Sample records for acyl-coa starter units

  1. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    USDA-ARS?s Scientific Manuscript database

    Objective: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ...

  2. Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds.

    PubMed

    Larson, Tony R; Edgell, Teresa; Byrne, James; Dehesh, Katayoon; Graham, Ian A

    2002-11-01

    Several Brassica napus lines transformed with genes responsible for the synthesis of medium- or long-chain fatty acids were examined to determine limiting factor(s) for the subsequent accumulation of these fatty acids in seed lipids. Examination of a decanoic acid (10:0) accumulating line revealed a disproportionately high concentration of 10:0 CoA during seed development compared to long-chain acyl CoAs isolated from the same tissues, suggesting that poor incorporation of 10:0 CoA into seed lipids limits 10:0 fatty acid accumulation. This relationship was also seen for dodecanoyl (12:0) CoA and fatty acid in a high 12:0 line, but not for octadecanoic (18:0) CoA and fatty acid in a high 18:0 line. Comparison of 10:0 CoA and fatty acid proportions from seeds at different developmental stages for transgenic B. napus and Cuphea hookeriana, the source plant for the medium-chain thioesterase and 3-ketoacyl-ACP synthase transgenes, revealed that C. hookeriana incorporates 10:0 CoA into seed lipids more efficiently than transgenic B. napus. Furthermore, beta-oxidation and glyoxylate cycle activities were not increased above wild type levels during seed development in the 8:0/10:0 line, suggesting that lipid catabolism was not being induced in response to the elevated 10:0 CoA concentrations. Taken together, these data suggest that transgenic plants that are engineered to synthesize medium-chain fatty acids may lack the necessary mechanisms, such as specific acyltransferases, to incorporate these fatty acids efficiently into seed lipids.

  3. Acyl coenzyme a preference of diacylglycerol acyltransferase from the maturing seeds of cuphea, maize, rapeseed, and canola.

    PubMed

    Cao, Y Z; Huang, A H

    1987-07-01

    In their seed triacylglycerols, Cuphea carthagenensis contains 62% lauric acid; maize possesses 50% linoleic acid and 30% oleic acid; rapeseed (Brassica napus L. var Dwarf Essex) has 40% erucic acid; and Canola (Brassica napus L. var Tower) holds 60% oleic acid and 23% linoleic acid. Diacylglycerol acyltransferase (EC 2.3.1.20) in the microsomal preparations from maturing seeds of the above species were tested for their preference in using different forms of acyl coenzyme A (CoA). Lauroyl CoA, oleoyl CoA, and erucoyl CoA individually or in equimolar mixtures at increasing concentrations were added to the assay mixture containing diolein, and the formation of triacylglycerols from the acyl groups at 24, 32, and 40 degrees C was analyzed. The Cuphea enzyme preferred lauroyl CoA to oleoyl CoA, and was inactive on erucoyl CoA. The maize enzyme had about equal activities on oleoyl CoA and lauroyl CoA, and was inactive on erucoyl CoA. Enzymes from both rapeseed and Canola had the same pattern of acyl CoA preference, with highest activities on lauroyl CoA. The two enzymes were more active on oleoyl CoA than on erucoyl CoA at high acyl CoA concentrations (10 and 20 micromolar) at 24 degrees C, but were more active on erucoyl CoA than on oleoyl CoA at low acyl CoA concentrations (1.36 micromolar or less) at 32 and 40 degrees C. These findings are discussed in terms of the contribution of the enzyme to the acyl specificity in storage triacylglycerols and the implication in seed oil biotechnology.

  4. Acyl Coenzyme A Preference of Diacylglycerol Acyltransferase from the Maturing Seeds of Cuphea, Maize, Rapeseed, and Canola 1

    PubMed Central

    Cao, Yi-Zhi; Huang, Anthony H. C.

    1987-01-01

    In their seed triacylglycerols, Cuphea carthagenensis contains 62% lauric acid; maize possesses 50% linoleic acid and 30% oleic acid; rapeseed (Brassica napus L. var Dwarf Essex) has 40% erucic acid; and Canola (Brassica napus L. var Tower) holds 60% oleic acid and 23% linoleic acid. Diacylglycerol acyltransferase (EC 2.3.1.20) in the microsomal preparations from maturing seeds of the above species were tested for their preference in using different forms of acyl coenzyme A (CoA). Lauroyl CoA, oleoyl CoA, and erucoyl CoA individually or in equimolar mixtures at increasing concentrations were added to the assay mixture containing diolein, and the formation of triacylglycerols from the acyl groups at 24, 32, and 40°C was analyzed. The Cuphea enzyme preferred lauroyl CoA to oleoyl CoA, and was inactive on erucoyl CoA. The maize enzyme had about equal activities on oleoyl CoA and lauroyl CoA, and was inactive on erucoyl CoA. Enzymes from both rapeseed and Canola had the same pattern of acyl CoA preference, with highest activities on lauroyl CoA. The two enzymes were more active on oleoyl CoA than on erucoyl CoA at high acyl CoA concentrations (10 and 20 micromolar) at 24°C, but were more active on erucoyl CoA than on oleoyl CoA at low acyl CoA concentrations (1.36 micromolar or less) at 32 and 40°C. These findings are discussed in terms of the contribution of the enzyme to the acyl specificity in storage triacylglycerols and the implication in seed oil biotechnology. PMID:16665518

  5. Acyl-CoA:Lysophosphatidylethanolamine Acyltransferase Activity Regulates Growth of Arabidopsis1

    PubMed Central

    Jasieniecka-Gazarkiewicz, Katarzyna; Lager, Ida; Carlsson, Anders S.; Gutbrod, Katharina; Peisker, Helga; Dörmann, Peter; Stymne, Sten; Banaś, Antoni

    2017-01-01

    Arabidopsis (Arabidopsis thaliana) contains two enzymes (encoded by the At1g80950 and At2g45670 genes) preferentially acylating lysophosphatidylethanolamine (LPE) with acyl-coenzyme A (CoA), designated LYSOPHOSPHATIDYLETHANOLAMINE ACYLTRANSFERASE1 (LPEAT1) and LPEAT2. The transfer DNA insertion mutant lpeat2 and the double mutant lpeat1 lpeat2 showed impaired growth, smaller leaves, shorter roots, less seed setting, and reduced lipid content per fresh weight in roots and seeds and large increases in LPE and lysophosphatidylcholine (LPC) contents in leaves. Microsomal preparations from leaves of these mutants showed around 70% decrease in acylation activity of LPE with 16:0-CoA compared with wild-type membranes, whereas the acylation with 18:1-CoA was much less affected, demonstrating that other lysophospholipid acyltransferases than the two LPEATs could acylate LPE. The above-mentioned effects were less pronounced in the single lpeat1 mutant. Overexpression of either LPEAT1 or LPEAT2 under the control of the 35S promotor led to morphological changes opposite to what was seen in the transfer DNA mutants. Acyl specificity studies showed that LPEAT1 utilized 16:0-CoA at the highest rate of 11 tested acyl-CoAs, whereas LPEAT2 utilized 20:0-CoA as the best acyl donor. Both LPEATs could acylate either sn position of ether analogs of LPC. The data show that the activities of LPEAT1 and LPEAT2 are, in a complementary way, involved in growth regulation in Arabidopsis. It is shown that LPEAT activity (especially LPEAT2) is essential for maintaining adequate levels of phosphatidylethanolamine, LPE, and LPC in the cells. PMID:28408542

  6. Up-regulation of hepatic Acyl CoA: Diacylglycerol acyltransferase-1 (DGAT-1) expression in nephrotic syndrome.

    PubMed

    Vaziri, Nosratola D; Kim, Choong H; Phan, Dennis; Kim, Sara; Liang, Kaihui

    2004-07-01

    Nephrotic syndrome is associated with hypercholesterolemia, hypertriglyceridemia, and marked elevations of plasma low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL). Hypertriglyceridemia in nephrotic syndrome is accompanied by increased hepatic fatty acid synthesis, elevated triglyceride secretion, as well as lipoprotein lipase, VLDL-receptor, and hepatic triglyceride lipase deficiencies, which lead to impaired clearance of triglyceride-rich lipoproteins. Acyl CoA: diacylglycerol acyltransferase (DGAT) is a microsomal enzyme that joins acyl CoA to 1, 2-diacylglycerol to form triglyceride. Two distinct DGATs (DGAT-1 and DGAT2) have recently been identified in the liver and other tissues. The present study tested the hypothesis that the reported increase in hepatic triglyceride secretion in nephrotic syndrome may be caused by up-regulation of DGAT. Male Sprague-Dawley rats were rendered nephrotic by two sequential injections of puromycin aminonucleoside (130 mg/kg on day 1 and 60 mg/kg on day 14) and studied on day 30. Placebo-treated rats served as controls. Hepatic DGAT-1 and DGAT-2 mRNA abundance and enzymatic activity were measured. The nephrotic group exhibited heavy proteinuria, hypoalbuminemia, hypercholesterolemia, hypertriglyceridemia, and marked elevation of VLDL concentration. Hepatic DGAT-1 mRNA, DGAT-1, and total DGAT activity were significantly increased, whereas DGAT-2 mRNA abundance and activity were unchanged in the nephrotic rats compared to the control animals. The functional significance of elevation of DGAT activity was illustrated by the reduction in microsomal free fatty acid concentration in the liver of nephrotic animals. Nephrotic syndrome results in up-regulation of hepatic DGAT-1 expression and activity, which can potentially contribute to the associated hypertriglyceridemia by enhancing triglyceride synthesis. Thus, it appears that both depressed catabolism and increased synthetic capacity contribute to

  7. Purification, gene cloning, and characterization of γ-butyrobetainyl CoA synthetase from Agrobacterium sp. 525a.

    PubMed

    Fujimitsu, Hiroshi; Matsumoto, Akira; Takubo, Sayaka; Fukui, Akiko; Okada, Kazuma; Mohamed Ahmed, Isam A; Arima, Jiro; Mori, Nobuhiro

    2016-08-01

    The report is the first of purification, overproduction, and characterization of a unique γ-butyrobetainyl CoA synthetase from soil-isolated Agrobacterium sp. 525a. The primary structure of the enzyme shares 70-95% identity with those of ATP-dependent microbial acyl-CoA synthetases of the Rhizobiaceae family. As distinctive characteristics of the enzyme of this study, ADP was released in the catalytic reaction process, whereas many acyl CoA synthetases are annotated as an AMP-forming enzyme. The apparent Km values for γ-butyrobetaine, CoA, and ATP were, respectively, 0.69, 0.02, and 0.24 mM.

  8. Functional role of a distal (3'-phosphate) group of CoA in the recombinant human liver medium-chain acyl-CoA dehydrogenase-catalysed reaction.

    PubMed Central

    Peterson, K L; Srivastava, D K

    1997-01-01

    The X-ray crystallographic structure of medium-chain acyl-CoA dehydrogenase (MCAD)-octenoyl-CoA complex reveals that the 3'-phosphate group of CoA is confined to the exterior of the protein structure [approx. 15 A (1.5 nm) away from the enzyme active site], and is fully exposed to the outside solvent environment. To ascertain whether such a distal (3'-phosphate) fragment of CoA plays any significant role in the enzyme catalysis, we investigated the recombinant human liver MCAD (HMCAD)-catalysed reaction by using normal (phospho) and 3'-phosphate-truncated (dephospho) forms of octanoyl-CoA and butyryl-CoA substrates. The steady-state kinetic data revealed that deletion of the 3'-phosphate group from octanoyl-CoA substrate increased the turnover rate of the enzyme to about one-quarter, whereas that from butyryl-CoA substrate decreased the turnover rate of the enzyme to about one-fifth; the Km values of both these substrates were increased by 5-10-fold on deletion of the 3'-phosphate group from the corresponding acyl-CoA substrates. The transient kinetics for the reductive half-reaction, oxidative half-reaction and the dissociation 'off-rate' (of the reaction product from the oxidized enzyme site) were all found to be affected by deletions of the 3'-phosphate group from octanoyl-CoA and butyryl-CoA substrates. A cumulative account of these results reveals that, although the 3'-phosphate group of acyl-CoA substrates might seem 'useless' on the basis of the structural data, it has an essential functional role during HMCAD catalysis. PMID:9271097

  9. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase.

    PubMed

    Miklaszewska, Magdalena; Banaś, Antoni

    2016-08-01

    Wax esters are used in industry for production of lubricants, pharmaceuticals and cosmetics. The only natural source of wax esters is jojoba oil. A much wider variety of industrial wax esters-containing oils can be generated through genetic engineering. Biotechnological production of tailor-made wax esters requires, however, a detailed substrate specificity of fatty acyl-CoA reductases (FAR) and wax synthases (WS), the two enzymes involved in wax esters synthesis. In this study we have successfully characterized the substrate specificity of jojoba FAR and jojoba WS. The genes encoding both enzymes were expressed heterologously in Saccharomyces cerevisiae and the activity of tested enzymes was confirmed by in vivo studies and in vitro assays using microsomal preparations from transgenic yeast. Jojoba FAR exhibited the highest in vitro activity toward 18:0-CoA followed by 20:1-CoA and 22:1-CoA. The activity toward other 11 tested acyl-CoAs was low or undetectable as with 18:2-CoA and 18:3-CoA. In assays characterizing jojoba WS combinations of 17 fatty alcohols with 14 acyl-CoAs were tested. The enzyme displayed the highest activity toward 14:0-CoA and 16:0-CoA in combination with C16-C20 alcohols as well as toward C18 acyl-CoAs in combination with C12-C16 alcohols. 20:1-CoA was efficiently utilized in combination with most of the tested alcohols. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Swaminathan, S.; Zhou, R.

    2011-02-18

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. Themore » structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.« less

  11. Structural and Functional Studies of Fatty Acyl Adenylate Ligases from E. coli and L. pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z Zhang; R Zhou; J Sauder

    2011-12-31

    Fatty acyl-AMP ligase (FAAL) is a new member of a family of adenylate-forming enzymes that were recently discovered in Mycobacterium tuberculosis. They are similar in sequence to fatty acyl-coenzyme A (CoA) ligases (FACLs). However, while FACLs perform a two-step catalytic reaction, AMP ligation followed by CoA ligation using ATP and CoA as cofactors, FAALs produce only the acyl adenylate and are unable to perform the second step. We report X-ray crystal structures of full-length FAAL from Escherichia coli (EcFAAL) and FAAL from Legionella pneumophila (LpFAAL) bound to acyl adenylate, determined at resolution limits of 3.0 and 1.85 {angstrom}, respectively. Themore » structures share a larger N-terminal domain and a smaller C-terminal domain, which together resemble the previously determined structures of FAAL and FACL proteins. Our two structures occur in quite different conformations. EcFAAL adopts the adenylate-forming conformation typical of FACLs, whereas LpFAAL exhibits a unique intermediate conformation. Both EcFAAL and LpFAAL have insertion motifs that distinguish them from the FACLs. Structures of EcFAAL and LpFAAL reveal detailed interactions between this insertion motif and the interdomain hinge region and with the C-terminal domain. We suggest that the insertion motifs support sufficient interdomain motions to allow substrate binding and product release during acyl adenylate formation, but they preclude CoA binding, thereby preventing CoA ligation.« less

  12. Natural separation of the acyl-CoA ligase reaction results in a non-adenylating enzyme.

    PubMed

    Wang, Nan; Rudolf, Jeffrey D; Dong, Liao-Bin; Osipiuk, Jerzy; Hatzos-Skintges, Catherine; Endres, Michael; Chang, Chin-Yuan; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2018-06-04

    Acyl-coenzyme A (CoA) ligases catalyze the activation of carboxylic acids via a two-step reaction of adenylation followed by thioesterification. Here, we report the discovery of a non-adenylating acyl-CoA ligase PtmA2 and the functional separation of an acyl-CoA ligase reaction. Both PtmA1 and PtmA2, two acyl-CoA ligases from the biosynthetic pathway of platensimycin and platencin, are necessary for the two steps of CoA activation. Gene inactivation of ptmA1 and ptmA2 resulted in the accumulation of free acid and adenylate intermediates, respectively. Enzymatic and structural characterization of PtmA2 confirmed its ability to only catalyze thioesterification. Structural characterization of PtmA2 revealed it binds both free acid and adenylate substrates and undergoes the established mechanism of domain alternation. Finally, site-directed mutagenesis restored both the adenylation and complete CoA activation reactions. This study challenges the currently accepted paradigm of adenylating enzymes and inspires future investigations on functionally separated acyl-CoA ligases and their ramifications in biology.

  13. Characterization of the "Escherichia Coli" Acyl Carrier Protein Phosphodiesterase

    ERIC Educational Resources Information Center

    Thomas, Jacob

    2009-01-01

    Acyl carrier protein (ACP) is a small essential protein that functions as a carrier of the acyl intermediates of fatty acid synthesis. ACP requires the posttranslational attachment of a 4'phosphopantetheine functional group, derived from CoA, in order to perform its metabolic function. A Mn[superscript 2+] dependent enzymatic activity that removes…

  14. Activation of hypolipidaemic drugs to acyl-coenzyme A thioesters.

    PubMed Central

    Bronfman, M; Amigo, L; Morales, M N

    1986-01-01

    Compounds possessing the characteristics of CoA thioesters of the hypolipidaemic peroxisome proliferators clofibric acid, nafenopin and ciprofibrate were formed on incubation of the drugs with rat liver microsomal fractions, ATP and CoA. The reactivity of the drugs correlated with their pharmacological potency. It is proposed that the active species of these compounds are their acyl-CoA thioesters. PMID:3827829

  15. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans

    PubMed Central

    Tuck, Laura R.; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D.; Campopiano, Dominic J.; Clarke, David J.; Marles-Wright, Jon

    2016-01-01

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes. PMID:26899032

  16. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans.

    PubMed

    Tuck, Laura R; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D; Campopiano, Dominic J; Clarke, David J; Marles-Wright, Jon

    2016-02-22

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD(+). This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes.

  17. Production of stable isotope-labeled acyl-coenzyme A thioesters by yeast stable isotope labeling by essential nutrients in cell culture

    PubMed Central

    Snyder, Nathaniel W.; Tombline, Gregory; Worth, Andrew J.; Parry, Robert C.; Silvers, Jacob A.; Gillespie, Kevin P.; Basu, Sankha S.; Millen, Jonathan; Goldfarb, David S.; Blair, Ian A.

    2015-01-01

    Acyl-coenzyme A (CoA) thioesters are key metabolites in numerous anabolic and catabolic pathways, including fatty acid biosynthesis and β-oxidation, the Krebs cycle, and cholesterol and isoprenoid biosynthesis. Stable isotope dilution-based methodology is the gold standard for quantitative analyses by mass spectrometry. However, chemical synthesis of families of stable isotope labeled metabolites such as acyl-coenzyme A thioesters is impractical. Previously, we biosynthetically generated a library of stable isotope internal standard analogs of acyl-CoA thioesters by exploiting the essential requirement in mammals and insects for pantothenic acid (vitamin B5) as a metabolic precursor for the CoA backbone. By replacing pantothenic acid in the cell media with commercially available [13C3 15N1]-pantothenic acid, mammalian cells exclusively incorporated [13C3 15N1]-pantothenate into the biosynthesis of acyl-CoA and acyl-CoA thioesters. We have now developed a much more efficient method for generating stable isotope labeled CoA and acyl-CoAs from [13C3 15N1]-pantothenate using Stable Isotope Labeling by Essential nutrients in Cell culture (SILEC) in Pan6 deficient yeast cells. Efficiency and consistency of labeling were also increased, likely due to the stringently defined and reproducible conditions used for yeast culture. The yeast SILEC method greatly enhances the ease of use and accessibility of labeled CoA thioesters and also provides proof-of-concept for generating other labeled metabolites in yeast mutants. PMID:25572876

  18. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemazanyy, Ivan; Panasyuk, Ganna; Breus, Oksana

    2006-03-24

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy {beta} and originally identified CoA synthase, CoASy {alpha}. The transcript specific for CoASy {beta} was identified by electronic screening and by RT-PCR analysismore » of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy {beta}. In contrast to CoASy {alpha}, which shows ubiquitous expression, CoASy {beta} is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation.« less

  19. Structure of YciA from Haemophilus influenzae (HI0827), a Hexameric Broad Specificity Acyl-Coenzyme A Thioesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Mark A.; Zhuang, Zhihao; Song, Feng

    2008-04-02

    The crystal structure of HI0827 from Haemophilus influenzae Rd KW20, initially annotated 'hypothetical protein' in sequence databases, exhibits an acyl-coenzyme A (acyl-CoA) thioesterase 'hot dog' fold with a trimer of dimers oligomeric association, a novel assembly for this enzyme family. In studies described in the preceding paper [Zhuang, Z., Song, F., Zhao, H., Li, L., Cao, J., Eisenstein, E., Herzberg, O., and Dunaway-Mariano, D. (2008) Biochemistry 47, 2789-2796], HI0827 is shown to be an acyl-CoA thioesterase that acts on a wide range of acyl-CoA compounds. Two substrate binding sites are located across the dimer interface. The binding sites are occupiedmore » by two CoA molecules, one with full occupancy and the second only partially occupied. The CoA molecules, acquired from HI0827-expressing Escherichia coli cells, remained tightly bound to the enzyme through the protein purification steps. The difference in CoA occupancies indicates a different substrate affinity for each of the binding sites, which in turn implies that the enzyme might be subject to allosteric regulation. Mutagenesis studies have shown that the replacement of the putative catalytic carboxylate Asp44 with an alanine residue abolishes activity. The impact of this mutation is seen in the crystal structure of D44A HI0827. Whereas the overall fold and assembly of the mutant protein are the same as those of the wild-type enzyme, the CoA ligands are absent. The dimer interface is perturbed, and the channel that accommodates the thioester acyl chain is more open and wider than that observed in the wild-type enzyme. A model of intact substrate bound to wild-type HI0827 provides a structural rationale for the broad substrate range.« less

  20. The 2.1Å Crystal Structure of an Acyl-CoA Synthetase from Methanosarcina acetivorans reveals an alternate acyl binding pocket for small branched acyl substrates†,‡

    PubMed Central

    Shah, Manish B.; Ingram-Smith, Cheryl; Cooper, Leroy L.; Qu, Jun; Meng, Yu; Smith, Kerry S.; Gulick, Andrew M.

    2009-01-01

    The acyl-AMP forming family of adenylating enzymes catalyze two-step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X-ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140° to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl-CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl-CoA synthetase and 4-chlorobenzoate:CoA ligase. Most interestingly, the acyl binding pocket of the new structure is compared with other acyl- and aryl-CoA synthetases. A comparison of the acyl-binding pocket of the acyl-CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl binding pocket. PMID:19544569

  1. Knockout of the regulatory site of 3-ketoacyl-ACP synthase III enhances short- and medium-chain acyl-ACP synthesis.

    PubMed

    Abbadi, A; Brummel, M; Spener, F

    2000-10-01

    3-ketoacyl-acyl carrier protein synthase (KAS) III catalyses the first condensing step of the fatty acid synthase (FAS) type II reaction in plants and bacteria, using acetyl CoA and malonyl-acyl carrier protein (ACP) as substrates. Enzymatic characterization of recombinant KAS III from Cuphea wrightii embryo shows that this enzyme is strongly inhibited by medium-chain acyl-ACP end products of the FAS reaction, i.e. inhibition by lauroyl-ACP was uncompetitive towards acetyl CoA and non-competitive with regard to malonyl-ACP. This indicated a distinct attachment site for regulatory acyl-ACPs. Based on alignment of primary structures of various KAS IIIs and 3-ketoacyl CoA synthases, we suspected the motif G290NTSAAS296 to be responsible for binding of regulatory acyl-ACPs. Deletion of the tetrapeptide G290NTS293 led to a change of secondary structure and complete loss of KAS III condensing activity. Exchange of asparagine291 to aspartate, alanine294 to serine and alanine295 to proline, however, produced mutant enzymes with slightly reduced condensing activity, yet with insensitivity towards acyl-ACPs. To assess the potential of unregulated KAS III as tool in oil production, we designed in vitro experiments employing FAS preparations from medium-chain fatty acid-producing Cuphea lanceolata seeds and long-chain fatty acid-producing rape seeds, each supplemented with a fivefold excess of the N291D KAS III mutant. High amounts of short-chain acyl-ACPs in the case of C. lanceolata, and of medium-chain acyl-ACPs in the case of rape seed preparations, were obtained. This approach targets regulation and offers new possibilities to derive transgenic or non-transgenic plants for production of seed oils with new qualities.

  2. Structural Basis for Substrate Fatty Acyl Chain Specificity

    PubMed Central

    McAndrew, Ryan P.; Wang, Yudong; Mohsen, Al-Walid; He, Miao; Vockley, Jerry; Kim, Jung-Ja P.

    2008-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) is a member of the family of acyl-CoA dehydrogenases (ACADs). Unlike the other ACADs, which are soluble homotetramers, VLCAD is a homodimer associated with the mitochondrial membrane. VLCAD also possesses an additional 180 residues in the C terminus that are not present in the other ACADs. We have determined the crystal structure of VLCAD complexed with myristoyl-CoA, obtained by co-crystallization, to 1.91-Å resolution. The overall fold of the N-terminal ∼400 residues of VLCAD is similar to that of the soluble ACADs including medium-chain acyl-CoA dehydrogenase (MCAD). The novel C-terminal domain forms an α-helical bundle that is positioned perpendicular to the two N-terminal helical domains. The fatty acyl moiety of the bound substrate/product is deeply imbedded inside the protein; however, the adenosine pyrophosphate portion of the C14-CoA ligand is disordered because of partial hydrolysis of the thioester bond and high mobility of the CoA moiety. The location of Glu-422 with respect to the C2-C3 of the bound ligand and FAD confirms Glu-422 to be the catalytic base. In MCAD, Gln-95 and Glu-99 form the base of the substrate binding cavity. In VLCAD, these residues are glycines (Gly-175 and Gly-178), allowing the binding channel to extend for an additional 12Å and permitting substrate acyl chain lengths as long as 24 carbons to bind. VLCAD deficiency is among the more common defects of mitochondrial β-oxidation and, if left undiagnosed, can be fatal. This structure allows us to gain insight into how a variant VLCAD genotype results in a clinical phenotype. PMID:18227065

  3. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation

    PubMed Central

    Xue, Yan; Xiao, Shi; Kim, Juyoung; Lung, Shiu-Cheung; Chen, Liang; Tanner, Julian A.; Suh, Mi Chung; Chye, Mee-Len

    2014-01-01

    The membrane-anchored Arabidopsis thaliana ACYL-COA-BINDING PROTEIN1 (AtACBP1) plays important roles in embryogenesis and abiotic stress responses, and interacts with long-chain (LC) acyl-CoA esters. Here, AtACBP1 function in stem cuticle formation was investigated. Transgenic Arabidopsis transformed with an AtACBP1pro::GUS construct revealed β-glucuronidase (GUS) expression on the stem (but not leaf) surface, suggesting a specific role in stem cuticle formation. Isothermal titration calorimetry results revealed that (His)6-tagged recombinant AtACBP1 interacts with LC acyl-CoA esters (18:1-, 18:2-, and 18:3-CoAs) and very-long-chain (VLC) acyl-CoA esters (24:0-, 25:0-, and 26:0-CoAs). VLC fatty acids have been previously demonstrated to act as precursors in wax biosynthesis. Gas chromatography (GC)–flame ionization detector (FID) and GC–mass spectrometry (MS) analyses revealed that an acbp1 mutant showed a reduction in stem and leaf cuticular wax and stem cutin monomer composition in comparison with the wild type (Col-0). Consequently, the acbp1 mutant showed fewer wax crystals on the stem surface in scanning electron microscopy and an irregular stem cuticle layer in transmission electron microscopy in comparison with the wild type. Also, the mutant stems consistently showed a decline in expression of cuticular wax and cutin biosynthetic genes in comparison with the wild type, and the mutant leaves were more susceptible to infection by the necrotrophic pathogen Botrytis cinerea. Taken together, these findings suggest that AtACBP1 participates in Arabidopsis stem cuticle formation by trafficking VLC acyl-CoAs. PMID:25053648

  4. Track Starter's Guide.

    ERIC Educational Resources Information Center

    Dailey, Charles H.; Rankin, Kelly D.

    This guide was developed to serve both the novice and experienced starter in track and field events. Each year in the United States, runners encounter dozens of different starters' mannerisms as they travel to track meets in various towns and states. The goal of any competent and conscientious starter is to insure that all runners receive a fair…

  5. Functional reconstitution of the Mycobacterium tuberculosis long-chain acyl-CoA carboxylase from multiple acyl-CoA subunits.

    PubMed

    Bazet Lyonnet, Bernardo; Diacovich, Lautaro; Gago, Gabriela; Spina, Lucie; Bardou, Fabienne; Lemassu, Anne; Quémard, Annaïk; Gramajo, Hugo

    2017-04-01

    Mycobacterium tuberculosis produces a large number of structurally diverse lipids that have been implicated in the pathogenicity, persistence and antibiotic resistance of this organism. Most building blocks involved in the biosynthesis of all these lipids are generated by acyl-CoA carboxylases whose subunit composition and physiological roles have not yet been clearly established. Inconclusive data in the literature refer to the exact protein composition and substrate specificity of the enzyme complex that produces the long-chain α-carboxy-acyl-CoAs, which are substrates involved in the last step of condensation mediated by the polyketide synthase 13 to synthesize mature mycolic acids. Here we have successfully reconstituted the long-chain acyl-CoA carboxylase (LCC) complex from its purified components, the α subunit (AccA3), the ε subunit (AccE5) and the two β subunits (AccD4 and AccD5), and demonstrated that the four subunits are essential for its activity. Furthermore, we also showed by substrate competition experiments and the use of a specific inhibitor that the AccD5 subunit's role in the carboxylation of the long acyl-CoAs, as part of the LCC complex, was structural rather than catalytic. Moreover, AccD5 was also able to carboxylate its natural substrates, acetyl-CoA and propionyl-CoA, in the context of the LCC enzyme complex. Thus, the supercomplex formed by these four subunits has the potential to generate the main substrates, malonyl-CoA, methylmalonyl-CoA and α-carboxy-C 24-26 -CoA, used as condensing units for the biosynthesis of all the lipids present in this pathogen. © 2017 Federation of European Biochemical Societies.

  6. Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling.

    PubMed

    Sagar, Mamta; Pandey, Neetesh; Qamar, Naseha; Singh, Brijendra; Shukla, Akanksha

    2015-03-01

    The long chain fatty acids incorporated into plant lipids are derived from the iterative addition of C2 units which is provided by malonyl-CoA to an acyl-CoA after interactions with 3-ketoacyl-CoA synthase (KCS), found in several plants. This study provides functional characterization of three 3 ketoacyl CoA synthase like proteins in Vitis vinifera (one) and Oryza brachyantha (two proteins). Sequence analysis reveals that protein of Oryza brachyantha shows 96% similarity to a hypothetical protein in Sorghum bicolor; total 11 homologs were predicted in Sorghum bicolor. Conserved domain prediction confirm the presence of FAE1/Type III polyketide synthase-like protein, Thiolase-like, subgroup; Thiolase-like and 3-Oxoacyl-ACP synthase III, C-terminal and chalcone synthase like domain but very long chain 3-keto acyl CoA domain is absent. All three proteins were found to have Chalcone and stilbene synthases C terminal domain which is similar to domain of thiolase and β keto acyl synthase. Its N terminal domain is absent in J3M9Z7 protein of Oryza brachyantha and F6HH63 protein of Vitis vinifera. Differences in N-terminal domain is responsible for distinguish activity. The J3MF16 protein of Oryza brachyantha contains N terminal domain and C terminal domain and characterized using annotation of these domains. Domains Gcs (streptomyces coelicolor) and Chalcone-stilbene synthases (KAS) in 2-pyrone synthase (Gerbera hybrid) and chalcone synthase 2 (Medicago sativa) were found to be present in three proteins. This similarity points toward anthocyanin biosynthetic process. Similarity to chalcone synthase 2 reveals its possible role in Naringenine and Chalcone synthase like activity. In 3 keto acyl CoA synthase of Oryza brachyantha. Active site residues C-240, H-407, N-447 are present in J3MF16 protein that are common in these three protein at different positions. Structural variations among dimer interface, product binding site, malonyl-CoA binding sites, were predicted in

  7. Identification of 9α-Hydroxy-17-Oxo-1,2,3,4,10,19-Hexanorandrostan-5-Oic Acid in Steroid Degradation by Comamonas testosteroni TA441 and Its Conversion to the Corresponding 6-En-5-Oyl Coenzyme A (CoA) Involving Open Reading Frame 28 (ORF28)- and ORF30-Encoded Acyl-CoA Dehydrogenases

    PubMed Central

    Hayashi, Toshiaki; Koshino, Hiroyuki; Malon, Michal; Hirota, Hiroshi; Kudo, Toshiaki

    2014-01-01

    Comamonas testosteroni TA441 degrades steroids via aromatization and meta-cleavage of the A ring, followed by hydrolysis, and produces 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid as an intermediate compound. Herein, we identify a new intermediate compound, 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid. Open reading frame 28 (ORF28)- and ORF30-encoded acyl coenzyme A (acyl-CoA) dehydrogenase was shown to convert the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid to the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid. A homology search of the deduced amino acid sequences suggested that the ORF30-encoded protein is a member of the acyl-CoA dehydrogenase_fadE6_17_26 family, whereas the deduced amino acid sequence of ORF28 showed no significant similarity to specific acyl-CoA dehydrogenase family proteins. Possible steroid degradation gene clusters similar to the cluster of TA441 appear in bacterial genome analysis data. In these clusters, ORFs similar to ORFs 28 and 30 are often found side by side and ordered in the same manner as ORFs 28 and 30. PMID:25092028

  8. The activities of acyl-CoA:1-acyl-lysophospholipid acyltransferase(s) in human platelets.

    PubMed Central

    Bakken, A M; Farstad, M

    1992-01-01

    The activities of acyl-CoA:1-acyl-lysophospholipid acyltransferases (EC 2.3.1.23) have been studied in human platelet lysates by using endogenously formed [14C]acyl-CoA from [14C]fatty acid, ATP and CoA in the presence of 1-acyl-lysophosphatidyl-choline (lysoPC), -ethanolamine (lysoPE), -serine (lysoPS) or -inositol (lysoPI). Linoleic acid as fatty acid substrate had the highest affinity to acyl-CoA:1-acyl-lysophospholipid acyltransferase with lysoPC as variable substrate, followed by eicosapentaenoic acid (EPA) and arachidonic acid (AA). The activity at optimal conditions was 7.4, 7.3 and 7.2 nmol/min per 10(9) platelets with lysoPC as substrate, with linoleic acid, AA and EPA respectively. EPA and AA were incorporated into all lyso-forms. Linoleic acid was also incorporated into lysoPE at a high rate, but less into lysoPS and lysoPI. DHA was incorporated into lysoPC and lysoPE, but only slightly into lysoPI and lysoPS. Whereas incorporation of all fatty acids tested was maximal for lysoPC and lysoPI at 200 and 80 microM respectively, maximal incorporation needed over 500 microM for lysoPE and lysoPS. The optimal concentration for [14C]fatty acid substrates was in the range 15-150 microM for all lysophospholipids. Competition experiments with equimolar concentrations of either lysoPC and lysoPI or lysoPE resulted in formation of [14C]PC almost as if lysoPI or lysoPE were not added to the assay medium. PMID:1471991

  9. Policing starter unit selection of the enterocin type II polyketide synthase by the type II thioesterase EncL.

    PubMed

    Kalaitzis, John A; Cheng, Qian; Meluzzi, Dario; Xiang, Longkuan; Izumikawa, Miho; Dorrestein, Pieter C; Moore, Bradley S

    2011-11-15

    Enterocin is an atypical type II polyketide synthase (PKS) product from the marine actinomycete 'Streptomyces maritimus'. The enterocin biosynthesis gene cluster (enc) codes for proteins involved in the assembly and attachment of the rare benzoate primer that initiates polyketide assembly with the addition of seven malonate molecules and culminates in a Favorskii-like rearrangement of the linear poly-β-ketone to give its distinctive non-aromatic, caged core structure. Fundamental to enterocin biosynthesis, which utilizes a single acyl carrier protein (ACP), EncC, for both priming with benzoate and elongating with malonate, involves maintaining the correct balance of acyl-EncC substrates for efficient polyketide assembly. Here, we report the characterization of EncL as a type II thioesterase that functions to edit starter unit (mis)priming of EncC. We performed a series of in vivo mutational studies, heterologous expression experiments, in vitro reconstitution studies, and Fourier-transform mass spectrometry-monitored competitive enzyme assays that together support the proposed selective hydrolase activity of EncL toward misprimed acetyl-ACP over benzoyl-ACP to facilitate benzoyl priming of the enterocin PKS complex. While this system resembles the R1128 PKS that also utilizes an editing thioesterase (ZhuC) to purge acetate molecules from its initiation module ACP in favor of alkylacyl groups, the enterocin system is distinct in its usage of a single ACP for both priming and elongating reactions with different substrates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Policing Starter Unit Selection of the Enterocin Type II Polyketide Synthase by the Type II Thioesterase EncL

    PubMed Central

    Kalaitzis, John A.; Cheng, Qian; Meluzzi, Dario; Xiang, Longkuan; Izumikawa, Miho; Dorrestein, Pieter C.; Moore, Bradley S.

