxy dienyl boronates as coupling partners. A final section will be then focused on the acyl SM reaction as key synthetic step in the framework of natural products synthesis. PMID:23344208

  7. In vivo acylation of proteolipid protein and DM-20 in myelin and myelin subfractions of developing rat brain: immunoblot identification of acylated PLP and DM-20

    SciTech Connect

    Garwood, M.M.; Gilbert, W.R.; Agrawal, H.C.

    1983-05-01

    The acylation of proteolipid protein (PLP) was examined in myelin and myelin subfractions from rat brain during the active period of myelination. Proteolipid protein and DM-20 in myelin and myelin subfractions were readily acylated in developing rat brain 22 hours after intracerebral injection of (/sup 3/H)palmitic acid. No differences in the relative specific activity of PLP in myelin from 9-, 15-, and 30-day-old rat brains was observed; however, the relative specific activity of PLP in the heavy myelin subfraction tended to be higher than that in the light myelin subfraction. The acylation of PLP was confirmed by fluorography of immuno-stained cellulose nitrate sheets, clearly establishing that the acylated protein is in fact the oligodendroglial cell- and myelin-specific protein, PLP. Since PLP is acylated in the 9-day-old animal, when little compact myelin is present, it is possible that the acylation of PLP is a prerequisite for the incorporation of this protein into the myelin membrane.

  8. Novel cinchona carbamate selectors with complementary enantioseparation characteristics for N-acylated amino acids.

    PubMed

    Krawinkler, Karl Heinz; Maier, Norbert M; Ungaro, Rocco; Sansone, Francesco; Casnati, Alessandro; Lindner, Wolfgang

    2003-01-01

    The synthesis and chromatographic evaluation of the enantiomer separation capabilities of covalently immobilized calix[4]arene-cinchona carbamate hybrid type receptors derived from quinine (QN) and its corresponding C9-epimer (eQN) in different solvents are reported. The receptors display complementary enantiomer separation profiles in terms of elution order, chiral substrate specificity, and mobile phase characteristics, indicating the existence of two distinct chiral recognition mechanisms. The QN-derived receptor binds the (S)-enantiomers of N-acylated amino acids more strongly, shows preferential recognition of open-chained amino acids, and superior enantioselectivity in polar media such as methanol/acetic acid. In contrast, the eQN congener preferentially recognizes the corresponding (R)-enantiomers, displays good enantioselectivity (alpha up to 1.74) for cyclic amino acids, and enhanced stereodiscriminating properties in apolar mobile phases, e.g., chloroform/acetic acid. A comparison of the enantiomer separation profiles with those of the corresponding QN and eQN tert-butyl carbamate congeners indicates no significant level of cooperativity between the calix[4]arene module and the cinchona units in terms of overall chiral recognition, most probably as a consequence of residual conformational flexibility of the calixarene module and the carbamate linkage.

  9. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    PubMed Central

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase. PMID:12228351

  10. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    PubMed

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.

  11. Trapping the dynamic acyl carrier protein in fatty acid biosynthesis

    PubMed Central

    Nguyen, Chi; Haushalter, Robert W.; Lee, D. John; Markwick, Phineus R. L.; Bruegger, Joel; Caldara-Festin, Grace; Finzel, Kara; Jackson, David R.; Ishikawa, Fumihiro; O’Dowd, Bing; McCammon, J. Andrew; Opella, Stanley J.; Tsai, Shiou-Chuan; Burkart, Michael D.

    2015-01-01

    Acyl carrier protein (ACP) transports the growing fatty acid chain between enzyme domains of fatty acid synthase (FAS) during biosynthesis.1 Because FAS enzymes operate upon ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain.2 The transient nature of ACP-enzyme interactions imposes a major obstacle to gaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to properly study protein-protein interactions. In this work, we describe the application of a mechanism-based probe that allows site-selective covalent crosslinking of AcpP to FabA, the E. coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase. We report the 1.9 Å crystal structure of the crosslinked AcpP=FabA complex as a homo-dimer, in which AcpP exhibits two different conformations likely representing snapshots of ACP in action: the 4′-phosphopantetheine (PPant) group of AcpP first binds an arginine-rich groove of FabA, followed by an AcpP helical conformational change that locks the AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution NMR techniques, including chemical shift perturbations and RDC measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. Combined with molecular dynamics simulations, we show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies will prove general for fatty acid, polyketide and non-ribosomal biosyntheses. Here the foundation is laid for defining the dynamic action of carrier protein activity in primary and secondary metabolism, providing insight into pathways that can play major roles in the treatment of cancer, obesity and infectious

  12. Single crystal growth and enhancing effect of glycine on characteristic properties of bis-thiourea zinc acetate crystal

    NASA Astrophysics Data System (ADS)

    Anis, Mohd; Muley, G. G.

    2016-08-01

    A single crystal of glycine-doped bis-thiourea zinc acetate (G-BTZA) with a dimension of 15 × 6 × 4 mm3 has been grown using the slow solution evaporation technique. The structural parameters of the crystals were determined using the single crystal XRD technique. The increase in optical transparency of the doped BTZA crystal was ascertained in the range of 200 to 900 nm using UV-visible spectral analysis. The improved optical band gap of the G-BTZA crystal is found to be 4.19 eV, and vital optical constants have been calculated using the transmittance data. The influence of glycine on the mechanical parameters of the BTZA crystal has been investigated via microhardness studies. The thermal stability of pure and doped BTZA crystals has been determined by employing the thermogravimetric and differential thermal analysis technique. The improvement in the dielectric properties of the BTZA crystal after the addition of glycine has been evaluated in a temperature range of 30 to 120 °C at a frequency of 100 KHz. The SHG efficiency of the glycine-doped BTZA crystal is found to be much higher than KDP and BTZA crystal material in a Kurtz-Perry powder analysis.

  13. On-line pre-reduction of Se(VI) by thiourea for selenium speciation by hydride generation

    NASA Astrophysics Data System (ADS)

    Qiu, Jianhua; Wang, Qiuquan; Ma, Yuning; Yang, Limin; Huang, Benli

    2006-07-01

    In this study, thiourea (TU) was novelly developed as a reduction reagent for on-line pre-reduction of selenium(VI) before conventional hydride generation (HG) by KBH 4/NaOH-HCl. After TU on-line pre-reduction, the HG efficiency of Se(VI) has been greatly improved and because even higher than that of the same amount of Se(IV) obtained in the conventional HG system. The possible pre-reduction mechanism is discussed. The detection limit (DL) of selenate reaches 10 pg mL - 1 when using on-line TU pre-reduction followed by HG atomic fluorescence detection. When TU pre-reduction followed by HG is used as an interface between ion-pair high performance liquid chromatography and atomic fluorescence spectrometry, selenocystine, selenomethionine, selenite and selenate can be measured simultaneously and quantitatively. The DLs of these are 0.06, 0.08, 0.05 and 0.04 ng mL - 1 , respectively, and the relative standard deviations of 9 duplicate runs for all the 4 species are less than 5%. Furthermore, it was successfully applied to Se speciation analysis of cultured garlic samples, and validated by determination of total selenium and selenium species in certified reference material NIST 1946.

  14. Single crystal growth and enhancing effect of glycine on characteristic properties of bis-thiourea zinc acetate crystal

    NASA Astrophysics Data System (ADS)

    Anis, Mohd; Muley, G. G.

    2016-08-01

    A single crystal of glycine-doped bis-thiourea zinc acetate (G-BTZA) with a dimension of 15 × 6 × 4 mm3 has been grown using the slow solution evaporation technique. The structural parameters of the crystals were determined using the single crystal XRD technique. The increase in optical transparency of the doped BTZA crystal was ascertained in the range of 200 to 900 nm using UV–visible spectral analysis. The improved optical band gap of the G-BTZA crystal is found to be 4.19 eV, and vital optical constants have been calculated using the transmittance data. The influence of glycine on the mechanical parameters of the BTZA crystal has been investigated via microhardness studies. The thermal stability of pure and doped BTZA crystals has been determined by employing the thermogravimetric and differential thermal analysis technique. The improvement in the dielectric properties of the BTZA crystal after the addition of glycine has been evaluated in a temperature range of 30 to 120 °C at a frequency of 100 KHz. The SHG efficiency of the glycine-doped BTZA crystal is found to be much higher than KDP and BTZA crystal material in a Kurtz–Perry powder analysis.

  15. Growth and characterisation of crystals of a new organic complex of thiourea with quinine sulphate dihydrate: an NLO material.

    PubMed

    Nair, Lekshmi P; Bijini, B R; Prasanna, S; Nair, C M K; Deepa, M; Babu, K Rajendra

    2014-01-01

    An organic complex of thiourea and quinine sulphate dihydrate (TQS) has been grown for the first time by gel method. The structure determination was done by the single crystal XRD technique. The crystal belongs to monoclinic system, P21 space group with cell dimensions a=6.228 (3) Å, b=20.4051 (4) Å, c=11.0600 (6) Å, β=101.9811(2)°. The crystal structure is stabilized by the hydrogen bonding. The functional groups present in the complex were analysed by the Fourier Transform Infrared spectroscopic method. The stoichiometry of the complex was confirmed by the elemental analysis. Thermal properties of the complex were determined by TGA and DTA methods and the complex melts at 222.53°C. The optical transparency of the crystal was studied using UV-Visible absorption spectra. The optical band gap is found to be 2.5 eV. The SHG conversion efficiency of TQS was investigated using Kurtz and Perry method and found to be higher than that of the reference material, potassium dihydrogen phosphate (KDP).

  16. Acyl Carrier Protein Synthases from Gram-Negative, Gram-Positive, and Atypical Bacterial Species: Biochemical and Structural Properties and Physiological Implications

    PubMed Central

    McAllister, Kelly A.; Peery, Robert B.; Zhao, Genshi

    2006-01-01

    Acyl carrier protein (ACP) synthase (AcpS) catalyzes the transfer of the 4′-phosphopantetheine moiety from coenzyme A (CoA) onto a serine residue of apo-ACP, resulting in the conversion of apo-ACP to the functional holo-ACP. The holo form of bacterial ACP plays an essential role in mediating the transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and phospholipids. AcpS is therefore an attractive target for therapeutic intervention. In this study, we have purified and characterized the AcpS enzymes from Escherichia coli, Streptococcus pneumoniae, and Mycoplasma pneumoniae, which exemplify gram-negative, gram-positive, and atypical bacteria, respectively. Our gel filtration column chromatography and cross-linking studies demonstrate that the AcpS enzyme from M. pneumoniae, like E. coli enzyme, exhibits a homodimeric structure, but the enzyme from S. pneumoniae exhibits a trimeric structure. Our biochemical studies show that the AcpS enzymes from M. pneumoniae and S. pneumoniae can utilize both short- and long-chain acyl CoA derivatives but prefer long-chain CoA derivatives as substrates. On the other hand, the AcpS enzyme from E. coli can utilize short-chain CoA derivatives but not the long-chain CoA derivatives tested. Finally, our biochemical studies show that M. pneumoniae AcpS is kinetically a very sluggish enzyme compared with those from E. coli and S. pneumoniae. Together, the results of these studies show that the AcpS enzymes from different bacterial species exhibit different native structures and substrate specificities with regard to the utilization of CoA and its derivatives. These findings suggest that AcpS from different microorganisms plays a different role in cellular physiology. PMID:16788183

  17. Small Mismatches in Fatty Acyl Tail Lengths Can Effect Non Steroidal Anti-Inflammatory Drug Induced Membrane Fusion.

    PubMed

    Majumdar, Anupa; Sarkar, Munna

    2016-06-01

    Biological membranes are made up of a variety of lipids with diverse physicochemical properties. The lipid composition modulates different lipidic parameters, such as hydration, dynamics, lipid packing, curvature strain, etc. Changes in these parameters affect various membrane-mediated processes, such as membrane fusion which is an integral step in many biological processes. Packing defects, which originate either from mismatch in the headgroup region or in the hydrophobic acyl tail region, play a major role in modulating membrane dynamics. In this study, we demonstrate how even a small mismatch in the fatty acyl chain length, achieved by incorporation of low concentrations (up to 30 mol %) of dipalmitoylphosphatidylcholine (DPPC) into dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles (SUVs), alters several lipidic parameters like packing, dynamics, and headgroup hydration. This in turn affects non steroidal anti-inflammatory drug (NSAID) induced membrane fusion. Dynamic light scattering, differential scanning calorimetry, second-derivative absorption spectrophotometry, and steady-state and time-resolved fluorescence have been used to elucidate the effect of small mismatch in the tails in DMPC/DPPC mixed vesicles and how it modulates membrane fusion induced by the oxicam NSAIDs, meloxicam (Mx), piroxicam (Px), and tenoxicam (Tx). Fusion kinetics was monitored using fluorescence based fusion assays. At low DPPC concentration of 10 mol %, additional fluidization promotes lipid mixing to some extent for Mx, but at higher mol % of DPPC, subsequent increase in rigidity of membrane interior along with increase in headgroup hydration, synergistically inhibits fusion to various extents for the three different drugs, Mx, Px, and Tx.

  18. Suppressing Erwinia carotovora pathogenicity by projecting N-acyl homoserine lactonase onto the surface of Pseudomonas putida cells.

    PubMed

    Li, Qianqian; Ni, Hong; Meng, Shan; He, Yan; Yu, Ziniu; Li, Lin

    2011-12-01

    N-Acyl homoserine lactones (AHLs) serve as the vital quorum-sensing signals that regulate the virulence of the pathogenic bacterium Erwinia carotovora. In the present study, an approach to efficiently restrain the pathogenicity of E. carotovora-induced soft rot disease is described. Bacillus thuringiensis-derived N-acyl homoserine lactonase (AiiA) was projected onto the surface of Pseudomonas putida cells, and inoculation with both strains was challenged. The previously identified N-terminal moiety of the ice nucleation protein, InaQ-N, was applied as the anchoring motif. A surface display cassette with inaQ-N/ aiiA was constructed and expressed under the control of a constitutive promoter in P. putida AB92019. Surface localization of the fusion protein was confirmed by Western blot analysis, flow cytometry, and immunofluorescence microscopy. The antagonistic activity of P. putida MB116 expressing InaQ-N/AiiA toward E. carotovora ATCC25270 was evaluated by challenge inoculation in potato slices at different ratios. The results revealed a remarkable suppressing effect on E. carotovora infection. The active component was further analyzed using different cell fractions, and the cell surface-projected fusion protein was found to correspond to the suppressing effect. PMID:22210621

  19. Acyl-Homoserine Lactone Quorum Sensing in the Roseobacter Clade

    PubMed Central

    Zan, Jindong; Liu, Yue; Fuqua, Clay; Hill, Russell T.

    2014-01-01

    Members of the Roseobacter clade are ecologically important and numerically abundant in coastal environments and can associate with marine invertebrates and nutrient-rich marine snow or organic particles, on which quorum sensing (QS) may play an important role. In this review, we summarize current research progress on roseobacterial acyl-homoserine lactone-based QS, particularly focusing on three relatively well-studied representatives, Phaeobacter inhibens DSM17395, the marine sponge symbiont Ruegeria sp. KLH11 and the dinoflagellate symbiont Dinoroseobacter shibae. Bioinformatic survey of luxI homologues revealed that over 80% of available roseobacterial genomes encode at least one luxI homologue, reflecting the significance of QS controlled regulatory pathways in adapting to the relevant marine environments. We also discuss several areas that warrant further investigation, including studies on the ecological role of these diverse QS pathways in natural environments. PMID:24402124

  20. Acylation in trypanosomatids: an essential process and potential drug target

    PubMed Central

    Goldston, Amanda M.; Sharma, Aabha I.; Paul, Kimberly S.; Engman, David M.

    2014-01-01

    Fatty acylation—the addition of fatty acid moieties such as myristate and palmitate to proteins—is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their cellular targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of trypanocidal drugs. PMID:24954795

  1. Small Antimicrobial Agents Based on Acylated Reduced Amide Scaffold.

    PubMed

    Teng, Peng; Huo, Da; Nimmagadda, Alekhya; Wu, Jianfeng; She, Fengyu; Su, Ma; Lin, Xiaoyang; Yan, Jiyu; Cao, Annie; Xi, Chuanwu; Hu, Yong; Cai, Jianfeng

    2016-09-01

    Prevalence of drug-resistant bacteria has emerged to be one of the greatest threats in the 21st century. Herein, we report the development of a series of small molecular antibacterial agents that are based on the acylated reduced amide scaffold. These molecules display good potency against a panel of multidrug-resistant Gram-positive and Gram-negative bacterial strains. Meanwhile, they also effectively inhibit the biofilm formation. Mechanistic studies suggest that these compounds kill bacteria by compromising bacterial membranes, a mechanism analogous to that of host-defense peptides (HDPs). The mechanism is further supported by the fact that the lead compounds do not induce resistance in MRSA bacteria even after 14 passages. Lastly, we also demonstrate that these molecules have therapeutic potential by preventing inflammation caused by MRSA induced pneumonia in a rat model. This class of compounds could lead to an appealing class of antibiotic agents combating drug-resistant bacterial strains. PMID:27526720

  2. Detection of acyl-homoserine lactones by Escherichia and Salmonella

    PubMed Central

    Soares, Jitesh A.; Ahmer, Brian M. M.

