Science.gov

Sample records for acyl-coa binding domain

  1. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  2. Cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. Microbial starch-binding domain.

    PubMed

    Rodríguez-Sanoja, Romina; Oviedo, Norma; Sánchez, Sergio

    2005-06-01

    Glucosidic bonds from different non-soluble polysaccharides such as starch, cellulose and xylan are hydrolyzed by amylases, cellulases and xylanases, respectively. These enzymes are produced by microorganisms. They have a modular structure that is composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. Starch-binding modules are present in microbial enzymes that are involved in starch metabolism; these are classified into several different families on the basis of their amino acid sequence similarities. Such binding domains promote attachment to the substrate and increase its concentration at the active site of the enzyme, which allows microorganisms to degrade non-soluble starch. Fold similarities are better conserved than sequences; nevertheless, it is possible to notice two evolutionary clusters of microbial starch-binding domains. These domains have enormous potential as tags for protein immobilization, as well as for the tailoring of enzymes that play a part in polysaccharide metabolism.

  4. Ligand binding by PDZ domains.

    PubMed

    Chi, Celestine N; Bach, Anders; Strømgaard, Kristian; Gianni, Stefano; Jemth, Per

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context.

  5. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  6. Cellulose binding domain fusion proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. The YTH Domain Is a Novel RNA Binding Domain*

    PubMed Central

    Zhang, Zhaiyi; Theler, Dominik; Kaminska, Katarzyna H.; Hiller, Michael; de la Grange, Pierre; Pudimat, Rainer; Rafalska, Ilona; Heinrich, Bettina; Bujnicki, Janusz M.; Allain, Frédéric H.-T.; Stamm, Stefan

    2010-01-01

    The YTH (YT521-B homology) domain was identified by sequence comparison and is found in 174 different proteins expressed in eukaryotes. It is characterized by 14 invariant residues within an α-helix/β-sheet structure. Here we show that the YTH domain is a novel RNA binding domain that binds to a short, degenerated, single-stranded RNA sequence motif. The presence of the binding motif in alternative exons is necessary for YT521-B to directly influence splice site selection in vivo. Array analyses demonstrate that YT521-B predominantly regulates vertebrate-specific exons. An NMR titration experiment identified the binding surface for single-stranded RNA on the YTH domain. Structural analyses indicate that the YTH domain is related to the pseudouridine synthase and archaeosine transglycosylase (PUA) domain. Our data show that the YTH domain conveys RNA binding ability to a new class of proteins that are found in all eukaryotic organisms. PMID:20167602

  8. POTENTIAL OF MEAN FORCE CALCULATION FOR THE PROTON AND HYDRIDE TRANSFER REACTIONS CATALYZED BY MEDIUM CHAIN ACYL-COA DEHYDROGENASE: THE EFFECT OF MUTATIONS ON ENZYME CATALYSISa

    PubMed Central

    Bhattacharyya, Sudeep; Ma, Shuhua; Stankovich, Marian T.; Truhlar, Donald G.; Gao, Jiali

    2008-01-01

    Potential of mean force calculations have been performed on the wild-type medium chain acyl-CoA dehydrogenase (MCAD) and two of its mutant forms. Initial simulation and analysis of the active site of the enzyme reveals that an arginine residue (Arg256), conserved in the substrate binding domain of this group of enzymes, exists in two alternate conformations, only one of which makes the enzyme active. This active conformation was used in subsequent computations of the enzymatic reactions. It is known that the catalytic α,β-dehydrogenation of fatty acyl-CoAs consists of two C-H bond dissociation processes: a proton abstraction and a hydride transfer. Energy profiles of the two reaction steps in the wild-type MCAD demonstrate that the reaction proceeds by a stepwise mechanism with a transient species. The activation barriers of the two steps differ by only ∼2 kcal/mol, indicating that both may contribute to the rate-limiting process. Thus this may be a stepwise dissociation mechanism whose relative barriers can be tuned by suitable alterations of the substrate and/or enzyme. Analysis of the structures along the reaction path reveals that Arg256 plays a key role in maintaining the reaction-center hydrogen-bonding network involving the thioester carbonyl group, which stabilizes transition states as well as the intervening transient species. Mutation of this arginine residue to glutamine increases the activation barrier of the hydride transfer reaction by ∼5 kcal/mol, and the present simulations predict a substantial loss of catalytic activity for this mutant. Structural analysis of this mutant reveals that the orientation of the thioester moiety of the substrate has been changed significantly as compared to that in the wild-type enzyme. In contrast, simulation of the active site of the Thr168Ala mutant shows no significant change in the relative orientation of the substrate and the cofactor in the active site; as a result, this mutation has very little effect on

  9. Competition between LIM-binding domains.

    PubMed

    Matthews, Jacqueline M; Bhati, Mugdha; Craig, Vanessa J; Deane, Janet E; Jeffries, Cy; Lee, Christopher; Nancarrow, Amy L; Ryan, Daniel P; Sunde, Margaret

    2008-12-01

    LMO (LIM-only) and LIM-HD (LIM-homeodomain) proteins form a family of proteins that is required for myriad developmental processes and which can contribute to diseases such as T-cell leukaemia and breast cancer. The four LMO and 12 LIM-HD proteins in mammals are expressed in a combinatorial manner in many cell types, forming a transcriptional 'LIM code'. The proteins all contain a pair of closely spaced LIM domains near their N-termini that mediate protein-protein interactions, including binding to the approximately 30-residue LID (LIM interaction domain) of the essential co-factor protein Ldb1 (LIM domain-binding protein 1). In an attempt to understand the molecular mechanisms behind the LIM code, we have determined the molecular basis of binding of LMO and LIM-HD proteins for Ldb1(LID) through a series of structural, mutagenic and biophysical studies. These studies provide an explanation for why Ldb1 binds the LIM domains of the LMO/LIM-HD family, but not LIM domains from other proteins. The LMO/LIM-HD family exhibit a range of affinities for Ldb1, which influences the formation of specific functional complexes within cells. We have also identified an additional LIM interaction domain in one of the LIM-HD proteins, Isl1. Despite low sequence similarity to Ldb1(LID), this domain binds another LIM-HD protein, Lhx3, in an identical manner to Ldb1(LID). Through our and other studies, it is emerging that the multiple layers of competitive binding involving LMO and LIM-HD proteins and their partner proteins contribute significantly to cell fate specification and development.

  10. The monocyte binding domain(s) on human immunoglobulin G.

    PubMed

    Woof, J M; Nik Jaafar, M I; Jefferis, R; Burton, D R

    1984-06-01

    Monocyte binding has previously been assigned to the C gamma 3 domain of human immunoglobulin G (IgG) largely on the ability of the pFc' fragment to inhibit the monocyte-IgG interaction. This ability is markedly reduced compared to the intact parent IgG. We find this result with a conventional pFc' preparation but this preparation is found to contain trace contamination of parent IgG as demonstrated by reactivity with monoclonal antibodies directed against C gamma 2 domain and light-chain epitopes of human IgG. Extensive immunoaffinity purification of the pFc' preparation removes its inhibitory ability indicating that this originates in the trace contamination of parent IgG (or Fc). Neither of the human IgG1 paraproteins TIM, lacking the C gamma 2 domain, or SIZ, lacking the C gamma 3 domain, are found to inhibit the monocyte-IgG interaction. The hinge-deleted IgG1 Dob protein shows little or no inhibitory ability. Indirect evidence for the involvement of the C gamma 2 domain in monocyte binding is considered. We suggest finally that the site of interaction is found either on the C gamma 2 domain alone or between the C gamma 2 and C gamma 3 domains.

  11. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  12. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  13. FHA domains: Phosphopeptide binding and beyond.

    PubMed

    Almawi, Ahmad W; Matthews, Lindsay A; Guarné, Alba

    2016-12-08

    Forkhead-associated (FHA) domains are small phosphopeptide recognition modules found in eubacterial and eukaryotic, but not archeal, genomes. Although they were originally found in forkhead-type transcription factors, they have now been identified in many other signaling proteins. FHA domains share a remarkably conserved fold despite very low sequence conservation. They only have five conserved amino acids that are important for binding to phosphorylated epitopes. Recent work from several laboratories has demonstrated that FHA domains can mediate many interactions that do not depend on their ability to recognize a phosphorylated threonine. In this review, we present structural and biochemical work that has unveiled novel interaction interfaces on FHA domains. We discuss how these non-canonical interactions modulate the recognition of phosphorylated and non-phosphorylated substrates, as well as protein oligomerization - events that collectively determine FHA function.

  14. The binding domain structure of retinoblastoma-binding proteins.

    PubMed Central

    Figge, J.; Breese, K.; Vajda, S.; Zhu, Q. L.; Eisele, L.; Andersen, T. T.; MacColl, R.; Friedrich, T.; Smith, T. F.

    1993-01-01

    The retinoblastoma gene product (Rb), a cellular growth suppressor, complexes with viral and cellular proteins that contain a specific binding domain incorporating three invariant residues: Leu-X-Cys-X-Glu, where X denotes a nonconserved residue. Hydrophobic and electrostatic properties are strongly conserved in this segment even though the nonconserved amino acids vary considerably from one Rb-binding protein to another. In this report, we present a diagnostic computer pattern for a high-affinity Rb-binding domain featuring the three conserved residues as well as the conserved physico-chemical properties. Although the pattern encompasses only 10 residues (with only 4 of these explicitly defined), it exhibits 100% sensitivity and 99.95% specificity in database searches. This implies that a certain pattern of structural and physico-chemical properties encoded by this short sequence is sufficient to govern specific Rb binding. We also present evidence that the secondary structural conformation through this region is important for effective Rb binding. PMID:8382993

  15. Receptor binding domain based HIV vaccines.

    PubMed

    Liu, Huan; Bi, Wenwen; Wang, Qian; Lu, Lu; Jiang, Shibo

    2015-01-01

    This paper analyzes the main trend of the development of acquired immunodeficiency syndrome (AIDS) vaccines in recent years. Designing an HIV-1 vaccine that provides robust protection from HIV-1 infection remains a challenge despite many years of effort. Therefore, we describe the receptor binding domain of gp120 as a target for developing AIDS vaccines. And we recommend some measures that could induce efficiently and produce cross-reactive neutralizing antibodies with high binding affinity. Those measures may offer a new way of the research and development of the potent and broad AIDS vaccines.

  16. Synthetic actin-binding domains reveal compositional constraints for function.

    PubMed

    Lorenzi, Maria; Gimona, Mario

    2008-01-01

    The actin-binding domains of many proteins consist of a canonical type 1/type 2 arrangement of the structurally conserved calponin homology domain. Using the actin-binding domain of alpha-actinin-1 as a scaffold we have generated synthetic actin-binding domains by altering position and composition of the calponin homology domains. We show that the presence of two calponin homology domains alone and in the context of an actin-binding domain is not sufficient for actin-binding, and that both single and homotypic type 2 calponin homology domain tandems fail to bind to actin in vitro and in transfected cells. In contrast, single and tandem type 1 calponin homology domain arrays bind actin directly but result in defective turnover rates on actin filaments, and in aberrant actin bundling when introduced into the full-length alpha-actinin molecule. An actin-binding domain harboring the calponin homology domains in an inverted position, however, functions both in isolation and in the context of the dimeric alpha-actinin molecule. Our data demonstrate that the dynamics and specificity of actin-binding via actin-binding domains requires both the filament binding properties of the type 1, and regulation by type 2 calponin homology domains, and appear independent of their position.

  17. Do cellulose binding domains increase substrate accessibility?

    PubMed

    Esteghlalian, A R; Srivastava, V; Gilkes, N R; Kilburn, D G; Warren, R A; Saddle, J N

    2001-01-01

    This article provides an overview of various theories proposed during the past five decades to describe the enzymatic hydrolysis of cellulose highlighting the major shifts that these theories have undergone. It also describes the effect of the cellulose-binding domain (CBD) of an exoglucanase/xylanase from bacterium Cellulomonas fimi on the enzymatic hydrolysis of Avicel. Pretreatment of Avicel with CBDCex at 4 and 37 degrees C as well as simultaneous addition of CBDCex to the hydrolytic enzyme (Celluclast, Novo, Nordisk) reduced the initial rate of hydrolysis owing to irreversible binding of CBD proteins to the substrate's binding sites. Nonetheless, near complete hydrolysis was achieved even in the presence of CBDCex. Protease treatment of both pure and CBDCex-treated Avicel reduced the substrates' hydrolyzability, perhaps owing to proteolysis of the hydrolyzing enzyme (Celluclast) by the residual Proteinase K remaining in the substrate. Better protocols for complete removal of CBD proteins from the substrate need to be developed to investigate the effect of CBD adsorption on cellulose digestibility.

  18. Steroid binding domain of porcine estrogen receptor

    SciTech Connect

    Koike, S.; Nii, A.; Sakai, M.; Muramatsu, M.

    1987-05-05

    For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), the authors have made use of affinity labeling of partially purified ER with (/sup 3/H)tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or ..cap alpha..-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.

  19. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    SciTech Connect

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  20. Structural and evolutionary division of phosphotyrosine binding (PTB) domains.

    PubMed

    Uhlik, Mark T; Temple, Brenda; Bencharit, Sompop; Kimple, Adam J; Siderovski, David P; Johnson, Gary L

    2005-01-07

    Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future.

  1. Phospholipid binding to the FAK catalytic domain impacts function

    PubMed Central

    Schaller, Michael D.

    2017-01-01

    Focal adhesion kinase is an essential nonreceptor tyrosine kinase that plays an important role in development, in homeostasis and in the progression of human disease. Multiple stimuli activate FAK, which requires a change in structure from an autoinhibited to activated conformation. In the autoinhibited conformation the FERM domain associates with the catalytic domain of FAK and PI(4,5)P2 binding to the FERM domain plays a role in the release of autoinhibition, activating the enzyme. An in silico model of FAK/PI(4,5)P2 interaction suggests that residues on the catalytic domain interact with PI(4,5)P2, in addition to the known FERM domain PI(4,5)P2 binding site. This study was undertaken to test the significance of this in silico observation. Mutations designed to disrupt the putative PI(4,5)P2 binding site were engineered into FAK. These mutants exhibited defects in phosphorylation and failed to completely rescue the phenotype associated with fak -/- phenotype fibroblasts demonstrating the importance of these residues in FAK function. The catalytic domain of FAK exhibited PI(4,5)P2 binding in vitro and binding activity was lost upon mutation of putative PI(4,5)P2 binding site basic residues. However, binding was not selective for PI(4,5)P2, and the catalytic domain bound to several phosphatidylinositol phosphorylation variants. The mutant exhibiting the most severe biological defect was defective for phosphatidylinositol phosphate binding, supporting the model that catalytic domain phospholipid binding is important for biochemical and biological function. PMID:28222177

  2. Starch-binding domain shuffling in Aspergillus niger glucoamylase.

    PubMed

    Cornett, Catherine A G; Fang, Tsuei-Yun; Reilly, Peter J; Ford, Clark

    2003-07-01

    Aspergillus niger glucoamylase (GA) consists mainly of two forms, GAI [from the N-terminus, catalytic domain + linker + starch-binding domain (SBD)] and GAII (catalytic domain + linker). These domains were shuffled to make RGAI (SBD + linker + catalytic domain), RGAIDeltaL (SBD + catalytic domain) and RGAII (linker + catalytic domain), with domains defined by function rather than by tertiary structure. In addition, Paenibacillus macerans cyclomaltodextrin glucanotransferase SBD replaced the closely related A.niger GA SBD to give GAE. Soluble starch hydrolysis rates decreased as RGAII approximately GAII approximately GAI > RGAIDeltaL approximately RGAI approximately GAE. Insoluble starch hydrolysis rates were GAI > RGAIDeltaL > RGAI > GAE approximately RGAII > GAII, while insoluble starch-binding capacities were GAI > RGAI > RGAIDeltaL > RGAII > GAII > GAE. These results indicate that: (i) moving the SBD to the N-terminus or replacing the native SBD somewhat affects soluble starch hydrolysis; (ii) SBD location significantly affects insoluble starch binding and hydrolysis; (iii) insoluble starch hydrolysis is imperfectly correlated with its binding by the SBD; and (iv) placing the P.macerans cyclomaltodextrin glucanotransferase SBD at the end of a linker, instead of closely associated with the rest of the enzyme, severely reduces its ability to bind and hydrolyze insoluble starch.

  3. Formyl peptide receptor chimeras define domains involved in ligand binding.

    PubMed

    Perez, H D; Holmes, R; Vilander, L R; Adams, R R; Manzana, W; Jolley, D; Andrews, W H

    1993-02-05

    We have begun to study the structural requirements for the binding of formyl peptides to their specific receptors. As an initial approach, we constructed C5a-formyl peptide receptor chimeras. Unique (and identical) restriction sites were introduced within the transmembrane domains of these receptors that allowed for the exchange of specific areas. Four types of chimeric receptors were generated. 1) The C5a receptor was progressively substituted by the formyl peptide receptor. 2) The formyl peptide receptor was progressively substituted by the C5a receptor. 3) Specific domains of the C5a receptor were substituted by the corresponding domain of the formyl peptide receptor. 4) Specific domains of the formyl peptide receptor were replaced by the same corresponding domain of the C5a receptor. Wild type and chimeric receptors were transfected into COS 7 cells and their ability to bind formyl peptide determined, taking into account efficiency of transfection and expression of chimeric protein. Based on these results, a ligand binding model is presented in which the second, third, and fourth extracellular (and/or their transmembrane) domains together with the first transmembrane domain form a ligand binding pocket for formyl peptides. It is proposed that the amino-terminal domain plays a role by presumably providing a "lid" to the pocket. The carboxyl-terminal cytoplasmic tail appears to modulate ligand binding by regulating receptor affinity.

  4. The BAH domain of Rsc2 is a histone H3 binding domain

    PubMed Central

    Chambers, Anna L.; Pearl, Laurence H.; Oliver, Antony W.; Downs, Jessica A.

    2013-01-01

    Bromo-adjacent homology (BAH) domains are commonly found in chromatin-associated proteins and fall into two classes; Remodels the Structure of Chromatin (RSC)-like or Sir3-like. Although Sir3-like BAH domains bind nucleosomes, the binding partners of RSC-like BAH domains are currently unknown. The Rsc2 subunit of the RSC chromatin remodeling complex contains an RSC-like BAH domain and, like the Sir3-like BAH domains, we find Rsc2 BAH also interacts with nucleosomes. However, unlike Sir3-like BAH domains, we find that Rsc2 BAH can bind to recombinant purified H3 in vitro, suggesting that the mechanism of nucleosome binding is not conserved. To gain insight into the Rsc2 BAH domain, we determined its crystal structure at 2.4 Å resolution. We find that it differs substantially from Sir3-like BAH domains and lacks the motifs in these domains known to be critical for making contacts with histones. We then go on to identify a novel motif in Rsc2 BAH that is critical for efficient H3 binding in vitro and show that mutation of this motif results in defective Rsc2 function in vivo. Moreover, we find this interaction is conserved across Rsc2-related proteins. These data uncover a binding target of the Rsc2 family of BAH domains and identify a novel motif that mediates this interaction. PMID:23907388

  5. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    PubMed

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  6. Structural Dynamics of the Cereblon Ligand Binding Domain

    PubMed Central

    Hartmann, Marcus D.; Boichenko, Iuliia; Coles, Murray; Lupas, Andrei N.; Hernandez Alvarez, Birte

    2015-01-01

    Cereblon, a primary target of thalidomide and its derivatives, has been characterized structurally from both bacteria and animals. Especially well studied is the thalidomide binding domain, CULT, which shows an invariable structure across different organisms and in complex with different ligands. Here, based on a series of crystal structures of a bacterial representative, we reveal the conformational flexibility and structural dynamics of this domain. In particular, we follow the unfolding of large fractions of the domain upon release of thalidomide in the crystalline state. Our results imply that a third of the domain, including the thalidomide binding pocket, only folds upon ligand binding. We further characterize the structural effect of the C-terminal truncation resulting from the mental-retardation linked R419X nonsense mutation in vitro and offer a mechanistic hypothesis for its irresponsiveness to thalidomide. At 1.2Å resolution, our data provide a view of thalidomide binding at atomic resolution. PMID:26024445

  7. The Intimin periplasmic domain mediates dimerisation and binding to peptidoglycan.

    PubMed

    Leo, Jack C; Oberhettinger, Philipp; Chaubey, Manish; Schütz, Monika; Kühner, Daniel; Bertsche, Ute; Schwarz, Heinz; Götz, Friedrich; Autenrieth, Ingo B; Coles, Murray; Linke, Dirk

    2015-01-01

    Intimin and Invasin are prototypical inverse (Type Ve) autotransporters and important virulence factors of enteropathogenic Escherichia coli and Yersinia spp. respectively. In addition to a C-terminal extracellular domain and a β-barrel transmembrane domain, both proteins also contain a short N-terminal periplasmic domain that, in Intimin, includes a lysin motif (LysM), which is thought to mediate binding to peptidoglycan. We show that the periplasmic domain of Intimin does bind to peptidoglycan both in vitro and in vivo, but only under acidic conditions. We were able to determine a dissociation constant of 0.8 μM for this interaction, whereas the Invasin periplasmic domain, which lacks a LysM, bound only weakly in vitro and failed to bind peptidoglycan in vivo. We present the solution structure of the Intimin LysM, which has an additional α-helix conserved within inverse autotransporter LysMs but lacking in others. In contrast to previous reports, we demonstrate that the periplasmic domain of Intimin mediates dimerisation. We further show that dimerisation and peptidoglycan binding are general features of LysM-containing inverse autotransporters. Peptidoglycan binding by the periplasmic domain in the infection process may aid in resisting mechanical and chemical stress during transit through the gastrointestinal tract.

  8. Biosensors engineered from conditionally stable ligand-binding domains

    DOEpatents

    Church, George M.; Feng, Justin; Mandell, Daniel J.; Baker, David; Fields, Stanley; Jester, Benjamin Ward; Tinberg, Christine Elaine

    2017-09-19

    Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.

  9. Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains.

    PubMed

    Guillén, D; Santiago, M; Linares, L; Pérez, R; Morlon, J; Ruiz, B; Sánchez, S; Rodríguez-Sanoja, R

    2007-06-01

    The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch.

  10. MIT domain of Vps4 is a Ca2+-dependent phosphoinositide-binding domain.

    PubMed

    Iwaya, Naoko; Takasu, Hirotoshi; Goda, Natsuko; Shirakawa, Masahiro; Tanaka, Toshiki; Hamada, Daizo; Hiroaki, Hidekazu

    2013-05-01

    The microtubule interacting and trafficking (MIT) domain is a small protein module that is conserved in proteins of diverged function, such as Vps4, spastin and sorting nexin 15 (SNX15). The molecular function of the MIT domain is protein-protein interaction, in which the domain recognizes peptides containing MIT-interacting motifs. Recently, we identified an evolutionarily related domain, 'variant' MIT domain at the N-terminal region of the microtubule severing enzyme katanin p60. We found that the domain was responsible for binding to microtubules and Ca(2+). Here, we have examined whether the authentic MIT domains also bind Ca(2+). We found that the loop between the first and second α-helices of the MIT domain binds a Ca(2+) ion. Furthermore, the MIT domains derived from Vps4b and SNX15a showed phosphoinositide-binding activities in a Ca(2+)-dependent manner. We propose that the MIT domain is a novel membrane-associating domain involved in endosomal trafficking.

  11. The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding.

    PubMed

    Muñoz-Escobar, Juliana; Matta-Camacho, Edna; Kozlov, Guennadi; Gehring, Kalle

    2015-09-11

    E3 ubiquitin ligases catalyze the transfer of ubiquitin from an E2-conjugating enzyme to a substrate. UBR5, homologous to the E6AP C terminus (HECT)-type E3 ligase, mediates the ubiquitination of proteins involved in translation regulation, DNA damage response, and gluconeogenesis. In addition, UBR5 functions in a ligase-independent manner by prompting protein/protein interactions without ubiquitination of the binding partner. Despite recent functional studies, the mechanisms involved in substrate recognition and selective ubiquitination of its binding partners remain elusive. The C terminus of UBR5 harbors the HECT catalytic domain and an adjacent MLLE domain. MLLE domains mediate protein/protein interactions through the binding of a conserved peptide motif, termed PAM2. Here, we characterize the binding properties of the UBR5 MLLE domain to PAM2 peptides from Paip1 and GW182. The crystal structure with a Paip1 PAM2 peptide reveals the network of hydrophobic and ionic interactions that drive binding. In addition, we identify a novel interaction of the MLLE domain with the adjacent HECT domain mediated by a PAM2-like sequence. Our results confirm the role of the MLLE domain of UBR5 in substrate recruitment and suggest a potential role in regulating UBR5 ligase activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Mapping small molecule binding data to structural domains

    PubMed Central

    2012-01-01

    Background Large-scale bioactivity/SAR Open Data has recently become available, and this has allowed new analyses and approaches to be developed to help address the productivity and translational gaps of current drug discovery. One of the current limitations of these data is the relative sparsity of reported interactions per protein target, and complexities in establishing clear relationships between bioactivity and targets using bioinformatics tools. We detail in this paper the indexing of targets by the structural domains that bind (or are likely to bind) the ligand within a full-length protein. Specifically, we present a simple heuristic to map small molecule binding to Pfam domains. This profiling can be applied to all proteins within a genome to give some indications of the potential pharmacological modulation and regulation of all proteins. Results In this implementation of our heuristic, ligand binding to protein targets from the ChEMBL database was mapped to structural domains as defined by profiles contained within the Pfam-A database. Our mapping suggests that the majority of assay targets within the current version of the ChEMBL database bind ligands through a small number of highly prevalent domains, and conversely the majority of Pfam domains sampled by our data play no currently established role in ligand binding. Validation studies, carried out firstly against Uniprot entries with expert binding-site annotation and secondly against entries in the wwPDB repository of crystallographic protein structures, demonstrate that our simple heuristic maps ligand binding to the correct domain in about 90 percent of all assessed cases. Using the mappings obtained with our heuristic, we have assembled ligand sets associated with each Pfam domain. Conclusions Small molecule binding has been mapped to Pfam-A domains of protein targets in the ChEMBL bioactivity database. The result of this mapping is an enriched annotation of small molecule bioactivity data and a

  13. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later

  14. Dystrophin contains multiple independent membrane-binding domains.

    PubMed

    Zhao, Junling; Kodippili, Kasun; Yue, Yongping; Hakim, Chady H; Wasala, Lakmini; Pan, Xiufang; Zhang, Keqing; Yang, Nora N; Duan, Dongsheng; Lai, Yi

    2016-09-01

    Dystrophin is a large sub-sarcolemmal protein. Its absence leads to Duchenne muscular dystrophy (DMD). Binding to the sarcolemma is essential for dystrophin to protect muscle from contraction-induced injury. It has long been thought that membrane binding of dystrophin depends on its cysteine-rich (CR) domain. Here, we provide in vivo evidence suggesting that dystrophin contains three additional membrane-binding domains including spectrin-like repeats (R)1-3, R10-12 and C-terminus (CT). To systematically study dystrophin membrane binding, we split full-length dystrophin into ten fragments and examined subcellular localizations of each fragment by adeno-associated virus-mediated gene transfer. In skeletal muscle, R1-3, CR domain and CT were exclusively localized at the sarcolemma. R10-12 showed both cytosolic and sarcolemmal localization. Importantly, the CR-independent membrane binding was conserved in murine and canine muscles. A critical function of the CR-mediated membrane interaction is the assembly of the dystrophin-associated glycoprotein complex (DGC). While R1-3 and R10-12 did not restore the DGC, surprisingly, CT alone was sufficient to establish the DGC at the sarcolemma. Additional studies suggest that R1-3 and CT also bind to the sarcolemma in the heart, though relatively weak. Taken together, our study provides the first conclusive in vivo evidence that dystrophin contains multiple independent membrane-binding domains. These structurally and functionally distinctive membrane-binding domains provide a molecular framework for dystrophin to function as a shock absorber and signaling hub. Our results not only shed critical light on dystrophin biology and DMD pathogenesis, but also provide a foundation for rationally engineering minimized dystrophins for DMD gene therapy.

  15. Energetics of Calmodulin Domain Interactions with the Calmodulin Binding Domain of CaMKII

    PubMed Central

    Evans, T. Idil Apak; Shea, Madeline A.

    2010-01-01

    Calmodulin (CaM) is an essential eukaryotic calcium receptor that regulates many kinases, including CaMKII. Calcium-depleted CaM does not bind to CaMKII under physiological conditions. However, binding of (Ca2+)4-CaM to a basic amphipathic helix in CaMKII releases auto-inhibition of the kinase. The crystal structure of CaM bound to CaMKIIp, a peptide representing the CaM-binding domain (CaMBD) of CaMKII, shows an anti-parallel interface: the C-domain of CaM primarily contacts the N-terminal half of the CaMBD. The two domains of calcium-saturated CaM are believed to play distinct roles in releasing auto-inhibition. To investigate the underlying mechanism of activation, calcium-dependent titrations of isolated domains of CaM binding to CaMKIIp were monitored using fluorescence anisotropy. The binding affinity of CaMKIIp for the domains of CaM increased upon saturation with calcium, with a 35-fold greater increase observed for the C-domain than the N-domain. Because the interdomain linker of CaM regulates calcium-binding affinity and contribute to conformational change, the role of each CaM domain was explored further by investigating effects of CaMKIIp on site-knockout mutants affecting the calcium-binding sites of a single domain. Investigation of the thermodynamic linkage between saturation of individual calcium-binding sites and CaM-domain binding to CaMKIIp showed that calcium binding to sites III and IV was sufficient to recapitulate the behavior of (Ca2+)4-CaM. The magnitude of favorable interdomain cooperativity varied depending on which of the four calcium-binding sites were mutated, emphasizing differential regulatory roles for the domains of CaM, despite the high degree of homology among the four EF-hands of CaM. PMID:19089983

  16. Ligand binding domain of vitamin D receptors.

    PubMed

    Rochel, Natacha; Moras, Dino

    2006-01-01

    The vitamin D receptor, a member of the nuclear receptor subgroup NR1I, is regulated by 1alpha,25(OH)2D3 to control calcium metabolism, cell proliferation and differentiation and immunomodulation. The therapeutic applications of vitamin D metabolites are wide. To develop efficient therapy, the elucidation of the structure-function relationships of VDR and its ligands are essential. In this review we will focus on the current structural understanding of the interactions of ligands in the ligand binding pocket of the VDR. These structures revealed the mutual adaptability of the ligands and the protein. In silico modeling has further revealed a possible new pocket in the VDR LBD responsible of the non-genomic action mediated by VDR. With the availability of all these structural information on VDR LBD, new ligands that are more selective, such as non-steroidal ligands, could be designed by taking into account the flexibility of some VDR regions. Tissue selectivity may also be achieved by developing ligands that specifically activate the non-genomic pathway.

  17. Functional analyses of two cellular binding domains of bovine lactadherin.

    PubMed

    Andersen, M H; Graversen, H; Fedosov, S N; Petersen, T E; Rasmussen, J T

    2000-05-23

    The glycoprotein bovine lactadherin (formerly known as PAS-6/7) comprises two EGF-like domains and two C-like domains found in blood clotting factors V and VIII. Bovine lactadherin binds to alpha(v)beta(5) integrin in an RGD-dependent manner and also to phospholipids, especially phosphatidyl serine. To define and characterize these bindings the interactions between lactadherin and different mammalian cell types were investigated. Using recombinant forms of bovine lactadherin, the human breast carcinomas MCF-7 cells expressing the alpha(v)beta(5) integrin receptor were shown to bind specifically to RGD containing lactadherin but not to a mutated RGE lactadherin. A monoclonal antibody against the alpha(v)beta(5) integrin receptor and a synthetic RGD-containing peptide inhibited the adhesion of MCF-7 cells to lactadherin. Green monkey kidney MA-104 cells, also expressing the alpha(v)beta(3) together with the alpha(v)beta(5) integrin, showed binding to bovine lactadherin via both integrins. To investigate the interaction of lipid with lactadherin two fragments were expressed corresponding to the C1C2 domains and the C2 domain. Both fragments bound to phosphatidyl serine in a concentration-dependent manner with an affinity similar to native lactadherin (K(d) = 1.8 nM). A peptide corresponding to the C-terminal part of the C2 domain inhibited the binding of lactadherin to phospholipid in a concentration-dependent manner, and finally it was shown that lactadherin mediates binding between artificial phosphatidyl serine membranes and MCF-7 cells. Taken together these results show that lactadherin can act as link between two surfaces by binding to integrin receptors through its N-terminus and to phospholipids through its C-terminus.

  18. Extended HSR/CARD domain mediates AIRE binding to DNA

    SciTech Connect

    Maslovskaja, Julia Saare, Mario; Liiv, Ingrid; Rebane, Ana; Peterson, Pärt

    2015-12-25

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.

  19. Mechanistic insights into phosphoprotein-binding FHA domains.

    PubMed

    Liang, Xiangyang; Van Doren, Steven R

    2008-08-01

    [Structure: see text]. FHA domains are protein modules that switch signals in diverse biological pathways by monitoring the phosphorylation of threonine residues of target proteins. As part of the effort to gain insight into cellular avoidance of cancer, FHA domains involved in the cellular response to DNA damage have been especially well-characterized. The complete protein where the FHA domain resides and the interaction partners determine the nature of the signaling. Thus, a key biochemical question is how do FHA domains pick out their partners from among thousands of alternatives in the cell? This Account discusses the structure, affinity, and specificity of FHA domains and the formation of their functional structure. Although FHA domains share sequence identity at only five loop residues, they all fold into a beta-sandwich of two beta-sheets. The conserved arginine and serine of the recognition loops recognize the phosphorylation of the threonine targeted. Side chains emanating from loops that join beta-strand 4 with 5, 6 with 7, or 10 with 11 make specific contacts with amino acids of the ligand that tailor sequence preferences. Many FHA domains choose a partner in extended conformation, somewhat according to the residue three after the phosphothreonine in sequence (pT + 3 position). One group of FHA domains chooses a short carboxylate-containing side chain at pT + 3. Another group chooses a long, branched aliphatic side chain. A third group prefers other hydrophobic or uncharged polar side chains at pT + 3. However, another FHA domain instead chooses on the basis of pT - 2, pT - 3, and pT + 1 positions. An FHA domain from a marker of human cancer instead chooses a much longer protein fragment that adds a beta-strand to its beta-sheet and that presents hydrophobic residues from a novel helix to the usual recognition surface. This novel recognition site and more remote sites for the binding of other types of protein partners were predicted for the entire family

  20. Mechanisms of membrane deformation by lipid-binding domains.

    PubMed

    Itoh, Toshiki; Takenawa, Tadaomi

    2009-09-01

    Among an increasing number of lipid-binding domains, a group that not only binds to membrane lipids but also changes the shape of the membrane has been found. These domains are characterized by their strong ability to transform globular liposomes as well as flat plasma membranes into elongated membrane tubules both in vitro and in vivo. Biochemical studies on the structures of these proteins have revealed the importance of the amphipathic helix, which potentially intercalates into the lipid bilayer to induce and/or sense membrane curvature. Among such membrane-deforming domains, BAR and F-BAR/EFC domains form crescent-shaped dimers, suggesting a preference for a curved membrane, which is important for curvature sensing. Bioinformatics in combination with structural analyses has been identifying an increasing number of novel families of lipid-binding domains. This review attempts to summarize the evidence obtained by recent studies in order to gain general insights into the roles of membrane-deforming domains in a variety of biological events.

  1. Revised domain structure of ulvan lyase and characterization of the first ulvan binding domain

    PubMed Central

    Melcher, Rebecca L. J.; Neumann, Marten; Fuenzalida Werner, Juan Pablo; Gröhn, Franziska; Moerschbacher, Bruno M.

    2017-01-01

    Biomass waste products from green algae have recently been given new life, as these polysaccharides have potential applications in industry, agriculture, and medicine. One such polysaccharide group called ulvans displays many different, potentially useful properties that arise from their structural versatility. Hence, performing structural analyses on ulvan is crucial for future applications. However, chemical reaction–based analysis methods cannot fully characterize ulvan and tend to alter its structure. Thus, better methods require well-characterized ulvan-degrading enzymes. Therefore, we analysed a previously sequenced ulvan lyase (GenebankTM reference number JN104480) and characterized its domains. We suggest that the enzyme consists of a shorter than previously described catalytic domain, a newly identified substrate binding domain, and a C-terminal type 9 secretion system signal peptide. By separately expressing the two domains in E. coli, we confirmed that the binding domain is ulvan specific, having higher affinity for ulvan than most lectins for their ligands (affinity constant: 105 M−1). To our knowledge, this is the first description of an ulvan-binding domain. Overall, identifying this new binding domain is one step towards engineering ulvan enzymes that can be used to characterize ulvan, e.g. through enzymatic/mass spectrometric fingerprinting analyses, and help unlock its full potential. PMID:28327560

  2. PTEN-PDZ domain interactions: binding of PTEN to PDZ domains of PTPN13.

    PubMed

    Sotelo, Natalia S; Schepens, Jan T G; Valiente, Miguel; Hendriks, Wiljan J A J; Pulido, Rafael

    2015-05-01

    Protein modular interactions mediated by PDZ domains are essential for the establishment of functional protein networks controlling diverse cellular functions. The tumor suppressor PTEN possesses a C-terminal PDZ-binding motif (PDZ-BM) that is recognized by a specific set of PDZ domains from scaffolding and regulatory proteins. Here, we review the current knowledge on PTEN-PDZ domain interactions and tumor suppressor networks, describe methodology suitable to analyze these interactions, and report the binding of PTEN and the PDZ domain-containing protein tyrosine phosphatase PTPN13. Yeast two-hybrid and GST pull-down analyses showed that PTEN binds to PDZ2/PTPN13 domain in a manner that depends on the specific PTPN13 PDZ domain arrangement involving the interdomain region between PDZ1 and PDZ2. Furthermore, a specific binding profile of PTEN to PDZ2/PTPN13 domain was observed by mutational analysis of the PTEN PDZ-BM. Our results disclose a PDZ-mediated physical interaction of PTEN and PTPN13 with potential relevance in tumor suppression and cell homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. RNA binding domain of Jamestown Canyon virus S segment RNAs.

    PubMed

    Ogg, Monica M; Patterson, Jean L

    2007-12-01

    Jamestown Canyon virus (JCV) is a member of the Bunyaviridae family, Orthobunyavirus genus, California serogroup. Replication and, ultimately, assembly and packaging rely on the process of encapsidation. Therefore, the ability of viral RNAs (vRNAs) (genomic and antigenomic) to interact with the nucleocapsid protein (N protein) and the location of this binding domain on the RNAs are of interest. The questions to be addressed are the following. Where is the binding domain located on both the vRNA and cRNA strands, is this RNA bound when double or single stranded, and does this identified region have the ability to transform the binding potential of nonviral RNA? Full-length viral and complementary S segment RNA, as well as 3' deletion mutants of both vRNA and cRNA, nonviral RNA, and hybrid viral/nonviral RNA, were analyzed for their ability to interact with bacterially expressed JCV N protein. RNA-nucleocapsid interactions were examined by UV cross-linking, filter binding assays, and the generation of hybrid RNA to help define the area responsible for RNA-protein binding. The assays identified the region responsible for binding to the nucleocapsid as being contained within the 5' half of both the genomic and antigenomic RNAs. This region, if placed within nonviral RNA, is capable of altering the binding potential of nonviral RNA to levels seen with wild-type vRNAs.

  4. Identification of novel anionic phospholipid binding domains in neutral sphingomyelinase 2 with selective binding preference.

    PubMed

    Wu, Bill X; Clarke, Christopher J; Matmati, Nabil; Montefusco, David; Bartke, Nana; Hannun, Yusuf A

    2011-06-24

    Sphingolipids such as ceramide are recognized as vital regulators of many biological processes. Neutral sphingomyelinase 2 (nSMase2) is one of the key enzymes regulating ceramide production. It was previously shown that the enzymatic activity of nSMase2 was dependent on anionic phospholipids (APLs). In this study, the structural requirements for APL-selective binding of nSMase2 were determined and characterized. Using lipid-protein overlay assays, nSMase2 interacted specifically and directly with several APLs, including phosphatidylserine and phosphatidic acid. Lipid-protein binding studies of deletion mutants identified two discrete APL binding domains in the N terminus of nSMase2. Further, mutagenesis experiments pinpointed the core sequences and major cationic amino acids in the domains that are necessary for the cooperative activation of nSMase2 by APLs. The first domain included the first amino-terminal hydrophobic segment and Arg-33, which were essential for nSMase2 to interact with APLs. The second binding domain was comprised of the second hydrophobic segment and Arg-92 and Arg-93. Moreover, mutation of one or both domains decreased APL binding and APL-dependent catalytic activity of nSMase2. Further, mutation of both domains in nSMase2 reduced its plasma membrane localization. Finally, these binding domains are also important for the capability of nSMase2 to rescue the defects of yeast lacking the nSMase homologue, ISC1. In conclusion, these data have identified the APL binding domains of nSMase2 for the first time. The analysis of interactions between nSMase2 and APLs will contribute to our understanding of signaling pathways mediated by sphingolipid metabolites.

  5. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  6. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  7. Methods of use of cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  8. Methods of use of cellulose binding domain proteins

    SciTech Connect

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  9. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  10. Mapping the Binding Domain of the F18 Fimbrial Adhesin

    PubMed Central

    Smeds, A.; Pertovaara, M.; Timonen, T.; Pohjanvirta, T.; Pelkonen, S.; Palva, A.

    2003-01-01

    F18 fimbrial Esherichia coli strains are associated with porcine postweaning diarrhea and pig edema disease. Recently, the FedF subunit was identified as the adhesin of the F18 fimbriae. In this study, adhesion domains of FedF were further studied by constructing deletions within the fedF gene and expressing FedF proteins with deletions either together with the other F18 fimbrial subunits or as fusion proteins tagged with maltose binding protein. The region essential for adhesion to porcine intestinal epithelial cells was mapped between amino acid residues 60 and 109 of FedF. To map the binding domain even more closely, all eight charged amino acid residues within this region were independently replaced by alanine. Three of these single point mutants expressing F18 fimbriae exhibited significantly diminished capabilities to adhere to porcine epithelial cells in vitro. In addition, a triple point mutation and a double point mutation completely abolished receptor adhesiveness. The result further confirmed that the region between amino acid residues 60 and 109 is essential for the binding of F18 fimbriae to their receptor. In addition, the adhesion capability of the binding domain was eliminated after treatment with iodoacetamide, suggesting the formation of a disulfide bridge between Cys-63 and Cys-83, whereas Cys-111 and Cys-116 could be deleted without affecting the binding ability of FedF. PMID:12654838

  11. Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins

    PubMed Central

    Xu, Zhixiong; Meng, Xianzhang; Cai, Ying; Liang, Hong; Nagarajan, Lalitha; Brandt, Stephen J.

    2007-01-01

    The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and β-globin expression in erythroid progenitors. Finally, SSBP2 was demonstrated to inhibit Ldb1 and Lmo2 interaction with the E3 ubiquitin ligase RLIM, prevent RLIM-mediated Ldb1 ubiquitination, and protect Ldb1 and Lmo2 from proteasomal degradation. These results define a novel biochemical function for SSBPs in regulating the abundance of LIM domain and LIM domain-binding proteins. PMID:17437998

  12. A lipid binding domain in sphingosine kinase 2

    SciTech Connect

    Don, Anthony S.; Rosen, Hugh

    2009-02-27

    The lipid second messenger sphingosine 1-phosphate (S1P) is a critical mediator of cellular proliferation and survival signals, and is essential for vasculogenesis and neurogenesis. S1P formation is catalysed by sphingosine kinases 1 and 2 (Sphk1 and Sphk2). We have found that the endogenous glycolipid sulfatide (3-O-sulfogalactosylceramide) binds to and inhibits the activity of Sphk2 and the closely related ceramide kinase (Cerk), but not Sphk1. Using sulfatide as a probe, we mapped the lipid binding domain to the N-terminus of Sphk2 (residues 1-175), a region of sequence that is absent in Sphk1, but aligns with a pleckstrin homology domain in Cerk. Accordingly, Sphk2 bound to phosphatidylinositol monophosphates but not to abundant cellular phospholipids. Deleting the N-terminal domain reduced Sphk2 membrane localisation in cells. We have therefore identified a lipid binding domain in Sphk2 that is important for the enzyme's sub-cellular localisation.

  13. Structure of the Nucleoprotein Binding Domain of Mokola Virus Phosphoprotein▿

    PubMed Central

    Assenberg, René; Delmas, Olivier; Ren, Jingshan; Vidalain, Pierre-Olivier; Verma, Anil; Larrous, Florence; Graham, Stephen C.; Tangy, Frédéric; Grimes, Jonathan M.; Bourhy, Hervé

    2010-01-01

    Mokola virus (MOKV) is a nonsegmented, negative-sense RNA virus that belongs to the Lyssavirus genus and Rhabdoviridae family. MOKV phosphoprotein P is an essential component of the replication and transcription complex and acts as a cofactor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. Here we present a structure for this domain of MOKV P, obtained by expression of full-length P in Escherichia coli, which was subsequently truncated during crystallization. The structure has a high degree of homology with P of rabies virus, another member of Lyssavirus genus, and to a lesser degree with P of vesicular stomatitis virus (VSV), a member of the related Vesiculovirus genus. In addition, analysis of the crystal packing of this domain reveals a potential binding site for the nucleoprotein N. Using both site-directed mutagenesis and yeast two-hybrid experiments to measure P-N interaction, we have determined the relative roles of key amino acids involved in this interaction to map the region of P that binds N. This analysis also reveals a structural relationship between the N-RNA binding domain of the P proteins of the Rhabdoviridae and the Paramyxoviridae. PMID:19906936

  14. Structural Basis for Viral Late-Domain Binding to Alix

    SciTech Connect

    Lee,S.; Joshi, A.; Nagashima, K.; Freed, E.; Hurley, J.

    2007-01-01

    The modular protein Alix is a central node in endosomal-lysosomal trafficking and the budding of human immunodeficiency virus (HIV)-1. The Gag p6 protein of HIV-1 contains a LYPx{sub n}LxxL motif that is required for Alix-mediated budding and binds a region of Alix spanning residues 360-702. The structure of this fragment of Alix has the shape of the letter 'V' and is termed the V domain. The V domain has a topologically complex arrangement of 11 {alpha}-helices, with connecting loops that cross three times between the two arms of the V. The conserved residue Phe676 is at the center of a large hydrophobic pocket and is crucial for binding to a peptide model of HIV-1 p6. Overexpression of the V domain inhibits HIV-1 release from cells. This inhibition of release is reversed by mutations that block binding of the Alix V domain to p6.

  15. A Binding Domain on Mesothelin for CA125/MUC16*

    PubMed Central

    Kaneko, Osamu; Gong, Lucy; Zhang, Jingli; Hansen, Johanna K.; Hassan, Raffit; Lee, Byungkook; Ho, Mitchell

    2009-01-01

    Ovarian cancer and malignant mesothelioma frequently express both mesothelin and CA125 (also known as MUC16) at high levels on the cell surface. The interaction between mesothelin and CA125 may facilitate the implantation and peritoneal spread of tumors by cell adhesion, whereas the detailed nature of this interaction is still unknown. Here, we used truncated mutagenesis and alanine replacement techniques to identify a binding site on mesothelin for CA125. We examined the molecular interaction by Western blot overlay assays and further quantitatively analyzed by enzyme-linked immunosorbent assay. We also evaluated the binding on cancer cells by flow cytometry. We identified the region (296–359) consisting of 64 amino acids at the N-terminal of cell surface mesothelin as the minimum fragment for complete binding activity to CA125. We found that substitution of tyrosine 318 with an alanine abolished CA125 binding. Replacement of tryptophan 321 and glutamic acid 324 with alanine could partially decrease binding to CA125, whereas mutation of histidine 354 had no effect. These results indicate that a conformation-sensitive structure of the region (296–359) is required and sufficient for the binding of mesothelin to CA125. In addition, we have shown that a single chain monoclonal antibody (SS1) recognizes this CA125-binding domain and blocks the mesothelin-CA125 interaction on cancer cells. The identified CA125-binding domain significantly inhibits cancer cell adhesion and merits evaluation as a new therapeutic agent for preventing or treating peritoneal malignant tumors. PMID:19075018

  16. Evolution of function in the "two dinucleotide binding domains" flavoproteins.

    PubMed

    Ojha, Sunil; Meng, Elaine C; Babbitt, Patricia C

    2007-07-01

    Structural and biochemical constraints force some segments of proteins to evolve more slowly than others, often allowing identification of conserved structural or sequence motifs that can be associated with substrate binding properties, chemical mechanisms, and molecular functions. We have assessed the functional and structural constraints imposed by cofactors on the evolution of new functions in a superfamily of flavoproteins characterized by two-dinucleotide binding domains, the "two dinucleotide binding domains" flavoproteins (tDBDF) superfamily. Although these enzymes catalyze many different types of oxidation/reduction reactions, each is initiated by a stereospecific hydride transfer reaction between two cofactors, a pyridine nucleotide and flavin adenine dinucleotide (FAD). Sequence and structural analysis of more than 1,600 members of the superfamily reveals new members and identifies details of the evolutionary connections among them. Our analysis shows that in all of the highly divergent families within the superfamily, these cofactors adopt a conserved configuration optimal for stereospecific hydride transfer that is stabilized by specific interactions with amino acids from several motifs distributed among both dinucleotide binding domains. The conservation of cofactor configuration in the active site restricts the pyridine nucleotide to interact with FAD from the re-side, limiting the flow of electrons from the re-side to the si-side. This directionality of electron flow constrains interactions with the different partner proteins of different families to occur on the same face of the cofactor binding domains. As a result, superimposing the structures of tDBDFs aligns not only these interacting proteins, but also their constituent electron acceptors, including heme and iron-sulfur clusters. Thus, not only are specific aspects of the cofactor-directed chemical mechanism conserved across the superfamily, the constraints they impose are manifested in the

  17. Protein universe containing a PUA RNA-binding domain.

    PubMed

    Cerrudo, Carolina S; Ghiringhelli, Pablo D; Gomez, Daniel E

    2014-01-01

    Here, we review current knowledge about pseudouridine synthase and archaeosine transglycosylase (PUA)-domain-containing proteins to illustrate progress in this field. A methodological analysis of the literature about the topic was carried out, together with a 'qualitative comparative analysis' to give a more comprehensive review. Bioinformatics methods for whole-protein or protein-domain identification are commonly based on pairwise protein sequence comparisons; we added comparison of structures to detect the whole universe of proteins containing the PUA domain. We present an update of proteins having this domain, focusing on the specific proteins present in Homo sapiens (dyskerin, MCT1, Nip7, eIF2D and Nsun6), and explore the existence of these in other species. We also analyze the phylogenetic distribution of the PUA domain in different species and proteins. Finally, we performed a structural comparison of the PUA domain through data mining of structural databases, determining a conserved structural motif, despite the differences in the sequence, even among eukaryotes, archaea and bacteria. All data discussed in this review, both bibliographic and analytical, corroborate the functional importance of the PUA domain in RNA-binding proteins.

  18. Bacterial collagen-binding domain targets undertwisted regions of collagen

    PubMed Central

    Philominathan, Sagaya Theresa Leena; Koide, Takaki; Matsushita, Osamu; Sakon, Joshua

    2012-01-01

    Clostridium histolyticum collagenase causes extensive degradation of collagen in connective tissue that results in gas gangrene. The C-terminal collagen-binding domain (CBD) of these enzymes is the minimal segment required to bind to a collagen fibril. CBD binds unidirectionally to the undertwisted C-terminus of triple helical collagen. Here, we examine whether CBD could also target undertwisted regions even in the middle of the triple helix. Collageneous peptides with an additional undertwisted region were synthesized by introducing a Gly → Ala substitution [(POG)xPOA(POG)y]3, where x + y = 9 and x > 3). 1H–15N heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) titration studies with 15N-labeled CBD demonstrated that the minicollagen binds to a 10 Å wide 25 Å long cleft. Six collagenous peptides each labeled with a nitroxide radical were then titrated with 15N-labeled CBD. CBD binds to either the Gly → Ala substitution site or to the C-terminus of each minicollagen. Small-angle X-ray scattering measurements revealed that CBD prefers to bind the Gly → Ala site to the C-terminus. The HSQC NMR spectra of 15N-labeled minicollagen and minicollagen with undertwisted regions were unaffected by the titration of unlabeled CBD. The results imply that CBD binds to the undertwisted region of the minicollagen but does not actively unwind the triple helix. PMID:22898990

  19. Neurosteroid binding to the amino terminal and glutamate binding domains of ionotropic glutamate receptors.

    PubMed

    Cameron, Krasnodara; Bartle, Emily; Roark, Ryan; Fanelli, David; Pham, Melissa; Pollard, Beth; Borkowski, Brian; Rhoads, Sarah; Kim, Joon; Rocha, Monica; Kahlson, Martha; Kangala, Melinda; Gentile, Lisa

    2012-06-01

    The endogenous neurosteroids, pregnenolone sulfate (PS) and 3α-hydroxy-5β-pregnan-20-one sulfate (PREGAS), have been shown to differentially regulate the ionotropic glutamate receptor (iGluR) family of ligand-gated ion channels. Upon binding to these receptors, PREGAS decreases current flow through the channels. Upon binding to non-NMDA or NMDA receptors containing an GluN2C or GluN2D subunit, PS also decreases current flow through the channels, however, upon binding to NMDA receptors containing an GluN2A or GluN2B subunit, flow through the channels increases. To begin to understand this differential regulation, we have cloned the S1S2 and amino terminal domains (ATD) of the NMDA GluN2B and GluN2D and AMPA GluA2 subunits. Here we present results that show that PS and PREGAS bind to different sites in the ATD of the GluA2 subunit, which when combined with previous results from our lab, now identifies two binding domains for each neurosteroid. We also show both neurosteroids bind only to the ATD of the GluN2D subunit, suggesting that this binding is distinct from that of the AMPA GluA2 subunit, with both leading to iGluR inhibition. Finally, we provide evidence that both PS and PREGAS bind to the S1S2 domain of the NMDA GluN2B subunit. Neurosteroid binding to the S1S2 domain of NMDA subunits responsible for potentiation of iGluRs and to the ATD of NMDA subunits responsible for inhibition of iGluRs, provides an interesting option for therapeutic design.

  20. Structure of the RNA-Binding Domain of Telomerase: Implications For RNA Recognition and Binding

    SciTech Connect

    Rouda,S.; Skordalakes, E.

    2007-01-01

    Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the 'end of replication problem.' TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.

  1. Structure of the microtubule-binding domain of flagellar dynein.

    PubMed

    Kato, Yusuke S; Yagi, Toshiki; Harris, Sarah A; Ohki, Shin-ya; Yura, Kei; Shimizu, Youské; Honda, Shinya; Kamiya, Ritsu; Burgess, Stan A; Tanokura, Masaru

    2014-11-04

    Flagellar dyneins are essential microtubule motors in eukaryotes, as they drive the beating motions of cilia and flagella. Unlike myosin and kinesin motors, the track binding mechanism of dyneins and the regulation between the strong and weak binding states remain obscure. Here we report the solution structure of the microtubule-binding domain of flagellar dynein-c/DHC9 (dynein-c MTBD). The structure reveals a similar overall helix-rich fold to that of the MTBD of cytoplasmic dynein (cytoplasmic MTBD), but dynein-c MTBD has an additional flap, consisting of an antiparallel b sheet. The flap is positively charged and highly flexible. Despite the structural similarity to cytoplasmic MTBD, dynein-c MTBD shows only a small change in the microtubule- binding affinity depending on the registry change of coiled coil-sliding, whereby lacks the apparent strong binding state. The surface charge distribution of dynein-c MTBD also differs from that of cytoplasmic MTBD, which suggests a difference in the microtubule-binding mechanism.

  2. Ligand Binding and Conformational Changes in the Purine-Binding Riboswitch Aptamer Domains

    NASA Astrophysics Data System (ADS)

    Noeske, Jonas; Buck, Janina; Wöhnert, Jens; Schwalbe, Harald

    Riboswitches are highly structured mRNA elements that regulate gene expression upon specific binding of small metabolite molecules. The purine-binding riboswitches bind different purine ligands by forming both canonical Watson—Crick and non-canonical intermolecular base pairs, involving a variety of hydrogen bonds between the riboswitch aptamer domain and the purine ligand. Here, we summarize work on the ligand binding modes of both purine-binding aptamer domains, their con-formational characteristics in the free and ligand-bound forms, and their ligand-induced folding. The adenine- and guanine-binding riboswitch aptamer domains display different conformations in their free forms, despite nearly identical nucleotide loop sequences that form a loop—loop interaction in the ligand-bound forms. Interestingly, the stability of helix II is crucial for the formation of the loop—loop interaction in the free form. A more stable helix II in the guanine riboswitch leads to a preformed loop—loop interaction in its free form. In contrast, a less stable helix II in the adenine riboswitch results in a lack of this loop—loop interaction in the absence of ligand and divalent cations.

  3. Histone-binding domains: strategies for discovery and characterization.

    PubMed

    Wilkinson, Alex W; Gozani, Or

    2014-08-01

    Chromatin signaling dynamics fundamentally regulate eukaryotic genomes. The reversible covalent post-translational modification (PTM) of histone proteins by chemical moieties such as phosphate, acetyl and methyl groups constitutes one of the primary chromatin signaling mechanisms. Modular protein domains present within chromatin-regulatory activities recognize or "read" specifically modified histone species and transduce these modified species into distinct downstream biological outcomes. Thus, understanding the molecular basis underlying PTM-mediated signaling at chromatin requires knowledge of both the modification and the partnering reader domains. Over the last ten years, a number of innovative approaches have been developed and employed to discover reader domain binding events with histones. Together, these studies have provided crucial insight into how chromatin pathways influence key cellular programs. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Sequential coagulation factor VIIa domain binding to tissue factor

    SciTech Connect

    Oesterlund, Maria; Persson, Egon; Freskgard, Per-Ola . E-mail: msv@ifm.liu.se

    2005-12-02

    Vessel wall tissue factor (TF) is exposed to blood upon vascular damage which enables association with factor VIIa (FVIIa). This leads to initiation of the blood coagulation cascade through localization and allosteric induction of FVIIa procoagulant activity. To examine the docking pathway of the FVIIa-TF complex, various residues in the extracellular part of TF (sTF) that are known to interact with FVIIa were replaced with cysteines labelled with a fluorescent probe. By using stopped-flow fluorescence kinetic measurements in combination with surface plasmon resonance analysis, we studied the association of the resulting sTF variants with FVIIa. We found the docking trajectory to be a sequence of events in which the protease domain of FVIIa initiates contact with sTF. Thereafter, the two proteins are tethered via the first epidermal growth factor-like and finally the {gamma}-carboxyglutamic acid (Gla) domain. The two labelled sTF residues interacting with the protease domain of FVIIa bind or become eventually ordered at different rates, revealing kinetic details pertinent to the allosteric activation of FVIIa by sTF. Moreover, when the Gla domain of FVIIa is removed the difference in the rate of association for the remaining domains is much more pronounced.