    2011-01-01

    Enterocin is an atypical type II polyketide synthase (PKS) product from the marine actinomycete “Streptomyces maritimus”. The enterocin biosynthesis gene cluster (enc) codes for proteins involved in the assembly and attachment of the rare benzoate primer that initiates polyketide assembly with the addition of seven malonate molecules and culminates in a Favorskii-like rearrangement of the linear poly-β-ketone to give its distinctive non-aromatic, caged core structure. Fundamental to enterocin biosynthesis, which utilizes a single acyl carrier protein (ACP), EncC, for both priming with benzoate and elongating with malonate, involves maintaining the correct balance of acyl-EncC substrates for efficient polyketide assembly. Here we report the characterization of EncL as a type II thioesterase that functions to edit starter unit (mis)priming of EncC. We performed a series of in vivo mutational studies, heterologous expression experiments, in vitro reconstitution studies, and Fourier-transform mass spectrometry-monitored competitive enzyme assays that together support the proposed selective hydrolase activity of EncL toward misprimed acetyl-ACP over benzoyl-ACP to facilitate benzoyl priming of the enterocin PKS complex. While this system resembles the R1128 PKS that also utilizes an editing thioesterase (ZhuC) to purge acetate molecules from its initiation module ACP in favor of alkylacyl groups, the enterocin system is distinct in its usage of a single ACP for both priming and elongating reactions with different substrates. PMID:21531566

  11. Overexpression of Human Fatty Acid Transport Protein 2/Very Long Chain Acyl-CoA Synthetase 1 (FATP2/Acsvl1) Reveals Distinct Patterns of Trafficking of Exogenous Fatty Acids

    PubMed Central

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2014-01-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4hr. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  12. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    PubMed

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  13. Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds.

    PubMed

    Banaś, Walentyna; Sanchez Garcia, Alicia; Banaś, Antoni; Stymne, Sten

    2013-06-01

    The last step in triacylglycerols (TAG) biosynthesis in oil seeds, the acylation of diacylglycerols (DAG), is catalysed by two types of enzymes: the acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). The relative contribution of these enzymes in the synthesis of TAG has not yet been defined in any plant tissue. In the presented work, microsomal preparations were obtained from sunflower and safflower seeds at different stages of development and used in DGAT and PDAT enzyme assays. The ratio between PDAT and DGAT activity differed dramatically between the two different species. DGAT activities were measured with two different acyl acceptors and assay methods using two different acyl-CoAs, and in all cases the ratio of PDAT to DGAT activity was significantly higher in safflower than sunflower. The sunflower DGAT, measured by both methods, showed significant higher activity with 18:2-CoA than with 18:1-CoA, whereas the opposite specificity was seen with the safflower enzyme. The specificities of PDAT on the other hand, were similar in both species with 18:2-phosphatidylcholine being a better acyl donor than 18:1-PC and with acyl groups at the sn-2 position utilised about fourfold the rate of the sn-1 position. No DAG:DAG transacylase activity could be detected in the microsomal preparations.

  14. Decision Support for Transportation Planning in Joint COA Development.

    DTIC Science & Technology

    1996-06-01

    COA generation is interwoven with COA evaluation. SOCAP demonstrates its ability to aid in feasibility estimation by producing output for the Dynamic...Analysis and Replanning Tool (DART) transportation feasibility estimator. The output of SOCAP is first used by an intermediate Force Module Enhancer...and Requirements Generator (FMERG), which elaborates the major force list produced by SOCAP in order to add supporting units and their transportation

  15. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  16. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE PAGES

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  17. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melton, Elaina M.; Center for Cardiovascular Sciences, Albany Medical College, Albany, NY; Cerny, Ronald L.

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4,more » for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  18. Production of a Brassica napus Low-Molecular Mass Acyl-Coenzyme A-Binding Protein in Arabidopsis Alters the Acyl-Coenzyme A Pool and Acyl Composition of Oil in Seeds.

    PubMed

    Yurchenko, Olga; Singer, Stacy D; Nykiforuk, Cory L; Gidda, Satinder; Mullen, Robert T; Moloney, Maurice M; Weselake, Randall J

    2014-06-01

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expression of a Brassica napus ACBP (BnACBP) complementary DNA in the developing seeds of Arabidopsis (Arabidopsis thaliana) resulted in increased levels of polyunsaturated FAs at the expense of eicosenoic acid (20:1 cisΔ11 ) and saturated FAs in seed oil. In this study, we investigated whether alterations in the FA composition of seed oil at maturity were correlated with changes in the acyl-coenzyme A (CoA) pool in developing seeds of transgenic Arabidopsis expressing BnACBP. Our results indicated that both the acyl-CoA pool and seed oil of transgenic Arabidopsis lines expressing cytosolic BnACBP exhibited relative increases in linoleic acid (18:2 cisΔ9,12 ; 17.9%-44.4% and 7%-13.2%, respectively) and decreases in 20:1 cisΔ11 (38.7%-60.7% and 13.8%-16.3%, respectively). However, alterations in the FA composition of the acyl-CoA pool did not always correlate with those seen in the seed oil. In addition, we found that targeting of BnACBP to the endoplasmic reticulum resulted in FA compositional changes that were similar to those seen in lines expressing cytosolic BnACBP, with the most prominent exception being a relative reduction in α-linolenic acid (18:3 cisΔ9,12,15 ) in both the acyl-CoA pool and seed oil of the former (48.4%-48.9% and 5.3%-10.4%, respectively). Overall, these data support the role of ACBP in acyl trafficking in developing seeds and validate its use as a biotechnological tool for modifying the FA composition of seed oil. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls.

    PubMed

    Kontulainen, Saija; Sievänen, Harri; Kannus, Pekka; Pasanen, Matti; Vuori, Ilkka

    2003-02-01

    Bone characteristics of the humeral shaft and distal radius were measured from 64 female tennis and squash players and their 27 age-, height-, and weight-matched controls with peripheral quantitative tomography (pQCT) and dual energy X-ray absorptiometry (DXA). The players were divided into two groups according to the starting age of their tennis or squash training (either before or after menarche) to examine the possible differences in the loading-induced changes in bone structure and volumetric density. The following pQCT variables were used: bone mineral content, total cross-sectional area of bone (TotA), cross-sectional area of the marrow cavity (CavA) and that of the cortical bone (CoA), cortical wall thickness (CWT), volumetric density of the cortical bone (CoD) and trabecular bone (TrD), and torsional bone strength index for the shaft (BSIt) and compressional bone strength index for the bone end (BSIc). These bone strength indices were compared with the DXA-derived areal bone mineral density (aBMD) to assess how well the latter represents the effect of mechanical loading on apparent bone strength. At the humeral shaft, the loaded arm's greater bone mineral content (an average 19% side-to-side difference in young starters and 9% in old starters), was caused by an enlarged cortex (CoA; side-to-side differences 20% and 9%, respectively). The loaded humerus seemed to have grown periosteally (the CavA did not differ between the sites), leading to 26% and 11% side-to-side BSIt differences in the young and old starters, respectively. CoD was equal between the arms (-1% difference in both player groups). The side-to-side differences in the young starters' bone mineral content, CoA, TotA, CWT, and BSIt were 8-22% higher than those of the controls and 8-14% higher than those of the old starters. Old starters' bone mineral content, CoA, and BSIt side-to-side differences were 6-7% greater than those in the controls. The DXA-derived side-to-side aBMD difference was 7

  20. Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls.

    PubMed

    Kontulainen, Saija; Sievänen, Harri; Kannus, Pekka; Pasanen, Matti; Vuori, Ilkka

    2002-12-01

    Bone characteristics of the humeral shaft and distal radius were measured from 64 female tennis and squash players and their 27 age-, height-, and weight-matched controls with peripheral quantitative tomography (pQCT) and DXA. The players were divided into two groups according to the starting age of their tennis or squash training (either before or after menarche) to examine the possible differences in the loading-induced changes in bone structure and volumetric density. The used pQCT variables were bone mineral content (BMC), total cross-sectional area (TotA) of bone, cross-sectional area of the marrow cavity (CavA) and that of the cortical bone (CoA), cortical wall thickness (CWT), volumetric density of the cortical bone (CoD) and trabecular bone (TrD), and torsional bone strength index (BSIt) for the shaft, and compressional bone strength index (BSIc) for the bone end. These bone strength indices were compared with the DXA-derived areal bone mineral density (aBMD) to assess how well the latter represents the effect of mechanical loading on apparent bone strength. At the humeral shaft, the loaded arm's greater BMC (an average 19% side-to-side difference in young starters and 9% in old starters) was caused by an enlarged cortex (CoA; side-to-side differences 20% and 9%, respectively). The loaded humerus seemed to have grown periosteally (the CavA did not differ between the sites) leading to 26% and 11% side-to-side BSIt difference in the young and old starters, respectively. CoD was equal between the arms (-1% difference in both player groups). The side-to-side differences in the young starters' BMC, CoA, TotA, CWT, and BSIt were 8-22% higher than those of the controls and 8-14% higher than those of the old starters. Old starters' BMC, CoA, and BSIt side-to-side differences were 6-7% greater than those in the controls. The DXA-derived side-to-side aBMD difference was 7% greater in young starters compared with that of the old starters and 14% compared with that in

  1. Differences among Adult COAs and Adult Non-COAs on Levels of Self-Esteem, Depression, and Anxiety.

    ERIC Educational Resources Information Center

    Dodd, David T.; Roberts, Richard L.

    1994-01-01

    Examined self-esteem, depression, and anxiety among 60 adult children of alcoholics (COAs) and 143 adult non-COAs. Subjects completed Children of Alcoholics Screening Test, demographic questionnaire, Beck Depression Inventory, State-Trait Anxiety Inventory, and Coopersmith Self-Esteem Inventory. Found no significant differences between COAs and…

  2. Comparative genomics and proteomics of vertebrate diacylglycerol acyltransferase (DGAT), acyl CoA wax alcohol acyltransferase (AWAT) and monoacylglycerol acyltransferase (MGAT).

    PubMed

    Holmes, Roger S

    2010-03-01

    BLAT (BLAST-Like Alignment Tool) analyses of the opossum (Monodelphis domestica) and zebrafish (Danio rerio) genomes were undertaken using amino acid sequences of the acylglycerol acyltransferase (AGAT) superfamily. Evidence is reported for 8 opossum monoacylglycerol acyltransferase-like (MGAT) (E.C. 2.3.1.22) and diacylglycerol acyltransferase-like (DGAT) (E.C. 2.3.1.20) genes and proteins, including DGAT1, DGAT2, DGAT2L6 (DGAT2-like protein 6), AWAT1 (acyl CoA wax alcohol acyltransferase 1), AWAT2, MGAT1, MGAT2 and MGAT3. Three of these genes (AWAT1, AWAT2 and DGAT2L6) are closely localized on the opossum X chromosome. Evidence is also reported for six zebrafish MGAT- and DGAT-like genes, including two DGAT1-like genes, as well as DGAT2-, MGAT1-, MGAT2- and MGAT3-like genes and proteins. Predicted primary, secondary and transmembrane structures for the opossum and zebrafish MGAT-, AWAT- and DGAT-like subunits and the intron-exon boundaries for genes encoding these enzymes showed a high degree of similarity with other members of the AGAT superfamily, which play major roles in triacylglyceride (DGAT), diacylglyceride (MGAT) and wax ester (AWAT) biosynthesis. Alignments of predicted opossum, zebrafish and other vertebrate DGAT1, DGAT2, other DGAT2-like and MGAT-like amino acid sequences with known human and mouse enzymes demonstrated conservation of residues which are likely to play key roles in catalysis, lipid binding or in maintaining structure. Phylogeny studies of the human, mouse, opossum, zebrafish and pufferfish MGAT- and DGAT-like enzymes indicated that the common ancestors for these genes predated the appearance of bony fish during vertebrate evolution whereas the AWAT- and DGAT2L6-like genes may have appeared more recently prior to the appearance of marsupial and eutherian mammals. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Tian; Wu, Dong; Ding, Wei

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCRmore » refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.« less

  4. A pharmacologic increase in activity of plasma transaminase derived from small intestine in animals receiving an acyl CoA: diacylglycerol transferase (DGAT) 1 inhibitor.

    PubMed

    Yokoyama, Hideaki; Kobayashi, Akio; Kondo, Kazuma; Oshida, Shin-Ichi; Takahashi, Tadakazu; Masuyama, Taku; Shoda, Toshiyuki; Sugai, Shoichiro

    2018-01-01

    Acyl CoA: diacylglycerol acyltransferase (DGAT) 1 is an enzyme that catalyzes the re-synthesis of triglycerides (TG) from free fatty acids and diacylglycerol. JTT-553 is a DGAT1 inhibitor and exhibits its pharmacological action (inhibition of re-synthesis of TG) in the enterocytes of the small intestine leading to suppression of a postprandial elevation of plasma lipids. After repeated oral dosing JTT-553 in rats and monkeys, plasma transaminase levels were increased but there were neither changes in other hepatic function parameters nor histopathological findings suggestive of hepatotoxicity. Based on the results of exploratory studies for investigation of the mechanism of the increase in transaminase levels, plasma transaminase levels were increased after dosing JTT-553 only when animals were fed after dosing and a main factor in the diet contributing to the increase in plasma transaminase levels was lipids. After dosing JTT-553, transaminase levels were increased in the small intestine but not in the liver, indicating that the origin of transaminase increased in the plasma was not the liver but the small intestine where JTT-553 exhibits its pharmacological action. The increase in small intestinal transaminase levels was due to increased enzyme protein synthesis and was suppressed by inhibiting fatty acid-transport to the enterocytes. In conclusion, the JTT-553-related increase in plasma transaminase levels is considered not to be due to release of the enzymes from injured cells into the circulation but to be phenomena resulting from enhancement of enzyme protein synthesis in the small intestine due to the pharmacological action of JTT-553 in this organ.

  5. Cyclohexanecarboxyl-Coenzyme A (CoA) and Cyclohex-1-ene-1-Carboxyl-CoA Dehydrogenases, Two Enzymes Involved in the Fermentation of Benzoate and Crotonate in Syntrophus aciditrophicus

    PubMed Central

    Kung, Johannes W.; Seifert, Jana; von Bergen, Martin

    2013-01-01

    The strictly anaerobic Syntrophus aciditrophicus is a fermenting deltaproteobacterium that is able to degrade benzoate or crotonate in the presence and in the absence of a hydrogen-consuming partner. During growth in pure culture, both substrates are dismutated to acetate and cyclohexane carboxylate. In this work, the unknown enzymes involved in the late steps of cyclohexane carboxylate formation were studied. Using enzyme assays monitoring the oxidative direction, a cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA)-forming cyclohexanecarboxyl-CoA (ChCoA) dehydrogenase was purified and characterized from S. aciditrophicus and after heterologous expression of its gene in Escherichia coli. In addition, a cyclohexa-1,5-diene-1-carboxyl-CoA (Ch1,5CoA)-forming Ch1CoA dehydrogenase was characterized after purification of the heterologously expressed gene. Both enzymes had a native molecular mass of 150 kDa and were composed of a single, 40- to 45-kDa subunit; both contained flavin adenine dinucleotide (FAD) as a cofactor. While the ChCoA dehydrogenase was competitively inhibited by Ch1CoA in the oxidative direction, Ch1CoA dehydrogenase further converted the product Ch1,5CoA to benzoyl-CoA. The results obtained suggest that Ch1,5CoA is a common intermediate in benzoate and crotonate fermentation that serves as an electron-accepting substrate for the two consecutively operating acyl-CoA dehydrogenases characterized in this work. In the case of benzoate fermentation, Ch1,5CoA is formed by a class II benzoyl-CoA reductase; in the case of crotonate fermentation, Ch1,5CoA is formed by reversing the reactions of the benzoyl-CoA degradation pathway that are also employed during the oxidative (degradative) branch of benzoate fermentation. PMID:23667239

  6. Fastener Starter

    NASA Technical Reports Server (NTRS)

    Chandler, Faith; Garton, Harry; Valentino, Bill; Amett, Mike

    2005-01-01

    The Fastener Starter is a creative solution to prevent the loss of small fasteners during their installation. This is the only currently available tool that can firmly grip and hold a single screw, bolt, nut, washer, spacer, or any combination of these parts. Other commercially available fastener starters are unable to accommodate a variety of parts simultaneously. The Fastener Starter is a more capable and easier tool to use than prior tools. Its compact size allows it to be used effectively in cramped, difficult-to-see locations. Its design also allows it to be used with or without handles and extenders in other difficult-to-reach locations. It provides better protection against cross threading and loss of fasteners and associated parts. The Fastener Starter is non-magnetic and does not off-gas, thus meeting flight hardware requirements. The Fastener Starter incorporates a combination of features of several commercially available tools, providing an improved means of installing small fasteners. The Fastener Starter includes a custom molded insert that can be removed easily and replaced with a conventional tool bit (e.g., a screwdriver or hex-driver bit). When used with the insert, the Fastener Starter prevents cross threading and damage to internal threaded holes. This is achieved by allowing the fastener to slip within the tool insert when used without a conventional tool bit. Alternatively, without the insert and with a tool bit, the Fastener Starter can torque a fastener. The Fastener Starter has a square recess hole that accepts a conventional square drive handle or extension to accommodate a variety of applications by providing flexibility in handle style and length.

  7. The utilization of the acyl-CoA and the involvement PDAT and DGAT in the biosynthesis of erucic acid-rich triacylglycerols in Crambe seed oil.

    PubMed

    Furmanek, Tomasz; Demski, Kamil; Banaś, Walentyna; Haslam, Richard; Napier, Jonathan; Stymne, Sten; Banaś, Antoni

    2014-04-01

    The triacylglycerol of Crambe abyssinica seeds consist of 95% very long chain (>18 carbon) fatty acids (86% erucic acid; 22:1∆13) in the sn-1 and sn-3 positions. This would suggest that C. abyssinica triacylglycerols are not formed by the action of the phospholipid:diacylglycerol acyltransferase (PDAT), but are rather the results of acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. However, measurements of PDAT and DGAT activities in microsomal membranes showed that C. abyssinica has significant PDAT activity, corresponding to about 10% of the DGAT activity during periods of rapid seed oil accumulation. The specific activity of DGAT for erucoyl-CoA had doubled at 19 days after flowering compared to earlier developmental stages, and was, at that stage, the preferred acyl donor, whereas the activities for 16:0-CoA and 18:1-CoA remained constant. This indicates that an expression of an isoform of DGAT with high specificity for erucoyl-CoA is induced at the onset of rapid erucic acid and oil accumulation in the C. abyssinica seeds. Analysis of the composition of the acyl-CoA pool during different stages of seed development showed that the percentage of erucoyl groups in acyl-CoA was much higher than in complex lipids at all stages of seed development except in the desiccation phase. These results are in accordance with published results showing that the rate limiting step in erucic acid accumulation in C. abyssinica oil is the utilization of erucoyl-CoA by the acyltransferases in the glycerol-3-phosphate pathway.

  8. Starter/generator testing

    NASA Astrophysics Data System (ADS)

    Anon

    1994-10-01

    Sundstrand Aerospace and GE Aircraft Engines have studied the switched reluctance machine for use as an integral starter/generator for future aircraft engines. They have conducted an initial, low-power testing of the starter/generator, which is based on power inverters using IGBT-technology semiconductors, to verify its feasibility in the externally mounted version of the integral starter/generator. This preliminary testing of the 250-kW starter/generator reveals favorable results.

  9. Anatomy of the β-branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate.

    PubMed

    Maloney, Finn P; Gerwick, Lena; Gerwick, William H; Sherman, David H; Smith, Janet L

    2016-09-13

    Alkyl branching at the β position of a polyketide intermediate is an important variation on canonical polyketide natural product biosynthesis. The branching enzyme, 3-hydroxy-3-methylglutaryl synthase (HMGS), catalyzes the aldol addition of an acyl donor to a β-keto-polyketide intermediate acceptor. HMGS is highly selective for two specialized acyl carrier proteins (ACPs) that deliver the donor and acceptor substrates. The HMGS from the curacin A biosynthetic pathway (CurD) was examined to establish the basis for ACP selectivity. The donor ACP (CurB) had high affinity for the enzyme (Kd = 0.5 μM) and could not be substituted by the acceptor ACP. High-resolution crystal structures of HMGS alone and in complex with its donor ACP reveal a tight interaction that depends on exquisite surface shape and charge complementarity between the proteins. Selectivity is explained by HMGS binding to an unusual surface cleft on the donor ACP, in a manner that would exclude the acceptor ACP. Within the active site, HMGS discriminates between pre- and postreaction states of the donor ACP. The free phosphopantetheine (Ppant) cofactor of ACP occupies a conserved pocket that excludes the acetyl-Ppant substrate. In comparison with HMG-CoA (CoA) synthase, the homologous enzyme from primary metabolism, HMGS has several differences at the active site entrance, including a flexible-loop insertion, which may account for the specificity of one enzyme for substrates delivered by ACP and the other by CoA.

  10. Mutations in COA7 cause spinocerebellar ataxia with axonal neuropathy.

    PubMed

    Higuchi, Yujiro; Okunushi, Ryuta; Hara, Taichi; Hashiguchi, Akihiro; Yuan, Junhui; Yoshimura, Akiko; Murayama, Kei; Ohtake, Akira; Ando, Masahiro; Hiramatsu, Yu; Ishihara, Satoshi; Tanabe, Hajime; Okamoto, Yuji; Matsuura, Eiji; Ueda, Takehiro; Toda, Tatsushi; Yamashita, Sumimasa; Yamada, Kenichiro; Koide, Takashi; Yaguchi, Hiroaki; Mitsui, Jun; Ishiura, Hiroyuki; Yoshimura, Jun; Doi, Koichiro; Morishita, Shinichi; Sato, Ken; Nakagawa, Masanori; Yamaguchi, Masamitsu; Tsuji, Shoji; Takashima, Hiroshi

    2018-06-01

    Several genes related to mitochondrial functions have been identified as causative genes of neuropathy or ataxia. Cytochrome c oxidase assembly factor 7 (COA7) may have a role in assembling mitochondrial respiratory chain complexes that function in oxidative phosphorylation. Here we identified four unrelated patients with recessive mutations in COA7 among a Japanese case series of 1396 patients with Charcot-Marie-Tooth disease (CMT) or other inherited peripheral neuropathies, including complex forms of CMT. We also found that all four patients had characteristic neurological features of peripheral neuropathy and ataxia with cerebellar atrophy, and some patients showed leukoencephalopathy or spinal cord atrophy on MRI scans. Validated mutations were located at highly conserved residues among different species and segregated with the disease in each family. Nerve conduction studies showed axonal sensorimotor neuropathy. Sural nerve biopsies showed chronic axonal degeneration with a marked loss of large and medium myelinated fibres. An immunohistochemical assay with an anti-COA7 antibody in the sural nerve from the control patient showed the positive expression of COA7 in the cytoplasm of Schwann cells. We also observed mildly elevated serum creatine kinase levels in all patients and the presence of a few ragged-red fibres and some cytochrome c oxidase-negative fibres in a muscle biopsy obtained from one patient, which was suggestive of subclinical mitochondrial myopathy. Mitochondrial respiratory chain enzyme assay in skin fibroblasts from the three patients showed a definitive decrease in complex I or complex IV. Immunocytochemical analysis of subcellular localization in HeLa cells indicated that mutant COA7 proteins as well as wild-type COA7 were localized in mitochondria, which suggests that mutant COA7 does not affect the mitochondrial recruitment and may affect the stability or localization of COA7 interaction partners in the mitochondria. In addition

  11. Changes in Acetyl CoA Levels during the Early Embryonic Development of Xenopus laevis

    PubMed Central

    Tsuchiya, Yugo; Pham, Uyen; Hu, Wanzhou; Ohnuma, Shin-ichi; Gout, Ivan

    2014-01-01

    Coenzyme A (CoA) is a ubiquitous and fundamental intracellular cofactor. CoA acts as a carrier of metabolically important carboxylic acids in the form of CoA thioesters and is an obligatory component of a multitude of catabolic and anabolic reactions. Acetyl CoA is a CoA thioester derived from catabolism of all major carbon fuels. This metabolite is at a metabolic crossroads, either being further metabolised as an energy source or used as a building block for biosynthesis of lipids and cholesterol. In addition, acetyl CoA serves as the acetyl donor in protein acetylation reactions, linking metabolism to protein post-translational modifications. Recent studies in yeast and cultured mammalian cells have suggested that the intracellular level of acetyl CoA may play a role in the regulation of cell growth, proliferation and apoptosis, by affecting protein acetylation reactions. Yet, how the levels of this metabolite change in vivo during the development of a vertebrate is not known. We measured levels of acetyl CoA, free CoA and total short chain CoA esters during the early embryonic development of Xenopus laevis using HPLC. Acetyl CoA and total short chain CoA esters start to increase around midblastula transition (MBT) and continue to increase through stages of gastrulation, neurulation and early organogenesis. Pre-MBT embryos contain more free CoA relative to acetyl CoA but there is a shift in the ratio of acetyl CoA to CoA after MBT, suggesting a metabolic transition that results in net accumulation of acetyl CoA. At the whole-embryo level, there is an apparent correlation between the levels of acetyl CoA and levels of acetylation of a number of proteins including histones H3 and H2B. This suggests the level of acetyl CoA may be a factor, which determines the degree of acetylation of these proteins, hence may play a role in the regulation of embryogenesis. PMID:24831956

  12. CoAs: The line of 3 d demarcation

    NASA Astrophysics Data System (ADS)

    Campbell, Daniel J.; Wang, Limin; Eckberg, Chris; Graf, Dave; Hodovanets, Halyna; Paglione, Johnpierre

    2018-05-01

    Transition metal-pnictide compounds have received attention for their tendency to combine magnetism and unconventional superconductivity. Binary CoAs lies on the border of paramagnetism and the more complex behavior seen in isostructural CrAs, MnP, FeAs, and FeP. Here we report the properties of CoAs single crystals grown with two distinct techniques along with density functional theory calculations of its electronic structure and magnetic ground state. While all indications are that CoAs is paramagnetic, both experiment and theory suggest proximity to a ferromagnetic instability. Quantum oscillations are seen in torque measurements up to 31.5 T and support the calculated paramagnetic Fermiology.

  13. Identification of amino acids conferring chain length substrate specificities on fatty alcohol-forming reductases FAR5 and FAR8 from Arabidopsis thaliana.

    PubMed

    Chacón, Micaëla G; Fournier, Ashley E; Tran, Frances; Dittrich-Domergue, Franziska; Pulsifer, Ian P; Domergue, Frédéric; Rowland, Owen

    2013-10-18

    Fatty alcohols play a variety of biological roles in all kingdoms of life. Fatty acyl reductase (FAR) enzymes catalyze the reduction of fatty acyl-coenzyme A (CoA) or fatty acyl-acyl carrier protein substrates to primary fatty alcohols. FAR enzymes have distinct substrate specificities with regard to chain length and degree of saturation. FAR5 (At3g44550) and FAR8 (At3g44560) from Arabidopsis thaliana are 85% identical at the amino acid level and are of equal length, but they possess distinct specificities for 18:0 or 16:0 acyl chain length, respectively. We used Saccharomyces cerevisiae as a heterologous expression system to assess FAR substrate specificity determinants. We identified individual amino acids that affect protein levels or 16:0-CoA versus 18:0-CoA specificity by expressing in yeast FAR5 and FAR8 domain-swap chimeras and site-specific mutants. We found that a threonine at position 347 and a serine at position 363 were important for high FAR5 and FAR8 protein accumulation in yeast and thus are likely important for protein folding and stability. Amino acids at positions 355 and 377 were important for dictating 16:0-CoA versus 18:0-CoA chain length specificity. Simultaneously converting alanine 355 and valine 377 of FAR5 to the corresponding FAR8 residues, leucine and methionine, respectively, almost fully converted FAR5 specificity from 18:0-CoA to 16:0-CoA. The reciprocal amino acid conversions, L355A and M377V, made in the active FAR8-S363P mutant background converted its specificity from 16:0-CoA to 18:0-CoA. This study is an important advancement in the engineering of highly active FAR proteins with desired specificities for the production of fatty alcohols with industrial value.

  14. Designing Inquiry Starters

    NASA Astrophysics Data System (ADS)

    Kluger-Bell, B.

    2010-12-01

    The term "Inquiry Starter" comes from the Institute for Inquiry's model for teaching and learning science through inquiry. It refers to the first phase of an inquiry activity where learners engage in actions that stimulate their curiosity and generate questions for further investigation. In the Professional Development Program, staff and participants have designed a wide variety of inquiry activities with a number of variations on the inquiry starter. This has provided a laboratory for examining inquiry starter design. In this paper, I describe and examine in detail the elements of this design and how the design of those elements is related to achieving learning objectives. There are a number of important common objectives in all inquiry starters. For example, all starters must define a domain for investigation and engage the learner's curiosity in that domain. There are also critical differences in learning objectives depending on the content area being studied, the learners' background knowledge and skills, and many other factors. In this paper I examine designs for both of these types of objectives.

  15. OUTCROP-BASED HIGH RESOLUTION GAMMA-RAY CHARACTERIZATION OF ARSENIC-BEARING LITHOFACIES IN THE PERMIAN GARBER SANDSTONE AND WELLINGTON FORMATION, CENTRAL OKLAHOMA AQUIFER (COA). CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    The COA supplies drinking water to a number of municipalities in central Oklahoma. Two major stratigraphic units in the COA, the Garber Sandstone and Wellington Formation, contain naturally occurring arsenic that exceeds government mandated drinking-water standards (EPA, 2001). ...

  16. Fatty Acyl Incorporation in the Biosynthesis of WAP-8294A, a Group of Potent Anti-MRSA Cyclic Lipodepsipeptides

    PubMed Central

    Chen, Haotong; Olson, Andrew S.; Su, Wei; Dussault, Patrick H.; Du, Liangcheng

    2015-01-01

    WAP-8294A is a family of at least 20 cyclic lipodepsipeptides exhibiting potent anti-MRSA activity. These compounds differ mainly in the hydroxylated fatty acyl chain; WAP-8294A2, the most potent member of the family that reached clinical trials, is based on (R)-3-hydroxy-7-methyloctanoic acid. It is unclear how the acyl group is incorporated because no acyl-CoA ligase (ACL) gene is present in the WAP-8294A gene cluster in Lysobacter enzymogenes OH11. Here, we identified seven putative ACL genes in the OH11 genome and showed that the yield of WAP-8294A2 was impacted by multiple ACL genes with the ACL6 gene having the most significant effect. We then investigated several (R)-3-hydroxy fatty acids and their acyl SNAC (N-acetylcysteamine) thioesters as substrates for the ACLs. Feeding (R)-3-hydroxy-7-methyloctanoate-SNAC to the ACL6 gene deletion mutant restored the production of WAP-8294A2. Finally, we heterologously expressed the seven ACL genes in E. coli and purified six of the proteins. While these enzymes exhibit a varied level of activity in vitro, ACL6 showed the highest catalytic efficiency in converting (R)-3-hydroxy-7-methyloctanoic acid to its CoA thioester when incubated with coenzyme A and ATP. These results provided both in vivo and in vitro evidence to support the fact that ACL6 is the main player for fatty acyl activation and incorporation in WAP-8294A2 biosynthesis. The results also suggest that the molecular basis for the acyl chain diversity in the WAP-8294A family is the presence of functionally overlapping ACLs. PMID:26726302

  17. Fatty Acyl Incorporation in the Biosynthesis of WAP-8294A, a Group of Potent Anti-MRSA Cyclic Lipodepsipeptides.

    PubMed

    Chen, Haotong; Olson, Andrew S; Su, Wei; Dussault, Patrick H; Du, Liangcheng

    WAP-8294A is a family of at least 20 cyclic lipodepsipeptides exhibiting potent anti-MRSA activity. These compounds differ mainly in the hydroxylated fatty acyl chain; WAP-8294A2, the most potent member of the family that reached clinical trials, is based on ( R )-3-hydroxy-7-methyloctanoic acid. It is unclear how the acyl group is incorporated because no acyl-CoA ligase (ACL) gene is present in the WAP-8294A gene cluster in Lysobacter enzymogenes OH11. Here, we identified seven putative ACL genes in the OH11 genome and showed that the yield of WAP-8294A2 was impacted by multiple ACL genes with the ACL6 gene having the most significant effect. We then investigated several ( R )-3-hydroxy fatty acids and their acyl SNAC ( N -acetylcysteamine) thioesters as substrates for the ACLs. Feeding ( R )-3-hydroxy-7-methyloctanoate-SNAC to the ACL6 gene deletion mutant restored the production of WAP-8294A2. Finally, we heterologously expressed the seven ACL genes in E. coli and purified six of the proteins. While these enzymes exhibit a varied level of activity in vitro , ACL6 showed the highest catalytic efficiency in converting ( R )-3-hydroxy-7-methyloctanoic acid to its CoA thioester when incubated with coenzyme A and ATP. These results provided both in vivo and in vitro evidence to support the fact that ACL6 is the main player for fatty acyl activation and incorporation in WAP-8294A2 biosynthesis. The results also suggest that the molecular basis for the acyl chain diversity in the WAP-8294A family is the presence of functionally overlapping ACLs.