    2011-01-01

    Escherichia and Salmonella do not synthesize quorum sensing signaling molecules of the N-acyl-L-homoserine lactone (AHL) type but they can detect AHLs produced by other species of bacteria. AHLs are present in the bovine rumen but not in the remainder of the gastrointestinal tract. Enterohemorrhagic E. coli (EHEC) responds to AHLs extracted from the bovine rumen. Salmonella fails to detect AHLs in the gastrointestinal tracts of pathogen-free mice or pigs, suggesting that AHLs are not present. However, Salmonella does detect the AHL production of Yersinia enterocolitica in mouse Peyer’s patches. In response to AHLs, EHEC represses flagellar genes and the LEE pathogenicity island while it activates the acid fitness island, whereas Salmonella activates the rck operon and a gene, srgE, encoding a putative Type III secreted effector. PMID:21353625

  3. The presence of acyl-CoA hydrolase in rat brown-adipose-tissue peroxisomes.

    PubMed

    Alexson, S E; Osmundsen, H; Berge, R K

    1989-08-15

    The subcellular distribution of acyl-CoA hydrolase was studied in rat brown adipose tissue, with special emphasis on possible peroxisomal localization. Subcellular fractionation by sucrose-density-gradient centrifugation, followed by measurement of short-chain (propionyl-CoA) acyl-CoA hydrolase in the presence of NADH, resulted in two peaks of activity in the gradient: one peak corresponded to the distribution of cytochrome oxidase (mitochondrial marker enzyme), and another peak of activity coincided with the peroxisomal marker enzyme catalase. The distribution of the NADH-inhibited short-chain hydrolase activity fully resembled that of cytochrome oxidase. The substrate-specificity curve of the peroxisomal acyl-CoA hydrolase activity indicated the presence of a single enzyme exhibiting a broad substrate specificity, with maximal activity towards fatty acids with chain lengths of 3-12 carbon atoms. The mitochondrial acyl-CoA hydrolase substrate specificity, in contrast, indicated the presence of at least two acyl-CoA hydrolases (of short- and medium-chain-length specificity). The peroxisomal acyl-CoA hydrolase activity was inhibited by CoA at low (microM) concentrations and by ATP at high concentrations (greater than 0.8 mM). In contrast with the mitochondrial short-chain hydrolase, the peroxisomal acyl-CoA hydrolase activity was not inhibited by NADH. PMID:2573347

  4. Acyl spermidines in inflorescence extracts of elder (Sambucus nigra L., Adoxaceae) and elderflower drinks.

    PubMed

    Kite, Geoffrey C; Larsson, Sonny; Veitch, Nigel C; Porter, Elaine A; Ding, Ning; Simmonds, Monique S J

    2013-04-10

    LC-UV-MS analyses of inflorescence extracts of Sambucus nigra L. (elder, Adoxaceae) revealed the presence of numerous acyl spermidines, with isomers of N,N-diferuloylspermidine and N-acetyl-N,N-diferuloylspermidine being most abundant. Pollen was the main source of the acyl spermidines in the inflorescence. Three of the major acyl spermidines were isolated and their structures determined by NMR spectroscopy as N⁵,N¹⁰-di-(E,E)-feruloylspermidine and the new compounds N¹-acetyl-N⁵,N¹⁰-di-(Z,E)-feruloylspermidine and N¹-acetyl-N⁵,N¹⁰-di-(E,E)-feruloylspermidine. An isomer of N,N,N-triferuloylspermidine was also obtained and identified as N¹,N⁵,N¹⁰-tri-(E,E,E)-feruloylspermidine. In addition to stereoisomers of the isolated acyl spermidines, other acyl spermidines detected by the positive ion LC-UV-MS were isomers of N-caffeoyl-N,N-diferuloylspermidine, N-coumaroyl-N,N-diferuloylspermidine, N-caffeoyl-N-feruloylspermidine, N-coumaroyl-N-feruloylspermidine, N-acetyl-N-caffeoyl-N-feruloylspermidine, and N-acetyl-N-coumaroyl-N-feruloylspermidine. Analysis of commercial elderflower drinks showed that acyl spermidines were persistent in these processed elderflower products. Examination of inflorescence extracts from Sambucus canadensis L. (American elder) revealed the presence of acyl spermidines that were different from those of S. nigra.

  5. Fatty acylation of proteins: The long and the short of it.

    PubMed

    Resh, Marilyn D

    2016-07-01

    Long, short and medium chain fatty acids are covalently attached to hundreds of proteins. Each fatty acid confers distinct biochemical properties, enabling fatty acylation to regulate intracellular trafficking, subcellular localization, protein-protein and protein-lipid interactions. Myristate and palmitate represent the most common fatty acid modifying groups. New insights into how fatty acylation reactions are catalyzed, and how fatty acylation regulates protein structure and function continue to emerge. Myristate is typically linked to an N-terminal glycine, but recent studies reveal that lysines can also be myristoylated. Enzymes that remove N-terminal myristoyl-glycine or myristate from lysines have now been identified. DHHC proteins catalyze S-palmitoylation, but the mechanisms that regulate substrate recognition by individual DHHC family members remain to be determined. New studies continue to reveal thioesterases that remove palmitate from S-acylated proteins. Another area of rapid expansion is fatty acylation of the secreted proteins hedgehog, Wnt and Ghrelin, by Hhat, Porcupine and GOAT, respectively. Understanding how these membrane bound O-acyl transferases recognize their protein and fatty acyl CoA substrates is an active area of investigation, and is punctuated by the finding that these enzymes are potential drug targets in human diseases. PMID:27233110

  6. N-Acylation During Glidobactin Biosynthesis by the Tridomain Nonribosomal Peptide Synthetase Module GlbF

    PubMed Central

    Imker, Heidi J.; Krahn, Daniel; Clerc, Jérôme; Kaiser, Markus; Walsh, Christopher T.

    2011-01-01

    Summary Glidobactins are hybrid NRPS-PKS natural products that function as irreversible proteasome inhibitors. A variety of medium chain 2(E),4(E)-diene fatty acids N-acylate the peptidolactam core and contribute significantly to the potency of proteasome inhibition. We have expressed the initiation NRPS module GlbF (C-A-T) in Escherichia coli and observe soluble active protein only on co-expression with the 8 kDa MbtH-like protein, GlbE. Following adenylation and installation of Thr as a T-domain thioester, the starter condensation domain utilizes fatty acyl-CoA donors to acylate the Thr1 amino group and generate the fatty acyl-Thr1-S-pantetheinyl-GlbF intermediate to be used in subsequent chain elongation. Previously proposed to be mediated via acyl carrier protein fatty acid donors, direct utilization of fatty acyl-CoA donors for N-acylation of T-domain tethered amino acids is likely a common strategy for chain initiation in NRPS-mediated lipopeptide biosynthesis. PMID:21035730

  7. N-acylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module GlbF.

    PubMed

    Imker, Heidi J; Krahn, Daniel; Clerc, Jérôme; Kaiser, Markus; Walsh, Christopher T

    2010-10-29

    Glidobactins are hybrid NRPS-PKS natural products that function as irreversible proteasome inhibitors. A variety of medium chain 2(E),4(E)-diene fatty acids N-acylate the peptidolactam core and contribute significantly to the potency of proteasome inhibition. We have expressed the initiation NRPS module GlbF (C-A-T) in Escherichia coli and observe soluble active protein only on coexpression with the 8 kDa MbtH-like protein, GlbE. Following adenylation and installation of Thr as a T-domain thioester, the starter condensation domain utilizes fatty acyl-CoA donors to acylate the Thr(1) amino group and generate the fatty acyl-Thr(1)-S-pantetheinyl-GlbF intermediate to be used in subsequent chain elongation. Previously proposed to be mediated via acyl carrier protein fatty acid donors, direct utilization of fatty acyl-CoA donors for N-acylation of T-domain tethered amino acids is likely a common strategy for chain initiation in NRPS-mediated lipopeptide biosynthesis.

  8. A Chiral Thiourea as a Template for Enantioselective Intramolecular [2 + 2] Photocycloaddition Reactions

    PubMed Central

    2016-01-01

    A chiral (1R,2R)-diaminocyclohexane-derived bisthiourea was found to exhibit a significant asymmetric induction in the intramolecular [2 + 2] photocycloaddition of 2,3-dihydropyridone-5-carboxylates. Under optimized conditions, the reaction was performed with visible light employing 10 mol % of thioxanthone as triplet sensitizer. Due to the different electronic properties of its carbonyl oxygen atoms, a directed binding of the substrate to the template is possible, which in turn enables an efficient enantioface differentiation. PMID:27258626

  9. Plant Acyl-CoA:Lysophosphatidylcholine Acyltransferases (LPCATs) Have Different Specificities in Their Forward and Reverse Reactions*

    PubMed Central

    Lager, Ida; Yilmaz, Jenny Lindberg; Zhou, Xue-Rong; Jasieniecka, Katarzyna; Kazachkov, Michael; Wang, Peng; Zou, Jitao; Weselake, Randall; Smith, Mark A.; Bayon, Shen; Dyer, John M.; Shockey, Jay M.; Heinz, Ernst; Green, Allan; Banas, Antoni; Stymne, Sten

    2013-01-01

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles in acyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for seven LPCATs from five different species, including species accumulating hydroxylated acyl groups in their seed oil, with a preference for C18-unsaturated acyl-CoA and low activity with palmitoyl-CoA and ricinoleoyl (12-hydroxyoctadec-9-enoyl)-CoA. We showed that Arabidopsis LPCAT1 and LPCAT2 enzymes catalyzed the acylation and de-acylation of both sn positions of PC, with a preference for the sn-2 position. When acyl specificities of the Arabidopsis LPCATs were measured in the reverse reaction, sn-2-bound oleoyl, linoleoyl, and linolenoyl groups from PC were transferred to acyl-CoA to a similar extent. However, a ricinoleoyl group at the sn-2-position of PC was removed 4–6-fold faster than an oleoyl group in the reverse reaction, despite poor utilization in the forward reaction. The data presented, taken together with earlier published reports on in vivo lipid metabolism, support the hypothesis that plant LPCAT enzymes play an important role in regulating the acyl-CoA composition in plant cells by transferring polyunsaturated and hydroxy fatty acids produced on PC directly to the acyl-CoA pool for further metabolism or catabolism. PMID:24189065

  10. Diet-Sensitive Sources of Reactive Oxygen Species in Liver Mitochondria: Role of Very Long Chain Acyl-CoA Dehydrogenases

    PubMed Central

    Cardoso, Ariel R.; Kakimoto, Pâmela A. H. B.; Kowaltowski, Alicia J.

    2013-01-01

    High fat diets and accompanying hepatic steatosis are highly prevalent conditions. Previous work has shown that steatosis is accompanied by enhanced generation of reactive oxygen species (ROS), which may mediate further liver damage. Here we investigated mechanisms leading to enhanced ROS generation following high fat diets (HFD). We found that mitochondria from HFD livers present no differences in maximal respiratory rates and coupling, but generate more ROS specifically when fatty acids are used as substrates. Indeed, many acyl-CoA dehydrogenase isoforms were found to be more highly expressed in HFD livers, although only the very long chain acyl-CoA dehydrogenase (VLCAD) was more functionally active. Studies conducted with permeabilized mitochondria and different chain length acyl-CoA derivatives suggest that VLCAD is also a source of ROS production in mitochondria of HFD animals. This production is stimulated by the lack of NAD+. Overall, our studies uncover VLCAD as a novel, diet-sensitive, source of mitochondrial ROS. PMID:24116206

  11. Exploring Cooperative Effects in Oxidative NHC Catalysis: Regioselective Acylation of Carbohydrates.

    PubMed

    Cramer, David L; Bera, Srikrishna; Studer, Armido

    2016-05-23

    The utility of oxidative NHC catalysis for both the regioselective and chemoselective functionalization of carbohydrates is explored. Chiral NHCs allow for the highly regioselective oxidative esterification of various carbohydrates using aldehydes as acylation precursors. The transformation was also shown to be amenable to both cis/trans diol isomers, free amino groups, and selective for specific sugar epimers in competition experiments. Efficiency and regioselectivity of the acylation can be improved upon using two different NHC catalysts that act cooperatively. The potential of the method is documented by the regioselective acylation of an amino-linked neodisaccharide.

  12. Extrapolation of diclofenac clearance from in vitro microsomal metabolism data: role of acyl glucuronidation and sequential oxidative metabolism of the acyl glucuronide.

    PubMed

    Kumar, Sanjeev; Samuel, Koppara; Subramanian, Ramaswamy; Braun, Matthew P; Stearns, Ralph A; Chiu, Shuet-Hing Lee; Evans, David C; Baillie, Thomas A

    2002-12-01

    Diclofenac is eliminated predominantly (approximately 50%) as its 4'-hydroxylated metabolite in humans, whereas the acyl glucuronide (AG) pathway appears more important in rats (approximately 50%) and dogs (>80-90%). However, previous studies of diclofenac oxidative metabolism in human liver microsomes (HLMs) have yielded pronounced underprediction of human in vivo clearance. We determined the relative quantitative importance of 4'-hydroxy and AG pathways of diclofenac metabolism in rat, dog, and human liver microsomes. Microsomal intrinsic clearance values (CL(int) = V(max)/K(m)) were determined and used to extrapolate the in vivo blood clearance of diclofenac in these species. Clearance of diclofenac was accurately predicted from microsomal data only when both the AG and the 4'-hydroxy pathways were considered. However, the fact that the AG pathway in HLMs accounted for ~75% of the estimated hepatic CL(int) of diclofenac is apparently inconsistent with the 4'-hydroxy diclofenac excretion data in humans. Interestingly, upon incubation with HLMs, significant oxidative metabolism of diclofenac AG, directly to 4'-hydroxy diclofenac AG, was observed. The estimated hepatic CL(int) of this pathway suggested that a significant fraction of the intrahepatically formed diclofenac AG may be converted to its 4'-hydroxy derivative in vivo. Further experiments indicated that this novel oxidative reaction was catalyzed by CYP2C8, as opposed to CYP2C9-catalyzed 4'-hydroxylation of diclofenac. These findings may have general implications in the use of total (free + conjugated) oxidative metabolite excretion for determining primary routes of drug clearance and may question the utility of diclofenac as a probe for phenotyping human CYP2C9 activity in vivo via measurement of its pharmacokinetics and total 4'-hydroxy diclofenac urinary excretion.

  13. Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins

    PubMed Central

    Hayashi, Shohei; Satoh, Yasuharu; Ujihara, Tetsuro; Takata, Yusuke; Dairi, Tohru

    2016-01-01

    In some microorganisms, polyunsaturated fatty acids (PUFAs) are biosynthesized by PUFA synthases characterized by tandem acyl carrier proteins (ACPs) in subunit A. These ACPs were previously shown to be important for PUFA productivity. In this study, we examined their function in more detail. PUFA productivities increased depending on the number of ACPs without profile changes in each subunit A of eukaryotic and prokaryotic PUFA synthases. We also constructed derivative enzymes from subunit A with 5 × ACPs. Enzymes possessing one inactive ACP at any position produced ~30% PUFAs compared with the parental enzyme but unexpectedly had ~250% productivity compared with subunit A with 4 × ACPs. Enzymes constructed by replacing the 3rd ACP with an inactive ACP from another subunit A or ACP-unrelated sequences produced ~100% and ~3% PUFAs compared with the parental 3rd ACP-inactive enzyme, respectively. These results suggest that both the structure and number of ACP domains are important for PUFA productivity. PMID:27752094

  14. Dihydrofolate synthetase and folylpolyglutamate synthetase: direct evidence for intervention of acyl phosphate intermediates

    SciTech Connect

    Banerjee, R.V.; Shane, B.; McGuire, J.J.; Coward, J.K.

    1988-12-13

    The transfer of /sup 17/O and/or /sup 18/O from (COOH-/sup 17/O or -/sup 18/O) enriched substrates to inorganic phosphate (P/sub i/) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-/sup 18/O-labeled folate, methotrexate, and dihydropteroate, in addition to (/sup 17/O)-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. P/sub i/ was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for /sup 17/O and /sup 18/O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate /sup 18/O-enriched carboxyl group to P/sub i/ occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of P/sub i/ obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that /sup 18/O transfer had occurred.