  5. Control of domain swapping in bovine odorant-binding protein.

    PubMed Central

    Ramoni, Roberto; Vincent, Florence; Ashcroft, Alison E; Accornero, Paolo; Grolli, Stefano; Valencia, Christel; Tegoni, Mariella; Cambillau, Christian

    2002-01-01

    As revealed by the X-ray structure, bovine odorant-binding protein (OBPb) is a domain swapped dimer [Tegoni, Ramoni, Bignetti, Spinelli and Cambillau (1996) Nat. Struct. Biol. 3, 863-867; Bianchet, Bains, Petosi, Pevsner, Snyder, Monaco and Amzel (1996) Nat. Struct. Biol. 3, 934-939]. This contrasts with all known mammalian OBPs, which are monomers, and in particular with porcine OBP (OBPp), sharing 42.3% identity with OBPb. By the mechanism of domain swapping, monomers are proposed to evolve into dimers and oligomers, as observed in human prion. Comparison of bovine and porcine OBP sequences pointed at OBPp glycine 121, in the hinge linking the beta-barrel to the alpha-helix. The absence of this residue in OBPb might explain why the normal lipocalin beta-turn is not formed. In order to decipher the domain swapping determinants we have produced a mutant of OBPb in which a glycine residue was inserted after position 121, and a mutant of OBPp in which glycine 121 was deleted. The latter mutation did not result in dimerization, while OBPb-121Gly+ became monomeric, suggesting that domain swapping was reversed. Careful structural analysis revealed that besides the presence of a glycine in the hinge, the dimer interface formed by the C-termini and by the presence of the lipocalins conserved disulphide bridge may also control domain swapping. PMID:11931632

  6. AKAP18 contains a phosphoesterase domain which binds AMP

    PubMed Central

    Gold, Matthew G.; Smith, F. Donelson; Scott, John D.; Barford, David

    2011-01-01

    SUMMARY Protein kinase A anchoring proteins (AKAPs), defined by their capacity to target the cAMP-dependent protein kinase to distinct sub-cellular locations, function as molecular scaffolds mediating the assembly of multi-component complexes to integrate and organise multiple signalling events. Despite their central importance in regulating cellular processes, little is known regarding their diverse structures and molecular mechanisms. Here, using bioinformatics and X-ray crystallography, we define a central domain of AKAP18δ (AKAP18CD) as a member of the 2H phosphoesterase family. The domain features two conserved His-x-Thr motifs positioned at the base of a groove located between two lobes related by pseudo two-fold symmetry. Nucleotide co-crystallisation screening revealed that this groove binds specifically to 5’AMP/CMP, with the affinity constant for AMP in the physiological concentration range. This is the first example of an AKAP capable of binding a small molecule. Our data generate two functional hypotheses for the AKAP18 central domain. It may act as a phosphoesterase, although we did not identify a substrate, or as an AMP sensor with the potential to couple intracellular AMP levels to PKA signalling events. PMID:18082768

  7. Immunochemical analysis of the glucocorticoid receptor: identification of a third domain separate from the steroid-binding and DNA-binding domains.

    PubMed Central

    Carlstedt-Duke, J; Okret, S; Wrange, O; Gustafsson, J A

    1982-01-01

    The glucocorticoid-receptor complex can be subdivided into three separate domains by limited proteolysis with trypsin or alpha-chymotrypsin. The following characteristics can be separated: steroid-binding activity (domain A), DNA-binding activity (domain B), and immunoactivity (domain C). We have previously reported the separation of the steroid-binding domain from the DNA-binding domain by limited proteolysis of the receptor with trypsin. In this paper, we report the detection by immunochemical analysis of a third domain of the glucocorticoid receptor, which does not bind hormone. Immunoactivity was detected by using specific antiglucocorticoid receptor antibodies raised in rabbits against purified rat liver glucocorticoid receptor and the assay used was an enzyme-linked immunosorbent assay. After digestion with alpha-chymotrypsin, the immunoactive region of the receptor (domain C) was separated from the other two domains (A and B). The immunoactive fragment was found to have a Stokes radius of 2.6 nm. Further digestion with alpha-chymotrypsin resulted in separation of the immunoactive fragment to give a fragment having a Stokes radius of 1.4 nm. The immunoactive domain could be separated from the half of the glucocorticoid receptor containing the steroid-binding and the DNA-binding domains (Stokes radius, 3.3 nm), by limited proteolysis of the receptor by alpha-chymotrypsin followed by gel filtration or chromatography on DNA-cellulose. PMID:6181503

  8. Polyphosphoinositide binding domains: Key to inositol lipid biology.

    PubMed

    Hammond, Gerald R V; Balla, Tamas

    2015-06-01

    Polyphosphoinositides (PPIn) are an important family of phospholipids located on the cytoplasmic leaflet of eukaryotic cell membranes. Collectively, they are critical for the regulation of many aspects of membrane homeostasis and signaling, with notable relevance to human physiology and disease. This regulation is achieved through the selective interaction of these lipids with hundreds of cellular proteins, and thus the capability to study these localized interactions is crucial to understanding their functions. In this review, we discuss current knowledge of the principle types of PPIn-protein interactions, focusing on specific lipid-binding domains. We then discuss how these domains have been re-tasked by biologists as molecular probes for these lipids in living cells. Finally, we describe how the knowledge gained with these probes, when combined with other techniques, has led to the current view of the lipids' localization and function in eukaryotes, focusing mainly on animal cells. This article is part of a Special Issue entitled Phosphoinositides.

  9. Extended HSR/CARD domain mediates AIRE binding to DNA.

    PubMed

    Maslovskaja, Julia; Saare, Mario; Liiv, Ingrid; Rebane, Ana; Peterson, Pärt

    2015-12-25

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    SciTech Connect

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C.

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  11. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  12. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  13. Solution structure and binding specificity of the p63 DNA binding domain

    PubMed Central

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  14. Generation of Metal-Binding Staphylococci through Surface Display of Combinatorially Engineered Cellulose-Binding Domains

    PubMed Central

    Wernérus, Henrik; Lehtiö, Janne; Teeri, Tuula; Nygren, Per-Åke; Ståhl, Stefan

    2001-01-01

    Ni2+-binding staphylococci were generated through surface display of combinatorially engineered variants of a fungal cellulose-binding domain (CBD) from Trichoderma reesei cellulase Cel7A. Novel CBD variants were generated by combinatorial protein engineering through the randomization of 11 amino acid positions, and eight potentially Ni2+-binding CBDs were selected by phage display technology. These new variants were subsequently genetically introduced into chimeric surface proteins for surface display on Staphylococcus carnosus cells. The expressed chimeric proteins were shown to be properly targeted to the cell wall of S. carnosus cells, since full-length proteins could be extracted and affinity purified. Surface accessibility for the chimeric proteins was demonstrated, and furthermore, the engineered CBDs, now devoid of cellulose-binding capacity, were shown to be functional with regard to metal binding, since the recombinant staphylococci had gained Ni2+-binding capacity. Potential environmental applications for such tailor-made metal-binding bacteria as bioadsorbents in biofilters or biosensors are discussed. PMID:11571172

  15. Generation of metal-binding staphylococci through surface display of combinatorially engineered cellulose-binding domains.

    PubMed

    Wernérus, H; Lehtiö, J; Teeri, T; Nygren, P A; Ståhl, S

    2001-10-01

    Ni(2+)-binding staphylococci were generated through surface display of combinatorially engineered variants of a fungal cellulose-binding domain (CBD) from Trichoderma reesei cellulase Cel7A. Novel CBD variants were generated by combinatorial protein engineering through the randomization of 11 amino acid positions, and eight potentially Ni(2+)-binding CBDs were selected by phage display technology. These new variants were subsequently genetically introduced into chimeric surface proteins for surface display on Staphylococcus carnosus cells. The expressed chimeric proteins were shown to be properly targeted to the cell wall of S. carnosus cells, since full-length proteins could be extracted and affinity purified. Surface accessibility for the chimeric proteins was demonstrated, and furthermore, the engineered CBDs, now devoid of cellulose-binding capacity, were shown to be functional with regard to metal binding, since the recombinant staphylococci had gained Ni(2+)-binding capacity. Potential environmental applications for such tailor-made metal-binding bacteria as bioadsorbents in biofilters or biosensors are discussed.

  16. Solution structure and binding specificity of the p63 DNA binding domain.

    PubMed

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-05-26

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner.

  17. Conserved Receptor-Binding Domains of Lake Victoria Marburgvirus and Zaire Ebolavirus Bind a Shared Receptor

    DTIC Science & Technology

    2006-04-14

    murine leukemia virus; PBS, phos- phate-buffered saline; RBD, receptor-binding domain; SARS, severe acute respiratory syndrome; VSV, vesicular stomatitis ...domain-deletedGP1,2 of ZEBOV-May (ZEBOV/MLV), or with theG pro- tein of vesicular stomatitis Indiana virus (VSV/MLV). Vero E6 cells were incubated with...virion, because of the functional importance of and limited variation in this region (44, 45). In some cases, such as murine and feline leukemia viruses

  18. Ligand binding by recombinant domains from insect ecdysone receptors.

    PubMed

    Graham, L D; Johnson, W M; Pawlak-Skrzecz, A; Eaton, R E; Bliese, M; Howell, L; Hannan, G N; Hill, R J

    2007-06-01

    The ligand binding domains (LBDs) from the EcR and USP proteins of four insect pests (Lucilia cuprina, Myzus persicae, Bemisia tabaci, Helicoverpa armigera) were purified as recombinant heterodimers. The K(d) values for [(3)H]-ponasterone A binding by LBD heterodimers that included the hinge regions (i.e., DE/F heterodimers) ranged 0.7-2.5 nM, with K(i) values for ecdysteroid and dibenzoylhydrazine ligands ranging from 0.1 nM to >448 microM. The K(d) and K(i) values for a recombinant H. armigera LBD heterodimer that lacked D-regions (i.e., an E/F heterodimer) were approximately 4 times higher than those for its DE/F counterpart. Rate constants were estimated for the L. cuprina LBD heterodimer. A fluorescein-inokosterone conjugate (K(i)~40 nM) was used to develop a novel binding assay based on fluorescence polarization. This assay, which ranked the affinity of competitor ecdysteroids in the same order as the [(3)H]-ponasterone A binding assay, is well suited to high-throughput screening. Ponasterone A had a higher affinity than muristerone A for the recombinant hemipteran LBD heterodimers, whereas the reverse was true for the recombinant dipteran one. The same preference was observed when these ligands were tested as inducers of ecdysone receptor-controlled gene expression in transfected mammalian cells. The binding data obtained in vitro using recombinant LBD heterodimers reflects the ability of agonists to induce transgene expression in recombinant mammalian cells, and can also reflect their efficacy as larvicides.

  19. Homology modeling of the receptor binding domain of human thrombopoietin

    NASA Astrophysics Data System (ADS)

    Song, Jin-Soo; Park, Heungrok; Hong, Hyo-Jeong; Yu, Myeong-Hee; Ryu, Seong-Eon

    1998-09-01

    Platelet production in blood is regulated by a lineage specific humoral factor, thrombopoietin (TPO). The amino terminal domain of TPO (TPO-N) is responsible for the signal transduction mediated by the TPO receptor, c-mpl. From the predicted length of helices we found that TPO-N belongs to the long-chain subfamily of the four-helix bundle cytokine family. We built a three dimensional model of TPO-N by a comparative homology modeling procedure. The four helices of TPO-N with an up-up-down-down topology are stabilized by a tightly packed central hydrophobic core and the extended loop AB makes an additional hydrophobic core with helices B and D outside of the four helix bundle scaffold. An interpretation of the previous site directed mutageneses results in light of the model enabled us to identify two isolated receptor binding sites. The surface made of Lys 136, Lys 138 and Lys 140 in helix D, and Pro 42 and Glu 50 in loop AB forms the first receptor binding site, while the surface of Asp 8, Arg 10 and Lys14 in helix A represents the second binding site for the sequential receptor oligomerization.

  20. Starch-binding domains in the post-genome era.

    PubMed

    Machovic, M; Janecek, S

    2006-12-01

    Starch belongs to the most abundant biopolymers on Earth. As a source of energy, starch is degraded by a large number of various amylolytic enzymes. However, only about 10% of them are capable of binding and degrading raw starch. These enzymes usually possess a distinct sequence-structural module, the so-called starchbinding domain (SBD). In general, all carbohydrate-binding modules (CBMs) have been classified into the CBM families. In this sequence-based classification the individual types of SBDs have been placed into seven CBM families: CBM20, CBM21, CBM25, CBM26, CBM34, CBM41 and CBM45. The family CBM20, known also as a classical C-terminal SBD of microbial amylases, is the most thoroughly studied. The three-dimensional structures have already been determined by X-ray crystallography or nuclear magnetic resonance for SBDs from five CBM families (20, 25, 26, 34 and 41), and the structure of the CBM21 has been modelled. Despite differences among the amino acid sequences, the fold of a distorted beta-barrel seems to be conserved together with a similar way of substrate binding (mainly stacking interactions between aromatic residues and glucose rings). SBDs have recently been discovered in many non-amylolytic proteins. These may, for example, have regulatory functions in starch metabolism in plants or glycogen metabolism in mammals. SBDs have also found practical uses.

  1. Peptide binding properties of the three PDZ domains of Bazooka (Drosophila Par-3).

    PubMed

    Yu, Cao Guo; Tonikian, Raffi; Felsensteiner, Corinna; Jhingree, Jacquelyn R; Desveaux, Darrell; Sidhu, Sachdev S; Harris, Tony J C

    2014-01-01

    The Par complex is a conserved cell polarity regulator. Bazooka/Par-3 is scaffold for the complex and contains three PDZ domains in tandem. PDZ domains can act singly or synergistically to bind the C-termini of interacting proteins. Sequence comparisons among Drosophila Baz and its human and C. elegans Par-3 counterparts indicate a divergence of the peptide binding pocket of PDZ1 and greater conservation for the pockets of PDZ2 and PDZ3. However, it is unclear whether the domains from different species share peptide binding preferences, or if their tandem organization affects their peptide binding properties. To investigate these questions, we first used phage display screens to identify unique peptide binding profiles for each single PDZ domain of Baz. Comparisons with published phage display screens indicate that Baz and C. elegans PDZ2 bind to similar peptides, and that the peptide binding preferences of Baz PDZ3 are more similar to C. elegans versus human PDZ3. Next we quantified the peptide binding preferences of each Baz PDZ domain using single identified peptides in surface plasmon resonance assays. In these direct binding studies, each peptide had a binding preference for a single PDZ domain (although the peptide binding of PDZ2 was weakest and the least specific). PDZ1 and PDZ3 bound their peptides with dissociation constants in the nM range, whereas PDZ2-peptide binding was in the µM range. To test whether tandem PDZ domain organization affects peptide binding, we examined a fusion protein containing all three PDZ domains and their normal linker regions. The binding strengths of the PDZ-specific peptides to single PDZ domains and to the PDZ domain tandem were indistinguishable. Thus, the peptide binding pockets of each PDZ domain in Baz are not obviously affected by the presence of neighbouring PDZ domains, but act as isolated modules with specific in vitro peptide binding preferences.

  2. The Dof domain, a zinc finger DNA-binding domain conserved only in higher plants, truly functions as a Cys2/Cys2 Zn finger domain.

    PubMed

    Umemura, Yoshimi; Ishiduka, Tomoko; Yamamoto, Rie; Esaka, Muneharu

    2004-03-01

    The Dof (DNA-binding with one finger) proteins are plant transcription factors that have a highly conserved DNA-binding domain, called the Dof domain. The Dof domain, which is composed of 52 amino acid residues, is similar to the Cys2/Cys2 zinc finger DNA-binding domain of GATA1 and steroid hormone receptors, but has a longer putative loop than that in the case of these zinc finger domains. The DNA-binding function of ascorbate oxidase gene binding protein (AOBP), a Dof protein, was investigated by gel retardation analysis. When Cys was replaced by His, the Dof domain could not function as a Cys3/His- or a Cys2/His2-type zinc finger. The characteristic longer loop was essential for DNA-binding activity. Furthermore, heavy metals such as Co(II), Ni(II), Cd(II), Cu(II), Hg(II), Fe(II), and Fe(III) inhibited the DNA-binding activity of the Dof domain. Manganese ion as well as zinc ion was coordinated by the Dof domain in vitro. On the other hand, the analysis using inductively coupled argon plasma mass spectrometry (ICP-MS) showed that the Dof domain contained zinc ion but not manganese ion. Thus, the Dof domain was proved to function as a Cys2/Cys2 zinc finger domain.

  3. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A.

    PubMed Central

    Goldstein, M A; Takagi, M; Hashida, S; Shoseyov, O; Doi, R H; Segel, I H

    1993-01-01

    Cellulose-binding protein A (CbpA), a component of the cellulase complex of Clostridium cellulovorans, contains a unique sequence which has been demonstrated to be a cellulose-binding domain (CBD). The DNA coding for this putative CBD was subcloned into pET-8c, an Escherichia coli expression vector. The protein produced under the direction of the recombinant plasmid, pET-CBD, had a high affinity for crystalline cellulose. Affinity-purified CBD protein was used in equilibrium binding experiments to characterize the interaction of the protein with various polysaccharides. It was found that the binding capacity of highly crystalline cellulose samples (e.g., cotton) was greater than that of samples of low crystallinity (e.g., fibrous cellulose). At saturating CBD concentration, about 6.4 mumol of protein was bound by 1 g of cotton. Under the same conditions, fibrous cellulose bound only 0.2 mumol of CBD per g. The measured dissociation constant was in the 1 microM range for all cellulose samples. The results suggest that the CBD binds specifically to crystalline cellulose. Chitin, which has a crystal structure similar to that of cellulose, also was bound by the CBD. The presence of high levels of cellobiose or carboxymethyl cellulose in the assay mixture had no effect on the binding of CBD protein to crystalline cellulose. This result suggests that the CBD recognition site is larger than a simple cellobiose unit or more complex than a repeating cellobiose moiety. This CBD is of particular interest because it is the first CBD from a completely sequenced nonenzymatic protein shown to be an independently functional domain. Images PMID:8376323

  4. Structures of DNA-binding mutant zinc finger domains: implications for DNA binding.

    PubMed Central

    Hoffman, R. C.; Horvath, S. J.; Klevit, R. E.

    1993-01-01

    Studies of Cys2-His2 zinc finger domains have revealed that the structures of individual finger domains in solution determined by NMR spectroscopy are strikingly similar to the structure of fingers bound to DNA determined by X-ray diffraction. Therefore, detailed structural analyses of single finger domains that contain amino acid substitutions known to affect DNA binding in the whole protein can yield information concerning the structural ramifications of such mutations. We have used this approach to study two mutants in the N-terminal finger domain of ADR1, a yeast transcription factor that contains two Cys2-His2 zinc finger sequences spanning residues 102-159. Two point mutants at position 118 in the N-terminal zinc finger (ADR1b: 102-130) that adversely affect the DNA-binding activity of ADR1 have previously been identified: H118A and H118Y. The structures of wild-type ADR1b and the two mutant zinc finger domains were determined using two-dimensional nuclear magnetic resonance spectroscopy and distance geometry and were refined using a complete relaxation matrix method approach (REPENT) to improve agreement between the models and the nuclear Overhauser effect spectroscopy data from which they were generated. The molecular architecture of the refined wild-type ADR1b domain is presented in detail. Comparisons of wild-type ADR1b and the two mutants revealed that neither mutation causes a significant structural perturbation. The structures indicate that the DNA binding properties of the His 118 mutants are dependent on the identity of the side chain at position 118, which has been postulated to make a direct DNA contact in the wild-type ADR1 protein. The results suggest that the identity of the side chain at the middle DNA contact position in Cys2-His2 zinc fingers may be changed with impunity regarding the domain structure and can affect the affinity of the protein-DNA interaction. PMID:8318900

  5. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    SciTech Connect

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  6. Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain.

    PubMed

    Liefhebber, Jolanda M P; Brandt, Bernd W; Broer, Rene; Spaan, Willy J M; van Leeuwen, Hans C

    2009-05-25

    Hepatitis C virus (HCV) induces membrane rearrangements during replication. All HCV proteins are associated to membranes, pointing out the importance of membranes for HCV. Non structural protein 4B (NS4B) has been reported to induce cellular membrane alterations like the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The carboxy-terminal domain (CTD) of NS4B is highly conserved in Hepaciviruses, though its function remains unknown. A cytosolic localization is predicted for the NS4B-CTD. However, using membrane floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate dehydrogenase (d-LDH). The crystal structure of E. coli d-LDH suggests that the region similar to NS4B-CTD is located in the membrane binding domain (MBD) of d-LDH, implying analogy in membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of positive residues on the outside of the protein with negative head groups of lipids. To verify that anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to disrupt these electrostatic interactions. Membrane association was confirmed by swopping the membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD. Furthermore, the functionality of these residues was tested in the HCV replicon system. Together these data show that NS4B-CTD is associated to membranes, similar to the prokaryotic d-LDH MBD, and is important for replication.

  7. The Rapamycin-Binding Domain of the Protein Kinase mTOR is a Destabilizing Domain*

    PubMed Central

    Edwards, Sarah R.; Wandless, Thomas J.

    2013-01-01

    Rapamycin is an immunosuppressive drug that binds simultaneously to the 12-kDa FK506- and rapamycin-binding protein (FKBP12, or FKBP) and the FKBP-rapamycin binding domain (FRB) of the mammalian target of rapamycin (mTOR) kinase. The resulting ternary complex has been used to conditionally perturb protein function, and one such method involves perturbation of a protein of interest through its mislocalization. We synthesized two rapamycin derivatives that possess large substituents at the C16 position within the FRB-binding interface, and these derivatives were screened against a library of FRB mutants using a three-hybrid assay in Saccharomyces cerevisiae. Several FRB mutants responded to one of the rapamycin derivatives, and twenty of these mutants were further characterized in mammalian cells. The mutants most responsive to the ligand were fused to yellow fluorescent protein, and fluorescence levels in the presence and absence of the ligand were measured to determine stability of the fusion proteins. Wild-type and mutant FRB domains were expressed at low levels in the absence of the rapamycin derivative, and expression levels rose up to ten-fold upon treatment with ligand. The synthetic rapamycin derivatives were further analyzed using quantitative mass spectrometry, and one of the compounds was found to contain contaminating rapamycin. Furthermore, uncontaminated analogs retain the ability to inhibit mTOR, albeit with diminished potency relative to rapamycin. The ligand-dependent stability displayed by wildtype FRB and FRB mutants as well as the inhibitory potential and purity of the rapamycin derivatives should be considered as potentially confounding experimental variables when using these systems. PMID:17350953

  8. Botulinum neurotoxin devoid of receptor binding domain translocates active protease.

    PubMed

    Fischer, Audrey; Mushrush, Darren J; Lacy, D Borden; Montal, Mauricio

    2008-12-01

    Clostridium botulinum neurotoxin (BoNT) causes flaccid paralysis by disabling synaptic exocytosis. Intoxication requires the tri-modular protein to undergo conformational changes in response to pH and redox gradients across endosomes, leading to the formation of a protein-conducting channel. The approximately 50 kDa light chain (LC) protease is translocated into the cytosol by the approximately 100 kDa heavy chain (HC), which consists of two modules: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). Here we exploited the BoNT modular design to identify the minimal requirements for channel activity and LC translocation in neurons. Using the combined detection of substrate proteolysis and single-channel currents, we showed that a di-modular protein consisting only of LC and TD was sufficient to translocate active protease into the cytosol of target cells. The RBD is dispensable for cell entry, channel activity, or LC translocation; however, it determined a pH threshold for channel formation. These findings indicate that, in addition to its individual functions, each module acts as a chaperone for the others, working in concert to achieve productive intoxication.

  9. Botulinum Neurotoxin Devoid of Receptor Binding Domain Translocates Active Protease

    PubMed Central

    Fischer, Audrey; Mushrush, Darren J.; Lacy, D. Borden; Montal, Mauricio

    2008-01-01

    Clostridium botulinum neurotoxin (BoNT) causes flaccid paralysis by disabling synaptic exocytosis. Intoxication requires the tri-modular protein to undergo conformational changes in response to pH and redox gradients across endosomes, leading to the formation of a protein-conducting channel. The ∼50 kDa light chain (LC) protease is translocated into the cytosol by the ∼100 kDa heavy chain (HC), which consists of two modules: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). Here we exploited the BoNT modular design to identify the minimal requirements for channel activity and LC translocation in neurons. Using the combined detection of substrate proteolysis and single-channel currents, we showed that a di-modular protein consisting only of LC and TD was sufficient to translocate active protease into the cytosol of target cells. The RBD is dispensable for cell entry, channel activity, or LC translocation; however, it determined a pH threshold for channel formation. These findings indicate that, in addition to its individual functions, each module acts as a chaperone for the others, working in concert to achieve productive intoxication. PMID:19096517

  10. Structure of the homodimeric androgen receptor ligand-binding domain

    PubMed Central

    Nadal, Marta; Prekovic, Stefan; Gallastegui, Nerea; Helsen, Christine; Abella, Montserrat; Zielinska, Karolina; Gay, Marina; Vilaseca, Marta; Taulès, Marta; Houtsmuller, Adriaan B.; van Royen, Martin E.; Claessens, Frank; Fuentes-Prior, Pablo; Estébanez-Perpiñá, Eva

    2017-01-01

    The androgen receptor (AR) plays a crucial role in normal physiology, development and metabolism as well as in the aetiology and treatment of diverse pathologies such as androgen insensitivity syndromes (AIS), male infertility and prostate cancer (PCa). Here we show that dimerization of AR ligand-binding domain (LBD) is induced by receptor agonists but not by antagonists. The 2.15-Å crystal structure of homodimeric, agonist- and coactivator peptide-bound AR-LBD unveils a 1,000-Å2 large dimerization surface, which harbours over 40 previously unexplained AIS- and PCa-associated point mutations. An AIS mutation in the self-association interface (P767A) disrupts dimer formation in vivo, and has a detrimental effect on the transactivating properties of full-length AR, despite retained hormone-binding capacity. The conservation of essential residues suggests that the unveiled dimerization mechanism might be shared by other nuclear receptors. Our work defines AR-LBD homodimerization as an essential step in the proper functioning of this important transcription factor. PMID:28165461

  11. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    PubMed

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  12. Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains?

    PubMed Central

    Ponting, C. P.

    1996-01-01

    Two SH3 domain-containing cytosolic components of the NADPH oxidase, p47phox and p40phox, are shown by analyses of their sequences to contain single copies of a novel class of domain, the PX (phox) domain. Homologous domains are demonstrated to be present in the Cpk class of phosphatidylinositol 3-kinase, S. cerevisiae Bem1p, and S. pombe Scd2, and a large family of human sorting nexin 1 (SNX1) homologues. The majority of these domains contains a polyproline motif, typical of SH3 domain-binding proteins. Two further findings are reported. A third NADPH oxidase subunit, p67phox, is shown to contain four tetratricopeptide repeats (TPRs) within its N-terminal RaclGTP-binding region, and a 28 residue motif in p40phox is demonstrated to be present in protein kinase C isoforms iota/lambda and zeta, and in three ZZ domain-containing proteins. PMID:8931154

  13. Ligand Binding to WW Tandem Domains of YAP2 Transcriptional Regulator Is Under Negative Cooperativity

    PubMed Central

    Schuchardt, Brett J.; Mikles, David C.; Hoang, Lawrence M.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad

    2014-01-01

    YAP2 transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well-documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809

  14. Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity.

    PubMed

    Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad

    2014-12-01

    YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules.

  15. Structural and functional definition of the human chitinase chitin-binding domain.

    PubMed

    Tjoelker, L W; Gosting, L; Frey, S; Hunter, C L; Trong, H L; Steiner, B; Brammer, H; Gray, P W

    2000-01-07

    Mammalian chitinase, a chitinolytic enzyme expressed by macrophages, has been detected in atherosclerotic plaques and is elevated in blood and tissues of guinea pigs infected with Aspergillus. Its normal physiological function is unknown. To understand how the enzyme interacts with its substrate, we have characterized the chitin-binding domain. The C-terminal 49 amino acids make up the minimal sequence required for chitin binding activity. The absence of this domain does not affect the ability of the enzyme to hydrolyze the soluble substrate, triacetylchitotriose, but abolishes hydrolysis of insoluble chitin. Within the minimal chitin-binding domain are six cysteines; mutation of any one of these to serine results in complete loss of chitin binding activity. Analysis of purified recombinant chitin-binding domain revealed the presence of three disulfide linkages. The recombinant domain binds specifically to chitin but does not bind chitosan, cellulose, xylan, beta-1, 3-glucan, beta-1,3-1,4-glucan, or mannan. Fluorescently tagged chitin-binding domain was used to demonstrate chitin-specific binding to Saccharomyces cerevisiae, Candida albicans, Mucor rouxii, and Neurospora crassa. These experiments define structural features of the minimal domain of human chitinase required for both specifically binding to and hydrolyzing insoluble chitin and demonstrate relevant binding within the context of the fungal cell wall.

  16. Structure, function, and tethering of DNA-binding domains in σ54 transcriptional activators

    PubMed Central

    Vidangos, Natasha; Maris, Ann E.; Young, Anisa; Hong, Eunmi; Pelton, Jeffrey G.; Batchelor, Joseph D.; Wemmer, David E.

    2014-01-01

    We compare the structure, activity and linkage of DNA binding domains from σ54 transcriptional activators, and discuss how the properties of the DNA binding domains and the linker to the neighboring domain are affected by the overall properties and requirements of the full proteins. These transcriptional activators bind upstream of specific promoters that utilize σ54-polymerase. Upon receiving a signal the activators assemble into hexamers, which then, through ATP hydrolysis, drive a conformational change in polymerase that enables transcription initiation. We present structures of the DNA-binding domains of activators NtrC1 and Nlh2 from the thermophile A. aeolicus. The structures of these domains, and their relationship to other sparts of the activators are discussed. These structures are compared with previously determined structures of the DNA-binding domains of NtrC4, NtrC, ZraR, and FIS. The N-terminal linkers that connect the DNA-binding domains to the central domains in NtrC1 and Nlh2 were studied and found to be unstructured. Additionally, a crystal structure of full-length NtrC1 was solved, but density for the DNA-binding domains was extremely weak, further indicating that the linker between ATPase and DNA binding domains functions as a flexible tether. Flexible linking of ATPase and DNA binding domains is likely necessary to allow assembly of the active hexameric ATPase ring. The comparison of this set of activators also shows clearly that strong dimerization of the DNA binding domain only occurs when other domains do not dimerize strongly. PMID:23818155

  17. DNA binding properties of a chemically synthesized DNA binding domain of hRFX1.

    PubMed

    Cornille, F; Emery, P; Schüler, W; Lenoir, C; Mach, B; Roques, B P; Reith, W

    1998-05-01

    The RFX DNA binding domain (DBD) is a novel highly conserved motif belonging to a large number of dimeric DNA binding proteins which have diverse regulatory functions in eukaryotic organisms, ranging from yeasts to human. To characterize this novel motif, solid phase synthesis of a 76mer polypeptide corresponding to the DBD of human hRFX1 (hRFX1/DBD), a prototypical member of the RFX family, has been optimized to yield large quantities (approximately 90 mg) of pure compound. Preliminary two-dimensional1H NMR experiments suggested the presence of helical regions in this sequence in agreement with previously reported secondary structure predictions. In gel mobility shift assays, this synthetic peptide was shown to bind in a cooperative manner the 23mer duplex oligodeoxynucleotide corresponding to the binding site of hRFX1, with a 2:1 stoichoimetry due to an inverse repeat present in the 23mer. The stoichiometry of this complex was reduced to 1:1 by decreasing the length of the DNA sequence to a 13mer oligonucleotide containing a single half-site. Surface plasmon resonance measurements were achieved using this 5'-biotylinated 13mer oligonucleotide immobilized on an avidin-coated sensor chip. Using this method an association constant (K a = 4 x 10(5)/M/s), a dissociation constant (K d = 6 x 10(-2)/s) and an equilibrium dissociation constant (K D = 153 nM) were determined for binding of hRFX1/DBD to the double-stranded 13mer oligonucleotide. In the presence of hRFX1/DBD the melting temperature of the 13mer DNA was increased by 16 degreesC, illustrating stabilization of the double-stranded conformation induced by the peptide.

  18. DNA binding properties of a chemically synthesized DNA binding domain of hRFX1.

    PubMed Central

    Cornille, F; Emery, P; Schüler, W; Lenoir, C; Mach, B; Roques, B P; Reith, W

    1998-01-01

    The RFX DNA binding domain (DBD) is a novel highly conserved motif belonging to a large number of dimeric DNA binding proteins which have diverse regulatory functions in eukaryotic organisms, ranging from yeasts to human. To characterize this novel motif, solid phase synthesis of a 76mer polypeptide corresponding to the DBD of human hRFX1 (hRFX1/DBD), a prototypical member of the RFX family, has been optimized to yield large quantities (approximately 90 mg) of pure compound. Preliminary two-dimensional1H NMR experiments suggested the presence of helical regions in this sequence in agreement with previously reported secondary structure predictions. In gel mobility shift assays, this synthetic peptide was shown to bind in a cooperative manner the 23mer duplex oligodeoxynucleotide corresponding to the binding site of hRFX1, with a 2:1 stoichoimetry due to an inverse repeat present in the 23mer. The stoichiometry of this complex was reduced to 1:1 by decreasing the length of the DNA sequence to a 13mer oligonucleotide containing a single half-site. Surface plasmon resonance measurements were achieved using this 5'-biotylinated 13mer oligonucleotide immobilized on an avidin-coated sensor chip. Using this method an association constant (K a = 4 x 10(5)/M/s), a dissociation constant (K d = 6 x 10(-2)/s) and an equilibrium dissociation constant (K D = 153 nM) were determined for binding of hRFX1/DBD to the double-stranded 13mer oligonucleotide. In the presence of hRFX1/DBD the melting temperature of the 13mer DNA was increased by 16 degreesC, illustrating stabilization of the double-stranded conformation induced by the peptide. PMID:9547272

  19. Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains.

    PubMed

    Loo, Tip W; Bartlett, M Claire; Clarke, David M

    2003-01-17

    The human multidrug resistance P-glycoprotein (P-gp, ABCB1) uses ATP to transport many structurally diverse compounds out of the cell. It is an ABC transporter with two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Recently, we showed that the "LSGGQ" motif in one NBD ((531)LSGGQ(535) in NBD1; (1176)LSGGQ(1180) in NBD2) is adjacent to the "Walker A" sequence ((1070)GSSGCGKS(1077) in NBD2; (427)GNSGCGKS(434) in NBD1) in the other NBD (Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2002) J. Biol. Chem. 277, 41303-41306). Drug substrates can stimulate or inhibit the ATPase activity of P-gp. Here, we report the effect of drug binding on cross-linking between the LSGGQ signature and Walker A sites (Cys(431)(NBD1)/C1176C(NBD2) and Cys(1074)(NBD2)/L531C(NBD1), respectively). Seven drug substrates (calcein-AM, demecolcine, cis(Z)-flupentixol, verapamil, cyclosporin A, Hoechst 33342, and trans(E)-flupentixol) were tested for their effect on oxidative cross-linking. Substrates that stimulated the ATPase activity of P-gp (calcein-AM, demecolcine, cis(Z)-flupentixol, and verapamil) increased the rate of cross-linking between Cys(431)(NBD1-Walker A)/C1176C(NBD2-LSGGQ) and between Cys(1074)(NBD2-Walker A)/L531C(NBD1-LSGGQ) when compared with cross-linking in the absence of drug substrate. By contrast, substrates that inhibited ATPase activity (cyclosporin A, Hoechst 33342, and trans(E)-flupentixol) decreased the rate of cross-linking. These results indicate that interaction between the LSGGQ motifs and Walker A sites must be essential for coupling drug binding to ATP hydrolysis. Drug binding in the transmembrane domains can induce long range conformational changes in the NBDs, such that compounds that stimulate or inhibit ATPase activity must decrease and increase, respectively, the distance between the Walker A and LSGGQ sequences.

  20. Identification and phylogenetic analyses of VASt, an uncharacterized protein domain associated with lipid-binding domains in Eukaryotes.

    PubMed

    Khafif, Mehdi; Cottret, Ludovic; Balagué, Claudine; Raffaele, Sylvain

    2014-06-26

    Several regulators of programmed cell death (PCD) in plants encode proteins with putative lipid-binding domains. Among them, VAD1 is a regulator of PCD propagation harboring a GRAM putative lipid-binding domain. However the function of VAD1 at the subcellular level is unknown and the domain architecture of VAD1 has not been analyzed in details. We analyzed sequence conservation across the plant kingdom in the VAD1 protein and identified an uncharacterized VASt (VAD1 Analog of StAR-related lipid transfer) domain. Using profile hidden Markov models (profile HMMs) and phylogenetic analysis we found that this domain is conserved among eukaryotes and generally associates with various lipid-binding domains. Proteins containing both a GRAM and a VASt domain include notably the yeast Ysp2 cell death regulator and numerous uncharacterized proteins. Using structure-based phylogeny, we found that the VASt domain is structurally related to Bet v1-like domains. We identified a novel protein domain ubiquitous in Eukaryotic genomes and belonging to the Bet v1-like superfamily. Our findings open perspectives for the functional analysis of VASt-containing proteins and the characterization of novel mechanisms regulating PCD.

  1. Gonococcal pili. Primary structure and receptor binding domain.

    PubMed

    Schoolnik, G K; Fernandez, R; Tai, J Y; Rothbard, J; Gotschlich, E C

    1984-05-01

    The complete amino acid sequence of pilin from gonococcal strain MS11 and the sequence of constant and variable regions from strain R10 pilin have been determined in order to elucidate the structural basis for adherence function, antigenic diversity, and polymeric structure. The MS11 pilin sequence consists of 159 amino acids in a single polypeptide chain with two cysteines in disulfide linkage and serine-bonded phosphate residues. TC-2 (31-111), a soluble monomeric pilus peptide prepared by arginine-specific digestion, bound human endocervical, but not buccal or HeLa cells and therefore is postulated to encompass the receptor binding domain. Variable regions of CNBr-3 appear to confer antigenic diversity and comprise segments in which changes in the position of charged residues occur in hydrophilic, beta-turns. Residues 2-21 and 202-221 of gonococcal pilins and lower eucaryotic actins, respectively, exhibit 50% homology. When these residues are arranged at intervals of 100 degrees of arc on "helical wheels," the identical amino acids comprise a hydrophobic face on one side of the helix. This observation, the hydrophobic character of this region and the tendency for TC-1 (residues 1-30) to aggregate in water, suggest that this stretch interacts with other subunits to stabilize polymeric structure.

  2. The role of ubiquitin-binding domains in human pathophysiology.

    PubMed

    Sokratous, Kleitos; Hadjisavvas, Andreas; Diamandis, Eleftherios P; Kyriacou, Kyriacos

    2014-10-01

    Ubiquitination, a fundamental post-translational modification (PTM) resulting in the covalent attachment of ubiquitin (Ub) to a target protein, is currently implicated in several key cellular processes. Although ubiquitination was initially associated with protein degradation, it is becoming increasingly evident that proteins labeled with polyUb chains of specific topology and length are activated in an ever-expanding repertoire of specific cellular processes. In addition to their involvement in the classical protein degradation pathways they are involved in DNA repair, kinase regulation and nuclear factor-κB (NF-κB) signaling. The sorting and processing of distinct Ub signals is mediated by small protein motifs, known as Ub-binding domains (UBDs), which are found in proteins that execute disparate biological functions. The involvement of UBDs in several biological pathways has been revealed by several studies which have highlighted the vital role of UBDs in cellular homeostasis. Importantly, functional impairment of UBDs in key regulatory pathways has been related to the development of pathophysiological conditions, including immune disorders and cancer. In this review, we present an up-to-date account of the crucial role of UBDs and their functions, with a special emphasis on their functional impairment in key biological pathways and the pathogenesis of several human diseases. The still under-investigated topic of Ub-UBD interactions as a target for developing novel therapeutic strategies against many diseases is also discussed.

  3. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain.

    PubMed

    Kameshita, I; Matsuda, Z; Taniguchi, T; Shizuta, Y

    1984-04-25

    Poly(ADP-ribose) synthetase of Mr = 120,000 is cleaved by limited proteolysis with alpha-chymotrypsin into two fragments of Mr = 54,000 (54K) and Mr = 66,000 (66K). When the native enzyme is modified with 3-(bromoacetyl)pyridine, both portions of the enzyme are alkylated; however, alkylation of the 54K portions of the enzyme is protected by the addition of the substrate, NAD, or its analog, nicotinamide, suggesting that the substrate-binding site is localized in the 54K fragment. When the enzyme previously automodified with a low concentration of [adenine-U-14C] NAD is digested with alpha-chymotrypsin, the radioactivity is detected exclusively in the 66K fragment. The 66K fragment thus labeled is further cleaved with papain into two fragments of Mr = 46,000 and Mr = 22,000. With these two fragments, the label is detected only in the 22K fragment, but not in the 46K fragment. The 46K fragment binds to a DNA-cellulose column with the same affinity as that of the native enzyme, while the 22K fragment and the 54K fragment have little affinity for the DNA ligand. These results indicate that poly (ADP-ribose) synthetase contains three separable domains, the first possessing the site for binding of the substrate, NAD, the second containing the site for binding of DNA, and the third acting as the site(s) for accepting poly(ADP-ribose).

  4. Structural Basis of Rnd1 Binding to Plexin Rho GTPase Binding Domains (RBDs)

    SciTech Connect

    Wang, Hui; Hota, Prasanta K.; Tong, Yufeng; Li, Buren; Shen, Limin; Nedyalkova, Lyudmila; Borthakur, Susmita; Kim, SoonJeung; Tempel, Wolfram; Buck, Matthias; Park, Hee-Won

    2011-09-20

    Plexin receptors regulate cell adhesion, migration, and guidance. The Rho GTPase binding domain (RBD) of plexin-A1 and -B1 can bind GTPases, including Rnd1. By contrast, plexin-C1 and -D1 reportedly bind Rnd2 but associate with Rnd1 only weakly. The structural basis of this differential Rnd1 GTPase binding to plexin RBDs remains unclear. Here, we solved the structure of the plexin-A2 RBD in complex with Rnd1 and the structures of the plexin-C1 and plexin-D1 RBDs alone, also compared with the previously determined plexin-B1 RBD.Rnd1 complex structure. The plexin-A2 RBD {center_dot} Rnd1 complex is a heterodimer, whereas plexin-B1 and -A2 RBDs homodimerize at high concentration in solution, consistent with a proposed model for plexin activation. Plexin-C1 and -D1 RBDs are monomeric, consistent with major residue changes in the homodimerization loop. In plexin-A2 and -B1, the RBD {beta}3-{beta}4 loop adjusts its conformation to allow Rnd1 binding, whereas minimal structural changes occur in Rnd1. The plexin-C1 and -D1 RBDs lack several key non-polar residues at the corresponding GTPase binding surface and do not significantly interact with Rnd1. Isothermal titration calorimetry measurements on plexin-C1 and -D1 mutants reveal that the introduction of non-polar residues in this loop generates affinity for Rnd1. Structure and sequence comparisons suggest a similar mode of Rnd1 binding to the RBDs, whereas mutagenesis suggests that the interface with the highly homologous Rnd2 GTPase is different in detail. Our results confirm, from a structural perspective, that Rnd1 does not play a role in the activation of plexin-C1 and -D1. Plexin functions appear to be regulated by subfamily-specific mechanisms, some of which involve different Rho family GTPases.

  5. T antigen origin-binding domain of simian virus 40: determinants of specific DNA binding.

    PubMed

    Bradshaw, Elizabeth M; Sanford, David G; Luo, Xuelian; Sudmeier, James L; Gurard-Levin, Zachary A; Bullock, Peter A; Bachovchin, William W

    2004-06-08

    To better understand origin recognition and initiation of DNA replication, we have examined by NMR complexes formed between the origin-binding domain of SV40 T antigen (T-ag-obd), the initiator protein of the SV40 virus, and cognate and noncognate DNA oligomers. The results reveal two structural effects associated with "origin-specific" binding that are absent in nonspecific DNA binding. The first is the formation of a hydrogen bond (H-bond) involving His 203, a residue that genetic studies have previously identified as crucial to both specific and nonspecific DNA binding in full-length T antigen. In free T-ag-obd, the side chain of His 203 has a pK(a) value of approximately 5, titrating to the N(epsilon)(1)H tautomer at neutral pH (Sudmeier, J. L., et al. (1996) J. Magn. Reson., Ser. B 113, 236-247). In complexes with origin DNA, His 203 N(delta)(1) becomes protonated and remains nontitrating as the imidazolium cation at all pH values from 4 to 8. The H-bonded N(delta1)H resonates at 15.9 ppm, an unusually large N-H proton chemical shift, of a magnitude previously observed only in the catalytic triad of serine proteases at low pH. The formation of this H-bond requires the middle G/C base pair of the recognition pentanucleotide, GAGGC. The second structural effect is a selective distortion of the A/T base pair characterized by a large (0.6 ppm) upfield chemical-shift change of its Watson-Crick proton, while nearby H-bonded protons remain relatively unaffected. The results indicate that T antigen, like many other DNA-binding proteins, may employ "catalytic" or "transition-state-like" interactions in binding its cognate DNA (Jen-Jacobson, L. (1997) Biopolymers 44, 153-180), which may be the solution to the well-known paradox between the relatively modest DNA-binding specificity exhibited by initiator proteins and the high specificity of initiation.

  6. Specific binding of the methyl binding domain protein 2 at the BRCA1-NBR2 locus

    PubMed Central

    Auriol, Emilie; Billard, Lise-Marie; Magdinier, Frédérique; Dante, Robert

    2005-01-01

    The methyl-CpG binding domain (MBD) proteins are key molecules in the interpretation of DNA methylation signals leading to gene silencing. We investigated their binding specificity at the constitutively methylated region of a CpG island containing the bidirectional promoter of the Breast cancer predisposition gene 1, BRCA1, and the Near BRCA1 2 (NBR2) gene. In HeLa cells, quantitative chromatin immunoprecipitation assays indicated that MBD2 is associated with the methylated region, while MeCP2 and MBD1 were not detected at this locus. MBD2 depletion (∼90%), mediated by a transgene expressing a small interfering RNA (siRNA), did not induce MeCP2 or MBD1 binding at the methylated area. Furthermore, the lack of MBD2 at the BRCA1-NBR2 CpG island is associated with an elevated level of NBR2 transcripts and with a significant reduction of induced-DNA-hypomethylation response. In MBD2 knockdown cells, transient expression of a Mbd2 cDNA, refractory to siRNA-mediated decay, shifted down the NBR2 mRNA level to that observed in unmodified HeLa cells. Variations in MBD2 levels did not affect BRCA1 expression despite its stimulation by DNA hypomethylation. Collectively, our data indicate that MBD2 has specific targets and its presence at these targets is indispensable for gene repression. PMID:16052033

  7. Cooperative DNA Binding and Sequence-Selective Recognition Conferred by the STAT Amino-Terminal Domain

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Sun, Ya-Lin; Hoey, Timothy

    1996-08-01

    STAT proteins (signal transducers and activators of transcription) activate distinct target genes despite having similar DNA binding preferences. The transcriptional specificity of STAT proteins was investigated on natural STAT binding sites near the interferon-gamma gene. These sites are arranged in multiple copies and required cooperative interactions for STAT binding. The conserved amino-terminal domain of STAT proteins was required for cooperative DNA binding, although this domain was not essential for dimerization or binding to a single site. Cooperative binding interactions enabled the STAT proteins to recognize variations of the consensus site. These sites can be specific for the different STAT proteins and may function to direct selective transcriptional activation.

  8. Binding to retinoblastoma pocket domain does not alter the inter-domain flexibility of the J domain of SV40 large T antigen.

    PubMed

    Williams, Christina K; Vaithiyalingam, Sivaraja; Hammel, Michal; Pipas, James; Chazin, Walter J

    2012-02-15

    Simian Virus 40 uses the large T antigen (Tag) to bind and inactivate retinoblastoma tumor suppressor proteins (Rb), which can result in cellular transformation. Tag is a modular protein with four domains connected by flexible linkers. The N-terminal J domain of Tag is necessary for Rb inactivation. Binding of Rb is mediated by an LXCXE consensus motif immediately C-terminal to the J domain. Nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) were used to study the structural dynamics and interaction of Rb with the LXCXE motif, the J domain and a construct (N(260)) extending from the J domain through the origin binding domain (OBD). NMR and SAXS data revealed substantial flexibility between the domains in N(260). Binding of pRb to a construct containing the LXCXE motif and the J domain revealed weak interactions between pRb and the J domain. Analysis of the complex of pRb and N(260) indicated that the OBD is not involved and retains its dynamic independence from the remainder of Tag. These results support a 'chaperone' model in which the J domain of Tag changes its orientation as it acts upon different protein complexes.

  9. Nucleotide Binding in an Engineered Recombinant Ca(2+)-ATPase N-Domain.

    PubMed

    Páez-Pérez, Edgar D; De La Cruz-Torres, Valentín; Sampedro, José G

    2016-12-13

    A recombinant Ca(2+)-ATPase nucleotide binding domain (N-domain) harboring the mutations Trp552Leu and Tyr587Trp was expressed and purified. Chemical modification by N-bromosuccinimide and fluorescence quenching by acrylamide showed that the displaced Trp residue was located at the N-domain surface and slightly exposed to solvent. Guanidine hydrochloride-mediated N-domain unfolding showed the low structural stability of the α6-loop-α7 motif (the new Trp location) located near the nucleotide binding site. The binding of nucleotides (free and in complex with Mg(2+)) to the engineered N-domain led to significant intrinsic fluorescence quenching (ΔFmax ∼ 30%) displaying a saturable hyperbolic pattern; the calculated affinities decreased in the following order: ATP > ADP = ADP-Mg(2+) > ATP-Mg(2+). Interestingly, it was found that Ca(2+) binds to the N-domain as monitored by intrinsic fluorescence quenching (ΔFmax ∼ 12%) with a dissociation constant (Kd) of 50 μM. Notably, the presence of Ca(2+) (200 μM) increased the ATP and ADP affinity but favored the binding of ATP over that of ADP. In addition, binding of ATP to the N-domain generated slight changes in secondary structure as evidenced by circular dichroism spectral changes. Molecular docking of ATP to the N-domain provided different binding modes that potentially might be the binding stages prior to γ-phosphate transfer. Finally, the nucleotide binding site was studied by fluorescein isothiocyanate labeling and molecular docking. The N-domain of Ca(2+)-ATPase performs structural dynamics upon Ca(2+) and nucleotide binding. It is proposed that the increased affinity of the N-domain for ATP mediated by Ca(2+) binding may be involved in Ca(2+)-ATPase activation under normal physiological conditions.

  10. Quantitation of the Calcium and Membrane Binding Properties of the C2 Domains of Dysferlin

    PubMed Central

    Abdullah, Nazish; Padmanarayana, Murugesh; Marty, Naomi J.; Johnson, Colin P.

    2014-01-01

    Dysferlin is a large membrane protein involved in calcium-triggered resealing of the sarcolemma after injury. Although it is generally accepted that dysferlin is Ca2+ sensitive, the Ca2+ binding properties of dysferlin have not been characterized. In this study, we report an analysis of the Ca2+ and membrane binding properties of all seven C2 domains of dysferlin as well as a multi-C2 domain construct. Isothermal titration calorimetry measurements indicate that all seven dysferlin C2 domains interact with Ca2+ with a wide range of binding affinities. The C2A and C2C domains were determined to be the most sensitive, with Kd values in the tens of micromolar, whereas the C2D domain was least sensitive, with a near millimolar Kd value. Mutagenesis of C2A demonstrates the requirement for negatively charged residues in the loop regions for divalent ion binding. Furthermore, dysferlin displayed significantly lower binding affinity for the divalent cations magnesium and strontium. Measurement of a multidomain construct indicates that the solution binding affinity does not change when C2 domains are linked. Finally, sedimentation assays suggest all seven C2 domains bind lipid membranes, and that Ca2+ enhances but is not required for interaction. This report reveals for the first time, to our knowledge, that all dysferlin domains bind Ca2+ albeit with varying affinity and stoichiometry. PMID:24461013

  11. Comparison of Saccharomyces cerevisiae F-BAR Domain Structures Reveals a Conserved Inositol Phosphate Binding Site

    DOE PAGES

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; ...

    2015-01-22

    F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here in this paper, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound tomore » an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. In conclusion, our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence.« less

  12. The PDZ Domain of the LIM Protein Enigma Binds to β-Tropomyosin

    PubMed Central

    Guy, Pamela M.; Kenny, Daryn A.; Gill, Gordon N.

    1999-01-01

    PDZ and LIM domains are modular protein interaction motifs present in proteins with diverse functions. Enigma is representative of a family of proteins composed of a series of conserved PDZ and LIM domains. The LIM domains of Enigma and its most related family member, Enigma homology protein, bind to protein kinases, whereas the PDZ domains of Enigma and family member actin-associated LIM protein bind to actin filaments. Enigma localizes to actin filaments in fibroblasts via its PDZ domain, and actin-associated LIM protein binds to and colocalizes with the actin-binding protein α-actinin-2 at Z lines in skeletal muscle. We show that Enigma is present at the Z line in skeletal muscle and that the PDZ domain of Enigma binds to a skeletal muscle target, the actin-binding protein tropomyosin (skeletal β-TM). The interaction between Enigma and skeletal β-TM was specific for the PDZ domain of Enigma, was abolished by mutations in the PDZ domain, and required the PDZ-binding consensus sequence (Thr-Ser-Leu) at the extreme carboxyl terminus of skeletal β-TM. Enigma interacted with isoforms of tropomyosin expressed in C2C12 myotubes and formed an immunoprecipitable complex with skeletal β-TM in transfected cells. The association of Enigma with skeletal β-TM suggests a role for Enigma as an adapter protein that directs LIM-binding proteins to actin filaments of muscle cells. PMID:10359609

  13. The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins.

    PubMed Central

    Klappa, P; Ruddock, L W; Darby, N J; Freedman, R B

    1998-01-01

    Protein disulfide isomerase (PDI) is a very efficient catalyst of folding of many disulfide-bonded proteins. A great deal is known about the catalytic functions of PDI, while little is known about its substrate binding. We recently demonstrated by cross-linking that PDI binds peptides and misfolded proteins, with high affinity but broad specificity. To characterize the substrate-binding site of PDI, we investigated the interactions of various recombinant fragments of human PDI, expressed in Escherichia coli, with different radiolabelled model peptides. We observed that the b' domain of human PDI is essential and sufficient for the binding of small peptides. In the case of larger peptides, specifically a 28 amino acid fragment derived from bovine pancreatic trypsin inhibitor, or misfolded proteins, the b' domain is essential but not sufficient for efficient binding, indicating that contributions from additional domains are required. Hence we propose that the different domains of PDI all contribute to the binding site, with the b' domain forming the essential core. PMID:9463371

  14. GTP binding to the ROC domain of DAP-kinase regulates its function through intramolecular signalling.

    PubMed

    Carlessi, Rodrigo; Levin-Salomon, Vered; Ciprut, Sara; Bialik, Shani; Berissi, Hanna; Albeck, Shira; Peleg, Yoav; Kimchi, Adi

    2011-09-01

    Death-associated protein kinase (DAPk) was recently suggested by sequence homology to be a member of the ROCO family of proteins. Here, we show that DAPk has a functional ROC (Ras of complex proteins) domain that mediates homo-oligomerization and GTP binding through a defined P-loop motif. Upon binding to GTP, the ROC domain negatively regulates the catalytic activity of DAPk and its cellular effects. Mechanistically, GTP binding enhances an inhibitory autophosphorylation at a distal site that suppresses kinase activity. This study presents a new mechanism of intramolecular signal transduction, by which GTP binding operates in cis to affect the catalytic activity of a distal domain in the protein.

  15. A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor

    PubMed Central

    Sayou, Camille; Nanao, Max H.; Jamin, Marc; Posé, David; Thévenon, Emmanuel; Grégoire, Laura; Tichtinsky, Gabrielle; Denay, Grégoire; Ott, Felix; Peirats Llobet, Marta; Schmid, Markus; Dumas, Renaud; Parcy, François

    2016-01-01

    Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF. PMID:27097556

  16. A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor.

    PubMed

    Sayou, Camille; Nanao, Max H; Jamin, Marc; Posé, David; Thévenon, Emmanuel; Grégoire, Laura; Tichtinsky, Gabrielle; Denay, Grégoire; Ott, Felix; Peirats Llobet, Marta; Schmid, Markus; Dumas, Renaud; Parcy, François

    2016-04-21

    Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF.

  17. The ligand binding domain of the nicotinic acetylcholine receptor. Immunological analysis.

    PubMed

    Kachalsky, S G; Aladjem, M; Barchan, D; Fuchs, S

    1993-03-08

    The interaction of the acetylcholine receptor (AChR) binding site domain with specific antibodies and with alpha-bungarotoxin (alpha-BTX) has been compared. The cloned and expressed ligand binding domain of the mouse AChR alpha-subunit binds alpha-BTX, whereas the mongoose-expressed domain is not recognized by alpha-BTX. On the other hand, both the mouse and mongoose domains bind to the site-specific monoclonal antibody 5.5. These results demonstrate that the structural requirements for binding of alpha-BTX and mcAb 5.5, both of which interact with the AChR binding site, are distinct from each other.

  18. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    PubMed

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  19. The modular organization of domain structures: insights into protein-protein binding.

    PubMed

    del Sol, Antonio; Carbonell, Pablo

    2007-12-01

    Domains are the building blocks of proteins and play a crucial role in protein-protein interactions. Here, we propose a new approach for the analysis and prediction of domain-domain interfaces. Our method, which relies on the representation of domains as residue-interacting networks, finds an optimal decomposition of domain structures into modules. The resulting modules comprise highly cooperative residues, which exhibit few connections with other modules. We found that non-overlapping binding sites in a domain, involved in different domain-domain interactions, are generally contained in different modules. This observation indicates that our modular decomposition is able to separate protein domains into regions with specialized functions. Our results show that modules with high modularity values identify binding site regions, demonstrating the predictive character of modularity. Furthermore, the combination of modularity with other characteristics, such as sequence conservation or surface patches, was found to improve our predictions. In an attempt to give a physical interpretation to the modular architecture of domains, we analyzed in detail six examples of protein domains with available experimental binding data. The modular configuration of the TEM1-beta-lactamase binding site illustrates the energetic independence of hotspots located in different modules and the cooperativity of those sited within the same modules. The energetic and structural cooperativity between intramodular residues is also clearly shown in the example of the chymotrypsin inhibitor, where non-binding site residues have a synergistic effect on binding. Interestingly, the binding site of the T cell receptor beta chain variable domain 2.1 is contained in one module, which includes structurally distant hot regions displaying positive cooperativity. These findings support the idea that modules possess certain functional and energetic independence. A modular organization of binding sites confers

  20. Binding-folding induced regulation of AF1 transactivation domain of the glucocorticoid receptor by a cofactor that binds to its DNA binding domain.

    PubMed

    Garza, Anna S; Khan, Shagufta H; Moure, Carmen M; Edwards, Dean P; Kumar, Raj

    2011-01-01

    Intrinsically disordered (ID) regions of proteins commonly exist within transcription factors, including the N-terminal domain (NTD) of steroid hormone receptors (SHRs) that possesses a powerful activation function, AF1 region. The mechanisms by which SHRs pass signals from a steroid hormone to control gene expression remain a central unresolved problem. The role of N-terminal activation function AF1, which exists in an intrinsically disordered (ID) conformation, in this process is of immense importance. It is hypothesized that under physiological conditions, ID AF1 undergoes disorder/order transition via inter- and intra-molecular communications, which allows AF1 surfaces to interact with specific co-regulatory proteins, critical for the final outcome of target gene expression regulated by SHRs. However, the means by which AF1 acquires functionally folded conformations is not well understood. In this study, we tested whether binding of jun dimerization protein 2 (JDP2) within the DNA binding domain (DBD) of the glucocorticoid receptor (GR) leads to acquisition of functionally active structure in its AF1/NTD. Our results show that signals mediated from GR DBD:JDP2 interactions in a two domain GR fragment, consisting of the entire NTD and little beyond DBD, significantly increased secondary/tertiary structure formation in the NTD/AF1. This increased structure formation facilitated AF1's interaction with specific co-regulatory proteins and subsequent glucocorticoid response element-mediated AF1 promoter:reporter activity. These results support the hypothesis that inter- and intra-molecular signals give a functionally active structure(s) to the GR AF1, which is important for its transcriptional activity.

  1. The Acidic Domain of GPIHBP1 Is Important for the Binding of Lipoprotein Lipase and Chylomicrons*

    PubMed Central

    Gin, Peter; Yin, Liya; Davies, Brandon S. J.; Weinstein, Michael M.; Ryan, Robert O.; Bensadoun, André; Fong, Loren G.; Young, Stephen G.; Beigneux, Anne P.