  18. The effect of spices and manganese on meat starter culture activity.

    PubMed

    Coventry, M J; Hickey, M W

    1993-01-01

    Three species, two proprietary spice blends and six starter preparations used in commercial salami manufacture were analysed for manganese and magnesium content. A mettwurst spices blend showed the highest levels of manganese (0·77 ppm expressed as effective product level assuming a 1% spice content) while mild and hot paprika and milano blend contained levels of manganese 1 4 - 1 3 lower. Magnesium levels for spices ranged from 3·14 to 25·81 ppm. Only two of the six meat starter cultures showed high levels of manganese (7·77 and 16·12 ppm as effective product level based on inoculation rate) while magnesium levels for all starter cultures did not exceed 0·37 ppm. The pH of salami products made with starter cultures containing no added manganese lagged behind that of products made with added mangenese (5 ppm) by 0·2 pH units at 48 h. The effect of manganese ions on the fermentation rate of starter bacteria was studied further in a salami model system, in the absence and presence of added spices. The mettwurst blend produced greatest stimulation and the milano the least. A level of 1·2 ppm of added manganese was sufficient to achieve an optimal (< 4·9 pH units within 48 h) fermentation in the presence of all five spices tested in the salami model system. Copyright © 1993. Published by Elsevier Ltd.

  19. Role of Feedback Regulation of Pantothenate Kinase (CoaA) in Control of Coenzyme A Levels in Escherichia coli

    PubMed Central

    Rock, Charles O.; Park, Hee-Won; Jackowski, Suzanne

    2003-01-01

    Pantothenate kinase (CoaA) is a key regulator of coenzyme A (CoA) biosynthesis in Escherichia coli, and its activity is controlled by feedback inhibition by CoA and its thioesters. The importance of feedback inhibition in the control of the intracellular CoA levels was tested by constructing three site-directed mutants of CoaA that were predicted to be feedback resistant based on the crystal structure of the CoaA-CoA binary complex. CoaA[R106A], CoaA[H177Q], and CoaA[F247V] were purified and shown to retain significant catalytic activity and be refractory to inhibition by CoA. CoaA[R106A] retained 50% of the catalytic activity of CoaA, whereas the CoaA[H177Q] and CoaA[F247V] mutants were less active. The importance of feedback control of CoaA to the intracellular CoA levels was assessed by expressing either CoaA or CoaA[R106A] in strain ANS3 [coaA15(Ts) panD2]. Cells expressing CoaA[R106A] had significantly higher levels of phosphorylated pantothenate-derived metabolites and CoA in vivo and excreted significantly more 4′-phosphopantetheine into the medium compared to cells expressing the wild-type protein. These data illustrate the key role of feedback regulation of pantothenate kinase in the control of intracellular CoA levels. PMID:12754240

  20. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  1. The Acyl Desaturase CER17 Is Involved in Producing Wax Unsaturated Primary Alcohols and Cutin Monomers.

    PubMed

    Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K; Tomasi, Pernell; Dyer, John M; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Parsons, Eugene P; Jenks, Matthew A; Lü, Shiyou

    2017-02-01

    We report n-6 monounsaturated primary alcohols (C 26:1 , C 28:1 , and C 30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4's principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation's effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem. © 2017 American Society of Plant Biologists. All Rights Reserved.

  2. Novel approach in LC-MS/MS using MRM to generate a full profile of acyl-CoAs: discovery of acyl-dephospho-CoAs.

    PubMed

    Li, Qingling; Zhang, Shenghui; Berthiaume, Jessica M; Simons, Brigitte; Zhang, Guo-Fang

    2014-03-01

    A metabolomic approach to selectively profile all acyl-CoAs was developed using a programmed multiple reaction monitoring (MRM) method in LC-MS/MS and was employed in the analysis of various rat organs. The programmed MRM method possessed 300 mass ion transitions with the mass difference of 507 between precursor ion (Q1) and product ion (Q3), and the precursor ion started from m/z 768 and progressively increased one mass unit at each step. Acyl-dephospho-CoAs resulting from the dephosphorylation of acyl-CoAs were identified by accurate MS and fragmentation. Acyl-dephospho-CoAs were also quantitatively scanned by the MRM method with the mass difference of 427 between Q1 and Q3 mass ions. Acyl-CoAs and dephospho-CoAs were assayed with limits of detection ranging from 2 to 133 nM. The accuracy of the method was demonstrated by assaying a range of concentrations of spiked acyl-CoAs with the results of 80-114%. The distribution of acyl-CoAs reflects the metabolic status of each organ. The physiological role of dephosphorylation of acyl-CoAs remains to be further characterized. The methodology described herein provides a novel strategy in metabolomic studies to quantitatively and qualitatively profile all potential acyl-CoAs and acyl-dephospho-CoAs.

  3. 77 FR 8898 - Certain Starter Motors and Alternators; Determination Not To Review an Initial Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... joint motion to terminate the investigation as to respondent Electric Motor Service, Inc. (EMS) of Logan... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-755] Certain Starter Motors and... for importation, and the sale within the United States after importation of certain starter motors and...

  4. Characterization of CG6178 gene product with high sequence similarity to firefly luciferase in Drosophila melanogaster.

    PubMed

    Oba, Yuichi; Ojika, Makoto; Inouye, Satoshi

    2004-03-31

    This is the first identification of a long-chain fatty acyl-CoA synthetase in Drosophila by enzymatic characterization. The gene product of CG6178 (CG6178) in Drosophila melanogaster genome, which has a high sequence similarity to firefly luciferase, has been expressed and characterized. CG6178 showed long-chain fatty acyl-CoA synthetic activity in the presence of ATP, CoA and Mg(2+), suggesting a fatty acyl adenylate is an intermediate. Recently, it was revealed that firefly luciferase has two catalytic functions, monooxygenase (luciferase) and AMP-mediated CoA ligase (fatty acyl-CoA synthetase). However, unlike firefly luciferase, CG6178 did not show luminescence activity in the presence of firefly luciferin, ATP, CoA and Mg(2+). The enzymatic properties of CG6178 including substrate specificity, pH dependency and optimal temperature were close to those of firefly luciferase and rat fatty acyl-CoA synthetase. Further, phylogenic analyses strongly suggest that the firefly luciferase gene may have evolved from a fatty acyl-CoA synthetase gene as a common ancestral gene.

  5. Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase

    PubMed Central

    Van Hellemond, Jaap J.; Opperdoes, Fred R.; Tielens, Aloysius G. M.

    1998-01-01

    Hydrogenosome-containing anaerobic protists, such as the trichomonads, produce large amounts of acetate by an acetate:succinate CoA transferase (ASCT)/succinyl CoA synthetase cycle. The notion that mitochondria and hydrogenosomes may have originated from the same α-proteobacterial endosymbiont has led us to look for the presence of a similar metabolic pathway in trypanosomatids because these are the earliest-branching mitochondriate eukaryotes and because they also are known to produce acetate. The mechanism of acetate production in these organisms, however, has remained unknown. Four different members of the trypanosomatid family: promastigotes of Leishmania mexicana mexicana, L. infantum and Phytomonas sp., and procyclics of Trypanosoma brucei were analyzed as well as the parasitic helminth Fasciola hepatica. They all use a mitochondrial ASCT for the production of acetate from acetyl CoA. The succinyl CoA that is produced during acetate formation by ASCT is recycled presumably to succinate by a mitochondrial succinyl CoA synthetase, concomitantly producing ATP from ADP. The ASCT of L. mexicana mexicana promastigotes was further characterized after partial purification of the enzyme. It has a high affinity for acetyl CoA (Km 0.26 mM) and a low affinity for succinate (Km 6.9 mM), which shows that significant acetate production can occur only when high mitochondrial succinate concentrations prevail. This study identifies a metabolic pathway common to mitochondria and hydrogenosomes, which strongly supports a common origin for these two organelles. PMID:9501211

  6. Regioselective self-acylating cyclodextrins in organic solvent

    NASA Astrophysics Data System (ADS)

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-03-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods.

  7. Commelinid Monocotyledon Lignins Are Acylated by p-Coumarate.

    PubMed

    Karlen, Steven D; Free, Heather C A; Padmakshan, Dharshana; Smith, Bronwen G; Ralph, John; Harris, Philip J

    2018-06-01

    Commelinid monocotyledons are a monophyletic clade differentiated from other monocotyledons by the presence of cell wall-bound ferulate and p -coumarate. The Poaceae, or grass family, is a member of this group, and most of the p -coumarate in the cell walls of this family acylates lignin. Here, we isolated and examined lignified cell wall preparations from 10 species of commelinid monocotyledons from nine families other than Poaceae, including species from all four commelinid monocotyledon orders (Poales, Zingiberales, Commelinales, and Arecales). We showed that, as in the Poaceae, lignin-linked p -coumarate occurs exclusively on the hydroxyl group on the γ-carbon of lignin unit side chains, mostly on syringyl units. Although the mechanism of acylation has not been studied directly in these species, it is likely to be similar to that in the Poaceae and involve BAHD acyl-coenzyme A:monolignol transferases. © 2018 American Society of Plant Biologists. All rights reserved.

  8. Safety improvement and preservation of typical sensory qualities of traditional dry fermented sausages using autochthonous starter cultures.

    PubMed

    Talon, Régine; Leroy, Sabine; Lebert, Isabelle; Giammarinaro, Philippe; Chacornac, Jean-Paul; Latorre-Moratalla, Mariluz; Vidal-Carou, Carmen; Zanardi, Emanuela; Conter, Mauro; Lebecque, Annick

    2008-08-15

    Traditional dry fermented sausages are manufactured without addition of starter cultures in small-scale processing units, their fermentation relying on indigenous microflora. Characterisation and control of these specific bacteria are essential for the sensory quality and the safety of the sausages. The aim of this study was to develop an autochthonous starter culture that improves safety while preserving the typical sensory characteristics of traditional sausages. An autochthonous starter composed of Lactobacillus sakei, Staphylococcus equorum and Staphylococcus succinus isolated from a traditional fermented sausage was developed. These strains were tested for their susceptibility to antibiotics and their production of biogenic amines. This starter was evaluated in situ at the French traditional processing unit where the strains had been isolated. Effects of the autochthonous starter were assessed by analysing the microbial, physico-chemical, biochemical and sensory characteristics of the sausages. Inoculation with the chosen species was confirmed using known species-specific PCR assays for L. sakei and S. equorum and a species-specific PCR assay developed in this study for S. succinus. Strains were monitored by pulse-field gel electrophoresis typing. Addition of autochthonous microbial starter cultures improved safety compared with the traditional natural fermentation of sausages, by inhibiting the pathogen Listeria monocytogenes, decreasing the level of biogenic amines and by limiting fatty acid and cholesterol oxidation. Moreover, autochthonous starter did not affect the typical sensory quality of the traditional sausages. This is the first time to our knowledge that selection, development and validation in situ of autochthonous starter cultures have been carried out, and also the first time that S. equorum together with S. succinus have been used as starter cultures for meat fermentation. Use of autochthonous starter cultures is an effective tool for limiting

  9. The Acyl Desaturase CER17 Is Involved in Producing Wax Unsaturated Primary Alcohols and Cutin Monomers1[OPEN

    PubMed Central

    Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K.; Dyer, John M.; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Jenks, Matthew A.

    2017-01-01

    We report n-6 monounsaturated primary alcohols (C26:1, C28:1, and C30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4’s principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation’s effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem. PMID:28069670

  10. 7 CFR 58.406 - Starter facility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... precaution shall be taken to prevent contamination of the facility, equipment and the air therein. A filtered air supply with a minimum average efficiency of 90 percent when tested in accordance with the ASHRAE....406 Starter facility. A separate starter room or properly designed starter tanks and satisfactory air...

  11. Comparison of Bacterial Diversity Between Two Traditional Starters and the Round-Koji-Maker Starter for Traditional Cantonese Chi-Flavor Liquor Brewing

    PubMed Central

    Wang, Jie; Zhong, Qingping; Yang, Yingying; Li, Hanrong; Wang, Li; Tong, Yigang; Fang, Xiang; Liao, Zhenlin

    2018-01-01

    Xiaoqu is a traditional fermentation starter that is used for Chinese liquor production. Although microorganisms in the starters are closely associated with the quality and flavor of liquor, knowledge of the microbiota in xiaoqu is still far from complete, let alone the starters produced by new processes. Here, Illumina MiSeq high-throughput sequencing was applied to study bacterial composition in three types of xiaoqu used in Cantonese soybean-flavor (Chi-flavor) liquor, namely two traditional starters (Jiu Bing and Bing Wan) and a Round-Koji-maker starter (San qu) produced by the automatic starter-making disk machine. The results showed bacterial diversity in traditional starters was similar and higher than that in the Round-Koji-maker starter. Lactobacillus and Pediococcus were the dominant genera in all starters, while other different dominant genera also existed in different starters, which were Weissella, Acetobacter, and Gluconobacter for Jiu Bing, Weissella for Bing Wan, and Bacillus, Acetobacter, Acinetobacter and Klebsiella for San qu, respectively. Meanwhile, Cytophagaceae, one particular microbial family, and some pathogens including Klebsiella, Cronobacter, and Enterobacter were also found in San qu, indicating the automatic starter-making disk machine should be ameliorated before applied into industrial production. These results enriched our knowledge on xiaoqu-related microorganisms and might be helpful in industrial Chi-flavor liquor production and the development of fermentation technology. PMID:29875758

  12. Comparison of Bacterial Diversity Between Two Traditional Starters and the Round-Koji-Maker Starter for Traditional Cantonese Chi-Flavor Liquor Brewing.

    PubMed

    Wang, Jie; Zhong, Qingping; Yang, Yingying; Li, Hanrong; Wang, Li; Tong, Yigang; Fang, Xiang; Liao, Zhenlin

    2018-01-01

    Xiaoqu is a traditional fermentation starter that is used for Chinese liquor production. Although microorganisms in the starters are closely associated with the quality and flavor of liquor, knowledge of the microbiota in xiaoqu is still far from complete, let alone the starters produced by new processes. Here, Illumina MiSeq high-throughput sequencing was applied to study bacterial composition in three types of xiaoqu used in Cantonese soybean-flavor ( Chi -flavor) liquor, namely two traditional starters ( Jiu Bing and Bing Wan ) and a Round-Koji-maker starter ( San qu ) produced by the automatic starter-making disk machine. The results showed bacterial diversity in traditional starters was similar and higher than that in the Round-Koji-maker starter. Lactobacillus and Pediococcus were the dominant genera in all starters, while other different dominant genera also existed in different starters, which were Weissella, Acetobacter , and Gluconobacter for Jiu Bing, Weissella for Bing Wan , and Bacillus, Acetobacter, Acinetobacter and Klebsiella for San qu , respectively. Meanwhile, Cytophagaceae , one particular microbial family, and some pathogens including Klebsiella, Cronobacter , and Enterobacter were also found in San qu , indicating the automatic starter-making disk machine should be ameliorated before applied into industrial production. These results enriched our knowledge on xiaoqu -related microorganisms and might be helpful in industrial Chi -flavor liquor production and the development of fermentation technology.

  13. Biocatalysis of a Paclitaxel Analogue: Conversion of Baccatin III to N-Debenzoyl-N-(2-furoyl)paclitaxel and Characterization of an Amino Phenylpropanoyl CoA Transferase.

    PubMed

    Thornburg, Chelsea K; Walter, Tyler; Walker, Kevin D

    2017-11-07

    In this study, we demonstrate an enzyme cascade reaction using a benzoate CoA ligase (BadA), a modified nonribosomal peptide synthase (PheAT), a phenylpropanoyltransferase (BAPT), and a benzoyltransferase (NDTNBT) to produce an anticancer paclitaxel analogue and its precursor from the commercially available biosynthetic intermediate baccatin III. BAPT and NDTNBT are acyltransferases on the biosynthetic pathway to the antineoplastic drug paclitaxel in Taxus plants. For this study, we addressed the recalcitrant expression of BAPT by expressing it as a soluble maltose binding protein fusion (MBP-BAPT). Further, the preparative-scale in vitro biocatalysis of phenylisoserinyl CoA using PheAT enabled thorough kinetic analysis of MBP-BAPT, for the first time, with the cosubstrate baccatin III. The turnover rate of MBP-BAPT was calculated for the product N-debenzoylpaclitaxel, a key intermediate to various bioactive paclitaxel analogues. MBP-BAPT also converted, albeit more slowly, 10-deacetylbaccatin III to N-deacyldocetaxel, a precursor of the pharmaceutical docetaxel. With PheAT available to make phenylisoserinyl CoA and kinetic characterization of MBP-BAPT, we used Michaelis-Menten parameters of the four enzymes to adjust catalyst and substrate loads in a 200-μL one-pot reaction. This multienzyme network produced a paclitaxel analogue N-debenzoyl-N-(2-furoyl)paclitaxel (230 ng) that is more cytotoxic than paclitaxel against certain macrophage cell types. Also in this pilot reaction, the versatile N-debenzoylpaclitaxel intermediate was made at an amount 20-fold greater than the N-(2-furoyl) product. This reaction network has great potential for optimization to scale-up production and is attractive in its regioselective O- and N-acylation steps that remove protecting group manipulations used in paclitaxel analogue synthesis.

  14. Commelinid Monocotyledon Lignins Are Acylated by p-Coumarate1[OPEN

    PubMed Central

    Free, Heather C.A.; Smith, Bronwen G.

    2018-01-01

    Commelinid monocotyledons are a monophyletic clade differentiated from other monocotyledons by the presence of cell wall-bound ferulate and p-coumarate. The Poaceae, or grass family, is a member of this group, and most of the p-coumarate in the cell walls of this family acylates lignin. Here, we isolated and examined lignified cell wall preparations from 10 species of commelinid monocotyledons from nine families other than Poaceae, including species from all four commelinid monocotyledon orders (Poales, Zingiberales, Commelinales, and Arecales). We showed that, as in the Poaceae, lignin-linked p-coumarate occurs exclusively on the hydroxyl group on the γ-carbon of lignin unit side chains, mostly on syringyl units. Although the mechanism of acylation has not been studied directly in these species, it is likely to be similar to that in the Poaceae and involve BAHD acyl-coenzyme A:monolignol transferases. PMID:29724771

  15. Dallas area rapid transit LRT starter line assessment study design. Final research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shunk, G.A.; Turnbull, K.F.; Lindquist, N.F.

    1995-03-01

    Light rail transit (LRT) systems have recently been implemented in a number of urban areas throughout the United States and additional projects are in various stages of planning and development. Questions have been raised concerning the impact of these systems on ridership levels, transit operating costs, regional mobility, land use, economic development, energy, air quality, congestion levels, and other factors. The implementation of the Dallas Area Rapid Transit (DART) LRT starter line provides the opportunity to assess the impact of an LRT system in a Southwestern city in the United States. This research project was undertaken to assist with themore » development of a comprehensive study design for assessing the effects of the DART LRT starter line. To accomplish this objective, a review was conducted of before-and-after studies of recent LRT, heavy rail, and high-occupancy vehicle (HOV) projects. The goals and objectives of the DART system were also reviewed and existing transportation-related data collection activities in the Dallas area were examined. This information was used to develop a preliminary study design for assessing the effects of the DART LRT starter line. This report documents the review of recent before-and-after studies and presents the preliminary study design for assessing the effects of the DART LRT starter line.« less

  16. Long-Chain Fatty Acyl Coenzyme A Ligase FadD2 Mediates Intrinsic Pyrazinamide Resistance in Mycobacterium tuberculosis

    PubMed Central

    Rosen, Brandon C.; Dillon, Nicholas A.; Peterson, Nicholas D.; Minato, Yusuke

    2016-01-01

    ABSTRACT Pyrazinamide (PZA) is a first-line tuberculosis (TB) drug that has been in clinical use for 60 years yet still has an unresolved mechanism of action. Based upon the observation that the minimum concentration of PZA required to inhibit the growth of Mycobacterium tuberculosis is approximately 1,000-fold higher than that of other first-line drugs, we hypothesized that M. tuberculosis expresses factors that mediate intrinsic resistance to PZA. To identify genes associated with intrinsic PZA resistance, a library of transposon-mutagenized Mycobacterium bovis BCG strains was screened for strains showing hypersusceptibility to the active form of PZA, pyrazinoic acid (POA). Disruption of the long-chain fatty acyl coenzyme A (CoA) ligase FadD2 enhanced POA susceptibility by 16-fold on agar medium, and the wild-type level of susceptibility was restored upon expression of fadD2 from an integrating mycobacterial vector. Consistent with the recent observation that POA perturbs mycobacterial CoA metabolism, the fadD2 mutant strain was more vulnerable to POA-mediated CoA depletion than the wild-type strain. Ectopic expression of the M. tuberculosis pyrazinamidase PncA, necessary for conversion of PZA to POA, in the fadD2 transposon insertion mutant conferred at least a 16-fold increase in PZA susceptibility under active growth conditions in liquid culture at neutral pH. Importantly, deletion of fadD2 in M. tuberculosis strain H37Rv also resulted in enhanced susceptibility to POA. These results indicate that FadD2 is associated with intrinsic PZA and POA resistance and provide a proof of concept for the target-based potentiation of PZA activity in M. tuberculosis. PMID:27855077

  17. Starter cultures for kimchi fermentation.

    PubMed

    Lee, Mo-Eun; Jang, Ja-Young; Lee, Jong-Hee; Park, Hae-Woong; Choi, Hak-Jong; Kim, Tae-Woon

    2015-05-01

    Kimchi is a traditional Korean vegetable product that is naturally fermented by various microorganisms present in the raw materials. Among these microorganisms, lactic acid bacteria dominate the fermentation process. Natural fermentation with unsterilized raw materials leads to the growth of various lactic acid bacteria, resulting in variations in the taste and quality of kimchi, which may make it difficult to produce industrial-scale kimchi with consistent quality. The use of starter cultures has been considered as an alternative for the industrial production of standardized kimchi, and recent trends suggest that the demand for starter cultures is on the rise. However, several factors should be carefully considered for the successful application of starter cultures for kimchi fermentation. In this review, we summarize recent studies on kimchi starter cultures, describe practical problems in the application of industrial-scale kimchi production, and discuss the directions for further studies.

  18. High-throughput assay for long chain fatty acyl-CoA elongase using homogeneous scintillation proximity format.

    PubMed

    Shimamura, Ken; Miyamoto, Yasuhisa; Kitazawa, Hidefumi; Kobayashi, Tsutomu; Kotani, Hidehito; Tokita, Shigeru

    2009-04-01

    Elongase of very-long-chain fatty acid (Elovl) 6 is a rate-limiting enzyme that is responsible for the elongation of long-chain fatty acids such as palmitoic acid (C16). Elovl6 is abundantly expressed in liver and adipose tissue, and the expression levels in these tissues are up-regulated in obese animals. Furthermore, Elovl6-deficient mice display improved glucose homeostasis and insulin sensitivity, suggesting that Elovl6 might be a potential therapeutic target for metabolic disorders. From the drug discovery point of view, it is critical to establish a high-throughput screening (HTS) assay for the identification of therapeutic agents. Conventional assay methods for fatty acid elongases include an extraction step for respective radioactive products from the reaction mixtures, which is labor-intensive and not feasible for HTS. In this study, we utilized the acyl-coenzyme A (CoA) binding protein (ACBP) as a molecular probe to detect radioactive long-chain acyl-CoA, a direct product of Elovl6. Recombinant ACBP binds stearoyl-CoA but not malonyl-CoA, enabling specific detection of the radioactive product in the homogenous reaction mixture without the liquid extraction step. Finally, combination of ACBP and scintillation proximity assay beads led to specific detection of Elovl6 activity with appropriate window and reproducibility amenable to HTS (signal-to-background noise ratio of approximately 13.0-fold, Z' = 0.85). The assay system described here has the potential to enable identification of small compounds that modify fatty acid elongase activity and assessment of the therapeutic potential of acyl-CoA elongases.

  19. Impulse noise generated by starter pistols

    PubMed Central

    Meinke, Deanna K.; Finan, Donald S.; Soendergaard, Jacob; Flamme, Gregory A.; Murphy, William J.; Lankford, James E.; Stewart, Michael

    2015-01-01

    Objective This study describes signals generated by .22 and .32 caliber starter pistols in the context of noise-induced hearing loss risk for sports officials and athletes. Design Acoustic comparison of impulses generated from typical .22 and .32 caliber starter pistols firing blanks were made to impulses generated from comparable firearms firing both blanks and live rounds. Acoustic characteristics are described in terms of directionality and distance from the shooter in a simulated outdoor running track. Metrics include peak sound pressure levels (SPL), A-weighted equivalent 8-hour level (LeqA8), and maximum permissible number of individual shots, or maximum permissible exposures (MPE) for the unprotected ear. Results Starter pistols produce peak SPLs above 140 dB. The numbers of MPEs are as few as five for the .22-caliber starter pistol, and somewhat higher (≤25) for the .32-caliber pistol. Conclusion The impulsive sounds produced by starter pistols correspond to MPE numbers that are unacceptably small for unprotected officials and others in the immediate vicinity of the shooter. At the distances included in this study, the risk to athletes appears to be low (when referencing exposure criteria for adults), but the sound associated with the starter pistol will contribute to the athlete’s overall noise exposure. PMID:23373743

  20. Lactobacillus plantarum (KACC 92189) as a Potential Probiotic Starter Culture for Quality Improvement of Fermented Sausages

    PubMed Central

    2018-01-01

    This study was conducted to evaluate the effects of fermenting temperature on the applicability of Lactobacillus plantarum for production of fermented sausages as starter cultures, and its applicable efficiency was also compared with those inoculated with commercial starter culture or non-inoculated control. The L. plantarum isolated from a naturally-fermented meat, identified by 16S rDNA sequencing and again identified by de novo Assembly Analysis method was used as a starter culture. Six treatments: 3 with L. plantarum at different fermenting temperatures (20, 25 and 30°C), and other 3 treatments (1 with commercial starter culture, 1 with its mixture with L. plantarum and 1 non-inoculated control) fermented under the same conditions (25°C) were prepared. Results revealed that the fermenting temperature considerably affected the pH change in samples added with L. plantarum; the highest pH drop rate (1.57 unit) was obtained on the samples fermented at 30°C, followed by those at 25°C (1.3 unit) and 20°C (0.99 unit) after 4 days fermentation. Increasing the temperature up to 30°C resulted in significantly lower spoilage bacteria count (5.15 log CFU/g) and lipid oxidation level in the products inoculated with L. plantarum. The sensory analysis also showed that the samples added with L. plantarum at 30°C had significantly higher odor, taste and acceptability scores than those fermented at lower temperatures. Under the same processing condition, although the L. plantarum showed slightly lower acidification than the commercial starter culture, however, it significantly improved the eating quality of the product. PMID:29725237

  1. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis.

    PubMed

    Lü, Shiyou; Song, Tao; Kosma, Dylan K; Parsons, Eugene P; Rowland, Owen; Jenks, Matthew A

    2009-08-01

    Plant cuticle is an extracellular lipid-based matrix of cutin and waxes, which covers aerial organs and protects them from many forms of environmental stress. We report here the characterization of CER8/LACS1, one of nine Arabidopsis long-chain acyl-CoA synthetases thought to activate acyl chains. Mutations in LACS1 reduced the amount of wax in all chemical classes on the stem and leaf, except in the very long-chain fatty acid (VLCFA) class wherein acids longer than 24 carbons (C(24)) were elevated more than 155%. The C(16) cutin monomers on lacs1 were reduced by 37% and 22%, whereas the C(18) monomers were increased by 28% and 20% on stem and leaf, respectively. Amounts of wax and cutin on a lacs1-1 lacs2-3 double mutant were much lower than on either parent, and lacs1-1 lacs2-3 had much higher cuticular permeability than either parent. These additive effects indicate that LACS1 and LACS2 have overlapping functions in both wax and cutin synthesis. We demonstrated that LACS1 has synthetase activity for VLCFAs C(20)-C(30), with highest activity for C(30) acids. LACS1 thus appears to function as a very long-chain acyl-CoA synthetase in wax metabolism. Since C(16) but not C(18) cutin monomers are reduced in lacs1, and C(16) acids are the next most preferred acid (behind C(30)) by LACS1 in our assays, LACS1 also appears to be important for the incorporation of C(16) monomers into cutin polyester. As such, LACS1 defines a functionally novel acyl-CoA synthetase that preferentially modifies both VLCFAs for wax synthesis and long-chain (C(16)) fatty acids for cutin synthesis.

  2. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase

    PubMed Central

    Laurent, Gaëlle; German, Natalie J.; Saha, Asish K.; de Boer, Vincent C. J.; Davies, Michael; Koves, Timothy R.; Dephoure, Noah; Fischer, Frank; Boanca, Gina; Vaitheesvaran, Bhavapriya; Lovitch, Scott B.; Sharpe, Arlene H.; Kurland, Irwin J.; Steegborn, Clemens; Gygi, Steven P.; Muoio, Deborah M.; Ruderman, Neil B.; Haigis, Marcia C.

    2013-01-01

    Summary Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a novel regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a novel SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis. PMID:23746352

  3. Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of Mycobacterium tuberculosis.

    PubMed

    Evans, Joanna C; Trujillo, Carolina; Wang, Zhe; Eoh, Hyungjin; Ehrt, Sabine; Schnappinger, Dirk; Boshoff, Helena I M; Rhee, Kyu Y; Barry, Clifton E; Mizrahi, Valerie

    2016-12-09

    Mycobacterium tuberculosis relies on its own ability to biosynthesize coenzyme A to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the essential pantothenate and coenzyme A biosynthesis pathways have attracted attention as targets for tuberculosis drug development. To identify the optimal step for coenzyme A pathway disruption in M. tuberculosis, we constructed and characterized a panel of conditional knockdown mutants in coenzyme A pathway genes. Here, we report that silencing of coaBC was bactericidal in vitro, whereas silencing of panB, panC, or coaE was bacteriostatic over the same time course. Silencing of coaBC was likewise bactericidal in vivo, whether initiated at infection or during either the acute or chronic stages of infection, confirming that CoaBC is required for M. tuberculosis to grow and persist in mice and arguing against significant CoaBC bypass via transport and assimilation of host-derived pantetheine in this animal model. These results provide convincing genetic validation of CoaBC as a new bactericidal drug target.

  4. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase.

    PubMed

    Laurent, Gaëlle; German, Natalie J; Saha, Asish K; de Boer, Vincent C J; Davies, Michael; Koves, Timothy R; Dephoure, Noah; Fischer, Frank; Boanca, Gina; Vaitheesvaran, Bhavapriya; Lovitch, Scott B; Sharpe, Arlene H; Kurland, Irwin J; Steegborn, Clemens; Gygi, Steven P; Muoio, Deborah M; Ruderman, Neil B; Haigis, Marcia C

    2013-06-06

    Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis, whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism, leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Exome Sequence Reveals Mutations in CoA Synthase as a Cause of Neurodegeneration with Brain Iron Accumulation

    PubMed Central

    Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B.; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M.; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison; Sanford, Lynn; Hamada, Jeffrey; Bettencourt, Conceição; Houlden, Henry; Chiapparini, Luisa; Zorzi, Giovanna; Kurian, Manju A.; Nardocci, Nardo; Prokisch, Holger; Hayflick, Susan; Gout, Ivan; Tiranti, Valeria

    2014-01-01

    Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA. PMID:24360804

  6. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation.

    PubMed

    Dusi, Sabrina; Valletta, Lorella; Haack, Tobias B; Tsuchiya, Yugo; Venco, Paola; Pasqualato, Sebastiano; Goffrini, Paola; Tigano, Marco; Demchenko, Nikita; Wieland, Thomas; Schwarzmayr, Thomas; Strom, Tim M; Invernizzi, Federica; Garavaglia, Barbara; Gregory, Allison; Sanford, Lynn; Hamada, Jeffrey; Bettencourt, Conceição; Houlden, Henry; Chiapparini, Luisa; Zorzi, Giovanna; Kurian, Manju A; Nardocci, Nardo; Prokisch, Holger; Hayflick, Susan; Gout, Ivan; Tiranti, Valeria

    2014-01-02

    Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. {alpha}-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young; Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8854; Naseem, R. Haris

    2006-05-26

    {alpha}-Lipoic acid ({alpha}-LA) mimics the hypothalamic actions of leptin on food intake, energy expenditure, and activation of AMP-activated protein kinase (AMPK). To determine if, like leptin, {alpha}-LA protects against cardiac lipotoxicity, {alpha}-LA was fed to transgenic mice with cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene. Untreated ACS-transgenic mice died prematurely with increased triacylglycerol content and dilated cardiomyopathy, impaired systolic function and myofiber disorganization, apoptosis, and interstitial fibrosis on microscopy. In {alpha}-LA-treated ACS-transgenic mice heart size, echocardiogram and TG content were normal. Plasma TG fell 50%, hepatic-activated phospho-AMPK rose 6-fold, sterol regulatory element-binding protein-1c declined 50%, and peroxisome proliferator-activatedmore » receptor-{gamma} cofactor-1{alpha} mRNA rose 4-fold. Since food restriction did not prevent lipotoxicity, we conclude that {alpha}-LA treatment, like hyperleptinemia, protects the heart of ACS-transgenic mice from lipotoxicity.« less

  8. Insulin-Stimulated Cardiac Glucose Oxidation Is Increased in High-Fat Diet–Induced Obese Mice Lacking Malonyl CoA Decarboxylase

    PubMed Central

    Ussher, John R.; Koves, Timothy R.; Jaswal, Jagdip S.; Zhang, Liyan; Ilkayeva, Olga; Dyck, Jason R.B.; Muoio, Deborah M.; Lopaschuk, Gary D.

    2009-01-01

    OBJECTIVE Whereas an impaired ability to oxidize fatty acids is thought to contribute to intracellular lipid accumulation, insulin resistance, and cardiac dysfunction, high rates of fatty acid oxidation could also impair glucose metabolism and function. We therefore determined the effects of diet-induced obesity (DIO) in wild-type (WT) mice and mice deficient for malonyl CoA decarboxylase (MCD−/−; an enzyme promoting mitochondrial fatty acid oxidation) on insulin-sensitive cardiac glucose oxidation. RESEARCH DESIGN AND METHODS WT and MCD−/− mice were fed a low- or high-fat diet for 12 weeks, and intramyocardial lipid metabolite accumulation was assessed. A parallel feeding study was performed to assess myocardial function and energy metabolism (nanomoles per gram of dry weight per minute) in isolated working hearts (+/– insulin). RESULTS DIO markedly reduced insulin-stimulated glucose oxidation compared with low fat–fed WT mice (167 ± 31 vs. 734 ± 125; P < 0.05). MCD−/− mice subjected to DIO displayed a more robust insulin-stimulated glucose oxidation (554 ± 82 vs. 167 ± 31; P < 0.05) and less incomplete fatty acid oxidation, evidenced by a decrease in long-chain acylcarnitines compared with WT counterparts. MCD−/− mice had long-chain acyl CoAs similar to those of WT mice subjected to DIO but had increased triacylglycerol levels (10.92 ± 3.72 vs. 3.29 ± 0.62 μmol/g wet wt; P < 0.05). CONCLUSIONS DIO does not impair cardiac fatty acid oxidation or function, and there exists disassociation between myocardial lipid accumulation and insulin sensitivity. Our results suggest that MCD deficiency is not detrimental to the heart in obesity. PMID:19478144

  9. Synthesis and magnetic properties of superparamagnetic CoAs nanostructures

    NASA Astrophysics Data System (ADS)

    Desai, P.; Ashokaan, N.; Masud, J.; Pariti, A.; Nath, M.