  15. 3-Oxoacyl-(acyl-carrier protein) reductase from avocado (Persea americana) fruit mesocarp.

    PubMed Central

    Sheldon, P S; Kekwick, R G; Sidebottom, C; Smith, C G; Slabas, A R

    1990-01-01

    The NADPH-linked 3-oxoacyl-(acyl-carrier protein) (ACP) reductase (EC 1.1.1.100), also known as 'beta-ketoacyl-ACP reductase', has been purified from the mesocarp of mature avocado pears (Persea americana). The enzyme is inactivated by low ionic strength and low temperature. On SDS/PAGE under reducing conditions, purified 3-oxoacyl-ACP reductase migrated as a single polypeptide giving a molecular mass of 28 kDa. Gel-filtration chromatography gave an apparent native molecular mass of 130 kDa, suggesting that the enzyme is tetrameric. The enzyme is inactivated by dilution, but some protection is afforded by the presence of NADPH. Kinetic constants have been determined using synthetic analogues as well as the natural ACP substrate. It exhibits a broad pH optimum around neutrality. Phenylglyoxal inactivates the enzyme, and partial protection is given by 1 mM-NADPH. Antibodies have been raised against the protein, which were used to localize it using immunogold electron microscopy. It is localized in plastids. N-Terminal amino-acid-sequence analysis was performed on the enzyme, and it shows close structural similarity with cytochrome f. Internal amino-acid-sequence data, derived from tryptic peptides, shows similarity with the putative gene products encoded by the nodG gene from the nitrogen-fixing bacterium Rhizobium meliloti and the gra III act III genes from Streptomyces spp. Images Fig. 2. Fig. 5. Fig. 6. PMID:2244875

  16. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    PubMed

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity.

  17. The Acute Effects of Swimming on Appetite, Food Intake, and Plasma Acylated Ghrelin

    PubMed Central

    King, James A.; Wasse, Lucy K.; Stensel, David J.

    2011-01-01

    Swimming may stimulate appetite and food intake but empirical data are lacking. This study examined appetite, food intake, and plasma acylated ghrelin responses to swimming. Fourteen healthy males completed a swimming trial and a control trial in a random order. Sixty min after breakfast participants swam for 60 min and then rested for six hours. Participants rested throughout the control trial. During trials appetite was measured at 30 min intervals and acylated ghrelin was assessed periodically (0, 1, 2, 3, 4, 6, and 7.5 h. N = 10). Appetite was suppressed during exercise before increasing in the hours after. Acylated ghrelin was suppressed during exercise. Swimming did not alter energy or macronutrient intake assessed at buffet meals (total trial energy intake: control 9161 kJ, swimming 9749 kJ). These findings suggest that swimming stimulates appetite but indicate that acylated ghrelin and food intake are resistant to change in the hours afterwards. PMID:20953411

  18. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    PubMed

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity. PMID:27451793

  19. Fat Metabolism in Higher Plants: LXII. Stearl-acyl Carrier Protein Desaturase from Spinach Chloroplasts.

    PubMed

    Jacobson, B S; Jaworski, J G; Stumpf, P K

    1974-10-01

    Stearyl-acyl carrier protein desaturase (EC 1.14.99.6), present in the stroma fraction of spinach (Spinacia oleracea) chloroplasts, rapidly desaturated enzymatically prepared stearyl-acyl carrier protein to oleic acid. No other substrates were desaturated. In addition to stearyl-acyl carrier protein, reduced ferredoxin was an essential component of the system. The electron donor systems were either ascorbate, dichlorophenolindophenol, photosystem I and light, or NADPH and ferredoxin-NADP reductase. The desaturase was more active in extracts prepared from chloroplasts obtained from immature spinach leaves than from mature leaves. Stearyl-acyl carrier protein desaturase also occurs in soluble extracts of avocado (Persea americana Mill.) mesocarp and of developing safflower (Carthamus tinctorius) seeds.

  20. Metabolism of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil

    SciTech Connect

    Triggiani, M.; D'Souza, D.M.; Chilton, F.H. )

    1991-04-15

    The biosynthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (1-acyl-2-acetyl-GPC) together with that of 1-alkyl-2-acetyl-GPC (platelet-activating factor) has been demonstrated in a variety of inflammatory cells and tissues. It has been hypothesized that the relative proportion of these phospholipids produced upon cell activation may be influenced by their rates of catabolism. We studied the catabolism of 1-acyl-2-acetyl-GPC in resting and activated human neutrophils and compared it to that of 1-alkyl-2-acetyl-GPC. Neutrophils rapidly catabolize both 1-alkyl-2-acetyl-GPC and 1-acyl-2-acetyl-GPC; however, the rate of catabolism of 1-acyl-2-acetyl-GPC is approximately 2-fold higher than that of 1-alkyl-2-acetyl-GPC. In addition, most of 1-acyl-2-acetyl-GPC is catabolized through a pathway different from that of 1-alkyl-2-acetyl-GPC. The main step in the catabolism of 1-acyl-2-acetyl-GPC is the removal of the long chain at the sn-1 position; the long chain residue is subsequently incorporated either into triglycerides or into phosphatidylcholine. The 1-lyso-2-acetyl-GPC formed in this reaction is then further degraded to glycerophosphocholine, choline, or phosphocholine. 1-Acyl-2-acetyl-GPC is also catabolized, to a lesser extent, through deacetylation at the sn-2 position and reacylation with a long chain fatty acid. Stimulation of neutrophils by A23187 results in a higher rate of catabolism of 1-acyl-2-acetyl-GPC by increasing both the removal of the long chain at the sn-1 position and the deacetylation-reacylation at the sn-2 position. In a broken cell preparation, the cytosolic fraction of the neutrophil was shown to contain an enzyme activity which cleaved the sn-1 position of 1-acyl-2-acetyl-GPC and 1-acyl-2-lyso-GPC but not of 1,2-diacyl-GPC.

  1. Chemo-Enzymatic Synthesis of Oligoglycerol Derivatives.

    PubMed

    Singh, Abhishek K; Nguyen, Remi; Galy, Nicolas; Haag, Rainer; Sharma, Sunil K; Len, Christophe

    2016-08-09

    A cleaner and greener method has been developed and used to synthesize 14 different functionalized oligomer derivatives of glycerol in moderate 29%-39% yields over three steps. After successive regioselective enzymatic acylation of the primary hydroxyl groups, etherification or esterification of the secondary hydroxyl groups and chemoselective enzymatic saponification, the target compounds can efficiently be used as versatile building blocks in organic and supramolecular chemistry.

  2. Chemo-Enzymatic Synthesis of Oligoglycerol Derivatives.

    PubMed

    Singh, Abhishek K; Nguyen, Remi; Galy, Nicolas; Haag, Rainer; Sharma, Sunil K; Len, Christophe

    2016-01-01

    A cleaner and greener method has been developed and used to synthesize 14 different functionalized oligomer derivatives of glycerol in moderate 29%-39% yields over three steps. After successive regioselective enzymatic acylation of the primary hydroxyl groups, etherification or esterification of the secondary hydroxyl groups and chemoselective enzymatic saponification, the target compounds can efficiently be used as versatile building blocks in organic and supramolecular chemistry. PMID:27517886

  3. Synthesis of a water-soluble thiourea-formaldehyde (WTF) resin and its application to immobilize the heavy metal in MSWI fly ash.

    PubMed

    Liu, She-Jiang; Guo, Yu-Peng; Yang, Hong-Yang; Wang, Shen; Ding, Hui; Qi, Yun

    2016-11-01

    Because of the high concentrations of heavy metals, municipal solid waste incineration (MSWI) fly ash is classified as a hazardous waste, which need to be treated to avoid damaging the environment. A novel water-soluble thiourea-formaldehyde (WTF) resin was synthesized by two step reactions (hydroxymethylation reaction and condensation reaction) in the laboratory. Synthetic conditions, removal of free formaldehyde in the resin and the ability of immobilization heavy metals in the MSWI fly ash were studied. The possible molecular structure of the resin was also discussed by elemental analysis and FTIR spectra. Experimental results showed that the synthesis conditions of WTF resin were the formaldehyde/thiourea (T/F) mole ratio of 2.5:1, hydroxymethylation at pH 7.0-8.0 and 60 °C for 30min, and condensation of at pH 4.5-5.0 and 80 °C. In addition, the end point of condensation reaction was measured by turbidity point method. The result of elemental analysis and FTIR spectra indicated that thiourea functional group in the WTF resin chelated the heavy metal ions. Melamine can efficiently reduce the free formaldehyde content in the resin from 8.5% to 2%. The leaching test showed that the immobilization rates of Cr, Pb and Cd were 96.5%, 92.0% and 85.8%, respectively. Leaching concentrations of Cr, Pb and Cd in the treated fly ash were decreased to 0.08 mg/L, 2.44 mg/L and 0.23 mg/L, respectively. The MSWI fly ash treated by WTF resin has no harm to the environment.

  4. Synthesis of a water-soluble thiourea-formaldehyde (WTF) resin and its application to immobilize the heavy metal in MSWI fly ash.

    PubMed

    Liu, She-Jiang; Guo, Yu-Peng; Yang, Hong-Yang; Wang, Shen; Ding, Hui; Qi, Yun

    2016-11-01

    Because of the high concentrations of heavy metals, municipal solid waste incineration (MSWI) fly ash is classified as a hazardous waste, which need to be treated to avoid damaging the environment. A novel water-soluble thiourea-formaldehyde (WTF) resin was synthesized by two step reactions (hydroxymethylation reaction and condensation reaction) in the laboratory. Synthetic conditions, removal of free formaldehyde in the resin and the ability of immobilization heavy metals in the MSWI fly ash were studied. The possible molecular structure of the resin was also discussed by elemental analysis and FTIR spectra. Experimental results showed that the synthesis conditions of WTF resin were the formaldehyde/thiourea (T/F) mole ratio of 2.5:1, hydroxymethylation at pH 7.0-8.0 and 60 °C for 30min, and condensation of at pH 4.5-5.0 and 80 °C. In addition, the end point of condensation reaction was measured by turbidity point method. The result of elemental analysis and FTIR spectra indicated that thiourea functional group in the WTF resin chelated the heavy metal ions. Melamine can efficiently reduce the free formaldehyde content in the resin from 8.5% to 2%. The leaching test showed that the immobilization rates of Cr, Pb and Cd were 96.5%, 92.0% and 85.8%, respectively. Leaching concentrations of Cr, Pb and Cd in the treated fly ash were decreased to 0.08 mg/L, 2.44 mg/L and 0.23 mg/L, respectively. The MSWI fly ash treated by WTF resin has no harm to the environment. PMID:27497309

  5. Influence on the pressure on the properties of chromatographic columns III. Retention volume of thiourea, hold-up volume, and compressibility of the C18-bonded layer

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2005-05-01

    The influence of the average column pressure (ACP) on the elution volume of thiourea was measured on two RPLC columns, packed with Resolve-C{sub 18} (surface coverage 2.45 {micro} mol/m{sup 2}) and Symmetry-C{sub 18} (surface coverage 3.18 {micro} mol/m{sup 2}), and it was compared to that measured under the same conditions on an underivatized silica (Resolve). Five different methanol-water mixtures (20, 40, 60, 80 and 100% methanol, v/v) were used. Once corrected for the compressibility of the mobile phase, the data show that the elution volume of thiourea increases between 3 and 7% on the C{sub 18}-bonded columns when the ACP increases from 50 to 350 bar, depending on the methanol content of the eluent. No such increase is observed on the underivatized Resolve silica column. This increase is too large to be ascribed to the compressibility of the stationary phase (silica + C{sub 18} bonded chains) which accounts for less than 5% of the variation of the retention factor. It is shown that the reason for this effect is of thermodynamic origin, the difference between the partial molar volume of the solute in the stationary and the mobile phase, {Delta}V, controlling the retention volume of thiourea. While {Delta}V is nearly constant for all mobile phase compositions on Resolve silica (with {Delta}V {approx_equal} -4 mL/mol), on RPLC phases, it significantly increases with increasing methanol content, particularly above 60% methanol. It varies between - 5 mL/mol and - 17 mL/mol on Resolve-C{sub 18} and between - 9 mL/mol and - 25 mL/mol on Symmetry-C{sub 18}. The difference in surface coverage between these two RP-HPLC stationary phases increases the values of {Delta}V by about 5 mL/mol.

  6. Influence of the pressure on the properties of chromatographic columns III. Retention volume of thiourea, hold-up volume, and compressibility of the C18-bonded layer

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2005-04-01

    The influence of the average column pressure (ACP) on the elution volume of thiourea was measured on two RPLC columns, packed with Resolve-C{sub 18} (surface coverage 2.45 {micro} mol/m{sup 2}) and Symmetry-C{sub 18} (surface coverage 3.18 {micro} mol/m{sup 2}), and it was compared to that measured under the same conditions on an underivatized silica (Resolve). Five different methanol-water mixtures (20, 40, 60, 80 and 100% methanol, v/v) were used. Once corrected for the compressibility of the mobile phase, the data show that the elution volume of thiourea increases between 3 and 7% on the C{sub 18}-bonded columns when the ACP increases from 50 to 350 bar, depending on the methanol content of the eluent. No such increase is observed on the underivatized Resolve silica column. This increase is too large to be ascribed to the compressibility of the stationary phase (silica + C{sub 18} bonded chains) which accounts for less than 5% of the variation of the retention factor. It is shown that the reason for this effect is of thermodynamic origin, the difference between the partial molar volume of the solute in the stationary and the mobile phase, {Delta}V, controlling the retention volume of thiourea. While {Delta}V is nearly constant for all mobile phase compositions on Resolve silica (with {approx_equal} -4 mL/mol), on RPLC phases, it significantly increases with increasing methanol content, particularly above 60% methanol. It varies between -5 mL/mol and -17 mL/mol on Resolve-C{sub 18} and between -9 mL/mol and -25 mL/mol on Symmetry-C{sub 18}. The difference in surface coverage between these two RP-HPLC stationary phases increases the values of {Delta}V by about 5 mL/mol.

  7. A Liver-Specific Defect of Acyl-CoA Degradation Produces Hyperammonemia, Hypoglycemia and a Distinct Hepatic Acyl-CoA Pattern

    PubMed Central

    Gauthier, Nicolas; Wu, Jiang Wei; Wang, Shu Pei; Allard, Pierre; Mamer, Orval A.; Sweetman, Lawrence; Moser, Ann B.; Kratz, Lisa; Alvarez, Fernando; Robitaille, Yves; Lépine, François; Mitchell, Grant A.

    2013-01-01

    Most conditions detected by expanded newborn screening result from deficiency of one of the enzymes that degrade acyl-coenzyme A (CoA) esters in mitochondria. The role of acyl-CoAs in the pathophysiology of these disorders is poorly understood, in part because CoA esters are intracellular and samples are not generally available from human patients. We created a mouse model of one such condition, deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (HL), in liver (HLLKO mice). HL catalyses a reaction of ketone body synthesis and of leucine degradation. Chronic HL deficiency and acute crises each produced distinct abnormal liver acyl-CoA patterns, which would not be predictable from levels of urine organic acids and plasma acylcarnitines. In HLLKO hepatocytes, ketogenesis was undetectable. Carboxylation of [2-14C] pyruvate diminished following incubation of HLLKO hepatocytes with the leucine metabolite 2-ketoisocaproate (KIC). HLLKO mice also had suppression of the normal hyperglycemic response to a systemic pyruvate load, a measure of gluconeogenesis. Hyperammonemia and hypoglycemia, cardinal features of many inborn errors of acyl-CoA metabolism, occurred spontaneously in some HLLKO mice and were inducible by administering KIC. KIC loading also increased levels of several leucine-related acyl-CoAs and reduced acetyl-CoA levels. Ultrastructurally, hepatocyte mitochondria of KIC-treated HLLKO mice show marked swelling. KIC-induced hyperammonemia improved following administration of carglumate (N-carbamyl-L-glutamic acid), which substitutes for the product of an acetyl-CoA-dependent reaction essential for urea cycle function, demonstrating an acyl-CoA-related mechanism for this complication. PMID:23861731

  8. New N-acyl taurine from the sea urchin Glyptocidaris crenularis.

    PubMed

    Zhou, Xuefeng; Xu, Tunhai; Wen, Kewei; Yang, Xian-Wen; Xu, Shi-Hai; Liu, Yonghong

    2010-01-01

    A new N-acyl taurine (1), together with a new natural product, l-(beta-D-ribofuranosyl)-1,2,4-triazole (4), and two known compounds (2 and 3), were isolated from the sea urchin, Glyptocidaris crenularis. The new N-acyl taurine was elucidated as 2-(5R,15S-dihydroxyeicosanoylamino) ethanesulfonic acid on the basis of spectroscopic (NMR, MS) analyses and the modified Mosher ester method. Compound 2 showed significant toxicity against brine shrimp larvae.