    2008-01-01

    GPIHBP1, a glycosylphosphatidylinositol-anchored endothelial cell protein of the lymphocyte antigen 6 (Ly6) family, plays a key role in the lipolysis of triglyceride-rich lipoproteins (e.g. chylomicrons). GPIHBP1 is expressed along the luminal surface of endothelial cells of heart, skeletal muscle, and adipose tissue, and GPIHBP1-expressing cells bind lipoprotein lipase (LPL) and chylomicrons avidly. GPIHBP1 contains an amino-terminal acidic domain (amino acids 24-48) that is enriched in aspartate and glutamate residues, and we previously speculated that this domain might be important in binding ligands. To explore the functional importance of the acidic domain, we tested the ability of polyaspartate or polyglutamate peptides to block the binding of ligands to pgsA-745 Chinese hamster ovary cells that overexpress GPIHBP1. Both polyaspartate and polyglutamate blocked LPL and chylomicron binding to GPIHBP1. Also, a rabbit antiserum against the acidic domain of GPIHBP1 blocked LPL and chylomicron binding to GPIHBP1-expressing cells. Replacing the acidic amino acids within GPIHBP1 residues 38-48 with alanine eliminated the ability of GPIHBP1 to bind LPL and chylomicrons. Finally, mutation of the positively charged heparin-binding domains within LPL and apolipoprotein AV abolished the ability of these proteins to bind to GPIHBP1. These studies indicate that the acidic domain of GPIHBP1 is important and that electrostatic interactions play a key role in ligand binding. PMID:18713736

  2. The acidic domain of GPIHBP1 is important for the binding of lipoprotein lipase and chylomicrons.

    PubMed

    Gin, Peter; Yin, Liya; Davies, Brandon S J; Weinstein, Michael M; Ryan, Robert O; Bensadoun, André; Fong, Loren G; Young, Stephen G; Beigneux, Anne P

    2008-10-24

    GPIHBP1, a glycosylphosphatidylinositol-anchored endothelial cell protein of the lymphocyte antigen 6 (Ly6) family, plays a key role in the lipolysis of triglyceride-rich lipoproteins (e.g. chylomicrons). GPIHBP1 is expressed along the luminal surface of endothelial cells of heart, skeletal muscle, and adipose tissue, and GPIHBP1-expressing cells bind lipoprotein lipase (LPL) and chylomicrons avidly. GPIHBP1 contains an amino-terminal acidic domain (amino acids 24-48) that is enriched in aspartate and glutamate residues, and we previously speculated that this domain might be important in binding ligands. To explore the functional importance of the acidic domain, we tested the ability of polyaspartate or polyglutamate peptides to block the binding of ligands to pgsA-745 Chinese hamster ovary cells that overexpress GPIHBP1. Both polyaspartate and polyglutamate blocked LPL and chylomicron binding to GPIHBP1. Also, a rabbit antiserum against the acidic domain of GPIHBP1 blocked LPL and chylomicron binding to GPIHBP1-expressing cells. Replacing the acidic amino acids within GPIHBP1 residues 38-48 with alanine eliminated the ability of GPIHBP1 to bind LPL and chylomicrons. Finally, mutation of the positively charged heparin-binding domains within LPL and apolipoprotein AV abolished the ability of these proteins to bind to GPIHBP1. These studies indicate that the acidic domain of GPIHBP1 is important and that electrostatic interactions play a key role in ligand binding.

  3. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    SciTech Connect

    Yun, Ji-Hye; Lee, Won Kyung; Kim, Heeyoun; Kim, Eunhee; Cheong, Chaejoon; Cho, Myeon Haeng; Lee, Weontae

    2014-09-26

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2{sub 1–64}) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2{sub 1–64} and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.

  4. Definition of the domain boundaries is critical to the expression of the nucleotide-binding domains of P-glycoprotein.

    PubMed

    Kerr, Ian D; Berridge, Georgina; Linton, Kenneth J; Higgins, Christopher F; Callaghan, Richard

    2003-11-01

    Heterologous expression of domains of eukaryotic proteins is frequently associated with formation of inclusion bodies, consisting of aggregated mis-folded protein. This phenomenon has proved a significant barrier to the characterization of domains of eukaryotic ATP binding cassette (ABC) transporters. We hypothesized that the solubility of heterologously expressed nucleotide binding domains (NBDs) of ABC transporters is dependent on the definition of the domain boundaries. In this paper we have defined a core NBD, and tested the effect of extensions to and deletions of this core domain on protein expression. Of 10 NBDs constructed, only one was expressed as a soluble protein in Escherichia coli, with expression of the remaining NBDs being associated with inclusion body formation. The soluble NBD protein we have obtained corresponds to residues 386-632 of P-glycoprotein and represents an optimally defined domain. The NBD has been isolated and purified to 95% homogeneity by a two-step purification protocol, involving affinity chromatography and gel filtration. Although showing no detectable ATP hydrolysis, the protein retains specific ATP binding and has a secondary structure compatible with X-ray crystallographic data on bacterial NBDs. We have interpreted our results in terms of homology models, which suggest that the N-terminal NBD of P-glycoprotein can be produced as a stable, correctly folded, isolate domain with judicious design of the expression construct.

  5. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations.

    PubMed Central

    Mizukami, Y; Huang, H; Tudor, M; Hu, Y; Ma, H

    1996-01-01

    The Arabidopsis MADS box gene AGAMOUS (AG) controls reproductive organ identity and floral meristem determinacy. The AG protein binds in vitro to DNA sequences similar to the targets of known MADS domain transcription factors. Whereas most plant MADS domain proteins begin with the MADS domain, AG and its orthologs contain a region N-terminal to the MADS domain. All plant MADS domain proteins share another region with moderate sequence similarity called the K domain. Neither the region (I region) that lies between the MADS and K domains nor the C-terminal region is conserved. We show here that the AG MADS domain and the I region are necessary and sufficient for DNA binding in vitro and that AG binds to DNA as a dimer. To investigate the in vivo function of the regions of AG not required for in vitro DNA binding, we introduced several AG constructs into wild-type plants and characterized their floral phenotypes. We show that transgenic Arabidopsis plants with a 35S-AG construct encoding an AG protein lacking the N-terminal region produced apetala 2 (ap2)-like flowers similar to those ectopically expressing AG proteins retaining the N-terminal region. This result suggests that the N-terminal region is not required to produce the ap2-like phenotype. In addition, transformants with a 35S-AG construct encoding an AG protein lacking the C-terminal region produced ag-like flowers, indicating that this truncated AG protein inhibits normal AG function. Finally, transformants with a 35S-AG construct encoding an AG protein lacking both K and C regions produced flowers with more stamens and carpels. The phenotypes of the AG transformants demonstrate that both the K domain and the C-terminal region have important and distinct in vivo functions. We discuss possible mechanisms through which AG may regulate downstream genes. PMID:8672883

  6. Cross-talk among structural domains of human DBP upon binding 25-hydroxyvitamin D

    PubMed Central

    Ray, Arjun; Swamy, Narasimha; Ray, Rahul

    2007-01-01

    Serum vitamin D-binding protein (DBP) is structurally very similar to serum albumin (ALB); both have three distinct structural domains and high cysteine-content. Yet, functionally they are very different. DBP possesses high affinity for vitamin D metabolites and G-actin, but ALB does not. It has been suggested that there may be cross-talk among the domains so that binding of one ligand may influence the binding of others. In this study we have employed 2-p-toluidinyl-6-sulphonate (TNS), a reporter molecule that fluoresces upon binding to hydrophobic pockets of DBP. We observed that recombinant domain III possesses strong binding for TNS, which is not influenced by 25-hydroxyvitamin D3 (25-OH-D3), yet TNS-fluorescence of the whole protein is quenched by 25-OH-D3. These results provide a direct evidence of cross-talk among the structural domains of DBP. PMID:18035050

  7. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells.

    PubMed Central

    Talay, S R; Valentin-Weigand, P; Jerlström, P G; Timmis, K N; Chhatwal, G S

    1992-01-01

    The sequence of the fibronectin-binding domain of the fibronectin-binding protein of Streptococcus pyogenes (Sfb protein) was determined, and its role in streptococcal adherence was investigated by use of an Sfb fusion protein in adherence studies. A 1-kb DNA fragment coding for the binding domain of Sfb protein was cloned into the expression vector pEX31 to produce an Sfb fusion protein consisting of the N-terminal part of MS2 polymerase and a C-terminal fragment of the streptococcal protein. Induction of the vector promoter resulted in hyperexpression of fibronectin-binding fusion protein in the cytoplasm of the recombinant Escherichia coli cells. Sequence determination of the cloned 1-kb fragment revealed an in-frame reading frame for a 268-amino-acid peptide composed of a 37-amino-acid sequence which is completely repeated three times and incompletely repeated a fourth time. Cloning of one repeat into pEX31 resulted in expression of small fusion peptides that show fibronectin-binding activity, indicating that one repeat contains at least one binding domain. Each repeat exhibits two charged domains and shows high homology with the 38-amino-acid D3 repeat of the fibronectin-binding protein of Staphylococcus aureus. Sequence comparison with other streptococcal ligand-binding surface proteins, including M protein, failed to reveal significant homology, which suggests that Sfb protein represents a novel type of functional protein in S. pyogenes. The Sfb fusion protein isolated from the cytoplasm of recombinant cells was purified by fast protein liquid chromatography. It showed a strong competitive inhibition of fibronectin binding to S. pyogenes and of the adherence of bacteria to cultured epithelial cells. In contrast, purified streptococcal lipoteichoic acid showed only a weak inhibition of fibronectin binding and streptococcal adherence. These results demonstrate that Sfb protein is directly involved in the fibronectin-mediated adherence of S. pyogenes to

  8. A Vast Repertoire of Dscam Binding Specificities Arises from Modular Interactions of Variable Ig Domains

    PubMed Central

    Wojtowicz, Woj M.; Wu, Wei; Andre, Ingemar; Qian, Bin; Baker, David; Zipursky, S. Lawrence

    2009-01-01

    Summary Dscam encodes a family of cell surface proteins required for establishing neural circuits in Drosophila. Alternative splicing of Drosophila Dscam can generate 19,008 distinct extracellular domains containing different combinations of three variable immunoglobulin domains. To test the binding properties of many Dscam isoforms, we developed a high-throughput ELISA-based binding assay. We provide evidence that 95% (>18,000) of Dscam isoforms exhibit striking isoform-specific homophilic binding. We demonstrate that each of the three variable domains binds to the same variable domain in an opposing isoform and identify the structural elements that mediate this self-binding of each domain. These studies demonstrate that self-binding domains can assemble in different combinations to generate an enormous family of homophilic binding proteins. We propose that this vast repertoire of Dscam recognition molecules is sufficient to provide each neuron with a unique identity and homotypic binding specificity, thereby allowing neuronal processes to distinguish between self and non-self. PMID:17889655

  9. The Modular Organization of Domain Structures: Insights into Protein–Protein Binding

    PubMed Central

    del Sol, Antonio; Carbonell, Pablo

    2007-01-01

    Domains are the building blocks of proteins and play a crucial role in protein–protein interactions. Here, we propose a new approach for the analysis and prediction of domain–domain interfaces. Our method, which relies on the representation of domains as residue-interacting networks, finds an optimal decomposition of domain structures into modules. The resulting modules comprise highly cooperative residues, which exhibit few connections with other modules. We found that non-overlapping binding sites in a domain, involved in different domain–domain interactions, are generally contained in different modules. This observation indicates that our modular decomposition is able to separate protein domains into regions with specialized functions. Our results show that modules with high modularity values identify binding site regions, demonstrating the predictive character of modularity. Furthermore, the combination of modularity with other characteristics, such as sequence conservation or surface patches, was found to improve our predictions. In an attempt to give a physical interpretation to the modular architecture of domains, we analyzed in detail six examples of protein domains with available experimental binding data. The modular configuration of the TEM1-β-lactamase binding site illustrates the energetic independence of hotspots located in different modules and the cooperativity of those sited within the same modules. The energetic and structural cooperativity between intramodular residues is also clearly shown in the example of the chymotrypsin inhibitor, where non–binding site residues have a synergistic effect on binding. Interestingly, the binding site of the T cell receptor β chain variable domain 2.1 is contained in one module, which includes structurally distant hot regions displaying positive cooperativity. These findings support the idea that modules possess certain functional and energetic independence. A modular organization of binding sites

  10. IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold

    SciTech Connect

    Dixon, Miles J.; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R.; van Aalten, Daan M.F.; Downes, C. Peter; Batty, Ian H.

    2012-10-16

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.

  11. IQGAP proteins reveal an atypical phosphoinositide (aPI) binding domain with a pseudo C2 domain fold.

    PubMed

    Dixon, Miles J; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R; van Aalten, Daan M F; Downes, C Peter; Batty, Ian H

    2012-06-29

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)). The binding affinity for PtdInsP(3), together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP(3) effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.

  12. IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold*

    PubMed Central

    Dixon, Miles J.; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R.; van Aalten, Daan M. F.; Downes, C. Peter; Batty, Ian H.

    2012-01-01

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105–107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules. PMID:22493426

  13. Phosphorylation-regulated Binding of RNA Polymerase II to Fibrous Polymers of Low Complexity Domains

    PubMed Central

    Xiang, Siheng; Wu, Leeju; Theodoropoulos, Pano; Mirzaei, Hamid; Han, Tina; Xie, Shanhai; Corden, Jeffry L.; McKnight, Steven L.

    2014-01-01

    SUMMARY The low complexity (LC) domains of the products of the fused in sarcoma (FUS), Ewings sarcoma (EWS) and TAF15 genes are translocated onto a variety of different DNA-binding domains and thereby assist in driving the formation of cancerous cells. In the context of the translocated fusion proteins, these LC sequences function as transcriptional activation domains. Here we show that polymeric fibers formed from these LC domains directly bind the C-terminal domain (CTD) of RNA polymerase II in a manner reversible by phosphorylation of the iterated, heptad repeats of the CTD. Mutational analysis indicates that the degree of binding between the CTD and the LC domain polymers correlates with the strength of transcriptional activation. These studies offer a simple means of conceptualizing how RNA polymerase II is recruited to active genes in its unphosphorylated state, and released for elongation following phosphorylation of the CTD. PMID:24267890

  14. Trimerization of the HIV Transmembrane Domain in Lipid Bilayers Modulates Broadly Neutralizing Antibody Binding.

    PubMed

    Reichart, Timothy M; Baksh, Michael M; Rhee, Jin-Kyu; Fiedler, Jason D; Sligar, Stephen G; Finn, M G; Zwick, Michael B; Dawson, Philip E

    2016-02-18

    The membrane-proximal external region (MPER) of HIV gp41 is an established target of antibodies that neutralize a broad range of HIV isolates. To evaluate the role of the transmembrane (TM) domain, synthetic MPER-derived peptides were incorporated into lipid nanoparticles using natural and designed TM domains, and antibody affinity was measured using immobilized and solution-based techniques. Peptides incorporating the native HIV TM domain exhibit significantly stronger interactions with neutralizing antibodies than peptides with a monomeric TM domain. Furthermore, a peptide with a trimeric, three-helix bundle TM domain recapitulates the binding profile of the native sequence. These studies suggest that neutralizing antibodies can bind the MPER when the TM domain is a three-helix bundle and this presentation could influence the binding of neutralizing antibodies to the virus. Lipid-bilayer presentation of viral antigens in Nanodiscs is a new platform for evaluating neutralizing antibodies.

  15. The Binding of Syndapin SH3 Domain to Dynamin Proline-rich Domain Involves Short and Long Distance Elements.

    PubMed

    Luo, Lin; Xue, Jing; Kwan, Ann; Gamsjaeger, Roland; Wielens, Jerome; von Kleist, Lisa; Cubeddu, Liza; Guo, Zhong; Stow, Jennifer L; Parker, Michael W; Mackay, Joel P; Robinson, Phillip J

    2016-04-29

    Dynamin is a GTPase that mediates vesicle fission during synaptic vesicle endocytosis. Its long C-terminal proline-rich domain contains 13 PXXP motifs, which orchestrate its interactions with multiple proteins. The SH3 domains of syndapin and endophilin bind the PXXP motifs called Site 2 and 3 (Pro-786-Pro-793) at the N-terminal end of the proline-rich domain, whereas the amphiphysin SH3 binds Site 9 (Pro-833-Pro-836) toward the C-terminal end. In some proteins, SH3/peptide interactions also involve short distance elements, which are 5-15 amino acid extensions flanking the central PXXP motif for high affinity binding. Here we found two previously unrecognized elements in the central and the C-terminal end of the dynamin proline-rich domain that account for a significant increase in syndapin binding affinity compared with a previously reported Site 2 and Site 3 PXXP peptide alone. The first new element (Gly-807-Gly-811) is short distance element on the C-terminal side of Site 2 PXXP, which might contact a groove identified under the RT loop of the SH3 domain. The second element (Arg-838-Pro-844) is located about 50 amino acids downstream of Site 2. These two elements provide additional specificity to the syndapin SH3 domain outside of the well described polyproline-binding groove. Thus, the dynamin/syndapin interaction is mediated via a network of multiple contacts outside the core PXXP motif over a previously unrecognized extended region of the proline-rich domain. To our knowledge this is the first example among known SH3 interactions to involve spatially separated and extended long-range elements that combine to provide a higher affinity interaction.

  16. Further characterization of functional domains of PerA, role of amino and carboxy terminal domains in DNA binding.

    PubMed

    Ibarra, J Antonio; García-Zacarias, Claudia M; Lara-Ochoa, Cristina; Carabarin-Lima, Alejandro; Tecpanecatl-Xihuitl, J Sergio; Perez-Rueda, Ernesto; Martínez-Laguna, Ygnacio; Puente, José L

    2013-01-01

    PerA is a key regulator of virulence genes in enteropathogenic E. coli. PerA is a member of the AraC/XylS family of transcriptional regulators that directly regulates the expression of the bfp and per operons in response to different environmental cues. Here, we characterized mutants in both the amino (NTD) and carboxy (CTD) terminal domains of PerA that affect its ability to activate the expression of the bfp and per promoters. Mutants at residues predicted to be important for DNA binding within the CTD had a significant defect in their ability to bind to the regulatory regions of the bfp and per operons and, consequently, in transcriptional activation. Notably, mutants in specific NTD residues were also impaired to bind to DNA suggesting that this domain is involved in structuring the protein for correct DNA recognition. Mutations in residues E116 and D168, located in the vicinity of the putative linker region, significantly affected the activation of the perA promoter, without affecting PerA binding to the per or bfp regulatory sequences. Overall these results provide additional evidence of the importance of the N-terminal domain in PerA activity and suggest that the activation of these promoters involves differential interactions with the transcriptional machinery. This study further contributes to the characterization of the functional domains of PerA by identifying critical residues involved in DNA binding, differential promoter activation and, potentially, in the possible response to environmental cues.

  17. A Novel Protein Domain Induces High Affinity Selenocysteine Insertion Sequence Binding and Elongation Factor Recruitment*

    PubMed Central

    Donovan, Jesse; Caban, Kelvin; Ranaweera, Ruchira; Gonzalez-Flores, Jonathan N.; Copeland, Paul R.

    2008-01-01

    Selenocysteine (Sec) is incorporated at UGA codons in mRNAs possessing a Sec insertion sequence (SECIS) element in their 3′-untranslated region. At least three additional factors are necessary for Sec incorporation: SECIS-binding protein 2 (SBP2), Sec-tRNASec, and a Sec-specific translation elongation factor (eEFSec). The C-terminal half of SBP2 is sufficient to promote Sec incorporation in vitro, which is carried out by the concerted action of a novel Sec incorporation domain and an L7Ae RNA-binding domain. Using alanine scanning mutagenesis, we show that two distinct regions of the Sec incorporation domain are required for Sec incorporation. Physical separation of the Sec incorporation and RNA-binding domains revealed that they are able to function in trans and established a novel role of the Sec incorporation domain in promoting SECIS and eEFSec binding to the SBP2 RNA-binding domain. We propose a model in which SECIS binding induces a conformational change in SBP2 that recruits eEFSec, which in concert with the Sec incorporation domain gains access to the ribosomal A site. PMID:18948268

  18. Structural and functional analysis of the YAP-binding domain of human TEAD2

    PubMed Central

    Tian, Wei; Yu, Jianzhong; Tomchick, Diana R.; Pan, Duojia; Luo, Xuelian

    2010-01-01

    The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like β-sandwich fold with two extra helix-turn-helix inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP. PMID:20368466

  19. Structural and functional analysis of the YAP-binding domain of human TEAD2.

    PubMed

    Tian, Wei; Yu, Jianzhong; Tomchick, Diana R; Pan, Duojia; Luo, Xuelian

    2010-04-20

    The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like beta-sandwich fold with two extra helix-turn-helix inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.

  20. Membrane-binding properties of the Factor VIII C2 domain

    PubMed Central

    Novakovic, Valerie A.; Cullinan, David B.; Wakabayashi, Hironao; Fay, Philip J.; Baleja, James D.; Gilbert, Gary E.

    2013-01-01

    Factor VIII functions as a cofactor for Factor IXa in a membrane-bound enzyme complex. Membrane binding accelerates the activity of the Factor VIIIa–Factor IXa complex approx. 100000-fold, and the major phospholipid-binding motif of Factor VIII is thought to be on the C2 domain. In the present study, we prepared an fVIII-C2 (Factor VIII C2 domain) construct from Escherichia coli, and confirmed its structural integrity through binding of three distinct monoclonal antibodies. Solution-phase assays, performed with flow cytometry and FRET (fluorescence resonance energy transfer), revealed that fVIII-C2 membrane affinity was approx. 40-fold lower than intact Factor VIII. In contrast with the similarly structured C2 domain of lactadherin, fVIII-C2 membrane binding was inhibited by physiological NaCl. fVIII-C2 binding was also not specific for phosphatidylserine over other negatively charged phospholipids, whereas a Factor VIII construct lacking the C2 domain retained phosphatidyl-L-serine specificity. fVIII-C2 slightly enhanced the cleavage of Factor X by Factor IXa, but did not compete with Factor VIII for membrane-binding sites or inhibit the Factor Xase complex. Our results indicate that the C2 domain in isolation does not recapitulate the characteristic membrane binding of Factor VIII, emphasizing that its role is cooperative with other domains of the intact Factor VIII molecule. PMID:21210768

  1. Structural analysis of Ca(2+)-binding pocket of synaptotagmin 5 C2A domain.

    PubMed

    Qiu, Xiaoting; Ge, Junyi; Gao, Yongxiang; Teng, Maikun; Niu, Liwen

    2017-02-01

    Synaptotagmins constitute a family of multifunctional integral membrane proteins found predominantly on vesicles in neural and endocrine tissues. 17 isoforms of synaptotagmin family in mammals have been identified, 7 isoforms among them are known to be able to bind Ca(2+) via their C2 domains. This study presents the crystal structure of the first C2 domain (C2A domain) of synaptotagmin 5 complexed with Ca(2+) at 1.90Å resolution. Comparison of the Ca(2+)-binding pocket of synaptotagmin 5 C2A domain with other synaptotagmin C2 domains demonstrated that a serine residue locating at Ca(2+)-binding loop probably responsible to the conformational variation of Ca(2+)-binding pocket, and thus impacts the Ca(2+)-binding mechanism of C2 domain, which is verified by structural analysis of the serine mutant and Ca(2+)-binding assays via isothermal titration calorimetry. Alteration of Ca(2+)-binding mechanism might be correlated with different Ca(2+) response rates of synaptotagmins, which is the basis of the functions of synaptotagmins in regulating various types of Ca(2+)-triggered vesicle-membrane fusion processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response.

    PubMed

    Reinhardt, H Christian; Yaffe, Michael B

    2013-09-01

    Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.

  3. Alpha-amylase inhibitors selected from a combinatorial library of a cellulose binding domain scaffold.

    PubMed

    Lehtiö, J; Teeri, T T; Nygren, P A

    2000-11-15

    A disulfide bridge-constrained cellulose binding domain (CBD(WT)) derived from the cellobiohydrolase Cel7A from Trichoderma reesei has been investigated for use in scaffold engineering to obtain novel binding proteins. The gene encoding the wild-type 36 aa CBD(WT) domain was first inserted into a phagemid vector and shown to be functionally displayed on M13 filamentous phage as a protein III fusion protein with retained cellulose binding activity. A combinatorial library comprising 46 million variants of the CBD domain was constructed through randomization of 11 positions located at the domain surface and distributed over three separate beta-sheets of the domain. Using the enzyme porcine alpha-amylase (PPA) as target in biopannings, two CBD variants showing selective binding to the enzyme were characterized. Reduction and iodoacetamide blocking of cysteine residues in selected CBD variants resulted in a loss of binding activity, indicating a conformation dependent binding. Interestingly, further studies showed that the selected CBD variants were capable of competing with the binding of the amylase inhibitor acarbose to the enzyme. In addition, the enzyme activity could be partially inhibited by addition of soluble protein, suggesting that the selected CBD variants bind to the active site of the enzyme.

  4. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    PubMed

    Chia, Wei Sheng; Chia, Diana Xueqi; Rao, Feng; Bar Nun, Shoshana; Geifman Shochat, Susana

    2012-01-01

    p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  5. Simulation of the coupling between nucleotide binding and transmembrane domains in the ATP binding cassette transporter BtuCD.

    PubMed

    Sonne, Jacob; Kandt, Christian; Peters, Günther H; Hansen, Flemming Y; Jensen, Morten Ø; Tieleman, D Peter

    2007-04-15

    The nucleotide-induced structural rearrangements in ATP binding cassette (ABC) transporters, leading to substrate translocation, are largely unknown. We have modeled nucleotide binding and release in the vitamin B(12) importer BtuCD using perturbed elastic network calculations and biased molecular dynamics simulations. Both models predict that nucleotide release decreases the tilt between the two transmembrane domains and opens the cytoplasmic gate. Nucleotide binding has the opposite effect. The observed coupling may be relevant for all ABC transporters because of the conservation of nucleotide binding domains and the shared role of ATP in ABC transporters. The rearrangements in the cytoplasmic gate region do not provide enough space for B(12) to diffuse from the transporter pore into the cytoplasm, which could suggest that peristaltic forces are needed to exclude B(12) from the transporter pore.

  6. Defining a minimal estrogen receptor DNA binding domain.

    PubMed Central

    Mader, S; Chambon, P; White, J H

    1993-01-01

    The estrogen receptor (ER) is a transcriptional regulator which binds to cognate palindromic DNA sequences known as estrogen response elements (EREs). A 66 amino acid core region which contains two zinc fingers and is highly conserved among the nuclear receptors is essential for site specific DNA recognition. However, it remains unclear how many flanking amino acids in addition to the zinc finger core are required for DNA binding. Here, we have characterized the minimal DNA binding region of the human ER by analysing the DNA binding properties of a series of deletion mutants expressed in bacteria. We find that the 66 amino acid zinc finger core of the DBD fails to bind DNA, and that the C-terminal end of the minimal ER DBD required for binding to perfectly palindromic EREs corresponds to the limit of 100% amino acid homology between the chicken and human receptors, which represents the boundary between regions C and D in the ER. Moreover, amino acids of region D up to 30 residues C-terminal to the zinc fingers greatly stabilize DNA binding by the DBD to perfectly palindromic EREs and are absolutely required for formation of gel retardation complexes by the DBD on certain physiological imperfectly palindromic EREs. These results indicate that in addition to the zinc finger core, amino acids C-terminal to the core in regions C and D play a key role in DNA binding by the ER, particularly to imperfectly palindromic response elements. The ER DBD expressed in E. coli binds as a dimer to ERE palindromes in a highly cooperative manner and forms only low levels of monomeric protein-DNA complexes on either palindromic or half-palindromic response elements. Conversion of ER amino acids 222 to 226, which lie within region C, to the corresponding residues of the human RAR alpha abolishes formation of dimeric protein-DNA complexes. Conversely, replacement of the same region of RAR alpha with ER residues 222 to 226 creates a derivative that, unlike the RAR alpha DBD, binds

  7. Solution structure of the Big domain from Streptococcus pneumoniae reveals a novel Ca2+-binding module

    PubMed Central

    Wang, Tao; Zhang, Jiahai; Zhang, Xuecheng; Xu, Chao; Tu, Xiaoming

    2013-01-01

    Streptococcus pneumoniae is a pathogen causing acute respiratory infection, otitis media and some other severe diseases in human. In this study, the solution structure of a bacterial immunoglobulin-like (Big) domain from a putative S. pneumoniae surface protein SP0498 was determined by NMR spectroscopy. SP0498 Big domain adopts an eight-β-strand barrel-like fold, which is different in some aspects from the two-sheet sandwich-like fold of the canonical Ig-like domains. Intriguingly, we identified that the SP0498 Big domain was a Ca2+ binding domain. The structure of the Big domain is different from those of the well known Ca2+ binding domains, therefore revealing a novel Ca2+-binding module. Furthermore, we identified the critical residues responsible for the binding to Ca2+. We are the first to report the interactions between the Big domain and Ca2+ in terms of structure, suggesting an important role of the Big domain in many essential calcium-dependent cellular processes such as pathogenesis. PMID:23326635

  8. A novel ligand-binding domain involved in regulation of amino acid metabolism in prokaryotes.

    PubMed

    Ettema, Thijs J G; Brinkman, Arie B; Tani, Travis H; Rafferty, John B; Van Der Oost, John

    2002-10-04

    A combination of sequence profile searching and structural protein analysis has revealed a novel type of small molecule binding domain that is involved in the allosteric regulation of prokaryotic amino acid metabolism. This domain, designated RAM, has been found to be fused to the DNA-binding domain of Lrp-like transcription regulators and to the catalytic domain of some metabolic enzymes, and has been found as a stand-alone module. Structural analysis of the RAM domain of Lrp reveals a betaalphabetabetaalphabeta-fold that is strikingly similar to that of the recently described ACT domain, a ubiquitous allosteric regulatory domain of many metabolic enzymes. However, structural alignment and re-evaluation of previous mutagenesis data suggest that the effector-binding sites of both modules are significantly different. By assuming that the RAM and ACT domains originated from a common ancestor, these observations suggest that their ligand-binding sites have evolved independently. Both domains appear to play analogous roles in controlling key steps in amino acid metabolism at the level of gene expression as well as enzyme activity.

  9. Crystallization and preliminary X-ray diffraction of the ZO-binding domain of human occludin

    SciTech Connect

    Peng, Bi-Hung; White, Mark A.; Campbell, Gerald A.; Robert, Jebamony J.; Lee, J. Ching; Sutton, Roger B.

    2005-04-01

    Crystallization and preliminary X-ray diffraction of the ZO-binding domain of human occludin. Occludin is a tight-junction protein controlling the integrity of endothelial and epithelial cell layers. It forms complexes with the cytoplasmic proteins ZO-1, ZO-2 and ZO-3. The ZO-binding domain in the C-terminal cytoplasmic region of human occludin has previously been isolated and identified. This domain, as expressed in a bacterial system or isolated from native cellular occludin, maintains its ability to bind ZO-1 and ZO-2. The crystallization conditions of the human ZO-binding domain are reported here. The crystals diffract to 2.3 Å resolution and were shown to belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 33.3, b = 35.4, c = 107.3 Å.

  10. Methyl-CpG-binding domain proteins: readers of the epigenome.

    PubMed

    Du, Qian; Luu, Phuc-Loi; Stirzaker, Clare; Clark, Susan J

    2015-01-01

    How DNA methylation is interpreted and influences genome regulation remains largely unknown. Proteins of the methyl-CpG-binding domain (MBD) family are primary candidates for the readout of DNA methylation as they recruit chromatin remodelers, histone deacetylases and methylases to methylated DNA associated with gene repression. MBD protein binding requires both functional MBD domains and methyl-CpGs; however, some MBD proteins also bind unmethylated DNA and active regulatory regions via alternative regulatory domains or interaction with the nucleosome remodeling deacetylase (NuRD/Mi-2) complex members. Mutations within MBD domains occur in many diseases, including neurological disorders and cancers, leading to loss of MBD binding specificity to methylated sites and gene deregulation. Here, we summarize the current state of knowledge about MBD proteins and their role as readers of the epigenome.

  11. Characterization of substrate binding of the WW domains in human WWP2 protein.

    PubMed

    Jiang, Jiahong; Wang, Nan; Jiang, Yafei; Tan, Hongwei; Zheng, Jimin; Chen, Guangju; Jia, Zongchao

    2015-07-08

    WW domains harbor substrates containing proline-rich motifs, but the substrate specificity and binding mechanism remain elusive for those WW domains less amenable for structural studies, such as human WWP2 (hWWP2). Herein we have employed multiple techniques to investigate the second WW domain (WW2) in hWWP2. Our results show that hWWP2 is a specialized E3 for PPxY motif-containing substrates only and does not recognize other amino acids and phospho-residues. The strongest binding affinity of WW2, and the incompatibility between each WW domain, imply a novel relationship, and our SPR experiment reveals a dynamic binding mode in Class-I WW domains for the first time. The results from alanine-scanning mutagenesis and modeling further point to functionally conserved residues in WW2.

  12. Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation.

    PubMed

    Valton, Julien; Dupuy, Aurélie; Daboussi, Fayza; Thomas, Séverine; Maréchal, Alan; Macmaster, Rachel; Melliand, Kevin; Juillerat, Alexandre; Duchateau, Philippe

    2012-11-09

    Within the past 2 years, transcription activator-like effector (TALE) DNA binding domains have emerged as the new generation of engineerable platform for production of custom DNA binding domains. However, their recently described sensitivity to cytosine methylation represents a major bottleneck for genome engineering applications. Using a combination of biochemical, structural, and cellular approaches, we were able to identify the molecular basis of such sensitivity and propose a simple, drug-free, and universal method to overcome it.

  13. SH3b Cell wall binding domains can enhance anti-staphylococcal activity of endolysin lytic domains.

    USDA-ARS?s Scientific Manuscript database

    Bacteriophage endolysins are peptidoglycan hydrolases and a potential new source of antimicrobials. A large subset of these proteins contain a C-terminal SH3b_5 cell wall binding domain that has been shown [for some] to be essential for accurate cell wall recognition and subsequent staphylolytic ac...

  14. Fungal Hybrid B heme peroxidases - unique fusions of a heme peroxidase domain with a carbohydrate-binding domain.

    PubMed

    Zámocký, Marcel; Janeček, Štefan; Obinger, Christian

    2017-08-24

    Heme peroxidases, essential peroxide converting oxidoreductases are divided into four independently evolved superfamilies. Within the largest one - the peroxidase-catalase superfamily - two hybrid lineages were described recently. Whereas Hybrid A heme peroxidases represent intermediate enzymes between ascorbate peroxidases and cytochrome c peroxidases, Hybrid B heme peroxidases are unique fusion proteins comprised of a conserved N-terminal heme peroxidase domain and a C-terminal domain of various sugar binding motifs. So far these peculiar peroxidases are only found in the kingdom of Fungi. Here we present a phylogenetic reconstruction of the whole superfamily with focus on Hybrid B peroxidases. We analyse the domain assembly and putative structure and function of the newly discovered oligosaccharide binding domains. Two distinct carbohydrate binding modules (CBM21 and CBM34) are shown to occur in phytopathogenic ascomycetous orthologs of Hybrid B heme peroxidases only. Based on multiple sequence alignment and homology modeling the structure-function relationships are discussed with respect to physiological function. A concerted action of peroxide cleavage with specific cell-wall carbohydrate binding can support phytopathogens survival within the plant host.

  15. A monoclonal antibody inhibits gelatinase B/MMP-9 by selective binding to part of the catalytic domain and not to the fibronectin or zinc binding domains.

    PubMed

    Martens, Erik; Leyssen, An; Van Aelst, Ilse; Fiten, Pierre; Piccard, Helene; Hu, Jialiang; Descamps, Francis J; Van den Steen, Philippe E; Proost, Paul; Van Damme, Jo; Liuzzi, Grazia Maria; Riccio, Paolo; Polverini, Eugenia; Opdenakker, Ghislain

    2007-02-01

    Gelatinase B/matrix metalloproteinase-9 (MMP-9) is a multidomain enzyme functioning in acute and chronic inflammatory and neoplastic diseases. It belongs to a family of more than 20 related zinc proteinases. Therefore, the discovery and the definition of the action mechanism of selective MMP inhibitors form the basis for future therapeutics. The monoclonal antibody REGA-3G12 is a most selective inhibitor of human gelatinase B. REGA-3G12 was found to recognize the aminoterminal part and not the carboxyterminal O-glycosylated and hemopexin protein domains. A variant of gelatinase B, lacking the two carboxyterminal domains, was expressed in insect cells and fragmented with purified proteinases. The fragments were probed by one- and two-dimensional Western blot and immunoprecipitation experiments with REGA-3G12 to map the interactions between the antibody and the enzyme. The interaction unit was identified by Edman degradation analysis as the glycosylated segment from Trp(116) to Lys(214) of gelatinase B. The sequence of this segment was analysed by hydrophobicity/hydrophilicity, accessibility and flexibility profiling. Four hydrophilic peptides were chemically synthesized and used in binding and competition assays. The peptide Gly(171)-Leu(187) in molar excess inhibited partially the binding of MMP-9 to REGA-3G12 and thus refines the structure of the conformational binding site. These results define part of the catalytic domain of gelatinase B/MMP-9, and not the zinc-binding or fibronectin domains, as target for the development of selective inhibitors.

  16. Structure of the nucleotide-binding domain of a dipeptide ABC transporter reveals a novel iron-sulfur cluster-binding domain.

    PubMed

    Li, Xiaolu; Zhuo, Wei; Yu, Jie; Ge, Jingpeng; Gu, Jinke; Feng, Yue; Yang, Maojun; Wang, Linfang; Wang, Na

    2013-02-01

    Dipeptide permease (Dpp), which belongs to an ABC transport system, imports peptides consisting of two or three L-amino acids from the matrix to the cytoplasm in microbes. Previous studies have indicated that haem competes with dipeptides to bind DppA in vitro and in vivo and that the Dpp system can also translocate haem. Here, the crystal structure of DppD, the nucleotide-binding domain (NBD) of the ABC-type dipeptide/oligopeptide/nickel-transport system from Thermoanaerobacter tengcongensis, bound with ATP, Mg(2+) and a [4Fe-4S] iron-sulfur cluster is reported. The N-terminal domain of DppD shares a similar structural fold with the NBDs of other ABC transporters. Interestingly, the C-terminal domain of DppD contains a [4Fe-4S] cluster. The UV-visible absorbance spectrum of DppD was consistent with the presence of a [4Fe-4S] cluster. A search with DALI revealed that the [4Fe-4S] cluster-binding domain is a novel structural fold. Structural analysis and comparisons with other ABC transporters revealed that this iron-sulfur cluster may act as a mediator in substrate (dipeptide or haem) binding by electron transfer and may regulate the transport process in Dpp ABC transport systems. The crystal structure provides a basis for understanding the properties of ABC transporters and will be helpful in investigating the functions of NBDs in the regulation of ABC transporter activity.

  17. Staphylococcus aureus protein A activates TNFR1 signaling through conserved IgG binding domains.

    PubMed

    Gómez, Marisa I; O'Seaghdha, Maghnus; Magargee, Mariah; Foster, Timothy J; Prince, Alice S

    2006-07-21

    Staphylococcus aureus continues to be a major cause of infection in normal as well as immunocompromised hosts, and the increasing prevalence of highly virulent community-acquired methicillin-resistant strains is a public health concern. A highly expressed surface component of S. aureus, protein A (SpA), contributes to its success as a pathogen by both activating inflammation and by interfering with immune clearance. SpA is known to bind to IgG Fc, which impedes phagocytosis. SpA is also a potent activator of tumor necrosis factor alpha (TNF-alpha) receptor 1 (TNFR1) signaling, inducing both chemokine expression and TNF-converting enzyme-dependent soluble TNFR1 (sTNFR1) shedding, which has anti-inflammatory consequences, particularly in the lung. Using a collection of glutathione S-transferase fusions to the intact IgG binding region of SpA and to each of the individual binding domains, we found that the SpA IgG binding domains also mediate binding to human airway cells. TNFR1-dependent CXCL8 production could be elicited by any one of the individual SpA IgG binding domains as efficiently as by either the entire SpA or the intact IgG binding region. SpA induction of sTNFR1 shedding required the entire IgG binding region and tolerated fewer substitutions in residues known to interact with IgG. Each of the repeated domains of the IgG binding domain can affect multiple immune responses independently, activating inflammation through TNFR1 and thwarting opsonization by trapping IgG Fc domains, while the intact IgG binding region can limit further signaling through sTNFR1 shedding.

  18. Evaluation of Selected Binding Domains for the Analysis of Ubiquitinated Proteomes

    NASA Astrophysics Data System (ADS)

    Nakayasu, Ernesto S.; Ansong, Charles; Brown, Joseph N.; Yang, Feng; Lopez-Ferrer, Daniel; Qian, Wei-Jun; Smith, Richard D.; Adkins, Joshua N.

    2013-08-01

    Ubiquitination is an abundant post-translational modification that consists of covalent attachment of ubiquitin to lysine residues or the N-terminus of proteins. Mono- and polyubiquitination have been shown to be involved in many critical eukaryotic cellular functions and are often disrupted by intracellular bacterial pathogens. Affinity enrichment of ubiquitinated proteins enables global analysis of this key modification. In this context, the use of ubiquitin-binding domains is a promising but relatively unexplored alternative to more broadly used immunoaffinity or tagged affinity enrichment methods. In this study, we evaluated the application of eight ubiquitin-binding domains that have differing affinities for ubiquitination states. Small-scale proteomics analysis identified ~200 ubiquitinated protein candidates per ubiquitin-binding domain pull-down experiment. Results from subsequent Western blot analyses that employed anti-ubiquitin or monoclonal antibodies against polyubiquitination at lysine 48 and 63 suggest that ubiquitin-binding domains from Dsk2 and ubiquilin-1 have the broadest specificity in that they captured most types of ubiquitination, whereas the binding domain from NBR1 was more selective to polyubiquitination. These data demonstrate that with optimized purification conditions, ubiquitin-binding domains can be an alternative tool for proteomic applications. This approach is especially promising for the analysis of tissues or cells resistant to transfection, of which the overexpression of tagged ubiquitin is a major hurdle.

  19. Ligand binding PAS domains in a genomic, cellular, and structural context

    PubMed Central

    Henry, Jonathan T.; Crosson, Sean

    2012-01-01

    Per-Arnt-Sim (PAS) domains occur in proteins from all kingdoms of life. In the bacterial kingdom, PAS domains are commonly positioned at the amino terminus of signaling proteins such as sensor histidine kinases, cyclic-di-GMP synthases/hydrolases, and methyl-accepting chemotaxis proteins. Although these domains are highly divergent at the primary sequence level, the structures of dozens of PAS domains across a broad section of sequence space have been solved, revealing a conserved three-dimensional architecture. An all-versus-all alignment of 63 PAS structures demonstrates that the PAS domain family forms structural clades on the basis of two principal variables: (a) topological location inside or outside the plasma membrane and (b) the class of small molecule that they bind. The binding of a chemically diverse range of small-molecule metabolites is a hallmark of the PAS domain family. PAS ligand binding either functions as a primary cue to initiate a cellular signaling response or provides the domain with the capacity to respond to secondary physical or chemical signals such as gas molecules, redox potential, or photons. This review synthesizes the current state of knowledge of the structural foundations and evolution of ligand recognition and binding by PAS domains. PMID:21663441

  20. Ligand-binding PAS domains in a genomic, cellular, and structural context.

    PubMed

    Henry, Jonathan T; Crosson, Sean

    2011-01-01

    Per-Arnt-Sim (PAS) domains occur in proteins from all kingdoms of life. In the bacterial kingdom, PAS domains are commonly positioned at the amino terminus of signaling proteins such as sensor histidine kinases, cyclic-di-GMP synthases/hydrolases, and methyl-accepting chemotaxis proteins. Although these domains are highly divergent at the primary sequence level, the structures of dozens of PAS domains across a broad section of sequence space have been solved, revealing a conserved three-dimensional architecture. An all-versus-all alignment of 63 PAS structures demonstrates that the PAS domain family forms structural clades on the basis of two principal variables: (a) topological location inside or outside the plasma membrane and (b) the class of small molecule that they bind. The binding of a chemically diverse range of small-molecule metabolites is a hallmark of the PAS domain family. PAS ligand binding either functions as a primary cue to initiate a cellular signaling response or provides the domain with the capacity to respond to secondary physical or chemical signals such as gas molecules, redox potential, or photons. This review synthesizes the current state of knowledge of the structural foundations and evolution of ligand recognition and binding by PAS domains.

  1. Circular permutation of the starch-binding domain: inversion of ligand selectivity with increased affinity.

    PubMed

    Stephen, Preyesh; Tseng, Kai-Li; Liu, Yu-Nan; Lyu, Ping-Chiang

    2012-03-07

    Proteins containing starch-binding domains (SBDs) are used in a variety of scientific and technological applications. A circularly permutated SBD (CP90) with improved affinity and selectivity toward longer-chain carbohydrates was synthesized, suggesting that a new starch-binding protein may be developed for specific scientific and industrial applications.

  2. A small cellulose binding domain protein (CBD1) is highly variable in the nonbinding amino terminus

    USDA-ARS?s Scientific Manuscript database

    The small cellulose binding domain protein CBD1 is tightly bound to the cellulosic cell wall of the plant pathogenic stramenophile Phytophthora infestans. Transgene expression of the protein in plants has also demonstrated binding to plant cell walls. A study was undertaken using 47 isolates of P. ...

  3. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-09

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  4. Cooperative binding of LysM domains determines the carbohydrate affinity of a bacterial endopeptidase protein.

    PubMed

    Wong, Jaslyn E M M; Alsarraf, Husam M A B; Kaspersen, Jørn Døvling; Pedersen, Jan Skov; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    2014-02-01

    Cellulose, chitin and peptidoglycan are major long-chain carbohydrates in living organisms, and constitute a substantial fraction of the biomass. Characterization of the biochemical basis of dynamic changes and degradation of these β,1-4-linked carbohydrates is therefore important for both functional studies of biological polymers and biotechnology. Here, we investigated the functional role of multiplicity of the carbohydrate-binding lysin motif (LysM) domain that is found in proteins involved in bacterial peptidoglycan synthesis and remodelling. The Bacillus subtilis peptidoglycan-hydrolysing NlpC/P60 D,L-endopeptidase, cell wall-lytic enzyme associated with cell separation, possesses four LysM domains. The contribution of each LysM domain was determined by direct carbohydrate-binding studies in aqueous solution with microscale thermophoresis. We found that bacterial LysM domains have affinity for N-acetylglucosamine (GlcNac) polymers in the lower-micromolar range. Moreover, we demonstrated that a single LysM domain is able to bind carbohydrate ligands, and that LysM domains act additively to increase the binding affinity. Our study reveals that affinity for GlcNAc polymers correlates with the chain length of the carbohydrate, and suggests that binding of long carbohydrates is mediated by LysM domain cooperativity. We also show that bacterial LysM domains, in contrast to plant LysM domains, do not discriminate between GlcNAc polymers, and recognize both peptidoglycan fragments and chitin polymers with similar affinity. Finally, an Ala replacement study suggested that the carbohydrate-binding site in LysM-containing proteins is conserved across phyla. © 2013 FEBS.

  5. Calcium binding to calmodulin mutants monitored by domain-specific intrinsic phenylalanine and tyrosine fluorescence.

    PubMed

    VanScyoc, Wendy S; Sorensen, Brenda R; Rusinova, Elena; Laws, William R; Ross, J B Alexander; Shea, Madeline A

    2002-11-01

    Cooperative calcium binding to the two homologous domains of calmodulin (CaM) induces conformational changes that regulate its association with and activation of numerous cellular target proteins. Calcium binding to the pair of high-affinity sites (III and IV in the C-domain) can be monitored by observing calcium-dependent changes in intrinsic tyrosine fluorescence intensity (lambda(ex)/lambda(em) of 277/320 nm). However, calcium binding to the low-affinity sites (I and II in the N-domain) is more difficult to measure with optical spectroscopy because that domain of CaM does not contain tryptophan or tyrosine. We recently demonstrated that calcium-dependent changes in intrinsic phenylalanine fluorescence (lambda(ex)/lambda(em) of 250/280 nm) of an N-domain fragment of CaM reflect occupancy of sites I and II (VanScyoc, W. S., and M. A. Shea, 2001, Protein Sci. 10:1758-1768). Using steady-state and time-resolved fluorescence methods, we now show that these excitation and emission wavelength pairs for phenylalanine and tyrosine fluorescence can be used to monitor equilibrium calcium titrations of the individual domains in full-length CaM. Calcium-dependent changes in phenylalanine fluorescence specifically indicate ion occupancy of sites I and II in the N-domain because phenylalanine residues in the C-domain are nonemissive. Tyrosine emission from the C-domain does not interfere with phenylalanine fluorescence signals from the N-domain. This is the first demonstration that intrinsic fluorescence may be used to monitor calcium binding to each domain of CaM. In this way, we also evaluated how mutations of two residues (Arg74 and Arg90) located between sites II and III can alter the calcium-binding properties of each of the domains. The mutation R74A caused an increase in the calcium affinity of sites I and II in the N-domain. The mutation R90A caused an increase in calcium affinity of sites III and IV in the C-domain whereas R90G caused an increase in calcium affinity

  6. Zinc-binding Domain of the Bacteriophage T7 DNA Primase Modulates Binding to the DNA Template*

    PubMed Central

    Lee, Seung-Joo; Zhu, Bin; Akabayov, Barak; Richardson, Charles C.

    2012-01-01

    The zinc-binding domain (ZBD) of prokaryotic DNA primases has been postulated to be crucial for recognition of specific sequences in the single-stranded DNA template. To determine the molecular basis for this role in recognition, we carried out homolog-scanning mutagenesis of the zinc-binding domain of DNA primase of bacteriophage T7 using a bacterial homolog from Geobacillus stearothermophilus. The ability of T7 DNA primase to catalyze template-directed oligoribonucleotide synthesis is eliminated by substitution of any five-amino acid residue-long segment within the ZBD. The most significant defect occurs upon substitution of a region (Pro-16 to Cys-20) spanning two cysteines that coordinate the zinc ion. The role of this region in primase function was further investigated by generating a protein library composed of multiple amino acid substitutions for Pro-16, Asp-18, and Asn-19 followed by genetic screening for functional proteins. Examination of proteins selected from the screening reveals no change in sequence-specific recognition. However, the more positively charged residues in the region facilitate DNA binding, leading to more efficient oligoribonucleotide synthesis on short templates. The results suggest that the zinc-binding mode alone is not responsible for sequence recognition, but rather its interaction with the RNA polymerase domain is critical for DNA binding and for sequence recognition. Consequently, any alteration in the ZBD that disturbs its conformation leads to loss of DNA-dependent oligoribonucleotide synthesis. PMID:23024359

  7. Membrane binding and self-association of the epsin N-terminal homology domain.

    PubMed

    Lai, Chun-Liang; Jao, Christine C; Lyman, Edward; Gallop, Jennifer L; Peter, Brian J; McMahon, Harvey T; Langen, Ralf; Voth, Gregory A

    2012-11-09

    Epsin possesses a conserved epsin N-terminal homology (ENTH) domain that acts as a phosphatidylinositol 4,5-bisphosphate-lipid-targeting and membrane-curvature-generating element. Upon binding phosphatidylinositol 4,5-bisphosphate, the N-terminal helix (H(0)) of the ENTH domain becomes structured and aids in the aggregation of ENTH domains, which results in extensive membrane remodeling. In this article, atomistic and coarse-grained (CG) molecular dynamics (MD) simulations are used to investigate the structure and the stability of ENTH domain aggregates on lipid bilayers. EPR experiments are also reported for systems composed of different ENTH-bound membrane morphologies, including membrane vesicles as well as preformed membrane tubules. The EPR data are used to help develop a molecular model of ENTH domain aggregates on preformed lipid tubules that are then studied by CG MD simulation. The combined computational and experimental approach suggests that ENTH domains exist predominantly as monomers on vesiculated structures, while ENTH domains self-associate into dimeric structures and even higher-order oligomers on the membrane tubes. The results emphasize that the arrangement of ENTH domain aggregates depends strongly on whether the local membrane curvature is isotropic or anisotropic. The molecular mechanism of ENTH-domain-induced membrane vesiculation and tubulation and the implications of the epsin's role in clathrin-mediated endocytosis resulting from the interplay between ENTH domain membrane binding and ENTH domain self-association are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    SciTech Connect

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  9. Artificial zinc finger DNA binding domains: versatile tools for genome engineering and modulation of gene expression.

    PubMed

    Hossain, Mir A; Barrow, Joeva J; Shen, Yong; Haq, Md Imdadul; Bungert, Jörg

    2015-11-01

    Genome editing and alteration of gene expression by synthetic DNA binding activities gained a lot of momentum over the last decade. This is due to the development of new DNA binding molecules with enhanced binding specificity. The most commonly used DNA binding modules are zinc fingers (ZFs), TALE-domains, and the RNA component of the CRISPR/Cas9 system. These binding modules are fused or linked to either nucleases that cut the DNA and induce DNA repair processes, or to protein domains that activate or repress transcription of genes close to the targeted site in the genome. This review focuses on the structure, design, and applications of ZF DNA binding domains (ZFDBDs). ZFDBDs are relatively small and have been shown to penetrate the cell membrane without additional tags suggesting that they could be delivered to cells without a DNA or RNA intermediate. Advanced algorithms that are based on extensive knowledge of the mode of ZF/DNA interactions are used to design the amino acid composition of ZFDBDs so that they bind to unique sites in the genome. Off-target binding has been a concern for all synthetic DNA binding molecules. Thus, increasing the specificity and affinity of ZFDBDs will have a significant impact on their use in analytical or therapeutic settings.

  10. Simultaneous Binding of Two Peptidyl Ligands by a Src Homology 2 Domain

    SciTech Connect

    Zhang, Yanyan; Zhang, Jinjin; Yuan, Chunhua; Hard, Ryan L.; Park, In-Hee; Li, Chenglong; Bell, Charles; Pei, Dehua

    2012-03-15

    Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing phosphotyrosine (pY)-containing sequences of target proteins. In all of the SH2 domain-pY peptide interactions described to date, the SH2 domain binds to a single pY peptide. Here, determination of the cocrystal structure of the N-terminal SH2 domain of phosphatase SHP-2 bound to a class IV peptide (VIpYFVP) revealed a noncanonical 1:2 (protein-peptide) complex. The first peptide binds in a canonical manner with its pY side chain inserted in the usual binding pocket, while the second pairs up with the first to form two antiparallel {beta}-strands that extend the central {beta}-sheet of the SH2 domain. This unprecedented binding mode was confirmed in the solution phase by NMR experiments and shown to be adopted by pY peptides derived from cellular proteins. Site-directed mutagenesis and surface plasmon resonance studies revealed that the binding of the first peptide is pY-dependent, but phosphorylation is not required for the second peptide. Our findings suggest a potential new function for the SH2 domain as a molecular clamp to promote dimerization of signaling proteins.

  11. Flexible DNA binding of the BTB/POZ-domain protein FBI-1.

    PubMed

    Pessler, Frank; Hernandez, Nouria

    2003-08-01

    POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.

  12. Activation Domain-Mediated Enhancement of Activator Binding to Chromatin in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Bunker, Christopher A.; Kingston, Robert E.

    1996-10-01

    DNA binding by transcriptional activators is typically an obligatory step in the activation of gene expression. Activator binding and subsequent steps in transcription are repressed by genomic chromatin. Studies in vitro have suggested that overcoming this repression is an important function of some activation domains. Here we provide quantitative in vivo evidence that the activation domain of GAL4-VP16 can increase the affinity of GAL4 for its binding site on genomic DNA in mammalian cells. Moreover, the VP16 activation domain has a much greater stimulatory effect on expression from a genomic reporter gene than on a transiently transfected reporter gene, where factor binding is more permissive. We found that not all activation domains showed a greater activation potential in a genomic context, suggesting that only some activation domains can function in vivo to alleviate the repressive effects of chromatin. These data demonstrate the importance of activation domains in relieving chromatin-mediated repression in vivo and suggest that one way they function is to increase binding of the activator itself.

  13. Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag

    PubMed Central

    Rye-McCurdy, Tiffiny; Olson, Erik D.; Liu, Shuohui; Binkley, Christiana; Reyes, Joshua-Paolo; Thompson, Brian R.; Flanagan, John M.; Parent, Leslie J.; Musier-Forsyth, Karin

    2016-01-01

    Retroviruses specifically package full-length, dimeric genomic RNA (gRNA) even in the presence of a vast excess of cellular RNA. The “psi” (Ψ) element within the 5′-untranslated region (5′UTR) of gRNA is critical for packaging through interaction with the nucleocapsid (NC) domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1) Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA) domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV) Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity. PMID:27657107

  14. Prediction of small molecule binding property of protein domains with Bayesian classifiers based on Markov chains.

    PubMed

    Bulashevska, Alla; Stein, Martin; Jackson, David; Eils, Roland

    2009-12-01

    Accurate computational methods that can help to predict biological function of a protein from its sequence are of great interest to research biologists and pharmaceutical companies. One approach to assume the function of proteins is to predict the interactions between proteins and other molecules. In this work, we propose a machine learning method that uses a primary sequence of a domain to predict its propensity for interaction with small molecules. By curating the Pfam database with respect to the small molecule binding ability of its component domains, we have constructed a dataset of small molecule binding and non-binding domains. This dataset was then used as training set to learn a Bayesian classifier, which should distinguish members of each class. The domain sequences of both classes are modelled with Markov chains. In a Jack-knife test, our classification procedure achieved the predictive accuracies of 77.2% and 66.7% for binding and non-binding classes respectively. We demonstrate the applicability of our classifier by using it to identify previously unknown small molecule binding domains. Our predictions are available as supplementary material and can provide very useful information to drug discovery specialists. Given the ubiquitous and essential role small molecules play in biological processes, our method is important for identifying pharmaceutically relevant components of complete proteomes. The software is available from the author upon request.

  15. Murein and pseudomurein cell wall binding domains of bacteria and archaea--a comparative view.

    PubMed

    Visweswaran, Ganesh Ram R; Dijkstra, Bauke W; Kok, Jan

    2011-12-01

    The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and acts as an adhesion platform for bacteriophages. The walls of bacteria and archaea are mostly composed of murein and pseudomurein, respectively. Cell wall binding domains play a crucial role in the non-covalent attachment of proteins to cell walls. Here, we give an overview of the similarities and differences in the biochemical and functional properties of the two major murein and pseudomurein cell wall binding domains, i.e., the Lysin Motif (LysM) domain (Pfam PF01476) and the pseudomurein binding (PMB) domain (Pfam PF09373) of bacteria and archaea, respectively.

  16. The histidine kinase CusS senses silver ions through direct binding by its sensor domain

    PubMed Central

    Gudipaty, Swapna A.; McEvoy, Megan M.

    2014-01-01

    The Cus system of Escherichia coli aids in protection of cells from high concentrations of Ag(I) and Cu(I). The histidine kinase CusS of the CusRS two-component system functions as a Ag(I)/Cu(I)-responsive sensor kinase and is essential for induction of the genes encoding the CusCFBA efflux pump. In this study, we have examined the molecular features of the sensor domain of CusS in order to understand how a metal-responsive histidine kinase senses specific metal ions. We find that the predicted periplasmic sensor domain of CusS directly interacts with Ag(I) ions and undergoes a conformational change upon metal binding. Metal binding also enhances the tendency of the domain to dimerize. These findings suggest a model for activation of the histidine kinase through metal binding events in the periplasmic sensor domain. PMID:24948475

  17. Crystal Structure of the Simian Virus 40 Large T-Antigen Origin-Binding Domain

    SciTech Connect

    Meinke,G.; Bullock, P.; Bohm, A.

    2006-01-01

    The origins of replication of DNA tumor viruses have a highly conserved feature, namely, multiple binding sites for their respective initiator proteins arranged as inverted repeats. In the 1.45- Angstroms crystal structure of the simian virus 40 large T-antigen (T-ag) origin-binding domain (obd) reported herein, T-ag obd monomers form a left-handed spiral with an inner channel of 30 Angstroms having six monomers per turn. The inner surface of the spiral is positively charged and includes residues known to bind DNA. Residues implicated in hexamerization of full-length T-ag are located at the interface between adjacent T-ag obd monomers. These data provide a high-resolution model of the hexamer of origin-binding domains observed in electron microscopy studies and allow the obd's to be oriented relative to the hexamer of T-ag helicase domains to which they are connected.

  18. Crystal structure of the simian virus 40 large T-antigen origin-binding domain.

    PubMed

    Meinke, Gretchen; Bullock, Peter A; Bohm, Andrew

    2006-05-01

    The origins of replication of DNA tumor viruses have a highly conserved feature, namely, multiple binding sites for their respective initiator proteins arranged as inverted repeats. In the 1.45-angstroms crystal structure of the simian virus 40 large T-antigen (T-ag) origin-binding domain (obd) reported herein, T-ag obd monomers form a left-handed spiral with an inner channel of 30 angstroms having six monomers per turn. The inner surface of the spiral is positively charged and includes residues known to bind DNA. Residues implicated in hexamerization of full-length T-ag are located at the interface between adjacent T-ag obd monomers. These data provide a high-resolution model of the hexamer of origin-binding domains observed in electron microscopy studies and allow the obd's to be oriented relative to the hexamer of T-ag helicase domains to which they are connected.