    2015-03-01

    This article provides a comprehensive guide on the synthesis and characterization of superparamagnetic CoAs nanoparticles and elongated nanostructures with high blocking temperature, (TB), via hot-injection precipitation and solvothermal methods. Cobalt arsenides constitute an important family of magnetically active solids that find a variety of applications ranging from magnetic semiconductors to biomedical imaging. While the higher temperature hot-injection precipitation technique (300 °C) yields pure CoAs nanostructures, the lower temperature solvothermal method (200 °C) yields a mixture of CoAs nanoparticles along with other Co-based impurity phases. The synthesis in all these cases involved usage of triphenylarsine ((C6H5)3As) as the As precursor which reacts with solid Co2(CO)8 by ligand displacement to yield a single source precursor. The surfactant, hexadecylamine (HDA) further assists in controlling the morphology of the nanostructures. HDA also provides a basic medium and molten flux-like conditions for the redox chemistry to occur between Co and As at elevated temperatures. The influence of the length of reaction time was investigated by studying the evolution of product morphology over time. It was observed that while spontaneous nucleation at higher temperature followed by controlled growth led to the predominant formation of short nanorods, with longer reaction time, the nanorods were further converted to nanoparticles. The size of the nanoparticles obtained, was mostly in the range of 10-15 nm. The key finding of this work is exceptionally high coercivity in CoAs nanostructures for the first time. Coercivity observed was as high as 0.1 T (1000 Oe) at 2 K. These kinds of magnetic nanostructures find multiple applications in spintronics, whereas the superparamagnetic nanoparticles are viable for use in magnetic storage, ferrofluids and as contrast enhancing agents in MRI.

  10. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress

    PubMed Central

    Vu, Hieu Sy; Roth, Mary R.; Tamura, Pamela; Samarakoon, Thilani; Shiva, Sunitha; Honey, Samuel; Lowe, Kaleb; Schmelz, Eric A.; Williams, Todd D.; Welti, Ruth

    2014-01-01

    Formation of galactose-acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection, and thawing after snap-freezing. Here, lipidomic analysis using mass spectrometry showed that galactose-acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl-galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl-galactose components in response to the same stress. Additionally, the composition of the acyl-galactose component of Arabidopsis acMGDG depends on the stress treatment. After sub-lethal freezing treatment, acMGDG contained mainly non-oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid-containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose-acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses. PMID:24286212

  11. A Canonical Biotin Synthesis Enzyme, 8-Amino-7-Oxononanoate Synthase (BioF), Utilizes Different Acyl Chain Donors in Bacillus subtilis and Escherichia coli.

    PubMed

    Manandhar, Miglena; Cronan, John E

    2018-01-01

    BioF (8-amino-7-oxononanoate synthase) is a strictly conserved enzyme that catalyzes the first step in assembly of the fused heterocyclic rings of biotin. The BioF acyl chain donor has long been thought to be pimeloyl-CoA. Indeed, in vitro the Escherichia coli and Bacillus sphaericus enzymes have been shown to condense pimeloyl-CoA with l-alanine in a pyridoxal 5'-phosphate-dependent reaction with concomitant CoA release and decarboxylation of l-alanine. However, recent in vivo studies of E. coli and Bacillus subtilis suggested that the BioF proteins of the two bacteria could have different specificities for pimelate thioesters in that E. coli BioF may utilize either pimeloyl coenzyme A (CoA) or the pimelate thioester of the acyl carrier protein (ACP) of fatty acid synthesis. In contrast, B. subtilis BioF seemed likely to be specific for pimeloyl-CoA and unable to utilize pimeloyl-ACP. We now report genetic and in vitro data demonstrating that B. subtilis BioF specifically utilizes pimeloyl-CoA. IMPORTANCE Biotin is an essential vitamin required by mammals and birds because, unlike bacteria, plants, and some fungi, these organisms cannot make biotin. Currently, the biotin included in vitamin tablets and animal feeds is made by chemical synthesis. This is partly because the biosynthetic pathways in bacteria are incompletely understood. This paper defines an enzyme of the Bacillus subtilis pathway and shows that it differs from that of Escherichia coli in the ability to utilize specific precursors. These bacteria have been used in biotin production and these data may aid in making biotin produced by biotechnology commercially competitive with that produced by chemical synthesis. Copyright © 2017 American Society for Microbiology.

  12. Oxidative acylation using thioacids

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.

    1997-01-01

    Several important prebiotic reactions, including the coupling of amino acids into polypeptides by the formation of amide linkages, involve acylation. Theae reactions present a challenge to the understanding of prebiotic synthesis. Condensation reactions relying on dehydrating agents are either inefficient in aqueous solution or require strongly acidic conditions and high temperatures. Activated amino acids such as thioester derivatives have therefore been suggested as likely substrates for prebiotic peptide synthesis. Here we propose a closely related route to amide bond formation involving oxidative acylation by thioacids. We find that phenylalanine, leucine and phenylphosphate are acylated efficiently in aqueous solution by thioacetic acid and an oxidizing agent. From a prebiotic point of view, oxidative acylation has the advantage of proceeding efficiently in solution and under mild conditions. We anticipate that oxidative acylation should prove to be a general method for activating carboxylic acids, including amino acids.

  13. Characterization of Ten Heterotetrameric NDP-Dependent Acyl-CoA Synthetases of the Hyperthermophilic Archaeon Pyrococcus furiosus

    DOE PAGES

    Scott, Joseph W.; Poole, Farris L.; Adams, Michael W. W.

    2014-01-01

    Tmore » he hyperthermophilic archaeon Pyrococcus furiosus grows by fermenting peptides and carbohydrates to organic acids. In the terminal step, acyl-CoA synthetase (ACS) isoenzymes convert acyl-CoA derivatives to the corresponding acid and conserve energy in the form of AP. ACS1 and ACS2 were previously purified from P. furiosus and have α 2 β 2 structures but the genome contains genes encoding three additional α -subunits. he ten possible combinations of α and β genes were expressed in E. coli and each resulted in stable and active α 2 β 2 isoenzymes. he α -subunit of each isoenzyme determined CoA-based substrate specificity and between them they accounted for the CoA derivatives of fourteen amino acids. he β -subunit determined preference for adenine or guanine nucleotides. he GP-generating isoenzymes are proposed to play a role in gluconeogenesis by producing GP for GP-dependent phosphoenolpyruvate carboxykinase and for other GP-dependent processes. ranscriptional and proteomic data showed that all ten isoenzymes are constitutively expressed indicating that both AP and GP are generated from the metabolism of most of the amino acids. A phylogenetic analysis showed that the ACSs of P. furiosus and other members of the hermococcales are evolutionarily distinct from those found throughout the rest of biology, including those of other hyperthermophilic archaea.« less

  14. Regulation of schistosome egg production by HMG CoA reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VandeWaa, E.A.; Bennett, J.L.

    1986-03-05

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of /sup 14/C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivomore » were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production.« less

  15. Acylation of Ferrocene: A Greener Approach

    ERIC Educational Resources Information Center

    Birdwhistell, Kurt R.; Nguyen, Andy; Ramos, Eric J.; Kobelja, Robert

    2008-01-01

    The acylation of ferrocene is a common reaction used in organic laboratories to demonstrate Friedel-Crafts acylation and the purification of compounds using column chromatography. This article describes an acylation of ferrocene experiment that is more eco-friendly than the conventional acylation experiment. The traditional experiment was modified…

  16. Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency.

    PubMed

    Ghosh, Alok; Trivedi, Prachi P; Timbalia, Shrishiv A; Griffin, Aaron T; Rahn, Jennifer J; Chan, Sherine S L; Gohil, Vishal M

    2014-07-01

    Mitochondrial respiratory chain biogenesis is orchestrated by hundreds of assembly factors, many of which are yet to be discovered. Using an integrative approach based on clues from evolutionary history, protein localization and human genetics, we have identified a conserved mitochondrial protein, C1orf31/COA6, and shown its requirement for respiratory complex IV biogenesis in yeast, zebrafish and human cells. A recent next-generation sequencing study reported potential pathogenic mutations within the evolutionarily conserved Cx₉CxnCx₁₀C motif of COA6, implicating it in mitochondrial disease biology. Using yeast coa6Δ cells, we show that conserved residues in the motif, including the residue mutated in a patient with mitochondrial disease, are essential for COA6 function, thus confirming the pathogenicity of the patient mutation. Furthermore, we show that zebrafish embryos with zfcoa6 knockdown display reduced heart rate and cardiac developmental defects, recapitulating the observed pathology in the human mitochondrial disease patient who died of neonatal hypertrophic cardiomyopathy. The specific requirement of Coa6 for respiratory complex IV biogenesis, its intramitochondrial localization and the presence of the Cx₉CxnCx₁₀C motif suggested a role in mitochondrial copper metabolism. In support of this, we show that exogenous copper supplementation completely rescues respiratory and complex IV assembly defects in yeast coa6Δ cells. Taken together, our results establish an evolutionarily conserved role of Coa6 in complex IV assembly and support a causal role of the COA6 mutation in the human mitochondrial disease patient. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Characterization of aromatic properties of old-style cheese starters.

    PubMed

    Lacroix, N; St-Gelais, D; Champagne, C P; Fortin, J; Vuillemard, J-C

    2010-08-01

    Old-style cheese starters were evaluated to determine their ability to produce cheese aroma compounds. Detailed analyses of the aroma-producing potential of 13 old-style starter cultures were undertaken. The proteolytic profile of the starters was established by an accelerated ripening study using a model cheese slurry and compared with those of a commercial aromatic starter and commercial Cheddar cheeses. To evaluate the aromatic potential of the starter cultures, quantification of free amino acids liberated and volatile compounds after 15 d of ripening at 30 degrees C as well as sensory analysis were carried out. Results showed that proteolysis patterns of all 13 starter cultures in the curd model were comparable to those of commercial Cheddar cheeses. All tested cultures demonstrated the ability to produce high amounts of amino acids recognized as precursors of aroma compounds. Several differences were observed between the starters and commercial Cheddar cheeses regarding some amino acids such as glutamate, leucine, phenylalanine, proline, and ornithine, reflecting the various enzymatic systems present in the starters. Starters Bt (control) and ULAAC-E exhibited various significant differences regarding their free amino acid profiles, as confirmed by sensory analysis. In addition, identification of volatile compounds confirmed the presence of several key molecules related to aroma, such as 3-methylbutanal and diacetyl. Besides the aroma-producing aspect, 2 starters (ULAAC-A and ULAAC-H) seem to possess an important ability to generate large amounts of gamma-aminobutyric acid, which contributed up to 15% of the total amino acids present in the model curd after 15 d ripening. gamma-Aminobutyric acid is an amine well-known for its antihypertensive and calming effects. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Structural and biochemical characterization of cinnamoyl-coa reductases

    USDA-ARS?s Scientific Manuscript database

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a str...

  19. Localization of acyl ghrelin- and des-acyl ghrelin-immunoreactive cells in the rat stomach and their responses to intragastric pH.

    PubMed

    Mizutani, Makoto; Atsuchi, Kaori; Asakawa, Akihiro; Matsuda, Norifumi; Fujimura, Masaki; Inui, Akio; Kato, Ikuo; Fujimiya, Mineko

    2009-11-01

    Acyl ghrelin has a 28-amino acid sequence with O-n-octanoyl acid modification at the serine 3 position, whereas des-acyl ghrelin has no octanoyl acid modification. Although these peptides exert different physiological functions, no previous studies have shown the different localization of acyl ghrelin and des-acyl ghrelin in the stomach. Here we have developed an antibody specific for des-acyl ghrelin that does not crossreact with acyl ghrelin. Both acyl ghrelin- and des-acyl ghrelin-immunoreactive cells were distributed in the oxyntic and antral mucosa of the rat stomach, with higher density in the antral mucosa than oxyntic mucosa. Immunofluorescence double staining showed that acyl ghrelin- and des-acyl ghrelin-positive reactions overlapped in closed-type round cells, whereas des-acyl ghrelin-positive reaction was found in open-type cells in which acyl ghrelin was negative. Acyl ghrelin-/des-acyl ghrelin-positive closed-type cells contain obestatin; on the other hand, des-acyl ghrelin-positive open-type cells contain somatostatin. We measured the release of acyl ghrelin and des-acyl ghrelin in vascularly perfused rat stomach by ELISA, and the effects of different intragastric pH levels on the release of each peptide were examined. The release of des-acyl ghrelin from the perfused stomach was greater at pH 2 than at pH 4; however, the release of acyl ghrelin was not affected by intragastric pH. The present study demonstrated the differential localization of acyl ghrelin and des-acyl ghrelin in the rat stomach and their different responses to the intragastric pH.

  20. Effects of inoculation of commercial starter cultures on the quality and histamine accumulation in fermented sausages.

    PubMed

    Wang, Xinhui; Ren, Hongyang; Wang, Wei; Zhang, Yin; Bai, Ting; Li, Junxia; Zhu, Wenyou

    2015-02-01

    To meet the requirements of high-quality safe products, starter cultures are used to produce fermented sausages. The effects of 3 commercial starter cultures, namely SM-194, T-SPX, and SM-181, on histamine accumulation and quality parameters including microbial quality, pH, water activity, and total volatile base nitrogen, as well as the color and texture properties, were evaluated during the fermentation and ripening of fermented sausages. Although initial counts of Escherichia coli, Enterobacteriaceae, and Pseudomonas were similar in the 4 batches, the growth of these microorganisms was significantly inhibited (P < 0.05) in batches SM-194, T-SPX, and SM-181 throughout the fermentation and ripening period. The counts of E. coli, Enterobacteriaceae, and Pseudomonas increased to maximum levels of 3.89, 4.41, and 5.15 log10 colony forming units/g in the control sausages, respectively. At the end of ripening, the levels of histamine were 8.85, 0.32, 7.82, and 3.18 mg/kg for batches C, SM-194, T-SPX, and SM-181, respectively. The results revealed that commercial starter cultures, particularly starter cultures SM-194 and SM-181, made a great contribution to histamine reduction. In addition, batches inoculated with starter cultures showed a stronger acidification and lower level of total volatile base nitrogen than the control sample during production (P < 0.05). In conclusion, it seems that the inoculation of commercial starter cultures, particularly starter cultures SM-194 and SM-181, contributes to improving microbial quality, hygienic quality and food safety of fermented sausages. © 2015 Institute of Food Technologists®

  1. Xanthomonas campestris RpfB is a Fatty Acyl-CoA Ligase Required to Counteract the Thioesterase Activity of the RpfF Diffusible Signal Factor (DSF) Synthase

    PubMed Central

    Bi, Hongkai; Yu, Yonghong; Dong, Huijuan; Wang, Haihong; Cronan, John E.

    2014-01-01

    SUMMARY In Xanthomonas campestris pv. campestris (Xcc), the proteins encoded by the rpf (regulator of pathogenicity factor) gene cluster produce and sense a fatty acid signal molecule called diffusible signaling factor (DSF, 2(Z)-11-methyldodecenoic acid). RpfB was reported to be involved in DSF processing and was predicted to encode an acyl-CoA ligase. We report that RpfB activates a wide range of fatty acids to their CoA esters in vitro. Moreover, RpfB can functionally replace the paradigm bacterial acyl-CoA ligase, Escherichia coli FadD, in the E. coli β-oxidation pathway and deletion of RpfB from the Xcc genome results in a strain unable to utilize fatty acids as carbon sources. An essential RpfB function in the pathogenicity factor pathway was demonstrated by the properties of a strain deleted for both the rpfB and rpfC genes. The ΔrpfB ΔrpfC strain grew poorly and lysed upon entering stationary phase. Deletion of rpfF, the gene encoding the DSF synthetic enzyme, restored normal growth to this strain. RpfF is a dual function enzyme that synthesizes DSF by dehydration of a 3-hydroxyacyl-acyl carrier protein (ACP) fatty acid synthetic intermediate and also cleaves the thioester bond linking DSF to ACP. However, the RpfF thioesterase activity is of broad specificity and upon elimination of its RpfC inhibitor RpfF attains maximal activity and its thioesterase activity proceeds to block membrane lipid synthesis by cleavage of acyl-ACP intermediates. This resulted in release of the nascent acyl chains to the medium as free fatty acids. This lack of acyl chains for phospholipid synthesis results in cell lysis unless RpfB is present to counteract the RpfF thioesterase activity by catalyzing uptake and activation of the free fatty acids to give acyl-CoAs that can be utilized to restore membrane lipid synthesis. Heterologous expression of a different fatty acid activating enzyme, the Vibrio harveyi acyl-ACP synthetase, replaced RpfB in counteracting the effects of

  2. The Physiology of Protein S-acylation

    PubMed Central

    Chamberlain, Luke H.; Shipston, Michael J.

    2015-01-01

    Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field. PMID:25834228

  3. Alkylresorcinol synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone.

    PubMed

    Cook, Daniel; Rimando, Agnes M; Clemente, Thomas E; Schröder, Joachim; Dayan, Franck E; Nanayakkara, N P Dhammika; Pan, Zhiqiang; Noonan, Brice P; Fishbein, Mark; Abe, Ikuro; Duke, Stephen O; Baerson, Scott R

    2010-03-01

    Sorghum bicolor is considered to be an allelopathic crop species, producing phytotoxins such as the lipid benzoquinone sorgoleone, which likely accounts for many of the allelopathic properties of Sorghum spp. Current evidence suggests that sorgoleone biosynthesis occurs exclusively in root hair cells and involves the production of an alkylresorcinolic intermediate (5-[(Z,Z)-8',11',14'-pentadecatrienyl]resorcinol) derived from an unusual 16:3Delta(9,12,15) fatty acyl-CoA starter unit. This led to the suggestion of the involvement of one or more alkylresorcinol synthases (ARSs), type III polyketide synthases (PKSs) that produce 5-alkylresorcinols using medium to long-chain fatty acyl-CoA starter units via iterative condensations with malonyl-CoA. In an effort to characterize the enzymes responsible for the biosynthesis of the pentadecyl resorcinol intermediate, a previously described expressed sequence tag database prepared from isolated S. bicolor (genotype BTx623) root hairs was first mined for all PKS-like sequences. Quantitative real-time RT-PCR analyses revealed that three of these sequences were preferentially expressed in root hairs, two of which (designated ARS1 and ARS2) were found to encode ARS enzymes capable of accepting a variety of fatty acyl-CoA starter units in recombinant enzyme studies. Furthermore, RNA interference experiments directed against ARS1 and ARS2 resulted in the generation of multiple independent transformant events exhibiting dramatically reduced sorgoleone levels. Thus, both ARS1 and ARS2 are likely to participate in the biosynthesis of sorgoleone in planta. The sequences of ARS1 and ARS2 were also used to identify several rice (Oryza sativa) genes encoding ARSs, which are likely involved in the production of defense-related alkylresorcinols.

  4. Alkylresorcinol Synthases Expressed in Sorghum bicolor Root Hairs Play an Essential Role in the Biosynthesis of the Allelopathic Benzoquinone Sorgoleone[W][OA

    PubMed Central

    Cook, Daniel; Rimando, Agnes M.; Clemente, Thomas E.; Schröder, Joachim; Dayan, Franck E.; Nanayakkara, N.P. Dhammika; Pan, Zhiqiang; Noonan, Brice P.; Fishbein, Mark; Abe, Ikuro; Duke, Stephen O.; Baerson, Scott R.

    2010-01-01

    Sorghum bicolor is considered to be an allelopathic crop species, producing phytotoxins such as the lipid benzoquinone sorgoleone, which likely accounts for many of the allelopathic properties of Sorghum spp. Current evidence suggests that sorgoleone biosynthesis occurs exclusively in root hair cells and involves the production of an alkylresorcinolic intermediate (5-[(Z,Z)-8′,11′,14′-pentadecatrienyl]resorcinol) derived from an unusual 16:3Δ9,12,15 fatty acyl-CoA starter unit. This led to the suggestion of the involvement of one or more alkylresorcinol synthases (ARSs), type III polyketide synthases (PKSs) that produce 5-alkylresorcinols using medium to long-chain fatty acyl-CoA starter units via iterative condensations with malonyl-CoA. In an effort to characterize the enzymes responsible for the biosynthesis of the pentadecyl resorcinol intermediate, a previously described expressed sequence tag database prepared from isolated S. bicolor (genotype BTx623) root hairs was first mined for all PKS-like sequences. Quantitative real-time RT-PCR analyses revealed that three of these sequences were preferentially expressed in root hairs, two of which (designated ARS1 and ARS2) were found to encode ARS enzymes capable of accepting a variety of fatty acyl-CoA starter units in recombinant enzyme studies. Furthermore, RNA interference experiments directed against ARS1 and ARS2 resulted in the generation of multiple independent transformant events exhibiting dramatically reduced sorgoleone levels. Thus, both ARS1 and ARS2 are likely to participate in the biosynthesis of sorgoleone in planta. The sequences of ARS1 and ARS2 were also used to identify several rice (Oryza sativa) genes encoding ARSs, which are likely involved in the production of defense-related alkylresorcinols. PMID:20348430

  5. Characterization of two acyl-acyl carrier protein thioesterases from developing Cuphea seeds specific for medium-chain- and oleoyl-acyl carrier protein.

    PubMed

    Dörmann, P; Spener, F; Ohlrogge, J B

    1993-03-01

    Two acyl-acyl carrier protein (ACP) thioesterases were partially purified from developing seeds of Cuphea lanceolata Ait., a plant with decanoic acid-rich triacylglycerols. The two enzymes differ markedly in their substrate specificity. One is specific for medium-chain acyl-ACPs, the other one for oleoyl-ACP. In addition, these enzymes are distinct with regard to molecular weight, pH optimum and sensitivity to salt. The thioesterases could be separated by Mono Q chromatography or gel filtration. The medium-chain acyl-ACP thioesterase and oleoyl-ACP thioesterase were purified from a crude extract 29- and 180-fold, respectively. In Cuphea wrightii A. Gray, which predominantly contains decanoic a nd lauric acid in the seeds, two different thioesterases were also found with a similar substrate specificity as in Cuphea lanceolata.

  6. Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London

    NASA Astrophysics Data System (ADS)

    Ots, Riinu; Vieno, Massimo; Allan, James D.; Reis, Stefan; Nemitz, Eiko; Young, Dominique E.; Coe, Hugh; Di Marco, Chiara; Detournay, Anais; Mackenzie, Ian A.; Green, David C.; Heal, Mathew R.

    2016-11-01

    Cooking organic aerosol (COA) is currently not included in European emission inventories. However, recent positive matrix factorization (PMF) analyses of aerosol mass spectrometer (AMS) measurements have suggested important contributions of COA in several European cities. In this study, emissions of COA were estimated for the UK, based on hourly AMS measurements of COA made at two sites in London (a kerbside site in central London and an urban background site in a residential area close to central London) for the full calendar year of 2012 during the Clean Air for London (ClearfLo) campaign. Iteration of COA emissions estimates and subsequent evaluation and sensitivity experiments were conducted with the EMEP4UK atmospheric chemistry transport modelling system with a horizontal resolution of 5 km × 5 km. The spatial distribution of these emissions was based on workday population density derived from the 2011 census data. The estimated UK annual COA emission was 7.4 Gg per year, which is an almost 10 % addition to the officially reported UK national total anthropogenic emissions of PM2.5 (82 Gg in 2012), corresponding to 320 mg person-1 day-1 on average. Weekday and weekend diurnal variation in COA emissions were also based on the AMS measurements. Modelled concentrations of COA were then independently evaluated against AMS-derived COA measurements from another city and time period (Manchester, January-February 2007), as well as with COA estimated by a chemical mass balance model of measurements for a 2-week period at the Harwell rural site (˜ 80 km west of central London). The modelled annual average contribution of COA to ambient particulate matter (PM) in central London was between 1 and 2 µg m-3 (˜ 20 % of total measured OA1) and between 0.5 and 0.7 µg m-3 in other major cities in England (Manchester, Birmingham, Leeds). It was also shown that cities smaller than London can have a central hotspot of population density of smaller

  7. 7 CFR 58.330 - Butter starter cultures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Butter starter cultures. 58.330 Section 58.330 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.330 Butter starter cultures. Harmless bacterial cultures when used in the development of...

  8. The level of circulating octanoate does not predict ghrelin O-acyl transferase (GOAT)-mediated acylation of ghrelin during fasting.

    PubMed

    Nass, Ralf; Nikolayev, Alexander; Liu, Jianhua; Pezzoli, Suzan S; Farhy, Leon S; Patrie, James; Gaylinn, Bruce D; Heiman, Mark; Thorner, Michael O

    2015-01-01

    Acyl-ghrelin is a 28-amino acid peptide released from the stomach. Ghrelin O-acyl transferase (GOAT) attaches an 8-carbon medium-chain fatty acid (MCFA) (octanoate) to serine 3 of ghrelin. This acylation is necessary for the activity of ghrelin. Animal data suggest that MCFAs provide substrate for GOAT and an increase in nutritional octanoate increases acyl-ghrelin. To address the question of the source of substrate for acylation, we studied whether the decline in ghrelin acylation during fasting is associated with a decline in circulating MCFAs. Eight healthy young men (aged 18-28 years, body mass index range, 20.6-26.2 kg/m(2)) had blood drawn every 10 minutes for acyl- and desacyl-ghrelin and every hour for free fatty acids (FFAs) during the last 24 hours of a 61.5-hour fast and during a fed day. FFAs were measured by a highly sensitive liquid chromatography-mass spectroscopy method. Acyl- and desacyl-ghrelin were measured in an in-house assay; the results were published previously. Ghrelin acylation was assessed by the ratio of acyl-ghrelin to total ghrelin. With the exception of MCFAs C8 and C10, all other FFAs, the MCFAs (C6 and C12), and the long-chain fatty acids (C14-C18) significantly increased with fasting (P < .05). There was no significant association between the fold change in ghrelin acylation and circulating FFAs. These results suggest that changes in circulating MCFAs are not linked to the decline in ghrelin acylation during fasting and support the hypothesis that acylation of ghrelin depends at least partially on the availability of gastroluminal MCFAs or the regulation of GOAT activity.

  9. The Antibiotic CJ-15,801 is an Antimetabolite which Hijacks and then Inhibits CoA Biosynthesis

    PubMed Central

    van der Westhuyzen, Renier; Hammons, Justin C.; Meier, Jordan L.; Dahesh, Samira; Moolman, Wessel J. A.; Pelly, Stephen C.; Nizet, Victor; Burkart, Michael D.; Strauss, Erick

    2012-01-01

    SUMMARY The natural product CJ-15,801 is an inhibitor of Staphylococcus aureus, but not other bacteria. Its close structural resemblance to pantothenic acid, the vitamin precursor of coenzyme A (CoA), and its Michael acceptor moiety suggest that it irreversibly inhibits an enzyme involved in CoA biosynthesis or utilization. However, its mode of action and the basis for its specificity have not been elucidated to date. We demonstrate that CJ-15,801 is transformed by the uniquely selective S. aureus pantothenate kinase, the first CoA biosynthetic enzyme, into a substrate for the next enzyme, phosphopantothenoylcysteine synthetase, which is inhibited through formation of a tight-binding structural mimic of its native reaction intermediate. These findings reveal CJ-15,801 as a vitamin biosynthetic pathway antimetabolite with a mechanism similar to that of the sulfonamide antibiotics, and highlight CoA biosynthesis as a viable antimicrobial drug target. PMID:22633408

  10. Silent Starters

    ERIC Educational Resources Information Center

    Morris, Emma

    2011-01-01

    The "silent starter" is an idea that the author was reminded of during Christopher Martin's session at the ATM conference in 2011, entitled "Big Ideas". This was a nice idea for introducing, or practising mappings, but it was not the first time the author had encountered this powerful teaching tool. The idea is best explained…

  11. 30 CFR 75.819 - Motor-starter enclosures; barriers and interlocks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Motor-starter enclosures; barriers and...-Voltage Distribution High-Voltage Longwalls § 75.819 Motor-starter enclosures; barriers and interlocks. Compartment separation and cover interlock switches for motor-starter enclosures must be maintained in...

  12. Crankshaft position sensing with combined starter alternator

    DOEpatents

    Brandenburg, Larry Raymond; Miller, John Michael

    2000-06-13

    A crankshaft position sensing apparatus for use with an engine (16) having a combined starter/alternator assembly (18). The crankshaft position sensing apparatus includes a tone ring (38) with a sensor (36) and bandpass filter (46), having a cylinder identification input from a camshaft sensor (48), and a gain limiter (54). The sensing apparatus mounts near the rotor (30) of the combined starter/alternator assembly (18). The filtered crankshaft position signal can then be input into a vehicle system controller (58) and an inner loop controller (60). The starter/alternator assembly (18) in combination with an internal combustion engine is particularly useful for a hybrid electric vehicle system.

  13. The R117A variant of the Escherichia coli transacylase FabD synthesizes novel acyl-(acyl carrier proteins).

    PubMed

    Marcella, Aaron M; Barb, Adam W

    2017-12-01

    The commercial impact of fermentation systems producing novel and biorenewable chemicals will flourish with the expansion of enzymes engineered to synthesize new molecules. Though a small degree of natural variability exists in fatty acid biosynthesis, the molecular space accessible through enzyme engineering is fundamentally limitless. Prokaryotic fatty acid biosynthesis enzymes build carbon chains on a functionalized acyl carrier protein (ACP) that provides solubility, stability, and a scaffold for interactions with the synthetic enzymes. Here, we identify the malonyl-coenzyme A (CoA)/holo-ACP transacylase (FabD) from Escherichia coli as a platform enzyme for engineering to diversify microbial fatty acid biosynthesis. The FabD R117A variant produced novel ACP-based primer and extender units for fatty acid biosynthesis. Unlike the wild-type enzyme that is highly specific for malonyl-CoA to produce malonyl-ACP, the R117A variant synthesized acetyl-ACP, succinyl-ACP, isobutyryl-ACP, 2-butenoyl-ACP, and β-hydroxybutyryl-ACP among others from holo-ACP and the corresponding acyl-CoAs with specific activities from 3.7 to 120 nmol min -1  mg -1 . FabD R117A maintained K M values for holo-ACP (~ 40 μM) and displayed small changes in K M for acetoacetyl-CoA (110 ± 30 μM) and acetyl-CoA (200 ± 70 μM) when compared to malonyl-CoA (80 ± 30 μM). FabD R117A represents a novel catalyst that synthesizes a broad range of acyl-acyl-ACPs.

  14. 7 CFR 58.330 - Butter starter cultures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Butter starter cultures. 58.330 Section 58.330... Material § 58.330 Butter starter cultures. Harmless bacterial cultures when used in the development of flavor components in butter and related products shall have a pleasing and desirable flavor and shall...

  15. 7 CFR 58.330 - Butter starter cultures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Butter starter cultures. 58.330 Section 58.330... Material § 58.330 Butter starter cultures. Harmless bacterial cultures when used in the development of flavor components in butter and related products shall have a pleasing and desirable flavor and shall...

  16. 7 CFR 58.330 - Butter starter cultures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Butter starter cultures. 58.330 Section 58.330... Material § 58.330 Butter starter cultures. Harmless bacterial cultures when used in the development of flavor components in butter and related products shall have a pleasing and desirable flavor and shall...

  17. 7 CFR 58.330 - Butter starter cultures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Butter starter cultures. 58.330 Section 58.330... Material § 58.330 Butter starter cultures. Harmless bacterial cultures when used in the development of flavor components in butter and related products shall have a pleasing and desirable flavor and shall...

  18. A Class of Reactive Acyl-CoA Species Reveals the Non-Enzymatic Origins of Protein Acylation

    PubMed Central

    Wagner, Gregory R.; Bhatt, Dhaval P.; O’Connell, Thomas M.; Thompson, J. Will; Dubois, Laura G.; Backos, Donald S.; Yang, Hao; Mitchell, Grant A.; Ilkayeva, Olga R.; Stevens, Robert D.; Grimsrud, Paul A.; Hirschey, Matthew D.

    2017-01-01

    SUMMARY The mechanisms underlying the formation of acyl protein modifications remain poorly understood. By investigating the reactivity of endogenous acyl-CoA metabolites, we found a class of acyl-CoAs that undergoes intramolecular catalysis to form reactive intermediates which non-enzymatically modify proteins. Based on this mechanism, we predicted, validated, and characterized a protein modification: 3-hydroxy-3-methylglutaryl(HMG)-lysine. In a model of altered HMG-CoA metabolism, we found evidence of two additional protein modifications: 3-methylglutaconyl(MGc)-lysine and 3-methylglutaryl(MG)-lysine. Using quantitative proteomics, we compared the ‘acylomes’ of two reactive acyl-CoA species, namely HMG-CoA and glutaryl-CoA, which are generated in different pathways. We found proteins that are uniquely modified by each reactive metabolite, as well as common proteins and pathways. We identified the tricarboxylic acid cycle as a pathway commonly regulated by acylation, and validated malate dehydrogenase as a key target. These data uncover a fundamental relationship between reactive acyl-CoA species and proteins, and define a new regulatory paradigm in metabolism. PMID:28380375

  19. Gas Phase Dissociation Behavior of Acyl-Arginine Peptides.

    PubMed

    McGee, William M; McLuckey, Scott A

    2013-11-15

    The gas phase dissociation behavior of peptides containing acyl-arginine residues is investigated. These acylations are generated via a combination of ion/ion reactions between arginine-containing peptides and N -hydroxysuccinimide (NHS) esters and subsequent tandem mass spectrometry (MS/MS). Three main dissociation pathways of acylated arginine, labeled Paths 1-3, have been identified and are dependent on the acyl groups. Path 1 involves the acyl-arginine undergoing deguanidination, resulting in the loss of the acyl group and dissociation of the guanidine to generate an ornithine residue. This pathway generates selective cleavage sites based on the recently discussed "ornithine effect". Path 2 involves the coordinated losses of H 2 O and NH 3 from the acyl-arginine side chain while maintaining the acylation. We propose that Path 2 is initiated via cyclization of the δ-nitrogen of arginine and the C-terminal carbonyl carbon, resulting in rapid rearrangement from the acyl-arginine side chain and the neutral losses. Path 3 occurs when the acyl group contains α-hydrogens and is observed as a rearrangement to regenerate unmodified arginine while the acylation is lost as a ketene.

  20. The antibiotic CJ-15,801 is an antimetabolite that hijacks and then inhibits CoA biosynthesis.

    PubMed

    van der Westhuyzen, Renier; Hammons, Justin C; Meier, Jordan L; Dahesh, Samira; Moolman, Wessel J A; Pelly, Stephen C; Nizet, Victor; Burkart, Michael D; Strauss, Erick

    2012-05-25

    The natural product CJ-15,801 is an inhibitor of Staphylococcus aureus, but not other bacteria. Its close structural resemblance to pantothenic acid, the vitamin precursor of coenzyme A (CoA), and its Michael acceptor moiety suggest that it irreversibly inhibits an enzyme involved in CoA biosynthesis or utilization. However, its mode of action and the basis for its specificity have not been elucidated to date. We demonstrate that CJ-15,801 is transformed by the uniquely selective S. aureus pantothenate kinase, the first CoA biosynthetic enzyme, into a substrate for the next enzyme, phosphopantothenoylcysteine synthetase, which is inhibited through formation of a tight-binding structural mimic of its native reaction intermediate. These findings reveal CJ-15,801 as a vitamin biosynthetic pathway antimetabolite with a mechanism similar to that of the sulfonamide antibiotics and highlight CoA biosynthesis as a viable antimicrobial drug target. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Inhibition of Listeria monocytogenes by piscicolin 126 in milk and Camembert cheese manufactured with a thermophilic starter.