  9. LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa.

    PubMed

    Chugani, Sudha; Greenberg, Everett Peter

    2010-06-01

    Pseudomonas aeruginosa quorum control of gene expression involves three LuxR-type signal receptors LasR, RhlR, and QscR that respond to the LasI- and RhlI-generated acyl-homoserine lactone (acyl-HSL) signals 3OC12-HSL and C4-HSL. We found that a LasR-RhlR-QscR triple mutant responds to acyl-HSLs by regulating at least 37 genes. LuxR homolog-independent activation of the representative genes antA and catB also occurs in the wild type. Expression of antA was influenced the most by C10-HSL and to a lesser extent by other acyl-HSLs, including the P. aeruginosa 3OC12-HSL and C4-HSL signals. The ant and cat operons encode enzymes for the degradation of anthranilate to tricarboxylic acid cycle intermediates. Our results indicate that LuxR homolog-independent acyl-HSL control of the ant and cat operons occurs via regulation of antR, which codes for the transcriptional activator of the ant operon. Although P. aeruginosa has multiple pathways for anthranilate synthesis, one pathway-the kynurenine pathway for tryptophan degradation-is required for acyl-HSL activation of the ant operon. The kynurenine pathway is also the critical source of anthranilate for energy metabolism via the antABC gene products, as well as the source of anthranilate for synthesis of the P. aeruginosa quinolone signal. Our discovery of LuxR homolog-independent responses to acyl-HSLs provides insight into acyl-HSL signaling. PMID:20498077

  10. Lipase and esterase-catalyzed acylation of hetero-substituted nitrogen nucleophiles in water and organic solvents.

    PubMed

    Hacking, M A; Akkus, H; van Rantwijk, F; Sheldon, R A

    2000-04-01

    The lipase- and esterase-catalyzed acylations of hydroxylamine and hydrazine derivatives with octanoic acid and ethyl octanoate are described. The influence of solvent and nucleophile on the initial reaction rate was investigated for a number of free and immobilized enzymes. Initial rates were highest in water, but the overall productivity was optimal in dioxane. Octanoic acid (250 g/L) was converted for 93% into the hydroxamic acid in 36 h with only 1% (w/w) Candida antarctica lipase B (Novozym 435) in dioxane at 40 degrees C. This translates to a catalyst productivity of 68.5 g. g(-1). day(-1) and a space time yield of 149 g. L(-1). day(-1), unprecedented figures in the direct reaction of an acid with a nitrogen nucleophile in an organic solvent.

  11. Asymmetric Synthesis of a CBI-Based Cyclic N-Acyl O-Amino Phenol Duocarmycin Prodrug

    PubMed Central

    2015-01-01

    A short, asymmetric synthesis of a cyclic N-acyl O-amino phenol duocarmycin prodrug subject to reductive activation based on the simplified 1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (CBI) DNA alkylation subunit is described. A key element of the approach entailed treatment of iodo-epoxide 7, prepared by N-alkylation of 6 with (S)-glycidal 3-nosylate, with EtMgBr at room temperature to directly provide the optically pure alcohol 8 in 78% yield (99% ee) derived from an effective metal–halogen exchange and subsequent regioselective intramolecular 6-endo-tet cyclization. Following O-debenzylation, introduction of a protected N-methylhydroxamic acid, direct trannannular spirocyclization, and subsequent stereoelectronically controlled acid-catalyzed cleavage of the resulting cyclopropane (HCl), further improvements in a unique intramolecular cyclization with N–O bond formation originally introduced for formation of the reductively labile prodrug functionality are detailed. PMID:25247380

  12. Synthesis of some new tricyclic 4(3H)-quinazolinone derivatives

    PubMed Central

    Jafari, E.; Khodarahmi, G.A.; Hakimelahi, G.H.; Tsai, F.Y.; Hassanzadeh, F.

    2011-01-01

    Quinazolinones are interesting molecules with a wide range of biological activities. We prepared a number of quinazolinone derivatives by the condensation of 5-bromo- or 5-nitro-substituted anthranilic acids with chloro-acyl chlorides. Anthranilic acid derivatives were treated with either 3-chloro-propionyl chloride or 4-chloro-butyryl chloride to yield the corresponding N-acyl-anthranilic acids. The resultants were reacted with acetic anhydride to afford the benzoxazinone intermediates, which upon condensation with elected amines in either DMF or ethanol gave the corresponding tricyclic 4(3H)-quinazolinone derivatives. It was found that reactions in DMF produced higher yields. PMID:22224092

  13. Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putida DOC21.

    PubMed

    Barrientos, Álvaro; Merino, Estefanía; Casabon, Israël; Rodríguez, Joaquín; Crowe, Adam M; Holert, Johannes; Philipp, Bodo; Eltis, Lindsay D; Olivera, Elías R; Luengo, José M

    2015-01-01

    Pseudomonas putida DOC21, a soil-dwelling proteobacterium, catabolizes a variety of steroids and bile acids. Transposon mutagenesis and bioinformatics analyses identified four clusters of steroid degradation (std) genes encoding a single catabolic pathway. The latter includes three predicted acyl-CoA synthetases encoded by stdA1, stdA2 and stdA3 respectively. The ΔstdA1 and ΔstdA2 deletion mutants were unable to assimilate cholate or other bile acids but grew well on testosterone or 4-androstene-3,17-dione (AD). In contrast, a ΔstdA3 mutant grew poorly in media containing either testosterone or AD. When cells were grown with succinate in the presence of cholate, ΔstdA1 accumulated Δ(1/4) -3-ketocholate and Δ(1,4) -3-ketocholate, whereas ΔstdA2 only accumulated 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC). When incubated with testosterone or bile acids, ΔstdA3 accumulated 3aα-H-4α(3'propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP) or the corresponding hydroxylated derivative. Biochemical analyses revealed that StdA1 converted cholate, 3-ketocholate, Δ(1/4) -3-ketocholate, and Δ(1,4) -3-ketocholate to their CoA thioesters, while StdA2 transformed DHOPDC to DHOPDC-CoA. In contrast, purified StdA3 catalysed the CoA thioesterification of HIP and its hydroxylated derivatives. Overall, StdA1, StdA2 and StdA3 are acyl-CoA synthetases required for the complete degradation of bile acids: StdA1 and StdA2 are involved in degrading the C-17 acyl chain, whereas StdA3 initiates degradation of the last two steroid rings. The study highlights differences in steroid catabolism between Proteobacteria and Actinobacteria.

  14. Deciphering the Acylation Pattern of Yersinia enterocolitica Lipid A

    PubMed Central

    Reinés, Mar; Llobet, Enrique; Dahlström, Käthe M.; Pérez-Gutiérrez, Camino; Llompart, Catalina M.; Torrecabota, Nuria; Salminen, Tiina A.; Bengoechea, José A.

    2012-01-01

    Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3′-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo2-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of

  15. Effect of water on exenatide acylation in poly(lactide-co-glycolide) microspheres.

    PubMed

    Liang, Rongcai; Li, Xiang; Shi, Yanan; Wang, Aiping; Sun, Kaoxiang; Liu, Wanhui; Li, Youxin

    2013-09-15

    Peptide or protein degradation often occurs when water flows into the dosage form. The aim of this study was to investigate the effect of water on exenatide acylation in poly(lactide-co-glycolide) (PLGA) microspheres. Exenatide-loaded PLGA microspheres were incubated at different relative humidities (RH) as well as in solutions of different pH for 20 days. The stability of exenatide was monitored using HPLC and HPLC-MS analysis. The alteration of exenatide conformation caused by water was investigated by FT-IR spectroscopy. Exenatide and glycolide were incubated in DMSO-water solutions to verify the effect of exenatide conformation state on the peptide acylation. Exenatide was relatively stable in microspheres at lower RH, and the absorbed water could act as a plasticizer and thus promote the peptide acylation by PLGA. However, when the microspheres were incubated at 100% RH, the excessively absorbed water could cause conformation recovery of exenatide and play an inhibitory effect on acylation. The formation of acylated exenatide incubated in acetate buffer saline of pH 6.0 was more than that of pH 4.5 and 3.0. Stability studies of exenatide in glycolide solutions showed that exenatide in nonnative monomer state was easier to be acylated by eletrophiles than that in aggregation state. PMID:23872225

  16. Jejunal administration of glucose enhances acyl ghrelin suppression in obese humans.

    PubMed

    Tamboli, Robyn A; Sidani, Reem M; Garcia, Anna E; Antoun, Joseph; Isbell, James M; Albaugh, Vance L; Abumrad, Naji N

    2016-07-01

    Ghrelin is a gastric hormone that stimulates hunger and worsens glucose metabolism. Circulating ghrelin is decreased after Roux-en-Y gastric bypass (RYGB) surgery; however, the mechanism(s) underlying this change is unknown. We tested the hypothesis that jejunal nutrient exposure plays a significant role in ghrelin suppression after RYGB. Feeding tubes were placed in the stomach or jejunum in 13 obese subjects to simulate pre-RYGB or post-RYGB glucose exposure to the gastrointestinal (GI) tract, respectively, without the confounding effects of caloric restriction, weight loss, and surgical stress. On separate study days, the plasma glucose curves obtained with either gastric or jejunal administration of glucose were replicated with intravenous (iv) infusions of glucose. These "isoglycemic clamps" enabled us to determine the contribution of the GI tract and postabsorptive plasma glucose to acyl ghrelin suppression. Plasma acyl ghrelin levels were suppressed to a greater degree with jejunal glucose administration compared with gastric glucose administration (P < 0.05). Jejunal administration of glucose also resulted in a greater suppression of acyl ghrelin than the corresponding isoglycemic glucose infusion (P ≤ 0.01). However, gastric and isoglycemic iv glucose infusions resulted in similar degrees of acyl ghrelin suppression (P > 0.05). Direct exposure of the proximal jejunum to glucose increases acyl ghrelin suppression independent of circulating glucose levels. The enhanced suppression of acyl ghrelin after RYGB may be due to a nutrient-initiated signal in the jejunum that regulates ghrelin secretion. PMID:27279247

  17. Structural basis for acyl-group discrimination by human Gcn5L2

    PubMed Central

    Ringel, Alison E.; Wolberger, Cynthia

    2016-01-01

    Gcn5 is a conserved acetyltransferase that regulates transcription by acetylating the N-terminal tails of histones. Motivated by recent studies identifying a chemically diverse array of lysine acyl modifications in vivo, the acyl-chain specificity of the acetyltransferase human Gcn5 (Gcn5L2) was examined. Whereas Gcn5L2 robustly catalyzes lysine acetylation, the acyltransferase activity of Gcn5L2 becomes progressively weaker with increasing acyl-chain length. To understand how Gcn5 discriminates between different acyl-CoA molecules, structures of the catalytic domain of human Gcn5L2 bound to propionyl-CoA and butyryl-CoA were determined. Although the active site of Gcn5L2 can accommodate propionyl-CoA and butyryl-CoA without major structural rearrangements, butyryl-CoA adopts a conformation incompatible with catalysis that obstructs the path of the incoming lysine residue and acts as a competitive inhibitor of Gcn5L2 versus acetyl-CoA. These structures demonstrate how Gcn5L2 discriminates between acyl-chain donors and explain why Gcn5L2 has weak activity for acyl moieties that are larger than an acetyl group. PMID:27377381

  18. Effects of ghrelin and des-acyl ghrelin on neurogenesis of the rat fetal spinal cord

    SciTech Connect

    Sato, Miho; Nakahara, Keiko; Goto, Shintaro; Kaiya, Hiroyuki; Miyazato, Mikiya . E-mail: a0d201u@cc.miyazaki-u.ac.jp; Date, Yukari; Nakazato, Masamitsu; Kangawa, Kenji; Murakami, Noboru

    2006-11-24

    Expressions of the growth hormone secretagogue receptor (GHS-R) mRNA and its protein were confirmed in rat fetal spinal cord tissues by RT-PCR and immunohistochemistry. In vitro, over 3 nM ghrelin and des-acyl ghrelin induced significant proliferation of primary cultured cells from the fetal spinal cord. The proliferating cells were then double-stained using antibodies against the neuronal precursor marker, nestin, and the cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), and the nestin-positive cells were also found to be co-stained with antibody against GHS-R. Furthermore, binding studies using [{sup 125}I]des-acyl ghrelin indicated the presence of a specific binding site for des-acyl ghrelin, and confirmed that the binding was displaced with unlabeled des-acyl ghrelin or ghrelin. These results indicate that ghrelin and des-acyl ghrelin induce proliferation of neuronal precursor cells that is both dependent and independent of GHS-R, suggesting that both ghrelin and des-acyl ghrelin are involved in neurogenesis of the fetal spinal cord.

  19. ABHD4 regulates multiple classes of N-acyl phospholipids in the mammalian central nervous system

    PubMed Central

    Lee, Hyeon-Cheol; Simon, Gabriel M.; Cravatt, Benjamin F.

    2016-01-01

    N-acyl phospholipids are atypical components of cell membranes that bear three acyl chains and serve as potential biosynthetic precursors for lipid mediators such as endocannabinoids. Biochemical studies have implicated ABHD4 as a brain N-acyl phosphatidylethanolamine (NAPE) lipase, but in vivo evidence for this functional assignment is lacking. Here, we describe ABHD4−/− mice and their characterization using untargeted lipidomics to discover that ABHD4 regulates multiple classes of brain N-acyl phospholipids. In addition to showing reductions in brain glycerophospho-NAEs (GP-NAEs) and plasmalogen-based lyso-NAPEs (lyso-pNAPEs), ABHD4−/− mice exhibited decreases in a distinct set of brain lipids that were structurally characterized as N-acyl lysophosphatidylserines (lyso-NAPSs). Biochemical assays confirmed that NAPS lipids are direct substrates of ABHD4. These findings, taken together, designate ABHD4 as a principal regulator of N-acyl phospholipid metabolism in the mammalian nervous system. PMID:25853435

  20. Retrobiosynthetic Approach Delineates the Biosynthetic Pathway and the Structure of the Acyl Chain of Mycobacterial Glycopeptidolipids*

    PubMed Central

    Vats, Archana; Singh, Anil Kumar; Mukherjee, Raju; Chopra, Tarun; Ravindran, Madhu Sudhan; Mohanty, Debasisa; Chatterji, Dipankar; Reyrat, Jean-Marc; Gokhale, Rajesh S.

    2012-01-01

    Glycopeptidolipids (GPLs) are dominant cell surface molecules present in several non-tuberculous and opportunistic mycobacterial species. GPLs from Mycobacterium smegmatis are composed of a lipopeptide core unit consisting of a modified C26-C34 fatty acyl chain that is linked to a tetrapeptide (Phe-Thr-Ala-alaninol). The hydroxyl groups of threonine and terminal alaninol are further modified by glycosylations. Although chemical structures have been reported for 16 GPLs from diverse mycobacteria, there is still ambiguity in identifying the exact position of the hydroxyl group on the fatty acyl chain. Moreover, the enzymes involved in the biosynthesis of the fatty acyl component are unknown. In this study we show that a bimodular polyketide synthase in conjunction with a fatty acyl-AMP ligase dictates the synthesis of fatty acyl chain of GPL. Based on genetic, biochemical, and structural investigations, we determine that the hydroxyl group is present at the C-5 position of the fatty acyl component. Our retrobiosynthetic approach has provided a means to understand the biosynthesis of GPLs and also resolve the long-standing debate on the accurate structure of mycobacterial GPLs. PMID:22798073

  1. Effect of water on exenatide acylation in poly(lactide-co-glycolide) microspheres.

    PubMed

    Liang, Rongcai; Li, Xiang; Shi, Yanan; Wang, Aiping; Sun, Kaoxiang; Liu, Wanhui; Li, Youxin

    2013-09-15

    Peptide or protein degradation often occurs when water flows into the dosage form. The aim of this study was to investigate the effect of water on exenatide acylation in poly(lactide-co-glycolide) (PLGA) microspheres. Exenatide-loaded PLGA microspheres were incubated at different relative humidities (RH) as well as in solutions of different pH for 20 days. The stability of exenatide was monitored using HPLC and HPLC-MS analysis. The alteration of exenatide conformation caused by water was investigated by FT-IR spectroscopy. Exenatide and glycolide were incubated in DMSO-water solutions to verify the effect of exenatide conformation state on the peptide acylation. Exenatide was relatively stable in microspheres at lower RH, and the absorbed water could act as a plasticizer and thus promote the peptide acylation by PLGA. However, when the microspheres were incubated at 100% RH, the excessively absorbed water could cause conformation recovery of exenatide and play an inhibitory effect on acylation. The formation of acylated exenatide incubated in acetate buffer saline of pH 6.0 was more than that of pH 4.5 and 3.0. Stability studies of exenatide in glycolide solutions showed that exenatide in nonnative monomer state was easier to be acylated by eletrophiles than that in aggregation state.