  19. Biological effects of individually synthesized TNF-binding domain of variola virus CrmB protein.

    PubMed

    Tsyrendorzhiev, D D; Orlovskaya, I A; Sennikov, S V; Tregubchak, T V; Gileva, I P; Tsyrendorzhieva, M D; Shchelkunov, S N

    2014-06-01

    The biological characteristics of a 17-kDa protein synthesized in bacterial cells, a TNF-binding domain (VARV-TNF-BP) of a 47-kDa variola virus CrmB protein (VARV-CrmB) consisting of TNF-binding and chemokine-binding domains, were studied. Removal of the C-terminal chemokine-binding domain from VARV-CrmB protein was inessential for the efficiency of its inhibition of TNF cytotoxicity towards L929 mouse fibroblast culture and for TNF-induced oxidative metabolic activity of mouse blood leukocytes. The results of this study could form the basis for further studies of VARV-TNF-BP mechanisms of activity for prospective use in practical medicine.

  20. Introduction of raw starch-binding domains into Bacillus subtilis alpha-amylase by fusion with the starch-binding domain of Bacillus cyclomaltodextrin glucanotransferase.

    PubMed

    Ohdan, K; Kuriki, T; Takata, H; Kaneko, H; Okada, S

    2000-07-01

    We constructed two types of chimeric enzymes, Ch1 Amy and Ch2 Amy. Ch1 Amy consisted of a catalytic domain of Bacillus subtilis X-23 alpha-amylase (Ba-S) and the raw starch-binding domain (domain E) of Bacillus A2-5a cyclomaltodextrin glucanotransferase (A2-5a CGT). Ch2 Amy consisted of Ba-S and D (function unknown) plus E domains of A2-5a CGT. Ch1 Amy acquired raw starch-binding and -digesting abilities which were not present in the catalytic part (Ba-S). Furthermore, the specific activity of Ch1 Amy was almost identical when enzyme activity was evaluated on a molar basis. Although Ch2 Amy exhibited even higher raw starch-binding and -digesting abilities than Ch1 Amy, the specific activity was lower than that of Ba-S. We did not detect any differences in other enzymatic characteristics (amylolytic pattern, transglycosylation ability, effects of pH, and temperature on stability and activity) among Ba-S, Ch1 Amy, and Ch2 Amy.

  1. The role of the ADAMTS13 cysteine-rich domain in VWF binding and proteolysis.

    PubMed

    de Groot, Rens; Lane, David A; Crawley, James T B

    2015-03-19

    ADAMTS13 proteolytically regulates the platelet-tethering function of von Willebrand factor (VWF). ADAMTS13 function is dependent upon multiple exosites that specifically bind the unraveled VWF A2 domain and enable proteolysis. We carried out a comprehensive functional analysis of the ADAMTS13 cysteine-rich (Cys-rich) domain using engineered glycans, sequence swaps, and single point mutations in this domain. Mutagenesis of Cys-rich domain-charged residues had no major effect on ADAMTS13 function, and 5 out of 6 engineered glycans on the Cys-rich domain also had no effect on ADAMTS13 function. However, a glycan attached at position 476 appreciably reduced both VWF binding and proteolysis. Substitution of Cys-rich sequences for the corresponding regions in ADAMTS1 identified a hydrophobic pocket involving residues Gly471-Val474 as being of critical importance for both VWF binding and proteolysis. Substitution of hydrophobic VWF A2 domain residues to serine in a region (residues 1642-1659) previously postulated to interact with the Cys-rich domain revealed the functional importance of VWF residues Ile1642, Trp1644, Ile1649, Leu1650, and Ile1651. Furthermore, the functional deficit of the ADAMTS13 Cys-rich Gly471-Val474 variant was dependent on these same hydrophobic VWF residues, suggesting that these regions form complementary binding sites that directly interact to enhance the efficiency of the proteolytic reaction.

  2. Chemically synthesized 58-mer LysM domain binds lipochitin oligosaccharide.

    PubMed

    Sørensen, Kasper K; Simonsen, Jens B; Maolanon, Nicolai N; Stougaard, Jens; Jensen, Knud J

    2014-09-22

    Recognition of carbohydrates by proteins is a ubiquitous biochemical process. In legume-rhizobium symbiosis, lipochitin oligosaccharides, also referred to as nodulation (nod) factors, function as primary rhizobial signal molecules to trigger root nodule development. Perception of these signal molecules is receptor mediated, and nod factor receptor 5 (NFR5) from the model legume Lotus japonicus is predicted to contain three LysM domain binding sites. Here we studied the interactions between nod factor and each of the three NFR5 LysM domains, which were chemically synthesized. LysM domain variants (up to 58 amino acids) designed to optimize solubility were chemically assembled by solid-phase peptide synthesis (SPPS) with microwave heating. Their interaction with nod factors and chitin oligosaccharides was studied by isothermal titration calorimetry and circular dichroism (CD) spectroscopy. LysM2 showed a change in folding upon nod factor binding, thus providing direct evidence that the LysM domain of NFR5 recognizes lipochitin oligosaccharides. These results clearly show that the L. japonicus LysM2 domain binds to the nod factor from Mesorhizobium loti, thereby causing a conformational change in the LysM2 domain. The preferential affinity for nod factors over chitin oligosaccharides was demonstrated by a newly developed glycan microarray. Besides the biological implications, our approach shows that carbohydrate binding to a small protein domain can be detected by CD spectroscopy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Achieving Peptide Binding Specificity and Promiscuity by Loops: Case of the Forkhead-Associated Domain

    PubMed Central

    Huang, Yu-ming M.; Chang, Chia-en A.

    2014-01-01

    The regulation of a series of cellular events requires specific protein–protein interactions, which are usually mediated by modular domains to precisely select a particular sequence from diverse partners. However, most signaling domains can bind to more than one peptide sequence. How do proteins create promiscuity from precision? Moreover, these complex interactions typically occur at the interface of a well-defined secondary structure, α helix and β sheet. However, the molecular recognition primarily controlled by loop architecture is not fully understood. To gain a deep understanding of binding selectivity and promiscuity by the conformation of loops, we chose the forkhead-associated (FHA) domain as our model system. The domain can bind to diverse peptides via various loops but only interact with sequences containing phosphothreonine (pThr). We applied molecular dynamics (MD) simulations for multiple free and bound FHA domains to study the changes in conformations and dynamics. Generally, FHA domains share a similar folding structure whereby the backbone holds the overall geometry and the variety of sidechain atoms of multiple loops creates a binding surface to target a specific partner. FHA domains determine the specificity of pThr by well-organized binding loops, which are rigid to define a phospho recognition site. The broad range of peptide recognition can be attributed to different arrangements of the loop interaction network. The moderate flexibility of the loop conformation can help access or exclude binding partners. Our work provides insights into molecular recognition in terms of binding specificity and promiscuity and helpful clues for further peptide design. PMID:24870410

  4. Evolutionary Remodeling of βγ-Crystallins for Domain Stability at Cost of Ca2+ Binding*

    PubMed Central

    Suman, Shashi Kumar; Mishra, Amita; Ravindra, Daddali; Yeramala, Lahari; Sharma, Yogendra

    2011-01-01

    The topologically similar βγ-crystallins that are prevalent in all kingdoms of life have evolved for high innate domain stability to perform their specialized functions. The evolution of stability and its control in βγ-crystallins that possess either a canonical (mostly from microorganisms) or degenerate (principally found in vertebrate homologues) Ca2+-binding motif is not known. Using equilibrium unfolding of βγ-crystallin domains (26 wild-type domains and their mutants) in apo- and holo-forms, we demonstrate the presence of a stability gradient across these members, which is attained by the choice of residues in the (N/D)(N/D)XX(S/T)S Ca2+-binding motif. The occurrence of a polar, hydrophobic, or Ser residue at the 1st, 3rd, or 5th position of the motif is likely linked to a higher domain stability. Partial conversion of a microbe-type domain (with a canonical Ca2+-binding motif) to a vertebrate-type domain (with a degenerate Ca2+-binding motif) by mutating serine to arginine/lysine disables the Ca2+-binding but significantly augments its stability. Conversely, stability is compromised when arginine (in a vertebrate-type disabled domain) is replaced by serine (as a microbe type). Our results suggest that such conversions were acquired as a strategy for desired stability in vertebrate members at the cost of Ca2+-binding. In a physiological context, we demonstrate that a mutation such as an arginine to serine (R77S) mutation in this motif of γ-crystallin (partial conversion to microbe-type), implicated in cataracts, decreases the domain stability. Thus, this motif acts as a “central tuning knob” for innate as well as Ca2+-induced gain in stability, incorporating a stability gradient across βγ-crystallin members critical for their specialized functions. PMID:21949186

  5. Structural rearrangement accompanying ligand binding in the GAF domain of CodY from Bacillus subtilis

    PubMed Central

    Levdikov, Vladimir M.; Blagova, Elena; Colledge, Vicki L.; Lebedev, Andrey A.; Williamson, David C.; Sonenshein, Abraham L.; Wilkinson, Anthony J

    2011-01-01

    The GAF domain is a simple module widespread in proteins of diverse function including cell signalling proteins and transcription factors. Its structure, typically spanning 150 residues, has three tiers; a basal layer of two or more α-helices, a middle layer of β-pleated sheet and a top layer formed by segments of the polypeptide that connect strands of the β-sheet. In structures of GAF domains in complex with their effectors, these polypeptide segments envelop the ligand enclosing it in a cavity whose base is formed by the β-sheet, so that ligand binding and release must be accompanied by conformational rearrangements of the distal portion of the structure. Descriptions of binding are presently limited by the absence of a GAF domain for which both liganded and unliganded structures are known. Earlier, we solved the crystal structure of the GAF domain of CodY, a branched chain amino acid and GTP responsive regulator of the transcription of stationary phase and virulence genes in Bacillus, in complexes with isoleucine and valine. Here, we report the structure of this domain in its unliganded form, allowing definition of the structural changes accompanying ligand binding. The core of the protein and its dimerisation interface are essentially unchanged in agreement with circular dichroism spectroscopy experiments that show that the secondary structure composition is unperturbed by ligand binding. There is however, extensive refolding of the binding site loops, with up to 15 Å movements of the coiled segment linking β3 and β4, such that in the absence of the ligand, the binding pocket is not formed. The implications of these structural rearrangements for ligand affinity and specificity are discussed. Finally, saturation transfer difference NMR spectroscopy showed binding of isoleucine, but not GTP, to the GAF domain suggesting that the two cofactors do not have a common binding site. PMID:19500589

  6. Conformational changes in tertiary structure near the ligand binding site of an integrin I domain

    PubMed Central

    Oxvig, Claus; Lu, Chafen; Springer, Timothy A.

    1999-01-01

    For efficient ligand binding, integrins must be activated. Specifically, a conformational change has been proposed in a ligand binding domain present within some integrins, the inserted (I) domain [Lee, J., Bankston, L., Arnaout, M. & Liddington, R. C. (1995) Structure (London) 3, 1333–1340]. This proposal remains controversial, however, despite extensive crystal structure studies on the I domain [Lee, J., Bankston, L., Arnaout, M. & Liddington, R. C. (1995) Structure (London) 3, 1333–1340; Liddington, R. & Bankston, L. (1998) Structure (London) 6, 937–938; Qu, A. & Leahy, D. J. (1996) Structure (London) 4, 931–942; and Baldwin, E. T., Sarver, R. W., Bryant, G. L., Jr., Curry, K. A., Fairbanks, M. B., Finzel, B. C., Garlick, R. L., Heinrikson, R. L., Horton, N. C. & Kelly, L. L. (1998) Structure (London) 6, 923–935]. By defining the residues present in the epitope of a mAb against the human Mac-1 integrin (αMβ2, CD11b/CD18) that binds only the active receptor, we provide biochemical evidence that the I domain itself undergoes a conformational change with activation. This mAb, CBRM1/5, binds the I domain very close to the ligand binding site in a region that is widely exposed regardless of activation as judged by reactivity with other antibodies. The conformation of the epitope differs in two crystal forms of the I domain, previously suggested to represent active and inactive receptor. Our data suggests that conformational differences in the I domain are physiologically relevant and not merely a consequence of different crystal lattice interactions. We also demonstrate that the transition between the two conformational states depends on species-specific residues at the bottom of the I domain, which are proposed to be in an interface with another integrin domain, and that this transition correlates with functional activity. PMID:10051621

  7. Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: Implications for drug design☆

    PubMed Central

    Mohanty, Smita; Kennedy, Eileen J.; Herberg, Friedrich W.; Hui, Raymond; Taylor, Susan S.; Langsley, Gordon; Kannan, Natarajan

    2015-01-01

    Many cellular functions in eukaryotic pathogens are mediated by the cyclic nucleotide binding (CNB) domain, which senses second messengers such as cyclic AMP and cyclic GMP. Although CNB domain-containing proteins have been identified in many pathogenic organisms, an incomplete understanding of how CNB domains in pathogens differ from other eukaryotic hosts has hindered the development of selective inhibitors for CNB domains associated with infectious diseases. Here, we identify and classify CNB domain-containing proteins in eukaryotic genomes to understand the evolutionary basis for CNB domain functional divergence in pathogens. We identify 359 CNB domain-containing proteins in 31 pathogenic organisms and classify them into distinct subfamilies based on sequence similarity within the CNB domain as well as functional domains associated with the CNB domain. Our study reveals novel subfamilies with pathogen-specific variations in the phosphate-binding cassette. Analyzing these variations in light of existing structural and functional data provides new insights into ligand specificity and promiscuity and clues for drug design. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. PMID:25847873

  8. Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: Implications for drug design.

    PubMed

    Mohanty, Smita; Kennedy, Eileen J; Herberg, Friedrich W; Hui, Raymond; Taylor, Susan S; Langsley, Gordon; Kannan, Natarajan

    2015-10-01

    Many cellular functions in eukaryotic pathogens are mediated by the cyclic nucleotide binding (CNB) domain, which senses second messengers such as cyclic AMP and cyclic GMP. Although CNB domain-containing proteins have been identified in many pathogenic organisms, an incomplete understanding of how CNB domains in pathogens differ from other eukaryotic hosts has hindered the development of selective inhibitors for CNB domains associated with infectious diseases. Here, we identify and classify CNB domain-containing proteins in eukaryotic genomes to understand the evolutionary basis for CNB domain functional divergence in pathogens. We identify 359 CNB domain-containing proteins in 31 pathogenic organisms and classify them into distinct subfamilies based on sequence similarity within the CNB domain as well as functional domains associated with the CNB domain. Our study reveals novel subfamilies with pathogen-specific variations in the phosphate-binding cassette. Analyzing these variations in light of existing structural and functional data provides new insights into ligand specificity and promiscuity and clues for drug design. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015. Published by Elsevier B.V.

  9. A Key Evolutionary Mutation Enhances DNA Binding of the FOXP2 Forkhead Domain.

    PubMed

    Morris, Gavin; Fanucchi, Sylvia

    2016-04-05

    Forkhead box (FOX) transcription factors share a conserved forkhead DNA binding domain (FHD) and are key role players in the development of many eukaryotic species. Their involvement in various congenital disorders and cancers makes them clinically relevant targets for novel therapeutic strategies. Among them, the FOXP subfamily of multidomain transcriptional repressors is unique in its ability to form DNA binding homo and heterodimers. The truncated FOXP2 FHD, in the absence of the leucine zipper, exists in equilibrium between monomeric and domain-swapped dimeric states in vitro. As a consequence, determining the DNA binding properties of the FOXP2 FHD becomes inherently difficult. In this work, two FOXP2 FHD hinge loop mutants have been generated to successfully prevent both the formation (A539P) and the dissociation (F541C) of the homodimers. This allows for the separation of the two species for downstream DNA binding studies. Comparison of DNA binding of the different species using electrophoretic mobility shift assay, fluorescence anisotropy and isothermal titration calorimetry indicates that the wild-type FOXP2 FHD binds DNA as a monomer. However, comparison of the DNA-binding energetics of the monomer and wild-type FHD, reveals that there is a difference in the mechanism of binding between the two species. We conclude that the naturally occurring reverse mutation (P539A) seen in the FOXP subfamily increases DNA binding affinity and may increase the potential for nonspecific binding compared to other FOX family members.

  10. Probing the Informational and Regulatory Plasticity of a Transcription Factor DNA–Binding Domain

    PubMed Central

    Shultzaberger, Ryan K.; Maerkl, Sebastian J.; Kirsch, Jack F.; Eisen, Michael B.

    2012-01-01

    Transcription factors have two functional constraints on their evolution: (1) their binding sites must have enough information to be distinguishable from all other sequences in the genome, and (2) they must bind these sites with an affinity that appropriately modulates the rate of transcription. Since both are determined by the biophysical properties of the DNA–binding domain, selection on one will ultimately affect the other. We were interested in understanding how plastic the informational and regulatory properties of a transcription factor are and how transcription factors evolve to balance these constraints. To study this, we developed an in vivo selection system in Escherichia coli to identify variants of the helix-turn-helix transcription factor MarA that bind different sets of binding sites with varying degrees of degeneracy. Unlike previous in vitro methods used to identify novel DNA binders and to probe the plasticity of the binding domain, our selections were done within the context of the initiation complex, selecting for both specific binding within the genome and for a physiologically significant strength of interaction to maintain function of the factor. Using MITOMI, quantitative PCR, and a binding site fitness assay, we characterized the binding, function, and fitness of some of these variants. We observed that a large range of binding preferences, information contents, and activities could be accessed with a few mutations, suggesting that transcriptional regulatory networks are highly adaptable and expandable. PMID:22496663

  11. Identification of two functional PCNA-binding domains in human DNA polymerase κ.

    PubMed

    Yoon, Jung-Hoon; Acharya, Narottam; Park, Jeseong; Basu, Debashree; Prakash, Satya; Prakash, Louise

    2014-07-01

    Previously, we have shown that human DNA polymerase (Pol) η has two functional PCNA-binding motifs, PIP1 and PIP2, and that a C-terminal deletion of Polη that lacks the ubiquitin-binding UBZ domain and the PIP2 domain but retains the PIP1 domain promotes normal levels of translesion synthesis (TLS) opposite a cis-syn TT dimer in human cells. Here, we identify two PIP domains in Polκ and show that TLS occurs normally in human fibroblast cells in which the pip1 or pip2 mutant Polκ is expressed, but mutational inactivation of both PIP domains renders Polκ nonfunctional in TLS opposite the thymine glycol lesion. Thus, the two PIP domains of Polκ function redundantly in TLS opposite this DNA lesion in human cells. However, and surprisingly, whereas mutational inactivation of the PIP1 domain completely inhibits the stimulation of DNA synthesis by Polκ in the presence of proliferating cell nuclear antigen (PCNA), replication factor C, and replication protein A, mutations in PIP2 have no adverse effect on PCNA-dependent DNA synthesis. This raises the possibility that activation of Polκ PIP2 as a PCNA-binding domain occurs during TLS in human cells and that protein-protein interactions and post-transcriptional modifications are involved in such activation. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  12. Comparison and correlation of binding mode of ATP in the kinase domains of Hexokinase family

    PubMed Central

    Kumar, Yellapu Nanda; Kumar, Pasupuleti Santhosh; Sowjenya, Gopal; Rao, Valasani Koteswara; Yeswanth, Sthanikam; Prasad, Uppu Venkateswara; Pradeepkiran, Jangampalli Adi; Sarma, PVGK; Bhaskar, Matcha

    2012-01-01

    Hexokinases (HKs) are the enzymes that catalyses the ATP dependent phosphorylation of Hexose sugars to Hexose-6-Phosphate (Hex-6-P). There exist four different forms of HKs namely HK-I, HK-II, HK-III and HK-IV and all of them share a common ATP binding site core surrounded by more variable sequence that determine substrate affinities. Although they share a common binding site but they differ in their kinetic functions, hence the present study is aimed to analyze the binding mode of ATP. The analysis revealed that the four ATP binding domains are showing 13 identical, 7 similar and 6 dissimilar residues with similar structural conformation. Molecular docking of ATP into the kinase domains using Molecular Operating Environment (MOE) soft ware tool clearly showed the variation in the binding mode of ATP with variable docking scores. This probably explains the variable phosphorylation rates among hexokinases family. PMID:22829728

  13. Two Unique Ligand-Binding Clamps of Rhizopus oryzae Starch Binding Domain for Helical Structure Disruption of Amylose

    PubMed Central

    Jiang, Ting-Ying; Ci, Yuan-Pei; Chou, Wei-I; Lee, Yuan-Chuan; Sun, Yuh-Ju; Chou, Wei-Yao; Li, Kun-Mou; Chang, Margaret Dah-Tsyr

    2012-01-01

    The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD) has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21) members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs. PMID:22815939

  14. Stability and Sugar Recognition Ability of Ricin-Like Carbohydrate Binding Domains

    SciTech Connect

    Yao, Jianzhuang; Nellas, Ricky B; Glover, Mary M; Shen, Tongye

    2011-01-01

    Lectins are a class of proteins known for their novel binding to saccharides. Understanding this sugar recognition process can be crucial in creating structure-based designs of proteins with various biological roles. We focus on the sugar binding of a particular lectin, ricin, which has two -trefoil carbohydrate-binding domains (CRDs) found in several plant protein toxins. The binding ability of possible sites of ricin-like CRD has been puzzling. The apo and various (multiple) ligand-bound forms of the sugar-binding domains of ricin were studied by molecular dynamics simulations. By evaluating structural stability, hydrogen bond dynamics, flexibility, and binding energy, we obtained a detailed picture of the sugar recognition of the ricin-like CRD. Unlike what was previously believed, we found that the binding abilities of the two known sites are not independent of each other. The binding ability of one site is positively affected by the other site. While the mean positions of different binding scenarios are not altered significantly, the flexibility of the binding pockets visibly decreases upon multiple ligand binding. This change in flexibility seems to be the origin of the binding cooperativity. All the hydrogen bonds that are strong in the monoligand state are also strong in the double-ligand complex, although the stability is much higher in the latter form due to cooperativity. These strong hydrogen bonds in a monoligand state are deemed to be the essential hydrogen bonds. Furthermore, by examining the structural correlation matrix, the two domains are structurally one entity. Galactose hydroxyl groups, OH4 and OH3, are the most critical parts in both site 1 and site 2 recognition.

  15. Characterization of Novel Calmodulin Binding Domains within IQ Motifs of IQGAP1

    PubMed Central

    Jang, Deok-Jin; Ban, Byungkwan; Lee, Jin-A

    2011-01-01

    IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7-3) and IQ(3.5-4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7-3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5-4.4) were required for Ca2+/CaM binding. Finally, we showed that IQ(2.7-3) was the main apoCaM binding domain and both IQ(2.7-3) and IQ(3.5-4.4) were required for Ca2+/CaM binding within IQ(1- 2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner. PMID:22080369

  16. The N-terminal domain determines the affinity and specificity of H1 binding to chromatin

    SciTech Connect

    Oeberg, Christine; Belikov, Sergey

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer wt Human histone H1.4 and hH1.4 devoid of N-terminal domain, {Delta}N-hH1.4, were compared. Black-Right-Pointing-Pointer Both histones bind to chromatin, however, {Delta}N-hH1.4 displays lower binding affinity. Black-Right-Pointing-Pointer Interaction of {Delta}N-hH1.4 with chromatin includes a significant unspecific component. Black-Right-Pointing-Pointer N-terminal domain is a determinant of specificity of histone H1 binding to chromatin. -- Abstract: Linker histone H1, one of the most abundant nuclear proteins in multicellular eukaryotes, is a key component of the chromatin structure mainly due to its role in the formation and maintenance of the 30 nm chromatin fiber. It has a three-domain structure; a central globular domain flanked by a short N-terminal domain and a long, highly basic C-terminal domain. Previous studies have shown that the binding abilities of H1 are at large determined by the properties of the C-terminal domain; much less attention has been paid to role of the N-terminal domain. We have previously shown that H1 can be reconstituted via cytoplasmic mRNA injection in Xenopus oocytes, cells that lack somatic H1. The heterologously expressed H1 proteins are incorporated into in vivo assembled chromatin at specific sites and the binding event is monitored as an increase in nucleosomal repeat length (NRL). Using this setup we have here compared the binding properties of wt-H1.4 and hH1.4 devoid of its N-terminal domain ({Delta}N-hH1.4). The {Delta}N-hH1.4 displays a drastically lower affinity for chromatin binding as compared to the wild type hH1.4. Our data also indicates that {Delta}N-hH1.4 is more prone to unspecific chromatin binding than the wild type. We conclude that the N-terminal domain of H1 is an important determinant of affinity and specificity of H1-chromatin interactions.

  17. Different positioning of the ligand-binding domain helix 12 and the F domain of the estrogen receptor accounts for functional differences between agonists and antagonists.

    PubMed Central

    Nichols, M; Rientjes, J M; Stewart, A F

    1998-01-01

    The estrogen receptor is capable of binding a diverse set of ligands that are broadly categorized as agonists or antagonists, depending on their abilities to induce or interfere with transcriptional responsiveness. We show, using a fusion protein assay for ligand-binding which does not rely on transcriptional responsiveness, that agonists and antagonists differently position the C-terminus of the ligand-binding domain (helix 12) and the F domain. Upon antagonist binding, the F domain interferes with the fusion protein activity. Mutational disruption of helix 12 alters the position of the F domain, imposing interference after agonist or antagonist binding. Genetically selected inversion mutations where only agonists, but not antagonists, induce interference are similarly reliant on helix 12 and F domain positioning. Our results demonstrate that agonists and antagonists differently position helix 12 and implicate the F domain in mechanisms of antagonist action. PMID:9451001

  18. Crystal Structure of the Chromodomain Helicase DNA-binding Protein 1 (Chd1) DNA-binding Domain in Complex with DNA

    SciTech Connect

    Sharma A.; Heroux A.; Jenkins K. R.; Bowman G. D.

    2011-12-09

    Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves.

  19. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    SciTech Connect

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N.

    2012-03-15

    The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length. Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully

  20. Structure of the caspase-recruitment domain from a zebrafish guanylate-binding protein.

    PubMed

    Jin, Tengchuan; Huang, Mo; Smith, Patrick; Jiang, Jiansheng; Xiao, T Sam

    2013-08-01

    The caspase-recruitment domain (CARD) mediates homotypic protein-protein interactions that assemble large oligomeric signaling complexes such as the inflammasomes during innate immune responses. Structural studies of the mammalian CARDs demonstrate that their six-helix bundle folds belong to the death-domain superfamily, whereas such studies have not been reported for other organisms. Here, the zebrafish interferon-induced guanylate-binding protein 1 (zIGBP1) was identified that contains an N-terminal GTPase domain and a helical domain typical of the mammalian guanylate-binding proteins, followed by a FIIND domain and a C-terminal CARD similar to the mammalian inflammasome proteins NLRP1 and CARD8. The structure of the zIGBP1 CARD as a fusion with maltose-binding protein was determined at 1.47 Å resolution. This revealed a six-helix bundle fold similar to the NLRP1 CARD structure with the bent α1 helix typical of all known CARD structures. The zIGBP1 CARD surface contains a positively charged patch near its α1 and α4 helices and a negatively charged patch near its α2, α3 and α5 helices, which may mediate its interaction with partner domains. Further studies using binding assays and other analyses will be required in order to address the physiological function(s) of this zebrafish protein.

  1. The role of the ADAMTS13 cysteine-rich domain in VWF binding and proteolysis

    PubMed Central

    Lane, David A.; Crawley, James T. B.

    2015-01-01

    ADAMTS13 proteolytically regulates the platelet-tethering function of von Willebrand factor (VWF). ADAMTS13 function is dependent upon multiple exosites that specifically bind the unraveled VWF A2 domain and enable proteolysis. We carried out a comprehensive functional analysis of the ADAMTS13 cysteine-rich (Cys-rich) domain using engineered glycans, sequence swaps, and single point mutations in this domain. Mutagenesis of Cys-rich domain–charged residues had no major effect on ADAMTS13 function, and 5 out of 6 engineered glycans on the Cys-rich domain also had no effect on ADAMTS13 function. However, a glycan attached at position 476 appreciably reduced both VWF binding and proteolysis. Substitution of Cys-rich sequences for the corresponding regions in ADAMTS1 identified a hydrophobic pocket involving residues Gly471-Val474 as being of critical importance for both VWF binding and proteolysis. Substitution of hydrophobic VWF A2 domain residues to serine in a region (residues 1642-1659) previously postulated to interact with the Cys-rich domain revealed the functional importance of VWF residues Ile1642, Trp1644, Ile1649, Leu1650, and Ile1651. Furthermore, the functional deficit of the ADAMTS13 Cys-rich Gly471-Val474 variant was dependent on these same hydrophobic VWF residues, suggesting that these regions form complementary binding sites that directly interact to enhance the efficiency of the proteolytic reaction. PMID:25564400

  2. Biochemical Identification of a Linear Cholesterol-Binding Domain within Alzheimer’s β Amyloid Peptide

    PubMed Central

    2012-01-01

    Alzheimer’s β-amyloid (Aβ) peptides can self-organize into amyloid pores that may induce acute neurotoxic effects in brain cells. Membrane cholesterol, which regulates Aβ production and oligomerization, plays a key role in this process. Although several data suggested that cholesterol could bind to Aβ peptides, the molecular mechanisms underlying cholesterol/Aβ interactions are mostly unknown. On the basis of docking studies, we identified the linear fragment 22–35 of Aβ as a potential cholesterol-binding domain. This domain consists of an atypical concatenation of polar/apolar amino acid residues that was not previously found in cholesterol-binding motifs. Using the Langmuir film balance technique, we showed that synthetic peptides Aβ17–40 and Aβ22–35, but not Aβ1–16, could efficiently penetrate into cholesterol monolayers. The interaction between Aβ22–35 and cholesterol was fully saturable and lipid-specific. Single-point mutations of Val-24 and Lys-28 in Aβ22–35 prevented cholesterol binding, whereas mutations at residues 29, 33, and 34 had little to no effect. These data were consistent with the in silico identification of Val-24 and Lys-28 as critical residues for cholesterol binding. We conclude that the linear fragment 22–35 of Aβ is a functional cholesterol-binding domain that could promote the insertion of β-amyloid peptides or amyloid pore formation in cholesterol-rich membrane domains. PMID:23509984

  3. Folding and stability of the ligand-binding domain of the glucocorticoid receptor

    PubMed Central

    McLaughlin, Stephen H.; Jackson, Sophie E.

    2002-01-01

    A complex pathway involving many molecular chaperones has been proposed for the folding, assembly, and maintenance of a high-affinity ligand-binding form of steroid receptors in vivo, including the glucocorticoid receptor. To better understand this intricate folding and assembly process, we studied the folding of the ligand-binding domain of the glucocorticoid receptor in vitro. We found that this domain can be refolded into a compact, highly structured state in vitro in the absence of chaperones. However, the presence of zwitterionic detergent is required to maintain the domain in a soluble form. In this state, the protein is dimeric and has considerable helical structure as shown by far-UV circular dichroism. Further investigation of the properties of this in vitro refolded state show that it is stable and resistant to denaturation by heat or low concentrations of chemical denaturants. A detailed analysis of the unfolding equilibria using three different structural probes demonstrated that this state unfolds via a highly populated dimeric intermediate state. Together, these data clearly show that the ligand-binding domain of the glucocorticoid receptor does not require chaperones for folding per se. However, this in vitro refolded state binds the ligand dexamethasone only weakly (Kd = 45 μM) compared to the in vivo assembled receptor (Kd = 3.4 nM). We suggest that the role of Hsp90 and associated chaperones is to bind to, and stabilize, a specific conformational state of the receptor which binds ligand with high affinity. PMID:12142447

  4. Crucial role for the VWF A1 domain in binding to type IV collagen.

    PubMed

    Flood, Veronica H; Schlauderaff, Abraham C; Haberichter, Sandra L; Slobodianuk, Tricia L; Jacobi, Paula M; Bellissimo, Daniel B; Christopherson, Pamela A; Friedman, Kenneth D; Gill, Joan Cox; Hoffmann, Raymond G; Montgomery, Robert R

    2015-04-02

    Von Willebrand factor (VWF) contains binding sites for platelets and for vascular collagens to facilitate clot formation at sites of injury. Although previous work has shown that VWF can bind type IV collagen (collagen 4), little characterization of this interaction has been performed. We examined the binding of VWF to collagen 4 in vitro and extended this characterization to a murine model of defective VWF-collagen 4 interactions. The interactions of VWF and collagen 4 were further studied using plasma samples from a large study of both healthy controls and subjects with different types of von Willebrand disease (VWD). Our results show that collagen 4 appears to bind VWF exclusively via the VWF A1 domain, and that specific sequence variations identified through VWF patient samples and through site-directed mutagenesis in the VWF A1 domain can decrease or abrogate this interaction. In addition, VWF-dependent platelet binding to collagen 4 under flow conditions requires an intact VWF A1 domain. We observed that decreased binding to collagen 4 was associated with select VWF A1 domain sequence variations in type 1 and type 2M VWD. This suggests an additional mechanism through which VWF variants may alter hemostasis. © 2015 by The American Society of Hematology.

  5. CREB-binding protein transcription activation domain for enhanced transgene expression by a positive feedback system.

    PubMed

    Kanda, Genki; Ochiai, Hiroshi; Harashima, Hideyoshi; Kamiya, Hiroyuki

    2012-01-01

    The positive feedback system using a fusion protein of the sequence-specific DNA binding domain of yeast GAL4 and the transcription activation domain of herpes simplex virus VP16 (GAL4-VP16), in which GAL4-VP16 promotes its own expression as well as that of a reporter gene product, is useful for efficient transgene expression from plasmid DNA. In this study, the transcription activation domains of endogenous proteins, instead of VP16, were fused to the GAL4 DNA binding domain, and the positive feedback systems employing the novel fusion proteins were examined. Plasmid DNAs encoding the transcription factors were introduced into mouse Hepa 1-6 cells by electroporation and lipofection. Among CREB-binding protein (226-460), sterol regulatory element-binding protein-1 (1-140), p53 (1-70), and Med15 (9-73), the CREB-binding protein functioned efficiently as an activator. These results indicated that the GAL4-CREB-binding protein is useful for enhanced transgene expression by the positive feedback system. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. VH3 family antibodies bind domain D of staphylococcal protein A.

    PubMed

    Roben, P W; Salem, A N; Silverman, G J

    1995-06-15

    Staphylococcal protein A (SpA) is a 45-kDa bacterial membrane protein that can interact with either Fc gamma, a constant region portion of IgG, or with the Fab portion that also mediates conventional Ag binding. In recent reports, SpA has been shown to specifically interact with Fab derived from the VH3 family and is little affected by VH CDR3, JH, or light chain usage. To identify a site on SpA responsible for VH3 Fab binding, we cloned and expressed in Escherichia coli the 61 amino acid sequence of SpA that represents domain D, and this small protein exhibited both the VH3 Fab and Fc gamma binding specificities. Surface plasmon resonance measurements demonstrated that domain D and native SpA had the strongest binding interactions with an IgM-kappa encoded by the germline configuration of the VH3 gene VH26c. In contrast, the apparent affinities for Fc gamma binding were at least fivefold weaker. A variant of domain D was also created that is devoid of the three-codon insertion that distinguishes domain D from all other domains in SpA. Although this deletion did not significantly affect the VH3 Fab-mediated SpA binding activity, it did improve the affinity of Fc gamma binding by an order of magnitude. These observations characterize a site on SpA responsible for binding interactions with B cell Ag receptors that are highly analogous to that of superantigens for T cell receptors.

  7. αE-catenin actin-binding domain alters actin filament conformation and regulates binding of nucleation and disassembly factors

    PubMed Central

    Hansen, Scott D.; Kwiatkowski, Adam V.; Ouyang, Chung-Yueh; Liu, HongJun; Pokutta, Sabine; Watkins, Simon C.; Volkmann, Niels; Hanein, Dorit; Weis, William I.; Mullins, R. Dyche; Nelson, W. James

    2013-01-01

    The actin-binding protein αE-catenin may contribute to transitions between cell migration and cell–cell adhesion that depend on remodeling the actin cytoskeleton, but the underlying mechanisms are unknown. We show that the αE-catenin actin-binding domain (ABD) binds cooperatively to individual actin filaments and that binding is accompanied by a conformational change in the actin protomer that affects filament structure. αE-catenin ABD binding limits barbed-end growth, especially in actin filament bundles. αE-catenin ABD inhibits actin filament branching by the Arp2/3 complex and severing by cofilin, both of which contact regions of the actin protomer that are structurally altered by αE-catenin ABD binding. In epithelial cells, there is little correlation between the distribution of αE-catenin and the Arp2/3 complex at developing cell–cell contacts. Our results indicate that αE-catenin binding to filamentous actin favors assembly of unbranched filament bundles that are protected from severing over more dynamic, branched filament arrays. PMID:24068324

  8. CpG dinucleotide positioning patterns determine the binding affinity of methyl-binding domain to nucleosomes.

    PubMed

    Mendonca, Agnes; Sanchez, Oscar F; Liu, Wenjie; Li, Zhe; Yuan, Chongli

    2017-06-01

    The methyl-binding domain of MBD1 is a common methyl CpG binding motif and has been linked to transcriptional repression. Understanding the dynamics of MBD1 binding to nucleosomal DNA is crucial, but the molecular interactions between MBD1 and chromatin remain elusive. In this study, we found the binding of MBD1 to nucleosomes demonstrates sequence preferences depending on the position of the methyl groups on the nucleosome. Specifically, binding was favored at (me)CpG sites in the dyad proximal region and facing towards the histone octamers. At locations where the (me)CpG sites face away from the histone octamer, the binding affinity was significantly lower. Interestingly, the binding of ΔMBD1 at methylated CpG sites facing away from histone octamers induces conformational changes of nucleosomes, resulting in a more "open" conformation. The biological implication of DNA methylation is thus likely to be synergistically regulated via DNA sequences contents and their nucleosome-positioning patterns based on our in vitro findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Domain Interactions in the Yeast ATP Binding Cassette Transporter Ycf1p: Intragenic Suppressor Analysis of Mutations in the Nucleotide Binding Domains

    PubMed Central

    Falcón-Pérez, Juan M.; Martínez-Burgos, Mónica; Molano, Jesús; Mazón, María J.; Eraso, Pilar

    2001-01-01

    The yeast cadmium factor (Ycf1p) is a vacuolar ATP binding cassette (ABC) transporter required for heavy metal and drug detoxification. Cluster analysis shows that Ycf1p is strongly related to the human multidrug-associated protein (MRP1) and cystic fibrosis transmembrane conductance regulator and therefore may serve as an excellent model for the study of eukaryotic ABC transporter structure and function. Identifying intramolecular interactions in these transporters may help to elucidate energy transfer mechanisms during transport. To identify regions in Ycf1p that may interact to couple ATPase activity to substrate binding and/or movement across the membrane, we sought intragenic suppressors of ycf1 mutations that affect highly conserved residues presumably involved in ATP binding and/or hydrolysis. Thirteen intragenic second-site suppressors were identified for the D777N mutation which affects the invariant Asp residue in the Walker B motif of the first nucleotide binding domain (NBD1). Two of the suppressor mutations (V543I and F565L) are located in the first transmembrane domain (TMD1), nine (A1003V, A1021T, A1021V, N1027D, Q1107R, G1207D, G1207S, S1212L, and W1225C) are found within TMD2, one (S674L) is in NBD1, and another one (R1415G) is in NBD2, indicating either physical proximity or functional interactions between NBD1 and the other three domains. The original D777N mutant protein exhibits a strong defect in the apparent affinity for ATP and Vmax of transport. The phenotypic characterization of the suppressor mutants shows that suppression does not result from restoring these alterations but rather from a change in substrate specificity. We discuss the possible involvement of Asp777 in coupling ATPase activity to substrate binding and/or transport across the membrane. PMID:11466279

  10. A substrate-induced biotin binding pocket in the carboxyltransferase domain of pyruvate carboxylase.

    PubMed

    Lietzan, Adam D; St Maurice, Martin

    2013-07-05

    Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp(590) and Tyr(628) and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes.

  11. Allosteric role of the large-scale domain opening in biological catch-binding

    NASA Astrophysics Data System (ADS)

    Pereverzev, Yuriy V.; Prezhdo, Oleg V.; Sokurenko, Evgeni V.

    2009-05-01

    The proposed model demonstrates the allosteric role of the two-domain region of the receptor protein in the increased lifetimes of biological receptor/ligand bonds subjected to an external force. The interaction between the domains is represented by a bounded potential, containing two minima corresponding to the attached and separated conformations of the two protein domains. The dissociative potential with a single minimum describing receptor/ligand binding fluctuates between deep and shallow states, depending on whether the domains are attached or separated. A number of valuable analytic expressions are derived and are used to interpret experimental data for two catch bonds. The P-selectin/P-selectin-glycoprotein-ligand-1 (PSGL-1) bond is controlled by the interface between the epidermal growth factor (EGF) and lectin domains of P-selectin, and the type 1 fimbrial adhesive protein (FimH)/mannose bond is governed by the interface between the lectin and pilin domains of FimH. Catch-binding occurs in these systems when the external force stretches the receptor proteins and increases the interdomain distance. The allosteric effect is supported by independent measurements, in which the domains are kept separated by attachment of another ligand. The proposed model accurately describes the experimentally observed anomalous behavior of the lifetimes of the P-selectin/PSGL-1 and FimH/mannose complexes as a function of applied force and provides valuable insights into the mechanism of catch-binding.

  12. Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction

    PubMed Central

    Crosson, Sean; Moffat, Keith

    2001-01-01

    Phototropin, a major blue-light receptor for phototropism in seed plants, exhibits blue-light-dependent autophosphorylation and contains two light, oxygen, or voltage (LOV) domains and a serine/threonine kinase domain. The LOV domains share homology with the PER-ARNT-SIM (PAS) superfamily, a diverse group of sensor proteins. Each LOV domain noncovalently binds a single FMN molecule and exhibits reversible photochemistry in vitro when expressed separately or in tandem. We have determined the crystal structure of the LOV2 domain from the phototropin segment of the chimeric fern photoreceptor phy3 to 2.7-Å resolution. The structure constitutes an FMN-binding fold that reveals how the flavin cofactor is embedded in the protein. The single LOV2 cysteine residue is located 4.2 Å from flavin atom C(4a), consistent with a model in which absorption of blue light induces formation of a covalent cysteinyl-C(4a) adduct. Residues that interact with FMN in the phototropin segment of the chimeric fern photoreceptor (phy3) LOV2 are conserved in LOV domains from phototropin of other plant species and from three proteins involved in the regulation of circadian rhythms in Arabidopsis and Neurospora. This conservation suggests that these domains exhibit the same overall fold and share a common mechanism for flavin binding and light-induced signaling. PMID:11248020

  13. Solution NMR structure and histone binding of the PHD domain of human MLL5.

    PubMed

    Lemak, Alexander; Yee, Adelinda; Wu, Hong; Yap, Damian; Zeng, Hong; Dombrovski, Ludmila; Houliston, Scott; Aparicio, Samuel; Arrowsmith, Cheryl H

    2013-01-01

    Mixed Lineage Leukemia 5 (MLL5) is a histone methyltransferase that plays a key role in hematopoiesis, spermatogenesis and cell cycle progression. In addition to its catalytic domain, MLL5 contains a PHD finger domain, a protein module that is often involved in binding to the N-terminus of histone H3. Here we report the NMR solution structure of the MLL5 PHD domain showing a variant of the canonical PHD fold that combines conserved H3 binding features from several classes of other PHD domains (including an aromatic cage) along with a novel C-terminal α-helix, not previously seen. We further demonstrate that the PHD domain binds with similar affinity to histone H3 tail peptides di- and tri-methylated at lysine 4 (H3K4me2 and H3K4me3), the former being the putative product of the MLL5 catalytic reaction. This work establishes the PHD domain of MLL5 as a bone fide 'reader' domain of H3K4 methyl marks suggesting that it may guide the spreading or further methylation of this site on chromatin.

  14. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems

    PubMed Central

    Makarova, Kira S.; Anantharaman, Vivek; Grishin, Nick V.; Koonin, Eugene V.; Aravind, L.

    2014-01-01

    CRISPR-Cas adaptive immunity systems of bacteria and archaea insert fragments of virus or plasmid DNA as spacer sequences into CRISPR repeat loci. Processed transcripts encompassing these spacers guide the cleavage of the cognate foreign DNA or RNA. Most CRISPR-Cas loci, in addition to recognized cas genes, also include genes that are not directly implicated in spacer acquisition, CRISPR transcript processing or interference. Here we comprehensively analyze sequences, structures and genomic neighborhoods of one of the most widespread groups of such genes that encode proteins containing a predicted nucleotide-binding domain with a Rossmann-like fold, which we denote CARF (CRISPR-associated Rossmann fold). Several CARF protein structures have been determined but functional characterization of these proteins is lacking. The CARF domain is most frequently combined with a C-terminal winged helix-turn-helix DNA-binding domain and “effector” domains most of which are predicted to possess DNase or RNase activity. Divergent CARF domains are also found in RtcR proteins, sigma-54 dependent regulators of the rtc RNA repair operon. CARF genes frequently co-occur with those coding for proteins containing the WYL domain with the Sm-like SH3 β-barrel fold, which is also predicted to bind ligands. CRISPR-Cas and possibly other defense systems are predicted to be transcriptionally regulated by multiple ligand-binding proteins containing WYL and CARF domains which sense modified nucleotides and nucleotide derivatives generated during virus infection. We hypothesize that CARF domains also transmit the signal from the bound ligand to the fused effector domains which attack either alien or self nucleic acids, resulting, respectively, in immunity complementing the CRISPR-Cas action or in dormancy/programmed cell death. PMID:24817877

  15. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen.

    PubMed

    Konitsiotis, Antonios D; Raynal, Nicolas; Bihan, Dominique; Hohenester, Erhard; Farndale, Richard W; Leitinger, Birgit

    2008-03-14

    The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III. Focusing on this sequence, we used a set of truncated and alanine-substituted peptides to characterize the sequence GVMGFO (O is hydroxyproline) as the minimal collagen sequence required for DDR2 binding. Based on a recent NMR analysis of the DDR2 collagen binding domain, we generated a model of the DDR2-collagen interaction that explains why a triple-helical conformation is required for binding. Triple-helical peptides comprising the DDR2 binding motif not only inhibited DDR2 binding to collagen II but also activated DDR2 transmembrane signaling. Thus, DDR2 activation may be effected by single triple-helices rather than fibrillar collagen.

  16. The conserved Tarp actin binding domain is important for chlamydial invasion.

    PubMed

    Jewett, Travis J; Miller, Natalie J; Dooley, Cheryl A; Hackstadt, Ted

    2010-07-15

    The translocated actin recruiting phosphoprotein (Tarp) is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  17. Definition of structural elements in Plasmodium vivax and P. knowlesi Duffy-binding domains necessary for erythrocyte invasion.

    PubMed

    Singh, Saurabh K; Singh, Agam P; Pandey, Sunita; Yazdani, Syed S; Chitnis, Chetan E; Sharma, Amit

    2003-08-15

    Plasmodium vivax and P. knowlesi use the Duffy antigen as a receptor to invade human erythrocytes. Duffy-binding ligands belong to a family of erythrocyte-binding proteins that bind erythrocyte receptors to mediate invasion. Receptor-binding domains in erythrocyte-binding proteins lie in conserved cysteine-rich regions called Duffy-binding-like domains. In the present study, we report an analysis of the overall three-dimensional architecture of P. vivax and P. knowlesi Duffy-binding domains based on mild proteolysis and supportive-functional assays. Our proteolysis experiments indicate that these domains are built of two distinct subdomains. The N-terminal region from Cys-1-4 (C1-C4) forms a stable non-functional subdomain. The region spanning C5-C12 forms another subdomain, which is capable of binding Duffy antigen. These subdomains are joined by a protease-sensitive linker. Results from deletion constructs, designed for expression of truncated proteins on COS cell surface, show that regions containing C5-C8 of the Duffy-binding domains are sufficient for the binding receptor. Therefore the central region of Duffy-binding domains, which is flanked by two non-functional regions, is responsible for receptor recognition. Moreover, the minimal Duffy-binding region identified here is capable of folding into a functionally competent module. These studies pave the way for understanding the architecture of Duffy-binding domains and their interactions with host receptors.

  18. Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides.

    PubMed

    Salomon, Dor; Guo, Yirui; Kinch, Lisa N; Grishin, Nick V; Gardner, Kevin H; Orth, Kim

    2013-01-01

    Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells.

  19. Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides

    PubMed Central

    Salomon, Dor; Guo, Yirui; Kinch, Lisa N.; Grishin, Nick V.; Gardner, Kevin H.; Orth, Kim

    2016-01-01

    Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells. PMID:24346350

  20. Tetrameric ZBRK1 DNA binding domain has affinity towards cognate DNA in absence of zinc ions.

    PubMed

    Yadav, Lumbini R; Biswal, Mahamaya N; Vikrant; Hosur, M V; Varma, Ashok K

    2014-07-18

    Zinc finger transcription regulatory proteins play crucial roles in cell-cycle regulation, DNA damage response and tumor genesis. Human ZBRK1 is a zinc-finger transcription repressor protein, which recognizes double helical DNA containing consensus sequences of 5'GGGXXXCAGXXXTTT3'. In the present study, we have purified recombinant DNA binding domain of ZBRK1, and studied binding with zinc ions and DNA, using biophysical techniques. The elution profile of the purified protein suggests that this ZBRK1 forms a homotetramer in solution. Dissociation and pull down assays also suggest that this domain forms a higher order oligomer. The ZBRK1-DNA binding domain acquires higher stability in the presence of zinc ions and DNA. The secondary structure of the ZBRK1-DNA complex is found to be significantly altered from the standard B-DNA conformation. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. The glucocorticoid receptor hormone binding domain mediates transcriptional activation in vitro in the absence of ligand.

    PubMed Central

    Schmitt, J; Stunnenberg, H G

    1993-01-01

    We show that recombinant rat glucocorticoid receptor (vvGR) expressed using vaccinia virus is indistinguishable from authentic GR with respect to DNA and hormone binding. In the absence of hormone, vvGR is mainly found in the cytoplasm in a complex with heat shock protein 90. Upon incubation with ligand, vvGR is released from this complex and translocated to the nucleus. Thus, the ligand binding domain displays the known biochemical properties. However, in vitro, transcription from a synthetic promoter and from the mouse mammary tumor virus (MMTV) promoter is enhanced by recombinant GR in a ligand independent manner. Both transactivation domains contribute to the transcriptional activity, additively on a synthetic promoter and cooperatively on the MMTV promoter. We thus provide the first evidence that in vitro the hormone binding domain has a transcriptional activity even in the absence of ligand. Images PMID:8392705

  2. The Binding Specificity of the PHD-Finger Domain of VIN3 Moderates Vernalization Response.

    PubMed

    Kim, Dong-Hwan; Sung, Sibum

    2017-02-01

    Vernalization is a response to winter cold to initiate flowering in spring. VERNALIZATION INSENSITIVE3 (VIN3) is induced by winter cold and is essential to vernalization response in Arabidopsis (Arabidopsis thaliana). VIN3 encodes a PHD-finger domain that binds to modified histones in vitro. An alteration in the binding specificity of the PHD-finger domain of VIN3 results in a hypervernalization response. The hypervernalization response is achieved by increased enrichments of VIN3 and trimethylation of Histone H3 Lys 27 at the FLC locus without invoking the increased enrichment of Polycomb Repressive Complex 2. Our result shows that the binding specificity of the PHD-finger domain of VIN3 plays a role in mediating a proper vernalization response in Arabidopsis.

  3. Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain.

    PubMed

    Ni, Tao; Kalli, Antreas C; Naughton, Fiona B; Yates, Luke A; Naneh, Omar; Kozorog, Mirijam; Anderluh, Gregor; Sansom, Mark S P; Gilbert, Robert J C

    2017-02-15

    Kindlins co-activate integrins alongside talin. They possess, like talin, a FERM domain (4.1-erythrin-radixin-moiesin domain) comprising F0-F3 subdomains, but with a pleckstrin homology (PH) domain inserted in the F2 subdomain that enables membrane association. We present the crystal structure of murine kindlin-3 PH domain determined at a resolution of 2.23 Å and characterise its lipid binding using biophysical and computational approaches. Molecular dynamics simulations suggest flexibility in the PH domain loops connecting β-strands forming the putative phosphatidylinositol phosphate (PtdInsP)-binding site. Simulations with PtdInsP-containing bilayers reveal that the PH domain associates with PtdInsP molecules mainly via the positively charged surface presented by the β1-β2 loop and that it binds with somewhat higher affinity to PtdIns(3,4,5)P3 compared with PtdIns(4,5)P2 Surface plasmon resonance (SPR) with lipid headgroups immobilised and the PH domain as an analyte indicate affinities of 300 µM for PtdIns(3,4,5)P3 and 1 mM for PtdIns(4,5)P2 In contrast, SPR studies with an immobilised PH domain and lipid nanodiscs as the analyte show affinities of 0.40 µM for PtdIns(3,4,5)P3 and no affinity for PtdIns(4,5)P2 when the inositol phosphate constitutes 5% of the total lipids (∼5 molecules per nanodisc). Reducing the PtdIns(3,4,5)P3 composition to 1% abolishes nanodisc binding to the PH domain, as does site-directed mutagenesis of two lysines within the β1-β2 loop. Binding of PtdIns(3,4,5)P3 by a canonical PH domain, Grp1, is not similarly influenced by SPR experimental design. These data suggest a role for PtdIns(3,4,5)P3 clustering in the binding of some PH domains and not others, highlighting the importance of lipid mobility and clustering for the biophysical assessment of protein-membrane interactions. © 2017 The Author(s).

  4. Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain

    PubMed Central

    Ni, Tao; Kalli, Antreas C.; Naughton, Fiona B.; Yates, Luke A.; Naneh, Omar; Kozorog, Mirijam; Anderluh, Gregor

    2017-01-01

    Kindlins co-activate integrins alongside talin. They possess, like talin, a FERM domain (4.1-erythrin–radixin–moiesin domain) comprising F0–F3 subdomains, but with a pleckstrin homology (PH) domain inserted in the F2 subdomain that enables membrane association. We present the crystal structure of murine kindlin-3 PH domain determined at a resolution of 2.23 Å and characterise its lipid binding using biophysical and computational approaches. Molecular dynamics simulations suggest flexibility in the PH domain loops connecting β-strands forming the putative phosphatidylinositol phosphate (PtdInsP)-binding site. Simulations with PtdInsP-containing bilayers reveal that the PH domain associates with PtdInsP molecules mainly via the positively charged surface presented by the β1–β2 loop and that it binds with somewhat higher affinity to PtdIns(3,4,5)P3 compared with PtdIns(4,5)P2. Surface plasmon resonance (SPR) with lipid headgroups immobilised and the PH domain as an analyte indicate affinities of 300 µM for PtdIns(3,4,5)P3 and 1 mM for PtdIns(4,5)P2. In contrast, SPR studies with an immobilised PH domain and lipid nanodiscs as the analyte show affinities of 0.40 µM for PtdIns(3,4,5)P3 and no affinity for PtdIns(4,5)P2 when the inositol phosphate constitutes 5% of the total lipids (∼5 molecules per nanodisc). Reducing the PtdIns(3,4,5)P3 composition to 1% abolishes nanodisc binding to the PH domain, as does site-directed mutagenesis of two lysines within the β1–β2 loop. Binding of PtdIns(3,4,5)P3 by a canonical PH domain, Grp1, is not similarly influenced by SPR experimental design. These data suggest a role for PtdIns(3,4,5)P3 clustering in the binding of some PH domains and not others, highlighting the importance of lipid mobility and clustering for the biophysical assessment of protein–membrane interactions. PMID:27974389

  5. Specificity Profiling of Protein-Binding Domains Using One-Bead-One-Compound Peptide Libraries

    PubMed Central

    Kunys, Andrew R.; Lian, Wenlong; Pei, Dehua

    2013-01-01

    One-bead-one-compound (OBOC) libraries consist of structurally related compounds (e.g., peptides) covalently attached to a solid support, with each resin bead carrying a unique compound. OBOC libraries of high structural diversity can be rapidly synthesized and screened without the need of any special equipment and therefore can be employed in any chemical or biochemical laboratory. OBOC peptide libraries have been widely used to map the ligand specificity of proteins, to determine the substrate specificity of enzymes, and to develop inhibitors against macromolecular targets. They have proven particularly useful in profiling the binding specificity of protein modular domains (e.g., SH2 domains, BIR domains, and PDZ domains) and subsequently using the specificity information to predict the protein targets of these domains. The protocols outlined in this article describe the methodologies for synthesizing and screening OBOC peptide libraries against SH2 and PDZ domains and the related data analysis. PMID:23788558

  6. FHA domains as phospho-threonine binding modules in cell signaling.

    PubMed

    Hammet, Andrew; Pike, Brietta L; McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg

    2003-01-01

    Forkhead-associated (FHA) domains are present in >200 diverse proteins in all phyla from bacteria to mammals and seem to be particularly prevalent in proteins with cell cycle control functions. Recent work from several laboratories has considerably improved our understanding of the structure and function of these domains that were virtually unknown a few years ago, and the first disease associations of FHA domains have now emerged. FHA domains form 11-stranded beta-sandwiches that contain some 100-180 amino acid residues with a high degree of sequence diversity. FHA domains act as phosphorylation-dependent protein-protein interaction modules that preferentially bind to phospho-threonine residues in their targets. Interestingly, point mutations in the human CHK2 gene that lead to single-residue amino acid substitutions in the FHA domain of this cell cycle checkpoint kinase have been found to cause a subset of cases of the Li-Fraumeni multi-cancer syndrome.

  7. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers

    SciTech Connect

    Zoghbi, M. E.; Altenberg, G. A.

    2013-10-15

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we used luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation.

  8. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers*

    PubMed Central

    Zoghbi, Maria E.; Altenberg, Guillermo A.

    2013-01-01

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we used luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation. PMID:24129575

  9. Evidence for a role for the phosphotyrosine-binding domain of Shc in interleukin 2 signaling.

    PubMed Central

    Ravichandran, K S; Igras, V; Shoelson, S E; Fesik, S W; Burakoff, S J

    1996-01-01

    Stimulation via the T-cell growth factor interleukin 2 (IL-2) leads to tyrosine phosphorylation of Shc, the interaction of Shc with Grb2, and the Ras GTP/GDP exchange factor, mSOS. Shc also coprecipitates with the IL-2 receptor (IL-2R), and therefore, may link IL-2R to Ras activation. We have further characterized the Shc-IL-2R interaction and have made the following observations. (i) Among the two phosphotyrosine-interaction domains present in Shc, the phosphotyrosine-binding (PTB) domain, rather than its SH2 domain, interacts with the tyrosine-phosphorylated IL-2R beta chain. Moreover, the Shc-PTB domain binds a phosphopeptide derived from the IL-2R beta chain (corresponding to residues surrounding Y338, SCFTNQGpYFF) with high affinity. (ii) In vivo, mutant IL-2R beta chains lacking the acidic region of IL-2Rbeta (which contains Y338) fail to phosphorylate Shc. Furthermore, when wild type or mutant Shc proteins that lack the PTB domain were expressed in the IL-2-dependent CTLL-20 cell line, an intact Shc-PTB domain was required for Shc phosphorylation by the IL-2R, which provides further support for a Shc-PTB-IL-2R interaction in vivo. (iii) PTB and SH2 domains of Shc associate with different proteins in IL-2- and T-cell-receptor-stimulated lysates, suggesting that Shc, through the concurrent use of its two different phosphotyrosine-binding domains, could assemble multiple protein complexes. Taken together, our in vivo and in vitro observations suggest that the PTB domain of Shc interacts with Y338 of the IL-2R and provide evidence for a functional role for the Shc-PTB domain in IL-2 signaling. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8643566

  10. The human polymeric immunoglobulin receptor binds to Streptococcus pneumoniae via domains 3 and 4.

    PubMed

    Lu, Ling; Lamm, Michael E; Li, Hongmin; Corthesy, Blaise; Zhang, Jing-Ren

    2003-11-28

    Streptococcus pneumoniae (the pneumococcus) is a major cause of bacterial pneumonia, middle ear infection (otitis media), sepsis, and meningitis. Our previous study demonstrated that the choline-binding protein A (CbpA) of S. pneumoniae binds to the human polymeric immunoglobulin receptor (pIgR) and enhances pneumococcal adhesion to and invasion of cultured epithelial cells. In this study, we sought to determine the CbpA-binding motif on pIgR by deletional analysis. The extra-cellular portion of pIgR consists of five Ig-like domains (D1-D5), each of which contains 104-114 amino acids and two disulfide bonds. Deletional analysis of human pIgR revealed that the lack of either D3 or D4 resulted in the loss of CbpA binding, whereas complete deletions of domains D1, D2, and D5 had undetectable impacts. Subsequent analysis showed that domains D3 and D4 together were necessary and sufficient for the ligand-binding activity. Furthermore, CbpA binding of pIgR did not appear to require Ca2+ or Mg2+. Finally, treating pIgR with a reducing agent abolished CbpA binding, suggesting that disulfide bonding is required for the formation of CbpA-binding motif(s). These results strongly suggest a conformational CbpA-binding motif(s) in the D3/D4 region of human pIgR, which is functionally separated from the IgA-binding site(s).