    PubMed

    Wan, J; Harmark, K; Davidson, B E; Hillier, A J; Gordon, J B; Wilcock, A; Hickey, M W; Coventry, M J

    1997-03-01

    The effect of bacteriocin, piscicolin 126, on the growth of Listeria monocytogenes and cheese starter bacteria was investigated in milk and in Camembert cheese manufactured from milk challenged with 10(2) cfu ml(-1) L. monocytogenes. In milk incubated at 30 degrees C, piscicolin 126 added in the range of 512-2,048 AU ml(-1) effectively inhibited growth of L. monocytogenes for more than 20 d when challenged with approximately 10(2) cfu ml(-1) L. monocytogenes. At higher challenge levels (10(4) and 10(6) cfu ml(-1)), piscicolin 126 reduced the viable count of L. monocytogenes by 4-5 log units immediately after addition of the bacteriocin; however, growth of Listeria occurred within 24 h. The minimum inhibitory concentration (MIC) of piscicolin 126 against lactic acid cheese starter bacteria was generally greater than 204,800 AU ml(-1) , and the viable count and acid production of these starter cultures in milk were not affected by the addition of 2,048 AU ml(-1) piscicolin 126. Camembert cheeses made from milk challenged with L. monocytogenes and with added piscicolin 126 showed a viable count of L. monocytogenes 3-4 log units lower than those without piscicolin 126. Inactivation of piscicolin 126 by proteolytic enzymes from cheese starter bacteria and mould together with the emergence of piscicolin 126-resistant isolates was responsible for the recovery of L. monocytogenes in the cheeses during ripening.

  2. Acyl silicates and acyl aluminates as activated intermediates in peptide formation on clays

    NASA Technical Reports Server (NTRS)

    White, D. H.; Kennedy, R. M.; Macklin, J.

    1984-01-01

    Glycine reacts with heating on dried clays and other minerals to give peptides in much better yield than in the absence of mineral. This reaction was proposed to occur by way of an activated intermediate such as an acyl silicate or acyl aluminate analogous to acyl phosphates involved in several biochemical reactions including peptide bond synthesis. The proposed mechanism has been confirmed by trapping the intermediate, as well as by direct spectroscopic observation of a related intermediate. The reaction of amino acids on periodically dried mineral surfaces represents a widespead, geologically realistic setting for prebiotic peptide formation via in situ activation.

  3. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wubben, T.; Mesecar, A.D.; UIC)

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observedmore » in the MtPPAT-CoA complex.« less

  4. Structural and functional characterization of a new recombinant histidine-tagged acyl coenzyme A binding protein (ACBP) from mouse

    PubMed Central

    Petrescu, Anca D.; Huang, Huan; Hostetler, Heather A.; Schroeder, Friedhelm; Kier, Ann B.

    2008-01-01

    Acyl-coenzyme A binding protein (ACBP) has been proposed to transport fatty acyl-CoAs intracellularly, facilitating their metabolism. In this study, a new mouse recombinant ACBP was produced by insertion of a histidine (his) tag at the C-terminus to allow efficient purification by Ni-affinity chromatography. The his-tag was inserted at the C-terminus since ACBP is a small molecular size (10 kDa) protein whose structure and activity are sensitive to amino acid substitutions in the N-terminus. The his tag had no or little effect on ACBP structure or ligand binding affinity and specificity. His-ACBP bound the naturally-occurring fluorescent cis-parinaroyl-CoA with very high affinity (Kd=2.15 nM), but exhibited no affinity for non-esterified cis-parinaric acid. To determine if the presence of the C-terminal his tag altered ACBP interactions with other proteins, direct binding to hepatocyte nuclear factor 4α (HNF-4α), a nuclear receptor regulating transcription of genes involved in lipid metabolism, was examined. His-ACBP and HNF-4α were labeled with Cy5 and Cy3, respectively, and direct interaction was determined by a novel fluorescence resonance energy transfer (FRET) binding assay. FRET analysis showed that his-ACBP directly interacted with HNF-4α (intermolecular distance of 73 Å) at high affinity (Kd=64-111 nM) similar to native ACBP. The his-tag also had no effect on ACBPs ability to interact with and stimulate microsomal enzymes utilizing or forming fatty acyl CoA. Thus, C-terminal his-tagged-ACBP maintained very similar structural and functional features of the untagged native protein and can be used in further in vitro experiments that require pure recombinant ACBP. PMID:18178100

  5. Mechanism of MenE Inhibition by Acyl-Adenylate Analogues and Discovery of Novel Antibacterial Agents

    PubMed Central

    Sharma, Indrajeet; Lavaud, Lubens J.; Ngo, Stephen C.; Shek, Roger; Rajashankar, Kanagalaghatta R.; French, Jarrod B.; Tan, Derek S.; Tonge, Peter J.

    2015-01-01

    MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1) which has an IC50 value of ≤ 25 nM for the Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in S. aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ~1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure–activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto-acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively-charged keto-acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future. PMID:26394156

  6. Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents.

    PubMed

    Matarlo, Joe S; Evans, Christopher E; Sharma, Indrajeet; Lavaud, Lubens J; Ngo, Stephen C; Shek, Roger; Rajashankar, Kanagalaghatta R; French, Jarrod B; Tan, Derek S; Tonge, Peter J

    2015-10-27

    MenE is an o-succinylbenzoyl-CoA (OSB-CoA) synthetase in the bacterial menaquinone biosynthesis pathway and is a promising target for the development of novel antibacterial agents. The enzyme catalyzes CoA ligation via an acyl-adenylate intermediate, and we have previously reported tight-binding inhibitors of MenE based on stable acyl-sulfonyladenosine analogues of this intermediate, including OSB-AMS (1), which has an IC50 value of ≤25 nM for Escherichia coli MenE. Herein, we show that OSB-AMS reduces menaquinone levels in Staphylococcus aureus, consistent with its proposed mechanism of action, despite the observation that the antibacterial activity of OSB-AMS is ∼1000-fold lower than the IC50 for enzyme inhibition. To inform the synthesis of MenE inhibitors with improved antibacterial activity, we have undertaken a structure-activity relationship (SAR) study stimulated by the knowledge that OSB-AMS can adopt two isomeric forms in which the OSB side chain exists either as an open-chain keto acid or a cyclic lactol. These studies revealed that negatively charged analogues of the keto acid form bind, while neutral analogues do not, consistent with the hypothesis that the negatively charged keto acid form of OSB-AMS is the active isomer. X-ray crystallography and site-directed mutagenesis confirm the importance of a conserved arginine for binding the OSB carboxylate. Although most lactol isomers tested were inactive, a novel difluoroindanediol inhibitor (11) with improved antibacterial activity was discovered, providing a pathway toward the development of optimized MenE inhibitors in the future.

  7. Characterization and functional assay of a fatty acyl-CoA reductase gene in the scale insect, Ericerus pela Chavannes (Hemiptera: Coccoidae).

    PubMed

    Hu, Yan-Hong; Chen, Xiao-Ming; Yang, Pu; Ding, Wei-Feng

    2018-04-01

    Ericerus pela Chavannes (Hemiptera: Coccoidae) is an economically important scale insect because the second instar males secrete a harvestable wax-like substance. In this study, we report the molecular cloning of a fatty acyl-CoA reductase gene (EpFAR) of E. pela. We predicted a 520-aa protein with the FAR family features from the deduced amino acid sequence. The EpFAR mRNA was expressed in five tested tissues, testis, alimentary canal, fat body, Malpighian tubules, and mostly in cuticle. The EpFAR protein was localized by immunofluorescence only in the wax glands and testis. EpFAR expression in High Five insect cells documented the recombinant EpFAR reduced 26-0:(S) CoA and to its corresponding alcohol. The data illuminate the molecular mechanism for fatty alcohol biosynthesis in a beneficial insect, E. pela. © 2017 Wiley Periodicals, Inc.

  8. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  9. Acyl-Lipid Metabolism

    PubMed Central

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2010-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:22303259

  10. Mutations in COA3 cause isolated complex IV deficiency associated with neuropathy, exercise intolerance, obesity, and short stature.

    PubMed

    Ostergaard, Elsebet; Weraarpachai, Woranontee; Ravn, Kirstine; Born, Alfred Peter; Jønson, Lars; Duno, Morten; Wibrand, Flemming; Shoubridge, Eric A; Vissing, John

    2015-03-01

    We investigated a subject with an isolated cytochrome c oxidase (COX) deficiency presenting with an unusual phenotype characterised by neuropathy, exercise intolerance, obesity, and short stature. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis showed an almost complete lack of COX assembly in subject fibroblasts, consistent with the very low enzymatic activity, and pulse-labelling mitochondrial translation experiments showed a specific decrease in synthesis of the COX1 subunit, the core catalytic subunit that nucleates assembly of the holoenzyme. Whole exome sequencing identified compound heterozygous mutations (c.199dupC, c.215A>G) in COA3, a small inner membrane COX assembly factor, resulting in a pronounced decrease in the steady-state levels of COA3 protein. Retroviral expression of a wild-type COA3 cDNA completely rescued the COX assembly and mitochondrial translation defects, confirming the pathogenicity of the mutations, and resulted in increased steady-state levels of COX1 in control cells, demonstrating a role for COA3 in the stabilisation of this subunit. COA3 exists in an early COX assembly complex that contains COX1 and other COX assembly factors including COX14 (C12orf62), another single pass transmembrane protein that also plays a role in coupling COX1 synthesis with holoenzyme assembly. Immunoblot analysis showed that COX14 was undetectable in COA3 subject fibroblasts, and that COA3 was undetectable in fibroblasts from a COX14 subject, demonstrating the interdependence of these two COX assembly factors. The mild clinical course in this patient contrasts with nearly all other cases of severe COX assembly defects that are usually fatal early in life, and underscores the marked tissue-specific involvement in mitochondrial diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Friedel-Crafts Acylation with Amides

    PubMed Central

    Raja, Erum K.; DeSchepper, Daniel J.; Nilsson Lill, Sten O.; Klumpp, Douglas A.

    2012-01-01

    Friedel-Crafts acylation has been known since the 1870s and it is an important organic synthetic reaction leading to aromatic ketone products. Friedel-Crafts acylation is usually done with carboxylic acid chlorides or anhydrides while amides are generally not useful substrates in these reactions. Despite being the least reactive carboxylic acid derivative, we have found a series of amides capable of providing aromatic ketones in good yields (55–96%, 17 examples). We propose a mechanism involving diminished C-N resonance through superelectrophilic activation and subsequent cleavage to acyl cations. PMID:22690740

  12. Identification of N-Acyl Phosphatidylserine Molecules in Eukaryotic Cells

    PubMed Central

    Guan, Ziqiang; Li, Shengrong; Smith, Dale C.; Shaw, Walter A.; Raetz, Christian R. H.

    2008-01-01

    While profiling the lipidome of the mouse brain by mass spectrometry, we discovered a novel family of N-acyl phosphatidylserine (N-acyl-PS) molecules. These N-acyl-PS species were enriched by DEAE-cellulose column chromatography, and they were then characterized by accurate mass measurements, tandem mass spectrometry, liquid chromatography/mass spectrometry, and comparison to an authentic standard. Mouse brain N-acyl-PS molecules are heterogeneous and constitute about 0.1 % of the total lipid. In addition to various ester-linked fatty acyl chains on their glycerol backbones, the complexity of the N-acyl-PS series is further increased by the presence of diverse amide-linked N-acyl chains, which include saturated, mono-unsaturated and poly-unsaturated species. N-acyl-PS molecular species were also detected in the lipids of pig brain, mouse RAW264.7 macrophage tumor cells and yeast, but not E. coli. N-acyl-PSs may be biosynthetic precursors of N-acyl serine molecules, such as the recently reported signaling lipid N-arachidonoyl serine from bovine brain. We suggest that a phospholipase D might cleave N-acyl-PS to generate N-acyl serine, in analogy to the biosynthesis of the endocannabinoid N-arachidonoyl ethanolamine (anadamide) from N-arachidonoyl phosphatidylethanolamine. PMID:18031065

  13. The COA360: a tool for assessing the cultural competency of healthcare organizations.

    PubMed

    LaVeist, Thomas A; Relosa, Rachel; Sawaya, Nadia

    2008-01-01

    The U.S. Census Bureau projects that by 2050, non-Hispanic whites will be in the numerical minority. This rapid diversification requires healthcare organizations to pay closer attention to cross-cultural issues if they are to meet the healthcare needs of the nation and continue to maintain a high standard of care. Although scorecards and benchmarking are widely used to gauge healthcare organizations' performance in various areas, these tools have been underused in relation to cultural preparedness or initiatives. The likely reason for this is the lack of a validated tool specifically designed to examine cultural competency. Existing validated cultural competency instruments evaluate individuals, not organizations. In this article, we discuss a study to validate the Cultural Competency Organizational Assessment--360 or the COA360, an instrument designed to appraise a healthcare organization's cultural competence. The Office of Minority Health and the Joint Commission have each developed standards for measuring the cultural competency of organizations. The COA360 is designed to assess adherence to both of these sets of standards. For this validation study, we enlisted a panel of national experts. The panel rated each dimension of the COA360, and the combination of items for each of the scale's 14 dimensions was rated above 4.13 (on 5-point scale). Our conclusion points to the validity of the COA360. As such, it is a valuable tool not only for assessing a healthcare organization's cultural readiness but also for benchmarking its progress in addressing cultural and diversity issues.

  14. Physiological and anthropometric characteristics of starters and non-starters and playing positions in elite Australian Rules Football: a case study.

    PubMed

    Young, W B; Newton, R U; Doyle, T L A; Chapman, D; Cormack, S; Stewart, G; Dawson, B

    2005-09-01

    A purpose of this study was to determine if pre-season anthropometric and physiological measures were significantly different for the players from one Australian Football League (AFL) club selected to play in the first game of the season compared to the players not selected. Another purpose was to compare fitness test results for defenders, forwards and mid-fielders in the same AFL club. Thirty-four players were tested for isolated quadriceps and hamstrings strength, leg extensor muscle strength and power, upper body strength, sprinting speed, vertical jump (VJ), endurance, skinfolds and hamstring flexibility. The starters who were selected to play the first game were a significantly older and more experienced playing group, and were significantly better (p < 0.05) in measures of leg power, sprinting speed and the distance covered in the Yo Yo intermittent recovery test compared to the non-starters. Although there were trends for the superiority of the starters, the differences in lower and upper body strength, VJ and predicted VO2max were non-significant. The forwards generally produced the worst fitness scores of the playing positions with the midfielders having significantly lower skinfolds and the defenders possessing better hamstring strength and VJ compared to the forwards. It was concluded that some fitness qualities can differentiate between starters and non-starters, at least in one AFL club. Comparisons of playing positions and the development of fitness norms for AFL players require further research.

  15. Evolution of multicomponent pheromone signals in small ermine moths involves a single fatty-acyl reductase gene

    PubMed Central

    Liénard, Marjorie A.; Hagström, Åsa K.; Lassance, Jean-Marc; Löfstedt, Christer

    2010-01-01

    Fatty-acyl CoA reductases (FAR) convert fatty acids into fatty alcohols in pro- and eukaryotic organisms. In the Lepidoptera, members of the FAR gene family serve in the biosynthesis of sex pheromones involved in mate communication. We used a group of closely related species, the small ermine moths (Lepidoptera: Yponomeutidae) as a model to investigate the role of FARs in the biosynthesis of complex pheromone blends. Homology-based molecular cloning in three Yponomeuta species led to the identification of multiple putative FAR transcripts homologous to FAR genes from the Bombyx mori genome. The expression of one transcript was restricted to the female pheromone-gland tissue, suggesting a role in pheromone biosynthesis, and the encoded protein belonged to a recently identified Lepidoptera-specific pgFAR gene subfamily. The Yponomeuta evonymellus pgFAR mRNA was up-regulated in sexually mature females and exhibited a 24-h cyclic fluctuation pattern peaking in the pheromone production period. Heterologous expression confirmed that the Yponomeuta pgFAR orthologs in all three species investigated [Y. evonymellus (L.), Yponomeuta padellus (L.), and Yponomeuta rorellus (Hübner)] encode a functional FAR with a broad substrate range that efficiently promoted accumulation of primary alcohols in recombinant yeast supplied with a series of biologically relevant C14- or C16-acyl precursors. Taken together, our data evidence that a single alcohol-producing pgFAR played a critical function in the production of the multicomponent pheromones of yponomeutids and support the hypothesis of moth pheromone-biosynthetic FARs belonging to a FAR gene subfamily unique to Lepidoptera. PMID:20534481

  16. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site.

    PubMed

    Sayer, Christopher; Finnigan, William; Isupov, Michail N; Levisson, Mark; Kengen, Servé W M; van der Oost, John; Harmer, Nicholas J; Littlechild, Jennifer A

    2016-05-10

    A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions.

  17. Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site

    PubMed Central

    Sayer, Christopher; Finnigan, William; Isupov, Michail N.; Levisson, Mark; Kengen, Servé W. M.; van der Oost, John; Harmer, Nicholas J.; Littlechild, Jennifer A.

    2016-01-01

    A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions. PMID:27160974

  18. Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase.

    PubMed

    Jing, Fuyuan; Zhao, Le; Yandeau-Nelson, Marna D; Nikolau, Basil J

    2018-02-28

    The substrate specificity of acyl-ACP thioesterase (TE) plays an essential role in controlling the fatty acid profile produced by type II fatty acid synthases. Here we identify two groups of residues that synergistically determine different substrate specificities of two acyl-ACP TEs from Cuphea viscosissima (CvFatB1 and CvFatB2). One group (V194, V217, N223, R226, R227, and I268 in CvFatB2) is critical in determining the structure and depth of a hydrophobic cavity in the N-terminal hotdog domain that binds the substrate's acyl moiety. The other group (255-RKLSKI-260 and 285-RKLPKL-289 in CvFatB2) defines positively charged surface patches that may facilitate binding of the ACP moiety. Mutagenesis of residues within these two groups results in distinct synthetic acyl-ACP TEs that efficiently hydrolyze substrates with even shorter chains (C4- to C8-ACPs). These insights into structural determinants of acyl-ACP TE substrate specificity are useful in modifying this enzyme for tailored fatty acid production in engineered organisms.

  19. Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles

    PubMed Central

    Scott, Alison J.; Ford, Lauren A.; Pei, Zhengtong; Watkins, Paul A.; Ernst, Robert K.; Belov, George A.

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be

  20. Effect of acyl donor chain length and substitutions pattern on the enzymatic acylation of flavonoids.

    PubMed

    Ardhaoui, M; Falcimaigne, A; Ognier, S; Engasser, J M; Moussou, P; Pauly, G; Ghoul, M

    2004-06-10

    Rutin and esculin were enzymatically acylated with different aliphatic acids as acyl donors (fatty acids, dicarboxylic acids and omega-substituted fatty acids) by an immobilized lipase from Candida antarctica. The effect of the water content and the acyl donors pattern on the flavonoid initial acylation rate and conversion yield were investigated. The obtained results indicated that the water content of the medium has a strong effect on the performance of these reactions. The best conversion yields were reached when the water content was kept lower than 200 ppm. At low water content of the medium, these syntheses are influenced by carbon chain length and substitution pattern of the acyl donors. Higher conversion yields of esculin and rutin (>70%) were obtained with aliphatic acids having high carbon chain length (>12). Moreover, it has been found that the amine and thiol groups on omega-substituted fatty acid chain were unfavourable to these reactions. The 1H NMR and 13C NMR analyses of some synthesized esters (esculin and rutin palmitate) show that only monoesters were produced and that the esterification takes place on the primary OH of glucose moiety of the esculin and on the secondary 4"'-OH of the rhamnose residue of rutin. Copyright 2004 Elsevier B.V.

  1. Production of wheat bread without preservatives using sourdough starters

    PubMed Central

    Denkova, Rositsa; Ilieva, Svetla; Denkova, Zapryana; Georgieva, Ljubka; Yordanova, Mariya; Nikolova, Dilyana; Evstatieva, Yana

    2014-01-01

    In order for the beneficial effects of sourdough application in breadmaking to take place a proper selection of lactic acid bacteria species and strains, an appropriate technology and effective control of the purity and activity of the selected cultures. Four symbiotic starters for sourdough for the production of bread were developed and probated in a production laboratory using the selected strains Lactobacillus brevis LBRZ7, L. buchneri LBRZ6, L. plantarum X2, L. paracasei RN5, L. sanfranciscensis R and L. fermentum LBRH10 and the probiotic strain Propionibacterium freudenreichii ssp. shermanii NBIMCC 327. The starter sourdoughs that include Propionibacterium freudenreichii ssp. shermanii NBIMCC 327 had greater antimicrobial activity against saprophytic microorganisms: Bacillus subtilis, B. mesentericus, Aspergillus niger, Penicillium sp. and Rhizopus sp., but none of them inhibited the growth of bakery yeasts Saccharomyces cerevisiae. It was established that in order to prevent bacterial spoilage 10% of the selected starter sourdoughs had to be added in the breadmaking process, while for prevention of mold spoilage the necessary amount of starter sourdough had to be between 15% and 20%.The application of the developed starters for the production of wheat bread guarantees longer shelf life and no adverse alterations in the features of the final bread. PMID:26019574

  2. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase*

    PubMed Central

    Yao, Jiangwei; Dodson, V. Joshua; Frank, Matthew W.; Rock, Charles O.

    2015-01-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  3. Versatility of acyl-acyl carrier protein synthetases

    DOE PAGES

    Beld, Joris; Finzel, Kara; Burkart, Michael D.

    2014-10-09

    The acyl carrier protein (ACP) requires posttranslational modification with a 4'-phosphopantetheine arm for activity, and this thiol-terminated modification carries cargo between enzymes in ACP-dependent metabolic pathways. In this paper, we show that acyl-ACP synthetases (AasSs) from different organisms are able to load even, odd, and unnatural fatty acids onto E. coli ACP in vitro. Vibrio harveyi AasS not only shows promiscuity for the acid substrate, but also is active upon various alternate carrier proteins. AasS activity also extends to functional activation in living organisms. We show that exogenously supplied carboxylic acids are loaded onto ACP and extended by the E.more » coli fatty acid synthase, including unnatural fatty acid analogs. These analogs are further integrated into cellular lipids. Finally, in vitro characterization of four different adenylate-forming enzymes allowed us to disambiguate CoA-ligases and AasSs, and further in vivo studies show the potential for functional application in other organisms.« less

  4. CoCoa: a software tool for estimating the coefficient of coancestry from multilocus genotype data.

    PubMed

    Maenhout, Steven; De Baets, Bernard; Haesaert, Geert

    2009-10-15

    Phenotypic data collected in breeding programs and marker-trait association studies are often analyzed by means of linear mixed models. In these models, the covariance between the genetic background effects of all genotypes under study is modeled by means of pairwise coefficients of coancestry. Several marker-based coancestry estimation procedures allow to estimate this covariance matrix, but generally introduce a certain amount of bias when the examined genotypes are part of a breeding program. CoCoa implements the most commonly used marker-based coancestry estimation procedures and as such, allows to select the best fitting covariance structure for the phenotypic data at hand. This better model fit translates into an increased power and improved type I error control in association studies and an improved accuracy in phenotypic prediction studies. The presented software package also provides an implementation of the new Weighted Alikeness in State (WAIS) estimator for use in hybrid breeding programs. Besides several matrix manipulation tools, CoCoa implements two different bending heuristics, in case the inverse of an ill-conditioned coancestry matrix estimate is needed. The software package CoCoa is freely available at http://webs.hogent.be/cocoa. Source code, manual, binaries for 32 and 64-bit Linux systems and an installer for Microsoft Windows are provided. The core components of CoCoa are written in C++, while the graphical user interface is written in Java.

  5. Differences in personality and patterns of recidivism between early starters and other serious male offenders.

    PubMed

    Ge, Xiaojia; Donnellan, M Brent; Wenk, Ernst

    2003-01-01

    In this study, the differences in personality and patterns of recidivism were compared between individuals with an early incidence of offending ("early starters") and their later-starting counterparts ("later starters"). Results indicated that early starters were significantly different from later starters in several personality characteristics, as measured by the California Personality Inventory (CPI) and the Minnesota Multiphasic Personality Inventory (MMPI). Specifically, early starters scored lower on the responsibility and socialization scales of the CPI and higher on the paranoia, schizophrenia, and hypomania scales of the MMPI. Moreover, results indicated that early starters were at a significantly higher risk for recidivism than later starters, both at a 15-month and a 20-year follow-up.

  6. Anti-Listeria starters: in vitro selection and production plant evaluation.

    PubMed

    Raimondi, Stefano; Popovic, Mina; Amaretti, Alberto; Di Gioia, Diana; Rossi, Maddalena

    2014-05-01

    Anti-Listeria bacterial starters are highly demanded by the meat industry. Novel bioprotective anti-Listeria starters were searched among Lactobacillus species strains isolated from artisanal sausages. The screening confirmed that anti-Listeria activity is a strain-specific property and yielded only 1 strain (of 36) exhibiting a satisfactory level of inhibition, L. delbrueckii WC0286. This strain was compared with two commercial bioprotective starters, SafePro B-SF-43 and SafePro B-LC-20, in a model simulating in vitro the first step of the fermentation process. The presence of the bioprotective starters did not modify the pH in such a way that could affect the safety or organoleptic properties of the product. Both SafePro B-SF-43 and SafePro B-LC-20 effected an important reduction of Listeria counts (0.56 and 0.72 log CFU g(-1), respectively, in 72 h), while the anti-Listeria effect of L. delbrueckii WC0286 was minor (0.15 log CFU g(-1)). These results discouraged the utilization of L. delbrueckii WC0286 for a challenge test in a pilot salami production, in favor of the best-performing bioprotective starter, SafePro B-LC-20. The test confirmed that SafePro B-LC-20 did not alter the acidification trend of sausages and was capable of inhibiting Listeria, which decreased by 1.21 log CFU g(-1). This information is relevant to address research activity toward the development of new bioprotective starters. The data herein presented demonstrate that the efficacy in Listeria control of potentially bioprotective bacterial starters requires further validation in real meat matrixes, possibly by using in vitro meat fermentation experiments to narrow down the list of candidates before pilot scale challenge tests.

  7. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  8. Rice and soy protein isolate in pre-starter diets for broilers.

    PubMed

    Ebling, P D; Kessler, A M; Villanueva, A P; Pontalti, G C; Farina, G; Ribeiro, A M L

    2015-11-01

    Although most industries use a specific diet for the pre-starter phase, ingredients are used in the later phases, primarily corn and soybean meal, which at this stage do not have high digestibility. Three experiments : Exp : were carried out to evaluate the substitution of corn by white or parboiled rice : WR, PR : and the inclusion of 6% soy protein isolate : SPI : in pre-starter diets (1 to 7 d). In Exp 1 (1 to 21 d), WR, PR, and SPI were added to the diets until the birds were 21-day-old, whereas in Exps 2 and 3 (1 to 33 d), only until birds were 7-day-old. Birds were fed a basal diet based on corn and soybean meal until the end of the experimental period. In Exp 1, the coefficients of total tract apparent retention : CTTAR : of the pre-starter and the starter diets, ileal and jejunal digestibility of starch in the starter diets, and broiler performance were measured. Subsequently, the same pre-starter diets Exp 1 were evaluated in pellet (Exp 2) or mash (Exp 3) form and different oil percentage (Exp 2) or not (Exp 3). We hypothesized that the ingredients particle size (Exp 2) and fat content (Exp 3) could influence feed intake. There was no interaction among the evaluated factors (P > 0.05). Rice (WR or PR) promoted better results than corn in terms of CTTAR of dietary components, jejunal and ileal starch digestibility, and broiler performance (P < 0.01). In Exp 1, diets with 6% SPI presented better CTTAR, except Nitrogen ( N: ), but lower feed intake, which negatively affected broiler performance (P < 0.01). In Exps 1, 2, and 3, the inclusion of SPI did not improve broiler performance (P > 0.05), so that SPI may not be the best choice for pre-starter diets. The study also suggests that better growth performance and nutrient digestibility can be obtained in broiler chickens if corn is replaced by rice in pre-starter diets. © 2015 Poultry Science Association Inc.

  9. Age-dependent decline in acyl-ghrelin concentrations and reduced association of acyl-ghrelin and growth hormone in healthy older adults.

    PubMed

    Nass, Ralf; Farhy, Leon S; Liu, Jianhua; Pezzoli, Suzan S; Johnson, Michael L; Gaylinn, Bruce D; Thorner, Michael O

    2014-02-01

    Acyl-ghrelin is thought to have both orexigenic effects and to stimulate GH release. A possible cause of the anorexia of aging is an age-dependent decrease in circulating acyl-ghrelin levels. The purpose of the study was to compare acyl-ghrelin and GH concentrations between healthy old and young adults and to examine the relationship of acyl-ghrelin and GH secretion in both age groups. Six healthy older adults (age 62-74 y, body mass index range 20.9-29 kg/m(2)) and eight healthy young men (aged 18-28 y, body mass index range 20.6-26.2 kg/m(2)) had frequent blood samples drawn for hormone measurements every 10 minutes for 24 hours. Ghrelin was measured in an in-house, two-site sandwich ELISA specific for full-length acyl-ghrelin. GH was measured in a sensitive assay (Immulite 2000), and GH peaks were determined by deconvolution analysis. The acyl-ghrelin/GH association was estimated from correlations between amplitudes of individual GH secretory events and the average acyl-ghrelin concentration in the 60-minute interval preceding each GH burst. Twenty-four-hour mean (±SEM) GH (0.48 ± 0.14 vs 2.2 ± 0.3 μg/L, P < .005) and acyl-ghrelin (14.7 ± 2.3 vs 27.8 ± 3.9 pg/mL, P < .05) levels were significantly lower in older adults compared with young adults. Twenty-four-hour cortisol concentrations were higher in the old than the young adults (15.1 ± 1.0 vs 10.6 ± 0.9 μg/dL, respectively, P < .01). The ghrelin/GH association was more than 3-fold lower in the older group compared with the young adults (0.16 ± 0.12 vs 0.69 ± 0.04, P < .001). These results provide further evidence of an age-dependent decline in circulating acyl-ghrelin levels, which might play a role both in the decline of GH and in the anorexia of aging. Our data also suggest that with normal aging, endogenous acyl-ghrelin levels are less tightly linked to GH regulation.

  10. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed Central

    Jones, A; Davies, H M; Voelker, T A

    1995-01-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase. PMID:7734968

  11. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases.

    PubMed

    Jones, A; Davies, H M; Voelker, T A

    1995-03-01

    Acyl-acyl carrier protein (ACP) thioesterases play an essential role in chain termination during de novo fatty acid synthesis and in the channeling of carbon flux between the two lipid biosynthesis pathways in plants. We have discovered that there are two distinct but related thioesterase gene classes in higher plants, termed FatA and FatB, whose evolutionary divergence appears to be ancient. FatA encodes the already described 18:1-ACP thioesterase. In contrast, FatB representatives encode thioesterases preferring acyl-ACPs having saturated acyl groups. We unexpectedly obtained a 16:0-ACP thioesterase cDNA from Cuphea hookeriana seed, which accumulate predominantly 8:0 and 10:0. The 16:0 thioesterase transcripts were found in non-seed tissues, and expression in transgenic Brassica napus led to the production of a 16:0-rich oil. We present evidence that this type of FatB gene is ancient and ubiquitous in plants and that specialized plant medium-chain thioesterases have evolved independently from such enzymes several times during angiosperm evolution. Also, the ubiquitous 18:1-ACP thioesterase appears to be a derivative of a 16:0 thioesterase.

  12. Genetically modified starter and protective cultures.

    PubMed

    Geisen, R; Holzapfel, W H

    1996-07-01

    Modern approaches towards starter and protective culture improvement rely on advances in molecular biology. For most microorganisms used for food production, gene technological methods have been well developed. By recombinant DNA technology, 'tailor-made' starter and protective cultures may be constructed so as to combine technically desirable features. A single strain which normally would fail to accomplish a given 'task' may now be improved so as to meet a set of requirements necessary for a specific production or preservation process (e.g. wholesomeness, no off-flavour production, overproduction of bacteriocins or particular enzymes). In addition, undesirable properties (e.g. mycotoxin or antibiotic production by cheese moulds) may be eliminated by techniques such as 'gene disruption'.

  13. Production of a Brassica napus low-molecular mass acyl-coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds

    USDA-ARS?s Scientific Manuscript database

    Low-molecular mass (10 kD) cytosolic acyl-coenzyme A-binding protein (ACBP) has a substantial influence over fatty acid (FA) composition in oilseeds, possibly via an effect on the partitioning of acyl groups between elongation and desaturation pathways. Previously, we demonstrated that the expressio...

  14. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate

    PubMed Central

    Kormanik, Kaitlyn; Kang, Heejung; Cuebas, Dean; Vockley, Jerry; Mohsen, Al-Walid

    2012-01-01

    Sodium phenylbutyrate is used for treating urea cycle disorders, providing an alternative for ammonia excretion. Following conversion to its CoA ester, phenylbutyryl-CoA is postulated to undergo one round of β-oxidation to phenylacetyl-CoA, the active metabolite. Molecular modeling suggests that medium chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3), a key enzyme in straight chain fatty acid β-oxidation, could utilize phenylbutyryl-CoA as substrate. Moreover, phenylpropionyl-CoA has been shown to be a substrate for MCAD and its intermediates accumulate in patients with MCAD deficiency. We have examined the involvement of MCAD and other acyl-CoA dehydrogenases (ACADs) in the metabolism of phenylbutyryl-CoA. Anaerobic titration of purified recombinant human MCAD with phenylbutyryl-CoA caused changes in the MCAD spectrum that are similar to those induced by octanoyl-CoA, its bona fide substrate, and unique to the development of the charge transfer ternary complex. The calculated apparent dissociation constant (KD app) for these substrates was 2.16 μM and 0.12 μM, respectively. The MCAD reductive and oxidative half reactions were monitored using the electron transfer flavoprotein (ETF) fluorescence reduction assay. The catalytic efficiency and the Km for phenylbutyryl-CoA were 0.2 mM−1· sec−1 and 5.3 μM compared to 4.0 mM−1· sec−1 and 2.8 μM for octanoyl-CoA. Extracts of wild type and MCAD-deficient lymphoblast cells were tested for the ability to reduce ETF using phenylbutyryl-CoA as substrate. While ETF reduction activity was detected in extracts of wild type cells, it was undetectable in extracts of cells deficient in MCAD. The results are consistent with MCAD playing a key role in phenylbutyrate metabolism. PMID:23141465

  15. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate.