  2. Production of a Brassica napus Low-Molecular Mass Acyl-Coenzyme A-Binding Protein in Arabidopsis Alters the Acyl-Coenzyme A Pool and Acyl Composition of Oil in Seeds1[C][W][OPEN

    PubMed Central

    Yurchenko, Olga; Singer, Stacy D.; Nykiforuk, Cory L.; Gidda, Satinder; Mullen, Robert T.; Moloney, Maurice M.; Weselake, Randall J.

    2014-01-01

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expression of a Brassica napus ACBP (BnACBP) complementary DNA in the developing seeds of Arabidopsis (Arabidopsis thaliana) resulted in increased levels of polyunsaturated FAs at the expense of eicosenoic acid (20:1cisΔ11) and saturated FAs in seed oil. In this study, we investigated whether alterations in the FA composition of seed oil at maturity were correlated with changes in the acyl-coenzyme A (CoA) pool in developing seeds of transgenic Arabidopsis expressing BnACBP. Our results indicated that both the acyl-CoA pool and seed oil of transgenic Arabidopsis lines expressing cytosolic BnACBP exhibited relative increases in linoleic acid (18:2cisΔ9,12; 17.9%–44.4% and 7%–13.2%, respectively) and decreases in 20:1cisΔ11 (38.7%–60.7% and 13.8%–16.3%, respectively). However, alterations in the FA composition of the acyl-CoA pool did not always correlate with those seen in the seed oil. In addition, we found that targeting of BnACBP to the endoplasmic reticulum resulted in FA compositional changes that were similar to those seen in lines expressing cytosolic BnACBP, with the most prominent exception being a relative reduction in α-linolenic acid (18:3cisΔ9,12,15) in both the acyl-CoA pool and seed oil of the former (48.4%–48.9% and 5.3%–10.4%, respectively). Overall, these data support the role of ACBP in acyl trafficking in developing seeds and validate its use as a biotechnological tool for modifying the FA composition of seed oil. PMID:24740000

  3. Heteroannelation of Cyclic Ketones: Synthesis, Characterization and Antitumor Evaluation of Some Condensed Azine Derivatives.

    PubMed

    Soylem, A Essam; Assy, G Mohammed; Morsi, M Ghania

    2016-01-01

    A series of pyrimidine and thiazine derivatives was synthesized by one-pot reaction of cyclopentanone with a mixture of an aromatic aldehyde, namely o-anisaldehyde, and different ureas, namely urea, guanidine and thiourea, respectively. Furthermore, cycloaddition reaction of active methylene reagents, namely acetyl acetone, malononitrile, ethyl cyanoacetate, cyanoacetamide and N-phenyl cyanoacetamide with 2,6-bis(2-methoxybenzylidene)cyclohexanone afforded chromene and quinoline derivatives in basic medium. The antitumor evaluation of some new compounds against three human cell lines, namely MCF-7, NCI-H460 and SF-268 showed significant and moderate activity compared with the positive control doxorubicin. PMID:27640388

  4. Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio.

    PubMed

    Liu, Qingqing; Gauthier, Marie-Soleil; Sun, Lei; Ruderman, Neil; Lodish, Harvey

    2010-11-01

    Adiponectin activates AMP-activated protein kinase (AMPK) in adipocytes, but the underlying mechanism remains unclear. Here we tested the hypothesis that AMP, generated in activating fatty acids to their CoA derivatives, catalyzed by acyl-CoA synthetases, is involved in AMPK activation by adiponectin. Moreover, in adipocytes, insulin affects the subcellular localization of acyl-CoA synthetase FATP1. Thus, we also tested whether insulin activates AMPK in these cells and, if so, whether it activates through a similar mechanism. We examined these hypotheses by measuring the AMP/ATP ratio and AMPK activation on adiponectin and insulin stimulation and after knocking down acyl-CoA synthetases in adipocytes. We show that adiponectin activation of AMPK is accompanied by an ∼2-fold increase in the cellular AMP/ATP ratio. Moreover, FATP1 and Acsl1, the 2 major acyl-CoA synthetase isoforms in adipocytes, are essential for AMPK activation by adiponectin. We also show that after 40 min. insulin activated AMPK in adipocytes, which was coupled with a 5-fold increase in the cellular AMP/ATP ratio. Knockdown studies show that FATP1 and Acsl1 are required for these processes, as well as for stimulation of long-chain fatty acid uptake by adiponection and insulin. These studies demonstrate that a change in cellular energy state is associated with AMPK activation by both adiponectin and insulin, which requires the activity of FATP1 and Acsl1.

  5. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, C.; Loo, F. van de

    1998-09-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds. 35 figs.

  6. New triterpenoid acyl derivatives and biological study of Manilkara zapota (L.) Van Royen fruits

    PubMed Central

    Fayek, Nesrin M.; Monem, Azza R. Abdel; Mossa, Mohamed Y.; Meselhy, Meselhy R.

    2013-01-01

    β-amyrin-3-(3’-dimethyl) butyrate, a new natural compound was isolated from the fruits of Manilkara zapota (L.) Van Royen, in addition to lupeol-3-acetate and 4-caffeoylquinic acid (cryptochlorogenic acid). The structures of these compounds were identified using different spectral methods (IR, MS, UV, 1H-NMR, 13C-NMR and 2D-NMR). The alcoholic and aqueous extracts of the unripe fruits, in addition to their aqueous homogenate exhibited antioxidant, antihyperglycemic and hypocholesterolemic activities. PMID:23798877

  7. Physical characteristics of tetrahydroxy and acylated derivatives of jojoba liquid wax

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jojoba liquid wax is a mixture of esters of long chain fatty acids and fatty alcohols, mainly (C38:2-C46:2). The oil exhibits excellent emolliency on the skin and therefore is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the Jojoba (Simmondsia...

  8. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, C.; Loo, F. van de

    1997-09-16

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds. 35 figs.

  9. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    1998-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  10. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    1997-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  11. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2002-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  12. High concentrations of aromatic acylated anthocyanins found in cauline hairs in Plectranthus ciliatus.

    PubMed

    Jordheim, Monica; Calcott, Kate; Gould, Kevin S; Davies, Kevin M; Schwinn, Kathy E; Andersen, Øyvind M

    2016-08-01

    Vegetative shoots of a naturalized population of purple-leaved plectranthus (Plectranthus ciliatus, Lamiaceae) were found to contain four main anthocyanins: peonidin 3-(6″-caffeoyl-β-glucopyranoside)-5-β-glucopyranoside, peonidin 3-(6″-caffeoyl-β-glucopyranoside)-5-(6‴-malonyl-β-glucopyranoside), peonidin 3-(6″-E-p-coumaroyl-β-glucopyranoside)-5-(6‴-malonyl-β-glucopyranoside), and peonidin 3-(6″-E-p-coumaroyl-β-glucopyranoside)-5-β-glucopyranoside. The first three of these pigments have not been reported previously from any plant. They all follow the typical anthocyanin pattern of Lamiaceae, with universal occurrence of anthocyanidin 3,5-diglucosides and aromatic acylation with p-coumaric and sometimes caffeic acids; however, they differ by being based on peonidin. The four anthocyanins were present in the leaves (22.2 mg g(-1) DW), and in the xylem and interfascicular parenchyma of the stem. They were exceptionally abundant, among the highest reported for any plant organ, in epidermal hairs on some of the stem internodes (101 mg g(-1) DW). Anthocyanin content in these hairs increased more than three-fold from the youngest to the fourth-youngest internodes. In situ absorbances (λmax ≈ 545 nm) were bathochromic in comparison to absorbances of the isolated anthocyanins in their flavylium form in acidified aqueous solutions (λmax = 525 nm), suggesting that the anthocyanins occur both in quinoidal and flavylium forms in constant proportions in the anthocyanic hair cells. The most distinctive observation with respect to relative proportions of individual anthocyanins was found in de-haired internodes, for which anthocyanin caffeoyl-derivatives decreased, and anthocyanin coumaroyl-derivatives increased, from the youngest to the fourth-youngest internode. PMID:27165277

  13. Diacetoxyiodobenzene assisted C-O bond formation via sequential acylation and deacylation process: synthesis of benzoxazole amides and their mechanistic study by DFT.

    PubMed

    Nahakpam, Lokendrajit; Chipem, Francis A S; Chingakham, Brajakishor S; Laitonjam, Warjeet S

    2016-08-10

    An efficient method for the transformation of N-substituted-N'-benzoylthioureas to substituted N-benzoxazol-2-yl-amides using diacetoxyiodobenzene (DIB) is described in this work. The transformation follows the C-O bond formation leading to the benzoxazole derivative, due to oxidative dehydrogenation by DIB, instead of the expected C-S bond formation of the benzothiazole moiety. The C-O bond formation leading to benzoxazole is due to consecutive acylation and deacylation in conjunction with the reduction of two moles of DIB. A plausible mechanism was proposed for the reaction and density functional calculations were also performed to study the reaction mechanism. PMID:27461562

  14. Kinetic resolution of racemic 2-hydroxy-γ-butyrolactones by asymmetric esterification using diphenylacetic acid with pivalic anhydride and a chiral acyl-transfer catalyst.

    PubMed

    Nakata, Kenya; Gotoh, Kouya; Ono, Keisuke; Futami, Kengo; Shiina, Isamu

    2013-03-15

    Various optically active 2-hydroxy-γ-butyrolactone derivatives are produced via the kinetic resolution of racemic 2-hydroxy-γ-butyrolactones with diphenylacetic acid using pivalic anhydride and (R)-benzotetramisole ((R)-BTM), a chiral acyl-transfer catalyst. Importantly, the substrate scope of this novel protocol is fairly broad (12 examples, s-value; up to over 1000). In addition, we succeeded in disclosing the reaction mechanism to afford high enantioselectivity using theoretical calculations and expounded on the substituent effects at the C-3 positions in 2-hydroxylactones.

  15. A novel and widespread class of ketosynthase is responsible for the head-to-head condensation of two acyl moieties in bacterial pyrone biosynthesis

    PubMed Central

    Kresovic, Darko; Schempp, Florence; Cheikh-Ali, Zakaria

    2015-01-01

    Summary The biosynthesis of photopyrones, novel quorum sensing signals in Photorhabdus, has been studied by heterologous expression of the photopyrone synthase PpyS catalyzing the head-to-head condensation of two acyl moieties. The biochemical mechanism of pyrone formation has been investigated by amino acid exchange and bioinformatic analysis. Additionally, the evolutionary origin of PpyS has been studied by phylogenetic analyses also revealing homologous enzymes in Pseudomonas sp. GM30 responsible for the biosynthesis of pseudopyronines including a novel derivative. Moreover this novel class of ketosynthases is only distantly related to other pyrone-forming enzymes identified in the biosynthesis of the potent antibiotics myxopyronin and corallopyronin. PMID:26425196

  16. Diacetoxyiodobenzene assisted C-O bond formation via sequential acylation and deacylation process: synthesis of benzoxazole amides and their mechanistic study by DFT.

    PubMed

    Nahakpam, Lokendrajit; Chipem, Francis A S; Chingakham, Brajakishor S; Laitonjam, Warjeet S

    2016-08-10

    An efficient method for the transformation of N-substituted-N'-benzoylthioureas to substituted N-benzoxazol-2-yl-amides using diacetoxyiodobenzene (DIB) is described in this work. The transformation follows the C-O bond formation leading to the benzoxazole derivative, due to oxidative dehydrogenation by DIB, instead of the expected C-S bond formation of the benzothiazole moiety. The C-O bond formation leading to benzoxazole is due to consecutive acylation and deacylation in conjunction with the reduction of two moles of DIB. A plausible mechanism was proposed for the reaction and density functional calculations were also performed to study the reaction mechanism.

  17. Acylated iridoids from the roots of Valeriana officinalis var. latifolia.

    PubMed

    Han, Zhu-zhen; Yan, Zhao-hui; Liu, Qing-xin; Hu, Xian-qing; Ye, Ji; Li, Hui-liang; Zhang, Wei-dong

    2012-10-01

    Phytochemical investigation of the roots of Valeriana officinalis var. latifolia resulted in the isolation and characterization of six new acylated iridoids, (5S,7S,8S,9S)-7-hydroxy-8-isovaleroyloxy-Δ⁴,¹¹-dihyronepetalactone (1), (5S,7S,8S,9S)-7-hydroxy-10-isovaleroyloxy-Δ⁴,¹¹-dihyronepetalactone (2), (5S,8S,9S)-10-isovaleroyloxy-Δ⁴,¹¹-dihyronepetalactone (3), (5S,6S,8S,9R)-6-isovaleroyloxy-Δ⁴,¹¹-1,3-diol (4), (5S,6S,8S,9R)-1,3-isovaleroxy-Δ4,11-1,3-diol (5), and (5S,6S,8S,9R)-3-isovaleroxy-6-isovaleroyloxy-Δ⁴,¹¹-1,3-diol (6). Their structures were determined mainly by 1D and 2D NMR spectroscopic techniques. We also report herein for the first time the single crystal X-ray structure of compound 1. In addition, the cytotoxic activities of compounds 1-6 were evaluated against A549 (human lung adenocarcinoma), HCT116 (human colon carcinoma), SK-BR-3 (human breast carcinoma), and HepG2 (human hepatoma) cell lines. Compound 6 showed weak cell growth inhibition of A549, HCT116, SK-BR-3, and HepG2 cells.

  18. Marinopyrrole A target elucidation by acyl dye transfer.

    PubMed

    Hughes, Chambers C; Yang, Yu-Liang; Liu, Wei-Ting; Dorrestein, Pieter C; La Clair, James J; Fenical, William

    2009-09-01

    The targeting of marinopyrrole A to actin was identified using a fluorescent dye transfer strategy. The process began by appending a carboxylic acid terminal tag to a phenol in the natural product. The resulting probe was then studied in live cells to verify that it maintained activity comparable to marinopyrrole A. Two-color fluorescence microscopy confirmed that both unlabeled and labeled materials share comparable uptake and subcellular localization in HCT-116 cells. Subsequent immunoprecipitation studies identified actin as a putative target in HCT-116 cells, a result that was validated by mass spectral, affinity, and activity analyses on purified samples of actin. Further data analyses indicated that the dye in the marinopyrrole probe was selectively transferred to a single residue K(115), an event that did not occur with related acyl phenols and reactive labels. In this study, the combination of cell, protein, and amino acid analysis arose from a single sample of material, thereby, suggesting a means to streamline and reduce material requirements involved in mode of action studies.

  19. In vivo acylation of rat brain myelin proteolipid protein.

    PubMed

    Agrawal, H C; Randle, C L; Agrawal, D

    1982-04-25

    Examination of brain myelin proteins by sodium dodecyl sulfate-gel electrophoresis followed by fluorography clearly showed that both proteolipid protein (PLP) and DM-20 were acylated 24 h after the intracerebral injection of 30-day-old rats with [3H]palmitic acid. The radioactivity associated with PLP remained after purification, re-electrophoresis, and fluorography. Most of the radioactivity associated with PLP was removed when the gels were treated with hydroxylamine and then fluorographed, indicating that fatty acids were bound to PLP by ester linkage. Cleavage of purified PLP with methanolic sodium hydroxide readily released almost all protein-bound radioactivity. Thin layer chromatography of this material on both silver nitrate and reverse-phase plates provided evidence that most of the radioactivity co-migrated with methyl palmitate (77%) and methyl stearate (19%); however, some radioactivity was associated with methyl oleate (4%). Gas-liquid chromatography of the fatty acids associated with PLP distinctly revealed the presence of methyl palmitate and a detectable peak of methyl stearate. PMID:7068653

  20. Role of intraamygdaloid acylated-ghrelin in spatial learning.

    PubMed

    Tóth, Krisztián; László, Kristóf; Lénárd, László

    2010-01-15

    According to recently published papers acylated-ghrelin (A-Ghr) modifies memory and learning. The basolateral nucleus of amygdala (ABL) participates in the regulation of memory and learning mechanisms. Previously we verified A-Ghr responsive neurons in the ABL by electrophysiological methods. In male Wistar rats effects of bilateral intraamygdaloid microinfusion of 50 ng, 100 ng A-Ghr, 15 ng Ghr receptor antagonist d-Lys3-GHRP-6 (ANT) or ANT+50 ng A-Ghr [dissolved in 0.15M sterile saline], or vehicle in 0.4 microl volume were investigated in Morris water maze paradigm. 50 ng A-Ghr significantly reduced latency to find the platform located in one of the quadrants of the maze. Effect of 50 ng A-Ghr was blocked by ANT pretreatment. ANT alone had no effect. Our results show that place learning linked memory processes are facilitated by A-Ghr in the rat ABL. It is a specific effect, because it could be eliminated by ANT pretreatment.