  11. The alpha2beta1 integrin inhibitor rhodocetin binds to the A-domain of the integrin alpha2 subunit proximal to the collagen-binding site.

    PubMed Central

    Eble, Johannes A; Tuckwell, Danny S

    2003-01-01

    Rhodocetin is a snake venom protein that binds to alpha2beta1 integrin, inhibiting its interaction with its endogenous ligand collagen. We have determined the mechanism by which rhodocetin inhibits the function of alpha2beta1. The interaction of alpha2beta1 with collagen and rhodocetin differed: Ca(2+) ions and slightly acidic pH values increased the binding of alpha2beta1 integrin to rhodocetin in contrast with their attenuating effect on collagen binding, suggesting that rhodocetin preferentially binds to a less active conformation of alpha2beta1 integrin. The alpha2A-domain [von Willebrand factor domain A homology domain (A-domain) of the integrin alpha2 subunit] is the major site for collagen binding to alpha2beta1. Recombinant alpha2A-domain bound rhodocetin, demonstrating that the A-domain is also the rhodocetin-binding domain. Although the interaction of alpha2beta1 with rhodocetin is affected by altering divalent cations, the interaction of the A-domain was divalent-cation-independent. The rhodocetin-binding site on the alpha2A-domain was mapped first by identifying an anti-alpha2 antibody that blocked rhodocetin binding and then mapping the epitope of the antibody using human-mouse alpha2A-domain chimaeras; and secondly, by binding studies with alpha2A-domain, which bear point mutations in the vicinity of the mapped epitope. In this way, the rhodocetin-binding site was identified as the alpha3-alpha4 loop plus adjacent alpha-helices. This region is known to form part of the collagen-binding site, thus attaining a mainly competitive mode of inhibition by rhodocetin. PMID:12871211

  12. Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions

    NASA Astrophysics Data System (ADS)

    Crivelli, Joseph J.; Lemmon, Gordon; Kaufmann, Kristian W.; Meiler, Jens

    2013-12-01

    Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain-peptide interactions capable of predicting both affinity and specificity of binding based on X-ray crystal structures and comparative modeling with R osetta. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several R osetta protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain-peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain-peptide interactions.

  13. LFA-1 and Mac-1 integrins bind to the serine/threonine-rich domain of thrombomodulin

    SciTech Connect

    Kawamoto, Eiji; Okamoto, Takayuki; Takagi, Yoshimi; Honda, Goichi; Suzuki, Koji; Imai, Hiroshi; Shimaoka, Motomu

    2016-05-13

    LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding of PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells. - Highlights: • LFA-1 and Mac-1 integrins bind to the anti-coagulant molecule thrombomodulin. • The serine/threonine-rich domain of thrombomodulin is essential to interact with the LFA-1 and Mac-1 integrins on PBMCs. • Integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells.

  14. Probing the Determinants of Diacylglycerol Binding Affinity in C1B domain of Protein Kinase Cα

    PubMed Central

    Stewart, Mikaela D.; Morgan, Brittany; Massi, Francesca; Igumenova, Tatyana I.

    2012-01-01

    C1 domains are independently folded modules that are responsible for targeting their parent proteins to lipid membranes containing diacylglycerol (DAG), a ubiquitous second messenger. The DAG-binding affinities of C1 domains determine the threshold concentration of DAG required for the propagation of the signaling response and the selectivity of this response among the DAG receptors in the cell. The structural information currently available for C1 domains offers little insight into the molecular basis of their differential DAG-binding affinities. In this work, we characterized the C1B domain of Protein Kinase Cα (C1Bα) and its diagnostic mutant, Y123W, using solution NMR methods and molecular dynamics simulations. The mutation did not perturb the C1Bα structure or sub-nanosecond dynamics of the protein backbone, but resulted in a >100-fold increase of DAG binding affinity and substantial change in μs-timescale conformational dynamics, as quantified by NMR rotating-frame relaxation-dispersion methods. The differences in the conformational exchange behavior between the wild-type and Y123W C1Bα were localized to the hinge regions of ligand-binding loops. Molecular dynamics simulations provided insight into the identity of the exchanging conformers and revealed the significance of a particular residue, Gln128, in modulating the geometry of the ligand-binding site. Taken together with the results of binding studies, our findings suggest that the conformational dynamics and preferential partitioning of the tryptophan sidechain into the water-lipid interface are important factors that modulate the DAG-binding properties of C1 domains. PMID:21419781

  15. A conserved G4 DNA binding domain in RecQ family helicases.

    PubMed

    Huber, Michael D; Duquette, Michelle L; Shiels, Jerome C; Maizels, Nancy

    2006-05-12

    RecQ family helicases play important roles at G-rich domains of the genome, including the telomeres, rDNA, and immunoglobulin switch regions. This appears to reflect the unusual ability of enzymes in this family to unwind G4 DNA. How RecQ family helicases recognize this substrate has not been established. Here, we show that G4 DNA is a preferred target for BLM helicase within the context of long DNA molecules. We identify the RQC domain, found only in RecQ family enzymes, as an independent, high affinity and conserved G4 DNA binding domain; and show that binding to Holliday junctions involves both the RQC and the HRDC domains. These results provide mechanistic understanding of differences and redundancies of function and activities among RecQ family helicases, and of how deficiencies in human members of this family may contribute to genomic instability and disease.

  16. Sequence Discrimination by Alternatively Spliced Isoforms of a DNA Binding Zinc Finger Domain

    NASA Astrophysics Data System (ADS)

    Gogos, Joseph A.; Hsu, Tien; Bolton, Jesse; Kafatos, Fotis C.

    1992-09-01

    Two major developmentally regulated isoforms of the Drosophila chorion transcription factor CF2 differ by an extra zinc finger within the DNA binding domain. The preferred DNA binding sites were determined and are distinguished by an internal duplication of TAT in the site recognized by the isoform with the extra finger. The results are consistent with modular interactions between zinc fingers and trinucleotides and also suggest rules for recognition of AT-rich DNA sites by zinc finger proteins. The results show how modular finger interactions with trinucleotides can be used, in conjunction with alternative splicing, to alter the binding specificity and increase the spectrum of sites recognized by a DNA binding domain. Thus, CF2 may potentially regulate distinct sets of target genes during development.

  17. Crystal Structure of a Bacterial Albumin-Binding Domain at 1.4 Angstrom Resolution

    SciTech Connect

    Cramer, J.F.; Nordberg, P.A.; Hajdu, J.; Lejon, S.; /Uppsala U. /Aalborg U. /Astra Tech, Molndal /SLAC

    2007-11-26

    The albumin-binding domain, or GA module, of the peptostreptococcal albumin-binding protein expressed in pathogenic strains of Finegoldia magna is believed to be responsible for the virulence and increased growth rate of these strains. Here we present the 1.4 Angstrom crystal structure of this domain, and compare it with the crystal structure of the GA-albumin complex. An analysis of protein-protein interactions in the two crystals, and the presence of multimeric GA species in solution, indicate the GA module is 'sticky', and is capable of forming contacts with a range of protein surfaces. This might lead to interactions with different host proteins.

  18. ADAR proteins: double-stranded RNA and Z-DNA binding domains.

    PubMed

    Barraud, Pierre; Allain, Frédéric H-T

    2012-01-01

    Adenosine deaminases acting on RNA (ADAR) catalyze adenosine to inosine editing within double-stranded RNA (dsRNA) substrates. Inosine is read as a guanine by most cellular processes and therefore these changes create codons for a different amino acid, stop codons or even a new splice-site allowing protein diversity generated from a single gene. We review here the current structural and molecular knowledge on RNA editing by the ADAR family of protein. We focus especially on two types of nucleic acid binding domains present in ADARs, namely the dsRNA and Z-DNA binding domains.

  19. Simian virus 40 origin DNA-binding domain on large T antigen.

    PubMed Central

    Paucha, E; Kalderon, D; Harvey, R W; Smith, A E

    1986-01-01

    Fifty variant forms of simian virus 40 (SV40) large T antigen bearing point, multiple point, deletion, or termination mutations within a region of the protein thought to be involved in DNA binding were tested for their ability to bind to SV40 origin DNA. A number of the mutant large T species including some with point mutations were unable to bind, whereas many were wild type in this activity. The clustering of the mutations that are defective in origin DNA binding both reported here and by others suggests a DNA-binding domain on large T maps between residues 139 and approximately 220, with a particularly sensitive sequence between amino acids 147 and 166. The results indicate that the domain is involved in binding to both site I and site II on SV40 DNA, but it remains unclear whether it is responsible for binding to cellular DNA. Since all the mutants retain the ability to transform Rat-1 cells, we conclude that the ability of large T to bind to SV40 origin DNA is not a prerequisite for its transforming activity. Images PMID:3001365

  20. Definition of the interferon-alpha receptor-binding domain on the TYK2 kinase.

    PubMed

    Yan, H; Piazza, F; Krishnan, K; Pine, R; Krolewski, J J

    1998-02-13

    Interferons and cytokines modulate gene expression via a simple, direct signaling pathway containing receptors, JAK tyrosine kinases, and STAT transcription factors. The interferon-alpha pathway is a model for these cascades. Two receptors, IFNaR1 and IFNaR2, associate exclusively in a constitutive manner with two JAK proteins, TYK2 and JAK1, respectively. Defining the molecular interface between JAK proteins and their receptors is critical to understanding the signaling pathway and may contribute to the development of novel therapeutics. This report defines the IFNaR1 interaction domain on TYK2. In vitro binding studies demonstrate that the amino-terminal half of TYK2, which is approximately 600 amino acids long and contains JAK homology (JH) domains 3-7, comprises the maximal binding domain for IFNaR1. A fragment containing amino acids 171-601 (JH3-6) also binds IFNaR1, but with reduced affinity. Glutathione S-transferase-TYK2 fusion proteins approximating either the JH6 or JH3 domain affinity-precipitate IFNaR1, suggesting that these are major sites of interaction within the larger binding domain. TYK2 amino acids 1-601 act in a dominant manner to inhibit the transcription of an interferon-alpha-dependent reporter gene, presumably by displacing endogenous TYK2 from the receptor. This same fragment inhibits interferon-alpha-dependent tyrosine phosphorylation of TYK2, STAT1, and STAT2.

  1. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    SciTech Connect

    Briers, Yves; Schmelcher, Mathias; Loessner, Martin J.; Hendrix, Jelle; Engelborghs, Yves; Volckaert, Guido; Lavigne, Rob

    2009-05-29

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD{sub KZ}), originating from Pseudomonas aeruginosa bacteriophage {phi}KZ, has been examined using a fusion protein of PBD{sub KZ} and green fluorescent protein (PBD{sub KZ}-GFP). A fluorescence recovery after photobleaching analysis of bound PBD{sub KZ}-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10{sup 7} M{sup -1} for the PBD{sub KZ}-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD{sub KZ}-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  2. The layered fold of the TSR domain of P. falciparum TRAP contains a heparin binding site

    PubMed Central

    Tossavainen, Helena; Pihlajamaa, Tero; Huttunen, Toni K.; Raulo, Erkki; Rauvala, Heikki; Permi, Perttu; Kilpeläinen, Ilkka

    2006-01-01

    Thrombospondin-related anonymous protein, TRAP, has a critical role in the hepatocyte invasion step of Plasmodium sporozoites, the transmissible form of the parasite causing malaria. The extracellular domains of this sporozoite surface protein interact with hepatocyte surface receptors whereas its intracellular domain acts as a link to the sporozoite actomyosin motor system. Liver heparan sulfate proteoglycans have been identified as potential ligands for TRAP. Proteoglycan binding has been associated with the A- and TSR domains of TRAP. We present the solution NMR structure of the TSR domain of TRAP and a chemical shift mapping study of its heparin binding epitope. The domain has an elongated structure stabilized by an array of tryptophan and arginine residues as well as disulfide bonds. The fold is very similar to those of thrombospondin type-1 (TSP-1) and F-spondin TSRs. The heparin binding site of TRAP-TSR is located in the N-terminal half of the structure, the layered side chains forming an integral part of the site. The smallest heparin fragment capable of binding to TRAP-TSR is a tetrasaccharide. PMID:16815922

  3. Cell Migration and Invadopodia Formation Require a Membrane-binding Domain of CARMIL2*

    PubMed Central

    Lanier, M. Hunter; McConnell, Patrick; Cooper, John A.

    2016-01-01

    CARMILs regulate capping protein (CP), a critical determinant of actin assembly and actin-based cell motility. Vertebrates have three conserved CARMIL genes with distinct functions. In migrating cells, CARMIL2 is important for cell polarity, lamellipodial assembly, ruffling, and macropinocytosis. In cells, CARMIL2 localizes with a distinctive dual pattern to vimentin intermediate filaments and to membranes at leading edges and macropinosomes. The mechanism by which CARMIL2 localizes to membranes has not been defined. Here, we report that CARMIL2 has a conserved membrane-binding domain composed of basic and hydrophobic residues, which is necessary and sufficient for membrane localization, based on expression studies in cells and on direct binding of purified protein to lipids. Most important, we find that the membrane-binding domain is necessary for CARMIL2 to function in cells, based on rescue expression with a set of biochemically defined mutants. CARMIL1 and CARMIL3 contain similar membrane-binding domains, based on sequence analysis and on experiments, but other CPI motif proteins, such as CD2AP, do not. Based on these results, we propose a model in which the membrane-binding domain of CARMIL2 tethers this multidomain protein to the membrane, where it links dynamic vimentin filaments with regulation of actin assembly via CP. PMID:26578515

  4. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.

    PubMed Central

    Paldi, Tzur; Levy, Ilan; Shoseyov, Oded

    2003-01-01

    Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch. PMID:12646045

  5. Cell Migration and Invadopodia Formation Require a Membrane-binding Domain of CARMIL2.

    PubMed

    Lanier, M Hunter; McConnell, Patrick; Cooper, John A

    2016-01-15

    CARMILs regulate capping protein (CP), a critical determinant of actin assembly and actin-based cell motility. Vertebrates have three conserved CARMIL genes with distinct functions. In migrating cells, CARMIL2 is important for cell polarity, lamellipodial assembly, ruffling, and macropinocytosis. In cells, CARMIL2 localizes with a distinctive dual pattern to vimentin intermediate filaments and to membranes at leading edges and macropinosomes. The mechanism by which CARMIL2 localizes to membranes has not been defined. Here, we report that CARMIL2 has a conserved membrane-binding domain composed of basic and hydrophobic residues, which is necessary and sufficient for membrane localization, based on expression studies in cells and on direct binding of purified protein to lipids. Most important, we find that the membrane-binding domain is necessary for CARMIL2 to function in cells, based on rescue expression with a set of biochemically defined mutants. CARMIL1 and CARMIL3 contain similar membrane-binding domains, based on sequence analysis and on experiments, but other CPI motif proteins, such as CD2AP, do not. Based on these results, we propose a model in which the membrane-binding domain of CARMIL2 tethers this multidomain protein to the membrane, where it links dynamic vimentin filaments with regulation of actin assembly via CP. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Evolution of binding affinity in a WW domain probed by phage display.

    PubMed Central

    Dalby, P. A.; Hoess, R. H.; DeGrado, W. F.

    2000-01-01

    The WW domain is an approximately 38 residue peptide-binding motif that binds a variety of sequences, including the consensus sequence xPPxY. We have displayed hYAP65 WW on the surface of M13 phage and randomized one-third of its three-stranded antiparallel beta-sheet. Improved binding to the hydrophobic peptide, GTPPPPYTVG (WW1), was selected in the presence of three different concentrations of proteinase K to simultaneously drive selection for improved stability as well as high-affinity binding. While some of the selected binders show cooperative unfolding transitions, others show noncooperative thermal unfolding curves. Two novel WW consensus sequences have been identified, which bind to the xPPxY motif with higher affinity than the wild-type hYAP65 WW domain. These WW domain sequences are not precedented in any natural WW domain sequence. Thus, there appear to be a large number of motifs capable of recognizing the target peptide sequence, only a subset of which appear to be used in natural proteins. PMID:11206058

  7. The discovery of modular binding domains: building blocks of cell signalling.

    PubMed

    Mayer, Bruce J

    2015-11-01

    Cell signalling - the ability of a cell to process information from the environment and change its behaviour in response - is a central property of life. Signalling depends on proteins that are assembled from a toolkit of modular domains, each of which confers a specific activity or function. The discovery of modular protein- and lipid-binding domains was a crucial turning point in understanding the logic and evolution of signalling mechanisms.

  8. Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding

    SciTech Connect

    De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.

    2013-11-20

    Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures of IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.

  9. Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding

    PubMed Central

    De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.

    2011-01-01

    Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-β (IFN-β) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-β promoter elements revealed flexibility in the loops (L1–L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures of IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding. PMID:21596780

  10. Kinetics of CO binding to the haem domain of murine inducible nitric oxide synthase: differential effects of haem domain ligands.

    PubMed Central

    Stevenson, T H; Gutierrez, A F; Alderton, W K; Lian , L; Scrutton, N S

    2001-01-01

    The binding of CO to the murine inducible nitric oxide synthase (iNOS) oxygenase domain has been studied by laser flash photolysis. The effect of the (6R)-5,6,7,8-tetrahydro-L-biopterin (BH(4)) cofactor L-arginine and several Type I L-arginine analogues/ligands on the rates of CO rebinding has been evaluated. The presence of BH(4) in the iNOS active site has little effect on the rebinding of protein-caged haem-CO pairs (geminate recombination), but decreases the bimolecular association rates 2-fold. Addition of L-arginine to the BH(4)-bound complex completely abolishes geminate recombination and results in a further 80-fold decrease in the overall rate of bimolecular association. Three of the Type I ligands, S-ethylisothiourea, L-canavanine and 2,5-lutidine, displaced the CO from the haem iron upon addition to the iNOS oxygenase domain. The Type I ligands significantly decreased the rate of bimolecular binding of CO to the haem iron after photolysis. Most of these ligands also completely abolished geminate recombination. These results are consistent with a relatively open distal pocket that allows CO to bind unhindered in the active site of murine iNOS in the absence of L-arginine or BH(4). In the presence of BH(4) and L-arginine, however, the enzyme adopts a more closed structure that can greatly reduce ligand access to the haem iron. These observations are discussed in terms of the known structure of iNOS haem domain and solution studies of ligand binding in iNOS and neuronal NOS isoenzymes. PMID:11485568

  11. The C-terminal helices of heat shock protein 70 are essential for J-domain binding and ATPase activation.

    PubMed

    Gao, Xue-Chao; Zhou, Chen-Jie; Zhou, Zi-Ren; Wu, Meng; Cao, Chun-Yang; Hu, Hong-Yu

    2012-02-17

    The J-domain co-chaperones work together with the heat shock protein 70 (HSP70) chaperone to regulate many cellular events, but the mechanism underlying the J-domain-mediated HSP70 function remains elusive. We studied the interaction between human-inducible HSP70 and Homo sapiens J-domain protein (HSJ1a), a J domain and UIM motif-containing co-chaperone. The J domain of HSJ1a shares a conserved structure with other J domains from both eukaryotic and prokaryotic species, and it mediates the interaction with and the ATPase cycle of HSP70. Our in vitro study corroborates that the N terminus of HSP70 including the ATPase domain and the substrate-binding β-subdomain is not sufficient to bind with the J domain of HSJ1a. The C-terminal helical α-subdomain of HSP70, which was considered to function as a lid of the substrate-binding domain, is crucial for binding with the J domain of HSJ1a and stimulating the ATPase activity of HSP70. These fluctuating helices are likely to contribute to a proper conformation of HSP70 for J-domain binding other than directly bind with the J domain. Our findings provide an alternative mechanism of allosteric activation for functional regulation of HSP70 by its J-domain co-chaperones.

  12. Structure of the choline-binding domain of Spr1274 in Streptococcus pneumoniae

    PubMed Central

    Zhang, Zhenyi; Li, Wenzhe; Frolet, Cecile; Bao, Rui; di Guilmi, Anne-Marie; Vernet, Thierry; Chen, Yuxing

    2009-01-01

    Spr1274 is a putative choline-binding protein that is bound to the cell wall of Streptococcus pneumoniae through noncovalent interactions with the choline moieties of teichoic and lipoteichoic acids. Its function is still unknown. The crystal structure of the choline-binding domain of Spr1274 (residues 44–129) was solved at 2.38 Å resolution with three molecules in the asymmetric unit. It may provide a structural basis for functional analysis of choline-binding proteins. PMID:19652332

  13. Genome-Wide Analysis of PDZ Domain Binding Reveals Inherent Functional Overlap within the PDZ Interaction Network

    PubMed Central

    te Velthuis, Aartjan J. W.; Sakalis, Philippe A.; Fowler, Donald A.; Bagowski, Christoph P.

    2011-01-01

    Binding selectivity and cross-reactivity within one of the largest and most abundant interaction domain families, the PDZ family, has long been enigmatic. The complete human PDZ domain complement (the PDZome) consists of 267 domains and we applied here a Bayesian selectivity model to predict hundreds of human PDZ domain interactions, using target sequences of 22,997 non-redundant proteins. Subsequent analysis of these binding scores shows that PDZs can be divided into two genome-wide clusters that coincide well with the division between canonical class 1 and 2 PDZs. Within the class 1 PDZs we observed binding overlap at unprecedented levels, mediated by two residues at positions 1 and 5 of the second α-helix of the binding pocket. Eight PDZ domains were subsequently selected for experimental binding studies and to verify the basics of our predictions. Overall, the PDZ domain class 1 cross-reactivity identified here implies that auxiliary mechanisms must be in place to overcome this inherent functional overlap and to minimize cross-selectivity within the living cell. Indeed, when we superimpose PDZ domain binding affinities with gene ontologies, network topology data and the domain position within a PDZ superfamily protein, functional overlap is minimized and PDZ domains position optimally in the binding space. We therefore propose that PDZ domain selectivity is achieved through cellular context rather than inherent binding specificity. PMID:21283644

  14. Human formyl peptide receptor ligand binding domain(s). Studies using an improved mutagenesis/expression vector reveal a novel mechanism for the regulation of receptor occupancy.

    PubMed

    Perez, H D; Vilander, L; Andrews, W H; Holmes, R

    1994-09-09

    Recently, we reported the domain requirements for the binding of formyl peptide to its specific receptor. Based on experiments using receptor chimeras, we also postulated an importance for the amino-terminal domain of the receptor in ligand binding (Perez, H. D., Holmes, R., Vilander, L., Adams, R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295). We have begun to perform a detailed analysis of the regions within the formyl peptide receptor involved in ligand binding. To address the importance of the receptor amino-terminal domain, we substituted (or inserted) hydrophilic sequences within the amino-terminal domain, expressed the receptors, and determined their ability to bind ligand. A stretch of nine amino acids next to the initial methionine was identified as crucial for receptor occupancy. A peptide containing such a sequence specifically completed binding of the ligand to the receptor. Alanine screen mutagenesis of the second extracellular domain also identified amino acids involved in ligand binding as well as a disulfide bond (Cys98 to Cys176) crucial for maintaining the binding pocket. These studies provide evidence for a novel mechanism involved in regulation of receptor occupancy. Binding of the ligand induces conformational changes in the receptor that result in the apposition of the amino-terminal domain over the ligand, providing a lid to the binding pocket.

  15. Structural evidence of a phosphoinositide binding site in the Rgd1-RhoGAP domain.

    PubMed

    Martinez, Denis; Langlois d'Estaintot, Béatrice; Granier, Thierry; Tolchard, James; Courrèges, Cécile; Prouzet-Mauléon, Valérie; Hugues, Michel; Gallois, Bernard; Doignon, François; Odaert, Benoit

    2017-07-31

    Phosphoinositide lipids recruit proteins to the plasma membrane involved in the regulation of cytoskeleton organization and in signalling pathways that control cell polarity and growth. Among those, Rgd1p is a yeast GTPase activating protein (GAP) specific for Rho3p and Rho4p GTPases, which control actin polymerization and stress signalling pathways. Phosphoinositides not only bind Rgd1p, but also stimulate its GAP activity on the membrane-anchored form of Rho4p. Both F-BAR and RhoGAP domains of Rgd1p are involved in lipid interactions. In the Rgd1p-F-BAR domain, a phosphoinositide binding site has been recently characterized. We report here the X-ray structure of the Rgd1p-RhoGAP domain, identify by NMR spectroscopy and confirm by docking simulations, a new but cryptic phosphoinositide binding site, comprising contiguous A1, A1' and B helices. The addition of helix A1', unusual among RhoGAP domains, seems to be crucial for lipid interactions. Such a site was totally unexpected inside a RhoGAP domain, as it was not predicted from either the protein sequence or its three-dimensional structure. Phosphoinositide binding sites in RhoGAP domains have been reported to correspond to polybasic regions (PBR), which are located at the unstructured flexible termini of proteins. Solid state NMR spectroscopy experiments confirm the membrane interaction of the Rgd1p-RhoGAP domain upon addition of PtdIns(4,5)P2 and indicate a slight membrane destabilization in the presence of the two partners. ©2017 The Author(s).

  16. Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly

    PubMed Central

    AhYoung, Andrew P.; Jiang, Jiansen; Zhang, Jiang; Khoi Dang, Xuan; Loo, Joseph A.; Zhou, Z. Hong; Egea, Pascal F.

    2015-01-01

    Membrane contact sites (MCS) between organelles are proposed as nexuses for the exchange of lipids, small molecules, and other signals crucial to cellular function and homeostasis. Various protein complexes, such as the endoplasmic reticulum-mitochondrial encounter structure (ERMES), function as dynamic molecular tethers between organelles. Here, we report the reconstitution and characterization of subcomplexes formed by the cytoplasm-exposed synaptotagmin-like mitochondrial lipid-binding protein (SMP) domains present in three of the five ERMES subunits—the soluble protein Mdm12, the endoplasmic reticulum (ER)-resident membrane protein Mmm1, and the mitochondrial membrane protein Mdm34. SMP domains are conserved lipid-binding domains found exclusively in proteins at MCS. We show that the SMP domains of Mdm12 and Mmm1 associate into a tight heterotetramer with equimolecular stoichiometry. Our 17-Å-resolution EM structure of the complex reveals an elongated crescent-shaped particle in which two Mdm12 subunits occupy symmetric but distal positions at the opposite ends of a central ER-anchored Mmm1 homodimer. Rigid body fitting of homology models of these SMP domains in the density maps reveals a distinctive extended tubular structure likely traversed by a hydrophobic tunnel. Furthermore, these two SMP domains bind phospholipids and display a strong preference for phosphatidylcholines, a class of phospholipids whose exchange between the ER and mitochondria is essential. Last, we show that the three SMP-containing ERMES subunits form a ternary complex in which Mdm12 bridges Mmm1 to Mdm34. Our findings highlight roles for SMP domains in ERMES assembly and phospholipid binding and suggest a structure-based mechanism for the facilitated transport of phospholipids between organelles. PMID:26056272

  17. Characterization of the Ligand Binding Functionality of the Extracellular Domain of Activin Receptor Type IIB

    PubMed Central

    Sako, Dianne; Grinberg, Asya V.; Liu, June; Davies, Monique V.; Castonguay, Roselyne; Maniatis, Silas; Andreucci, Amy J.; Pobre, Eileen G.; Tomkinson, Kathleen N.; Monnell, Travis E.; Ucran, Jeffrey A.; Martinez-Hackert, Erik; Pearsall, R. Scott; Underwood, Kathryn W.; Seehra, Jasbir; Kumar, Ravindra

    2010-01-01

    The single transmembrane domain serine/threonine kinase activin receptor type IIB (ActRIIB) has been proposed to bind key regulators of skeletal muscle mass development, including the ligands GDF-8 (myostatin) and GDF-11 (BMP-11). Here we provide a detailed kinetic characterization of ActRIIB binding to several low and high affinity ligands using a soluble activin receptor type IIB-Fc chimera (ActRIIB.Fc). We show that both GDF-8 and GDF-11 bind the extracellular domain of ActRIIB with affinities comparable with those of activin A, a known high affinity ActRIIB ligand, whereas BMP-2 and BMP-7 affinities for ActRIIB are at least 100-fold lower. Using site-directed mutagenesis, we demonstrate that ActRIIB binds GDF-11 and activin A in different ways such as, for example, substitutions in ActRIIB Leu79 effectively abolish ActRIIB binding to activin A yet not to GDF-11. Native ActRIIB has four isoforms that differ in the length of the C-terminal portion of their extracellular domains. We demonstrate that the C terminus of the ActRIIB extracellular domain is crucial for maintaining biological activity of the ActRIIB.Fc receptor chimera. In addition, we show that glycosylation of ActRIIB is not required for binding to activin A or GDF-11. Together, our findings reveal binding specificity and activity determinants of the ActRIIB receptor that combine to effect specificity in the activation of distinct signaling pathways. PMID:20385559

  18. The Dynamic Nonprime Binding of Sampatrilat to the C-Domain of Angiotensin-Converting Enzyme.

    PubMed

    Sharma, Rajni K; Espinoza-Moraga, Marlene; Poblete, Horacio; Douglas, Ross G; Sturrock, Edward D; Caballero, Julio; Chibale, Kelly

    2016-12-27

    Sampatrilat is a vasopeptidase inhibitor that inhibits both angiotensin I-converting enzyme (ACE) and neutral endopeptidase. ACE is a zinc dipeptidyl carboxypeptidase that contains two extracellular domains (nACE and cACE). In this study the molecular basis for the selectivity of sampatrilat for nACE and cACE was investigated. Enzyme inhibition assays were performed to evaluate the in vitro ACE domain selectivity of sampatrilat. The inhibition of the C-domain (Ki = 13.8 nM) by sampatrilat was 12.4-fold more potent than that for the N-domain (171.9 nM), indicating differences in affinities for the respective ACE domain binding sites. Interestingly, replacement of the P2 group of sampatrilat with an aspartate abrogated its C-selectivity and lowered the potency of the inhibitor to activities in the micromolar range. The molecular basis for this selective profile was evaluated using molecular modeling methods. We found that the C-domain selectivity of sampatrilat is due to occupation of the lysine side chain in the S1 and S2 subsites and interactions with Glu748 and Glu1008, respectively. This study provides new insights into ligand interactions with the nonprime binding site that can be exploited for the design of domain-selective ACE inhibitors.

  19. Disruption of CEP290 microtubule/membrane-binding domains causes retinal degeneration.

    PubMed

    Drivas, Theodore G; Holzbaur, Erika L F; Bennett, Jean

    2013-10-01

    Mutations in the gene centrosomal protein 290 kDa (CEP290) cause an array of debilitating and phenotypically distinct human diseases, ranging from the devastating blinding disease Leber congenital amaurosis (LCA) to Senior-Løken syndrome, Joubert syndrome, and the lethal Meckel-Gruber syndrome. Despite its critical role in biology and disease, very little is known about CEP290's function. Here, we have identified 4 functional domains of the protein. We found that CEP290 directly binds to cellular membranes through an N-terminal domain that includes a highly conserved amphipathic helix motif and to microtubules through a domain located within its myosin-tail homology domain. Furthermore, CEP290 activity was regulated by 2 autoinhibitory domains within its N and C termini, both of which were found to play critical roles in regulating ciliogenesis. Disruption of the microtubule-binding domain in a mouse model of LCA was sufficient to induce significant deficits in cilium formation, which led to retinal degeneration. These data implicate CEP290 as an integral structural and regulatory component of the cilium and provide insight into the pathological mechanisms of LCA and related ciliopathies. Further, these data illustrate that disruption of particular CEP290 functional domains may lead to particular disease phenotypes and suggest innovative strategies for therapeutic intervention.

  20. Computational Design of the Tiam1 PDZ Domain and Its Ligand Binding.

    PubMed

    Mignon, David; Panel, Nicolas; Chen, Xingyu; Fuentes, Ernesto J; Simonson, Thomas

    2017-05-09

    PDZ domains direct protein-protein interactions and serve as models for protein design. Here, we optimized a protein design energy function for the Tiam1 and Cask PDZ domains that combines a molecular mechanics energy, Generalized Born solvent, and an empirical unfolded state model. Designed sequences were recognized as PDZ domains by the Superfamily fold recognition tool and had similarity scores comparable to natural PDZ sequences. The optimized model was used to redesign the two PDZ domains, by gradually varying the chemical potential of hydrophobic amino acids; the tendency of each position to lose or gain a hydrophobic character represents a novel hydrophobicity index. We also redesigned four positions in the Tiam1 PDZ domain involved in peptide binding specificity. The calculated affinity differences between designed variants reproduced experimental data and suggest substitutions with altered specificities.

  1. Crystal structure of the Actinomadura R39 DD-peptidase reveals new domains in penicillin-binding proteins.

    PubMed

    Sauvage, Eric; Herman, Raphaël; Petrella, Stephanie; Duez, Colette; Bouillenne, Fabrice; Frère, Jean-Marie; Charlier, Paulette

    2005-09-02

    Actinomadura sp. R39 produces an exocellular DD-peptidase/penicillin-binding protein (PBP) whose primary structure is similar to that of Escherichia coli PBP4. It is characterized by a high beta-lactam-binding activity (second order rate constant for the acylation of the active site serine by benzylpenicillin: k2/K = 300 mm(-1) s(-1)). The crystal structure of the DD-peptidase from Actinomadura R39 was solved at a resolution of 1.8 angstroms by single anomalous dispersion at the cobalt resonance wavelength. The structure is composed of three domains: a penicillin-binding domain similar to the penicillin-binding domain of E. coli PBP5 and two domains of unknown function. In most multimodular PBPs, additional domains are generally located at the C or N termini of the penicillin-binding domain. In R39, the other two domains are inserted in the penicillin-binding domain, between the SXXK and SXN motifs, in a manner similar to "Matryoshka dolls." One of these domains is composed of a five-stranded beta-sheet with two helices on one side, and the other domain is a double three-stranded beta-sheet inserted in the previous domain. Additionally, the 2.4-angstroms structure of the acyl-enzyme complex of R39 with nitrocefin reveals the absence of active site conformational change upon binding the beta-lactams.

  2. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    PubMed Central

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  3. Preferential binding of the methyl-CpG binding domain protein 2 at methylated transcriptional start site regions.

    PubMed

    Chatagnon, Amandine; Perriaud, Laury; Nazaret, Nicolas; Croze, Séverine; Benhattar, Jean; Lachuer, Joël; Dante, Robert

    2011-11-01

    Methyl-CpG Binding Domain (MBD) proteins are thought to be key molecules in the interpretation of DNA methylation signals leading to gene silencing through recruitment of chromatin remodeling complexes. In cancer, the MBD-family member, MBD2, may be primarily involved in the repression of genes exhibiting methylated CpG at their 5' end. Here we ask whether MBD2 randomly associates methylated sequences, producing chance effects on transcription, or exhibits a more specific recognition of some methylated regions. Using chromatin and DNA immunoprecipitation, we analyzed MBD2 and RNA polymerase II deposition and DNA methylation in HeLa cells on arrays representing 25,500 promoter regions. This first whole-genome mapping revealed the preferential localization of MBD2 near transcription start sites (TSSs), within the region analyzed, 7.5 kb upstream through 2.45 kb downstream of 5' transcription start sites. Probe by probe analysis correlated MBD2 deposition and DNA methylation. Motif analysis did not reveal specific sequence motifs; however, CCG and CGC sequences seem to be overrepresented. Nonrandom association (multiple correspondence analysis, p < 0.0001) between silent genes, DNA methylation and MBD2 binding was observed. The association between MBD2 binding and transcriptional repression weakened as the distance between binding site and TSS increased, suggesting that MBD2 represses transcriptional initiation. This hypothesis may represent a functional explanation for the preferential binding of MBD2 at methyl-CpG in TSS regions.

  4. Glutamate Binding and Conformational Flexibility of Ligand-binding Domains Are Critical Early Determinants of Efficient Kainate Receptor Biogenesis

    PubMed Central

    Gill, Martin B.; Vivithanaporn, Pornpun; Swanson, Geoffrey T.

    2009-01-01

    Intracellular glutamate binding within the endoplasmic reticulum (ER) is thought to be necessary for plasma membrane expression of ionotropic glutamate receptors. Here we determined the importance of glutamate binding to folding and assembly of soluble ligand-binding domains (LBDs), as well as full-length receptors, by comparing the secretion of a soluble GluR6-S1S2 protein versus the plasma membrane localization of GluR6 kainate receptors following mutagenesis of the LBD. The mutations were designed to either eliminate glutamate binding, thereby trapping the bilobate LBD in an “open” conformation, or “lock” the LBD in a closed conformation with an engineered interdomain disulfide bridge. Analysis of plasma membrane localization, medium secretion of soluble LBD proteins, and measures of folding efficiency suggested that loss of glutamate binding affinity significantly impacted subunit protein folding and assembly. In contrast, receptors with conformationally restricted LBDs also exhibited decreased PM expression and altered oligomeric receptor assembly but did not exhibit any deficits in subunit folding. Secretion of the closed LBD protein was enhanced compared with wild-type GluR6-S1S2. Our results suggest that glutamate acts as a chaperone molecule for appropriate folding of nascent receptors and that relaxation of LBDs from fully closed states during oligomerization represents a critical transition that necessarily engages other determinants within receptor dimers. Glutamate receptor LBDs therefore must access multiple conformations for efficient biogenesis. PMID:19342380

  5. Rapid chromatography for evaluating adsorption characteristics of cellulase binding domain mimetics.

    PubMed

    Mosier, Nathan S; Wilker, Jonathan J; Ladisch, Michael R

    2004-06-30

    The cost of cellulolytic enzymes is one barrier to the economic production of fermentable sugars from lignocellulosic biomass for the production of fuels and chemicals. One functional characteristic of cellulolytic enzymes that improves reaction kinetics over mineral acids is a cellulose binding domain that concentrates the catalytic domain to the substrate surface. We have identified maleic acid as an attractive catalytic domain with pK(a) and dicarboxylic acid structure properties that hydrolyze cellulose while producing minimal degradation of the glucose formed. In this study we report results of a rapid chromatographic method to assess the binding characteristics of potential cellulose binding domains for the construction of a synthetic cellulase over a wide range of temperatures (20 degrees to 120 degrees C). Aromatic, planar chemical structures appear to be key indicators of cellulose adsorption. Indole, the side-chain of the amino acid tryptophan, has been shown to reversibly adsorb to cellulose at temperatures between 30 degrees and 120 degrees C. Trypan blue, a polyaromatic, planar molecule, was shown to be irreversibly adsorbed to cotton cellulose at temperatures of <120 degrees C on the time scale of the experiments. These results confirm the importance of hydrophobic cellulose and the cellulose-binding component of cellulolytic enzymes and cellulolytic enzyme mimetics.

  6. Identificaiton of Shc Src Homology 2 Domain-Binding Peptoid – Peptide Hybrids

    PubMed Central

    Choi, Won Jun; Kim, Sung Eun; Stephen, Andrew G.; Weidlich, Iwona; Giubellino, Alessio; Liu, Fa; Worthy, Karen M.; Bindu, Lakshman; Fivash, Matthew J.; Nicklaus, Marc C.; Bottaro, Donald P.; Fisher, Robert J.; Burke, Terrence R.

    2009-01-01

    A fluorescence anisotropy (FA) competition – based Shc Src homology 2 (SH2) domain-binding was established using the high affinity fluorescein isothiocyanate (FITC)-containing peptide, FITC-NH-(CH2)4-CO-pY-Q-G-L-S-amide (8; Kd = 0.35 μM). Examination of a series of open – chain bis-alkenylamide containing peptides, prepared as ring – closing metathesis precursors, showed that the highest affinities were obtained by replacement of the original Gly residue with Nα-substituted Gly (NSG) “peptoid” residues. This provided peptoid-peptide hybrids of the form, “Ac-pY-Q-[NSG]-L-amide.” Depending on the NSG substituent, certain of these hybrids exhibited up to 40 – fold higher Shc SH2 domain binding affinity than the parent Gly-containing peptide (IC50 = 248 μM), (for example, N-homo-allyl analogue 50; IC50 = 6 μM). To our knowledge, this work represents the first successful example of the application of peptoid-peptide hybrids in the design of SH2 domain-binding antagonists. These results could provide a foundation for further structural optimization of Shc SH2 domain-binding peptide mimetics. PMID:19226165

  7. Identification of Shc Src homology 2 domain-binding peptoid-peptide hybrids.

    PubMed

    Choi, Won Jun; Kim, Sung-Eun; Stephen, Andrew G; Weidlich, Iwona; Giubellino, Alessio; Liu, Fa; Worthy, Karen M; Bindu, Lakshman; Fivash, Matthew J; Nicklaus, Marc C; Bottaro, Donald P; Fisher, Robert J; Burke, Terrence R

    2009-03-26

    A fluorescence anisotropy (FA) competition-based Shc Src homology 2 (SH2) domain-binding was established using the high affinity fluorescein isothiocyanate (FITC) containing peptide, FITC-NH-(CH2)4-CO-pY-Q-G-L-S-amide (8; Kd = 0.35 microM). Examination of a series of open-chain bis-alkenylamide containing peptides, prepared as ring-closing metathesis precursors, showed that the highest affinities were obtained by replacement of the original Gly residue with N alpha-substituted Gly (NSG) "peptoid" residues. This provided peptoid-peptide hybrids of the form "Ac-pY-Q-[NSG]-L-amide." Depending on the NSG substituent, certain of these hybrids exhibited up to 40-fold higher Shc SH2 domain-binding affinity than the parent Gly-containing peptide (IC50 = 248 microM) (for example, for N-homoallyl analogue 50, IC50 = 6 microM). To our knowledge, this work represents the first successful example of the application of peptoid-peptide hybrids in the design of SH2 domain-binding antagonists. These results could provide a foundation for further structural optimization of Shc SH2 domain-binding peptide mimetics.

  8. A small cellulose binding domain protein in Phytophtora is cell wall localized

    USDA-ARS?s Scientific Manuscript database

    Cellulose binding domains (CBD) are structurally conserved regions linked to catalytic regions of cellulolytic enzymes. While widespread amongst saprophytic fungi that subsist on plant cell wall polysaccharides, they are not generally present in plant pathogenic fungi. A genome wide survey of CBDs w...

  9. Kits and methods of detection using cellulose binding domain fusion proteins

    SciTech Connect

    Shoseyov, O.; Yosef, K.

    1998-04-14

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  10. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  11. High-energy water sites determine peptide binding affinity and specificity of PDZ domains.

    PubMed

    Beuming, Thijs; Farid, Ramy; Sherman, Woody

    2009-08-01

    PDZ domains have well known binding preferences for distinct C-terminal peptide motifs. For most PDZ domains, these motifs are of the form [S/T]-W-[I/L/V]. Although the preference for S/T has been explained by a specific hydrogen bond interaction with a histidine in the PDZ domain and the (I/L/V) is buried in a hydrophobic pocket, the mechanism for Trp specificity at the second to last position has thus far remained unknown. Here, we apply a method to compute the free energies of explicit water molecules and predict that potency gained by Trp binding is due to a favorable release of high-energy water molecules into bulk. The affinities of a series of peptides for both wild-type and mutant forms of the PDZ domain of Erbin correlate very well with the computed free energy of binding of displaced waters, suggesting a direct relationship between water displacement and peptide affinity. Finally, we show a correlation between the magnitude of the displaced water free energy and the degree of Trp-sensitivity among subtypes of the HTRA PDZ family, indicating a water-mediated mechanism for specificity of peptide binding.

  12. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.

    1998-04-14

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  13. Severe childhood SMA and axonal CMT due to anticodon binding domain mutations in the GARS gene.

    PubMed

    James, P A; Cader, M Z; Muntoni, F; Childs, A-M; Crow, Y J; Talbot, K

    2006-11-14

    We screened 100 patients with inherited and sporadic lower motor neuron degeneration and identified three novel missense mutations in the glycyl-tRNA synthetase (GARS) gene. One mutation was in the anticodon binding domain and associated with onset in early childhood and predominant involvement of the lower limbs, thus extending the phenotype associated with GARS mutations.

  14. A summary of staphylococcal C-terminal SH3b_5 cell wall binding domains.

    USDA-ARS?s Scientific Manuscript database

    Staphylococcal peptidoglycan hydrolases are a potential new source of antimicrobials. A large subset of these proteins contain a C-terminal SH3b_5 cell wall binding domain that has been shown for some to be essential for accurate cell wall recognition and subsequent staphylolytic activity, propert...

  15. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    PubMed Central

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands. PMID:28091608

  16. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.

  17. Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE).

    PubMed

    Buyannemekh, Dolgorsuren; Nham, Sang-Uk

    2017-05-31

    The β2 integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of β2 integrin, αMβ2 and αXβ2, share the leukocyte distribution profile and integrin αXβ2 is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. Receptor for advanced glycation end products (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and αXβ2 play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of αXβ2, we characterize the binding nature and the interacting moieties of αX I-domain and RAGE. Their binding requires divalent cations (Mg(2+) and Mn(2+)) and shows an affinity on the sub-micro molar level: the dissociation constant of αX I-domains binding to RAGE being 0.49 μM. Furthermore, the αX I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of αX I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to αX I-domain. In conclusion, the main mechanism of αX I-domain binding to RAGE is a charge interaction, in which the acidic moieties of αX I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.

  18. A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere

    PubMed Central

    Lo, Anthony W.I.; Craig, Jeffrey M.; Saffery, Richard; Kalitsis, Paul; Irvine, Danielle V.; Earle, Elizabeth; Magliano, Dianna J.; Choo, K.H.Andy

    2001-01-01

    Centromere protein A (CENP-A) is an essential centromere-specific histone H3 homologue. Using combined chromatin immunoprecipitation and DNA array analysis, we have defined a 330 kb CENP-A binding domain of a 10q25.3 neocentromere found on the human marker chromosome mardel(10). This domain is situated adjacent to the 80 kb region identified previously as the neocentromere site through lower-resolution immunofluorescence/FISH analysis of metaphase chromosomes. The 330 kb CENP-A binding domain shows a depletion of histone H3, providing evidence for the replacement of histone H3 by CENP-A within centromere-specific nucleosomes. The DNA within this domain has a high AT-content comparable to that of α-satellite, a high prevalence of LINEs and tandem repeats, and fewer SINEs and potential genes than the surrounding region. FISH analysis indicates that the normal 10q25.3 genomic region replicates around mid-S phase. Neocentromere formation is accompanied by a replication time lag around but not within the CENP-A binding region, with this lag being significantly more prominent to one side. The availability of fully sequenced genomic markers makes human neocentromeres a powerful model for dissecting the functional domains of complex higher eukaryotic centromeres. PMID:11296241

  19. Molecular insights into the binding of phosphoinositides to the TH domain region of TIPE proteins.

    PubMed

    Antony, Priya; Baby, Bincy; Vijayan, Ranjit

    2016-11-01

    Phosphatidylinositols and their phosphorylated derivatives, phosphoinositides, play a central role in regulating diverse cellular functions. These phospholipids have been shown to interact with the hydrophobic TH domain of the tumor necrosis factor (TNF)-α-induced protein 8 (TIPE) family of proteins. However, the precise mechanism of interaction of these lipids is unclear. Here we report the binding mode and interactions of these phospholipids in the TH domain, as elucidated using molecular docking and simulations. Results indicate that phosphoinositides bind to the TH domain in a similar way by inserting their lipid tails in the hydrophobic cavity. The exposed head group is stabilized by interactions with critical positively charged residues on the surface of these proteins. Further MD simulations confirmed the dynamic stability of these lipids in the TH domain. This computational analysis thus provides insight into the binding mode of phospholipids in the TH domain of the TIPE family of proteins. Graphical abstract A phosphoinositide (phosphatidylinositol 4-phosphate; PtdIns4P) docked to TIPE2.

  20. VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo

    SciTech Connect

    Ren, Xuefeng; Hurley, James H.

    2010-03-30

    VHS (Vps27, Hrs, and STAM) domains occur in ESCRT-0 subunits Hrs and STAM, GGA adapters, and other trafficking proteins. The structure of the STAM VHS domain-ubiquitin complex was solved at 2.6 {angstrom} resolution, revealing that determinants for ubiquitin recognition are conserved in nearly all VHS domains. VHS domains from all classes of VHS-domain containing proteins in yeast and humans, including both subunits of ESCRT-0, bound ubiquitin in vitro. ESCRTs have been implicated in the sorting of Lys63-linked polyubiquitinated cargo. Intact human ESCRT-0 binds Lys63-linked tetraubiquitin 50-fold more tightly than monoubiquitin, though only 2-fold more tightly than Lys48-linked tetraubiquitin. The gain in affinity is attributed to the cooperation of flexibly connected VHS and UIM motifs of ESCRT-0 in avid binding to the polyubiquitin chain. Mutational analysis of all the five ubiquitin-binding sites in yeast ESCRT-0 shows that cooperation between them is required for the sorting of the Lys63-linked polyubiquitinated cargo Cps1 to the vacuole.

  1. DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities.

    PubMed

    Tadokoro, Takashi; Kulikowicz, Tomasz; Dawut, Lale; Croteau, Deborah L; Bohr, Vilhelm A

    2012-06-01

    Werner protein (WRN), member of the RecQ helicase family, is a helicase and exonuclease, and participates in multiple DNA metabolic processes including DNA replication, recombination and DNA repair. Mutations in the WRN gene cause Werner syndrome, associated with premature aging, genome instability and cancer predisposition. The RecQ C-terminal (RQC) domain of WRN, containing α2-α3 loop and β-wing motifs, is important for DNA binding and for many protein interactions. To better understand the critical functions of this domain, we generated recombinant WRN proteins (using a novel purification scheme) with mutations in Arg-993 within the α2-α3 loop of the RQC domain and in Phe-1037 of the -wing motif. We then studied the catalytic activities and DNA binding of these mutant proteins as well as some important functional protein interactions. The mutant proteins were defective in DNA binding and helicase activity, and interestingly, they had deficient exonuclease activity and strand annealing function. The RQC domain of WRN has not previously been implicated in exonuclease or annealing activities. The mutant proteins could not stimulate NEIL1 incision activity as did the wild type. Thus, the Arg-993 and Phe-1037 in the RQC domain play essential roles in catalytic activity, and in functional interactions mediated by WRN.

  2. The neurofibromin recruitment factor Spred1 binds to the GAP related domain without affecting Ras inactivation

    PubMed Central

    Dunzendorfer-Matt, Theresia; Mercado, Ellen L.; Maly, Karl; McCormick, Frank; Scheffzek, Klaus

    2016-01-01

    Neurofibromatosis type 1 (NF1) and Legius syndrome are related diseases with partially overlapping symptoms caused by alterations of the tumor suppressor genes NF1 (encoding the protein neurofibromin) and SPRED1 (encoding sprouty-related, EVH1 domain-containing protein 1, Spred1), respectively. Both proteins are negative regulators of Ras/MAPK signaling with neurofibromin functioning as a Ras-specific GTPase activating protein (GAP) and Spred1 acting on hitherto undefined components of the pathway. Importantly, neurofibromin has been identified as a key protein in the development of cancer, as it is genetically altered in a large number of sporadic human malignancies unrelated to NF1. Spred1 has previously been demonstrated to interact with neurofibromin via its N-terminal Ena/VASP Homology 1 (EVH1) domain and to mediate membrane translocation of its target dependent on its C-terminal Sprouty domain. However, the region of neurofibromin required for the interaction with Spred1 has remained unclear. Here we show that the EVH1 domain of Spred1 binds to the noncatalytic (GAPex) portion of the GAP-related domain (GRD) of neurofibromin. Binding is compatible with simultaneous binding of Ras and does not interfere with GAP activity. Our study points to a potential targeting function of the GAPex subdomain of neurofibromin that is present in all known canonical RasGAPs. PMID:27313208

  3. DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities

    PubMed Central

    Tadokoro, Takashi; Kulikowicz, Tomasz; Dawut, Lale; Croteau, Deborah L.; Bohr, Vilhelm A.

    2012-01-01

    Werner protein (WRN), member of the RecQ helicase family, is a helicase and exonuclease, and participates in multiple DNA metabolic processes including DNA replication, recombination and DNA repair. Mutations in the WRN gene cause Werner syndrome, associated with premature aging, genome instability and cancer predisposition. The RecQ C-terminal (RQC) domain of WRN, containing α2-α3 loop and β-wing motifs, is important for DNA binding and for many protein interactions. To better understand the critical functions of this domain, we generated recombinant WRN proteins (using a novel purification scheme) with mutations in Arg-993 within the α2-α3 loop of the RQC domain and in Phe-1037 of the μ-wing motif. We then studied the catalytic activities and DNA binding of these mutant proteins as well as some important functional protein interactions. The mutant proteins were defective in DNA binding and helicase activity, and interestingly, they had deficient exonuclease activity and strand annealing function. The RQC domain of WRN has not previously been implicated in exonuclease or annealing activities. The mutant proteins could not stimulate NEIL1 incision activity as did the wild type. Thus, the Arg-993 and Phe-1037 in the RQC domain play essential roles in catalytic activity, and in functional interactions mediated by WRN. PMID:22713343

  4. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    SciTech Connect

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark . E-mail: dan@bc.georgetown.edu

    2005-08-15

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids.

  5. Critical Role of Heparin Binding Domains of Ameloblastin for Dental Epithelium Cell Adhesion and Ameloblastoma Proliferation*

    PubMed Central

    Sonoda, Akira; Iwamoto, Tsutomu; Nakamura, Takashi; Fukumoto, Emiko; Yoshizaki, Keigo; Yamada, Aya; Arakaki, Makiko; Harada, Hidemitsu; Nonaka, Kazuaki; Nakamura, Seiji; Yamada, Yoshihiko; Fukumoto, Satoshi

    2009-01-01

    AMBN (ameloblastin) is an enamel matrix protein that regulates cell adhesion, proliferation, and differentiation of ameloblasts. In AMBN-deficient mice, ameloblasts are detached from the enamel matrix, continue to proliferate, and form a multiple cell layer; often, odontogenic tumors develop in the maxilla with age. However, the mechanism of AMBN functions in these biological processes remains unclear. By using recombinant AMBN proteins, we found that AMBN had heparin binding domains at the C-terminal half and that these domains were critical for AMBN binding to dental epithelial cells. Overexpression of full-length AMBN protein inhibited proliferation of human ameloblastoma AM-1 cells, but overexpression of heparin binding domain-deficient AMBN protein had no inhibitory effect. In full-length AMBN-overexpressing AM-1 cells, the expression of Msx2, which is involved in the dental epithelial progenitor phenotype, was decreased, whereas the expression of cell proliferation inhibitors p21 and p27 was increased. We also found that the expression of enamelin, a marker of differentiated ameloblasts, was induced, suggesting that AMBN promotes odontogenic tumor differentiation. Thus, our results suggest that AMBN promotes cell binding through the heparin binding sites and plays an important role in preventing odontogenic tumor development by suppressing cell proliferation and maintaining differentiation phenotype through Msx2, p21, and p27. PMID:19648121

  6. Critical role of heparin binding domains of ameloblastin for dental epithelium cell adhesion and ameloblastoma proliferation.

    PubMed

    Sonoda, Akira; Iwamoto, Tsutomu; Nakamura, Takashi; Fukumoto, Emiko; Yoshizaki, Keigo; Yamada, Aya; Arakaki, Makiko; Harada, Hidemitsu; Nonaka, Kazuaki; Nakamura, Seiji; Yamada, Yoshihiko; Fukumoto, Satoshi

    2009-10-02

    AMBN (ameloblastin) is an enamel matrix protein that regulates cell adhesion, proliferation, and differentiation of ameloblasts. In AMBN-deficient mice, ameloblasts are detached from the enamel matrix, continue to proliferate, and form a multiple cell layer; often, odontogenic tumors develop in the maxilla with age. However, the mechanism of AMBN functions in these biological processes remains unclear. By using recombinant AMBN proteins, we found that AMBN had heparin binding domains at the C-terminal half and that these domains were critical for AMBN binding to dental epithelial cells. Overexpression of full-length AMBN protein inhibited proliferation of human ameloblastoma AM-1 cells, but overexpression of heparin binding domain-deficient AMBN protein had no inhibitory effect. In full-length AMBN-overexpressing AM-1 cells, the expression of Msx2, which is involved in the dental epithelial progenitor phenotype, was decreased, whereas the expression of cell proliferation inhibitors p21 and p27 was increased. We also found that the expression of enamelin, a marker of differentiated ameloblasts, was induced, suggesting that AMBN promotes odontogenic tumor differentiation. Thus, our results suggest that AMBN promotes cell binding through the heparin binding sites and plays an important role in preventing odontogenic tumor development by suppressing cell proliferation and maintaining differentiation phenotype through Msx2, p21, and p27.