    PubMed

    Kormanik, Kaitlyn; Kang, Heejung; Cuebas, Dean; Vockley, Jerry; Mohsen, Al-Walid

    2012-12-01

    Sodium phenylbutyrate is used for treating urea cycle disorders, providing an alternative for ammonia excretion. Following conversion to its CoA ester, phenylbutyryl-CoA is postulated to undergo one round of β-oxidation to phenylacetyl-CoA, the active metabolite. Molecular modeling suggests that medium chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3), a key enzyme in straight chain fatty acid β-oxidation, could utilize phenylbutyryl-CoA as substrate. Moreover, phenylpropionyl-CoA has been shown to be a substrate for MCAD and its intermediates accumulate in patients with MCAD deficiency. We have examined the involvement of MCAD and other acyl-CoA dehydrogenases (ACADs) in the metabolism of phenylbutyryl-CoA. Anaerobic titration of purified recombinant human MCAD with phenylbutyryl-CoA caused changes in the MCAD spectrum that are similar to those induced by octanoyl-CoA, its bona fide substrate, and unique to the development of the charge transfer ternary complex. The calculated apparent dissociation constant (K(D app)) for these substrates was 2.16 μM and 0.12 μM, respectively. The MCAD reductive and oxidative half reactions were monitored using the electron transfer flavoprotein (ETF) fluorescence reduction assay. The catalytic efficiency and the K(m) for phenylbutyryl-CoA were 0.2 mM 34(-1)·sec(-1) and 5.3 μM compared to 4.0 mM(-1)·sec(-1) and 2.8 μM for octanoyl-CoA. Extracts of wild type and MCAD-deficient lymphoblast cells were tested for the ability to reduce ETF using phenylbutyryl-CoA as substrate. While ETF reduction activity was detected in extracts of wild type cells, it was undetectable in extracts of cells deficient in MCAD. The results are consistent with MCAD playing a key role in phenylbutyrate metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Suitability of a new mixed-strain starter for manufacturing uncooked raw ewe's milk cheeses.

    PubMed

    Feutry, Fabienne; Torre, Paloma; Arana, Ines; Garcia, Susana; Pérez Elortondo, Francisco J; Berthier, Françoise

    2016-06-01

    Most raw milk Ossau-Iraty cheeses are currently manufactured on-farm using the same commercial streptococcal-lactococcal starter (S1). One way to enhance the microbial diversity that gives raw milk its advantages for cheese-making is to formulate new starters combining diverse, characterized strains. A new starter (OI) combining 6 raw milk strains of lactococci, recently isolated and characterized, was tested in parallel with the current starter by making 12 Ossau-Iraty raw milk cheeses at 3 farmhouses under the conditions prevailing at each farm. Compliance of the sensory characteristics with those expected by the Ossau-Iraty professionals, physicochemical parameters and coliforms were quantified at key manufacturing steps. The new starter OI gave cheeses having proper compliance but having lower compliance than the S1 cheeses under most manufacturing conditions, while managing coliform levels equally well as starter S1. This lower compliance relied more on the absence of Streptococcus thermophilus in starter OI, than on the nature of the lactoccocal strains present in starter OI. The study also shows that variations in 5 technological parameters during the first day of manufacture, within the range of values applied in the 3 farmhouses, are powerful tools for diversifying the scores for the sensory characteristics investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Internet starter kit update 1997

    DOT National Transportation Integrated Search

    1997-01-01

    The Bureau of Transportation Statistics (BTS) established an Internet site in 1995, and also produced an Internet Starter Kit not only to assist transportation professionals in accessing the new Internet site but also to give them a basic overview of...

  18. Evaluation of autochthonous micrococcus strains as starter cultures for the production of Kedong sufu.

    PubMed

    Feng, Z; Huang, S; Ai, Z W; Zhang, M; Zhai, S; Chen, X

    2016-03-01

    The technological properties of 22 micrococcus strains from traditional fermented Kedong sufu were evaluated in order to develop autochthonous starter cultures. The proteolytic, autolytic and lipolytic activity, salt tolerance, production and degradation of the biogenic amines of six Micrococcus luteus, nine Kocuria kristinae and seven Kocuria rosea were evaluated. The results indicated that these micrococcus strains exhibited a certain technological diversity, and the results also indicated the best properties to be used in mixed starter cultures. Based on the above findings, two sets of autochthonous starters were formulated. Considering the physicochemical properties and sensory characteristics of sufu, the maturation period of sufu was shortened by 30 days. The profiles of free amino acids and peptides partly revealed the mechanism of sensory quality and shorter ripening time of sufu manufactured using autochthonous mixed starters. Compared to back-slopping fermentation, sufu manufactured with selected autochthonous starter cultures exhibited lower levels of total biogenic amines. The selected strains could be used as starter to avoid the accumulation of high concentrations of biogenic amines while also maintaining typical sensory characteristics and preserving the autochthonous strains of the traditional Kedong sufu. The maturation times of Kedong sufu were shortened by 30 days with application of the autochthonous starter. Autochthonous mixed starters can reduce the generation of biogenic amines, speed up the sufu maturation process and preserve typical sensory quality. Furthermore, the rotation of two sets of mixed starter cultures can effectively resist phage attack during the production of sufu. © 2015 The Society for Applied Microbiology.

  19. Influence of starter protein content on growth of dairy calves in an enhanced early nutrition program.

    PubMed

    Stamey, J A; Janovick, N A; Kertz, A F; Drackley, J K

    2012-06-01

    Our objectives were to determine the effect of starter crude protein (CP) content on growth of Holstein calves from birth to 10 wk of age in an enhanced early nutrition program, and to compare the enhanced program to a conventional milk replacer program. Calves (64 female, 25 male) were assigned to 3 treatments in a randomized block design: 1) conventional milk replacer (20% CP, 20% fat) plus conventional starter [19.6% CP, dry matter (DM) basis], 2) enhanced milk replacer (28.5% CP, 15% fat) plus conventional starter, and 3) enhanced milk replacer plus high-CP starter (25.5% CP, DM basis). Calves began treatments (n=29, 31, and 29 for treatments 1 to 3) at 3 d of age. Conventional milk replacer (12.5% solids) was fed at 1.25% of birth body weight (BW) as DM daily in 2 feedings from wk 1 to 5 and at 0.625% of birth BW once daily during wk 6. Enhanced milk replacer (15% solids) was fed at 1.5% of BW as DM during wk 1 and 2% of BW as DM during wk 2 to 5, divided into 2 daily feedings. During wk 6, enhanced milk replacer was fed at 1% of BW as DM once daily. Calves were weaned at d 42. Starter was available for ad libitum intake starting on d 3. Starter intake was greater for calves fed conventional milk replacer. For calves fed enhanced milk replacer, starter intake tended to be greater for calves fed enhanced starter. During the weaning period, enhanced starter promoted greater starter DM intake than the conventional starter. Over the 10-wk study, the average daily gain of BW (0.64, 0.74, and 0.80 kg/d) was greater for calves fed enhanced milk replacer with either starter and, for calves fed enhanced milk replacer, tended to be greater for calves fed high-CP starter. Rates of change in withers height, body length, and heart girth were greater for calves fed enhanced milk replacer but did not differ between starter CP concentrations. The postweaning BW for enhanced milk replacer treatments was greater for calves receiving the enhanced starter at wk 8 (73.7, 81.3, and

  20. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    PubMed

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.

  1. Investigation of the Roles of Allosteric Domain Arginine, Aspartate, and Glutamate Residues of Rhizobium etli Pyruvate Carboxylase in Relation to Its Activation by Acetyl CoA.

    PubMed

    Sirithanakorn, Chaiyos; Jitrapakdee, Sarawut; Attwood, Paul V

    2016-08-02

    The mechanism of allosteric activation of pyruvate carboxylase by acetyl CoA is not fully understood. Here we have examined the roles of residues near the acetyl CoA binding site in the allosteric activation of Rhizobium etli pyruvate carboxylase using site-directed mutagenesis. Arg429 was found to be especially important for acetyl CoA binding as substitution with serine resulted in a 100-fold increase in the Ka of acetyl CoA activation and a large decrease in the cooperativity of this activation. Asp420 and Arg424, which do not make direct contact with bound acetyl CoA, were nonetheless found to affect acetyl CoA binding when mutated, probably through changed interactions with another acetyl CoA binding residue, Arg427. Thermodynamic activation parameters for the pyruvate carboxylation reaction were determined from modified Arrhenius plots and showed that acetyl CoA acts to decrease the activation free energy of the reaction by both increasing the activation entropy and decreasing the activation enthalpy. Most importantly, mutations of Asp420, Arg424, and Arg429 enhanced the activity of the enzyme in the absence of acetyl CoA. A main focus of this work was the detailed investigation of how this increase in activity occurred in the R424S mutant. This mutation decreased the activation enthalpy of the pyruvate carboxylation reaction by an amount consistent with removal of a single hydrogen bond. It is postulated that Arg424 forms a hydrogen bonding interaction with another residue that stabilizes the asymmetrical conformation of the R. etli pyruvate carboxylase tetramer, constraining its interconversion to the symmetrical conformer that is required for catalysis.

  2. In Vitro Enzymatic Synthesis of New Penicillins Containing Keto Acids as Side Chains

    PubMed Central

    Ferrero, Miguel A.; Reglero, Angel; Martínez-Blanco, Honorina; Fernández-Valverde, Martiniano; Luengo, Jose M.

    1991-01-01

    Seven different penicillins containing α-ketobutyric, β-ketobutyric, γ-ketovaleric, α-ketohexanoic, δ-ketohexanoic, ε-ketoheptanoic, and α-ketooctanoic acids as side chains have been synthesized in vitro by incubating the enzymes phenylacetyl coenzyme A (CoA) ligase from Pseudomonas putida and acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum with CoA, ATP, Mg2+, dithiothreitol, 6-aminopenicillanic acid, and the corresponding side chain precursor. PMID:1952871

  3. Endophilin-A1 BAR domain interaction with arachidonyl CoA.

    PubMed

    Petoukhov, Maxim V; Weissenhorn, Winfried; Svergun, Dmitri I

    2014-01-01

    Endophilin-A1 belongs to the family of BAR domain containing proteins that catalyze membrane remodeling processes via sensing, inducing and stabilizing membrane curvature. We show that the BAR domain of endophilin-A1 binds arachidonic acid and molds its coenzyme A (CoA) activated form, arachidonyl-CoA into a defined structure. We studied low resolution structures of endophilin-A1-BAR and its complex with arachidonyl-CoA in solution using synchrotron small-angle X-ray scattering (SAXS). The free endophilin-A1-BAR domain is shown to be dimeric at lower concentrations but builds tetramers and higher order complexes with increasing concentrations. Extensive titration SAXS studies revealed that the BAR domain produces a homogenous complex with the lipid micelles. The structural model of the complexes revealed two arachidonyl-CoA micelles bound to the distal arms of an endophilin-A1-BAR dimer. Intriguingly, the radius of the bound micelles significantly decreases compared to that of the free micelles, and this structural result may provide hints on the potential biological relevance of the endophilin-A1-BAR interaction with arachidonyl CoA.

  4. Interaction of gamma-glutamyltranspeptidase with clofibryl-S-acyl-glutathione in vitro and in vivo in rat.

    PubMed

    Grillo, M P; Benet, L Z

    2001-08-01

    Clofibric acid (CA) is metabolized to chemically reactive acylating products that can transacylate glutathione to form clofibryl-S-acyl-glutathione (CA-SG) in vitro and in vivo. We investigated the first step in the degradation of CA-SG to the mercapturic acid conjugate, clofibryl-S-acyl-N-acetylcysteine (CA-SNAC), which is catalyzed by gamma-glutamyltranspeptidase (gamma-GT). After gamma-GT mediated cleavage of glutamate from CA-SG, the product clofibryl-S-acyl-cysteinylglycine (CA-S-CG) should undergo an intramolecular rearrangement reaction [Tate, S. S. (1975) FEBS Lett. 54, 319-322] to form clofibryl-N-acyl-cysteinylglycine (CA-N-CG). We performed in vitro studies incubating CA-SG with gamma-GT to determine the products formed, and in vivo studies examining the products excreted in urine after dosing rats with CA-SG or CA. Thus, CA-SG (0.1 mM) was incubated with gamma-GT (0.1 unit/mL) in buffer (pH 7.4, 25 degrees C) and analyzed for products formed by reversed-phase HPLC and electrospray mass spectrometry (ESI/MS). Results showed that CA-SG is degraded completely after 6 h of incubation leading to the formation of two products, CA-N-CG and its disulfide, with no detection of CA-S-CG thioester. After 36 h of incubation, only the disulfide remained in the incubation. Treatment of the disulfide with dithiothreitol led to the reappearance of CA-N-CG. ESI/LC/MS analysis of urine (16 h) extracts of CA-SG-dosed rats (200 mg/kg, iv) showed that CA-SG is degraded to CA-N-CG, CA-N-acyl-cysteine (CA-N-C) and their respective S-methylated products. The mercapturic acid conjugate (CA-SNAC) was found as a minor product. Analysis of urine extracts from CA-dosed rats (200 mg/kg, ip) resulted in the detection of clofibryl-N-acyl-cysteine (CA-N-C), but no evidence for the formation of CA-SNAC was obtained. These in vitro and in vivo experiments indicate that gamma-GT mediated degradation of clofibryl-S-acyl-glutathione leads primarily to the formation and excretion of clofibryl-N-acyl

  5. Studies on long chain cis- and trans-acyl-CoA esters and Acyl-CoA dehydrogenase from rat heart mitochondria.

    PubMed

    Korsrud, G O; Conacher, H B; Jarvis, G A; Beare-Rogers, J L

    1977-02-01

    The beta-oxidation of long chain fatty acids was investigated in a preparation of rat heart mitochondria. The acyl-CoA esters of the cis and trans isomers of delta9-hexadecenoic, delta9-octadecenoic, delta11-eicosenoic, and delta13-docosenoic acids were prepared. Rates of the acyl-CoA reaction were determined with an extract from rat heart mitochondria. The apparent Michaelis constant (Km) and maximum velocity (Vmax) were calculated for each substrate. In general, apparent Vmax values decreased with increasing chain length of the monoenoic substrates. Reduced activity of acyl-CoA dehydrogenase with long chain acyl-CoA esters could have contributed to accumulation of lipids in hearts of rats fed diets containing long chain fatty acids.

  6. Fiber sources for complete calf starter rations.

    PubMed

    Murdock, F R; Wallenius, R W

    1980-11-01

    Complete calf starter rations containing either 1) alfalfa hay, 2) cottonseed hulls, or 3) alfalfa-beet pulp as sources of fiber were fed to Holstein heifer calves at two locations on a limited milk program from 3 days to 12 wk of age. Rations were isonitrogenous and similar in content of crude fiber and acid detergent fiber. Although growth and development were normal on all rations, calves fed the cottonseed hull ration consumed more starter and gained more body weight than calves fed the other sources of fiber. The similarity of feed efficiencies, rumen pH, and molar ratios of volatile fatty acids between rations indicated no appreciable differences in rumen development or function. The growth response of calves fed the cottonseed hull ration appeared to be a result of better ration acceptability for which no reason was evident. Calves raised at Puyallup gained more body weight than calves at Pullman, and these gains were made more efficiently. These location effects may be related to seasonal differences and greater demands for production of body heat. Although the incidence of scours was less for calves fed alfalfa hay starter, the incidence and severity of bloat were higher for that ration.

  7. Progress toward Understanding Protein S-acylation: Prospective in Plants

    PubMed Central

    Li, Yaxiao; Qi, Baoxiu

    2017-01-01

    S-acylation, also known as S-palmitoylation or palmitoylation, is a reversible post-translational lipid modification in which long chain fatty acid, usually the 16-carbon palmitate, covalently attaches to a cysteine residue(s) throughout the protein via a thioester bond. It is involved in an array of important biological processes during growth and development, reproduction and stress responses in plant. S-acylation is a ubiquitous mechanism in eukaryotes catalyzed by a family of enzymes called Protein S-Acyl Transferases (PATs). Since the discovery of the first PAT in yeast in 2002 research in S-acylation has accelerated in the mammalian system and followed by in plant. However, it is still a difficult field to study due to the large number of PATs and even larger number of putative S-acylated substrate proteins they modify in each genome. This is coupled with drawbacks in the techniques used to study S-acylation, leading to the slower progress in this field compared to protein phosphorylation, for example. In this review we will summarize the discoveries made so far based on knowledge learnt from the characterization of protein S-acyltransferases and the S-acylated proteins, the interaction mechanisms between PAT and its specific substrate protein(s) in yeast and mammals. Research in protein S-acylation and PATs in plants will also be covered although this area is currently less well studied in yeast and mammalian systems. PMID:28392791

  8. Microbial diversity and chemical analysis of the starters used in traditional Chinese sweet rice wine.

    PubMed

    Cai, Haiying; Zhang, Ting; Zhang, Qi; Luo, Jie; Cai, Chenggang; Mao, Jianwei

    2018-08-01

    Chinese sweet rice wine (CSRW) is a popular alcoholic drink in China. To investigate the effect of the microbial composition in CSRW starters on the final quality of the alcoholic drink, high-throughput sequencing on the fungal internal transcribed spacer II and bacterial 16S rRNA gene of the microflora in 8 starter samples was performed. The sequencing data analysis showed that 10 genera of yeasts and mold, and 11 genera of bacteria were identified. Fungal diversity analyses showed the significant variances in the fungal compositions among the starter samples. Starter microbiota were dominated by the Rhizopus genus in SZ5, LS6, NN8, QD9, DZ10 and DZ11, indicating its important role in starch hydrolysis during CSRW brewing. According to principal coordinate analyses, the bacterial composition had even less similarity among the 8 starter samples. The chemical determination of CSRW fermented with the 8 starters demonstrated that the CSRW quality and flavor were drastically influenced by the taxonomic composition and metabolism of the microbes in the starters. This study suggests it is necessary to standardize rice wine manufacturing and flavor classification by specifying starter and fermentation techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Use of Protein Hydrolysates in Industrial Starter Culture Fermentations

    NASA Astrophysics Data System (ADS)

    Ummadi, Madhavi (Soni); Curic-Bawden, Mirjana

    Lactic acid bacteria (LAB) have been used as starter cultures for fermenting foods long before the importance of microorganisms were recognized. The most important group of LAB are the lactococci, lactobacilli, streptococci, and pediococci. Additionally, bifidobacteria have been included as a probiotic, providing added value to the product. Since the genera involved are so diverse, the nutritional requirements (energy, carbon and nitrogen sources) differ significantly between and within species. Designing an optimum fermentation medium for production of active and vigorous LAB starter cultures and probiotics requires selecting the right raw ingredients, especially protein hydrolysates that can provide adequate nutrients for growth and viability. This chapter attempts to describe the application of various commercial protein hydrolysates used for production of dairy and meat starter cultures, with special emphasis on meeting the nitrogen requirements of industrially important LAB species.

  10. Safety Assessment of Acyl Glucuronides-A Simplified Paradigm.

    PubMed

    Smith, Dennis A; Hammond, Timothy; Baillie, Thomas A

    2018-06-01

    While simple O - (ether-linked) and N -glucuronide drug conjugates generally are unreactive and considered benign from a safety perspective, the acyl glucuronides that derive from metabolism of carboxylic acid-containing xenobiotics can exhibit a degree of chemical reactivity that is dependent upon their molecular structure. As a result, concerns have arisen over the safety of acyl glucuronides as a class, several members of which have been implicated in the toxicity of their respective parent drugs. However, direct evidence in support of these claims remains sparse, and due to frequently encountered species differences in the systemic exposure to acyl glucuronides (both of the parent drug and oxidized derivatives thereof), coupled with their instability in aqueous media and potential to undergo chemical rearrangement (acyl migration), qualification of these conjugates by traditional safety assessment methods can be very challenging. In this Commentary, we discuss alternative (non-acyl glucuronide) mechanisms by which carboxylic acids may cause serious adverse reactions, and propose a novel, practical approach to compare systemic exposure to acyl glucuronide metabolites in humans to that in animal species used in preclinical safety assessment based on relative estimates of the total body burden of these circulating conjugates. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    PubMed Central

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase. PMID:12228351

  12. Plasma levels of acylated ghrelin in patients with functional dyspepsia

    PubMed Central

    Kim, Yeon Soo; Lee, Joon Seong; Lee, Tae Hee; Cho, Joo Young; Kim, Jin Oh; Kim, Wan Jung; Kim, Hyun Gun; Jeon, Seong Ran; Jeong, Hoe Su

    2012-01-01

    AIM: To investigate the relationship between plasma acylated ghrelin levels and the pathophysiology of functional dyspepsia. METHODS: Twenty-two female patients with functional dyspepsia and twelve healthy volunteers were recruited for the study. The functional dyspepsia patients were each diagnosed based on the Rome III criteria. Eligible patients completed a questionnaire concerning the severity of 10 symptoms. Plasma acylated ghrelin levels before and after a meal were determined in the study participants using a commercial human acylated enzyme immunoassay kit; electrogastrograms were performed for 50 min before and after a standardized 10-min meal containing 265 kcal. RESULTS: There were no significant differences in plasma acylated ghrelin levels between healthy volunteers and patients with functional dyspepsia. However, in patients with functional dyspepsia, there was a negative correlation between fasting plasma acylated ghrelin levels and the sum score of epigastric pain (r = -0.427, P = 0.047) and a positive correlation between the postprandial/fasting plasma acylated ghrelin ratio and the sum score of early satiety (r = 0.428, P =0.047). Additionally, there was a negative correlation between fasting acylated ghrelin plasma levels and fasting normogastria (%) (r = -0.522, P = 0.013). Interestingly, two functional dyspepsia patients showed paradoxically elevated plasma acylated ghrelin levels after the meal. CONCLUSION: Abnormal plasma acylated ghrelin levels before or after a meal may be related to several of the dyspeptic symptoms seen in patients with functional dyspepsia. PMID:22611317

  13. Fatty acyl pheromone analogue-containing lipids and their roles in sex pheromone biosynthesis in the lightbrown apple moth, Epipyhas postvittana (Walker).

    PubMed

    Foster, S P

    2001-04-01

    The pheromone gland of the moth Epiphyas postvittana was analysed for lipids containing the fatty acyl pheromone analogue (FAPA) of the component, (E)-11-tetradecenyl acetate. The FAPA was found predominantly in the triglycerides (TGs), and to a lesser extent in the choline phosphatides. The FAPA was found to be exclusively on the sn-1 or sn-3 position (probably the latter) of the TGs. When pheromone gland lipid extracts were eluted through silica solid phase extraction, a significant proportion of the FAPA was not recovered. Changes in titre of this non-recoverable FAPA paralleled changes in pheromone titre in females. In contrast, changes in recoverable FAPA (mostly in the TGs) titre showed a gradual increase with time after eclosion. The properties of this non-recoverable FAPA were consistent with it being the CoA ester of the FAPA. Thus, it appears that the FAPA-CoA ester is the immediate lipid precursor of the pheromone, and that the FAPA-containing TGs are formed by reaction of the FAPA-CoA with 1,2-DGs, as a consequence of the rate-limiting reduction of the FAPA-CoA. Finally, injection of PBAN into females decapitated for 3 days resulted in a decrease in recoverable FAPA and an increase in non-recoverable FAPA, suggesting that PBAN influences the lipolysis of TGs. Overall these data suggest that there are two routes for biosynthesis of the pheromone component E11-14:OAc in E. postvittana: a de novo route, directly via the CoA esters of the various fatty acid intermediates, and a less direct route via the lipolysis of FAPA-containing TGs.

  14. Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice.

    PubMed

    Sone, Hideyuki; Kamiyama, Shin; Higuchi, Mutsumi; Fujino, Kaho; Kubo, Shizuka; Miyazawa, Masami; Shirato, Saya; Hiroi, Yuka; Shiozawa, Kota

    2016-07-29

    It is known that biotin prevents the development of diabetes by increasing the functions of pancreatic beta-cells and improving insulin sensitivity in the periphery. However, its anti-obesity effects such as anorectic effects remain to be clarified. Acetyl CoA carboxylase (ACC), a biotin-dependent enzyme, has two isoforms (ACC1 and ACC2) and serves to catalyze the reaction of acetyl CoA to malonyl CoA. In the hypothalamus, ACC2 increases the production of malonyl CoA, which acts as a satiety signal. In this study, we investigated whether biotin increases the gene expression of ACC2 in the hypothalamus and suppresses food intake in mice administered excessive biotin. Food intake was significantly decreased by biotin, but plasma regulators of appetite, including glucose, ghrelin, and leptin, were not affected. On the other hand, biotin notably accumulated in the hypothalamus and enhanced ACC2 gene expression there, but it did not change the gene expression of ACC1, malonyl CoA decarboxylase (a malonyl CoA-degrading enzyme), and AMP-activated protein kinase α-2 (an ACC-inhibitory enzyme). These findings strongly suggest that biotin potentiates the suppression of appetite by upregulating ACC2 gene expression in the hypothalamus. This effect of biotin may contribute to the prevention of diabetes by biotin treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Impact and Effectiveness of a Stand-Alone NRT Starter Kit in a Statewide Tobacco Cessation Program.

    PubMed

    Kerr, Amy N; Schillo, Barbara A; Keller, Paula A; Lachter, Randi B; Lien, Rebecca K; Zook, Heather G

    2018-01-01

    To examine 2-week nicotine replacement therapy (NRT) starter kit quit outcomes and predictors and the impact of adding this new service on treatment reach. Observational study of a 1-year cohort of QUITPLAN Services enrollees using registration and utilization data and follow-up outcome survey data of a subset of enrollees who received NRT starter kits. ClearWay Minnesota's QUITPLAN Services provides a quit line that is available to uninsured and underinsured Minnesotans and NRT starter kits (a free 2-week supply of patches, gum, or lozenges) that are available to all Minnesota tobacco users. A total of 15 536 adult QUITPLAN Services enrollees and 818 seven-month follow-up survey NRT starter kit respondents. Treatment reach for all services and tobacco quit outcomes and predictors for starter kit recipients. Descriptive analyses, χ 2 analyses, and logistic regression. Treatment reach increased 3-fold after adding the 2-week NRT starter kit service option to QUITPLAN Services compared to the prior year (1.86% vs 0.59%). Among all participants enrolling in QUITPLAN services during a 1-year period, 83.8% (13 026/15 536) registered for a starter kit. Among starter kit respondents, 25.6% reported being quit for 30 days at the 7-month follow-up. After controlling for other factors, using all NRT and selecting more cessation services predicted quitting. An NRT starter kit brought more tobacco users to QUITPLAN services, demonstrating interest in cessation services separate from phone counseling. The starter kit produced high quit rates, comparable to the quit line in the same time period. Cessation service providers may want to consider introducing starter kits to reach more tobacco users and ultimately improve population health.

  16. Control of Biogenic Amines in Fermented Sausages: Role of Starter Cultures

    PubMed Central

    Latorre-Moratalla, M.L.; Bover-Cid, Sara; Veciana-Nogués, M.T.; Vidal-Carou, M.C.

    2012-01-01

    Biogenic amines show biological activity and exert undesirable physiological effects when absorbed at high concentrations. Biogenic amines are mainly formed by microbial decarboxylation of amino acids and thus are usually present in a wide range of foods, fermented sausages being one of the major biogenic amine sources. The use of selected starter cultures is one of the best technological measures to control aminogenesis during meat fermentation. Although with variable effectiveness, several works show the ability of some starters to render biogenic amine-free sausages. In this paper, the effect of different starter culture is reviewed and the factors determining their performance discussed. PMID:22586423

  17. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria*

    PubMed Central

    Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338

  18. Oxonitriles: A Grignard Addition-Acylation Route to Enamides

    PubMed Central

    Wei, Guoqing; Zhang, Zhiyu; Steward, Omar W.

    2008-01-01

    Sequential addition of three different Grignard reagents and pivaloyl chloride to 3-oxo-1-cyclohexene-1-carbonitrile installs four new bonds to generate a diverse array of cyclic enamides. Remarkably, formation of the C-magnesiated nitrile intermediate is followed by preferential acylation by pivaloyl chloride rather than consumption by in situ Grignard reagent. Rapid N-acylation of the C-magnesiated nitrile generates an acyl ketenimine that reacts readily with Grignard reagents, or a trialkyl zincate, effectively assembling highly substituted, cyclic enamides. PMID:17020332

  19. Alteration of the fatty acid profile of Streptomyces coelicolor by replacement of the initiation enzyme 3-ketoacyl acyl carrier protein synthase III (FabH).

    PubMed

    Li, Yongli; Florova, Galina; Reynolds, Kevin A

    2005-06-01

    The first elongation step of fatty acid biosynthesis by a type II dissociated fatty acid synthases is catalyzed by 3-ketoacyl-acyl carrier protein (ACP) synthase III (KASIII, FabH). This enzyme, encoded by the fabH gene, catalyzes a decarboxylative condensation between an acyl coenzyme A (CoA) primer and malonyl-ACP. In organisms such as Escherichia coli, which generate only straight-chain fatty acids (SCFAs), FabH has a substrate preference for acetyl-CoA. In streptomycetes and other organisms which produce a mixture of both SCFAs and branched-chain fatty acids (BCFAs), FabH has been shown to utilize straight- and branched-chain acyl-CoA substrates. We report herein the generation of a Streptomyces coelicolor mutant (YL/ecFabH) in which the chromosomal copy of the fabH gene has been replaced and the essential process of fatty acid biosynthesis is initiated by plasmid-based expression of the E. coli FabH (bearing only 35% amino acid identity to the Streptomyces enzyme). The YL/ecFabH mutant produces predominantly SCFAs (86%). In contrast, BCFAs predominate (approximately 70%) in both the S. coelicolor parental strain and S. coelicolor YL/sgFabH (a deltafabH mutant carrying a plasmid expressing the Streptomyces glaucescens FabH). These results provide the first unequivocal evidence that the substrate specificity of FabH observed in vitro is a determinant of the fatty acid made in an organism. The YL/ecFabH strain grows significantly slower on both solid and liquid media. The levels of FabH activity in cell extracts of YL/ecFabH were also significantly lower than those in cell extracts of YL/sgFabH, suggesting that a decreased rate of fatty acid synthesis may account for the observed decreased growth rate. The production of low levels of BCFAs in YL/ecFabH suggests either that the E. coli FabH is more tolerant of different acyl-CoAs substrates than previously thought or that there is an additional pathway for initiation of BCFA biosynthesis in Streptomyces coelicolor.

  20. Strategy Planning Visualization Tool (SPVT) for the Air Operations Center (AOC) Volume I: SPVT Summary and COA Sketch

    DTIC Science & Technology

    2009-12-01

    Limitations of Real Time Battle Damage Assessment. [Thesis.] Maxwell AFB, AL: Air University. Shadbolt, N., Hall, W., Berners - Lee , T. (2006, May-June... Tim ) COA Development Use Case 3.7: User creates a new Course of Action (COA) User Story / Context of Use:  The JFACC may issue clear and...default, the timing of a Mission Analysis object will be r elative to the Operation’s Default tim ing (D-Day). If Use Case 3.24 is implem ented, then

  1. Biochemical characterization of recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

    PubMed

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Khan, Bashir M

    2013-07-01

    Recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) protein from Leucaena leucocephala was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Optimum pH for forward and reverse reaction was found to be 6.5 and 7.8 respectively. The enzyme was most stable around pH 6.5 at 25°C for 90 min. The enzyme showed Kcat/Km for feruloyl, caffeoyl, sinapoyl, coumaroyl CoA, coniferaldehyde and sinapaldehyde as 4.6, 2.4, 2.3, 1.7, 1.9 and 1.2 (×10(6) M(-1) s(-1)), respectively, indicating affinity of enzyme for feruloyl CoA over other substrates and preference of reduction reaction over oxidation. Activation energy, Ea for various substrates was found to be in the range of 20-50 kJ/mol. Involvement of probable carboxylate ion, histidine, lysine or tyrosine at the active site of enzyme was predicted by pH activity profile. SAXS studies of protein showed radius 3.04 nm and volume 49.25 nm(3) with oblate ellipsoid shape. Finally, metal ion inhibition studies revealed that Ll-CCRH1 is a metal independent enzyme. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Cultivability of Streptococcus thermophilus in Grana Padano cheese whey starters.

    PubMed

    Fornasari, Maria Emanuela; Rossetti, Lia; Carminati, Domenico; Giraffa, Giorgio

    2006-04-01

    The application of a culture-independent approach, that of reverse transcriptase-length heterogeneity-PCR coupled with epifluorescence microscopy, allowed us to observe that Streptococcus thermophilus is metabolically active, but only partially cultivable in Grana Padano cheese whey starters. A short preincubation of the starters in sterile skimmed whey was followed by cultivation in sterile skimmed whey-enriched M17. This procedure restored the cultivability of S. thermophilus and enabled us to detect S. thermophilus at ranges (10(7)-10(8) CFU mL(-1)) which have rarely been reported in these cultures. The use of cheese whey as a cultivation-revitalization substrate can be useful to obtain an unbiased picture of the microbial composition of whey starters for Grana Padano cheese, thus avoiding an underestimation of S. thermophilus in these cultures.

  3. Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE.

    PubMed

    Thanh, Vu Nguyen; Mai, Le Thuy; Tuan, Duong Anh

    2008-12-10

    The diversity of fungi and bacteria associated with traditional Vietnamese alcohol fermentation starters (banh men) was investigated by PCR-mediated DGGE. From 52 starter samples, 13 species of fungi (including yeasts) and 23 species of bacteria were identified. The fungal composition of the starters was consistent with little variation among samples. It consisted of amylase producers (Rhizopus oryzae, R. microsporus, Absidia corymbifera, Amylomyces sp., Saccharomycopsis fibuligera), ethanol producers (Saccharomyces cerevisiae, Issatchenkia sp., Pichia anomala, Candida tropicalis, P. ranongensis, Clavispora lusitaniae), and (opportunistic) contaminants (Xeromyces bisporus, Botryobasidium subcoronatum). The bacterial microflora of starters was highly variable in species composition and dominated by lactic acid bacteria (LAB). The most frequent LAB were Pediococcus pentosaceus, Lactobacillus plantarum, L. brevis, Weissella confusa, and W. paramesenteroides. Species of amylase-producing Bacillus (Bacillus subtilis, B. circulans, B. amyloliquefaciens, B. sporothermodurans), acetic acid bacteria (Acetobacter orientalis, A. pasteurianus), and plant pathogens/environment contaminants (Burkholderia ubonensis, Ralstonia solanacearum, Pelomonas puraquae) were also detected. Fungal DGGE was found to be useful for evaluating starter type and starter quality. Moreover, in view of the high biological diversity of these substrates, bacterial DGGE may be useful in determining the identity of a starter. The constant occurrence of opportunistic contaminants highlights the need for careful examination of the role of individual components in starters.

  4. Oxonitriles: a grignard addition-acylation route to enamides.

    PubMed

    Fleming, Fraser F; Wei, Guoqing; Zhang, Zhiyu; Steward, Omar W

    2006-10-12

    [reaction: see text] Sequential addition of three different Grignard reagents and pivaloyl chloride to 3-oxo-1-cyclohexene-1-carbonitrile installs four new bonds to generate a diverse array of cyclic enamides. Remarkably, formation of the C-magnesiated nitrile intermediate is followed by preferential acylation by pivaloyl chloride rather than consumption by an in situ Grignard reagent. Rapid N-acylation of the C-magnesiated nitrile generates an acyl ketenimine that reacts readily with Grignard reagents or a trialkylzincate, effectively assembling highly substituted, cyclic enamides.