  1. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice.

    PubMed

    Porporato, Paolo E; Filigheddu, Nicoletta; Reano, Simone; Ferrara, Michele; Angelino, Elia; Gnocchi, Viola F; Prodam, Flavia; Ronchi, Giulia; Fagoonee, Sharmila; Fornaro, Michele; Chianale, Federica; Baldanzi, Gianluca; Surico, Nicola; Sinigaglia, Fabiola; Perroteau, Isabelle; Smith, Roy G; Sun, Yuxiang; Geuna, Stefano; Graziani, Andrea

    2013-02-01

    Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that stimulates growth hormone (GH) release and positive energy balance through binding to the receptor GHSR-1a. Only acylated ghrelin (AG), but not the unacylated form (UnAG), can bind GHSR-1a; however, UnAG and AG share several GHSR-1a-independent biological activities. Here we investigated whether UnAG and AG could protect against skeletal muscle atrophy in a GHSR-1a-independent manner. We found that both AG and UnAG inhibited dexamethasone-induced skeletal muscle atrophy and atrogene expression through PI3Kβ-, mTORC2-, and p38-mediated pathways in myotubes. Upregulation of circulating UnAG in mice impaired skeletal muscle atrophy induced by either fasting or denervation without stimulating muscle hypertrophy and GHSR-1a-mediated activation of the GH/IGF-1 axis. In Ghsr-deficient mice, both AG and UnAG induced phosphorylation of Akt in skeletal muscle and impaired fasting-induced atrophy. These results demonstrate that AG and UnAG act on a common, unidentified receptor to block skeletal muscle atrophy in a GH-independent manner.

  2. Synthesis and Some Reactions of 1-aryl-4-acetyl-5-methyl-1,2,3-triazole Derivatives with Anticonvulsant Activity.

    PubMed

    Nassar, Ekhlass M; Abdelrazek, Fathy M; Ayyad, Rezk R; El-Farargy, Ahmed F

    2016-01-01

    The triazoles 3a-d underwent condensation reactions with 4-(piperidin-1-yl)-benzaldehyde to afford the chalcones 5a-d. Chalcone derivatives 5a-d were reacted with 2,3-diaminomaleonitrile, thiourea and hydrazine hydrate to afford the novel diazepine-dicarbonitrile derivatives 7a-d, the pyrimidine-2-thiol derivatives 9a-d and hydrazino-pyrimidines 10a-d respectively. Structures of the prepared compounds were elucidated by physical and spectral data like FT-IR, (1)H NMR, (13)C NMR, and mass spectroscopy. Some of the synthesized compounds were screened for their anticonvulsant activity and SAR. PMID:26776225

  3. Synthesis and anti-inflammatory activity of some 3-(4,6-disubtituted-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl) propanoic acid derivatives.

    PubMed

    Mokale, Santosh N; Shinde, Sandeep S; Elgire, Rupali D; Sangshetti, Jaiprakash N; Shinde, Devanand B

    2010-08-01

    A series of 3-(4,6-disubtituted-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl) propanoic acid derivatives has been synthesized by condensation of thiourea, 5-(4-subtituted phenyl)-5-oxopentanoic acid and substituted aldehyde. The synthesized compounds were screened for their anti-inflammatory activity using rat paw edema method. Most of the compounds from the series showed significant (p <0.05) anti-inflammatory activity.

  4. Non-peptide angiotensin II receptor antagonists. 2. Design, synthesis, and biological activity of N-substituted (phenylamino)phenylacetic acids and acyl sulfonamides.

    PubMed

    Dhanoa, D S; Bagley, S W; Chang, R S; Lotti, V J; Chen, T B; Kivlighn, S D; Zingaro, G J; Siegl, P K; Patchett, A A; Greenlee, W J

    1993-12-24

    The design, synthesis, and biological activity of a new class of highly potent non-peptide AII receptor antagonists derived from N-substituted (phenylamino)phenylacetic acids and acyl sulfonamides which exhibit a high selectivity for the AT1 receptor are described. A series of N-substituted (phenylamino)phenylacetic acids (9) and acyl sulfonamides (16) and a tetrazole derivative (19) were synthesized and evaluated in the in vitro AT1 (rabbit aorta) and AT2 (rat midbrain) binding assay. The (phenylamino)phenylacetic acids 9c (AT1 IC50 = 4 nM, AT2 IC50 = 0.74 microM), 9d (AT1 IC50 = 5.3 nM, AT2 IC50 = 0.49 microM), and 9e (AT1 IC50 = 5.3 nM, AT2 IC50 = 0.56 microM) were found to be the most potent AT1-selective AII antagonists in the acid series. Incorporation of various substituents in the central and bottom phenyl rings led to a decrease in the AT1 and AT2 binding affinity of the resulting compounds. Replacement of the carboxylic acid (CO2H) in 9c, 9d, and 9e with the bioisostere acyl sulfonamide (CONHSO2Ph) resulted in a (5-7)-fold increase in the AT1 potency of 16a (AT1 IC50 = 0.9 nM, AT2 IC50 = 0.2 microM), 16b (AT1 IC50 = 1 nM, AT2 IC50 = 2.9 microM), and 16c (AT1 IC50 = 0.8 nM, AT2 IC50 = 0.42 microM) and yielded acyl sulfonamides with subnanomolar AT1 activity. Incorporation of the acyl sulfonamide (CONHSO2Ph) for the CO2H of 9c not only enhanced the AT1 potency but also effected a marked increase in the AT2 potency of 16a (AT2 IC50 = 0.74 microM of 9c vs 0.2 microM of 16a) and made it the most potent AT2 antagonist in this study. Replacement of the CO2H of 9b with the bioisostere tetrazole resulted in 19 (AT1 IC50 = 15 nM) with a 2-fold loss in the AT1 and a complete loss in the AT2 binding affinity. (Phenylamino)phenylacetic acid 9c demonstrated good oral activity in AII-infused conscious normotensive rats at an oral dose of 1.0 mg/kg by inhibiting the pressor response for > 6 h. Acyl sulfonamides 16a-c displayed excellent in vivo activity by blocking the

  5. Des-acyl ghrelin prevents heatstroke-like symptoms in rats exposed to high temperature and high humidity.

    PubMed

    Inoue, Yoshiyuki; Hayashi, Yujiro; Kangawa, Kenji; Suzuki, Yoshihiro; Murakami, Noboru; Nakahara, Keiko

    2016-02-26

    We have shown previously that des-acyl ghrelin decreases body temperature in rats through activation of the parasympathetic nervous system. Here we investigated whether des-acyl ghrelin ameliorates heatstroke in rats exposed to high temperature. Peripheral administration of des-acyl ghrelin significantly attenuated hyperthermia induced by exposure to high-temperature (35°C) together with high humidity (70-80%). Although biochemical analysis revealed that exposure to high temperature significantly increased hematocrit and the serum levels of aspartate amino transferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and electrolytes (Na(+), K(+), Cl(-)), most of these heatstroke-associated reactions were significantly reduced by treatment with des-acyl ghrelin. The level of des-acyl ghrelin in plasma was also found to be significantly increased under high-temperature conditions. These results suggest that des-acyl ghrelin could be useful for preventing heatstroke under high temperature condition. PMID:26773867

  6. Des-acyl ghrelin prevents heatstroke-like symptoms in rats exposed to high temperature and high humidity.

    PubMed

    Inoue, Yoshiyuki; Hayashi, Yujiro; Kangawa, Kenji; Suzuki, Yoshihiro; Murakami, Noboru; Nakahara, Keiko

    2016-02-26

    We have shown previously that des-acyl ghrelin decreases body temperature in rats through activation of the parasympathetic nervous system. Here we investigated whether des-acyl ghrelin ameliorates heatstroke in rats exposed to high temperature. Peripheral administration of des-acyl ghrelin significantly attenuated hyperthermia induced by exposure to high-temperature (35°C) together with high humidity (70-80%). Although biochemical analysis revealed that exposure to high temperature significantly increased hematocrit and the serum levels of aspartate amino transferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and electrolytes (Na(+), K(+), Cl(-)), most of these heatstroke-associated reactions were significantly reduced by treatment with des-acyl ghrelin. The level of des-acyl ghrelin in plasma was also found to be significantly increased under high-temperature conditions. These results suggest that des-acyl ghrelin could be useful for preventing heatstroke under high temperature condition.

  7. N-Acyl Amino Acid Ligands for Ruthenium(II)-Catalyzed meta-C-H tert-Alkylation with Removable Auxiliaries.

    PubMed

    Li, Jie; Warratz, Svenja; Zell, Daniel; De Sarkar, Suman; Ishikawa, Eloisa Eriko; Ackermann, Lutz

    2015-11-01

    Acylated amino acid ligands enabled ruthenium(II)-catalyzed C-H functionalizations with excellent levels of meta-selectivity. The outstanding catalytic activity of the ruthenium(II) complexes derived from monoprotected amino acids (MPAA) set the stage for the first ruthenium-catalyzed meta-functionalizations with removable directing groups. Thereby, meta-alkylated anilines could be accessed, which are difficult to prepare by other means of direct aniline functionalizations. The robust nature of the versatile ruthenium(II)-MPAA was reflected by challenging remote C-H transformations with tertiary alkyl halides on aniline derivatives as well as on pyridyl-, pyrimidyl-, and pyrazolyl-substituted arenes. Detailed mechanistic studies provided strong support for an initial reversible C-H ruthenation, followed by a SET-type C-Hal activation through homolytic bond cleavage. Kinetic analyses confirmed this hypothesis through an unusual second-order dependence of the reaction rate on the ruthenium catalyst concentration. Overall, this report highlights the exceptional catalytic activity of ruthenium complexes derived from acylated amino acids, which should prove instrumental for C-H activation chemistry beyond remote functionalization.

  8. Synthesis and Anti-Platelet Activity of Thiosulfonate Derivatives Containing a Quinone Moiety

    PubMed Central

    Bolibrukh, Khrystyna; Polovkovych, Svyatoslav; Khoumeri, Omar; Halenova, Tetyana; Nikolaeva, Irina; Savchuk, Olexiy; Terme, Thierry; Vanelle, Patrice; Lubenets, Vira; Novikov, Volodymyr

    2015-01-01

    Thiosulfonate derivatives based on quinones were synthesized for studying “structure-activity relationship” compounds with an acylated and a free amino-group. Anti-platelet activity of the synthesized compounds was determined and the influence of substituents on the activity of the derivatives was assessed. PMID:26839819

  9. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans

    PubMed Central

    Tuck, Laura R.; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D.; Campopiano, Dominic J.; Clarke, David J.; Marles-Wright, Jon

    2016-01-01

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes. PMID:26899032

  10. Morphological and metabolic changes in transgenic wheat with altered glycerol-3-phosphate acyltransferase or acyl-acyl carrier protein (ACP) thioesterase activities.

    PubMed

    Edlin, D A; Kille, P; Wilkinson, M D; Jones, H D; Harwood, J L

    2000-12-01

    We have transformed varieties of wheat with a Pisum sativum glycerol-3-phosphate acyltransferase gene, and also with an Arabidopsis thaliana acyl-ACP thioesterase gene. Morphological (growth, organelle development) and metabolic changes (fatty acid labelling of chloroplast and non-chloroplast lipids) have been observed in transgenics with altered gene expression for either enzyme. PMID:11171169

  11. Structure, crystal growth, optical and mechanical studies of poly bis (thiourea) silver (I) nitrate single crystal: A new semi organic NLO material

    NASA Astrophysics Data System (ADS)

    Sivakumar, N.; Kanagathara, N.; Varghese, B.; Bhagavannarayana, G.; Gunasekaran, S.; Anbalagan, G.

    2014-01-01

    A new semi organic non linear optical polymeric crystal, bis (thiourea) silver (I) nitrate (TuAgN) with dimension 8 × 7 × 1.5 mm3 has been successfully grown from aqueous solution by slow evaporation solution technique. Single crystal X-ray diffraction study reveals that the crystal belongs to orthorhombic system with non centrosymmetric space group C2221. The crystalline perfection of the crystal was analyzed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Functional groups present in the crystal were analyzed qualitatively by infrared and Confocal Raman spectral analysis. Effects due to coordination of thiourea with metal ions were also discussed. Optical absorption study on TuAgN crystal shows the minimum absorption in the entire UV-Vis region and the lower cut off wavelength of TuAgN is found to be 318 nm. Thermal analysis shows that the material is thermally stable up to 180 °C. The mechanical strength and its parameters of the grown crystal were estimated by Vicker's microhardness test. The second harmonic generation (SHG) efficiency of the crystal was measured by Kurtz's powder technique infers that the crystal has nonlinear optical (NLO) efficiency 0.85 times that of KDP.

  12. X-ray Studies of Regenerated Cellulose Fibers Wet Spun from Cotton Linter Pulp in NaOH/Thiourea Aqueous Solutions

    SciTech Connect

    Chen,X.; Burger, C.; Fang, D.; Ruan, D.; Zhang, L.; Hsiao, B.; Chu, B.

    2006-01-01

    Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. The crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.

  13. Structure, crystal growth, optical and mechanical studies of poly bis (thiourea) silver (I) nitrate single crystal: a new semi organic NLO material.

    PubMed

    Sivakumar, N; Kanagathara, N; Varghese, B; Bhagavannarayana, G; Gunasekaran, S; Anbalagan, G

    2014-01-24

    A new semi organic non linear optical polymeric crystal, bis (thiourea) silver (I) nitrate (TuAgN) with dimension 8×7×1.5 mm(3) has been successfully grown from aqueous solution by slow evaporation solution technique. Single crystal X-ray diffraction study reveals that the crystal belongs to orthorhombic system with non centrosymmetric space group C2221. The crystalline perfection of the crystal was analyzed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Functional groups present in the crystal were analyzed qualitatively by infrared and Confocal Raman spectral analysis. Effects due to coordination of thiourea with metal ions were also discussed. Optical absorption study on TuAgN crystal shows the minimum absorption in the entire UV-Vis region and the lower cut off wavelength of TuAgN is found to be 318 nm. Thermal analysis shows that the material is thermally stable up to 180°C. The mechanical strength and its parameters of the grown crystal were estimated by Vicker's microhardness test. The second harmonic generation (SHG) efficiency of the crystal was measured by Kurtz's powder technique infers that the crystal has nonlinear optical (NLO) efficiency 0.85 times that of KDP.

  14. Synthesis, Characterization And Antitumor Activity Of Copper(II) Complexes, [CuL2] [HL1-3=N,N-Diethyl-N'-(R-Benzoyl)Thiourea (R=H, o-Cl and p-NO2)

    PubMed Central

    Hernández, Wilfredo; Beyer, Lothar; Schröder, Uwe; Richter, Rainer; Ferreira, Jorge; Pavani, Mario

    2005-01-01

    The copper (II) complexes (CuL2) were prepared by reaction of Cu(CH3COO)2 with the corresponding derivatives of acylthioureas in a Cu:HL molar ratio of 1:2. Acylthiourea ligands, N,N-diethyl-N'-(R-benzoyl) thiourea (HL1-3) [R=H, o-Cl and p-NO2] were synthesized in high yield (78-83%) and characterized by elemental analysis, infrared spectroscopy, 1H and 13C NMR spectroscopy. The complexes CuL2 were characterized by elemental analysis, IR, FAB(+)-MS, magnetic susceptibility measurements, EPR and cyclic voltammetry. The crystal structure of the complex Cu(L2)2 shows a nearly square-planar geometry with two deprotonated ligands (L) coordinated to CuII through the oxygen and sulfur atoms in a cis arrangement. The antitumor activity of the copper(II) complexes with acylthiourea ligands was evaluated in vitro against the mouse mammary adenocarcinoma TA3 cell line. These complexes exhibited much higher cytotoxic activity (IC50 values in the range of 3.9-6.9 μM) than their corresponding ligands (40-240 μM), which indicates that the coordination of the chelate ligands around the CuII enhances the antitumor activity and, furthermore, this result confirmed that the participation of the nitro and chloro substituent groups in the complex activities is slightly relevant. The high accumulation of the complexes Cu(L2)2 and Cu(L3)2 in TA3 tumor cells and the much faster binding to cellular DNA than Cu(L1)2 are consistent with the in vitro cytotoxic activities found for these copper complexes. PMID:18365106

  15. Synthesis and anti-inflammatory activity of 1-acylaminoalkyl-3,4-dialkoxybenzene derivatives.

    PubMed

    Labanauskas, L; Brukstus, A; Udrenaite, E; Bucinskaite, V; Susvilo, I; Urbelis, G

    2005-03-01

    New 1-acylaminoalkyl-3,4-dialkoxybenzene derivatives 17-31 were synthesized by the acylation of amines 9-16 with acyl chlorides. Amines 9-16 were obtained from aryl ketones 1-8. Aryl ketones 1-8 were synthesized by the acylation of corresponding aromatic compounds. As it was preliminary predicted by PASS (Prediction of Activity Spectra for Substance) program, all 1-acylaminoalkyl-3,4-dimethoxy- and 3,4-diethoxybenzene derivatives possess anti-inflammatory activity. Activity of compounds 18, 19, 21, 24, 26, 27, 28, 29 was similar to that of acetylsalicylic acid or ibuprofen however their acute toxicity was less than that of mentioned anti-inflammatory drugs. A series of 1-acylaminoalkyl-3,4-dimethoxybenzene, 1-acylaminoalkyl-3,4-diethoxybenzene and 6-acylaminoalkyl-2,3-dihydro-1,4-benzodioxine derivatives have been synthesized. These compounds possess moderate or strong anti-inflammatory activity and low toxicity.