  7. L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy

    PubMed Central

    Jonker, Hendrik R. A.; Ilin, Serge; Grimm, S. Kaspar; Wöhnert, Jens; Schwalbe, Harald

    2007-01-01

    Ribosomal proteins are assumed to stabilize specific RNA structures and promote compact folding of the large rRNA. The conformational dynamics of the protein between the bound and unbound state play an important role in the binding process. We have studied those dynamical changes in detail for the highly conserved complex between the ribosomal protein L11 and the GTPase region of 23S rRNA. The RNA domain is compactly folded into a well defined tertiary structure, which is further stabilized by the association with the C-terminal domain of the L11 protein (L11ctd). In addition, the N-terminal domain of L11 (L11ntd) is implicated in the binding of the natural thiazole antibiotic thiostrepton, which disrupts the elongation factor function. We have studied the conformation of the ribosomal protein and its dynamics by NMR in the unbound state, the RNA bound state and in the ternary complex with the RNA and thiostrepton. Our data reveal a rearrangement of the L11ntd, placing it closer to the RNA after binding of thiostrepton, which may prevent binding of elongation factors. We propose a model for the ternary L11–RNA–thiostrepton complex that is additionally based on interaction data and conformational information of the L11 protein. The model is consistent with earlier findings and provides an explanation for the role of L11ntd in elongation factor binding. PMID:17169991

  8. Quercetin-3-rutinoside Inhibits Protein Disulfide Isomerase by Binding to Its b′x Domain*

    PubMed Central

    Lin, Lin; Gopal, Srila; Sharda, Anish; Passam, Freda; Bowley, Sheryl R.; Stopa, Jack; Xue, Guangpu; Yuan, Cai; Furie, Barbara C.; Flaumenhaft, Robert; Huang, Mingdong; Furie, Bruce

    2015-01-01

    Quercetin-3-rutinoside inhibits thrombus formation in a mouse model by inhibiting extracellular protein disulfide isomerase (PDI), an enzyme required for platelet thrombus formation and fibrin generation. Prior studies have identified PDI as a potential target for novel antithrombotic agents. Using a fluorescence enhancement-based assay and isothermal calorimetry, we show that quercetin-3-rutinoside directly binds to the b′ domain of PDI with a 1:1 stoichiometry. The binding of quercetin-3-rutinoside to PDI induces a more compact conformation and restricts the conformational flexibility of PDI, as revealed by small angle x-ray scattering. The binding sites of quercetin-3-rutinoside to PDI were determined by studying its interaction with isolated fragments of PDI. Quercetin-3-rutinoside binds to the b′x domain of PDI. The infusion of the b′x fragment of PDI rescued thrombus formation that was inhibited by quercetin-3-rutinoside in a mouse thrombosis model. This b′x fragment does not possess reductase activity and, in the absence of quercetin-3-rutinoside, does not affect thrombus formation in vivo. The isolated b′ domain of PDI has potential as an antidote to reverse the antithrombotic effect of quercetin-3-rutinoside by binding and neutralizing quercetin-3-rutinoside. PMID:26240139

  9. Quercetin-3-rutinoside Inhibits Protein Disulfide Isomerase by Binding to Its b'x Domain.

    PubMed

    Lin, Lin; Gopal, Srila; Sharda, Anish; Passam, Freda; Bowley, Sheryl R; Stopa, Jack; Xue, Guangpu; Yuan, Cai; Furie, Barbara C; Flaumenhaft, Robert; Huang, Mingdong; Furie, Bruce

    2015-09-25

    Quercetin-3-rutinoside inhibits thrombus formation in a mouse model by inhibiting extracellular protein disulfide isomerase (PDI), an enzyme required for platelet thrombus formation and fibrin generation. Prior studies have identified PDI as a potential target for novel antithrombotic agents. Using a fluorescence enhancement-based assay and isothermal calorimetry, we show that quercetin-3-rutinoside directly binds to the b' domain of PDI with a 1:1 stoichiometry. The binding of quercetin-3-rutinoside to PDI induces a more compact conformation and restricts the conformational flexibility of PDI, as revealed by small angle x-ray scattering. The binding sites of quercetin-3-rutinoside to PDI were determined by studying its interaction with isolated fragments of PDI. Quercetin-3-rutinoside binds to the b'x domain of PDI. The infusion of the b'x fragment of PDI rescued thrombus formation that was inhibited by quercetin-3-rutinoside in a mouse thrombosis model. This b'x fragment does not possess reductase activity and, in the absence of quercetin-3-rutinoside, does not affect thrombus formation in vivo. The isolated b' domain of PDI has potential as an antidote to reverse the antithrombotic effect of quercetin-3-rutinoside by binding and neutralizing quercetin-3-rutinoside. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Structures of the first and second double-stranded RNA-binding domains of human TAR RNA-binding protein

    PubMed Central

    Yamashita, Seisuke; Nagata, Takashi; Kawazoe, Masahito; Takemoto, Chie; Kigawa, Takanori; Güntert, Peter; Kobayashi, Naohiro; Terada, Takaho; Shirouzu, Mikako; Wakiyama, Motoaki; Muto, Yutaka; Yokoyama, Shigeyuki

    2011-01-01

    The TAR RNA-binding Protein (TRBP) is a double-stranded RNA (dsRNA)-binding protein, which binds to Dicer and is required for the RNA interference pathway. TRBP consists of three dsRNA-binding domains (dsRBDs). The first and second dsRBDs (dsRBD1 and dsRBD2, respectively) have affinities for dsRNA, whereas the third dsRBD (dsRBD3) binds to Dicer. In this study, we prepared the single domain fragments of human TRBP corresponding to dsRBD1 and dsRBD2 and solved the crystal structure of dsRBD1 and the solution structure of dsRBD2. The two structures contain an α−β−β−β−α fold, which is common to the dsRBDs. The overall structures of dsRBD1 and dsRBD2 are similar to each other, except for a slight shift of the first α helix. The residues involved in dsRNA binding are conserved. We examined the small interfering RNA (siRNA)-binding properties of these dsRBDs by isothermal titration colorimetry measurements. The dsRBD1 and dsRBD2 fragments both bound to siRNA, with dissociation constants of 220 and 113 nM, respectively. In contrast, the full-length TRBP and its fragment with dsRBD1 and dsRBD2 exhibited much smaller dissociation constants (0.24 and 0.25 nM, respectively), indicating that the tandem dsRBDs bind simultaneously to one siRNA molecule. On the other hand, the loop between the first α helix and the first β strand of dsRBD2, but not dsRBD1, has a Trp residue, which forms hydrophobic and cation-π interactions with the surrounding residues. A circular dichroism analysis revealed that the thermal stability of dsRBD2 is higher than that of dsRBD1 and depends on the Trp residue. PMID:21080422

  11. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion

    PubMed Central

    1994-01-01

    Plasmodium vivax and the related monkey malaria, P. knowlesi, require interaction with the Duffy blood group antigen, a receptor for a family of chemokines that includes interleukin 8, to invade human erythrocytes. One P. vivax and three P. knowlesi proteins that serve as erythrocyte binding ligands in such interactions share sequence homology. Expression of different regions of the P. vivax protein in COS7 cells identified a cysteine-rich domain that bound Duffy blood group-positive but not Duffy blood group-negative human erythrocytes. The homologous domain of the P. knowlesi proteins also bound erythrocytes, but had different specificities. The P. vivax and P. knowlesi binding domains lie in one of two regions of homology with the P. falciparum sialic acid binding protein, another erythrocyte binding ligand, indicating conservation of the domain for erythrocyte binding in evolutionarily distant malaria species. The binding domains of these malaria ligands represent potential vaccine candidates and targets for receptor-blockade therapy. PMID:8046329

  12. Neutralization of Clostridium difficile Toxin A with Single-domain Antibodies Targeting the Cell Receptor Binding Domain*

    PubMed Central

    Hussack, Greg; Arbabi-Ghahroudi, Mehdi; van Faassen, Henk; Songer, J. Glenn; Ng, Kenneth K.-S.; MacKenzie, Roger; Tanha, Jamshid

    2011-01-01

    Clostridium difficile is a leading cause of nosocomial infection in North America and a considerable challenge to healthcare professionals in hospitals and nursing homes. The Gram-positive bacterium produces two high molecular weight exotoxins, toxin A (TcdA) and toxin B (TcdB), which are the major virulence factors responsible for C. difficile-associated disease and are targets for C. difficile-associated disease therapy. Here, recombinant single-domain antibody fragments (VHHs), which specifically target the cell receptor binding domains of TcdA or TcdB, were isolated from an immune llama phage display library and characterized. Four VHHs (A4.2, A5.1, A20.1, and A26.8), all shown to recognize conformational epitopes, were potent neutralizers of the cytopathic effects of toxin A on fibroblast cells in an in vitro assay. The neutralizing potency was further enhanced when VHHs were administered in paired or triplet combinations at the same overall VHH concentration, suggesting recognition of nonoverlapping TcdA epitopes. Biacore epitope mapping experiments revealed that some synergistic combinations consisted of VHHs recognizing overlapping epitopes, an indication that factors other than mere epitope blocking are responsible for the increased neutralization. Further binding assays revealed TcdA-specific VHHs neutralized toxin A by binding to sites other than the carbohydrate binding pocket of the toxin. With favorable characteristics such as high production yield, potent toxin neutralization, and intrinsic stability, these VHHs are attractive systemic therapeutics but are more so as oral therapeutics in the destabilizing environment of the gastrointestinal tract. PMID:21216961

  13. Chloroplast targeting factor AKR2 evolved from an ankyrin repeat domain coincidentally binds two chloroplast lipids

    PubMed Central

    Kim, Dae Heon; Park, Mi-Jeong; Gwon, Gwang Hyeon; Silkov, Antonina; Xu, Zheng-Yi; Yang, Eun Chan; Song, Seohyeon; Song, Kyungyoung; Kim, Younghyun; Yoon, Hwan Su; Honig, Barry; Cho, Wonhwa; Cho, Yunje; Hwang, Inhwan

    2014-01-01

    SUMMARY In organellogenesis of the chloroplast from endosymbiotic cyanobacterium, the establishment of protein targeting mechanisms to the chloroplast should have been pivotal. However, it is still mysterious how these mechanisms were established and how they work in plant cells. Here, we show that AKR2A, the cytosolic targeting factor for chloroplast outer membrane (COM) proteins, evolved from the ankyrin repeat domain (ARD) of the host cell by stepwise extensions of its N-terminal domain, and two lipids monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG) of the endosymbiont were selected to function as the AKR2A receptor. Structural analysis, molecular modeling and mutational analysis of the ARD identified two adjacent sites for coincidental and synergistic binding of MGDG and PG. Based on these findings, we propose that the targeting mechanism of COM proteins was established using components from both the endosymbiont and host cell through a modification of the protein-protein interacting ARD into a lipid binding domain. PMID:25203210

  14. Green-Light-Induced Inactivation of Receptor Signaling Using Cobalamin-Binding Domains.

    PubMed

    Kainrath, Stephanie; Stadler, Manuela; Reichhart, Eva; Distel, Martin; Janovjak, Harald

    2017-04-10

    Optogenetics and photopharmacology provide spatiotemporally precise control over protein interactions and protein function in cells and animals. Optogenetic methods that are sensitive to green light and can be used to break protein complexes are not broadly available but would enable multichromatic experiments with previously inaccessible biological targets. Herein, we repurposed cobalamin (vitamin B12) binding domains of bacterial CarH transcription factors for green-light-induced receptor dissociation. In cultured cells, we observed oligomerization-induced cell signaling for the fibroblast growth factor receptor 1 fused to cobalamin-binding domains in the dark that was rapidly eliminated upon illumination. In zebrafish embryos expressing fusion receptors, green light endowed control over aberrant fibroblast growth factor signaling during development. Green-light-induced domain dissociation and light-inactivated receptors will critically expand the optogenetic toolbox for control of biological processes.

  15. Crystal structures of chitin binding domains of chitinase from Thermococcus kodakarensis KOD1.

    PubMed

    Hanazono, Yuya; Takeda, Kazuki; Niwa, Satomi; Hibi, Masahito; Takahashi, Naoya; Kanai, Tamotsu; Atomi, Haruyuki; Miki, Kunio

    2016-01-01

    Chitinase from T. kodakarensis (TkChiA) catalyzes the hydrolysis of chitin. The enzyme consists of two catalytic and three binding domains (ChBD1, ChBD2 and ChBD3). ChBD2 and ChBD3 can bind to not only chitin but also cellulose. In both domains, the intervals of the side chains of the three tryptophan residues, which are located on the molecular surface, correspond to twice the length of the lattice of the chitin. A binding model with crystalline chitin implies that the tryptophan residues and a glutamate residue interact with the hexose ring by CH-π interactions and the amide group by a hydrogen bond, respectively.

  16. LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins

    SciTech Connect

    Sosa, Brian A.; Rothballer, Andrea; Kutay, Ulrike; Schwartz, Thomas U.

    2012-08-31

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.

  17. Proteolytic dissection of Zab, the Z-DNA-binding domain of human ADAR1

    NASA Technical Reports Server (NTRS)

    Schwartz, T.; Lowenhaupt, K.; Kim, Y. G.; Li, L.; Brown, B. A. 2nd; Herbert, A.; Rich, A.

    1999-01-01

    Zalpha is a peptide motif that binds to Z-DNA with high affinity. This motif binds to alternating dC-dG sequences stabilized in the Z-conformation by means of bromination or supercoiling, but not to B-DNA. Zalpha is part of the N-terminal region of double-stranded RNA adenosine deaminase (ADAR1), a candidate enzyme for nuclear pre-mRNA editing in mammals. Zalpha is conserved in ADAR1 from many species; in each case, there is a second similar motif, Zbeta, separated from Zalpha by a more divergent linker. To investigate the structure-function relationship of Zalpha, its domain structure was studied by limited proteolysis. Proteolytic profiles indicated that Zalpha is part of a domain, Zab, of 229 amino acids (residues 133-361 in human ADAR1). This domain contains both Zalpha and Zbeta as well as a tandem repeat of a 49-amino acid linker module. Prolonged proteolysis revealed a minimal core domain of 77 amino acids (positions 133-209), containing only Zalpha, which is sufficient to bind left-handed Z-DNA; however, the substrate binding is strikingly different from that of Zab. The second motif, Zbeta, retains its structural integrity only in the context of Zab and does not bind Z-DNA as a separate entity. These results suggest that Zalpha and Zbeta act as a single bipartite domain. In the presence of substrate DNA, Zab becomes more resistant to proteases, suggesting that it adopts a more rigid structure when bound to its substrate, possibly with conformational changes in parts of the protein.

  18. Proteolytic dissection of Zab, the Z-DNA-binding domain of human ADAR1

    NASA Technical Reports Server (NTRS)

    Schwartz, T.; Lowenhaupt, K.; Kim, Y. G.; Li, L.; Brown, B. A. 2nd; Herbert, A.; Rich, A.

    1999-01-01

    Zalpha is a peptide motif that binds to Z-DNA with high affinity. This motif binds to alternating dC-dG sequences stabilized in the Z-conformation by means of bromination or supercoiling, but not to B-DNA. Zalpha is part of the N-terminal region of double-stranded RNA adenosine deaminase (ADAR1), a candidate enzyme for nuclear pre-mRNA editing in mammals. Zalpha is conserved in ADAR1 from many species; in each case, there is a second similar motif, Zbeta, separated from Zalpha by a more divergent linker. To investigate the structure-function relationship of Zalpha, its domain structure was studied by limited proteolysis. Proteolytic profiles indicated that Zalpha is part of a domain, Zab, of 229 amino acids (residues 133-361 in human ADAR1). This domain contains both Zalpha and Zbeta as well as a tandem repeat of a 49-amino acid linker module. Prolonged proteolysis revealed a minimal core domain of 77 amino acids (positions 133-209), containing only Zalpha, which is sufficient to bind left-handed Z-DNA; however, the substrate binding is strikingly different from that of Zab. The second motif, Zbeta, retains its structural integrity only in the context of Zab and does not bind Z-DNA as a separate entity. These results suggest that Zalpha and Zbeta act as a single bipartite domain. In the presence of substrate DNA, Zab becomes more resistant to proteases, suggesting that it adopts a more rigid structure when bound to its substrate, possibly with conformational changes in parts of the protein.

  19. Monoclonal antibodies against rabbit mammary prolactin receptors. Specific antibodies to the hormone binding domain

    SciTech Connect

    Katoh, M.; Djiane, J.; Kelly, P.A.

    1985-09-25

    Three monoclonal antibodies (M110, A82, and A917) were obtained by fusing myeloma cells and spleen cells from mice immunized with partially purified rabbit mammary gland prolactin (PRL) receptors. All 3 antibodies were capable of complete inhibition of SVI-ovine prolactin (oPRL) binding to rabbit mammary PRL receptors in either particulate or soluble form. M110 showed slightly greater potency than oPRL in competing for SVI-oPRL binding. These antibodies also inhibited PRL binding to microsomal fractions from rabbit liver, kidney, adrenal, ovary, and pig mammary gland, although A82 showed poor inhibition in pig mammary gland. There was no cross-reaction of any of the 3 monoclonal antibodies (mAbs) for the other species tested: human (T-47D breast cancer cells) and rat (liver, ovary). In order to confirm that these antibodies are specific to the binding domain, antibodies were purified, iodinated, and binding characteristics were investigated. SVI-M110 and SVI-A82 binding was completely inhibited by lactogenic hormones, whereas nonlactogenic hormones did not cross-react. Competition of 125I-M110 by oPRL was comparable to that of SVI-oPRL by unlabeled oPRL, while SVI-A917 binding was only partially competed (30-60%) by lactogenic hormones. Tissue and species specificity of labeled antibody binding paralleled results of binding inhibition experiments using 125I-oPRL. In addition, A82 and A917 completely inhibited 125I-M110 binding. In contrast, 125I-A82 binding was stimulated by A917 and 125I-A917 binding was stimulated by A82.

  20. Stabilization of Nucleotide Binding Domain Dimers Rescues ABCC6 Mutants Associated with Pseudoxanthoma Elasticum.

    PubMed

    Ran, Yanchao; Thibodeau, Patrick H

    2017-02-03

    ABC transporters are polytopic membrane proteins that utilize ATP binding and hydrolysis to facilitate transport across biological membranes. Forty-eight human ABC transporters have been identified in the genome, and the majority of these are linked to heritable disease. Mutations in the ABCC6 (ATP binding cassette transporter C6) ABC transporter are associated with pseudoxanthoma elasticum, a disease of altered elastic properties in multiple tissues. Although ∼200 mutations have been identified in pseudoxanthoma elasticum patients, the underlying structural defects associated with the majority of these are poorly understood. To evaluate the structural consequences of these missense mutations, a combination of biophysical and cell biological approaches were applied to evaluate the local and global folding and assembly of the ABCC6 protein. Structural and bioinformatic analyses suggested that a cluster of mutations, representing roughly 20% of the patient population with identified missense mutations, are located in the interface between the transmembrane domain and the C-terminal nucleotide binding domain. Biochemical and cell biological analyses demonstrate these mutations influence multiple steps in the biosynthetic pathway, minimally altering local domain structure but adversely impacting ABCC6 assembly and trafficking. The differential impacts on local and global protein structure are consistent with hierarchical folding and assembly of ABCC6. Stabilization of specific domain-domain interactions via targeted amino acid substitution in the catalytic site of the C-terminal nucleotide binding domain restored proper protein trafficking and cell surface localization of multiple biosynthetic mutants. This rescue provides a specific mechanism by which chemical chaperones could be developed for the correction of ABCC6 biosynthetic defects.

  1. Binding of the Munc13-1 MUN domain to membrane-anchored SNARE complexes.

    PubMed

    Guan, Rong; Dai, Han; Rizo, Josep

    2008-02-12

    The core of the membrane fusion machinery that governs neurotransmitter release includes the SNARE proteins syntaxin-1, SNAP-25 and synaptobrevin, which form a tight "SNARE complex", and Munc18-1, which binds to the SNARE complex and to syntaxin-1 folded into a closed conformation. Release is also controlled by specialized proteins such as complexins, which also bind to the SNARE complex, and unc13/Munc13s, which are crucial for synaptic vesicle priming and were proposed to open syntaxin-1, promoting SNARE complex assembly. However, the biochemical basis for unc13/Munc13 function and its relationship to other SNARE interactions are unclear. To address this question, we have analyzed interactions of the MUN domain of Munc13-1, which is key for this priming function, using solution binding assays and cofloatation experiments with SNARE-containing proteoliposomes. Our results indicate that the Munc13-1 MUN domain binds to membrane-anchored SNARE complexes, even though binding is barely detectable in solution. The MUN domain appears to compete with Munc18-1 but not with complexin-1 for SNARE complex binding, although more quantitative assays will be required to verify these conclusions. Moreover, our data also uncover interactions of membrane-anchored syntaxin-1/SNAP-25 heterodimers with the MUN domain, Munc18-1 and complexin-1. The interaction with complexin-1 is surprising, as it was not observed in previous solution studies. Our results emphasize the importance of studying interactions within the neurotransmitter release machinery in a native membrane environment, and suggest that unc13/Munc13s may provide a template to assemble syntaxin-1/SNAP-25 heterodimers, leading to an acceptor complex for synaptobrevin.

  2. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    SciTech Connect

    Wong, Jaslyn E. M. M.; Midtgaard, Søren Roi; Gysel, Kira; Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J.; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  3. Use of cellulases and recombinant cellulose binding domains for refining TCF kraft pulp.

    PubMed

    Cadena, Edith M; Chriac, A Iulia; Pastor, F I Javier; Diaz, Pilar; Vidal, Teresa; Torres, Antonio L

    2010-01-01

    The modular endoglucanase Cel9B from Paenibacillus barcinonensis is a highly efficient biocatalyst, which expedites pulp refining and reduces the associated energy costs as a result. In this work, we set out to identify the specific structural domain or domains responsible for the action of this enzyme on cellulose fibre surfaces with a view to facilitating the development of new cellulases for optimum biorefining. Using the recombinant enzymes GH9-CBD3c, Fn3-CBD3b, and CBD3b, which are truncated forms of Cel9B, allowed us to assess the individual effects of the catalytic, cellulose binding, and fibronectin-like domains of the enzyme on the refining of TCF kraft pulp from Eucalyptus globulus. Based on the physico-mechanical properties obtained, the truncated form containing the catalytic domain (GH9-CBD3c) has a strong effect on fibre morphology. Comparing its effect with that of the whole cellulase (Cel9B) revealed that the truncated enzyme contributes to increasing paper strength through improved tensile strength and burst strength and also that the truncated form is more effective than the whole enzyme in improving tear resistance. Therefore, the catalytic domain of Cel9B has biorefining action on pulp. Although cellulose binding domains (CBDs) are less efficient toward pulp refining, evidence obtained in this work suggests that CBD3b alters fibre surfaces and influences paper properties as a result.

  4. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor.

    PubMed

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W; Kaplan, David L; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-02-26

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities.

  5. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor*

    PubMed Central

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W.; Kaplan, David L.; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-01-01

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  6. Structural analysis of the receptor binding domain of botulinum neurotoxin serotype D

    SciTech Connect

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Lin; Robinson, Howard; Varnum, Susan M.

    2010-10-28

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65 Å resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10 Å relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  7. Structural Analysis of the Receptor Binding Domain of Botulinum Neurotoxin Serotype D

    SciTech Connect

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65{angstrom} resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10{angstrom} relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  8. A Low Affinity Ground State Conformation for the Dynein Microtubule Binding Domain*

    PubMed Central

    McNaughton, Lynn; Tikhonenko, Irina; Banavali, Nilesh K.; LeMaster, David M.; Koonce, Michael P.

    2010-01-01

    Dynein interacts with microtubules through a dedicated binding domain that is dynamically controlled to achieve high or low affinity, depending on the state of nucleotide bound in a distant catalytic pocket. The active sites for microtubule binding and ATP hydrolysis communicate via conformational changes transduced through a ∼10-nm length antiparallel coiled-coil stalk, which connects the binding domain to the roughly 300-kDa motor core. Recently, an x-ray structure of the murine cytoplasmic dynein microtubule binding domain (MTBD) in a weak affinity conformation was published, containing a covalently constrained β+ registry for the coiled-coil stalk segment (Carter, A. P., Garbarino, J. E., Wilson-Kubalek, E. M., Shipley, W. E., Cho, C., Milligan, R. A., Vale, R. D., and Gibbons, I. R. (2008) Science 322, 1691–1695). We here present an NMR analysis of the isolated MTBD from Dictyostelium discoideum that demonstrates the coiled-coil β+ registry corresponds to the low energy conformation for this functional region of dynein. Addition of sequence encoding roughly half of the coiled-coil stalk proximal to the binding tip results in a decreased affinity of the MTBD for microtubules. In contrast, addition of the complete coiled-coil sequence drives the MTBD to the conformationally unstable, high affinity binding state. These results suggest a thermodynamic coupling between conformational free energy differences in the α and β+ registries of the coiled-coil stalk that acts as a switch between high and low affinity conformations of the MTBD. A balancing of opposing conformations in the stalk and MTBD enables potentially modest long-range interactions arising from ATP binding in the motor core to induce a relaxation of the MTBD into the stable low affinity state. PMID:20351100

  9. DNA-binding domain of human c-Myc produced in escherichia coli

    SciTech Connect

    Dang, C.V.; Buckmire, M.; VanDam, H.; Lee, W.M.F.

    1989-06-01

    The authors have identified the domain of the human c-myc protein (c-Myc) produced in Escherichia coli that is responsible for the ability of the protein to bind sequence-nonspecific DNA. Using analysis of binding of DNA by proteins transferred to nitrocellulose, DNA-cellulose chromatography, and a nitrocellulose filter binding assay, they examined the binding properties of c-Myc peptides generated by cyanogen bromide cleavage, of butane c-,Myc, and of proteins that fuse portions of c-Myc to staphylococcal protein A. The results of these analyses indicated that c-Myc amino acid 265 to 318 were responsible for DNA binding and that other regions of the protein (including a highly conserved basic region and a region containing the leucine zipper motif) were not required. Some mutant c-Mycs that did not bind DNA maintained rat embryo cell-cotransforming activity, which indicated that the c-Myc property of in vitro DNA binding was not essential for this activity. These mutants, however, were unable to transform established rat fibroblasts (Rat-1a cells) that were susceptible to transformation by wild-type c-Myc, although this lack of activity may not have been due to their inability to bind DNA.

  10. Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain.

    PubMed

    Kim, Duk-Joong; Choi, Chang-Ki; Lee, Chan-Soo; Park, Mee-Hee; Tian, Xizhe; Kim, Nam Doo; Lee, Kee-In; Choi, Joong-Kwon; Ahn, Jin Hee; Shin, Eun-Young; Shin, Injae; Kim, Eung-Gook

    2016-04-29

    p21-activated kinases (PAKs) are key regulators of actin dynamics, cell proliferation and cell survival. Deregulation of PAK activity contributes to the pathogenesis of various human diseases, including cancer and neurological disorders. Using an ELISA-based screening protocol, we identified naphtho(hydro)quinone-based small molecules that allosterically inhibit PAK activity. These molecules interfere with the interactions between the p21-binding domain (PBD) of PAK1 and Rho GTPases by binding to the PBD. Importantly, they inhibit the activity of full-length PAKs and are selective for PAK1 and PAK3 in vitro and in living cells. These compounds may potentially be useful for determining the details of the PAK signaling pathway and may also be used as lead molecules in the development of more selective and potent PAK inhibitors.

  11. Sr2+ binding to the Ca2+ binding site of the synaptotagmin 1 C2B domain triggers fast exocytosis without stimulating SNARE interactions.

    PubMed

    Shin, Ok-Ho; Rhee, Jeong-Seop; Tang, Jiong; Sugita, Shuzo; Rosenmund, Christian; Südhof, Thomas C

    2003-01-09

    Sr(2+) triggers neurotransmitter release similar to Ca(2+), but less efficiently. We now show that in synaptotagmin 1 knockout mice, the fast component of both Ca(2+)- and Sr(2+)-induced release is selectively impaired, suggesting that both cations partly act by binding to synaptotagmin 1. Both the C(2)A and the C(2)B domain of synaptotagmin 1 bind Ca(2+) in phospholipid complexes, but only the C(2)B domain forms Sr(2+)/phospholipid complexes; therefore, Sr(2+) binding to the C(2)B domain is sufficient to trigger fast release, although with decreased efficacy. Ca(2+) induces binding of the synaptotagmin C(2) domains to SNARE proteins, whereas Sr(2+) even at high concentrations does not. Thus, triggering of the fast component of release by Sr(2+) as a Ca(2+) agonist involves the formation of synaptotagmin/phospholipid complexes, but does not require stimulated SNARE binding.

  12. Defining the Communication between Agonist and Coactivator Binding in the Retinoid X Receptor α Ligand Binding Domain*

    PubMed Central

    Boerma, LeeAnn J.; Xia, Gang; Qui, Cheng; Cox, Bryan D.; Chalmers, Michael J.; Smith, Craig D.; Lobo-Ruppert, Susan; Griffin, Patrick R.; Muccio, Donald D.; Renfrow, Matthew B.

    2014-01-01

    Retinoid X receptors (RXRs) are obligate partners for several other nuclear receptors, and they play a key role in several signaling processes. Despite being a promiscuous heterodimer partner, this nuclear receptor is a target of therapeutic intervention through activation using selective RXR agonists (rexinoids). Agonist binding to RXR initiates a large conformational change in the receptor that allows for coactivator recruitment to its surface and enhanced transcription. Here we reveal the structural and dynamical changes produced when a coactivator peptide binds to the human RXRα ligand binding domain containing two clinically relevant rexinoids, Targretin and 9-cis-UAB30. Our results show that the structural changes are very similar for each rexinoid and similar to those for the pan-agonist 9-cis-retinoic acid. The four structural changes involve key residues on helix 3, helix 4, and helix 11 that move from a solvent-exposed environment to one that interacts extensively with helix 12. Hydrogen-deuterium exchange mass spectrometry reveals that the dynamics of helices 3, 11, and 12 are significantly decreased when the two rexinoids are bound to the receptor. When the pan-agonist 9-cis-retinoic acid is bound to the receptor, only the dynamics of helices 3 and 11 are reduced. The four structural changes are conserved in all x-ray structures of the RXR ligand-binding domain in the presence of agonist and coactivator peptide. They serve as hallmarks for how RXR changes conformation and dynamics in the presence of agonist and coactivator to initiate signaling. PMID:24187139

  13. Identification of MDP (muramyl dipeptide)-binding key domains in NOD2 (nucleotide-binding and oligomerization domain-2) receptor of Labeo rohita.

    PubMed

    Maharana, Jitendra; Swain, Banikalyan; Sahoo, Bikash R; Dikhit, Manas R; Basu, Madhubanti; Mahapatra, Abhijit S; Jayasankar, Pallipuram; Samanta, Mrinal

    2013-08-01

    In lower eukaryotes-like fish, innate immunity contributed by various pattern recognition receptor (PRR) plays an essential role in protection against diseases. Nucleotide-binding and oligomerization domain (NOD)-2 is a cytoplasmic PRR that recognizes MDP (muramyl dipeptide) of the Gram positive and Gram negative bacteria as ligand and activates signalling to induce innate immunity. Hypothesizing a similar NOD2 signalling pathway of higher eukaryotes, the peripheral blood leucocytes (PBLs) of rohu (Labeo rohita) was stimulated with MDP. The data of quantitative real-time PCR (qRT-PCR) revealed MDP-mediated inductive expression of NOD2 and its down-stream molecule RICK/RIP2 (receptor-interacting serine-threonine protein kinase-2). This observation suggested the existence of MDP-binding sites in rohu NOD2 (rNOD2). To investigate it, 3D model of ligand-binding leucine-rich repeat (LRR) region of rNOD2 (rNOD2-LRR) was constructed following ab initio and threading approaches in I-TASSER web server. Structural refinement of the model was performed by energy minimization, and MD (molecular dynamics) simulation was performed in GROMACS (Groningen Machine for Chemical Simulations). The refined model of rNOD2-LRR was validated through SAVES, ProSA, ProQ, WHAT IF and MolProbity servers, and molecular docking with MDP was carried out in GOLD 4.1. The result of docking identified LRR3-7 comprising Lys820, Phe821, Asn822, Arg847, Gly849, Trp877, Trp901 and Trp931 as MDP-binding critical amino acids in rNOD2. This is the first study in fish to provide an insight into the 3D structure of NOD2-LRR region and its important motifs that are expected to be engaged in MDP binding and innate immunity.

  14. A novel AT-rich DNA binding protein that combines an HMG I-like DNA binding domain with a putative transcription domain.

    PubMed Central

    Tjaden, G; Coruzzi, G M

    1994-01-01

    There is growing evidence that AT-rich promoter elements play a role in transcription of plant genes. For the promoter of the nuclear gene for chloroplast glutamine synthetase from pea (GS2), the deletion of a 33-bp AT-rich sequence (box 1 native) from the 5' end of a GS2 promoter-beta-glucuronidase (GUS) fusion resulted in a 10-fold reduction in GUS activity. The box 1 native element was used in gel shift analysis and two distinct complexes were detected. One complex is related to the low-mobility complex reported previously for AT-rich elements from several other plant promoters. A multimer of the box 1 sequence was used to isolate a cDNA encoding an AT-rich DNA binding protein (ATBP-1). ATBP-1 is not a high-mobility group protein, but it is a novel protein that combines a high-mobility group I/Y-like DNA binding domain with a glutamine-rich putative transcriptional domain. PMID:7907505

  15. The ligand binding domain controls glucocorticoid receptor dynamics independent of ligand release.

    PubMed

    Meijsing, Sebastiaan H; Elbi, Cem; Luecke, Hans F; Hager, Gordon L; Yamamoto, Keith R

    2007-04-01

    Ligand binding to the glucocorticoid receptor (GR) results in receptor binding to glucocorticoid response elements (GREs) and the formation of transcriptional regulatory complexes. Equally important, these complexes are continuously disassembled, with active processes driving GR off GREs. We found that co-chaperone p23-dependent disruption of GR-driven transcription depended on the ligand binding domain (LBD). Next, we examined the importance of the LBD and of ligand dissociation in GR-GRE dissociation in living cells. We showed in fluorescence recovery after photobleaching studies that dissociation of GR from GREs is faster in the absence of the LBD. Furthermore, GR interaction with a target promoter revealed ligand-specific exchange rates. However, using covalently binding ligands, we demonstrated that ligand dissociation is not required for receptor dissociation from GREs. Overall, these studies showed that activities impinging on the LBD regulate GR exchange with GREs but that the dissociation of GR from GREs is independent from ligand dissociation.

  16. A functional raw starch-binding domain of barley alpha-amylase expressed in Escherichia coli.

    PubMed

    Tibbot, B K; Wong, D W; Robertson, G H

    2000-11-01

    The mature form of barley seed low-pI alpha-amylase (BAA1) possesses a raw starch-binding site in addition to the catalytic site. A truncated cDNA encoding the C-terminal region (aa 281-414) and containing the proposed raw starch-binding domain (SBD) but lacking Trp278/Trp279, a previously proposed starch granule-binding site, was synthesized via PCR and expressed in Escherichia coli as an N-terminal His-Tag fusion protein. SBD was produced in the form of insoluble inclusion bodies that were extracted with urea and successfully refolded into a soluble form via dialysis. To determine binding, SBD was purified by affinity chromatography with cycloheptaamylose as ligand cross-linked to Sepharose. This work demonstrates that a SBD is located in the C-terminal region and retains sufficient function in the absence of the N-terminal, catalytic, and Trp278/279 regions.

  17. Evolutionary history of redox metal-binding domains across the tree of life

    PubMed Central

    Harel, Arye; Bromberg, Yana; Falkowski, Paul G.; Bhattacharya, Debashish

    2014-01-01

    Oxidoreductases mediate electron transfer (i.e., redox) reactions across the tree of life and ultimately facilitate the biologically driven fluxes of hydrogen, carbon, nitrogen, oxygen, and sulfur on Earth. The core enzymes responsible for these reactions are ancient, often small in size, and highly diverse in amino acid sequence, and many require specific transition metals in their active sites. Here we reconstruct the evolution of metal-binding domains in extant oxidoreductases using a flexible network approach and permissive profile alignments based on available microbial genome data. Our results suggest there were at least 10 independent origins of redox domain families. However, we also identified multiple ancient connections between Fe2S2- (adrenodoxin-like) and heme- (cytochrome c) binding domains. Our results suggest that these two iron-containing redox families had a single common ancestor that underwent duplication and divergence. The iron-containing protein family constitutes ∼50% of all metal-containing oxidoreductases and potentially catalyzed redox reactions in the Archean oceans. Heme-binding domains seem to be derived via modular evolutionary processes that ultimately form the backbone of redox reactions in both anaerobic and aerobic respiration and photosynthesis. The empirically discovered network allows us to peer into the ancient history of microbial metabolism on our planet. PMID:24778258

  18. Regulation and action of the bacterial enhancer-binding protein AAA+ domains

    PubMed Central

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Nixon, B. Tracy

    2009-01-01

    Bacterial EBPs (enhancer-binding proteins) play crucial roles in regulating cellular responses to environmental changes, in part by providing efficient control over σ54-dependent gene transcription. The AAA+ (ATPase associated with various cellular activites) domain of the EBPs, when assembled into a ring, uses energy from ATP binding, hydrolysis and product release to remodel the σ54–RNAP (RNA polymerase) holoenzyme so that it can transition from closed to open form at promoter DNA. The assembly, and hence activity, of these ATPases are regulated by many different signal transduction mechanisms. Recent advances in solution scattering techniques, when combined with high-resolution structures and biochemical data, have enabled us to obtain mechanistic insights into the regulation and action of a subset of these σ54 activators: those whose assembly into ring form is controlled by two-component signal transduction. We review (i) experimental considerations of applying the SAXS (small-angle X-ray scattering)/WAXS (wide-angle X-ray scattering) technique, (ii) distinct regulation mechanisms of the AAA+ domains of three EBPs by similar two-component signal transduction receiver domains, and (iii) major conformational changes and correlated σ54-binding activity of an isolated EBP AAA+ domain in the ATP hydrolysis cycle. PMID:18208392

  19. The two distinctive metal ion binding domains of the wheat metallothionein Ec-1.

    PubMed

    Peroza, Estevão A; Kaabi, Ali Al; Meyer-Klaucke, Wolfram; Wellenreuther, Gerd; Freisinger, Eva

    2009-03-01

    Metallothioneins are small cysteine-rich proteins believed to play a role, among others, in the homeostasis of essential metal ions such as Zn(II) and Cu(I). Recently, we could show that wheat E(c)-1 is coordinating its six Zn(II) ions in form of metal-thiolate clusters analogously to the vertebrate metallothioneins. Specifically, two Zn(II) ions are bound in the N-terminal and four in the C-terminal domain. In the following, we will present evidence for the relative independence of the two domains from each other with respect to their metal ion binding abilities, and uncover three intriguing peculiarities of the protein. Firstly, one Zn(II) ion of the N-terminal domain is relative resistant to complete replacement with Cd(II) indicating the presence of a Zn(II)-binding site with increased stability. Secondly, the C-terminal domain is able to coordinate an additional fifth metal ion, though with reduced affinity, which went undetected so far. Finally, reconstitution of apoE(c)-1 with an excess of Zn(II) shows a certain amount of sub-stoichiometrically metal-loaded species. The possible relevance of these finding for the proposed biological functions of wheat E(c)-1 will be discussed. In addition, extended X-ray absorption fine structure (EXAFS) measurements on both, the full-length and the truncated protein, provide final evidence for His participation in metal ion binding.

  20. Evolutionary history of redox metal-binding domains across the tree of life.

    PubMed

    Harel, Arye; Bromberg, Yana; Falkowski, Paul G; Bhattacharya, Debashish

    2014-05-13

    Oxidoreductases mediate electron transfer (i.e., redox) reactions across the tree of life and ultimately facilitate the biologically driven fluxes of hydrogen, carbon, nitrogen, oxygen, and sulfur on Earth. The core enzymes responsible for these reactions are ancient, often small in size, and highly diverse in amino acid sequence, and many require specific transition metals in their active sites. Here we reconstruct the evolution of metal-binding domains in extant oxidoreductases using a flexible network approach and permissive profile alignments based on available microbial genome data. Our results suggest there were at least 10 independent origins of redox domain families. However, we also identified multiple ancient connections between Fe2S2- (adrenodoxin-like) and heme- (cytochrome c) binding domains. Our results suggest that these two iron-containing redox families had a single common ancestor that underwent duplication and divergence. The iron-containing protein family constitutes ∼50% of all metal-containing oxidoreductases and potentially catalyzed redox reactions in the Archean oceans. Heme-binding domains seem to be derived via modular evolutionary processes that ultimately form the backbone of redox reactions in both anaerobic and aerobic respiration and photosynthesis. The empirically discovered network allows us to peer into the ancient history of microbial metabolism on our planet.

  1. Potential DNA binding and nuclease functions of ComEC domains characterized in silico

    PubMed Central

    Baker, James A.; Simkovic, Felix; Taylor, Helen M.C.

    2016-01-01

    ABSTRACT Bacterial competence, which can be natural or induced, allows the uptake of exogenous double stranded DNA (dsDNA) into a competent bacterium. This process is known as transformation. A multiprotein assembly binds and processes the dsDNA to import one strand and degrade another yet the underlying molecular mechanisms are relatively poorly understood. Here distant relationships of domains in Competence protein EC (ComEC) of Bacillus subtilis (Uniprot: P39695) were characterized. DNA‐protein interactions were investigated in silico by analyzing models for structural conservation, surface electrostatics and structure‐based DNA binding propensity; and by data‐driven macromolecular docking of DNA to models. Our findings suggest that the DUF4131 domain contains a cryptic DNA‐binding OB fold domain and that the β‐lactamase‐like domain is the hitherto cryptic competence nuclease. Proteins 2016; 84:1431–1442. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27318187

  2. Resonance assignment of the ribosome binding domain of E. coli ribosomal protein S1.

    PubMed

    Giraud, Pierre; Créchet, Jean-Bernard; Uzan, Marc; Bontems, François; Sizun, Christina

    2015-04-01

    Ribosomal protein S1 is an essential actor for protein synthesis in Escherichia coli. It is involved in mRNA recruitment by the 30S ribosomal subunit and recognition of the correct start codon during translation initiation. E. coli S1 is a modular protein that contains six repeats of an S1 motif, which have distinct functions despite structural homology. Whereas the three central repeats have been shown to be involved in mRNA recognition, the two first repeats that constitute the N-terminal domain of S1 are responsible for binding to the 30S subunit. Here we report the almost complete (1)H, (13)C and (15)N resonance assignment of two fragments of the 30S binding region of S1. The first fragment comprises only the first repeat. The second corresponds to the entire ribosome binding domain. Since S1 is absent from all high resolution X-ray structures of prokaryotic ribosomes, these data provide a first step towards atomic level structural characterization of this domain by NMR. Chemical shift analysis of the first repeat provides evidence for structural divergence from the canonical OB-fold of an S1 motif. In contrast the second domain displays the expected topology for an S1 motif, which rationalizes the functional specialization of the two subdomains.

  3. Structure of the Taz2 domain of p300: insights into ligand binding

    SciTech Connect

    Miller, Maria; Dauter, Zbigniew; Cherry, Scott; Tropea, Joseph E.; Wlodawer, Alexander

    2009-12-01

    The crystal structure of the Taz2 zinc-finger domain of the human p300 transcriptional coactivator was determined using the anomalous diffraction signal of the bound Zn ions. Crystal contacts suggested a possible novel mode of Taz2–peptide ligand interactions. CBP and its paralog p300 are histone acetyl transferases that regulate gene expression by interacting with multiple transcription factors via specialized domains. The structure of a segment of human p300 protein (residues 1723–1836) corresponding to the extended zinc-binding Taz2 domain has been investigated. The crystal structure was solved by the SAD approach utilizing the anomalous diffraction signal of the bound Zn ions. The structure comprises an atypical helical bundle stabilized by three Zn ions and closely resembles the solution structures determined previously for shorter peptides. Residues 1813–1834 from the current construct form a helical extension of the C-terminal helix and make extensive crystal-contact interactions with the peptide-binding site of Taz2, providing additional insights into the mechanism of the recognition of diverse transactivation domains (TADs) by Taz2. On the basis of these results and molecular modeling, a hypothetical model of the binding of phosphorylated p53 TAD1 to Taz2 has been proposed.

  4. Chlamydia trachomatis Tarp harbors distinct G and F actin binding domains that bundle actin filaments.

    PubMed

    Jiwani, Shahanawaz; Alvarado, Stephenie; Ohr, Ryan J; Romero, Adriana; Nguyen, Brenda; Jewett, Travis J

    2013-02-01

    All species of Chlamydia undergo a unique developmental cycle that transitions between extracellular and intracellular environments and requires the capacity to invade new cells for dissemination. A chlamydial protein called Tarp has been shown to nucleate actin in vitro and is implicated in bacterial entry into human cells. Colocalization studies of ectopically expressed enhanced green fluorescent protein (EGFP)-Tarp indicate that actin filament recruitment is restricted to the C-terminal half of the effector protein. Actin filaments are presumably associated with Tarp via an actin binding alpha helix that is also required for actin nucleation in vitro, but this has not been investigated. Tarp orthologs from C. pneumoniae, C. muridarum, and C. caviae harbor between 1 and 4 actin binding domains located in the C-terminal half of the protein, but C. trachomatis serovar L2 has only one characterized domain. In this work, we examined the effects of domain-specific mutations on actin filament colocalization with EGFP-Tarp. We now demonstrate that actin filament colocalization with Tarp is dependent on two novel F-actin binding domains that endow the Tarp effector with actin-bundling activity. Furthermore, Tarp-mediated actin bundling did not require actin nucleation, as the ability to bundle actin filaments was observed in mutant Tarp proteins deficient in actin nucleation. These data shed molecular insight on the complex cytoskeletal rearrangements required for C. trachomatis entry into host cells.

  5. Regulation and action of the bacterial enhancer-binding protein AAA+ domains

    SciTech Connect

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Nixon, B. Tracy

    2008-08-04

    Bacterial EBPs (enhancer-binding proteins) play crucial roles in regulating cellular responses to environmental changes, in part by providing efficient control over {sigma}{sup 54}-dependent gene transcription. The AAA+ (ATPase associated with various cellular activites) domain of the EBPs, when assembled into a ring, uses energy from ATP binding, hydrolysis and product release to remodel the {sigma}{sup 54}-RNAP (RNA polymerase) holoenzyme so that it can transition from closed to open form at promoter DNA. The assembly, and hence activity, of these ATPases are regulated by many different signal transduction mechanisms. Recent advances in solution scattering techniques, when combined with high-resolution structures and biochemical data, have enabled us to obtain mechanistic insights into the regulation and action of a subset of these {sigma}{sup 54} activators: those whose assembly into ring form is controlled by two-component signal transduction. We review (i) experimental considerations of applying the SAXS (small-angle X-ray scattering)/WAXS (wide-angle X-ray scattering) technique, (ii) distinct regulation mechanisms of the AAA+ domains of three EBPs by similar two-component signal transduction receiver domains, and (iii) major conformational changes and correlated {sigma}{sup 54}-binding activity of an isolated EBP AAA+ domain in the ATP hydrolysis cycle.

  6. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    PubMed

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  7. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    PubMed Central

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  8. Solution structure of the first HMG box domain in human upstream binding factor.

    PubMed

    Xu, Yingqi; Yang, Wulin; Wu, Jihui; Shi, Yunyu

    2002-04-30

    Human upstream binding factor is a nucleolar transcription factor involved in transcription by RNA polymerase I. It contains six HMG box domains; the HMG box is a minor groove DNA-binding domain that has been found in hundreds of proteins with different functions. Among the six HMG box domains in hUBF, the first one can bind to the ribosomal promoter specifically by itself and is essential for the whole protein's DNA binding specificity. Here we report the three-dimensional structure of this first HMG box free in solution determined by multidimensional NMR using (13)C,(15)N-labeled protein. Like the previously determined HMG box structures, hUBF HMG box 1 adopts a twisted L-shape consisting of three alpha-helices: helix 1 (17-30) and helix 2 (38-51) pack onto each other to form the short arm, while helix 3 (57-76) is associated with an extended strand N-terminal to helix 1 and forms the long arm. A cluster of conserved residues, in particular the aromatic residues F21, Y49, and Y60, is important to maintain the fold. The short arm is rigid due to extensive hydrophobic interaction between helix 1 and helix 2, while the long arm is less rigid.

  9. Fibronectin Growth Factor-Binding Domains Are Required for Fibroblast Survival

    PubMed Central

    Lin, Fubao; Ren, Xiang-Dong; Pan, Zhi; Macri, Lauren; Zong, Wei-Xing; Tonnesen, Marcia G.; Rafailovich, Miriam; Bar-Sagi, Dafna; Clark, Richard A.F.

    2011-01-01

    Fibronectin (FN) is required for embryogenesis, morphogenesis, and wound repair, and its Arg–Gly–Asp-containing central cell-binding domain (CCBD) is essential for mesenchymal cell survival and growth. Here, we demonstrate that FN contains three growth factor-binding domains (FN-GFBDs) that bind platelet-derived growth factor-BB (PDGF-BB), a potent fibroblast survival and mitogenic factor. These sites bind PDGF-BB with dissociation constants of 10–100 nm. FN-null cells cultured on recombinant CCBD (FNIII8–11) without a FN-GFBD demonstrated minimal metabolism and underwent autophagy at 24 hours, followed by apoptosis at 72 hours, even in the presence of PDGF-BB. In contrast, FN-null cells plated on FNIII8–11 contiguous with FN-GFBD survived without, and proliferated with, PDGF-BB. FN-null cell survival on FNIII8–11 and noncontiguous arrays of FN-GFBDs required these domains to be adsorbed on the same surface, suggesting the existence of a mesenchymal cell-extracellular matrix synapse. Thus, fibroblast survival required GF stimulation in the presence of a FN-GFBD, as well as adhesion to FN through the CCBD. The findings that fibroblast survival is dependent on FN-GFBD underscore the critical importance of pericellular matrix for cell survival and have significant implications for cutaneous wound healing and regeneration. PMID:20811396

  10. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling

    PubMed Central

    Müller, Jennifer; Obermeier, Ingrid; Wöhner, Miriam; Brandl, Carolin; Mrotzek, Sarah; Angermüller, Sieglinde; Maity, Palash C.; Reth, Michael; Nitschke, Lars

    2013-01-01

    A high proportion of human B cells carry B-cell receptors (BCRs) that are autoreactive. Inhibitory receptors such as CD22 can downmodulate autoreactive BCR responses. With its extracellular domain, CD22 binds to sialic acids in α2,6 linkages in cis, on the surface of the same B cell or in trans, on other cells. Sialic acids are self ligands, as they are abundant in vertebrates, but are usually not expressed by pathogens. We show that cis-ligand binding of CD22 is crucial for the regulation of B-cell Ca2+ signaling by controlling the CD22 association to the BCR. Mice with a mutated CD22 ligand-binding domain of CD22 showed strongly reduced Ca2+ signaling. In contrast, mice with mutated CD22 immunoreceptor tyrosine-based inhibition motifs have increased B-cell Ca2+ responses, increased B-cell turnover, and impaired survival of the B cells. Thus, the CD22 ligand-binding domain has a crucial function in regulating BCR signaling, which is relevant for controlling autoimmunity. PMID:23836650

  11. Metal and DNA binding properties of a two-domain fragment of neural zinc finger factor 1, a CCHC-type zinc binding protein.

    PubMed

    Berkovits, H J; Berg, J M

    1999-12-21

    Neural zinc finger factor 1 (NZF-1) is a member of a family of neural-specific transcription factors that contain multiple copies of a relatively uncharacterized zinc binding motif. We have studied the metal binding and DNA binding properties of a fragment of NZF-1 containing two adjacent zinc binding domains. Partial proteolysis with endoproteinase Lys-C identified metal-stabilized fragments containing either one or both of the zinc binding domains. Both domains were required for specific DNA binding to the beta-retinoic acid receptor element, producing a DNase I footprint covering predominantly one strand. The metal binding site was probed via cobalt(II) substitution. The visible absorption spectrum of the cobalt(II) complex is consistent with Cys-Cys-His-Cys coordination of the metal. The two domains appear to have similar affinities for metal and bind cobalt(II) and zinc(II) with dissociation constants of 4 (+/- 2) x 10(-)(7) M and 1.4 (+/- 0.8) x 10(-)(10) M, respectively. The domains fold upon the addition of zinc, as observed by (1)H NMR. However, an additional weak binding site causes line broadening in the presence of excess zinc, presumably due to aggregation.

  12. Homology modeling of NR2B modulatory domain of NMDA receptor and analysis of ifenprodil binding.

    PubMed

    Marinelli, Luciana; Cosconati, Sandro; Steinbrecher, Thomas; Limongelli, Vittorio; Bertamino, Alessia; Novellino, Ettore; Case, David A

    2007-10-01

    NMDA receptors are glutamate-gated ion channels (iGluRs) that are involved in several important physiological functions such as neuronal development, synaptic plasticity, learning, and memory. Among iGluRs, NMDA receptors have been perhaps the most actively investigated for their role in chronic neurodegeneration such as Alzheimer's, Parkinson's, and Huntington's diseases. Recent studies have shown that the NTD of subunit NR2B modulates ion channel gating through the binding of allosteric modulators such as the prototypical compound ifenprodil. In the present paper, the construction of a three-dimensional model for the NR2B modulatory domain is described and docking calculations allow, for the first time, definition of the ifenprodil binding pose at an atomic level and fully explain all the available structure-activity relationships. Moreover, in an attempt to add further insight into the ifenprodil mechanism of action, as it is not completely clear if it binds and stabilizes an open or a closed conformation of the NR2B modulatory domain, a matter, which is fundamental for the rational design of NMDA antagonists, MD simulations followed by an MM-PBSA analysis were performed. These calculations reveal that the closed conformation of the R1-R2 domain, rather than the open, constitutes the high affinity binding site for ifenprodil and that a profound stabilization of the closed conformation upon ifenprodil binding occurs. Thus, for a rational design and/or for virtual screening experiments, the closed conformation of the R1-R2 domain should be taken into account and our 3D model can provide valuable hints for the design of NR2B-selective antagonists.

  13. A Novel Kinesin-Like Protein with a Calmodulin-Binding Domain

    NASA Technical Reports Server (NTRS)

    Wang, W.; Takezawa, D.; Narasimhulu, S. B.; Reddy, A. S. N.; Poovaiah, B. W.

    1996-01-01

    Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with S-35-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca(2+)-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCKI is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca(2+)/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport.

  14. Elucidation of different inhibition mechanism of small chemicals on PtdInsP-binding domains using in silico docking experiments.

    PubMed

    Kim, Yonghwan; Yoon, Youngdae

    2014-05-15

    Phosphatidylinositides, most negatively charged lipids in cellular membranes, regulate diverse effector proteins through the interaction with their lipid binding domains. We have previously reported inhibitory effect of small chemicals on the interaction between PtdIns(3,4,5)P3 and Btk PH domain. Here, we report that the inhibitory effects of same sets of chemicals on Grp1 PH domain and epsin1 ENTH domain to elucidate diversity of inhibitory mechanisms upon different lipid binding domains. Among the chemicals, chemical 8 showed best inhibition in vitro assay for Grp1 PH domain and epsin1 ENTH domain, and then the interaction between small chemicals and lipid binding domains was further investigated by in silico docking experiments. As a result, it was concluded that the diverse inhibitory effects on different lipid binding domains were dependent on not only the number of interactions between small chemical and domain, but also additional interaction with positively charged surfaces as the secondary binding sites. This finding will help to develop lipid binding inhibitors as antagonists for lipid-protein interactions, and these inhibitors would be novel therapeutic drug candidates via regulating effector proteins involved in severe human diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Functional hot spots in human ATP-binding cassette transporter nucleotide binding domains

    PubMed Central

    Kelly, Libusha; Fukushima, Hisayo; Karchin, Rachel; Gow, Jason M; Chinn, Leslie W; Pieper, Ursula; Segal, Mark R; Kroetz, Deanna L; Sali, Andrej

    2010-01-01

    The human ATP-binding cassette (ABC) transporter superfamily consists of 48 integral membrane proteins that couple the action of ATP binding and hydrolysis to the transport of diverse substrates across cellular membranes. Defects in 18 transporters have been implicated in human disease. In hundreds of cases, disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs). The functional impact of the majority of ABC transporter nsSNPs has yet to be experimentally characterized. Here, we combine experimental mutational studies with sequence and structural analysis to describe the impact of nsSNPs in human ABC transporters. First, the disease associations of 39 nsSNPs in 10 transporters were rationalized by identifying two conserved loops and a small α-helical region that may be involved in interdomain communication necessary for transport of substrates. Second, an approach to discriminate between disease-associated and neutral nsSNPs was developed and tailored to this superfamily. Finally, the functional impact of 40 unannotated nsSNPs in seven ABC transporters identified in 247 ethnically diverse individuals studied by the Pharmacogenetics of Membrane Transporters consortium was predicted. Three predictions were experimentally tested using human embryonic kidney epithelial (HEK) 293 cells stably transfected with the reference multidrug resistance transporter 4 and its variants to examine functional differences in transport of the antiviral drug, tenofovir. The experimental results confirmed two predictions. Our analysis provides a structural and evolutionary framework for rationalizing and predicting the functional effects of nsSNPs in this clinically important membrane transporter superfamily. PMID:20799350

  16. Evidence for the heparin-binding ability of the ascidian Xlink domain and insight into the evolution of the Xlink domain in chordates.

    PubMed

    Yoneda, Masahiko; Nakamura, Toshiya; Murai, Miho; Wada, Hiroshi

    2010-07-01

    The vertebrate Xlink domain is found in two types of genes: lecticans and their associated hyaluronan-and-proteoglycan-binding-link-proteins (HAPLNs), which are components of the extracellular matrix, and those represented by CD44 and stabilins, which are expressed on the surface of lymphocytes. In both types of genes, Xlink functions as a hyaluronan binding domain. We have already reported that protochordate ascidians possess only the latter type of gene. The present analysis of the expression of ascidian Xlink domain genes revealed that these genes function in blood cell migration and apoptosis. While the Xlink domain is found in various metazoans, including ascidians and nematodes, hyaluronan is believed to be specific for vertebrates. In comprehensive genome surveys for hyaluronan synthase (HAS), we found no HAS gene in ascidians. We also established that hyaluronan is absent from the ascidian body biochemically. Therefore, ascidians possess the Xlink domain, but they lack HA. We recovered one ascidian Xlink domain gene that encoded a heparin-binding protein, although it shows no affinity for hyaluronan. Based on these findings, we conclude that in invertebrates, the Xlink domain serves as heparin-binding protein domain and functions in blood cell migration and apoptosis. Its binding affinity for HA might have been acquired in the vertebrate lineage.

  17. Substitution of glutamate residue by lysine in the dimerization domain affects DNA binding ability of HapR by inducing structural deformity in the DNA binding domain.

    PubMed

    Singh, Richa; Rathore, Yogendra Singh; Singh, Naorem Santa; Peddada, Nagesh; Ashish; Raychaudhuri, Saumya

    2013-01-01

    HapR has been given the status of a high cell density master regulatory protein in Vibrio cholerae. Though many facts are known regarding its structural and functional aspects, much still can be learnt from natural variants of the wild type protein. This work aims at investigating the nature of functional inertness of a HapR natural variant harboring a substitution of a conserved glutamate residue at position 117 which participates in forming a salt bridge by lysine (HapRV2G-E(117)K). Experimental evidence presented here reveals the inability of this variant to interact with various cognate promoters by in vitro gel shift assay. Furthermore, the elution profiles of HapRV2G-E(117)K protein along with the wild type functional HapRV2G in size-exclusion chromatography as well as circular dichroism spectra did not reflect any significant differences in its structure, thereby indicating the intactness of dimer in the variant protein. To gain further insight into the global shape of the proteins, small angle X-ray scattering analysis (SAXS) was performed. Intriguingly, increased radius of gyration of HapRV2G-E(117)K of 27.5 Å in comparison to the wild type protein from SAXS data analyses implied a significant alteration in the global shape of the dimeric HapRV2G-E(117)K protein. Structure reconstruction brought forth that the DNA binding domains were substantially "parted away" in this variant. Taken together, our data illustrates that substitution of the conserved glutamate residue by lysine in the dimerization domain induces separation of the two DNA binding domains from their native-like positioning without altering the dimeric status of HapR variant.

  18. OB or Not OB: Idiosyncratic utilization of the tRNA-binding OB-fold domain in unicellular, pathogenic eukaryotes.

    PubMed

    Kapps, Delphine; Cela, Marta; Théobald-Dietrich, Anne; Hendrickson, Tamara; Frugier, Magali

    2016-12-01

    In this review, we examine the so-called OB-fold, a tRNA-binding domain homologous to the bacterial tRNA-binding protein Trbp111. We highlight the ability of OB-fold homologs to bind tRNA species and summarize their distribution in evolution. Nature has capitalized on the advantageous effects acquired when an OB-fold domain binds to tRNA by evolutionarily selecting this domain for fusion to different enzymes. Here, we review our current understanding of how the complexity of OB-fold-containing proteins and enzymes developed to expand their functions, especially in unicellular, pathogenic eukaryotes.

  19. Topology of ATP-binding domain of adrenoleukodystrophy gene product in peroxisomes.

    PubMed

    Contreras, M; Sengupta, T K; Sheikh, F; Aubourg, P; Singh, I

    1996-10-15

    Adrenoleukodystrophy (X-ALD) is a demyelinating disorder characterized by the accumulation of saturated very-long-chain fatty acids (> C22:0) due to the impaired activity of lignoceroyl-CoA ligase. The gene responsible for the disease was found to code for a 84-kDa peroxisomal integral membrane protein. Its amino acid sequence has high homology with the ATP-binding cassette superfamily of transporters and it is predicted to have six membrane-spanning segments and a putative ATP-binding domain. To define the function of ALDP, we studied the topology of its ATP-binding domain by using antibodies (1D6) against a hydrophobic domain (amino acid residues 279 to 482) and antibodies (Abct) against the C-terminal 15-amino-acid hydrophilic domain (amino acid residues 731 to 745) of ALDP. The observation of punctate fluorescence in permeabilized ALD fibroblasts, using Abct antibodies but not with antibodies against catalase, suggests that the C-terminal segment of ALDP is projected toward the cytoplasm from the peroxisomal membrane. Trypsinization of intact peroxisomes under isotonic conditions abolishes the Abct antibody recognition site, whereas the 1D6 antibodies identify a degradation product of 43-kDa protein that has been protected and retained by the membrane. This again suggests that the C-terminal portion of the ALDP protein is located on the outside (cytoplasmic) face of the peroxisomal membrane. Additional support for this conclusion was obtained by purification of the ALDP C-terminal domain, released from purified rat liver peroxisomes incubated with the cytosolic fraction, using blue-Sepharose affinity chromatography. A 47-kDa peptide retained by the column was recognized by Western blot analysis with Abct antibodies against the C-terminal sequence of ALDP and this polypeptide on polyvinylidene difluoride membrane was able to bind [gamma-32P]ATP in vitro in the presence of Mg2+. These results demonstrate that the C-terminal peptide containing the ATP-binding

  20. Binding of cysteine synthase to the STAS domain of sulfate transporter and its regulatory consequences.

    PubMed

    Shibagaki, Nakako; Grossman, Arthur R

    2010-08-06

    The sulfate ion (SO(4)(2-)) is transported into plant root cells by SO(4)(2-) transporters and then mostly reduced to sulfide (S(2-)). The S(2-) is then bonded to O-acetylserine through the activity of cysteine synthase (O-acetylserine (thiol)lyase or OASTL) to form cysteine, the first organic molecule of the SO(4)(2-) assimilation pathway. Here, we show that a root plasma membrane SO(4)(2-) transporter of Arabidopsis, SULTR1;2, physically interacts with OASTL. The interaction was initially demonstrated using a yeast two-hybrid system and corroborated by both in vivo and in vitro binding assays. The domain of SULTR1;2 shown to be important for association with OASTL is called the STAS domain. This domain is at the C terminus of the transporter and extends from the plasma membrane into the cytoplasm. The functional relevance of the OASTL-STAS interaction was investigated using yeast mutant cells devoid of endogenous SO(4)(2-) uptake activity but co-expressing SULTR1;2 and OASTL. The analysis of SO(4)(2-) transport in these cells suggests that the binding of OASTL to the STAS domain in this heterologous system negatively impacts transporter activity. In contrast, the activity of purified OASTL measured in vitro was enhanced by co-incubation with the STAS domain of SULTR1;2 but not with the analogous domain of the SO(4)(2-) transporter isoform SULTR1;1, even though the SULTR1;1 STAS peptide also interacts with OASTL based on the yeast two-hybrid system and in vitro binding assays. These observations suggest a regulatory model in which interactions between SULTR1;2 and OASTL coordinate internalization of SO(4)(2-) with the energetic/metabolic state of plant root cells.