  5. An Unusual Fatty Acyl:Adenylate Ligase (FAAL)-Acyl Carrier Protein (ACP) Didomain in Ambruticin Biosynthesis.

    PubMed

    Hemmerling, Franziska; Lebe, Karen E; Wunderlich, Johannes; Hahn, Frank

    2018-03-08

    The divinylcyclopropane (DVC) fragment of the ambruticins is proposed to be formed by a unique polyene cyclisation mechanism, in which the unusual didomain AmbG plays a key role. It is proposed to activate the branched thioester carboxylic acid resulting from polyene cyclisation and to transfer it to its associated acyl carrier protein (ACP). After oxidative decarboxylation, the intermediate is channelled back into polyketide synthase (PKS) processing. AmbG was previously annotated as an adenylation-thiolation didomain with a very unusual substrate selectivity code but has not yet been biochemically studied. On the basis of sequence and homology model analysis, we reannotate AmbG as a fatty acyl:adenylate ligase (FAAL)-acyl carrier protein didomain with unusual substrate specificity. The expected adenylate-forming activity on fatty acids was confirmed by in vitro studies. AmbG also adenylates a number of structurally diverse carboxylic acids, including functionalised fatty acids and unsaturated and aromatic carboxylic acids. HPLC-MS analysis and competition experiments show that AmbG preferentially acylates its ACP with long-chain hydrophobic acids and tolerates a π system and a branch near the carboxylic acid. AmbG is the first characterised example of a FAAL-ACP didomain that is centrally located in a PKS and apparently activates a polyketidic intermediate. This is an important step towards deeper biosynthetic studies such as partial reconstitution of the ambruticin pathway to elucidate DVC formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cloning and characterization of unusual fatty acid desaturases from Anemone leveillei: identification of an acyl-coenzyme A C20 Delta5-desaturase responsible for the synthesis of sciadonic acid.

    PubMed

    Sayanova, Olga; Haslam, Richard; Venegas Caleron, Monica; Napier, Johnathan A

    2007-05-01

    The seed oil of Anemone leveillei contains significant amounts of sciadonic acid (20:3Delta(5,11,14); SA), an unusual non-methylene-interrupted fatty acid with pharmaceutical potential similar to arachidonic acid. Two candidate cDNAs (AL10 and AL21) for the C(20) Delta(5cis)-desaturase from developing seeds of A. leveillei were functionally characterized in transgenic Arabidopsis (Arabidopsis thaliana) plants. The open reading frames of both Delta(5)-desaturases showed some similarity to presumptive acyl-coenzyme A (CoA) desaturases found in animals and plants. When expressed in transgenic Arabidopsis, AL21 showed a broad range of substrate specificity, utilizing both saturated (16:0 and 18:0) and unsaturated (18:2, n-6 and 18:3, n-3) substrates. In contrast, AL10 did not show any activity in wild-type Arabidopsis. Coexpression of AL10 or AL21 with a C(18) Delta(9)-elongase in transgenic Arabidopsis plants resulted in the production of SA and juniperonic fatty acid (20:4Delta(5,11,14,17)). Thus, AL10 acted only on C(20) polyunsaturated fatty acids in a manner analogous to "front-end" desaturases. However, neither AL10 nor AL21 contain the cytochrome b(5) domain normally present in this class of enzymes. Acyl-CoA profiling of transgenic Arabidopsis plants and developing A. leveillei seeds revealed significant accumulation of Delta(5)-unsaturated fatty acids as acyl-CoAs compared to the accumulation of these fatty acids in total lipids. Positional analysis of triacylglycerols of A. leveillei seeds showed that Delta(5)-desaturated fatty acids were present in both sn-2 and sn-1 + sn-3 positions, although the majority of 16:1Delta(5), 18:1Delta(5), and SA was present at the sn-2 position. Our data provide biochemical evidence for the A. leveillei Delta(5)-desaturases using acyl-CoA substrates.

  7. Development of buckwheat and teff sourdoughs with the use of commercial starters.

    PubMed

    Moroni, Alice V; Arendt, Elke K; Morrissey, John P; Dal Bello, Fabio

    2010-08-15

    In this study we investigated the suitability of commercial starters for the production of gluten free sourdoughs. For this purpose, four different laboratory scale sourdoughs were developed from the flours buckwheat or teff. Two different starters (SA, SB) were used to start the fermentations, which were carried out under two technological conditions. Sourdoughs were propagated by back-slopping until the stability was reached. The composition of the stable sourdoughs was investigated by culture dependent techniques and the development of the dominant biota was monitored by PCR-DGGE. Unique and complex LAB and yeasts communities were detected in each sourdough, comprising strains which originated from the flours. The competitiveness of the starter LAB varied according to the substrate and the fermentation conditions applied. Among the LAB present in both SA and SB, L. helveticus and L. paracasei strains did not persist in buckwheat or teff sourdoughs. Lc. argentinum was competitive only in buckwheat sourdoughs, whereas L. reuteri persisted only in teff sourdough. L. fermentum and L. helveticus present in both starters dominated only the sourdoughs fermented at the higher temperature. Remarkably, the starter yeasts were outcompeted by spontaneous yeast strains, i.e. Kazachstania barnetti and Saccharomyces cerevisiae in teff sourdoughs, whereas no yeasts were isolated from buckwheat sourdoughs. The isolation of autochthonous LAB and yeasts from the stable teff and buckwheat sourdoughs indicates that both flours represent an important reservoir for the isolation of novel and competitive starters for the production of gluten free sourdough bread. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Effect of macronutrient ratio of the pre-starter diet on broiler performance and intermediary metabolism.

    PubMed

    Swennen, Q; Everaert, N; Debonne, M; Verbaeys, I; Careghi, C; Tona, K; Janssens, G P J; Decuypere, E; Bruggeman, V; Buyse, J

    2010-06-01

    The aim of this study was to investigate the influence of isoenergetic substitution between the three energy delivering macronutrients in pre-starter diets on performance and intermediary nutrient metabolism in broiler chickens. From hatch until 5 days of age, 600 chicks, collected during peak of hatch, were fed one of the three experimental pre-starter diets with isoenergetic (13 MJ metabolisable energy/kg) substitutions between fat (43 vs. 108 g/kg), protein (126 vs. 240 g/kg) and carbohydrates (391 vs. 510 g/kg). After 5 days, commercial grower and finisher diets were provided. Pre-starter composition influenced body weight until slaughter age, although not statistically verifiable. Broilers fed the low protein (LP) pre-starter had the lowest body weight in relation to chickens on the low carbohydrate or low fat pre-starter diet. After hatch, chicks on the LP pre-starter diet were able to use the residual yolk sac more rapidly to fulfil their protein requirement, which is reflected in small intestine and liver development. Also, plasma metabolite levels were influenced mostly by the LP pre-starter, indicating that the main focus for the requirements of newly hatched chicks should be on proteins. Furthermore, optimal nutrition during the first day's post-hatch should take into account the contribution of the yolk.

  9. In vivo efficacy of acyl CoA: diacylglycerol acyltransferase (DGAT) 1 inhibition in rodent models of postprandial hyperlipidemia.

    PubMed

    King, Andrew J; Segreti, Jason A; Larson, Kelly J; Souers, Andrew J; Kym, Philip R; Reilly, Regina M; Collins, Christine A; Voorbach, Martin J; Zhao, Gang; Mittelstadt, Scott W; Cox, Bryan F

    2010-07-10

    Postprandial serum triglyceride concentrations have recently been identified as a major, independent risk factor for future cardiovascular events. As a result, postprandial hyperlipidemia has emerged as a potential therapeutic target. The purpose of this study was two-fold. Firstly, to describe and characterize a standardized model of postprandial hyperlipidemia in multiple rodent species; and secondly, apply these rodent models to the evaluation of a novel class of pharmacologic agent; acyl CoA:diacylglycerol acyltransferase (DGAT) 1 inhibitors. Serum triglycerides were measured before and for 4h after oral administration of a standardized volume of corn oil, to fasted C57BL/6, ob/ob, apoE(-/-) and CD-1 mice; Sprague-Dawley and JCR/LA-cp rats; and normolipidemic and hyperlipidemic hamsters. Intragastric administration of corn oil increased serum triglycerides in all animals evaluated, however the magnitude and time-course of the postprandial triglyceride excursion varied. The potent and selective DGAT-1 inhibitor A-922500 (0.03, 0.3 and 3 mg/kg, p.o.), dose-dependently attenuated the maximal postprandial rise in serum triglyceride concentrations in all species tested. At the highest dose of DGAT-1 inhibitor, the postprandial triglyceride response was abolished. This study provides a comprehensive characterization of the time-course of postprandial hyperlipidemia in rodents. In addition, the ability of DGAT-1 inhibitors to attenuate postprandial hyperlipidemia in multiple rodent models, including those that feature insulin resistance, is documented. Exaggerated postprandial hyperlipidemia is inherent to insulin-resistant states in humans and contributes to the substantially elevated cardiovascular risk observed in these patients. Therefore, by attenuating postprandial hyperlipidemia, DGAT-1 inhibition may represent a novel therapeutic approach to reduce cardiovascular risk. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Fatty Acid Synthesis in Pea Root Plastids Is Inhibited by the Action of Long-Chain Acyl- Coenzyme As on Metabolite Transporters1

    PubMed Central

    Fox, Simon R.; Rawsthorne, Stephen; Hills, Matthew J.

    2001-01-01

    The uptake in vitro of glucose (Glc)-6-phosphate (Glc-6-P) into plastids from the roots of 10- to 14-d-old pea (Pisum sativum L. cv Puget) plants was inhibited by oleoyl-coenzyme A (CoA) concentrations in the low micromolar range (1–2 μm). The IC50 (the concentration of inhibitor that reduces enzyme activity by 50%) for the inhibition of Glc-6-P uptake was approximately 750 nm; inhibition was reversed by recombinant rapeseed (Brassica napus) acyl-CoA binding protein. In the presence of ATP (3 mm) and CoASH (coenzyme A; 0.3 mm), Glc-6-P uptake was inhibited by 60%, due to long-chain acyl-CoA synthesis, presumably from endogenous sources of fatty acids present in the preparations. Addition of oleoyl-CoA (1 μm) decreased carbon flux from Glc-6-P into the synthesis of starch and through the oxidative pentose phosphate (OPP) pathway by up to 73% and 40%, respectively. The incorporation of carbon from Glc-6-P into fatty acids was not detected under any conditions. Oleoyl-CoA inhibited the incorporation of acetate into fatty acids by 67%, a decrease similar to that when ATP was excluded from incubations. The oleoyl-CoA-dependent inhibition of fatty acid synthesis was attributable to a direct inhibition of the adenine nucleotide translocator by oleoyl-CoA, which indirectly reduced fatty acid synthesis by ATP deprivation. The Glc-6-P-dependent stimulation of acetate incorporation into fatty acids was reversed by the addition of oleoyl-CoA. PMID:11457976

  11. In silico prediction of acyl glucuronide reactivity

    NASA Astrophysics Data System (ADS)

    Potter, Tim; Lewis, Richard; Luker, Tim; Bonnert, Roger; Bernstein, Michael A.; Birkinshaw, Timothy N.; Thom, Stephen; Wenlock, Mark; Paine, Stuart

    2011-11-01

    Drugs and drug candidates containing a carboxylic acid moiety, including many widely used non-steroidal anti-inflammatory drugs (NSAIDs) are often metabolized to form acyl glucuronides (AGs). NSAIDs such as Ibuprofen are amongst the most widely used drugs on the market, whereas similar carboxylic acid drugs such as Suprofen have been withdrawn due to adverse events. Although the link between these AG metabolites and toxicity is not proven, there is circumstantial literature evidence to suggest that more reactive acyl glucuronides may, in some cases, present a greater risk of exhibiting toxic effects. We wished therefore to rank the reactivity of potential new carboxylate-containing drug candidates, and performed kinetic studies on synthetic acyl glucuronides to benchmark our key compounds. Driven by the desire to quickly rank the reactivity of compounds without the need for lengthy synthesis of the acyl glucuronide, a correlation was established between the degradation half-life of the acyl glucuronide and the half life for the hydrolysis of the more readily available methyl ester derivative. This finding enabled a considerable broadening of chemical property space to be investigated. The need for kinetic measurements was subsequently eliminated altogether by correlating the methyl ester hydrolysis half-life with the predicted 13C NMR chemical shift of the carbonyl carbon together with readily available steric descriptors in a PLS model. This completely in silico prediction of acyl glucuronide reactivity is applicable within the earliest stages of drug design with low cost and acceptable accuracy to guide intelligent molecular design. This reactivity data will be useful alongside the more complex additional pharmacokinetic exposure and distribution data that is generated later in the drug discovery process for assessing the overall toxicological risk of acidic drugs.

  12. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids.

    PubMed

    Stahl, U.; Banas, A.; Stymne, S.

    1995-03-01

    Developing endosperms and embryos accumulating triacylglycerols rich in caproyl (decanoyl) groups (i.e. developing embryos of Cuphea procumbens and Ulmus glabra) had microsomal acyl hydrolases with high selectivities toward phosphatidylcholine with this acyl group. Similarly, membranes from Euphorbia lagascae and Ricinus communis endosperms, which accumulate triacylglycerols with vernoleate (12-epoxy-octadeca-9-enoate) and ricinoleate (12-hydroxy-octadeca-9-enoate), respectively, had acyl hydrolases that selectively removed their respective oxygenated acyl group from the phospholipids. The activities toward phospholipid substrates with epoxy, hydroxy, and medium-chain acyl groups varied greatly between microsomal preparations from different plant species. Epoxidated and hydroxylated acyl groups in sn-1 and sn-2 positions of phosphatidylcholine and in sn-1-lysophosphatidylcholine were hydrolyzed to a similar extent, whereas the hydrolysis of caproyl groups was highly dependent on the positional localization.

  13. Interaction between the physical forms of starter and forage source on growth performance and blood metabolites of Holstein dairy calves.

    PubMed

    Omidi-Mirzaei, H; Azarfar, A; Kiani, A; Mirzaei, M; Ghaffari, M H

    2018-04-11

    The objective of this study was to investigate the effects of the physical forms of starter and forage sources on feed intake, growth performance, rumen pH, and blood metabolites of dairy calves. Forty male Holstein calves (41.3 ± 3.5 kg of body weight) were used (n = 10 calves per treatment) in a 2 × 2 factorial arrangement of treatments with the factors being physical forms of starter (coarse mash and texturized) and forage source [alfalfa hay (AH) and wheat straw (WS)]. Individually housed calves were randomly assigned to 1 of the 4 dietary treatments, including (1) coarsely mashed (CM; coarse ground grains combined with a mash supplement) starter feed with AH (CM-AH), (2) coarsely mashed starter feed with WS (CM-WS), (3) texturized feed starter (TF; includes steam-flaked corn, steam-rolled barley combined with a pelleted supplement) with AH (TF-AH), and (4) TF with WS (TF-WS). Both starters had the same ingredients and nutrient compositions but differed in their physical forms. Calves were weaned on d 56 and remained in the study until d 70. All calves had free access to drinking water and the starter feeding at all times. No interaction was detected between the physical forms of starter feeds and forage source concerning starter intake, dry matter intake, metabolizable energy (ME) intake, average daily gain (ADG)/ME intake, ADG, and feed efficiency (FE). The preweaning and overall starter feed intake, dry matter intake, and ME intake were greater for calves fed TF starter diets than those fed CM starter diets. The ADG/ME intake was greater for calves fed TF starter diets than that fed CM starter. The FE was greater for calves fed TF starter diets compared with those fed CM starter during the preweaning, postweaning, and overall periods. The WS improved FE during the postweaning period compared with AH. The physical form of starter, forage source, and their interaction did not affect plasma glucose, triglycerides, and very low-density lipoprotein

  14. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    PubMed

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  15. OleA Glu117 is key to condensation of two fatty-acyl coenzyme A substrates in long-chain olefin biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Matthew R.; Goblirsch, Brandon R.; Christenson, James K.

    In the interest of decreasing dependence on fossil fuels, microbial hydrocarbon biosynthesis pathways are being studied for renewable, tailored production of specialty chemicals and biofuels. One candidate is long-chain olefin biosynthesis, a widespread bacterial pathway that produces waxy hydrocarbons. Found in three- and four-gene clusters, oleABCD encodes the enzymes necessary to produce cis-olefins that differ by alkyl chain length, degree of unsaturation, and alkyl chain branching. The first enzyme in the pathway, OleA, catalyzes the Claisen condensation of two fatty acyl-coenzyme A (CoA) molecules to form a β-keto acid. In this report, the mechanistic role of Xanthomonas campestris OleA Glu117more » is investigated through mutant enzymes. Crystal structures were determined for each mutant as well as their complex with the inhibitor cerulenin. Complemented by substrate modeling, these structures suggest that Glu117 aids in substrate positioning for productive carbon–carbon bond formation. Analysis of acyl-CoA substrate hydrolysis shows diminished activity in all mutants. When the active site lacks an acidic residue in the 117 position, OleA cannot form condensed product, demonstrating that Glu117 has a critical role upstream of the essential condensation reaction. Profiling of pH dependence shows that the apparent pKa for Glu117 is affected by mutagenesis. Taken together, we propose that Glu117 is the general base needed to prime condensation via deprotonation of the second, non-covalently bound substrate during turnover. This is the first example of a member of the thiolase superfamily of condensing enzymes to contain an active site base originating from the second monomer of the dimer.« less

  16. Cloning and Characterization of Unusual Fatty Acid Desaturases from Anemone leveillei: Identification of an Acyl-Coenzyme A C20 Δ5-Desaturase Responsible for the Synthesis of Sciadonic Acid1

    PubMed Central

    Sayanova, Olga; Haslam, Richard; Venegas Caleron, Monica; Napier, Johnathan A.

    2007-01-01

    The seed oil of Anemone leveillei contains significant amounts of sciadonic acid (20:3Δ5,11,14; SA), an unusual non-methylene-interrupted fatty acid with pharmaceutical potential similar to arachidonic acid. Two candidate cDNAs (AL10 and AL21) for the C20 Δ5cis-desaturase from developing seeds of A. leveillei were functionally characterized in transgenic Arabidopsis (Arabidopsis thaliana) plants. The open reading frames of both Δ5-desaturases showed some similarity to presumptive acyl-coenzyme A (CoA) desaturases found in animals and plants. When expressed in transgenic Arabidopsis, AL21 showed a broad range of substrate specificity, utilizing both saturated (16:0 and 18:0) and unsaturated (18:2, n-6 and 18:3, n-3) substrates. In contrast, AL10 did not show any activity in wild-type Arabidopsis. Coexpression of AL10 or AL21 with a C18 Δ9-elongase in transgenic Arabidopsis plants resulted in the production of SA and juniperonic fatty acid (20:4Δ5,11,14,17). Thus, AL10 acted only on C20 polyunsaturated fatty acids in a manner analogous to “front-end” desaturases. However, neither AL10 nor AL21 contain the cytochrome b5 domain normally present in this class of enzymes. Acyl-CoA profiling of transgenic Arabidopsis plants and developing A. leveillei seeds revealed significant accumulation of Δ5-unsaturated fatty acids as acyl-CoAs compared to the accumulation of these fatty acids in total lipids. Positional analysis of triacylglycerols of A. leveillei seeds showed that Δ5-desaturated fatty acids were present in both sn-2 and sn-1 + sn-3 positions, although the majority of 16:1Δ5, 18:1Δ5, and SA was present at the sn-2 position. Our data provide biochemical evidence for the A. leveillei Δ5-desaturases using acyl-CoA substrates. PMID:17384161

  17. Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene.

    PubMed

    Eom, Hyun-Ju; Park, Joong Min; Seo, Min Jae; Kim, Myoung-Dong; Han, Nam Soo

    2008-09-01

    In 2004, Leuconostoc mesenteroides DRC was first used as a starter culture for achieving higher organoleptic effects in Korean kimchi manufacture. For a better understanding of starter growth in a mixed culture system, and for predicting starter predominance in kimchi, a monitoring system for the starter was established. The chloramphenicol resistance marker gene (cat) was randomly integrated into chromosomal DNA of L. mesenteroides DRC using a viral transposon and transposase. The DRC mutant, tDRC2, had a similar growth pattern to the host strain, with no major alteration in phenotypic characteristics. The mutant strain was inoculated into real kimchi, and monitoring of the starter population was successfully achieved. The overall predominance of Leuconostoc in kimchi inoculated with DRC followed the general growth pattern of this genus during kimchi fermentation. Our results also demonstrate the competitive ability of the DRC starter against Leuconostoc from natural flora, maintaining its predominance above 88% during the whole fermentation period. Based on this experiment, the random gene integration method using a transposon was shown to be of utility in transferring any commercial starter into a selectable and monitorable strain for simulation purposes.

  18. Understanding Acyl Chain and Glycerolipid Metabolism in Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohlrogge, John B.

    2013-11-05

    Progress is reported in these areas: acyl-editing in initial eukaryotic lipid assembly in soybean seeds; identification and characterization of two Arabidopsis thaliana lysophosphatidyl acyltransferases with preference for lysophosphatidylethanolamine; and characterization and subcellular distribution of lysolipid acyl transferase activity of pea leaves.

  19. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids.

    PubMed Central

    Stahl, U.; Banas, A.; Stymne, S.

    1995-01-01

    Developing endosperms and embryos accumulating triacylglycerols rich in caproyl (decanoyl) groups (i.e. developing embryos of Cuphea procumbens and Ulmus glabra) had microsomal acyl hydrolases with high selectivities toward phosphatidylcholine with this acyl group. Similarly, membranes from Euphorbia lagascae and Ricinus communis endosperms, which accumulate triacylglycerols with vernoleate (12-epoxy-octadeca-9-enoate) and ricinoleate (12-hydroxy-octadeca-9-enoate), respectively, had acyl hydrolases that selectively removed their respective oxygenated acyl group from the phospholipids. The activities toward phospholipid substrates with epoxy, hydroxy, and medium-chain acyl groups varied greatly between microsomal preparations from different plant species. Epoxidated and hydroxylated acyl groups in sn-1 and sn-2 positions of phosphatidylcholine and in sn-1-lysophosphatidylcholine were hydrolyzed to a similar extent, whereas the hydrolysis of caproyl groups was highly dependent on the positional localization. PMID:12228415

  20. The flame characteristics of the biogas has produced through the digester method with various starters

    NASA Astrophysics Data System (ADS)

    Ketut, Caturwati Ni; Agung, Sudrajat; Mekro, Permana; Heri, Haryanto; Bachtiar

    2018-01-01

    Increasing the volume of waste, especially in urban areas is a source of problems in realizing the comfort and health of the environment. It needs to do a good handling of garbage so as to provide benefits for the whole community. Organic waste processing through bio-digester method to produce a biogas as an energy source is an effort. This research was conducted to test the characteristics of biogas flame generated from organic waste processing through digester with various of the starter such as: cow dung, goat manure, and leachate that obtained from the landfill at Bagendung-Cilegon. The flame height and maximum temperature of the flame are measured for the same pressure of biogas. The measurements showed the flame produced by bio-digester with leachate starter has the lowest flame height compared to the other types of biogas, and the highest flame height is given by biogas from digester with cow dung as a starter. The maximum flame temperature of biogas produced by leachate as a starter reaches 1027 °C. This value is 7% lower than the maximum flame temperature of biogas produced by cow dung as a starter. Cow dung was observed to be the best starter compared to goat manure and leachate, but the use of leachate as a starter in producing biogas with biodigester method is not the best but it worked.

  1. Sialomucins are characteristically O-acylated in poorly differentiated and colloid prostatic adenocarcinomas.

    PubMed

    Sáez, C; Japón, M A; Conde, A F; Poveda, M A; Luna-Moré, S; Segura, D I

    1998-12-01

    Mucinous glycoproteins are secreted by prostatic adenocarcinomas and might play important roles in tumor invasion and metastasis. Their histochemical properties on routine biopsy specimens have not been fully characterized. We present a histochemical study of mucin in 21 prostatic adenocarcinomas, with particular focus on the demonstration of different types of sialomucins. We applied the following histochemical techniques to routinely processed, formalin-fixed, paraffin-embedded tissue sections: Alcian blue (pH 2.5) and periodic acid-Schiff to reveal both acidic and neutral mucins; high iron diamine and Alcian blue (pH 2.5) to show sulfated and acidic nonsulfated mucosubstances simultaneously; periodic acid borohydride, potassium hydroxide, and periodic acid-Schiff to demonstrate O-acylated sialic acids; periodic acid thionine-Schiff, potassium hydroxide, and periodic acid-Schiff to differentiate pre-existing glycols from those revealed after saponification procedures; and periodic acid borohydride and periodic acid-Schiff to show C9-O-acylated sialic acid. These techniques are useful tools for demonstrating neutral and acidic (sialo- and sulfo-) mucins and di(C8,C9- or C7,C9-)-O-acylated, tri(C7,C8,C9-)-O-acylated and mono(C9)-O-acylated sialomucins. Most prostatic adenocarcinomas showed acidic mucins, with sialomucins predominating over sulfomucins. Well-differentiated and moderately differentiated noncolloid tumors had non-O-acylated sialomucins. Poorly differentiated tumors contained mono-O-acylated (C9) sialomucins, and colloid-type tumors secreted mono-, di-, and tri-O-acylated sialoglycoproteins. Acidic mucins, mainly sialomucins, constitute the major secretory component in prostatic adenocarcinomas, and our results show that the O-acylation of these sialoglycoproteins inversely correlates with tumor differentiation. Well-differentiated and moderately differentiated tumors are not O-acylated, whereas the poorly differentiated ones characteristically have O-acylated

  2. Grana Padano cheese whey starters: microbial composition and strain distribution.

    PubMed

    Rossetti, Lia; Fornasari, Maria Emanuela; Gatti, Monica; Lazzi, Camilla; Neviani, Erasmo; Giraffa, Giorgio

    2008-09-30

    The aim of this work was to evaluate the species composition and the genotypic strain heterogeneity of dominant lactic acid bacteria (LAB) isolated from whey starter cultures used to manufacture Grana Padano cheese. Twenty-four Grana Padano cheese whey starters collected from dairies located over a wide geographic production area in the north of Italy were analyzed. Total thermophilic LAB streptococci and lactobacilli were quantified by agar plate counting. Population structure of the dominant and metabolically active LAB species present in the starters was profiled by reverse transcriptase, length heterogeneity-PCR (RT-LH-PCR), a culture-independent technique successfully applied to study whey starter ecosystems. The dominant bacterial species were Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum. Diversity in the species composition allowed the whey cultures to be grouped into four main typologies, the one containing L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus being the most frequent one (45% of the cultures analyzed), followed by that containing only the two lactobacilli (40%). Only a minor fraction of the cultures contained L. helveticus alone (4%) or all the four LAB species (11%). Five hundred and twelve strains were isolated from the 24 cultures and identified by M13-PCR fingerprinting coupled with 16S rRNA gene sequencing. Most of the strains were L. helveticus (190 strains; 37% of the total), L delbrueckii subsp. lactis (90 strains; 18%) and S. thermophilus (215 strains; 42%). This result was in good agreement with the qualitative whey starter composition observed by RT-LH-PCR. M13-PCR fingerprinting indicated a markedly low infra-species diversity, i.e. the same biotypes were often found in more than one culture. The distribution of the biotypes into the different cultures was mainly dairy plant-specific rather than correlated with the different production areas.

  3. Acyl donors for native chemical ligation.

    PubMed

    Yan, Bingjia; Shi, Weiwei; Ye, Linzhi; Liu, Lei

    2018-04-11

    Native chemical ligation (NCL) has become one of the most important methods in chemical syntheses of proteins. Recently, in order to expand its scope, considerable effort has been devoted to tuning the C-terminal acyl donor thioesters used in NCL. This article reviews the recent advances in the design of C-terminal acyl donors, their precursors and surrogates, and highlights some noteworthy progress that may lead the future direction of protein chemical synthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis.

    PubMed

    Liu, Jin; Han, Danxiang; Yoon, Kangsup; Hu, Qiang; Li, Yantao

    2016-04-01

    Diacylglycerol acyltransferases (DGATs) catalyze a rate-limiting step of triacylglycerol (TAG) biosynthesis in higher plants and yeast. The genome of the green alga Chlamydomonas reinhardtii has multiple genes encoding type 2 DGATs (DGTTs). Here we present detailed functional and biochemical analyses of Chlamydomonas DGTTs. In vitro enzyme analysis using a radiolabel-free assay revealed distinct substrate specificities of three DGTTs: CrDGTT1 preferred polyunsaturated acyl CoAs, CrDGTT2 preferred monounsaturated acyl CoAs, and CrDGTT3 preferred C16 CoAs. When diacylglycerol was used as the substrate, CrDGTT1 preferred C16 over C18 in the sn-2 position of the glycerol backbone, but CrDGTT2 and CrDGTT3 preferred C18 over C16. In vivo knockdown of CrDGTT1, CrDGTT2 or CrDGTT3 resulted in 20-35% decreases in TAG content and a reduction of specific TAG fatty acids, in agreement with the findings of the in vitro assay and fatty acid feeding test. These results demonstrate that CrDGTT1, CrDGTT2 and CrDGTT3 possess distinct specificities toward acyl CoAs and diacylglycerols, and may work in concert spatially and temporally to synthesize diverse TAG species in C. reinhardtii. CrDGTT1 was shown to prefer prokaryotic lipid substrates and probably resides in both the endoplasmic reticulum and chloroplast envelope, indicating its role in prokaryotic and eukaryotic TAG biosynthesis. Based on these findings, we propose a working model for the role of CrDGTT1 in TAG biosynthesis. This work provides insight into TAG biosynthesis in C. reinhardtii, and paves the way for engineering microalgae for production of biofuels and high-value bioproducts. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  5. Disruption of plastid acyl:acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis.

    PubMed

    Tjellström, Henrik; Strawsine, Merissa; Silva, Jillian; Cahoon, Edgar B; Ohlrogge, John B

    2013-04-02

    Engineering transgenic plants that accumulate high levels of medium-chain fatty acids (MCFA) has been least successful for shorter chain lengths (e.g., C8). We demonstrate that one limitation is the activity of acyl-ACP synthetase (AAE) that re-activates fatty acids released by acyl-ACP thioesterases. Seed expression of Cuphea pulcherrima FATB acyl-ACP thioesterase in a double mutant lacking AAE15/16 increased 8:0 accumulation almost 2-fold compared to expression in wild type. These results also provide an in planta demonstration that AAE enzymes participate not only in activation of exogenously added MCFA but also in activation of MCFA synthesized in plastids. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Application of autochthonous mixed starter for controlled Kedong sufu fermentation in pilot plant tests.

    PubMed

    Feng, Zhen; Xu, Miao; Zhai, Shuang; Chen, Hong; Li, Ai-li; Lv, Xin-tong; Deng, Hong-ling

    2015-01-01

    Traditional sufu is fermented by back-slopping and back-slopping has many defects. The objective of this study was to apply autochthonous mixed starter to control Kedong sufu fermentation. Sufu was manufactured using back-slopping (batch A) and autochthonous mixed starter (batch B) with Kocuria kristinae F7, Micrococcus luteus KDF1, and Staphylococcus carnosus KDFR1676. Considering physicochemical properties of sufu, 150-day sufu samples from batch A and 90-day sufu samples from batch B met the standard requirements, respectively. Considering sensory characteristics of sufu, 150-day sufu samples from batch A and 90-day sufu samples from batch B showed no significant differences (P > 0.05). The maturation period of sufu was shortened by 60 d. Profiles of free amino acids and peptides partly revealed the mechanism of typical sensory quality and shorter ripening time of sufu manufactured by autochthonous mixed starter. In final products, content of total biogenic amines was reduced by 48%. Autochthonous mixed starter performed better than back-slopping. Fermentation had a positive influence on the quality, safety, and sensory properties of sufu. The application of autochthonous mixed starter does not change the sensory characteristics of traditional fermented sufu. In addition, it reduces maturation period and improves their homogeneity and safety. It is possible to substitute autochthonous mixed starter for back-slopping in the manufacture of sufu. © 2014 Institute of Food Technologists®

  7. Microbial ecology and starter culture technology in coffee processing.

    PubMed

    Vinícius de Melo Pereira, Gilberto; Soccol, Vanete Thomaz; Brar, Satinder Kaur; Neto, Ensei; Soccol, Carlos Ricardo

    2017-09-02

    Coffee has been for decades the most commercialized food product and most widely consumed beverage in the world, with over 600 billion cups served per year. Before coffee cherries can be traded and processed into a final industrial product, they have to undergo postharvest processing on farms, which have a direct impact on the cost and quality of a coffee. Three different methods can be used for transforming the coffee cherries into beans, known as wet, dry, and semi-dry methods. In all these processing methods, a spontaneous fermentation is carried out in order to eliminate any mucilage still stuck to the beans and helps improve beverage flavor by microbial metabolites. The microorganisms responsible for the fermentation (e.g., yeasts and lactic acid bacteria) can play a number of roles, such as degradation of mucilage (pectinolytic activity), inhibition of mycotoxin-producing fungi growth, and production of flavor-active components. The use of starter cultures (mainly yeast strains) has emerged in recent years as a promising alternative to control the fermentation process and to promote quality development of coffee product. However, scarce information is still available about the effects of controlled starter cultures in coffee fermentation performance and bean quality, making it impossible to use this technology in actual field conditions. A broader knowledge about the ecology, biochemistry, and molecular biology could facilitate the understanding and application of starter cultures for coffee fermentation process. This review provides a comprehensive coverage of these issues, while pointing out new directions for exploiting starter cultures in coffee processing.

  8. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes.

    PubMed

    Stout, Jake M; Boubakir, Zakia; Ambrose, Stephen J; Purves, Randy W; Page, Jonathan E

    2012-08-01

    The psychoactive and analgesic cannabinoids (e.g. Δ(9) -tetrahydrocannabinol (THC)) in Cannabis sativa are formed from the short-chain fatty acyl-coenzyme A (CoA) precursor hexanoyl-CoA. Cannabinoids are synthesized in glandular trichomes present mainly on female flowers. We quantified hexanoyl-CoA using LC-MS/MS and found levels of 15.5 pmol g(-1) fresh weight in female hemp flowers with lower amounts in leaves, stems and roots. This pattern parallels the accumulation of the end-product cannabinoid, cannabidiolic acid (CBDA). To search for the acyl-activating enzyme (AAE) that synthesizes hexanoyl-CoA from hexanoate, we analyzed the transcriptome of isolated glandular trichomes. We identified 11 unigenes that encoded putative AAEs including CsAAE1, which shows high transcript abundance in glandular trichomes. In vitro assays showed that recombinant CsAAE1 activates hexanoate and other short- and medium-chained fatty acids. This activity and the trichome-specific expression of CsAAE1 suggest that it is the hexanoyl-CoA synthetase that supplies the cannabinoid pathway. CsAAE3 encodes a peroxisomal enzyme that activates a variety of fatty acid substrates including hexanoate. Although phylogenetic analysis showed that CsAAE1 groups with peroxisomal AAEs, it lacked a peroxisome targeting sequence 1 (PTS1) and localized to the cytoplasm. We suggest that CsAAE1 may have been recruited to the cannabinoid pathway through the loss of its PTS1, thereby redirecting it to the cytoplasm. To probe the origin of hexanoate, we analyzed the trichome expressed sequence tag (EST) dataset for enzymes of fatty acid metabolism. The high abundance of transcripts that encode desaturases and a lipoxygenase suggests that hexanoate may be formed through a pathway that involves the oxygenation and breakdown of unsaturated fatty acids. © 2012 National Research Council of Canada. The Plant Journal © 2012 Blackwell Publishing Ltd.

  9. Interaction between the physical form of the starter feed and straw provision on growth performance of Holstein calves.