  16. Discovery of amide (peptide) bond synthetic activity in Acyl-CoA synthetase.

    PubMed

    Abe, Tomoko; Hashimoto, Yoshiteru; Hosaka, Hideaki; Tomita-Yokotani, Kaori; Kobayashi, Michihiko

    2008-04-25

    Acyl-CoA synthetase, which is one of the acid-thiol ligases (EC 6.2.1), plays key roles in metabolic and regulatory processes. This enzyme forms a carbon-sulfur bond in the presence of ATP and Mg(2+), yielding acyl-CoA thioesters from the corresponding free acids and CoA. This enzyme belongs to the superfamily of adenylate-forming enzymes, whose three-dimensional structures are analogous to one another. We here discovered a new reaction while studying the short-chain acyl-CoA synthetase that we recently reported (Hashimoto, Y., Hosaka, H., Oinuma, K., Goda, M., Higashibata, H., and Kobayashi, M. (2005) J. Biol. Chem. 280, 8660-8667). When l-cysteine was used as a substrate instead of CoA, N-acyl-l-cysteine was surprisingly detected as a reaction product. This finding demonstrated that the enzyme formed a carbon-nitrogen bond (EC 6.3.1 acid-ammonia (or amide) ligase (amide synthase); EC 6.3.2 acid-amino acid ligase (peptide synthase)) comprising the amino group of the cysteine and the carboxyl group of the acid. N-Acyl-d-cysteine, N-acyl-dl-homocysteine, and N-acyl-l-cysteine methyl ester were also synthesized from the corresponding cysteine analog substrates by the enzyme. Furthermore, this unexpected enzyme activity was also observed for acetyl-CoA synthetase and firefly luciferase, indicating the generality of the new reaction in the superfamily of adenylate-forming enzymes.

  17. Vertebrate fatty acyl desaturase with Δ4 activity

    PubMed Central

    Li, Yuanyou; Monroig, Oscar; Zhang, Liang; Wang, Shuqi; Zheng, Xiaozhong; Dick, James R.; You, Cuihong; Tocher, Douglas R.

    2010-01-01

    Biosynthesis of the highly biologically active long-chain polyunsaturated fatty acids, arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids, in vertebrates requires the introduction of up to three double bonds catalyzed by fatty acyl desaturases (Fad). Synthesis of ARA is achieved by Δ6 desaturation of 18∶2n - 6 to produce 18∶3n - 6 that is elongated to 20∶3n - 6 followed by Δ5 desaturation. Synthesis of EPA from 18∶3n - 3 requires the same enzymes and pathway as for ARA, but DHA synthesis reportedly requires two further elongations, a second Δ6 desaturation and a peroxisomal chain shortening step. This paper describes cDNAs, fad1 and fad2, isolated from the herbivorous, marine teleost fish (Siganus canaliculatus) with high similarity to mammalian Fad proteins. Functional characterization of the cDNAs by heterologous expression in the yeast Saccharomyces cerevisiae showed that Fad1 was a bifunctional Δ6/Δ5 Fad. Previously, functional dual specificity in vertebrates had been demonstrated for a zebrafish Danio rerio Fad and baboon Fad, so the present report suggests bifunctionality may be more widespread in vertebrates. However, Fad2 conferred on the yeast the ability to convert 22∶5n - 3 to DHA indicating that this S. canaliculatus gene encoded an enzyme having Δ4 Fad activity. This is a unique report of a Fad with Δ4 activity in any vertebrate species and indicates that there are two possible mechanisms for DHA biosynthesis, a direct route involving elongation of EPA to 22∶5n - 3 followed by Δ4 desaturation, as well as the more complicated pathway as described above. PMID:20826444

  18. Arabidopsis PIZZA Has the Capacity to Acylate Brassinosteroids

    PubMed Central

    Schneider, Katja; Breuer, Christian; Kawamura, Ayako; Jikumaru, Yusuke; Hanada, Atsushi; Fujioka, Shozo; Ichikawa, Takanari; Kondou, Youichi; Matsui, Minami; Kamiya, Yuji; Yamaguchi, Shinjiro; Sugimoto, Keiko

    2012-01-01

    Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ), was partly rescued by supplying exogenous brassinolide (BL) and castasterone (CS), indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY) and 6-deoxocastasterone (6-deoxoCS), suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis. PMID:23071642

  19. Arabidopsis PIZZA has the capacity to acylate brassinosteroids.

    PubMed

    Schneider, Katja; Breuer, Christian; Kawamura, Ayako; Jikumaru, Yusuke; Hanada, Atsushi; Fujioka, Shozo; Ichikawa, Takanari; Kondou, Youichi; Matsui, Minami; Kamiya, Yuji; Yamaguchi, Shinjiro; Sugimoto, Keiko

    2012-01-01

    Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ), was partly rescued by supplying exogenous brassinolide (BL) and castasterone (CS), indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY) and 6-deoxocastasterone (6-deoxoCS), suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis.

  20. Plant Responses to Bacterial N-Acyl l-Homoserine Lactones are Dependent on Enzymatic Degradation to l-Homoserine

    PubMed Central

    2015-01-01

    Many bacteria use quorum sensing (QS) to regulate phenotypes that ultimately benefit the bacterial population at high cell densities. These QS-dependent phenotypes are diverse and can have significant impacts on the bacterial host, including virulence factor production, motility, biofilm formation, bioluminescence, and root nodulation. As bacteria and their eukaryotic hosts have coevolved over millions of years, it is not surprising that certain hosts appear to be able to sense QS signals, potentially allowing them to alter QS outcomes. Recent experiments have established that eukaryotes have marked responses to the N-acyl l-homoserine lactone (AHL) signals used by Gram-negative bacteria for QS, and the responses of plants to AHLs have received considerable scrutiny to date. However, the molecular mechanisms by which plants, and eukaryotes in general, sense bacterial AHLs remain unclear. Herein, we report a systematic analysis of the responses of the model plants Arabidopsis thaliana and Medicago truncatula to a series of native AHLs and byproducts thereof. Our results establish that AHLs can significantly alter seedling growth in an acyl-chain length dependent manner. Based upon A. thaliana knockout studies and in vitro biochemical assays, we conclude that the observed growth effects are dependent upon AHL amidolysis by a plant-derived fatty acid amide hydrolase (FAAH) to yield l-homoserine. The accumulation of l-homoserine appears to encourage plant growth at low concentrations by stimulating transpiration, while higher concentrations inhibit growth by stimulating ethylene production. These results offer new insights into the mechanisms by which plant hosts can respond to QS signals and the potential role of QS in interkingdom associations. PMID:24918118

  1. Topo-optical reactions for the identification of O-acyl sugars in amyloid deposits.

    PubMed

    Richter, Susann; Makovitzky, Josef

    2009-01-01

    The aldehyde bisulfite toluidine blue (ABT) reaction with former saponification (KOH-ABT) and periodic acid-borohydride reduction-saponification (PB-KOH-ABT) were applied to sections of human amyloid deposits in the respiratory tract. The saponification-induced increase in ABT-reactivity was confined to the presence of O-acyl sugars associated with the amyloid fibrils. The anisotropic and metachromatic effect in the ABT and KOH-ABT reaction was reduced in the corresponding PB-KOH-ABT reaction, a difference attributed to the removal of staining due to neutral carbohydrate residues. Since the periodic acid-borohydride reduction abolishes all pre-existing ABT-reactivity of neutral sugar vicinal diols, the isolated KOH-effect could be shown using the PB-KOH-ABT reaction. By application of this sequence, the problem identifying small quantities of O-acyl sugars was solved. It is suggested that the KOH-effect depends upon the removal of O-acyl substituents located on the polyhydroxy side chain (C7, C8, C9) of sialic acid residues. An advantage of such topo-optical reactions over biochemical techniques is the exact localization of O-acyl sugars in tissue sites. By means of the KOH-ABT and PB-KOH-ABT reactions we have demonstrated, for the first time, that O-acyl sugars occur within amyloid deposits.

  2. Computational Prediction of acyl-coA Binding Proteins Structure in Brassica napus.

    PubMed

    Raboanatahiry, Nadia Haingotiana; Lu, Guangyuan; Li, Maoteng

    2015-01-01

    Acyl-coA binding proteins could transport acyl-coA esters from plastid to endoplasmic reticulum, prior to fatty acid biosynthesis, leading to the formation of triacylglycerol. The structure and the subcellular localization of acyl-coA binding proteins (ACBP) in Brassica napus were computationally predicted in this study. Earlier, the structure analysis of ACBPs was limited to the small ACBPs, the current study focused on all four classes of ACBPs. Physicochemical parameters including the size and the length, the intron-exon structure, the isoelectric point, the hydrophobicity, and the amino acid composition were studied. Furthermore, identification of conserved residues and conserved domains were carried out. Secondary structure and tertiary structure of ACBPs were also studied. Finally, subcellular localization of ACBPs was predicted. The findings indicated that the physicochemical parameters and subcellular localizations of ACBPs in Brassica napus were identical to Arabidopsis thaliana. Conserved domain analysis indicated that ACBPs contain two or three kelch domains that belong to different families. Identical residues in acyl-coA binding domains corresponded to eight amino acid residues in all ACBPs of B. napus. However, conserved residues of common ACBPs in all species of animal, plant, bacteria and fungi were only inclusive in small ACBPs. Alpha-helixes were displayed and conserved in all the acyl-coA binding domains, representing almost the half of the protein structure. The findings confirm high similarities in ACBPs between A. thaliana and B. napus, they might share the same functions but loss or gain might be possible.

  3. Rh polypeptide is a major fatty acid-acylated erythrocyte membrane protein

    SciTech Connect

    de Vetten, M.P.; Agre, P.

    1988-12-05

    The erythrocyte Rh antigens contain an Mr = 32,000 integral protein which is thought to contribute in some way to the organization of surrounding phospholipid. To search for possible fatty acid acylation of the Rh polypeptide, intact human erythrocytes were incubated with (3H)palmitic acid prior to preparation of membranes and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Several membrane proteins were labeled, but none corresponded to the glycophorins or membrane proteins 1-8. An Mr = 32,000 band was prominently labeled on Rh (D)-negative and -positive erythrocytes and could be precipitated from the latter with anti-D. No similar protein was labeled on membranes from Rhmod erythrocytes, a rare phenotype lacking Rh antigens. Labeling of the Rh polypeptide most likely represents palmitic acid acylation through thioester linkages. The 3H label was not extracted with chloroform/methanol, but was quantitatively eluted with hydroxylamine and co-chromatographed with palmitohydroxamate and free palmitate by thin layer chromatography. The fatty acid acylations occurred independent of protein synthesis and were completely reversed by chase with unlabeled palmitate. It is concluded that the Rh polypeptide is fatty acid-acylated, being a major substrate of an acylation-deacylation mechanism associated with the erythrocyte membrane.

  4. The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure[S

    PubMed Central

    Son, Mijin; London, Erwin

    2013-01-01

    Lipid asymmetry, the difference in inner and outer leaflet lipid composition, is an important feature of biomembranes. By utilizing our recently developed MβCD-catalyzed exchange method, the effect of lipid acyl chain structure upon the ability to form asymmetric membranes was investigated. Using this approach, SM was efficiently introduced into the outer leaflet of vesicles containing various phosphatidylcholines (PC), but whether the resulting vesicles were asymmetric (SM outside/PC inside) depended upon PC acyl chain structure. Vesicles exhibited asymmetry using PC with two monounsaturated chains of >14 carbons; PC with one saturated and one unsaturated chain; and PC with phytanoyl chains. Vesicles were most weakly asymmetric using PC with two 14 carbon monounsaturated chains or with two polyunsaturated chains. To define the origin of this behavior, transverse diffusion (flip-flop) of lipids in vesicles containing various PCs was compared. A correlation between asymmetry and transverse diffusion was observed, with slower transverse diffusion in vesicles containing PCs that supported lipid asymmetry. Thus, asymmetric vesicles can be prepared using a wide range of acyl chain structures, but fast transverse diffusion destroys lipid asymmetry. These properties may constrain acyl chain structure in asymmetric natural membranes to avoid short or overly polyunsaturated acyl chains. PMID:23093551

  5. Altered hepatic retinyl ester concentration and acyl composition in response to alcohol consumption.

    PubMed

    Clugston, Robin D; Jiang, Hongfeng; Lee, Man Xia; Berk, Paul D; Goldberg, Ira J; Huang, Li-Shin; Blaner, William S

    2013-07-01

    Retinoids (vitamin A and its metabolites) are essential micronutrients that regulate many cellular processes. Greater than 70% of the body's retinoid reserves are stored in the liver as retinyl ester (RE). Chronic alcohol consumption induces depletion of hepatic retinoid stores, and the extent of this has been correlated with advancing stages of alcoholic liver disease. The goal of this study was to analyze the mechanisms responsible for depletion of hepatic RE stores by alcohol consumption A change in the fatty-acyl composition of RE in alcohol-fed mice was observed within two weeks after the start of alcohol consumption. Specifically, alcohol-feeding was associated with a significant decline in hepatic retinyl palmitate levels; however, total RE levels were maintained by a compensatory increase in levels of usually minor RE species, particularly retinyl oleate. Our data suggests that alcohol feeding initially stimulates a futile cycle of RE hydrolysis and synthesis, and that the change in RE acyl composition is associated with a change in the acyl composition of hepatic phosphatidylcholine. The alcohol-induced change in RE acyl composition was specific to the liver, and was not seen in lung or white adipose tissue. This shift in hepatic RE fatty acyl composition is a sensitive indicator of alcohol consumption and may be an early biomarker for events associated with the development of alcoholic liver disease. PMID:24046868

  6. Altered hepatic retinyl ester concentration and acyl composition in response to alcohol consumption.

    PubMed

    Clugston, Robin D; Jiang, Hongfeng; Lee, Man Xia; Berk, Paul D; Goldberg, Ira J; Huang, Li-Shin; Blaner, William S

    2012-07-01

    Retinoids (vitamin A and its metabolites) are essential micronutrients that regulate many cellular processes. Greater than 70% of the body's retinoid reserves are stored in the liver as retinyl ester (RE). Chronic alcohol consumption induces depletion of hepatic retinoid stores, and the extent of this has been correlated with advancing stages of alcoholic liver disease. The goal of this study was to analyze the mechanisms responsible for depletion of hepatic RE stores by alcohol consumption. A change in the fatty-acyl composition of RE in alcohol-fed mice was observed within two weeks after the start of alcohol consumption. Specifically, alcohol-feeding was associated with a significant decline in hepatic retinyl palmitate levels; however, total RE levels were maintained by a compensatory increase in levels of usually minor RE species, particularly retinyl oleate. Our data suggests that alcohol feeding initially stimulates a futile cycle of RE hydrolysis and synthesis, and that the change in RE acyl composition is associated with a change in the acyl composition of hepatic phosphatidylcholine. The alcohol-induced change in RE acyl composition was specific to the liver, and was not seen in lung or white adipose tissue. This shift in hepatic RE fatty acyl composition is a sensitive indicator of alcohol consumption and may be an early biomarker for events associated with the development of alcoholic liver disease. PMID:23583843

  7. Novel deletion in a patient with an isolated peroxisoml acyl-CoA oxidase deficiency

    SciTech Connect

    Poll-The, B.T.; Fournier, B.; Clevers, H.; Wanders, R.J.A.