  1. CdiA Effectors Use Modular Receptor-Binding Domains To Recognize Target Bacteria

    PubMed Central

    Ruhe, Zachary C.; Nguyen, Josephine Y.; Xiong, Jing; Koskiniemi, Sanna; Beck, Christina M.; Perkins, Basil R.; Low, David A.

    2017-01-01

    ABSTRACT Contact-dependent growth inhibition (CDI) systems encode CdiA effectors, which bind to specific receptors on neighboring bacteria and deliver C-terminal toxin domains to suppress target cell growth. Two classes of CdiA effectors that bind distinct cell surface receptors have been identified, but the molecular basis of receptor specificity is not understood. Alignment of BamA-specific CdiAEC93 from Escherichia coli EC93 and OmpC-specific CdiAEC536 from E. coli 536 suggests that the receptor-binding domain resides within a central region that varies between the two effectors. In support of this hypothesis, we find that CdiAEC93 fragments containing residues Arg1358 to Phe1646 bind specifically to purified BamA. Moreover, chimeric CdiAEC93 that carries the corresponding sequence from CdiAEC536 is endowed with OmpC-binding activity, demonstrating that this region dictates receptor specificity. A survey of E. coli CdiA proteins reveals two additional effector classes, which presumably recognize distinct receptors. Using a genetic approach, we identify the outer membrane nucleoside transporter Tsx as the receptor for a third class of CdiA effectors. Thus, CDI systems exploit multiple outer membrane proteins to identify and engage target cells. These results underscore the modularity of CdiA proteins and suggest that novel effectors can be constructed through genetic recombination to interchange different receptor-binding domains and toxic payloads. PMID:28351921

  2. Alternative conformations of the Tau repeat domain in complex with an engineered binding protein.

    PubMed

    Grüning, Clara S R; Mirecka, Ewa A; Klein, Antonia N; Mandelkow, Eckhard; Willbold, Dieter; Marino, Stephen F; Stoldt, Matthias; Hoyer, Wolfgang

    2014-08-15

    The aggregation of Tau into paired helical filaments is involved in the pathogenesis of several neurodegenerative diseases, including Alzheimer disease. The aggregation reaction is characterized by conformational conversion of the repeat domain, which partially adopts a cross-β-structure in the resulting amyloid-like fibrils. Here, we report the selection and characterization of an engineered binding protein, β-wrapin TP4, targeting the Tau repeat domain. TP4 was obtained by phage display using the four-repeat Tau construct K18ΔK280 as a target. TP4 binds K18ΔK280 as well as the longest isoform of human Tau, hTau40, with nanomolar affinity. NMR spectroscopy identified two alternative TP4-binding sites in the four-repeat domain, with each including two hexapeptide motifs with high β-sheet propensity. Both binding sites contain the aggregation-determining PHF6 hexapeptide within repeat 3. In addition, one binding site includes the PHF6* hexapeptide within repeat 2, whereas the other includes the corresponding hexapeptide Tau(337-342) within repeat 4, denoted PHF6**. Comparison of TP4-binding with Tau aggregation reveals that the same regions of Tau are involved in both processes. TP4 inhibits Tau aggregation at substoichiometric concentration, demonstrating that it interferes with aggregation nucleation. This study provides residue-level insight into the interaction of Tau with an aggregation inhibitor and highlights the structural flexibility of Tau. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain.

    PubMed

    Minakshi, Rinki; Padhan, Kartika; Rehman, Safikur; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2014-10-13

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a positive stranded RNA virus with ∼30kb genome. Among all open reading frames (orfs) of this virus, the orf3a is the largest, and encodes a protein of 274 amino acids, named as 3a protein. Sequence analysis suggests that the orf3a aligned to one calcium pump present in Plasmodium falciparum and the enzyme glutamine synthetase found in Leptospira interrogans. This sequence similarity was found to be limited only to amino acid residues 209-264 which form the cytoplasmic domain of the orf3a. Furthermore, this region was predicted to be involved in the calcium binding. Owing to this hypothesis, we were driven to establish its calcium binding property in vitro. Here, we expressed and purified the cytoplasmic domain of the 3a protein, called Cyto3a, as a recombinant His-tagged protein in the E. coli. The calcium binding nature was established by performing various staining methods such as ruthenium red and stains-all. (45)Ca overlay method was also done to further support the data. Since the 3a protein forms ion channels, we were interested to see any conformational changes occurring in the Cyot3a upon calcium binding, using fluorescence spectroscopy and circular dichroism. These studies clearly indicate a significant change in the conformation of the Cyto3a protein after binding with calcium. Our results strongly suggest that the cytoplasmic domain of the 3a protein of SARS-CoV binds calcium in vitro, causing a change in protein conformation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Coordinated autoinhibition of F-BAR domain membrane binding and WASp activation by Nervous Wreck

    PubMed Central

    Stanishneva-Konovalova, Tatiana B.; Kelley, Charlotte F.; Eskin, Tania L.; Messelaar, Emily M.; Wasserman, Steven A.; Sokolova, Olga S.

    2016-01-01

    Membrane remodeling by Fes/Cip4 homology-Bin/Amphiphysin/Rvs167 (F-BAR) proteins is regulated by autoinhibitory interactions between their SRC homology 3 (SH3) and F-BAR domains. The structural basis of autoregulation, and whether it affects interactions of SH3 domains with other cellular ligands, remain unclear. Here we used single-particle electron microscopy to determine the structure of the F-BAR protein Nervous Wreck (Nwk) in both soluble and membrane-bound states. On membrane binding, Nwk SH3 domains do not completely dissociate from the F-BAR dimer, but instead shift from its concave surface to positions on either side of the dimer. Unexpectedly, along with controlling membrane binding, these autoregulatory interactions inhibit the ability of Nwk-SH3a to activate Wiskott–Aldrich syndrome protein (WASp)/actin related protein (Arp) 2/3-dependent actin filament assembly. In Drosophila neurons, Nwk autoregulation restricts SH3a domain-dependent synaptopod formation, synaptic growth, and actin organization. Our results define structural rearrangements in Nwk that control F-BAR–membrane interactions as well as SH3 domain activities, and suggest that these two functions are tightly coordinated in vitro and in vivo. PMID:27601635

  5. Secretory vesicle priming by CAPS is independent of its SNARE-binding MUN domain.

    PubMed

    Nguyen Truong, Cuc Quynh; Nestvogel, Dennis; Ratai, Olga; Schirra, Claudia; Stevens, David R; Brose, Nils; Rhee, JeongSeop; Rettig, Jens

    2014-11-06

    Priming of secretory vesicles is a prerequisite for their Ca(2+)-dependent fusion with the plasma membrane. The key vesicle priming proteins, Munc13s and CAPSs, are thought to mediate vesicle priming by regulating the conformation of the t-SNARE syntaxin, thereby facilitating SNARE complex assembly. Munc13s execute their priming function through their MUN domain. Given that the MUN domain of Ca(2+)-dependent activator protein for secretion (CAPS) also binds syntaxin, it was assumed that CAPSs prime vesicles through the same mechanism as Munc13s. We studied naturally occurring splice variants of CAPS2 in CAPS1/CAPS2-deficient cells and found that CAPS2 primes vesicles independently of its MUN domain. Instead, the pleckstrin homology domain of CAPS2 seemingly is essential for its priming function. Our findings indicate a priming mode for secretory vesicles. This process apparently requires membrane phospholipids, does not involve the binding or direct conformational regulation of syntaxin by MUN domains of CAPSs, and is therefore not redundant with Munc13 action.

  6. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase.

    PubMed

    Wong, Jaslyn E M M; Midtgaard, Søren Roi; Gysel, Kira; Thygesen, Mikkel B; Sørensen, Kasper K; Jensen, Knud J; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    2015-03-01

    LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  7. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    PubMed Central

    Wong, Jaslyn E. M. M.; Midtgaard, Søren Roi; Gysel, Kira; Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J.; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    2015-01-01

    LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed. PMID:25760608

  8. The Importin β Binding Domain as a Master Regulator of Nucleocytoplasmic Transport

    PubMed Central

    Lott, Kaylen; Cingolani, Gino

    2010-01-01

    Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB-domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB-domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB-domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ∼40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB-domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. PMID:21029753

  9. Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains.

    PubMed

    Nango, Eriko; Akiyama, Shuji; Maki-Yonekura, Saori; Ashikawa, Yuji; Kusakabe, Yuko; Krayukhina, Elena; Maruno, Takahiro; Uchiyama, Susumu; Nuemket, Nipawan; Yonekura, Koji; Shimizu, Madoka; Atsumi, Nanako; Yasui, Norihisa; Hikima, Takaaki; Yamamoto, Masaki; Kobayashi, Yuji; Yamashita, Atsuko

    2016-05-10

    Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer. Electron microscopy has showed a characteristic dimeric structure. Förster resonance energy transfer and X-ray solution scattering have revealed the transition of the dimerization manner of the ligand binding domains, from a widely spread to compactly organized state upon taste substance binding, which may correspond to distinct receptor functional states.

  10. Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains

    PubMed Central

    Hurt, Darrell E.; Suzuki, Shigeru; Mayama, Takafumi; Charmandari, Evangelia

    2016-01-01

    Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR. PMID:26745667

  11. Polycomb Group Targeting through Different Binding Partners of RING1B C-Terminal Domain

    PubMed Central

    Wang, Renjing; Taylor, Alexander B.; Leal, Belinda Z.; Chadwell, Linda V.; Ilangovan, Udayar; Robinson, Angela K.; Schirf, Virgil; Hart, P. John; Lafer, Eileen M.; Demeler, Borries; Hinck, Andrew P.; McEwen, Donald G.; Kim, Chongwoo A.

    2015-01-01

    SUMMARY RING1B, a Polycomb Group (PcG) protein, binds methylated chromatin through its association with another PcG protein called Polycomb (Pc). However, RING1B can associate with nonmethylated chromatin suggesting an alternate mechanism for RING1B interaction with chromatin. Here, we demonstrate that two proteins with little sequence identity between them, the Pc cbox domain and RYBP, bind the same surface on the C-terminal domain of RING1B (C-RING1B). Pc cbox and RYBP each fold into a nearly identical, intermolecular beta sheet with C-RING1B and a loop structure which are completely different in the two proteins. Both the beta sheet and loop are required for stable binding and transcription repression. Further, a mutation engineered to disrupt binding on the Drosophila dRING1 protein prevents chromatin association and PcG function in vivo. These results suggest that PcG targeting to different chromatin locations relies, in part, on binding partners of C-RING1B that are diverse in sequence and structure. PMID:20696397

  12. Carboxyl terminal domain basic amino acids of mycobacterial topoisomerase I bind DNA to promote strand passage.

    PubMed

    Ahmed, Wareed; Bhat, Anuradha Gopal; Leelaram, Majety Naga; Menon, Shruti; Nagaraja, Valakunja

    2013-08-01

    Bacterial DNA topoisomerase I (topoI) carries out relaxation of negatively supercoiled DNA through a series of orchestrated steps, DNA binding, cleavage, strand passage and religation. The N-terminal domain (NTD) of the type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn(2+) finger motifs in the CTD. The Zn(2+) finger motifs were found to be essential in Escherichia coli topoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial topoI lacks Zn(2+) fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. We also show that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the catalytic step. Although the NTD binds to DNA in a site-specific fashion to carry out DNA cleavage and religation, the basic residues in CTD bind to non-scissile DNA in a sequence-independent manner to promote the crucial strand passage step during DNA relaxation. The loss of Zn(2+) fingers from the mycobacterial topoI could be associated with Zn(2+) export and homeostasis.

  13. Interaction of the sex-lethal RNA binding domains with RNA.

    PubMed Central

    Kanaar, R; Lee, A L; Rudner, D Z; Wemmer, D E; Rio, D C

    1995-01-01

    Sex determination and X chromosome dosage compensation in Drosophila melanogaster are directed by the Sex-lethal (Sxl) protein. In part, Sxl functions by regulating the splicing of the transformer pre-mRNA by binding to a 3' splice site polypyrimidine tract. Polypyrimidine tracts are essential for splicing of metazoan pre-mRNAs. To unravel the mechanism of splicing regulation at polypyrimidine tracts we analyzed the interaction of Sxl with RNA. The RNA binding activity of Sxl was mapped to the two ribonucleoprotein consensus sequence domains of the protein. Quantitation of binding showed that both RNA binding domains (RBDs) were required in cis for site-specific RNA binding. Individual RBDs interacted with RNA more weakly and had lost the ability to discriminate between wild-type and mutant transformer polypyrimidine tracts. Structural elements in one of the RBDs that are likely to interact with a polypyrimidine tract were identified using nuclear magnetic resonance techniques. In addition, our data suggest that multiple imino protons of the transformer polypyrimidine tract were involved in hydrogen bonding. Interestingly, in vitro Sxl bound with equal affinity to polypyrimidine tracts of pre-mRNAs that it does not regulate in vivo. We discuss the implications of this finding for the mechanism through which Sxl may gain selectivity for particular polypyrimidine tracts in vivo. Images PMID:7556096

  14. Structure of Alzheimer’s disease amyloid precursor protein copper-binding domain at atomic resolution

    SciTech Connect

    Kong, Geoffrey Kwai-Wai; Adams, Julian J.; Cappai, Roberto; Parker, Michael W.

    2007-10-01

    An atomic resolution structure of the copper-binding domain of the Alzheimer’s disease amyloid precursor protein is presented. Amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer’s disease, as its cleavage generates the Aβ peptide that is toxic to cells. APP is able to bind Cu{sup 2+} and reduce it to Cu{sup +} through its copper-binding domain (CuBD). The interaction between Cu{sup 2+} and APP leads to a decrease in Aβ production and to alleviation of the symptoms of the disease in mouse models. Structural studies of CuBD have been undertaken in order to better understand the mechanism behind the process. Here, the crystal structure of CuBD in the metal-free form determined to ultrahigh resolution (0.85 Å) is reported. The structure shows that the copper-binding residues of CuBD are rather rigid but that Met170, which is thought to be the electron source for Cu{sup 2+} reduction, adopts two different side-chain conformations. These observations shed light on the copper-binding and redox mechanisms of CuBD. The structure of CuBD at atomic resolution provides an accurate framework for structure-based design of molecules that will deplete Aβ production.

  15. Detection of dsRNA-binding domains in RNA helicase A and Drosophila maleless: implications for monomeric RNA helicases.

    PubMed Central

    Gibson, T J; Thompson, J D

    1994-01-01

    Searches with dsRNA-binding domain profiles detected two copies of the domain in each of RNA helicase A, Drosophila maleless and C. elegans ORF T20G5-11 (of unknown function). RNA helicase A is unusual in being one of the few characterised DEAD/DExH helicases that are active as monomers. Other monomeric DEAD/DExH RNA helicases (p68, NPH-II) have domains that match another RNA-binding motif, the RGG repeat. The DEAD/DExH domain appears to be insufficient on its own to promote helicase activity and additional RNA-binding capacity must be supplied either as domains adjacent to the DEAD/DExH-box or by bound partners as in the eIF-4AB dimer. The presence or absence of extra RNA-binding domains should allow classification of DEAD/DExH proteins as monomeric or multimeric helicases. Images PMID:8041617

  16. Synthesis of an enzymatically active FLP recombinase in vitro: search for a DNA-binding domain.

    PubMed Central

    Amin, A A; Sadowski, P D

    1989-01-01

    We have used an in vitro transcription and translation system to synthesize an enzymatically active FLP protein. The FLP mRNA synthesized in vitro by SP6 polymerase is translated efficiently in a rabbit reticulocyte lysate to produce enzymatically active FLP. Using this system, we assessed the effect of deletions and tetrapeptide insertions on the ability of the respective variant proteins synthesized in vitro to bind to the FLP recognition target site and to carry out excisive recombination. Deletions of as few as six amino acids from either the carboxy- or amino-terminal region of FLP resulted in loss of binding activity. Likewise, insertions at amino acid positions 79, 203, and 286 abolished DNA-binding activity. On the other hand, a protein with an insertion at amino acid 364 retained significant DNA-binding activity but had no detectable recombination activity. Also, an insertion at amino acid 115 had no measurable effect on DNA binding, but recombination was reduced by 95%. In addition, an insertion at amino acid 411 had no effect on DNA binding and recombination. On the basis of these results, we conclude that this approach fails to define a discrete DNA-binding domain. The possible reasons for this result are discussed. Images PMID:2664465

  17. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation.

    PubMed

    Shim, Joong-Youn; Bertalovitz, Alexander C; Kendall, Debra A

    2011-09-23

    The classical cannabinoid agonist HU210, a structural analog of (-)-Δ(9)-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identified residues Phe-174(2.61), Phe-177(2.64), Leu-193(3.29), and Met-363(6.55) as being critical for HU210 binding by mutational analysis. Using these residues to guide the simulations, we determined essential cannabinoid-binding domains in the CB1 receptor, including the highly sought after hydrophobic pocket important for the binding of the C3 alkyl chain of classical and nonclassical cannabinoids. Analyzing the simulations of the HU210-CB1 receptor complex, the CP55940-CB1 receptor complex, and the (-)-Δ(9)-tetrahydrocannabinol-CB1 receptor complex, we found that the positioning of the C3 alkyl chain and the aromatic stacking between Trp-356(6.48) and Trp-279(5.43) is crucial for the Trp-356(6.48) rotamer change toward receptor activation through the rigid-body movement of H6. The functional data for the mutant receptors demonstrated reductions in potency for G protein activation similar to the reductions seen in ligand binding affinity for HU210.

  18. The structure of the Ca{sup 2+}-binding , glycosylated F-spondin domain of F-spondin- A C2-domain variant in an extracellular matrix protein.

    SciTech Connect

    Tan, K.; Lawler, J.

    2011-05-10

    F-spondin is a multi-domain extracellular matrix (ECM) protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin{_}N domain and the F-spondin domain (FS domain) comprise a proteolytic fragment that interacts with the cell membrane and guides the projection of commissural axons to floor plate. The FS domain is found in F-spondins, mindins, M-spondin and amphiF-spondin. We present the crystal structure of human F-spondin FS domain at 1.95{angstrom} resolution. The structure reveals a Ca{sup 2+}-binding C2 domain variant with an 8-stranded antiparallel {beta}-sandwich fold. Though the primary sequences of the FS domains of F-spondin and mindin are less than 36% identical, their overall structures are very similar. The unique feature of F-spondin FS domain is the presence of three disulfide bonds associated with the N- and C-termini of the domain and a highly conserved N-linked glycosylation site. The integrin-binding motif found in mindin is not conserved in the F-spondin FS domain. The structure of the F-spondin FS domain completes the structural studies of the multiple-domain ECM molecule. The homology of its core structure to a common Ca{sup 2+}- and lipid-binding C2 domain suggests that the F-spondin FS domain may be responsible for part of the membrane targeting of F-spondin in its regulation of axon development. The structural properties of the FS domain revealed in this study pave the way for further exploration into the functions of F-spondin.

  19. Phenylalanine binding is linked to dimerization of the regulatory domain of phenylalanine hydroxylase.

    PubMed

    Zhang, Shengnan; Roberts, Kenneth M; Fitzpatrick, Paul F

    2014-10-28

    Analytical ultracentrifugation has been used to analyze the oligomeric structure of the isolated regulatory domain of phenylalanine hydroxylase. The protein exhibits a monomer-dimer equilibrium with a dissociation constant of ~46 μM; this value is unaffected by the removal of the 24 N-terminal residues or by phosphorylation of Ser16. In contrast, phenylalanine binding (Kd = 8 μM) stabilizes the dimer. These results suggest that dimerization of the regulatory domain of phenylalanine hydroxylase is linked to allosteric activation of the enzyme.

  20. Engineered staphylococcal protein A's IgG-binding domain with cathepsin L inhibitory activity

    SciTech Connect

    Bratkovic, Tomaz . E-mail: tomaz.bratkovic@ffa.uni-lj.si; Berlec, Ales; Popovic, Tatjana; Lunder, Mojca; Kreft, Samo; Urleb, Uros; Strukelj, Borut

    2006-10-13

    Inhibitory peptide of papain-like cysteine proteases, affinity selected from a random disulfide constrained phage-displayed peptide library, was grafted to staphylococcal protein A's B domain. Scaffold protein was additionally modified in order to allow solvent exposed display of peptide loop. Correct folding of fusion proteins was confirmed by CD-spectroscopy and by the ability to bind the Fc-region of rabbit IgG, a characteristic of parent domain. The recombinant constructs inhibited cathepsin L with inhibitory constants in the low-micromolar range.

  1. Molecular Basis for Failure of “Atypical” C1 Domain of Vav1 to Bind Diacylglycerol/Phorbol Ester*

    PubMed Central

    Geczy, Tamas; Peach, Megan L.; El Kazzouli, Saïd; Sigano, Dina M.; Kang, Ji-Hye; Valle, Christopher J.; Selezneva, Julia; Woo, Wonhee; Kedei, Noemi; Lewin, Nancy E.; Garfield, Susan H.; Lim, Langston; Mannan, Poonam; Marquez, Victor E.; Blumberg, Peter M.

    2012-01-01

    C1 domains, the recognition motif of the second messenger diacylglycerol and of the phorbol esters, are classified as typical (ligand-responsive) or atypical (not ligand-responsive). The C1 domain of Vav1, a guanine nucleotide exchange factor, plays a critical role in regulation of Vav activity through stabilization of the Dbl homology domain, which is responsible for exchange activity of Vav. Although the C1 domain of Vav1 is classified as atypical, it retains a binding pocket geometry homologous to that of the typical C1 domains of PKCs. This study clarifies the basis for its failure to bind ligands. Substituting Vav1-specific residues into the C1b domain of PKCδ, we identified five crucial residues (Glu9, Glu10, Thr11, Thr24, and Tyr26) along the rim of the binding cleft that weaken binding potency in a cumulative fashion. Reciprocally, replacing these incompatible residues in the Vav1 C1 domain with the corresponding residues from PKCδ C1b (δC1b) conferred high potency for phorbol ester binding. Computer modeling predicts that these unique residues in Vav1 increase the hydrophilicity of the rim of the binding pocket, impairing membrane association and thereby preventing formation of the ternary C1-ligand-membrane binding complex. The initial design of diacylglycerol-lactones to exploit these Vav1 unique residues showed enhanced selectivity for C1 domains incorporating these residues, suggesting a strategy for the development of ligands targeting Vav1. PMID:22351766

  2. Non-catalytic participation of the Pin1 peptidyl-prolyl isomerase domain in target binding

    PubMed Central

    Innes, Brendan T.; Bailey, Melanie L.; Brandl, Christopher J.; Shilton, Brian H.; Litchfield, David W.

    2012-01-01

    Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase (PPIase) that has the potential to add an additional level of regulation within protein kinase mediated signaling pathways. Furthermore, there is a mounting body of evidence implicating Pin1 in the emergence of pathological phenotypes in neurodegeneration and cancer through the isomerization of a wide variety of substrates at peptidyl-prolyl bonds where the residue preceding proline is a phosphorylated serine or threonine residue (i.e., pS/T-P motifs). A key step in this regulatory process is the interaction of Pin-1 with its substrates. This is a complex process since Pin1 is composed of two domains, the catalytic PPIase domain, and a type IV WW domain, both of which recognize pS/T-P motifs. The observation that the WW domain exhibits considerably higher binding affinity for pS/T-P motifs has led to predictions that the two domains may have distinct roles in mediating the actions of Pin1 on its substrates. To evaluate the participation of its individual domains in target binding, we performed GST pulldowns to monitor interactions between various forms of Pin1 and mitotic phospho-proteins that revealed two classes of Pin-1 interacting proteins, differing in their requirement for residues within the PPIase domain. From these observations, we consider models for Pin1-substrate interactions and the potential functions of the different classes of Pin1 interacting proteins. We also compare sequences that are recognized by Pin1 within its individual interaction partners to investigate the underlying basis for its different types of interactions. PMID:23407864

  3. Common functionally-important motions of the nucleotide-binding domain of Hsp70

    PubMed Central

    Gołaś, Ewa I.; Czaplewski, Cezary; Scheraga, Harold A.; Liwo, Adam

    2014-01-01

    The 70 kDa Heat Shock Proteins (Hsp70) are a family of molecular chaperones involved in protein folding, aggregate prevention, and protein disaggregation. They consist of the substrate binding domain (SBD) that binds client substrates, and the nucleotide-binding domain (NBD), whose cycles of nucleotide hydrolysis and exchange underpin the activity of the chaperone. To characterize the structure-function relationships that link the binding state of the NBD to its conformational behavior, we analyzed the dynamics of the NBD of the Hsp70 chaperone from Bos taurus (pdb 3C7N:B) by all-atom canonical molecular dynamics simulations. It was found that essential motions within the NBD fall into three major classes: the mutual class, reflecting tendencies common to all binding states, and the ADP- and ATP-unique classes, which reflect conformational trends that are unique to either the ADP- or ATP-bound states, respectively. ‘Mutual’ class motions generally describe ‘in-plane’ and/or ‘out-of-plane’ (‘scissor-like’) rotation of the subdomains within the NBD. This result is consistent with experimental nuclear magnetic resonance data on the NBD. The ‘Unique’ class motions target specific regions on the NBD, usually surface loops or sites involved in nucleotide-binding and are, therefore, expected to be involved in allostery and signal transmission. For all classes, and especially for those of the ‘Unique’ type, regions of enhanced mobility can be identified; these are termed ‘hot-spots,’ and their locations generally parallel those found by NMR spectroscopy. The presence of magnesium and potassium cations in the nucleotide-binding pocket was also found to influence the dynamics of the NBD significantly. PMID:25412765

  4. Mutational definition of RNA-binding and protein-protein interaction domains of heterogeneous nuclear RNP C1.

    PubMed

    Wan, L; Kim, J K; Pollard, V W; Dreyfuss, G

    2001-03-09

    The heterogeneous nuclear ribonucleoprotein (hn- RNP) C proteins, among the most abundant pre-mRNA-binding proteins in the eukaryotic nucleus, have a single RNP motif RNA-binding domain. The RNA-binding domain (RBD) is comprised of approximately 80-100 amino acids, and its structure has been determined. However, relatively little is known about the role of specific amino acids of the RBD in the binding to RNA. We have devised a phage display-based screening method for the rapid identification of amino acids in hnRNP C1 that are essential for its binding to RNA. The identified mutants were further tested for binding to poly(U)-Sepharose, a substrate to which wild type hnRNP C1 binds with high affinity. We found both previously predicted, highly conserved residues as well as additional residues in the RBD to be essential for C1 RNA binding. We also identified three mutations in the leucine-rich C1-C1 interaction domain near the carboxyl terminus of the protein that both abolished C1 oligomerization and reduced RNA binding. These results demonstrate that although the RBD is the primary determinant of C1 RNA binding, residues in the C1-C1 interaction domain also influence the RNA binding activity of the protein. The experimental approach we described should be generally applicable for the screening and identification of amino acids that play a role in the binding of proteins to nucleic acid substrates.

  5. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    PubMed Central

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-01-01

    Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  6. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    SciTech Connect

    Choi, Yoo Seong; Pack, Seung Pil; Yoo, Young Je . E-mail: yjyoo@snu.ac.kr

    2005-04-22

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions.

  7. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity

    PubMed Central

    Nguyen, Duy P.; Miyaoka, Yuichiro; Gilbert, Luke A.; Mayerl, Steven J.; Lee, Brian H.; Weissman, Jonathan S.; Conklin, Bruce R.; Wells, James A.

    2016-01-01

    Cas9-based RNA-guided nuclease (RGN) has emerged to be a versatile method for genome editing due to the ease of construction of RGN reagents to target specific genomic sequences. The ability to control the activity of Cas9 with a high temporal resolution will facilitate tight regulation of genome editing processes for studying the dynamics of transcriptional regulation or epigenetic modifications in complex biological systems. Here we show that fusing ligand-binding domains of nuclear receptors to split Cas9 protein fragments can provide chemical control over split Cas9 activity. The method has allowed us to control Cas9 activity in a tunable manner with no significant background, which has been challenging for other inducible Cas9 constructs. We anticipate that our design will provide opportunities through the use of different ligand-binding domains to enable multiplexed genome regulation of endogenous genes in distinct loci through simultaneous chemical regulation of orthogonal Cas9 variants. PMID:27363581

  8. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    NASA Astrophysics Data System (ADS)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  9. Interaction between the PH and START domains of ceramide transfer protein competes with phosphatidylinositol 4-phosphate binding by the PH domain.

    PubMed

    Prashek, Jennifer; Bouyain, Samuel; Fu, Mingui; Li, Yong; Berkes, Dusan; Yao, Xiaolan

    2017-08-25

    De novo synthesis of the sphingolipid sphingomyelin requires non-vesicular transport of ceramide from the endoplasmic reticulum to the Golgi by the multidomain protein ceramide transfer protein (CERT). CERT's N-terminal pleckstrin homology (PH) domain targets it to the Golgi by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P) in the Golgi membrane, whereas its C-terminal StAR-related lipid transfer domain (START) carries out ceramide transfer. Hyperphosphorylation of a serine-rich motif immediately after the PH domain decreases both PtdIns(4)P binding and ceramide transfer by CERT. This down-regulation requires both the PH and START domains, suggesting a possible inhibitory interaction between the two domains. In this study we show that isolated PH and START domains interact with each other. The crystal structure of a PH-START complex revealed that the START domain binds to the PH domain at the same site for PtdIns(4)P-binding, suggesting that the START domain competes with PtdIns(4)P for association with the PH domain. We further report that mutations disrupting the PH-START interaction increase both PtdIns(4)P-binding affinity and ceramide transfer activity of a CERT-serine-rich phosphorylation mimic. We also found that these mutations increase the Golgi localization of CERT inside the cell, consistent with enhanced PtdIns(4)P binding of the mutant. Collectively, our structural, biochemical, and cellular investigations provide important structural insight into the regulation of CERT function and localization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Structural fold, conservation and Fe(II) binding of the intracellular domain of prokaryote FeoB

    SciTech Connect

    Hung, Kuo-Wei; Chang, Yi-Wei; Eng, Edward T.; Chen, Jai-Hui; Chen, Yi-Chung; Sun, Yuh-Ju; Hsiao, Chwan-Deng; Dong, Gang; Spasov, Krasimir A.; Unger, Vinzenz M.; Huang, Tai-huang

    2010-09-17

    FeoB is a G-protein coupled membrane protein essential for Fe(II) uptake in prokaryotes. Here, we report the crystal structures of the intracellular domain of FeoB (NFeoB) from Klebsiella pneumoniae (KpNFeoB) and Pyrococcus furiosus (PfNFeoB) with and without bound ligands. In the structures, a canonical G-protein domain (G domain) is followed by a helical bundle domain (S-domain), which despite its lack of sequence similarity between species is structurally conserved. In the nucleotide-free state, the G-domain's two switch regions point away from the binding site. This gives rise to an open binding pocket whose shallowness is likely to be responsible for the low nucleotide-binding affinity. Nucleotide binding induced significant conformational changes in the G5 motif which in the case of GMPPNP binding was accompanied by destabilization of the switch I region. In addition to the structural data, we demonstrate that Fe(II)-induced foot printing cleaves the protein close to a putative Fe(II)-binding site at the tip of switch I, and we identify functionally important regions within the S-domain. Moreover, we show that NFeoB exists as a monomer in solution, and that its two constituent domains can undergo large conformational changes. The data show that the S-domain plays important roles in FeoB function.

  11. Negative Cooperativity and High Affinity in Chitooligosaccharide Binding by a Mycobacterium smegmatis Protein Containing LysM and Lectin Domains.

    PubMed

    Patra, Dhabaleswar; Mishra, Padmanabh; Vijayan, Mamannamana; Surolia, Avadhesha

    2016-01-12

    LysM domains have been recognized in bacteria and eukaryotes as carbohydrate-binding protein modules, but the mechanism of their binding to chitooligosaccharides has been underexplored. Binding of a Mycobacterium smegmatis protein containing a lectin (MSL) and one LysM domain to chitooligosaccharides has been studied using isothermal titration calorimetry and fluorescence titration that demonstrate the presence of two binding sites of nonidentical affinities per dimeric MSL-LysM molecule. The affinity of the molecule for chitooligosaccharides correlates with the length of the carbohydrate chain. Its binding to chitooligosaccharides is characterized by negative cooperativity in the interactions of the two domains. Apparently, the flexibility of the long linker that connects the LysM and MSL domains plays a facilitating role in this recognition. The LysM domain in the MSL-LysM molecule, like other bacterial domains but unlike plant LysM domains, recognizes equally well peptidoglycan fragments as well as chitin polymers. Interestingly, in the case presented here, two LysM domains are enough for binding to peptidoglycan in contrast to the three reportedly required by the LysM domains of Bacillus subtilis and Lactococcus lactis. Also, the affinity of the MSL-LysM molecule for chitooligosaccharides is higher than that of LysM-chitooligosaccharide interactions reported so far.

  12. Specific and modular binding code for cytosine recognition in Pumilio/FBF (PUF) RNA-binding domains.

    PubMed

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb; Lu, Gang; Bigler, Rebecca; Jezyk, Mark R; Li, Chunhua; Hall, Traci M Tanaka; Wang, Zefeng

    2011-07-29

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.

  13. Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains

    SciTech Connect

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb; Lu, Gang; Bigler, Rebecca; Jezyk, Mark R.; Li, Chunhua; Tanaka Hall, Traci M.; Wang, Zefeng

    2011-10-28

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.

  14. Helix 8 of the ligand binding domain of the glucocorticoid receptor (GR) is essential for ligand binding.

    PubMed

    Deng, Qiong; Waxse, Bennett; Riquelme, Denise; Zhang, Jiabao; Aguilera, Greti

    2015-06-15

    Membrane association of estrogen receptors (ER) depends on cysteine palmitoylation and two leucines in the ligand binding domain (LBD), conserved in most steroid receptors. The role of this region, corresponding to helix 8 of the glucocorticoid receptor (GR) LBD, on membrane association of GR was studied in 4B cells, expressing endogenous GR, and Cos-7 cells transfected EGFP-GR constructs. 4B cells preloaded with radiolabeled palmitic acid showed no radioactivity incorporation into immunoprecipitated GR. Moreover, mutation C683A (corresponding to ER palmitoylation site) did not affect corticosterone-induced membrane association of GR. Mutations L687-690A, L682A, E680G and K685G prevented membrane and also nuclear localization through reduced ligand binding. L687-690A mutation decreased association of GR with heat shock protein 90 and transcriptional activity, without overt effects on receptor protein stability. The data demonstrate that palmitoylation does not mediate membrane association of GR, but that the region 680-690 (helix 8) is critical for ligand binding and receptor function.

  15. Structural Studies of the Alzheimer's Amyloid Precursor Protein Copper-Binding Domain Reveal How It Binds Copper Ions

    SciTech Connect

    Kong, G.K.-W.; Adams, J.J.; Harris, H.H.; Boas, J.F.; Curtain, C.C.; Galatis, D.; Master, C.L.; Barnham, K.J.; McKinstry, W.J.; Cappai, R.; Parker, M.W.; /Sydney U. /Monash U. /Melbourne U.

    2007-07-09

    Alzheimer's disease (AD) is the major cause of dementia. Amyloid {beta} peptide (A {beta}), generated by proteolytic cleavage of the amyloid precursor protein (APP), is central to AD pathogenesis. APP can function as a metalloprotein and modulate copper (Cu) transport, presumably via its extracellular Cu-binding domain (CuBD). Cu binding to the CuBD reduces A{beta} levels, suggesting that a Cu mimetic may have therapeutic potential. We describe here the atomic structures of apo CuBD from three crystal forms and found they have identical Cu-binding sites despite the different crystal lattices. The structure of Cu[2+]-bound CuBD reveals that the metal ligands are His147, His151, Tyrl68 and two water molecules, which are arranged in a square pyramidal geometry. The site resembles a Type 2 non-blue Cu center and is supported by electron paramagnetic resonance and extended X-ray absorption fine structure studies. A previous study suggested that Met170 might be a ligand but we suggest that this residue plays a critical role as an electron donor in CuBDs ability to reduce Cu ions. The structure of Cu[+]-bound CuBD is almost identical to the Cu[2+]-bound structure except for the loss of one of the water ligands. The geometry of the site is unfavorable for Cu[+], thus providing a mechanism by which CuBD could readily transfer Cu ions to other proteins.

  16. Cloning and Iron Transportation of Nucleotide Binding Domain of Cryptosporidium andersoni ATP-Binding Cassette (CaABC) Gene.

    PubMed

    Wang, Ju-Hua; Xue, Xiu-Heng; Zhou, Jie; Fan, Cai-Yun; Xie, Qian-Qian; Wang, Pan

    2015-06-01

    Cryptosporidium andersoni ATP-binding cassette (CaABC) is an important membrane protein involved in substrate transport across the membrane. In this research, the nucleotide binding domain (NBD) of CaABC gene was amplified by PCR, and the eukaryotic expression vector of pEGFP-C1-CaNBD was reconstructed. Then, the recombinant plasmid of pEGFP-C1-CaNBD was transformed into the mouse intestinal epithelial cells (IECs) to study the iron transportation function of CaABC. The results indicated that NBD region of CaABC gene can significantly elevate the transport efficiency of Ca(2+), Mg(2+), K(+), and HCO3 (-) in IECs (P<0.05). The significance of this study is to find the ATPase inhibitors for NBD region of CaABC gene and to inhibit ATP binding and nutrient transport of CaABC transporter. Thus, C. andersoni will be killed by inhibition of nutrient uptake. This will open up a new way for treatment of cryptosporidiosis.

  17. Structural feature extraction protocol for classifying reversible membrane binding protein domains.

    PubMed

    Källberg, Morten; Lu, Hui

    2009-01-01

    Machine learning based classification protocols for automated function annotation of protein structures have in many instances proven superior to simpler sequence based procedures. Here we present an automated method for extracting features from protein structures by construction of surface patches to be used in such protocols. The utility of the developed patch-growing procedure is exemplified by its ability to identify reversible membrane binding domains from the C1, C2, and PH families.

  18. Mutations of PKA cyclic nucleotide-binding domains reveal novel aspects of cyclic nucleotide selectivity.

    PubMed

    Lorenz, Robin; Moon, Eui-Whan; Kim, Jeong Joo; Schmidt, Sven H; Sankaran, Banumathi; Pavlidis, Ioannis V; Kim, Choel; Herberg, Friedrich W

    2017-07-06

    Cyclic AMP and cyclic GMP are ubiquitous second messengers that regulate the activity of effector proteins in all forms of life. The main effector proteins, the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), are preferentially activated by cAMP and cGMP, respectively. However, the molecular basis of this cyclic nucleotide selectivity is still not fully understood. Analysis of isolated cyclic nucleotide-binding (CNB) domains of PKA regulatory subunit type Iα (RIα) reveals that the C-terminal CNB-B has a higher cAMP affinity and selectivity than the N-terminal CNB-A. Here, we show that introducing cGMP-specific residues using site-directed mutagenesis reduces the selectivity of CNB-B, while the combination of two mutations (G316R/A336T) results in a cGMP-selective binding domain. Furthermore, introducing the corresponding mutations (T192R/A212T) into the PKA RIα CNB-A turns this domain into a highly cGMP-selective domain, underlining the importance of these contacts for achieving cGMP specificity. Binding data with the generic purine nucleotide 3',5'-cyclic inosine monophosphate (cIMP) reveal that introduced arginine residues interact with the position 6 oxygen of the nucleobase. Co-crystal structures of an isolated CNB-B G316R/A336T double mutant with either cAMP or cGMP reveal that the introduced threonine and arginine residues maintain their conserved contacts as seen in PKG I CNB-B. These results improve our understanding of cyclic nucleotide binding and the molecular basis of cyclic nucleotide specificity. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  19. Ubiquitin-binding domains and their role in the DNA damage response.

    PubMed

    Hofmann, Kay

    2009-04-05

    The modification of eukaryotic proteins by covalent attachment of ubiquitin is a versatile signaling event with a wide range of possible consequences. Canonical poly-ubiquitination by Lys-48 linked chains usually destines a protein for degradation by the proteasome. By contrast, attachment of a single ubiquitin or ubiquitin chains linked through Lys-63 or Lys-6 serves a non-proteolytic role. Over the last years, evidence has accumulated that several nuclear proteins become ubiquitinated in response to DNA damage. Typically, these proteins carry mono-ubiquitin or non-classical ubiquitin chains and are localized close to the site of DNA damage. Of particular interest are PCNA and the variant histone H2AX, two key proteins whose ubiquitination serves to recruit factors needed by the cell to cope with the damage. A prerequisite for docking effector proteins to the site of the lesion is the detection of a specific ubiquitin modification, a process that can be mediated by a range of dedicated ubiquitin-binding domains (UBDs). As the same types of ubiquitin modification are involved in entirely different processes, the recognition of the ubiquitin mark has to go along with the recognition of the modified protein. Thus, ubiquitin-binding domains gain their specificity through combination with other recognition domains and motifs. This review discusses ubiquitin-binding domains relevant to the DNA damage response, including their binding mode, their specificity, and their interdependence with other factors. For several repair pathways, current knowledge of the events downstream of the ubiquitin mark is sketchy. A closer look at orphan UBD proteins might lead to the identification of missing pieces in the DNA response puzzle.

  20. Disruption of actin-binding domain-containing Dystonin protein causes dystonia musculorum in mice.

    PubMed

    Horie, Masao; Watanabe, Keisuke; Bepari, Asim K; Nashimoto, Jun-Ichiro; Araki, Kimi; Sano, Hiromi; Chiken, Satomi; Nambu, Atsushi; Ono, Katsuhiko; Ikenaka, Kazuhiro; Kakita, Akiyoshi; Yamamura, Ken-Ichi; Takebayashi, Hirohide

    2014-11-01

    The Dystonin gene (Dst) is responsible for dystonia musculorum (dt), an inherited mouse model of hereditary neuropathy accompanied by progressive motor symptoms such as dystonia and cerebellar ataxia. Dst-a isoforms, which contain actin-binding domains, are predominantly expressed in the nervous system. Although sensory neuron degeneration in the peripheral nervous system during the early postnatal stage is a well-recognised phenotype in dt, the histological characteristics and neuronal circuits in the central nervous system responsible for motor symptoms remain unclear. To analyse the causative neuronal networks and roles of Dst isoforms, we generated novel multipurpose Dst gene trap mice, in which actin-binding domain-containing isoforms are disrupted. Homozygous mice showed typical dt phenotypes with sensory degeneration and progressive motor symptoms. The gene trap allele (Dst(Gt) ) encodes a mutant Dystonin-LacZ fusion protein, which is detectable by X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) staining. We observed wide expression of the actin-binding domain-containing Dystonin isoforms in the central nervous system (CNS) and peripheral nervous system. This raised the possibility that not only secondary neuronal defects in the CNS subsequent to peripheral sensory degeneration but also cell-autonomous defects in the CNS contribute to the motor symptoms. Expression analysis of immediate early genes revealed decreased neuronal activity in the cerebellar-thalamo-striatal pathway in the homozygous brain, implying the involvement of this pathway in the dt phenotype. These novel Dst(Gt) mice showed that a loss-of-function mutation in the actin-binding domain-containing Dystonin isoforms led to typical dt phenotypes. Furthermore, this novel multipurpose Dst(Gt) allele offers a unique tool for analysing the causative neuronal networks involved in the dt phenotype.

  1. PDZ binding to the BAR domain of PICK1 is elucidated by coarse-grained molecular dynamics

    PubMed Central

    He, Yi; Liwo, Adam; Weinstein, Harel; Scheraga, Harold A.

    2010-01-01

    A key regulator of AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor traffic, PICK1 is also known to interact with over 40 other proteins, including receptors, transporters, and ionic channels, and to be active mostly as a homodimer. The current lack of a complete PICK1 structure determined at atomic resolution hinders the elucidation of its functional mechanisms. Here, we identify interactions between the component PDZ and BAR domains of PICK1 by calculating possible binding sites for the PDZ domain of PICK1, PICK1-PDZ, to the homology-modeled crescent-shaped dimer of the PICK1-BAR domain using multiplexed replica-exchange molecular dynamics (MREMD) and canonical molecular dynamics (MD) simulations with the coarse-grained UNRES force field. The MREMD results show that the preferred binding site for the single PDZ domain is the concave cavity of the BAR dimer. A second possible binding site is near the N-terminus of the BAR domain that is linked directly to the PDZ domain. Subsequent short MD simulations, used to determine how the PICK1-PDZ domain moves to the preferred binding site on the BAR domain of PICK1, revealed that initial hydrophobic interactions drive the progress of the simulated binding. Thus, the concave face of the BAR dimer accommodates the PDZ domain first by weak hydrophobic interactions, and then the PDZ domain slides to the center of the concave face, where more favorable hydrophobic interactions take over. PMID:21050858

  2. Proteins that contain a functional Z-DNA-binding domain localize to cytoplasmic stress granules

    PubMed Central

    Ng, Siew Kit; Weissbach, Rebekka; Ronson, George E.; Scadden, A. D. J.

    2013-01-01

    Long double-stranded RNA may undergo hyper-editing by adenosine deaminases that act on RNA (ADARs), where up to 50% of adenosine residues may be converted to inosine. However, although numerous RNAs may undergo hyper-editing, the role for inosine-containing hyper-edited double-stranded RNA in cells is poorly understood. Nevertheless, editing plays a critical role in mammalian cells, as highlighted by the analysis of ADAR-null mutants. In particular, the long form of ADAR1 (ADAR1p150) is essential for viability. Moreover, a number of studies have implicated ADAR1p150 in various stress pathways. We have previously shown that ADAR1p150 localized to cytoplasmic stress granules in HeLa cells following either oxidative or interferon-induced stress. Here, we show that the Z-DNA-binding domain (ZαADAR1) exclusively found in ADAR1p150 is required for its localization to stress granules. Moreover, we show that fusion of ZαADAR1 to either green fluorescent protein (GFP) or polypyrimidine binding protein 4 (PTB4) also results in their localization to stress granules. We additionally show that the Zα domain from other Z-DNA-binding proteins (ZBP1, E3L) is likewise sufficient for localization to stress granules. Finally, we show that Z-RNA or Z-DNA binding is important for stress granule localization. We have thus identified a novel role for Z-DNA-binding domains in mammalian cells. PMID:23982513

  3. Complex structure of the fission yeast SREBP-SCAP binding domains reveals an oligomeric organization

    PubMed Central

    Gong, Xin; Qian, Hongwu; Shao, Wei; Li, Jingxian; Wu, Jianping; Liu, Jun-Jie; Li, Wenqi; Wang, Hong-Wei; Espenshade, Peter; Yan, Nieng

    2016-01-01

    Sterol regulatory element-binding protein (SREBP) transcription factors are master regulators of cellular lipid homeostasis in mammals and oxygen-responsive regulators of hypoxic adaptation in fungi. SREBP C-terminus binds to the WD40 domain of SREBP cleavage-activating protein (SCAP), which confers sterol regulation by controlling the ER-to-Golgi transport of the SREBP-SCAP complex and access to the activating proteases in the Golgi. Here, we biochemically and structurally show that the carboxyl terminal domains (CTD) of Sre1 and Scp1, the fission yeast SREBP and SCAP, form a functional 4:4 oligomer and Sre1-CTD forms a dimer of dimers. The crystal structure of Sre1-CTD at 3.5 Å and cryo-EM structure of the complex at 5.4 Å together with in vitro biochemical evidence elucidate three distinct regions in Sre1-CTD required for Scp1 binding, Sre1-CTD dimerization and tetrameric formation. Finally, these structurally identified domains are validated in a cellular context, demonstrating that the proper 4:4 oligomeric complex formation is required for Sre1 activation. PMID:27811944

  4. An Epigenetic Regulator: Methyl-CpG-Binding Domain Protein 1 (MBD1)

    PubMed Central

    Li, Lu; Chen, Bi-Feng; Chan, Wai-Yee

    2015-01-01

    DNA methylation is an important form of epigenetic regulation in both normal development and cancer. Methyl-CpG-binding domain protein 1 (MBD1) is highly related to DNA methylation. Its MBD domain recognizes and binds to methylated CpGs. This binding allows it to trigger methylation of H3K9 and results in transcriptional repression. The CXXC3 domain of MBD1 makes it a unique member of the MBD family due to its affinity to unmethylated DNA. MBD1 acts as an epigenetic regulator via different mechanisms, such as the formation of the MCAF1/MBD1/SETDB1 complex or the MBD1-HDAC3 complex. As methylation status always changes along with carcinogenesis or neurogenesis, MBD1 with its interacting partners, including proteins and non-coding RNAs, participates in normal or pathological processes and functions in different regulatory systems. Because of the important role of MBD1 in epigenetic regulation, it is a good candidate as a therapeutic target for diseases. PMID:25751725

  5. Clathrin assembly protein AP180: primary structure, domain organization and identification of a clathrin binding site.

    PubMed Central

    Morris, S A; Schröder, S; Plessmann, U; Weber, K; Ungewickell, E

    1993-01-01

    Binding of AP180 to clathrin triskelia induces their assembly into 60-70 nm coats. The largest rat brain cDNA clone isolated predicts a molecular weight of 91,430 for AP180. Two cDNA clones have an additional small 57 bp insert. The deduced molecular weight agrees with gel filtration results provided the more chaotropic denaturant 6 M guanidinium thiocyanate is substituted for the weaker guanidinium chloride. The sequence and the proteolytic cleavage pattern suggest a three domain structure. The N-terminal 300 residues (pI 8.7) harbour a clathrin binding site. An acidic middle domain (pI 3.6, 450 residues), interrupted by an uncharged alanine rich segment of 59 residues, appears to be responsible for the anomalous physical properties of AP180. The C-terminal domain (166 residues) has a pI of 10.4. AP180 mRNA is restricted to neuronal sources. AP180 shows no significant homology to known clathrin binding proteins, but is nearly identical to a mouse phosphoprotein (F1-20). This protein, localized to synaptic termini, has so far been of unknown function. Images PMID:8440257

  6. RNA-binding proteins with prion-like domains in health and disease.

    PubMed

    Harrison, Alice Ford; Shorter, James

    2017-04-07

    Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.

  7. Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator

    PubMed Central

    Lewis, Hal A; Buchanan, Sean G; Burley, Stephen K; Conners, Kris; Dickey, Mark; Dorwart, Michael; Fowler, Richard; Gao, Xia; Guggino, William B; Hendrickson, Wayne A; Hunt, John F; Kearins, Margaret C; Lorimer, Don; Maloney, Peter C; Post, Kai W; Rajashankar, Kanagalaghatta R; Rutter, Marc E; Sauder, J Michael; Shriver, Stephanie; Thibodeau, Patrick H; Thomas, Philip J; Zhang, Marie; Zhao, Xun; Emtage, Spencer

    2004-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a chloride channel. Nucleotide-binding domain 1 (NBD1), one of two ABC domains in CFTR, also contains sites for the predominant CF-causing mutation and, potentially, for regulatory phosphorylation. We have determined crystal structures for mouse NBD1 in unliganded, ADP- and ATP-bound states, with and without phosphorylation. This NBD1 differs from typical ABC domains in having added regulatory segments, a foreshortened subdomain interconnection, and an unusual nucleotide conformation. Moreover, isolated NBD1 has undetectable ATPase activity and its structure is essentially the same independent of ligand state. Phe508, which is commonly deleted in CF, is exposed at a putative NBD1-transmembrane interface. Our results are consistent with a CFTR mechanism, whereby channel gating occurs through ATP binding in an NBD1–NBD2 nucleotide sandwich that forms upon displacement of NBD1 regulatory segments. PMID:14685259

  8. Modular structure of chromosomal proteins HMG-14 and HMG-17: Definition of a transcriptional enhancement domain distinct from the nucleosomal binding domain

    SciTech Connect

    Trieschmann, L.; Postnikov, Y.V.; Rickers, A.; Bustin, M.

    1995-12-01

    This report describes how deletion mutants and peptides were used to identify the transcriptional enhancement domain and the nucleosome binding domain of two chromosomal proteins, HMG-14 and HMG-17. The research indicates that mutations involving C-terminal amino acids significantly reduces the ability of the nucleoproteins to enhance transcription from chromatin templates. 42 refs., 6 figs., 1 tab.

  9. Allosteric communication between the nucleotide binding domains of caseinolytic peptidase B.

    PubMed

    Fernández-Higuero, José Ángel; Acebrón, Sergio P; Taneva, Stefka G; Del Castillo, Urko; Moro, Fernando; Muga, Arturo

    2011-07-22

    ClpB is a hexameric chaperone that solubilizes and reactivates protein aggregates in cooperation with the Hsp70/DnaK chaperone system. Each of the identical protein monomers contains two nucleotide binding domains (NBD), whose ATPase activity must be coupled to exert on the substrate the mechanical work required for its reactivation. However, how communication between these sites occurs is at present poorly understood. We have studied herein the affinity of each of the NBDs for nucleotides in WT ClpB and protein variants in which one or both sites are mutated to selectively impair nucleotide binding or hydrolysis. Our data show that the affinity of NBD2 for nucleotides (K(d) = 3-7 μm) is significantly higher than that of NBD1. Interestingly, the affinity of NBD1 depends on nucleotide binding to NBD2. Binding of ATP, but not ADP, to NBD2 increases the affinity of NBD1 (the K(d) decreases from ≈160-300 to 50-60 μm) for the corresponding nucleotide. Moreover, filling of the NBD2 ring with ATP allows the cooperative binding of this nucleotide and substrates to the NBD1 ring. Data also suggest that a minimum of four subunits cooperate to bind and reactivate two different aggregated protein substrates.

  10. Identification of Adducin-Binding Residues on the Cytoplasmic Domain of Erythrocyte Membrane Protein, Band 3

    PubMed Central

    Franco, Taina; Chu, Haiyan; Low, Philip S.

    2016-01-01

    Two major complexes form structural bridges that connect the erythrocyte membrane to its underlying spectrin-based cytoskeleton. Although the band 3-ankyrin bridge may account for most of the membrane-to-cytoskeleton interactions, the linkage between the cytoplasmic domain of band 3 (cdb3) and adducin has also been shown to be critical to membrane integrity. In this paper, we demonstrate that adducin, a major component of the spectrin-actin junctional complex, binds primarily to residues 246 through 264 of cdb3, and mutation of two exposed glutamic acid residues within this sequence completely abrogates both α- and β-adducin binding. Because these residues are located next to the ankyrin binding site on cdb3, it seems unlikely that band 3 can bind ankyrin and adducin concurrently, reducing the chances of an association between the ankyrin and junctional complexes that would significantly compromise erythrocyte membrane integrity. We also demonstrate the adducin binds the kidney isoform of cdb3, a spliceoform that lacks the first 65 amino acids of erythrocyte cdb3, including the central strand of a large beta-pleated sheet. Because kidney cdb3 is not known to bind any of the common peripheral protein partners of erythrocyte cdb3, including ankyrin, protein 4.1, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and phosphofructokinase, retention of this affinity for adducin was unexpected. PMID:27435097

  11. Metal binding and antioxidant properties of chimeric tri- and tetra-domained metallothioneins.

    PubMed

    Moreau, Jean-Luc; Baudrimont, Magalie; Carrier, Patrick; Peltier, Gilles; Bourdineaud, Jean-Paul

    2008-05-01

    An unusual tri-domained (alpha-beta-beta) natural oyster metallothionein (MT) is known, and non-oxidative MT dimers occur in vivo in mollusk species and in mammals. To assess the respective role of the MT domains, two chimeric MTs were constructed: a tetra-domained oyster MT corresponding to the alpha-beta-alpha-beta structure, in order to mimic the natural non-oxidative dimeric form, and a tri-domained alpha-beta-alpha oyster MT. Metal binding and putative antioxidant properties of these two chimeric MTs were investigated using expression of the related genes in the bacteria Escherichia coli. In a wild-type strain these MTs could efficiently bind Cd. In a superoxide dismutase (sodA sodB) null mutant, the tri-domained MT was found to exacerbate Cd toxicity whereas the tetra-domained MT efficiently protected bacteria from Cd. The paradoxical toxicity displayed by the tri-domained MT upon Cd contamination was linked to the generation of superoxide radicals generated by a mechanism which most probably involves a copper-redox cycling reaction, since a Cd-contaminated sodA sodB strain expressing this MT produced 4 times more O2(-) than the control bacteria, and MT toxicity disappeared in the presence of bathocuproine disulfonic acid, a copper chelator. In contrast, the tetra-domained form did not. Interestingly, in bacteria producing superoxide dismutase but hypersensitive to oxidative stress due to either mutations in thioredoxin and glutathione reductase pathways (WM104 mutant) or to a lack of gamma-glutamylcysteine synthetase (gshA mutant), both chimeric MTs were protecting against Cd toxicity. However, an unexpected lack of antioxidant function was observed for both chimeric MTs, which were found to enhance the toxicity of hydrogen peroxide in WM104, or that of menadione in QC1726. Altogether, our results suggest that superoxide dismutase activity counteracts the potential prooxidative effect of the tri-domained MT mediated by Cu ions and that the tetra-domained

  12. Cooperative binding of dominant-negative prion protein to kringle domains.

    PubMed

    Ryou, Chongsuk; Prusiner, Stanley B; Legname, Giuseppe

    2003-05-30

    Conversion of the cellular prion protein (PrP(C)) to the pathogenic isoform (PrP(Sc)) is a major biochemical alteration in the progression of prion disease. This conversion process is thought to require interaction between PrP(C) and an as yet unidentified auxiliary factor, provisionally designated protein X. In searching for protein X, we screened a phage display cDNA expression library constructed from prion-infected neuroblastoma (ScN2a) cells and identified a kringle protein domain using full-length recombinant mouse PrP (recMoPrP(23-231), hereafter recMoPrP) expressing a dominant-negative mutation at codon 218 (recMoPrP(Q218K)). In vitro binding analysis using ELISA verified specific interaction of recMoPrP to kringle domains (K(1+2+3)) with higher binding by recMoPrP(Q218K) than by full-length recMoPrP without the mutation. This interaction was confirmed by competitive binding analysis, in which the addition of either a specific anti-kringle antibody or L-lysine abolished the interaction. Biochemical studies of the interactions between K(1+2+3) and various concentrations of both recMoPrP molecules demonstrated binding in a dose-dependent manner. A Hill plot analysis of the data indicates positive cooperative binding of both recMoPrP(Q218K) and recMoPrP to K(1+2+3) with stronger binding by recMoPrP(Q218K). Using full-length and an N-terminally truncated MoPrP(89-231), we demonstrate that N-terminal sequences enable PrP to bind strongly to K(1+2+3). Further characterization with truncated MoPrP(89-231) refolded in different conformations revealed that both alpha-helical and beta-sheet conformations bind to K(1+2+3). Our data demonstrate specific, high-affinity binding of a dominant-negative PrP as well as binding of other PrPs to K(1+2+3). The relevance of such interactions during prion pathogenesis remains to be established.

  13. Num1 anchors mitochondria to the plasma membrane via two domains with different lipid binding specificities

    PubMed Central

    Ping, Holly A.; Kraft, Lauren M.; Chen, WeiTing; Nilles, Amy E.

    2016-01-01

    The mitochondria–ER cortex anchor (MECA) is required for proper mitochondrial distribution and functions by tethering mitochondria to the plasma membrane. The core component of MECA is the multidomain protein Num1, which assembles into clusters at the cell cortex. We show Num1 adopts an extended, polarized conformation. Its N-terminal coiled-coil domain (Num1CC) is proximal to mitochondria, and the C-terminal pleckstrin homology domain is associated with the plasma membrane. We find that Num1CC interacts directly with phospholipid membranes and displays a strong preference for the mitochondria-specific phospholipid cardiolipin. This direct membrane interaction is critical for MECA function. Thus, mitochondrial anchoring is mediated by a protein that interacts directly with two different membranes through lipid-specific binding domains, suggesting a general mechanism for interorganelle tethering. PMID:27241910

  14. Num1 anchors mitochondria to the plasma membrane via two domains with different lipid binding specificities.

    PubMed

    Ping, Holly A; Kraft, Lauren M; Chen, WeiTing; Nilles, Amy E; Lackner, Laura L

    2016-06-06

    The mitochondria-ER cortex anchor (MECA) is required for proper mitochondrial distribution and functions by tethering mitochondria to the plasma membrane. The core component of MECA is the multidomain protein Num1, which assembles into clusters at the cell cortex. We show Num1 adopts an extended, polarized conformation. Its N-terminal coiled-coil domain (Num1CC) is proximal to mitochondria, and the C-terminal pleckstrin homology domain is associated with the plasma membrane. We find that Num1CC interacts directly with phospholipid membranes and displays a strong preference for the mitochondria-specific phospholipid cardiolipin. This direct membrane interaction is critical for MECA function. Thus, mitochondrial anchoring is mediated by a protein that interacts directly with two different membranes through lipid-specific binding domains, suggesting a general mechanism for interorganelle tethering. © 2016 Ping et al.

  15. Phage Display Derived IgNAR V Region Binding Domains for Therapeutic Development.

    PubMed

    Ubah, Obinna C; Barelle, Caroline J; Buschhaus, Magdalena J; Porter, Andrew J

    2016-01-01

    Phage display technology has revolutionized the science of drug discovery by transforming the generation and manipulation of ligands, such as antibody fragments, enzymes, and peptides. The basis of this technology is the expression of recombinant proteins or peptides fused to a phage coat protein, and subsequent isolation of ligands based on a variety of catalytic, physicochemical/binding kinetic and/or biological characteristics. An incredible number of diagnostic and therapeutic domains have been successfully isolated using phage display technology. The variable domain of the New Antigen Receptors (VNAR) found in cartilaginous fish, is also amenable to phage display selection. Whilst not an antibody, VNARs are unquestionable the oldest (450 million years), and smallest antigen binding, single-domains so far identified in the vertebrate kingdom. Their role as an integral part of the adaptive immune system of sharks has been well established, enhancing our understanding of the evolutionary origins of humoral immunity and the unusual but divergent ancestry of the VNARs themselves. VNARs exhibit remarkable physicochemical properties, such as small size, stability in extreme conditions, solubility, molecular flexibility, high affinity and selectivity for target. The purpose of this review is to illustrate the important role phage display has played in the isolation and characterization of potent therapeutic and diagnostic VNAR domains.

  16. Anthrax toxin lethal factor domain 3 is highly mobile and responsive to ligand binding.

    PubMed

    Maize, Kimberly M; Kurbanov, Elbek K; De La Mora-Rey, Teresa; Geders, Todd W; Hwang, Dong Jin; Walters, Michael A; Johnson, Rodney L; Amin, Elizabeth A; Finzel, Barry C

    2014-11-01

    The secreted anthrax toxin consists of three components: the protective antigen (PA), edema factor (EF) and lethal factor (LF). LF, a zinc metalloproteinase, compromises the host immune system primarily by targeting mitogen-activated protein kinase kinases in macrophages. Peptide substrates and small-molecule inhibitors bind LF in the space between domains 3 and 4 of the hydrolase. Domain 3 is attached on a hinge to domain 2 via residues Ile300 and Pro385, and can move through an angular arc of greater than 35° in response to the binding of different ligands. Here, multiple LF structures including five new complexes with co-crystallized inhibitors are compared and three frequently populated LF conformational states termed `bioactive', `open' and `tight' are identified. The bioactive position is observed with large substrate peptides and leaves all peptide-recognition subsites open and accessible. The tight state is seen in unliganded and small-molecule complex structures. In this state, domain 3 is clamped over certain substrate subsites, blocking access. The open position appears to be an intermediate state between these extremes and is observed owing to steric constraints imposed by specific bound ligands. The tight conformation may be the lowest-energy conformation among the reported structures, as it is the position observed with no bound ligand, while the open and bioactive conformations are likely to be ligand-induced.

  17. Binding Moral Foundations and the Narrowing of Ideological Conflict to the Traditional Morality Domain.

    PubMed

    Malka, Ariel; Osborne, Danny; Soto, Christopher J; Greaves, Lara M; Sibley, Chris G; Lelkes, Yphtach

    2016-09-01

    Moral foundations theory (MFT) posits that binding moral foundations (purity, authority, and ingroup loyalty) are rooted in the need for groups to promote order and cohesion, and that they therefore underlie political conservatism. We present evidence that binding foundations (and the related construct of disgust sensitivity) are associated with lower levels of ideological polarization on political issues outside the domain of moral traditionalism. Consistent support for this hypothesis was obtained from three large American Internet-based samples and one large national sample of New Zealanders (combined N = 7,874). We suggest that when political issues do not have inherent relevance to moral traditionalism, binding foundations promote a small centrist shift away from ideologically prescribed positions, and that they do so out of desire for national uniformity and cohesion.

  18. Two heparin-binding domains are present on the collagenic tail of asymmetric acetylcholinesterase.

    PubMed

    Deprez, P N; Inestrosa, N C

    1995-05-12

    The collagen-tailed form of acetylcholinesterase (AChE) binds to heparin and heparan sulfate proteoglycans. We have employed synthetic peptides corresponding to the central collagenic region of the tail of AChE, to identify the heparin-binding domains of the tail of asymmetric AChE. Two putative heparin-binding consensus sequences were localized in the collagenic tail. Peptides containing such sequences (P-(145-159) and P-(249-262)) were able to release asymmetric AChE bound to heparin-agarose. A triple mutation, Asn-Asp-Gly-Gly instead of Arg-His-Gly-Arg, completely abolishes the capacity of the peptide P-(145-159) to elute AChE from the heparin column. Our results suggest that the interaction between the collagen-tailed AChE and proteoglycans is mediated by clusters of basic residues that form two belts around the triple helix of the collagenic tail.

  19. The role of water in computational and experimental derivation of binding thermodynamics in SH2 domains.

    PubMed

    Geroult, Sebastien; Virdee, Satpal; Waksman, Gabriel

    2006-01-01

    We have studied the role of bound interface water molecules on the prediction of the thermodynamics of SH2 domain binding to tyrosyl phosphopeptides using a method based on accessible surface area buried upon association. We studied three phosphopeptide ligands, which have been shown by Lubman and Waksman (J Mol Biol;328:655, 2003) and Davidson et al. (JACS;124:205, 2002) to have similar binding free energies but very different thermodynamic signatures. The thermodynamic model is semiempirical and applies to the crystal structure of the SH2 domain-bound forms. We explored all possible combinations of bound interfacial waters. We show that the model does not predict the binding thermodynamics of either ligand. However, we identified the empirical formula describing the heat capacity change as the source of the problem. Indeed, systematic exploration of heat capacity change values between 0 and -300 cal/mol deg results in a sharp distribution of the number of ligand/SH2/water-subset structures that provide binding thermodynamics similar to experimental values. The heat capacity change values at which the distributions peak are different for each peptide. This prompted us to experimentally determine the heat capacity change for each of the peptides and we found them to coincide with the values of the peaks. The implications of such findings are discussed.

  20. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain.

    PubMed

    Sami, Furqan; Gary, Ronald K; Fang, Yayin; Sharma, Sudha

    2016-08-01

    RecQ helicases are a highly conserved family of ATP-dependent DNA-unwinding enzymes with key roles in DNA replication and repair in all kingdoms of life. The RECQ1 gene encodes the most abundant RecQ homolog in humans. We engineered full-length RECQ1 harboring point mutations in the zinc-binding motif (amino acids 419-480) within the conserved RecQ-specific-C-terminal (RQC) domain known to be critical for diverse biochemical and cellular functions of RecQ helicases. Wild-type RECQ1 contains a zinc ion. Substitution of three of the four conserved cysteine residues that coordinate zinc severely impaired the ATPase and DNA unwinding activities but retained DNA binding and single strand DNA annealing activities. Furthermore, alteration of these residues attenuated zinc binding and significantly changed the overall conformation of full-length RECQ1 protein. In contrast, substitution of cysteine residue at position 471 resulted in a wild-type like RECQ1 protein. Differential contribution of the conserved cysteine residues to the structure and functions of the RECQ1 protein is also inferred by homology modeling. Overall, our results indicate that the zinc binding motif in the RQC domain of RECQ1 is a key structural element that is essential for the structure-functions of RECQ1. Given the recent association of RECQ1 mutations with breast cancer, these results will contribute to understanding the molecular basis of RECQ1 functions in cancer etiology.

  1. Crystallographic and Biochemical Analysis of the Ran-Binding Zinc Finger Domain

    SciTech Connect

    Partridge, James R.; Schwartz, Thomas U.; MIT

    2009-08-13

    The nuclear pore complex (NPC) resides in circular openings within the nuclear envelope and serves as the sole conduit to facilitate nucleocytoplasmic transport in eukaryotes. The asymmetric distribution of the small G protein Ran across the nuclear envelope regulates directionality of protein transport. Ran interacts with the NPC of metazoa via two asymmetrically localized components, Nup153 at the nuclear face and Nup358 at the cytoplasmic face. Both nucleoporins contain a stretch of distinct, Ran-binding zinc finger domains. Here, we present six crystal structures of Nup153-zinc fingers in complex with Ran and a 1.48 {angstrom} crystal structure of RanGDP. Crystal engineering allowed us to obtain well diffracting crystals so that all ZnF-Ran complex structures are refined to high resolution. Each of the four zinc finger modules of Nup153 binds one Ran molecule in apparently non-allosteric fashion. The affinity is measurably higher for RanGDP than for RanGTP and varies modestly between the individual zinc fingers. By microcalorimetric and mutational analysis, we determined that one specific hydrogen bond accounts for most of the differences in the binding affinity of individual zinc fingers. Genomic analysis reveals that only in animals do NPCs contain Ran-binding zinc fingers. We speculate that these organisms evolved a mechanism to maintain a high local concentration of Ran at the vicinity of the NPC, using this zinc finger domain as a sink.

  2. The LIM motif defines a specific zinc-binding protein domain.

    PubMed

    Michelsen, J W; Schmeichel, K L; Beckerle, M C; Winge, D R

    1993-05-15

    The cysteine-rich protein (CRP) contains two copies of the LIM sequence motif, CX2CX17HX2CX2CX2CX17-CX2C, that was first identified in the homeodomain proteins Lin-11, Is1-1, and Mec-3. The abundance and spacing of the cysteine residues in the LIM motif are reminiscent of a metal-binding domain. We examined the metal-binding properties of CRP isolated from chicken smooth muscle (cCRP) and from a bacterial expression system and observed that cCRP is a specific Zn-binding metalloprotein. Four Zn(II) ions are maximally bound to cCRP, consistent with the idea that each LIM domain coordinates two metal ions. From spectroscopic studies of Co(II)- and 113Cd(II)-substituted cCRP, we determined that each metal ion is tetrahedrally coordinated with cysteinyl sulfurs dominating the ligand types. One metal site within each LIM motif has tetrathiolate (S4) coordination, the second site may either be S4 or S3N1. The LIM motif represents another example of a specific Zn-binding protein sequence.

  3. Domain one of the high affinity IgE receptor, FcepsilonRI, regulates binding to IgE through its interface with domain two.

    PubMed

    Rigby, L J; Epa, V C; Mackay, G A; Hulett, M D; Sutton, B J; Gould, H J; Hogarth, P M

    2000-03-31

    The high affinity receptor for IgE, FcepsilonRI, binds IgE through the second Ig-like domain of the alpha subunit. The role of the first Ig-like domain is not well understood, but it is required for optimal binding of IgE to FcepsilonRI, either through a minor contact interaction or in a supporting structural capacity. The results reported here demonstrate that domain one of FcepsilonRI plays a major structural role supporting the presentation of the ligand-binding site, by interactions generated within the interdomain interface. Analysis of a series of chimeric receptors and point mutants indicated that specific residues within the A' strand of domain one are crucial to the maintenance of the interdomain interface, and IgE binding. Mutation of the Arg(15) and Phe(17) residues caused loss in ligand binding, and utilizing a homology model of FcepsilonRI-alpha based on the solved structure of FcgammaRIIa, it appears likely that this decrease is brought about by collapse of the interface and consequently the IgE-binding site. In addition discrepancies in results of previous studies using chimeric IgE receptors comprising FcepsilonRIalpha with either FcgammaRIIa or FcgammaRIIIA can be explained by the presence or absence of Arg(15) and its influence on the IgE-binding site. The data presented here suggest that the second domain of FcepsilonRI-alpha is the only domain involved in direct contact with the IgE ligand and that domain one has a structural function of great importance in maintaining the integrity of the interdomain interface and, through it, the ligand-binding site.

  4. New insights into interactions between the nucleotide-binding domain of CFTR and keratin 8.

    PubMed

    Premchandar, Aiswarya; Kupniewska, Anna; Bonna, Arkadiusz; Faure, Grazyna; Fraczyk, Tomasz; Roldan, Ariel; Hoffmann, Brice; Faria da Cunha, Mélanie; Herrmann, Harald; Lukacs, Gergely L; Edelman, Aleksander; Dadlez, Michał

    2017-02-01

    The intermediate filament protein keratin 8 (K8) interacts with the nucleotide-binding domain 1 (NBD1) of the cystic fibrosis (CF) transmembrane regulator (CFTR) with phenylalanine 508 deletion (ΔF508), and this interaction hampers the biogenesis of functional ΔF508-CFTR and its insertion into the plasma membrane. Interruption of this interaction may constitute a new therapeutic target for CF patients bearing the ΔF508 mutation. Here, we aimed to determine the binding surface between these two proteins, to facilitate the design of the interaction inhibitors. To identify the NBD1 fragments perturbed by the ΔF508 mutation, we used hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) on recombinant wild-type (wt) NBD1 and ΔF508-NBD1 of CFTR. We then performed the same analysis in the presence of a peptide from the K8 head domain, and extended this investigation using bioinformatics procedures and surface plasmon resonance, which revealed regions affected by the peptide binding in both wt-NBD1 and ΔF508-NBD1. Finally, we performed HDX-MS analysis of the NBD1 molecules and full-length K8, revealing hydrogen-bonding network changes accompanying complex formation. In conclusion, we have localized a region in the head segment of K8 that participates in its binding to NBD1. Our data also confirm the stronger binding of K8 to ΔF508-NBD1, which is supported by an additional binding site located in the vicinity of the ΔF508 mutation in NBD1. © 2016 The Protein Society.

  5. Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides.

    PubMed

    Yahashiri, Atsushi; Jorgenson, Matthew A; Weiss, David S

    2015-09-08

    Bacterial SPOR domains bind peptidoglycan (PG) and are thought to target proteins to the cell division site by binding to "denuded" glycan strands that lack stem peptides, but uncertainties remain, in part because septal-specific binding has yet to be studied in a purified system. Here we show that fusions of GFP to SPOR domains from the Escherichia coli cell-division proteins DamX, DedD, FtsN, and RlpA all localize to septal regions of purified PG sacculi obtained from E. coli and Bacillus subtilis. Treatment of sacculi with an amidase that removes stem peptides enhanced SPOR domain binding, whereas treatment with a lytic transglycosylase that removes denuded glycans reduced SPOR domain binding. These findings demonstrate unequivocally that SPOR domains localize by binding to septal PG, that the physiologically relevant binding site is indeed a denuded glycan, and that denuded glycans are enriched in septal PG rather than distributed uniformly around the sacculus. Accumulation of denuded glycans in the septal PG of both E. coli and B. subtilis, organisms separated by 1 billion years of evolution, suggests that sequential removal of stem peptides followed by degradation of the glycan backbone is an ancient feature of PG turnover during bacterial cell division. Linking SPOR domain localization to the abundance of a structure (denuded glycans) present only transiently during biogenesis of septal PG provides a mechanism for coordinating the function of SPOR domain proteins with the progress of cell division.

  6. Structural and binding properties of the PASTA domain of PonA2, a key penicillin binding protein from Mycobacterium tuberculosis.

    PubMed

    Calvanese, Luisa; Falcigno, Lucia; Maglione, Cira; Marasco, Daniela; Ruggiero, Alessia; Squeglia, Flavia; Berisio, Rita; D'Auria, Gabriella

    2014-07-01

    PonA2 is one of the two class A penicillin binding proteins of Mycobacterium tuberculosis, the etiologic agent of tuberculosis. It plays a complex role in mycobacterial physiology and is spotted as a promising target for inhibitors. PonA2 is involved in adaptation of M. tuberculosis to dormancy, an ability which has been attributed to the presence in its sequence of a C-terminal PASTA domain. Since PASTA modules are typically considered as β-lactam antibiotic binding domains, we determined the solution structure of the PASTA domain from PonA2 and analyzed its binding properties versus a plethora of potential binders, including the β-lactam antibiotics, two typical muropeptide mimics, and polymeric peptidoglycan. We show that, despite a high structural similarity with other PASTA domains, the PASTA domain of PonA2 displays different binding properties, as it is not able to bind muropeptides, or β-lactams, or polymeric peptidoglycan. These results indicate that the role of PASTA domains cannot be generalized, as their specific binding properties strongly depend on surface residues, which are widely variable.

  7. DNA and Protein Footprinting Analysis of the Modulation of DNA Binding by the N-Terminal Domain of the Saccharomyces cervisiae TATA Binding Protein

    SciTech Connect

    Gupta,S.; Cheng, H.; Mollah, A.; Jamison, E.; Morris, S.; Chance, M.; Khrapunov, S.; Brenowitz, M.

    2007-01-01

    Recombinant full-length Saccharomyces cerevisiae TATA binding protein (TBP) and its isolated C-terminal conserved core domain (TBPc) were prepared with measured high specific DNA-binding activities. Direct, quantitative comparison of TATA box binding by TBP and TBPc reveals greater affinity by TBPc for either of two high-affinity sequences at several different experimental conditions. TBPc associates more rapidly than TBP to TATA box bearing DNA and dissociates more slowly. The structural origins of the thermodynamic and kinetic effects of the N-terminal domain on DNA binding by TBP were explored in comparative studies of TBPc and TBP by 'protein footprinting' with hydroxyl radical ({center_dot}OH) side chain oxidation. Some residues within TBPc and the C-terminal domain of TBP are comparably protected by DNA, consistent with solvent accessibility changes calculated from core domain crystal structures. In contrast, the reactivity of some residues located on the top surface and the DNA-binding saddle of the C-terminal domain differs between TBP and TBPc in both the presence and absence of bound DNA; these results are not predicted from the crystal structures. A strikingly different pattern of side chain oxidation is observed for TBP when a nonionic detergent is present. Taken together, these results are consistent with the N-terminal domain actively modulating TATA box binding by TBP and nonionic detergent modulating the interdomain interaction.

  8. Structural insights into the specific binding of huntingtin proline-rich region with the SH3 and WW domains.

    PubMed

    Gao, Yong-Guang; Yan, Xian-Zhong; Song, Ai-Xin; Chang, Yong-Gang; Gao, Xue-Chao; Jiang, Nan; Zhang, Qi; Hu, Hong-Yu

    2006-12-01

    The interactions of huntingtin (Htt) with the SH3 domain- or WW domain-containing proteins have been implicated in the pathogenesis of Huntington's disease (HD). We report the specific interactions of Htt proline-rich region (PRR) with the SH3GL3-SH3 domain and HYPA-WW1-2 domain pair by NMR. The results show that Htt PRR binds with the SH3 domain through nearly its entire chain, and that the binding region on the domain includes the canonical PxxP-binding site and the specificity pocket. The C terminus of PRR orients to the specificity pocket, whereas the N terminus orients to the PxxP-binding site. Htt PRR can also specifically bind to WW1-2; the N-terminal portion preferentially binds to WW1, while the C-terminal portion binds to WW2. This study provides structural insights into the specific interactions between Htt PRR and its binding partners as well as the alteration of these interactions that involve PRR, which may have implications for the understanding of HD.

  9. The Biologically Relevant Targets and Binding Affinity Requirements for the Function of the Yeast Actin-Binding Protein 1 Src-Homology 3 Domain Vary With Genetic Context

    PubMed Central

    Haynes, Jennifer; Garcia, Bianca; Stollar, Elliott J.; Rath, Arianna; Andrews, Brenda J.; Davidson, Alan R.

    2007-01-01

    Many protein–protein interaction domains bind to multiple targets. However, little is known about how the interactions of a single domain with many proteins are controlled and modulated under varying cellular conditions. In this study, we investigated the in vivo effects of Abp1p SH3 domain mutants that incrementally reduce target-binding affinity in four different yeast mutant backgrounds in which Abp1p activity is essential for growth. Although the severity of the phenotypic defects observed generally increased as binding affinity was reduced, some genetic backgrounds (prk1Δ and sla1Δ) tolerated large affinity reductions while others (sac6Δ and sla2Δ) were much more sensitive to these reductions. To elucidate the mechanisms behind these observations, we determined that Ark1p is the most important Abp1p SH3 domain interactor in prk1Δ cells, but that interactions with multiple targets, including Ark1p and Scp1p, are required in the sac6Δ background. We establish that the Abp1p SH3 domain makes different, functionally important interactions under different genetic conditions, and these changes in function are reflected by changes in the binding affinity requirement of the domain. These data provide the first evidence of biological relevance for any Abp1p SH3 domain-mediated interaction. We also find that considerable reductions in binding affinity are tolerated by the cell with little effect on growth rate, even when the actin cytoskeletal morphology is significantly perturbed. PMID:17409071

  10. Characterization of {alpha}X I-domain binding to Thy-1

    SciTech Connect

    Choi, Jeongsuk; Leyton, Lisette; Nham, Sang-Uk . E-mail: sunham@cc.kangwon.ac.kr

    2005-06-03

    The {beta}2 integrins are found exclusively in leukocytes and they are composed of a common {beta} chain, CD18, and one of four unique {alpha} chains, CD11a ({alpha}L subunit), CD11b ({alpha}M subunit), CD11c ({alpha}X subunit), or CD11d ({alpha}D subunit). {alpha}X-{beta}2 which binds several ligands including fibrinogen and iC3b is expressed in monocytes/macrophages and dendritic cells playing an important role in the host defense. Despite the unique characteristics on expression and regulation, {alpha}X-{beta}2 is less functionally characterized than other {beta}2 integrins. To understand the biological function of {alpha}X-{beta}2 more, we tested the possibility that {alpha}X-{beta}2 binds Thy-1, a membrane protein involved in cell adhesion and signaling regulation in neurons and T cells. Here we report that a ligand binding moiety of {alpha}X-{beta}2, the I-domain, bound Thy-1 in a specific and divalent cation-dependent manner. The dissociation constant (K{sub D}) of {alpha}X I-domain binding to Thy-1 was 1.16 {mu}M and the affinity of the binding was roughly 2-fold higher than that of {alpha}M I-domain. Amino acid substitutions on the {beta}D-{alpha}5 of {alpha}X I-domain (D249, KE243/244) showed low affinities for Thy-1 while other point mutations on {alpha}3-{alpha}4 and {beta}E-{alpha}6 loops of I-domain did not, suggesting that Thy-1 recognizes the portion of a {beta}D-{alpha}5 loop, possibly {alpha}5 helix. Taken together, these results indicate that {alpha}X-{beta}2 specifically interacts with Thy-1. Additionally, kinetic analysis reveals a moderate affinity interaction in the presence of divalent cations. Given the reported role of Thy-1 in the regulation of T cell homeostasis and proliferation, it is tempting to speculate that {alpha}X-{beta}2 may be involved in Thy-1 function.

  11. Structurally conserved erythrocyte-binding domain in Plasmodium provides a versatile scaffold for alternate receptor engagement

    PubMed Central

    Gruszczyk, Jakub; Lim, Nicholas T. Y.; Arnott, Alicia; He, Wen-Qiang; Nguitragool, Wang; Roobsoong, Wanlapa; Mok, Yee-Foong; Murphy, James M.; Smith, Katherine R.; Lee, Stuart; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E.

    2016-01-01

    Understanding how malaria parasites gain entry into human red blood cells is essential for developing strategies to stop blood stage infection. Plasmodium vivax preferentially invades reticulocytes, which are immature red blood cells. The organism has two erythrocyte-binding protein families: namely, the Duffy-binding protein (PvDBP) and the reticulocyte-binding protein (PvRBP) families. Several members of the PvRBP family bind reticulocytes, specifically suggesting a role in mediating host cell selectivity of P. vivax. Here, we present, to our knowledge, the first high-resolution crystal structure of an erythrocyte-binding domain from PvRBP2a, solved at 2.12 Å resolution. The monomeric molecule consists of 10 α-helices and one short β-hairpin, and, although the structural fold is similar to that of PfRh5—the essential invasion ligand in Plasmodium falciparum—its surface properties are distinct and provide a possible mechanism for recognition of alternate receptors. Sequence alignments of the crystallized fragment of PvRBP2a with other PvRBPs highlight the conserved placement of disulfide bonds. PvRBP2a binds mature red blood cells through recognition of an erythrocyte receptor that is neuraminidase- and chymotrypsin-resistant but trypsin-sensitive. By examining the patterns of sequence diversity within field isolates, we have identified and mapped polymorphic residues to the PvRBP2a structure. Using mutagenesis, we have also defined the critical residues required for erythrocyte binding. Characterization of the structural features that govern functional erythrocyte binding for the PvRBP family provides a framework for generating new tools that block P. vivax blood stage infection. PMID:26715754

  12. Two domains of interaction with calcium binding proteins can be mapped using fragments of calponin.

    PubMed Central

    Wills, F. L.; McCubbin, W. D.; Gimona, M.; Strasser, P.; Kay, C. M.

    1994-01-01

    Native calponin is able to bind 2 mol of calcium binding protein (CaBP) per mole calponin. This study extends this observation to define the 2 domains of interaction, one of which is near the actin binding site, and the other in the amino-terminal region of calponin. Also, the first evidence for a differentiation in the response of calponin to interaction with caltropin versus calmodulin is demonstrated. The binding of caltropin to cleavage and recombinant fragments of calponin was determined by 3 techniques: tryptophan fluorescence of the fragments, CD measurements to determine secondary structure changes, and analytical ultracentrifugation. In order to delineate the sites of interaction, 3 fragments of calponin have been studied. From a cyanogen bromide cleavage of calponin, residues 2-51 were isolated. This fragment is shown to bind to CaBPs and the affinity for caltropin is slightly higher than that for calmodulin. A carboxyl-terminal truncated mutant of calponin comprising residues 1-228 (CP 1-228) has been produced by recombinant techniques. Analytical ultracentrifugation has shown that CP 1-228, like the parent calponin, is able to bind 2 mol of caltropin per mol of 1-228 in a Ca(2+)-dependent fashion, indicating that there is a second site of interaction between residues 52-228. Temperature denaturation of the carboxyl-terminal truncated fragment compared with whole calponin show that the carboxyl-terminal region does not change the temperature at which calponin melts; however, there is greater residual secondary structure with whole calponin versus the fragment. A second mutant produced through recombinant techniques comprises residues 45-228 and is also able to bind caltropin, thus mapping the location of the second site of interaction to near the actin binding site. PMID:7756987

  13. Characterization of the kainate-binding domain of the glutamate receptor GluR-6 subunit.

    PubMed Central

    Keinänen, K; Jouppila, A; Kuusinen, A

    1998-01-01

    Recombinant fragments of the kainate-selective glutamate recepto subunit GluR-6 were expressed in insect cells and analysed for [3H]kainate binding activity in order to characterize the structural determinants responsible for ligand recognition. Deletion of the N-terminal approximately 400 amino-acid-residue segment and the C-terminal approximately 90 residues resulted in a membrane-bound core fragment which displayed pharmacologically native-like [3H]kainate binding properties. Further replacement of the membrane-embedded segments M1-M3 by a hydrophilic linker peptide gave rise to a soluble polypeptide which was accumulated in the culture medium. When bound to chelating Sepharose beads via a C-terminal histidine tag, the soluble fragment showed low-affinity binding of [3H]kainate, which was displaced in a concentration-dependent manner by unlabelled domoic acid, L-glutamate and 6-cyano-7-nitroquinoxaline-2,3-dione. Our results indicate that the kainate-binding site is formed exclusively by the two discontinuous extracellular segments (S1 and S2) which are homologous to bacterial amino-acid-binding proteins. Ligand binding characteristics of soluble S1-S2 chimaeras between the GluR-6 and GluR-D subunits showed that, whereas both S1 and S2 segments contribute to agonist-selectivity, the N-terminal one-third of the GluR-D S2 segment is sufficient to confer alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-binding capacity to the chimaeric ligand-binding domain. PMID:9494120

  14. Phylogenetic distribution and evolution of the linked RNA-binding and NOT1-binding domains in the tristetraprolin family of tandem CCCH zinc finger proteins.

    PubMed

    Blackshear, Perry J; Perera, Lalith

    2014-04-01

    In humans, the tristetraprolin or TTP family of CCCH tandem zinc finger (TZF) proteins comprises 3 members, encoded by the genes ZFP36, ZFP36L1, and ZFP36L2. These proteins have direct orthologues in essentially all vertebrates studied, with the exception of birds, which appear to lack a version of ZFP36. Additional family members are found in rodents, amphibians, and fish. In general, the encoded proteins contain 2 critical macromolecular interaction domains: the CCCH TZF domain, which is necessary for high-affinity binding to AU-rich elements in mRNA; and an extreme C-terminal domain that, in the case of TTP, interacts with NOT1, the scaffold of a large multi-protein complex that contains deadenylases. TTP and its related proteins act by first binding to AU-rich elements in mRNA, and then recruiting deadenylases to the mRNA, where they can processively remove the adenosine residues from the poly(A) tail. Highly conserved TZF domains have been found in unicellular eukaryotes such as yeasts, and these domains can bind AU-rich elements that resemble those bound by the mammalian proteins. However, certain fungi appear to lack proteins with intact TZF domains, and the TTP family proteins that are expressed in other fungi often lack the characteristic C-terminal NOT1 binding domain found in the mammalian proteins. For these reasons, we investigated the phylogenetic distribution of the relevant sequences in available databases. Both domains are present in family member proteins from most lineages of eukaryotes, suggesting their mutual presence in a common ancestor. However, the vertebrate type of NOT1-binding domain is missing in most fungi, and the TZF domain itself has disappeared or degenerated in recently evolved fungi. Nonetheless, both domains are present together in the proteins from several unicellular eukaryotes, including at least 1 fungus, and they seem to have remained together during the evolution of metazoans.

  15. Phylogenetic Distribution and Evolution of the Linked RNA-Binding and NOT1-Binding Domains in the Tristetraprolin Family of Tandem CCCH Zinc Finger Proteins

    PubMed Central

    Perera, Lalith

    2014-01-01

    In humans, the tristetraprolin or TTP family of CCCH tandem zinc finger (TZF) proteins comprises 3 members, encoded by the genes ZFP36, ZFP36L1, and ZFP36L2. These proteins have direct orthologues in essentially all vertebrates studied, with the exception of birds, which appear to lack a version of ZFP36. Additional family members are found in rodents, amphibians, and fish. In general, the encoded proteins contain 2 critical macromolecular interaction domains: the CCCH TZF domain, which is necessary for high-affinity binding to AU-rich elements in mRNA; and an extreme C-terminal domain that, in the case of TTP, interacts with NOT1, the scaffold of a large multi-protein complex that contains deadenylases. TTP and its related proteins act by first binding to AU-rich elements in mRNA, and then recruiting deadenylases to the mRNA, where they can processively remove the adenosine residues from the poly(A) tail. Highly conserved TZF domains have been found in unicellular eukaryotes such as yeasts, and these domains can bind AU-rich elements that resemble those bound by the mammalian proteins. However, certain fungi appear to lack proteins with intact TZF domains, and the TTP family proteins that are expressed in other fungi often lack the characteristic C-terminal NOT1 binding domain found in the mammalian proteins. For these reasons, we investigated the phylogenetic distribution of the relevant sequences in available databases. Both domains are present in family member proteins from most lineages of eukaryotes, suggesting their mutual presence in a common ancestor. However, the vertebrate type of NOT1-binding domain is missing in most fungi, and the TZF domain itself has disappeared or degenerated in recently evolved fungi. Nonetheless, both domains are present together in the proteins from several unicellular eukaryotes, including at least 1 fungus, and they seem to have remained together during the evolution of metazoans. PMID:24697206

  16. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site*

    PubMed Central

    Kadamur, Ganesh

    2016-01-01

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. PMID:27002154

  17. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2016-05-20

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Functional domains in nuclear import factor p97 for binding the nuclear localization sequence receptor and the nuclear pore.

    PubMed Central

    Chi, N C; Adam, S A

    1997-01-01

    The interaction of the nuclear protein import factor p97 with the nuclear localization sequence (NLS) receptor, the nuclear pore complex, and Ran/TC4 is important for coordinating the events of protein import to the nucleus. We have mapped the binding domains on p97 for the NLS receptor and the nuclear pore. The NLS receptor-binding domain of p97 maps to the C-terminal 60% of the protein between residues 356 and 876. The pore complex-binding domain of p97 maps to residues 152-352. The pore complex-binding domain overlaps the Ran-GTP- and Ran-GDP-binding domains on p97, but only Ran-GTP competes for docking in permeabilized cells. The N-ethylmaleimide sensitivity of the p97 for docking was investigated and found to be due to inhibition of p97 binding to the pore complex and to the NLS receptor. Site-directed mutagenesis of conserved cysteine residues in the pore- and receptor-binding domains identified two cysteines, C223 and C228, that were required for p97 to bind the nuclear pore. Inhibition studies on docking and accumulation of a NLS protein provided additional evidence that the domains identified biochemically are the functional domains involved in protein import. Together, these results suggest that Ran-GTP dissociates the receptor complex and prevents p97 binding to the pore by inducing a conformational change in the structure of p97 rather than simple competition for binding sites. Images PMID:9201707

  19. Solution structure of the C-terminal domain from poly(A)-binding protein in Trypanosoma cruzi: A vegetal PABC domain

    PubMed Central

    Siddiqui, Nadeem; Kozlov, Guennadi; D’Orso, Iván; Trempe, Jean-François; Gehring, Kalle

    2003-01-01

    PABC is a phylogenetically conserved peptide-binding domain primarily found within the C terminus of poly(A)-binding proteins (PABPs). This domain recruits a series of translation factors including poly(A)-interacting proteins (Paip1 and Paip2) and release factor 3 (RF3/GSPT) to the initiation complex on mRNA. Here, we determine the solution structure of the Trypanosoma cruzi PABC domain (TcPABC), a representative of the vegetal class of PABP proteins. TcPABC is similar to human PABC (hPABC) and consists of five α-helices, in contrast to the four helices observed in PABC domains from yeast (yPABC) and hyper plastic disk proteins (hHYD). A mobile N-terminal helix is observed in TcPABC that does not pack against the core of the protein, as found in hPABC. Characteristic to all PABC domains, the last four helices of TcPABC fold into a right-handed super coil. TcPABC demonstrates high-affinity binding to PABP interacting motif-2 (PAM-2) and reveals a peptide-binding surface homologous to that of hPABC. Our results demonstrate the last four helices in TcPABC are sufficient for peptide recognition and we predict a similar binding mode in PABC domains. Furthermore, these results point to the presence of putative PAM-2 site-containing proteins in trypanosomes. PMID:12930992

  20. The C domain in the surface envelope glycoprotein of subgroup C feline leukemia virus is a second receptor-binding domain.

    PubMed

    Rey, Michelle A; Prasad, Rati; Tailor, Chetankumar S

    2008-01-20

    The receptor-binding domain (RBD) in the surface (SU) subunit of gammaretrovirus envelope glycoprotein is critical for determining the host receptor specificity of the virus. This domain is separated from the carboxy terminal C domain (Cdom) of SU by a proline-rich region. In this study, we show that the Cdom region in the SU from subgroup C feline leukemia virus (FeLV-C) forms a second receptor-binding domain that is distinct from its RBD, and which can independently bind to its host receptor FLVCR1, in the absence of RBD. Furthermore, our results suggest that residues located in the C2 disulfide-bonded loop in FeLV-C Cdom are critical for SU binding to FLVCR1 and for virus infection. We propose that binding of FeLV-C SU to FLVCR1 involves interaction of two receptor-binding domains (RBD and Cdom) with FLVCR1, and that this mechanism of interaction is conserved for other gammaretroviruses. Our results could have important implications for designing gammaretrovirus vectors that can efficiently infect specific target cells.

  1. PDZ Binding Domains, Structural Disorder and Phosphorylation: A Menage-a-trois Tailing Dcp2 mRNA Decapping Enzymes.

    PubMed

    Gunawardana, Dilantha

    2016-01-01

    Diverse cellular activities are mediated through the interaction of protein domains and their binding partners. One such protein domain widely distributed in the higher metazoan world is the PDZ domain, which facilitates abundant protein-protein interactions. The PDZ domain-PDZ binding domain interaction has been implicated in several pathologies including Alzheimer's disease, Parkinson's disease and Down syndrome. PDZ domains bind to C-terminal peptides/proteins which have either of the following combinations: S/T-X-hydrophobic-COOH for type I, hydrophobic-Xhydrophobic- COOH for type II, and D/E-X-hydrophobic-COOH for type III, although hydrophobicity in the termini form the key characteristic of the PDZ-binding domains. We identified and characterized a Dcp2 type mRNA decapping enzyme from Arabidopsis thaliana, a protein containing a putative PDZ-binding domain using mutagenesis and protein biochemistry. Now we are using bioinformatics to study the Cterminal end of mRNA decapping enzymes from complex metazoans with the aim of (1) identifying putative PDZ-binding domains (2) Correlating structural disorder with PDZ binding domains and (3) Demonstrating the presence of phosphorylation sites in C-terminal extremities of Dcp2 type mRNA decapping enzymes. It is proposed here that the trinity of PDZbinding domains, structural disorder and phosphorylation-susceptible sites are a feature of the Dcp2 family of decapping enzymes and perhaps is a wider trick in protein evolution where scaffolding/tethering is a requirement for localization and function. It is critical though laboratory-based supporting evidence is sought to back-up this bioinformatics exploration into tail regions of mRNA decapping enzymes.

  2. Application of Celluspots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails.

    PubMed

    Bock, Ina; Kudithipudi, Srikanth; Tamas, Raluca; Kungulovski, Goran; Dhayalan, Arunkumar; Jeltsch, Albert

    2011-08-31

    Epigenetic reading domains are involved in the regulation of gene expression and chromatin state by interacting with histones in a post-translational modification specific manner. A detailed knowledge of the target modifications of reading domains, including enhancing and inhibiting secondary modifications, will lead to a better understanding of the biological signaling processes mediated by reading domains. We describe the application of Celluspots peptide arrays which contain 384 histone peptides carrying 59 post translational modifications in different combinations as an inexpensive, reliable and fast method for initial screening for specific interactions of reading domains with modified histone peptides. To validate the method, we tested the binding specificities of seven known epigenetic reading domains on Celluspots peptide arrays, viz. the HP1ß and MPP8 Chromo domains, JMJD2A and 53BP1 Tudor domains, Dnmt3a PWWP domain, Rag2 PHD domain and BRD2 Bromo domain. In general, the binding results agreed with literature data with respect to the primary specificity of the reading domains, but in almost all cases we obtained additional new information concerning the influence of secondary modifications surrounding the target modification. We conclude that Celluspots peptide arrays are powerful screening tools for studying the specificity of putative reading domains binding to modified histone peptides.

  3. Structural, biochemical, and functional characterization of the cyclic nucleotide binding homology domain from the mouse EAG1 potassium channel.

    PubMed

    Marques-Carvalho, Maria J; Sahoo, Nirakar; Muskett, Frederick W; Vieira-Pires, Ricardo S; Gabant, Guillaume; Cadene, Martine; Schönherr, Roland; Morais-Cabral, João H

    2012-10-12

    KCNH channels are voltage-gated potassium channels with important physiological functions. In these channels, a C-terminal cytoplasmic region, known as the cyclic nucleotide binding homology (CNB-homology) domain displays strong sequence similarity to cyclic nucleotide binding (CNB) domains. However, the isolated domain does not bind cyclic nucleotides. Here, we report the X-ray structure of the CNB-homology domain from the mouse EAG1 channel. Through comparison with the recently determined structure of the CNB-homology domain from the zebrafish ELK (eag-like K(+)) channel and the CNB domains from the MlotiK1 and HCN (hyperpolarization-activated cyclic nucleotide-gated) potassium channels, we establish the structural features of CNB-homology domains that explain the low affinity for cyclic nucleotides. Our structure establishes that the "self-liganded" conformation, where two residues of the C-terminus of the domain are bound in an equivalent position to cyclic nucleotides in CNB domains, is a conserved feature of CNB-homology domains. Importantly, we provide biochemical evidence that suggests that there is also an unliganded conformation where the C-terminus of the domain peels away from its bound position. A functional characterization of this unliganded conformation reveals a role of the CNB-homology domain in channel gating. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Application of Celluspots peptide arrays for the analysis of the binding specificity of epigenetic reading domains to modified histone tails

    PubMed Central

    2011-01-01

    Background Epigenetic reading domains are involved in the regulation of gene expression and chromatin state by interacting with histones in a post-translational modification specific manner. A detailed knowledge of the target modifications of reading domains, including enhancing and inhibiting secondary modifications, will lead to a better understanding of the biological signaling processes mediated by reading domains. Results We describe the application of Celluspots peptide arrays which contain 384 histone peptides carrying 59 post translational modifications in different combinations as an inexpensive, reliable and fast method for initial screening for specific interactions of reading domains with modified histone peptides. To validate the method, we tested the binding specificities of seven known epigenetic reading domains on Celluspots peptide arrays, viz. the HP1ß and MPP8 Chromo domains, JMJD2A and 53BP1 Tudor domains, Dnmt3a PWWP domain, Rag2 PHD domain and BRD2 Bromo domain. In general, the binding results agreed with literature data with respect to the primary specificity of the reading domains, but in almost all cases we obtained additional new information concerning the influence of secondary modifications surrounding the target modification. Conclusions We conclude that Celluspots peptide arrays are powerful screening tools for studying the specificity of putative reading domains binding to modified histone peptides. PMID:21884582

  5. Crystal structure of the trithorax group protein ASH2L reveals a forkhead-like DNA binding domain

    SciTech Connect

    Sarvan, Sabina; Avdic, Vanja; Tremblay, Véronique; Chaturvedi, Chandra-Prakash; Zhang, Pamela; Lanouette, Sylvain; Blais, Alexandre; Brunzelle, Joseph S; Brand, Marjorie; Couture, Jean-François

    2012-05-02

    Absent, small or homeotic discs-like 2 (ASH2L) is a trithorax group (TrxG) protein and a regulatory subunit of the SET1 family of lysine methyltransferases. Here we report that ASH2L binds DNA using a forkhead-like helix-wing-helix (HWH) domain. In vivo, the ASH2L HWH domain is required for binding to the {beta}-globin locus control region, histone H3 Lys4 (H3K4) trimethylation and maximal expression of the {beta}-globin gene (Hbb-1), validating the functional importance of the ASH2L DNA binding domain.

  6. Solution structure of tandem SH2 domains from Spt6 protein and their binding to the phosphorylated RNA polymerase II C-terminal domain.

    PubMed

    Liu, Jianping; Zhang, Jiahai; Gong, Qingguo; Xiong, Peng; Huang, Hongda; Wu, Bo; Lu, Guowei; Wu, Jihui; Shi, Yunyu

    2011-08-19

    Spt6 is a highly conserved transcription elongation factor and histone chaperone. It binds directly to the RNA polymerase II C-terminal domain (RNAPII CTD) through its C-terminal region that recognizes RNAPII CTD phosphorylation. In this study, we determined the solution structure of the C-terminal region of Saccharomyces cerevisiae Spt6, and we discovered that Spt6 has two SH2 domains in tandem. Structural and phylogenetic analysis revealed that the second SH2 domain was evolutionarily distant from canonical SH2 domains and represented a novel SH2 subfamily with a novel binding site for phosphoserine. In addition, NMR chemical shift perturbation experiments demonstrated that the tandem SH2 domains recognized Tyr(1), Ser(2), Ser(5), and Ser(7) phosphorylation of RNAPII CTD with millimolar binding affinities. The structural basis for the binding of the tandem SH2 domains to different forms of phosphorylated RNAPII CTD and its physiological relevance are discussed. Our results also suggest that Spt6 may use the tandem SH2 domain module to sense the phosphorylation level of RNAPII CTD.

  7. The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition

    PubMed Central

    Hoverter, Nate P.; Zeller, Michael D.; McQuade, Miriam M.; Garibaldi, Angela; Busch, Anke; Selwan, Elizabeth M.; Hertel, Klemens J.; Baldi, Pierre; Waterman, Marian L.

    2014-01-01

    LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5′-CTTTGWWS-3′) and the C-clamp domain for recognition of the GC-rich Helper motif (5′-RCCGCC-3′). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4′Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4′Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions. PMID:25414359

  8. Streptococcus pneumoniae Genome-wide Identification and Characterization of BOX Element-binding Domains.

    PubMed

    Zhang, Qiao; Wang, Changzheng; Wan, Min; Wu, Yin; Ma, Qianli

    2015-11-01

    The BOX elements are short repetitive DNA sequences that distribute randomly in intergenic regions of the Streptococcus pneumoniae genome. The function and origin of such elements are still unknown, but they were found to modulate expression of neighboring genes. Evidences suggested that the modulation's mechanism can be fulfilled by sequence-specific interaction of BOX elements with transcription factor family proteins. However, the type and function of these BOX-binding proteins still remain largely unexplored to date. In the current study we described a synthetic protocol to investigate the recognition and interaction between a highly conserved site of BOX elements and the DNA-binding domains of a variety of putative transcription factors in the pneumococcal genome. With the protocol we were able to predict those high-affinity domain binders of the conserved BOX DNA site (BOX DNA) in a high-throughput manner, and analyzed sequence-specific interaction in the domainDNA recognition at molecular level. Consequently, a number of putative transcription factor domains with both high affinity and specificity for the BOX DNA were identified, from which the helix-turn-helix (HTH) motif of a small heat shock factor was selected as a case study and tested for its binding capability toward the double-stranded BOX DNA using fluorescence anisotropy analysis. As might be expected, a relatively high affinity was detected for the interaction of HTH motif with BOX DNA with dissociation constant at nanomolar level. Molecular dynamics simulation, atomic structure examination and binding energy analysis revealed a complicated network of intensive nonbonded interactions across the complex interface, which confers both stability and specificity for the complex architecture.

  9. The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition.

    PubMed

    Hoverter, Nate P; Zeller, Michael D; McQuade, Miriam M; Garibaldi, Angela; Busch, Anke; Selwan, Elizabeth M; Hertel, Klemens J; Baldi, Pierre; Waterman, Marian L

    2014-12-16

    LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5'-CTTTGWWS-3') and the C-clamp domain for recognition of the GC-rich Helper motif (5'-RCCGCC-3'). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4'Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4'Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Conformational stability and domain coupling in D-glucose/D-galactose-binding protein from Escherichia coli

    PubMed Central

    2004-01-01

    The monomeric D-glucose/D-galactose-binding protein (GGBP) from Escherichia coli (Mr 33000) is a periplasmic protein that serves as a high-affinity receptor for the active transport and chemotaxis towards both sugars. The effect of D-glucose binding on the thermal unfolding of the GGBP protein at pH 7.0 has been measured by differential scanning calorimetry (DSC), far-UV CD and intrinsic tryptophanyl residue fluorescence (Trp fluorescence). All three techniques reveal reversible, thermal transitions and a midpoint temperature (Tm) increase from 50 to 63 °C produced by 10 mM D-glucose. Both in the absence and presence of D-glucose a single asymmetric endotherm for GGBP is observed in DSC, although each endotherm consists of two transitions about 4 °C apart in Tm values. In the absence of D-glucose, the protein unfolding is best described by two non-ideal transitions, suggesting the presence of unfolding intermediates. In the presence of D-glucose protein, unfolding is more co-operative than in the absence of the ligand, and the experimental data are best fitted to a model that assumes two ideal (two-state) sequential transitions. Thus D-glucose binding changes the character of the GGBP protein folding/unfolding by linking the two domains such that protein unfolding becomes a cooperative, two two-state process. A KA′ value of 5.6×106 M−1 at 63 °C for D-glucose binding is estimated from DSC results. The domain with the lower stability in DSC measurements has been identified as the C-terminal domain of GGBP from thermally induced Trp fluorescence changes. PMID:15032747

  11. Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions.

    PubMed

    O'Seaghdha, Maghnus; van Schooten, Carina J; Kerrigan, Steven W; Emsley, Jonas; Silverman, Gregg J; Cox, Dermot; Lenting, Peter J; Foster, Timothy J

    2006-11-01

    Protein A (Spa) is a surface-associated protein of Staphylococcus aureus best known for its ability to bind to the Fc region of IgG. Spa also binds strongly to the Fab region of the immunoglobulins bearing V(H)3 heavy chains and to von Willebrand factor (vWF). Previous studies have suggested that the protein A-vWF interaction is important in S. aureus adherence to platelets under conditions of shear stress. We demonstrate that Spa expression is sufficient for adherence of bacteria to immobilized vWF under low fluid shear. The full length recombinant Ig-binding region of protein A, Spa-EDABC, fused to glutathione-S-transferase (GST), bound recombinant vWF in a dose-dependent and saturable fashion with half maximal binding of about 30 nm in immunosorbent assays. Full length-Spa did not bind recombinant vWF A3 domain but displayed binding to recombinant vWF domains A1 and D'-D3 (half maximal binding at 100 nm and 250 nm, respectively). Each recombinant protein A Ig-binding domain bound to the A1 domain in a similar manner to the full length-Spa molecule (half maximal binding 100 nm). Amino acid substitutions were introduced in the GST-SpaD protein at sites known to be involved in IgG Fc or in V(H)3 Fab binding. Mutants altered in residues that recognized IgG Fc but not those that recognized V(H)3 Fab had reduced binding to vWF A1 and D'-D3. This indicated that both vWF regions recognized a region on helices I and II that overlapped the IgG Fc binding site.

  12. Non-canonical binding interactions of the RNA recognition motif (RRM) domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP).

    PubMed

    Kamina, Anyango D; Williams, Noreen

    2017-01-01

    RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP) and P34 binds to 5S ribosomal RNA (rRNA) and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM) domains. We generated truncated P34 proteins to determine these domains' interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP) 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP.

  13. Study on Folate Binding Domain of Dihydrofolate Reductase in Different Plant species and Human beings.

    PubMed

    Samanta, Aveek; Datta, Animesh Kumar; Datta, Siraj

    2014-01-01

    Data base (NCBI and TIGR) searches are made to retrieve protein sequences of different plant species namely Medicago truncatula, Pisum sativum, Ricinus communis, Arabidopsis thaliana, Vitis vinifera, Glycine max, Daucus carota, Oryza sativa Japonica Group, Arabidopsis lyrata subsp. lyrata, Brachypodium distachyon, Oryza sativa Indica Group, Zea mays and careful alignment of derived sequences shows 95% or higher identity. Similarly, DHFR sequence of human being is also retrieved from NCBI. A phylogenetic tree is constructed from different plant and human DHFR domain using the Neighbour - Joining method in MEGA 5.05. Conservation score is performed by using PARALINE. Result suggests that folate binding domain of dihydrofolare reductase is conserved (score 8.06) and excepting some minor variations the basic structure of the domain in both plant species and human being is rather similar. Human DHFR domain contains PEKN sequence near active site, though proline is common for all the selected organisms but the other sequences are different in plants. The plant domain is always associated with TS (Thymidylate synthase). Plant based system is predicted to be an effective model for assessment of MTX (Methotrexate) and other antifolate drugs.

  14. Fusion to a highly stable consensus albumin binding domain allows for tunable pharmacokinetics.

    PubMed

    Jacobs, Steven A; Gibbs, Alan C; Conk, Michelle; Yi, Fang; Maguire, Diane; Kane, Colleen; O'Neil, Karyn T

    2015-10-01

    A number of classes of proteins have been engineered for high stability using consensus sequence design methods. Here we describe the engineering of a novel albumin binding domain (ABD) three-helix bundle protein. The resulting engineered ABD molecule, called ABDCon, is expressed at high levels in the soluble fraction of Escherichia coli and is highly stable, with a melting temperature of 81.5°C. ABDCon binds human, monkey and mouse serum albumins with affinity as high as 61 pM. The solution structure of ABDCon is consistent with the three-helix bundle design and epitope mapping studies enabled a precise definition of the albumin binding interface. Fusion of a 10 kDa scaffold protein to ABDCon results in a long terminal half-life of 60 h in mice and 182 h in cynomolgus monkeys. To explore the link between albumin affinity and in vivo exposure, mutations were designed at the albumin binding interface of ABDCon yielding variants that span an 11 000-fold range in affinity. The PK properties of five such variants were determined in mice in order to demonstrate the tunable nature of serum half-life, exposure and clearance with variations in albumin binding affinity.

  15. Nitric Oxide Activation of Guanylate Cyclase Pushes the α1 Signaling Helix and the β1 Heme-binding Domain Closer to the Substrate-binding Site*

    PubMed Central

    Busker, Mareike; Neidhardt, Inga; Behrends, Sönke

    2014-01-01

    The complete structure of the assembled domains of nitric oxide-sensitive guanylate cyclase (NOsGC) remains to be determined. It is also unknown how binding of NO to heme in guanylate cyclase is communicated to the catalytic domain. In the current study the conformational change of guanylate cyclase on activation by NO was studied using FRET. Endogenous tryptophan residues were used as donors, the substrate analog 2′-Mant-3′-dGTP as acceptor. The enzyme contains five tryptophan residues distributed evenly over all four functional domains. This provides a unique opportunity to detect the movement of the functional domains relative to the substrate-binding catalytic region. FRET measurements indicate that NO brings tryptophan 22 in the αB helix of the β1 heme NO binding domain and tryptophan 466 in the second short helix of the α1 coiled-coil domain closer to the catalytic domain. We propose that the respective domains act as a pair of tongs forcing the catalytic domain into the nitric oxide-activated conformation. PMID:24220034

  16. Transcriptional activation by the acidic domain of Vmw65 requires the integrity of the domain and involves additional determinants distinct from those necessary for TFIIB binding.

    PubMed

    Walker, S; Greaves, R; O'Hare, P

    1993-09-01

    In this work we have examined the requirements for activity of the acidic domain of Vmw65 (VP16) by deletion and site-directed mutagenesis of the region in the context of GAL4 fusion proteins. The results indicate that the present interpretation of what actually constitutes the activation domain is not correct. We demonstrate, using a promoter with one target site which is efficiently activated by the wild-type (wt) fusion protein, that amino acids distal to residue 453 are critical for activity. Truncation of the domain or substitution of residues in the distal region almost completely abrogate activity. However, inactivating mutations within the distal region are complemented by using a promoter containing multiple target sites. Moreover, duplication of the proximal region, but not the distal region, restores the ability to activate a promoter with a single target site. These results indicate some distinct qualitative difference between the proximal and distal regions. We have also examined the binding of nuclear proteins to the wt domain and to a variant with the distal region inactivated by mutation. The lack of activity of this variant is not explained by a lack of binding of TFIIB, a protein previously reported to be the likely target of the acidic domain. Therefore some additional function is involved in transcriptional activation by the acid domain, and determinants distinct from those involved in TFIIB binding are required for this function. Analysis of the total protein profiles binding to the wt and mutant domains has demonstrated the selective binding to the wt domain of a 135-kDa polypeptide, which is therefore a candidate component involved in this additional function. This is the first report to provide evidence for the proposal of a multiplicity of interactions within the acidic domain, by uncoupling requirements for one function from those for another.

  17. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study.

    PubMed

    Belmonte, Luca; Moran, Oscar

    2015-04-01

    The Cystic Fibrosis Transmembrane Regulator (CFTR) is a membrane protein whose mutations cause cystic fibrosis, a lethal genetic disease. We performed a molecular dynamic (MD) study of the properties of the nucleotide binding domains (NBD) whose conformational changes, upon ATP binding, are the direct responsible of the gating mechanisms of CFTR. This study was done for the wild type (WT) CFTR and for the two most common mutations, ΔF508, that produces a traffic defect of the protein, and the mutation G551D, that causes a gating defect on CFTR. Using an homology model of the open channel conformation of the CFTR we thus introduced the mutations to the structure. Although the overall structures of the G551D and ΔF508 are quite well conserved, the NBD1-NBD2 interactions are severely modified in both mutants. NBD1 and NBD2 are indeed destabilized with a higher internal energy (Ei) in the ΔF508-CFTR. Differently, Ei does not change in the NBDs of G551D but, while the number of close contacts between NBD1 and NBD2 in ΔF508 is increased, a significant reduction of close contacts is found in the G551D mutated form. Hydrogen bonds formation between NBDs of the two mutated forms is also altered and it is slightly increased for the ΔF508, while are severely reduced in G551D. A consequent modification of the NBDs-ICLs interactions between residues involved in the transduction of the ATP binding and the channel gating is also registered. Indeed, while a major interaction is noticed between NBDs interface and ICL2 and ICL4 in the WT, this interaction is somehow altered in both mutated forms plausibly with effect on channel gating. Thus, single point mutations of the CFTR protein can reasonably results in channel gating defects due to alteration of the interaction mechanisms between the NBDs and NBDs-ICLs interfaces upon ATP-binding process. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Structure, function, and tethering of DNA-binding domains in σ⁵⁴ transcriptional activators.

    PubMed

    Vidangos, Natasha; Maris, Ann E; Young, Anisa; Hong, Eunmi; Pelton, Jeffrey G; Batchelor, Joseph D; Wemmer, David E

    2013-12-01

    We compare the structure, activity, and linkage of DNA-binding domains (DBDs) from σ(54) transcriptional activators and discuss how the properties of the DBDs and the linker to the neighboring domain are affected by the overall properties and requirements of the full proteins. These transcriptional activators bind upstream of specific promoters that utilize σ(54)-polymerase. Upon receiving a signal the activators assemble into hexamers, which then, through adenosine triphosphate (ATP) hydrolysis, drive a conformational change in polymerase that enables transcription initiation. We present structures of the DBDs of activators nitrogen regulatory protein C 1 (NtrC1) and Nif-like homolog 2 (Nlh2) from the thermophile Aquifex aeolicus. The structures of these domains and their relationship to other parts of the activators are discussed. These structures are compared with previously determined structures of the DBDs of NtrC4, NtrC, ZraR, and factor for inversion stimulation. The N-terminal linkers that connect the DBDs to the central domains in NtrC1 and Nlh2 were studied and found to be unstructured. Additionally, a crystal structure of full-length NtrC1 was solved, but density of the DBDs was extremely weak, further indicating that the linker between ATPase and DBDs functions as a flexible tether. Flexible linking of ATPase and DBDs is likely necessary to allow assembly of the active hexameric ATPase ring. The comparison of this set of activators also shows clearly that strong dimerization of the DBD only occurs when other domains do not dimerize strongly. Copyright © 2013 Wiley Periodicals, Inc.

  19. The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions.

    PubMed

    Leliveld, Sirik Rutger; Dame, Remus Thei; Wuite, Gijs J L; Stitz, Lothar; Korth, Carsten

    2006-02-10

    Insertion of additional octarepeats into the prion protein gene has been genetically linked to familial Creutzfeldt Jakob disease and hence to de novo generation of infectious prions. The pivotal event during prion formation is the conversion of the normal prion protein (PrPC) into the pathogenic conformer PrPSc, which subsequently induces further conversion in an autocatalytic manner. Apparently, an expanded octarepeat domain directs folding of PrP toward the PrPSc conformation and initiates a self-replicating conversion process. Here, based on three main observations, we hav