    1994-09-01

    Disorders with defective peroxisome assembly are associated with multiple peroxisomal enzymatic abnormalities. Besides these diseases patients have been described suspected of having a single enzyme defect in the peroxisomal {beta}-oxidation pathway. Laboratory findings for these patients include elevated plasma very long chain fatty acids (VLCFA) and impaired VLCFA oxidation in fibroblasts. Complementation analysis between these patients and those with a proven single enzyme deficiency, using peroxisomal {beta}-oxidation of VLCFA as the criterion for complementation, has been used to show whether the patients are deficient in acyl-CoA oxidase, peroxisomal trifunctional protein or thiolase activity. Fibroblasts from a patient showing the clinical and biochemical abnormalities of isolated acyl-CoA oxidase deficiency (using cell complementation) were analyzed at the molecular level. Isolation of RNA from patient`s fibroblasts was followed by random reverse transcription of RNA and PCR amplification. PCR products were blotted and hybridized with the human acyl-CoA oxidase cDNA. A fragment 150 bp shorter than normal was found. Upon sequencing, exon 7 was found to be deleted leading to a frameshift in the acyl-CoA oxidase mRNA. Southern blot analysis of the patient`s DNA did not reveal any deletion in contrast to two siblings previously reported as having a deletion of at least 17 kb in the acyl-CoA oxidase gene.

  8. Carbohydrate conformation and lipid condensation in monolayers containing glycosphingolipid Gb3: influence of acyl chain structure.

    PubMed

    Watkins, Erik B; Gao, Haifei; Dennison, Andrew J C; Chopin, Nathalie; Struth, Bernd; Arnold, Thomas; Florent, Jean-Claude; Johannes, Ludger

    2014-09-01

    Globotriaosylceramide (Gb3), a glycosphingolipid found in the plasma membrane of animal cells, is the endocytic receptor of the bacterial Shiga toxin. Using x-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), lipid monolayers containing Gb3 were investigated at the air-water interface. XR probed Gb3 carbohydrate conformation normal to the interface, whereas GIXD precisely characterized Gb3's influence on acyl chain in-plane packing and area per molecule (APM). Two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), were used to study Gb3 packing in different lipid environments. Furthermore, the impact on monolayer structure of a naturally extracted Gb3 mixture was compared to synthetic Gb3 species with uniquely defined acyl chain structures. XR results showed that lipid environment and Gb3 acyl chain structure impact carbohydrate conformation with greater solvent accessibility observed for smaller phospholipid headgroups and long Gb3 acyl chains. In general, GIXD showed that Gb3 condensed phospholipid packing resulting in smaller APM than predicted by ideal mixing. Gb3's capacity to condense APM was larger for DSPC monolayers and exhibited different dependencies on acyl chain structure depending on the lipid environment. The interplay between Gb3-induced changes in lipid packing and the lipid environment's impact on carbohydrate conformation has broad implications for glycosphingolipid macromolecule recognition and ligand binding.

  9. Identification and distribution of simple and acylated betacyanins in the Amaranthaceae.

    PubMed

    Cai, Y; Sun, M; Corke, H

    2001-04-01

    Red-colored plants in the family Amaranthaceae are recognized as a rich source of diverse and unique betacyanins. The distribution of betacyanins in 37 species of 8 genera in the Amaranthaceae was investigated. A total of 16 kinds of betacyanins were isolated and characterized by HPLC, spectral analyses, and MS. They consisted of 6 simple (nonacylated) betacyanins and 10 acylated betacyanins, including 8 amaranthine-type pigments, 6 gomphrenin-type pigments, and 2 betanin-type pigments. Acylated betacyanins were identified as betanidin 5-O-beta-glucuronosylglucoside or betanidin 6-O-beta-glucoside acylated with ferulic, p-coumaric, or 3-hydroxy-3-methylglutaric acids. Total betacyanin content in the 37 species ranged from 0.08 to 1.36 mg/g of fresh weight. Simple betacyanins (such as amaranthine, which averaged 91.5% of total peak area) were widespread among all species of 8 genera. Acylated betacyanins were distributed among 11 species of 6 genera, with the highest proportion occurring in Iresine herbstii (79.6%) and Gomphrena globosa (68.4%). Some cultivated species contained many more acylated betacyanins than wild species, representing a potential new source of these pigments as natural colorants.

  10. Carbohydrate Conformation and Lipid Condensation in Monolayers Containing Glycosphingolipid Gb3: Influence of Acyl Chain Structure

    PubMed Central

    Watkins, Erik B.; Gao, Haifei; Dennison, Andrew J.C.; Chopin, Nathalie; Struth, Bernd; Arnold, Thomas; Florent, Jean-Claude; Johannes, Ludger

    2014-01-01

    Globotriaosylceramide (Gb3), a glycosphingolipid found in the plasma membrane of animal cells, is the endocytic receptor of the bacterial Shiga toxin. Using x-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), lipid monolayers containing Gb3 were investigated at the air-water interface. XR probed Gb3 carbohydrate conformation normal to the interface, whereas GIXD precisely characterized Gb3’s influence on acyl chain in-plane packing and area per molecule (APM). Two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), were used to study Gb3 packing in different lipid environments. Furthermore, the impact on monolayer structure of a naturally extracted Gb3 mixture was compared to synthetic Gb3 species with uniquely defined acyl chain structures. XR results showed that lipid environment and Gb3 acyl chain structure impact carbohydrate conformation with greater solvent accessibility observed for smaller phospholipid headgroups and long Gb3 acyl chains. In general, GIXD showed that Gb3 condensed phospholipid packing resulting in smaller APM than predicted by ideal mixing. Gb3’s capacity to condense APM was larger for DSPC monolayers and exhibited different dependencies on acyl chain structure depending on the lipid environment. The interplay between Gb3-induced changes in lipid packing and the lipid environment’s impact on carbohydrate conformation has broad implications for glycosphingolipid macromolecule recognition and ligand binding. PMID:25185550

  11. Interaction of O-acylated chitosans with biomembrane models: probing the effects from hydrophobic interactions and hydrogen bonding.

    PubMed

    Pavinatto, Adriana; Souza, Adriano L; Delezuk, Jorge A M; Pavinatto, Felippe J; Campana-Filho, Sérgio P; Oliveira, Osvaldo N

    2014-02-01

    One of the major challenges in establishing the mechanisms responsible for the chitosan action in biomedical applications lies in the determination of the molecular-level interactions with the cell membrane. In this study, we probed hydrophobic interactions and H-bonding in experiments with O,O'-diacetylchitosan (DACT) and O,O'-dipropionylchitosan (DPPCT) incorporated into monolayers of distinct phospholipids, the zwitterionic dipalmitoyl phosphatidyl choline (DPPC), and the negatively charged dipalmitoyl phosphatidyl glycerol (DPPG) and dimyristoyl phosphatidic acid (DMPA). The importance of hydrophobic interactions was confirmed with the larger effects observed for DACT and DPPCT than for parent chitosan (Chi), particularly for the more hydrophobic DPPCT. Such larger effects were noted in surface pressure isotherms and elasticity of the monolayers. Since H-bonding is hampered for the chitosan derivatives, which have part of their hydroxyl groups shielded by O-acylation, these effects indicate that H-bonding does not play an important role in the chitosan-membrane interactions. Using polarization-modulated infrared reflection absorption (PM-IRRAS) spectroscopy, we found that the chitosan derivatives were incorporated into the hydrophobic chain of the phospholipids, even at high surface pressures comparable to those in a real cell membrane. Taken together, these results indicate that the chitosan derivatives containing hydrophobic moieties would probably be more efficient than parent chitosan as antimicrobial agents, where interaction with the cell membrane is crucial.

  12. Dual mesomorphic assemblage of chitin normal acylates and rapid enthalpy relaxation of their side chains.

    PubMed

    Teramoto, Yoshikuni; Miyata, Tomoya; Nishio, Yoshiyuki

    2006-01-01

    Chitin derivatives having normalacyl groups (C(n)H(2n-1)O-; n = 4-20) were synthesized with pyridine, p-toluenesulfonyl chloride, and normal alkanoic acid in an N,N-dimethylacetamide-lithium chloride homogeneous system. The products (C(n)-ACs; degree of acyl substitution, DS = 1.7-1.9) showed an n-dependent thermal transition behavior: no evident transition (n = 4-10), a glass transition (n = 12 and 14), and a pseudo-first-order phase transition (n = 16-20), the latter two occurring usually below room temperature when examined by differential scanning calorimetry. Wide-angle X-ray diffractometry (WAXD) at 20 degrees C displayed a sharp diffraction peak (2theta = 2 degrees -7 degrees ) and a diffuse halo (2theta approximately 20 degrees ) for the respective C(n)-ACs. The former d-spacing (1.5-3.6 nm) increased with an increase in n to yield two stages of mutually different increasing rates, which reflects a systematic n-dependence of the period of a layered structure of the main chains. The molecular assembly of C(n)-ACs exhibited "dual mesomorphy"; nematic ordering for the semirigid carbohydrate trunk and smectic one for the flexible side chains. On the other hand, WAXD profiles of C(n)-ACs (n = 14-18) indicated almost no temperature dependence from -150 to +220 degrees C. Therefore, it was reasonably assumed that the pseudo-first-order transition observed in thermograms of C(n)-ACs (n = 16-20) was due to the enthalpy relaxation of the side-chain assemblage. An insight was provided into the kinetics of the characteristic aging behavior as a liquid-crystalline glass, in comparison with the corresponding data for other noncrystalline macromolecules.

  13. Novel enzymatic synthesis of 4-O-cinnamoyl quinic and shikimic acid derivatives.

    PubMed

    Armesto, Nuria; Ferrero, Miguel; Fernández, Susana; Gotor, Vicente

    2003-07-11

    The first direct synthesis of 4-O-cinnamoyl derivatives of quinic and shikimic acids were accomplished by regioselective esterification with Candida antarctica lipase A. For hydrocinnamic esters, enzymatic transesterification with vinyl esters gave excellent yields. However, more reactive acylating agents such as anhydrides were used to synthesize cinnamic derivatives of both acids. An inhibitory effect was observed with this lipase for p-methoxy, p-hydroxy, and p-acetoxy vinyl ester and anhydride derivatives (coumarate and ferulate derivatives).

  14. Synthesis, antioxidant and anticholinesterase activities of novel coumarylthiazole derivatives.

    PubMed

    Kurt, Belma Zengin; Gazioglu, Isil; Sonmez, Fatih; Kucukislamoglu, Mustafa

    2015-04-01

    A newly series of coumarylthiazole derivatives containing aryl urea/thiourea groups were synthesized and their inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were evaluated. The result showed that all the synthesized compounds exhibited inhibitory activity to both cholinesterases. Among them, 1-(4-(8-methoxy-2-oxo-2H-chromen-3-yl)thiazol-2-yl)-3-(4-chlorophenyl)thiourea (f8, IC50 = 4.58 μM) was found to be the most active compound against AChE, and 1-(4-fluorophenyl)-3-(4-(6-nitro-2-oxo-2H-chromen-3-yl)thiazol-2-yl)urea (e31) exhibited the strongest inhibition against BuChE with IC50 value of 4.93 μM, which was 3.5-fold more potent than that of galantamine. The selectivity of f8 and e31 were 2.64 and 0.04, respectively. In addition, the cupric reducing antioxidant capacities (CUPRAC) and ABTS cation radical scavenging abilities of the synthesized compounds were investigated for antioxidant activity. Among them, f8, f4 and f6 (IC50=1.64, 1.82 and 2.69 μM, respectively) showed significantly better ABTS cation radical scavenging ability than standard quercetin (IC50 = 15.49 μM). PMID:25706320

  15. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates.

    PubMed

    Lawrence, D A; Ginsburg, D; Day, D E; Berkenpas, M B; Verhamme, I M; Kvassman, J O; Shore, J D

    1995-10-27

    The serine protease inhibitors of the serpin family are an unusual group of proteins thought to have metastable native structures. Functionally, they are unique among polypeptide protease inhibitors, although their precise mechanism of action remains controversial. Conflicting results from previous studies have suggested that the stable serpin-protease complex is trapped in either a tight Michaelis-like structure, a tetrahedral intermediate, or an acyl-enzyme. In this report we show that, upon association with a target protease, the serpin reactive-center loop (RCL) is cleaved resulting in formation of an acyl-enzyme intermediate. This cleavage is coupled to rapid movement of the RCL into the body of the protein bringing the inhibitor closer to its lowest free energy state. From these data we suggest a model for serpin action in which the drive toward the lowest free energy state results in trapping of the protease-inhibitor complex as an acyl-enzyme intermediate. PMID:7592687

  16. Synthesis, Surface Active Properties and Cytotoxicity of Sodium N-Acyl Prolines.

    PubMed

    Sreenu, Madhumanchi; Narayana Prasad, Rachapudi Badari; Sujitha, Pombala; Kumar, Chityal Ganesh

    2015-01-01

    Sodium N-acyl prolines (NaNAPro) were synthesized using mixture of fatty acids obtained from coconut, palm, karanja, Sterculia foetida and high oleic sunflower oils via Schotten-Baumann reaction in 58-75% yields to study the synergetic effect of mixture of hydrophobic fatty acyl functionalities like saturation, unsaturation and cyclopropene fatty acids with different chain lengths and aliphatic hetero cyclic proline head group on their surface and cytotoxicity activities. The products were characterized by chromatographic and spectral techniques. The synthesized products were evaluated for their surface active properties such as surface tension, wetting power, foaming characteristics, emulsion stability, calcium tolerance, critical micelle concentration (CMC) and thermodynamic properties. The results revealed that all the products exhibited superior surface active properties like CMC, calcium tolerance and emulsion stability as compared to the standard surfactant, sodium lauryl sulphate (SLS). In addition, palm, Sterculia foetida and high oleic sunflower fatty N-acyl prolines exhibited promising cytotoxicity against different tumor cell lines.

  17. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material.

    PubMed

    Wu, Min-Hui; Wan, Liang-Ze; Zhang, Yu-Qing

    2014-01-01

    A novel sodium N-fatty acyl amino acid (SFAAA) surfactant was synthesized using pupa oil and pupa protein hydrolysates (PPH) from a waste product of the silk industry. The aliphatic acids from pupa oil were modified into N-fatty acyl chlorides by thionyl chloride (SOCl2). SFAAA was synthesized using acyl chlorides and PPH. GC-MS analysis showed fatty acids from pupa oil consist mainly of unsaturated linolenic and linoleic acids and saturated palmitic and stearic acids. SFAAA had a low critical micelle concentration, great efficiency in lowering surface tension and strong adsorption at an air/water interface. SFAAA had a high emulsifying power, as well as a high foaming power. The emulsifying power of PPH and SFAAA in an oil/water emulsion was better with ethyl acetate as the oil phase compared to n-hexane. The environment-friendly surfactant made entirely from silkworm pupae could promote sustainable development of the silk industry. PMID:24651079

  18. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis

    PubMed Central

    Van Vranken, Jonathan G; Jeong, Mi-Young; Wei, Peng; Chen, Yu-Chan; Gygi, Steven P; Winge, Dennis R; Rutter, Jared

    2016-01-01

    Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4’-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis. DOI: http://dx.doi.org/10.7554/eLife.17828.001 PMID:27540631

  19. The acylation state of mycobacterial lipomannans modulates innate immunity response through toll-like receptor 2.

    PubMed

    Gilleron, Martine; Nigou, Jérôme; Nicolle, Delphine; Quesniaux, Valérie; Puzo, Germain

    2006-01-01

    Detection of Mycobacterium tuberculosis antigens by professional phagocytes via toll-like receptors (TLR) contributes to controlling chronic M. tuberculosis infection. Lipomannans (LM), which are major lipoglycans of the mycobacterial envelope, were recently described as agonists of TLR2 with potent activity on proinflammatory cytokine regulation. LM correspond to a heterogeneous population of acyl- and glyco-forms. We report here the purification and the complete structural characterization of four LM acyl-forms from Mycobacterium bovis BCG using MALDI MS and 2D (1)H-(31)P NMR analyses. All this biochemical work provided the tools to investigate the implication of LM acylation degree on its proinflammatory activity. The latter was ascribed to the triacylated LM form, essentially an agonist of TLR2, using TLR2/TLR1 heterodimers for signaling. Altogether, these findings shed more light on the molecular basis of LM recognition by TLR.

  20. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization.

    PubMed

    Kumar, Manoj; Wightman, Raymond; Atanassov, Ivan; Gupta, Anjali; Hurst, Charlotte H; Hemsley, Piers A; Turner, Simon

    2016-07-01

    Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment. PMID:27387950