    PubMed

    Terré, M; Castells, Ll; Khan, M A; Bach, A

    2015-02-01

    Two experiments were conducted to assess the effect of physical form of a starter feed with or without straw supplementation on growth performance of Holstein calves. In experiment 1, a total of 32 calves were randomly assigned at 7 d of age to texturized starter feed (containing rolled barley, corn, and oats) without straw, texturized starter feed with chopped straw, and pelleted starter feed with chopped straw. All calves were offered 4 L of pasteurized whole milk twice daily from 7 to 35 d of age, 2 L of milk twice daily from 36 to 42 d of age, and 2 L of milk from 43 to 49 d of age. Animals were weaned at 50 d of age, and the study finished when calves were 63 d old. In experiment 2, a total of 60 calves (8 d of age) were randomly assigned to texturized starter feed (containing whole corn) without straw, pelleted starter feed without straw, and pelleted starter feed with chopped straw. All calves were offered the same milk replacer (MR; 23% crude protein and 19.5 fat) at 11% dry matter concentration, 4 L/d of MR until 14 d of age, 6 L/d of MR from 14 to 37 d, 3 L/d of MR from 38 to 44 d, and 1.5 L/d of MR from 45 to 52 d of age. The experiment finished when calves were 58 d old (1 wk after weaning). Rumen liquid pH was measured after weaning. In both studies, calves were individually housed in pens on sawdust bedding and starter feed and chopped straw were offered free choice in separate buckets. In experiment 1, starter feed and straw intake and growth did not differ among treatments. However, calves receiving straw showed a greater rumen pH compared with those not receiving straw. In experiment 2, pelleted started feed supplemented with straw fostered an increase in solid feed intake (as percentage of body weight) compared with a pelleted or texturized starter feed without straw supplementation. However, calves that received the texturized starter feed containing whole corn had rumen pH similar to those fed a pelleted starter feed with straw. Feeding a

  10. 7 CFR 58.331 - Starter distillate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.331 Starter distillate. The refined flavor components when used to flavor butter and related products. It shall be of food grade quality, free of extraneous material and prepared in accordance with...

  11. 7 CFR 58.331 - Starter distillate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.331 Starter distillate. The refined flavor components when used to flavor butter and related products. It shall be of food grade quality, free of extraneous material and prepared in accordance with...

  12. School Starters' Vision--An Educational Approach

    ERIC Educational Resources Information Center

    Wilhelmsen, Gunvor B

    2016-01-01

    Although good visual capacity is essential for children's learning, we have limited understanding of the various visual functions among school starters. In order to extend this knowledge, a small-scale study was undertaken involving 24 preschool children age 5-6 years who completed a test battery originally designed for visual impairment…

  13. Saccharomyces cerevisiae Atf1p is an alcohol acetyltransferase and a thioesterase in vitro.

    PubMed

    Nancolas, Bethany; Bull, Ian D; Stenner, Richard; Dufour, Virginie; Curnow, Paul

    2017-06-01

    The alcohol-O-acyltransferases are bisubstrate enzymes that catalyse the transfer of acyl chains from an acyl-coenzyme A (CoA) donor to an acceptor alcohol. In the industrial yeast Saccharomyces cerevisiae this reaction produces acyl esters that are an important influence on the flavour of fermented beverages and foods. There is also a growing interest in using acyltransferases to produce bulk quantities of acyl esters in engineered microbial cell factories. However, the structure and function of the alcohol-O-acyltransferases remain only partly understood. Here, we recombinantly express, purify and characterize Atf1p, the major alcohol acetyltransferase from S. cerevisiae. We find that Atf1p is promiscuous with regard to the alcohol cosubstrate but that the acyltransfer activity is specific for acetyl-CoA. Additionally, we find that Atf1p is an efficient thioesterase in vitro with specificity towards medium-chain-length acyl-CoAs. Unexpectedly, we also find that mutating the supposed catalytic histidine (H191) within the conserved HXXXDG active site motif only moderately reduces the thioesterase activity of Atf1p. Our results imply a role for Atf1p in CoA homeostasis and suggest that engineering Atf1p to reduce the thioesterase activity could improve product yields of acetate esters from cellular factories. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.

  14. Regioselective Acylation of Diols and Triols: The Cyanide Effect.

    PubMed

    Peng, Peng; Linseis, Michael; Winter, Rainer F; Schmidt, Richard R

    2016-05-11

    Central topics of carbohydrate chemistry embrace structural modifications of carbohydrates and oligosaccharide synthesis. Both require regioselectively protected building blocks that are mainly available via indirect multistep procedures. Hence, direct protection methods targeting a specific hydroxy group are demanded. Dual hydrogen bonding will eventually differentiate between differently positioned hydroxy groups. As cyanide is capable of various kinds of hydrogen bonding and as it is a quite strong sterically nondemanding base, regioselective O-acylations should be possible at low temperatures even at sterically congested positions, thus permitting formation and also isolation of the kinetic product. Indeed, 1,2-cis-diols, having an equatorial and an axial hydroxy group, benzoyl cyanide or acetyl cyanide as an acylating agent, and DMAP as a catalyst yield at -78 °C the thermodynamically unfavorable axial O-acylation product; acyl migration is not observed under these conditions. This phenomenon was substantiated with 3,4-O-unproteced galacto- and fucopyranosides and 2,3-O-unprotected mannopyranosides. Even for 3,4,6-O-unprotected galactopyranosides as triols, axial 4-O-acylation is appreciably faster than O-acylation of the primary 6-hydroxy group. The importance of hydrogen bonding for this unusual regioselectivity could be confirmed by NMR studies and DFT calculations, which indicate favorable hydrogen bonding of cyanide to the most acidic axial hydroxy group supported by hydrogen bonding of the equatorial hydroxy group to the axial oxygen. Thus, the "cyanide effect" is due to dual hydrogen bonding of the axial hydroxy group which enhances the nucleophilicity of the respective oxygen atom, permitting an even faster reaction for diols than for mono-ols. In contrast, fluoride as a counterion favors dual hydrogen bonding to both hydroxy groups leading to equatorial O-acylation.

  15. Unexpected Hydrolytic Instability of N-Acylated Amino Acid Amides and Peptides

    PubMed Central

    2015-01-01

    Remote amide bonds in simple N-acyl amino acid amide or peptide derivatives 1 can be surprisingly unstable hydrolytically, affording, in solution, variable amounts of 3 under mild acidic conditions, such as trifluoroacetic acid/water mixtures at room temperature. This observation has important implications for the synthesis of this class of compounds, which includes N-terminal-acylated peptides. We describe the factors contributing to this instability and how to predict and control it. The instability is a function of the remote acyl group, R2CO, four bonds away from the site of hydrolysis. Electron-rich acyl R2 groups accelerate this reaction. In the case of acyl groups derived from substituted aromatic carboxylic acids, the acceleration is predictable from the substituent’s Hammett σ value. N-Acyl dipeptides are also hydrolyzed under typical cleavage conditions. This suggests that unwanted peptide truncation may occur during synthesis or prolonged standing in solution when dipeptides or longer peptides are acylated on the N-terminus with electron-rich aromatic groups. When amide hydrolysis is an undesired secondary reaction, as can be the case in the trifluoroacetic acid-catalyzed cleavage of amino acid amide or peptide derivatives 1 from solid-phase resins, conditions are provided to minimize that hydrolysis. PMID:24617596

  16. Influence of starters on chemical, biochemical, and sensory changes in Turkish White-brined cheese during ripening.

    PubMed

    Hayaloglu, A A; Guven, M; Fox, P F; McSweeney, P L H

    2005-10-01

    Turkish White-brined cheese was manufactured using Lactococcus strains (Lactococcus lactis ssp. lactis NCDO763 plus L. lactis ssp. cremoris SK11 and L. lactis ssp. lactis UC317 plus L. lactis ssp. cremoris HP) or without a starter culture, and ripened for 90 d. It was found that the use of starters significantly influenced the physical, chemical, biochemical, and sensory properties of the cheeses. Chemical composition, pH, and sensory properties of cheeses made with starter were not affected by the different starter bacteria. The levels of soluble nitrogen fractions and urea-PAGE of the pH 4.6-insoluble fractions were found to be significantly different at various stages of ripening. Urea-PAGE patterns of the pH 4.6-insoluble fractions of the cheeses showed that considerable degradation of alpha(s1)-casein occurred and that beta-casein was more resistant to hydrolysis. The use of a starter culture significantly influenced the levels of 12% trichloroacetic acid-soluble nitrogen, 5% phosphotungstic acid-soluble nitrogen, free amino acids, total free fatty acids, and the peptide profiles (reverse phase-HPLC) of 70% (vol/vol) ethanol-soluble and insoluble fractions of the pH 4.6-soluble fraction of the cheeses. The levels of peptides in the cheeses increased during the ripening period. Principal component and hierarchical cluster analyses of electrophoretic and chromatographic results indicated that the cheeses were significantly different in terms of their peptide profiles and they were grouped based on the use and type of starter and stage of ripening. Levels of free amino acid in the cheeses differed; Leu, Glu, Phe, Lys, and Val were the most abundant amino acids. Nitrogen fractions, total free amino acids, total free fatty acids, and the levels of peptides resolved by reverse phase-HPLC increased during ripening. No significant differences were found between the sensory properties of cheeses made using a starter, but the cheese made without starter received lower

  17. Monitoring of staphylococcal starters in two French processing plants manufacturing dry fermented sausages.

    PubMed

    Corbiere Morot-Bizot, S; Leroy, S; Talon, R

    2007-01-01

    The growth and survival of Staphylococcus xylosus and Staphylococcus carnosus were monitored during sausage manufacture in two processing plants. The gram-positive, catalase-positive cocci isolated from the processing plants F10 and F11 were identified by Staphylococcus-specific PCR and species-specific oligonucleotide array. In the inoculated products with starter cultures, 90% of staphylococcal strains isolated in F10 were identified as S. xylosus and 10% as S. carnosus. In F11, 77% were identified as S. xylosus and 20% as S. carnosus. Staphylococcus xylosus dominated the staphylococcal microbiota while S. carnosus survived during the process. The pulse-field gel electrophoresis analysis revealed that all S. xylosus and S. carnosus strains isolated corresponded to the starter strains inoculated. The two starter strains of S. xylosus co-dominated in the isolates from sausages of F11, whereas the strain with pattern A1 was dominant in the isolates from sausages of F10. In the environments, no S. carnosus and S. xylosus were found, whereas Staphylococcus equorum and Staphylococcus saprophyticus were the main species isolated. This work highlighted the domination of S. xylosus starter strains, which showed a strong capacity to grow during sausage process, while S. carnosus survived during the process. Successful implantation of starter cultures is obviously a prerequisite for their contribution to sensorial qualities. Thus, the monitoring of the growth and the survival of S. xylosus and S. carnosus are required to guarantee a well-adapted starter culture. This study revealed that the two Staphylococcus species are suitable for manufacturing sausages in processing plants with very different capacities of production.

  18. Xenobiotic/medium chain fatty acid: CoA ligase - a critical review on its role in fatty acid metabolism and the detoxification of benzoic acid and aspirin.

    PubMed

    van der Sluis, Rencia; Erasmus, Elardus

    2016-10-01

    Activation of fatty acids by the acyl-CoA synthetases (ACSs) is the vital first step in fatty acid metabolism. The enzymatic and physiological characterization of the human xenobiotic/medium chain fatty acid: CoA ligases (ACSMs) has been severely neglected even though xenobiotics, such as benzoate and salicylate, are detoxified through this pathway. This review will focus on the nomenclature and substrate specificity of the human ACSM ligases; the biochemical and enzymatic characterization of ACSM1 and ACSM2B; the high sequence homology of the ACSM2 genes (ACSM2A and ACSM2B) as well as what is currently known regarding disease association studies. Several discrepancies exist in the current literature that should be taken note of. For example, the single nucleotide polymorphisms (SNPs) reported to be associated with aspirin metabolism and multiple risk factors of metabolic syndrome are incorrect. Kinetic data on the substrate specificity of the human ACSM ligases are non-existent and currently no data exist on the influence of SNPs on the enzyme activity of these ligases. One of the biggest obstacles currently in the field is that glycine conjugation is continuously studied as a one-step process, which means that key regulatory factors of the two individual steps remain unknown.

  19. New acylated clionasterol glycosides from Valeriana officinalis.

    PubMed

    Pullela, Srinivas V; Choi, Young Whan; Khan, Shabana I; Khan, Ikhlas A

    2005-10-01

    The chloroform extract of Valeriana officinalis led to the isolation of clionasterol-3-O-beta-D-glucopyranoside and a mixture of 6'-O-acyl-beta-D-glucosyl-clionasterols. The acyl moieties were identified as hexadecanoyl, 8 E,11 E-octadecadienoyl and 14-methylpentadecanoyl by alkaline hydrolysis followed by GC-MS analysis. The isolated compounds did not exhibit any anti-inflammatory, anticancer or cytotoxic activity when tested in a variety of in vitro cell-based assays.

  20. Photographic and LMA observations of a blue starter over a New Mexico thunderstorm

    NASA Astrophysics Data System (ADS)

    Edens, H. E.; Krehbiel, P. R.; Rison, W.; Hunyady, S. J.

    2010-12-01

    On the evening of August 3, 2010 we photographed a blue starter over an electrically active storm complex about 120 km to the WNW of Langmuir Laboratory in central New Mexico. The event occurred close to a broad overshooting top at an altitude of 15 km above MSL. It was also observed visually and detected by the Lightning Mapping Array (LMA) deployed around the mountaintop observatory. The blue starter appears as a white-blue leader channel propagating away from the storm top not straight upward but at a large angle from vertical, slightly curving upward and transitioning to an increasingly diffuse blue glow. In addition to this leader, a more diffuse glow of blue light from one or two additional leaders is seen in the background. The curved channel of the main leader and the fact that it did not propagate along a straight path upward indicates that a relatively strong local electric field near the storm top existed that dictated leader propagation and direction rather than the large-scale storm electric field. The visible part of the starter is estimated to have developed to about 1 km above the storm top. From the LMA data we infer that the blue starter was a screening layer discharge that initiated between upper positive charge and a negatively charged screening layer. A negative leader appears to initiate at 15 km altitude and propagates downward for 2 to 3 km, after which scattered and ill-defined activity occurred in the cloud between 10 to 15 km altitude. This indicates that the visible part of the blue starter emanating out of the storm top, which was photographed but not detected by the LMA, was positive breakdown. The event lasted for 100 ms in the LMA data. The storm where the starter occurred in was producing predominantly intracloud (IC) flashes at a rate of about 20 per minute. The starter itself occurred independently of other discharges in the storm about 4 seconds after a normal polarity IC flash. About 5 minutes after the first blue starter, a

  1. Performance changes in NBA basketball players vary in starters vs. nonstarters over a competitive season.

    PubMed

    Gonzalez, Adam M; Hoffman, Jay R; Rogowski, Joseph P; Burgos, William; Manalo, Edwin; Weise, Keon; Fragala, Maren S; Stout, Jeffrey R

    2013-03-01

    The purpose of this study was to compare starters (S) with nonstarters (NS), on their ability to maintain strength, power, and quickness during a competitive National Basketball Association (NBA) season. Twelve NBA players were assessed at the beginning and end of the competitive season. However, because of trades and injury, only 7 (S = 4, NS = 3) players (28.2 ± 3.4 years; 200.9 ± 9.4 cm; 104.7 ± 13.9 kg; 7.2 ± 1.9% body fat) participated in both testing sessions and underwent analysis. Anthropometric performance (repetitive vertical jump power [VJP], squat power [SQT power], and reaction time) and subjective feelings of energy, focus, alertness, and fatigue were recorded during each testing session. Results were interpreted using magnitude-based statistics to make inferences on true differences between starters and nonstarters using the unequal variances t-statistic. Starters played an average of 27.8 ± 6.9 minutes per game and nonstarters played an average of 11.3 ± 7.0 minutes per game. During the course of the season, changes in VJP indicated that starters were likely to increase VJP (Δ = 77.3 ± 78.1 W) compared to nonstarters (Δ= -160.0 ± 151.0 W). There also appeared to be a possible beneficial effect on maintaining reaction time in starters (Δ = 0.005 ± 0.074 seconds) compared with nonstarters (Δ = 0.047 ± 0.073 seconds). In addition, no clear differences in ΔSQT power were seen between starters (Δ = 110.8 ± 141.4 W) and nonstarters (Δ = 143.5 ± 24.7 W). Changes in subjective feelings of energy indicated that starters were very likely to maintain their energy over the course of a season. It also appeared possible that starters were able to have a more positive response to subjective measures of fatigue and alertness than nonstarters, with only trivial differences between starters and nonstarters in regards to maintaining focus. Results of this study suggest that NBA players may enhance lower-body power, repetitive jump ability, and

  2. Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus.

    PubMed

    Ng, Elizabeth W; Yeung, Marie; Tong, Phillip S

    2011-01-31

    Recognized to confer health benefits to consumers, probiotics such as Lactobacillus acidophilus are commonly incorporated into fermented dairy products worldwide; among which yogurt is a popular delivery vehicle. To materialize most of the putative health benefits associated with probiotics, an adequate amount of viable cells must be delivered at the time of consumption. However, the loss in their viabilities during refrigerated storage has been demonstrated previously. This study focused on the effects of yogurt starter cultures on the survival of five strains of L. acidophilus, with emphases on low pH and acid production. Differential survival behavior between L. acidophilus strains was further analyzed. To this end, viable cell counts of L. acidophilus were determined weekly during 4°C storage in various types of yogurts made with Streptococcus thermophilus alone, L. delbrueckii ssp. bulgaricus alone, both species of the starter cultures, or glucono-delta-lactone (GDL). All yogurt types, except for pasteurized yogurts, were co-fermented with L. acidophilus. Yogurt filtrate was analyzed for the presence of any inhibitory substance and for the amount of hydrogen peroxide. Multiplication of L. acidophilus was not affected by the starter cultures as all strains reached high level on day 0 of the storage period. Throughout the 28-day storage period, cell counts of L. acidophilus PIM703 and SBT2062 remained steady (~6 × 10(7)CFU/g) in yogurts made with both starter cultures, whereas those of ATCC 700396 and NCFM were reduced by a maximum of 3 and 4.6 logs, respectively. When starter cultures were replaced by GDL, all strains survived well, suggesting that a low pH was not a critical factor dictating their survival. In addition, the filtrate collected from yogurts made with starter cultures appeared to have higher inhibitory activities against L. acidophilus than that made with GDL. The presence of viable starter cultures was necessary to adversely affect the

  3. Sensory quality of Camembert-type cheese: Relationship between starter cultures and ripening molds.

    PubMed

    Galli, Bruno Domingues; Martin, José Guilherme Prado; da Silva, Paula Porrelli Moreira; Porto, Ernani; Spoto, Marta Helena Fillet

    2016-10-03

    Starter cultures and ripening molds used in the manufacture of moldy cheese aimed at obtaining characteristic flavors and textures considerably differ among dairy industries. Thus, the study of variables inherent to the process and their influence on sensory patterns in cheese can improve the standardization and control of the production process. The aim of this work was to study the influence of three different variables on the sensory quality of Camembert-type cheese: type of lactic bacteria, type of ripener molds and inoculation method. Batches of Camembert-type cheese were produced using O or DL-type mesophilic starter culture, ripened with Penicillium camemberti or Penicillium candidum and mold inoculation was made directly into the milk or by spraying. All batches were sensorially evaluated using Quantitative Descriptive Analysis (QDA) with panelists trained for various attributes. Among the combinations analyzed, those resulting in more typical Camembert-type cheese were those using O-type mesophilic starter culture and P. candidum maturation mold directly applied into the milk or sprayed and those using DL-type mesophilic starter and P. camemberti ripener mold applied by surface spraying. These results demonstrate, therefore, that the combination of different ripener molds, inoculation methods and starter cultures directly influences the sensory quality of Camembert-type cheese, modifying significantly its texture, appearance, aroma and taste. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Protection by fungal starters against growth and secondary metabolite production of fungal spoilers of cheese.

    PubMed

    Nielsen, M S; Frisvad, J C; Nielsen, P V

    1998-06-30

    The influence of fungal starter cultures on growth and secondary metabolite production of fungal contaminants associated with cheese was studied on laboratory media and Camembert cheese. Isolates of the species Penicillium nalgiovense, P. camemberti, P. roqueforti and Geotrichum candidum were used as fungal starters. The species P. commune, P. caseifulvum, P. verrucosum, P. discolor, P. solitum, P. coprophilum and Aspergillus versicolor were selected as contaminants. The fungal starters showed different competitive ability on laboratory media and Camembert cheese. The presence of the Penicillium species, especially P. nalgiovense, showed an inhibitory effect on the growth of the fungal contaminants on laboratory media. G. candidum caused a significant inhibition of the fungal contaminants on Camembert cheese. The results indicate that G. candidum plays an important role in competition with undesirable microorganisms in mould fermented cheeses. Among the starters, P. nalgiovense caused the largest reduction in secondary metabolite production of the fungal contaminants on the laboratory medium. On Camembert cheese no significant changes in metabolite production of the fungal contaminants was observed in the presence of the starters.

  5. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments.

    PubMed

    Blangetti, Marco; Rosso, Heléna; Prandi, Cristina; Deagostino, Annamaria; Venturello, Paolo

    2013-01-17

    Since the first report and due to its handiness and wide scope, the Suzuki-Miyaura (SM) cross coupling reaction has become a routine methodology in many laboratories worldwide. With respect to other common transition metal catalyzed cross couplings, the SM reaction has been so far less exploited as a tool to introduce an acyl function into a specific substrate. In this review, the various approaches found in the literature will be considered, starting from the direct SM acylative coupling to the recent developments of cross coupling between boronates and acyl chlorides or anhydrides. Special attention will be dedicated to the use of masked acyl boronates, alkoxy styryl and alkoxy dienyl boronates as coupling partners. A final section will be then focused on the acyl SM reaction as key synthetic step in the framework of natural products synthesis.

  6. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  7. Fatty acyl-CoA reductases of birds

    PubMed Central

    2011-01-01

    Background Birds clean and lubricate their feathers with waxes that are produced in the uropygial gland, a holocrine gland located on their back above the tail. The type and the composition of the secreted wax esters are dependent on the bird species, for instance the wax ester secretion of goose contains branched-chain fatty acids and unbranched fatty alcohols, whereas that of barn owl contains fatty acids and alcohols both of which are branched. Alcohol-forming fatty acyl-CoA reductases (FAR) catalyze the reduction of activated acyl groups to fatty alcohols that can be esterified with acyl-CoA thioesters forming wax esters. Results cDNA sequences encoding fatty acyl-CoA reductases were cloned from the uropygial glands of barn owl (Tyto alba), domestic chicken (Gallus gallus domesticus) and domestic goose (Anser anser domesticus). Heterologous expression in Saccharomyces cerevisiae showed that they encode membrane associated enzymes which catalyze a NADPH dependent reduction of acyl-CoA thioesters to fatty alcohols. By feeding studies of transgenic yeast cultures and in vitro enzyme assays with membrane fractions of transgenic yeast cells two groups of isozymes with different properties were identified, termed FAR1 and FAR2. The FAR1 group mainly synthesized 1-hexadecanol and accepted substrates in the range between 14 and 18 carbon atoms, whereas the FAR2 group preferred stearoyl-CoA and accepted substrates between 16 and 20 carbon atoms. Expression studies with tissues of domestic chicken indicated that FAR transcripts were not restricted to the uropygial gland. Conclusion The data of our study suggest that the identified and characterized avian FAR isozymes, FAR1 and FAR2, can be involved in wax ester biosynthesis and in other pathways like ether lipid synthesis. PMID:22151413

  8. The activity of Rhizomuchor miehei lipase as a biocatalyst in enzymatic acylation of cyclic alcohol

    NASA Astrophysics Data System (ADS)

    Iftitah, Elvina Dhiaul; Srihardyastuti, Arie; Ariefin, Mokhamat

    2017-03-01

    We report the activity of Rhizomuchor miehei lipase (RML) as a biocatalyst, in particular the investigations concerning the effort of substrate-structure reactivity on the enzymatic acylation. The acylation was studied using acetic anhydride as an acyl donor and performed in n-hexane as a solvent. The selectivity of the enzymatic acylation was revealed by Gas Chromatography-Mass Spectra. We observed that, RML has shown different behavior when catalyzing the acylation of isopulegol and mixture of isopulegol and citronellal (ratio 1:1). The chemoselectivity for the O-acylation was improved when the acyl acceptor included mixture of isopulegol and citronellal

  9. Lactococcus lactis Diversity in Undefined Mixed Dairy Starter Cultures as Revealed by Comparative Genome Analyses and Targeted Amplicon Sequencing of epsD.

    PubMed

    Frantzen, Cyril A; Kleppen, Hans Petter; Holo, Helge

    2018-02-01

    Undefined mesophilic mixed (DL) starter cultures are used in the production of continental cheeses and contain unknown strain mixtures of Lactococcus lactis and leuconostocs. The choice of starter culture affects the taste, aroma, and quality of the final product. To gain insight into the diversity of Lactococcus lactis strains in starter cultures, we whole-genome sequenced 95 isolates from three different starter cultures. Pan-genomic analyses, which included 30 publically available complete genomes, grouped the strains into 21 L. lactis subsp . lactis and 28 L. lactis subsp. cremoris lineages. Only one of the 95 isolates grouped with previously sequenced strains, and the three starter cultures showed no overlap in lineage distributions. The culture diversity was assessed by targeted amplicon sequencing using purR , a core gene, and epsD , present in 93 of the 95 starter culture isolates but absent in most of the reference strains. This enabled an unprecedented discrimination of starter culture Lactococcus lactis and revealed substantial differences between the three starter cultures and compositional shifts during the cultivation of cultures in milk. IMPORTANCE In contemporary cheese production, standardized frozen seed stock starter cultures are used to ensure production stability, reproducibility, and quality control of the product. The dairy industry experiences significant disruptions of cheese production due to phage attacks, and one commonly used countermeasure to phage attack is to employ a starter rotation strategy, in which two or more starters with minimal overlap in phage sensitivity are used alternately. A culture-independent analysis of the lactococcal diversity in complex undefined starter cultures revealed large differences between the three starter cultures and temporal shifts in lactococcal composition during the production of bulk starters. A better understanding of the lactococcal diversity in starter cultures will enable the development of

  10. Diacylglycerol Acyltransferase 1 Is Regulated by Its N-Terminal Domain in Response to Allosteric Effectors.

    PubMed

    Caldo, Kristian Mark P; Acedo, Jeella Z; Panigrahi, Rashmi; Vederas, John C; Weselake, Randall J; Lemieux, M Joanne

    2017-10-01

    Diacylglycerol acyltransferase 1 (DGAT1) is an integral membrane enzyme catalyzing the final and committed step in the acyl-coenzyme A (CoA)-dependent biosynthesis of triacylglycerol (TAG). The biochemical regulation of TAG assembly remains one of the least understood areas of primary metabolism to date. Here, we report that the hydrophilic N-terminal domain of Brassica napus DGAT1 (BnaDGAT1 1-113 ) regulates activity based on acyl-CoA/CoA levels. The N-terminal domain is not necessary for acyltransferase activity and is composed of an intrinsically disordered region and a folded segment. We show that the disordered region has an autoinhibitory function and a dimerization interface, which appears to mediate positive cooperativity, whereas the folded segment of the cytosolic region was found to have an allosteric site for acyl-CoA/CoA. Under increasing acyl-CoA levels, the binding of acyl-CoA with this noncatalytic site facilitates homotropic allosteric activation. Enzyme activation, on the other hand, is prevented under limiting acyl-CoA conditions (low acyl-CoA-to-CoA ratio), whereby CoA acts as a noncompetitive feedback inhibitor through interaction with the same folded segment. The three-dimensional NMR solution structure of the allosteric site revealed an α-helix with a loop connecting a coil fragment. The conserved amino acid residues in the loop interacting with CoA were identified, revealing details of this important regulatory element for allosteric regulation. Based on these results, a model is proposed illustrating the role of the N-terminal domain of BnaDGAT1 as a positive and negative modulator of TAG biosynthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Effect of proteolytic starter cultures as leavening agents of pizza dough.

    PubMed

    Pepe, O; Villani, F; Oliviero, D; Greco, T; Coppola, S

    2003-08-01

    Lactic acid bacteria (LAB) and yeasts were selected on the basis of in vitro proteolytic activity against wheat gluten protein and then assayed as leavening agents for pizza dough. Trials were carried out to compare a proteolytic starter (Prt(+)), consisting of Lactobacillus sakei T56, Weissella paramesenteroides A51 and Candida krusei G271, and a non-proteolytic starter (Prt(-)), consisting of Lb. sakei T58, W. paramesenteroides A58 and Saccharomyces cerevisiae T22. The proteolytic activity of the starter cultures was monitored immediately after mixing of the dough and throughout the fermentation process. The proteolytic activity was assessed by analysing the salt-soluble protein (SSP) and the dioxane-soluble protein (DSP) fractions of the pizza dough by discontinuous SDS-PAGE. Only the Prt(+) starter exhibited considerable qualitative and quantitative changes in the electrophoretic patterns of the protein fractions extracted. After the fermentation, the Prt(+) and Prt(-) doughs were tested to evaluate the influence of the proteolytic activity on the mechanical properties of the dough before and after baking. Indications emerged suggesting an influence of the proteolytic activity on the viscoelasticity of pizza dough. The pizza dough with Prt(+) strains showed an increase in viscous properties during the fermentation as compared with the Prt(-) dough. Moreover, an increase in the firmness of the crumb was observed in Prt(+) baked pizza dough.

  12. Acyl-protein thioesterase 2 catalyzes the deacylation of peripheral membrane-associated GAP-43.

    PubMed

    Tomatis, Vanesa M; Trenchi, Alejandra; Gomez, Guillermo A; Daniotti, Jose L

    2010-11-30

    An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution.

  13. Interaction between milk allowance and fat content of the starter feed on performance of Holstein calves.

    PubMed

    Araujo, G; Terré, M; Bach, A

    2014-10-01

    Sixty-six Holstein male calves [42 ± 6.0 kg of body weight (BW) and 12 ± 3.1 d of age] were housed individually and allocated to 1 of 4 treatments following a 2 × 2 factorial complete randomized design to assess the potential interaction between milk replacer (MR) allowance and fat content in the starter feed. Thus, 4 treatments were evaluated: a low-fat (4.1% fat; LF) starter feed offered along with 4 L/d of MR (4 LF), a high-fat (11.2% fat; HF) starter feed plus 4 L/d of MR (4 HF), a LF starter feed offered with 6 L/d of MR (6LF), and an HF starter feed offered with 6 L/d of MR (6 HF). Calves were fed either 4 or 6 L/d of MR (25% crude protein and 19.2% fat) in 2 offers (0800 and 1630 h) and had ad libitum access to either an LF or an HF starter feed (21.4 and 22.3% crude protein). Calves were weaned at wk 6 of study by halving the daily MR allowance for 1 wk. Individual MR and starter feed intakes were recorded daily and BW was determined weekly. A glucose tolerance test was performed on d 30 of study to evaluate the effects of increased energy provision on glucose metabolism. Apparent feed digestibility was measured for the last 5 d of study. Overall, fat content of starter feed had no effect on solid feed intake. However, during wk 8 of study (after weaning), calves in the LF treatment had greater starter feed intake than HF calves. Calves on 6 L/d of MR had greater BW than calves fed 4 L/d from the second week of study until weaning. After weaning, 6 LF calves had lesser BW than 6 HF calves. Calves on 6 L/d of MR had greater average daily gain than calves fed 4 L/d, and 6 HF calves tended to have the greatest average daily gain. Glucose clearance rate tended to be lesser for HF than for LF calves. In conclusion, offering 6 L/d of MR increased growth performance before weaning and, when offering 6 L/d of MR, feeding a high-fat starter feed resulted in the greatest BW after weaning. Copyright © 2014 American Dairy Science Association. Published by Elsevier

  14. Acyl carrier proteins from sunflower (Helianthus annuus L.) seeds and their influence on FatA and FatB acyl-ACP thioesterase activities.

    PubMed

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Salas, Joaquín J

    2016-08-01

    The kinetics of acyl-ACP thioesterases from sunflower importantly changed when endogenous ACPs were used. Sunflower FatB was much more specific towards saturated acyl-ACPs when assayed with them. Acyl carrier proteins (ACPs) are small (~9 kDa), soluble, acidic proteins involved in fatty acid synthesis in plants and bacteria. ACPs bind to fatty acids through a thioester bond, generating the acyl-ACP lipoproteins that are substrates for fatty acid synthase (FAS) complexes, and that are required for fatty acid chain elongation, acting as important intermediates in de novo fatty acid synthesis in plants. Plants, usually express several ACP isoforms with distinct functionalities. We report here the cloning of three ACPs from developing sunflower seeds: HaACP1, HaACP2, and HaACP3. These proteins were plastidial ACPs expressed strongly in seeds, and as such they are probably involved in the synthesis of sunflower oil. The recombinant sunflower ACPs were expressed in bacteria but they were lethal to the prokaryote host. Thus, they were finally produced using the GST gene fusion system, which allowed the apo-enzyme to be produced and later activated to the holo form. Radiolabelled acyl-ACPs from the newly cloned holo-ACP forms were also synthesized and used to characterize the activity of recombinant sunflower FatA and FatB thioesterases, important enzymes in plant fatty acids synthesis. The activity of these enzymes changed significantly when the endogenous ACPs were used. Thus, FatA importantly increased its activity levels, whereas FatB displayed a different specificity profile, with much high activity levels towards saturated acyl-CoA derivatives. All these data pointed to an important influence of the ACP moieties on the activity of enzymes involved in lipid synthesis.

  15. Vitamin B5 and N-acetylcysteine in nonalcoholic steatohepatitis: a pre-clinical study in a dietary mouse model

    PubMed Central

    Machado, Mariana Verdelho; Kruger, Leandi; Jewell, Mark L.; Michelotti, Gregory Alexander; de Almeida Pereira, Thiago; Xie, Guanhua; Moylan, Cynthia A.; Diehl, Anna Mae

    2015-01-01

    Background Nonalcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease and second indication for liver transplantation in the Western world. Effective therapy is still not available. Previously we showed a critical role for caspase-2 in the pathogenesis of nonalcoholic steatohepatitis (NASH), the potentially progressive form of NAFLD. An imbalance between free Coenzyme A (CoA) and acyl-CoA ratio is known to induce caspase-2 activation. Objectives We aimed to evaluate CoA metabolism and the effects of supplementation with CoA precursors, pantothenate and cysteine, in mouse models of NASH. Methods CoA metabolism was evaluated in methionine-choline deficient (MCD) and Western diet mouse models of NASH. MCD-diet fed mice were treated with pantothenate and N-acetylcysteine or placebo to determine effects on NASH. Results Liver free CoA content was reduced, pantothenate kinase (PANK), the rate-limiting enzyme in the CoA biosynthesis pathway, was down-regulated, and CoA degrading enzymes were increased in mice with NASH. Decreased hepatic free CoA content was associated with increased caspase-2 activity, and correlated with worse liver cell apoptosis, inflammation and fibrosis. Treatment with pantothenate and N-acetylcysteine did not inhibit caspase-2 activation, improve NASH, normalize PANK expression, or restore free CoA levels in MCD diet-fed mice. Conclusion In mice with NASH, hepatic CoA metabolism is impaired, leading to decreased free CoA content, activation of caspase-2, and increased liver cell apoptosis. Dietary supplementation with CoA precursors did not restore CoA levels or improve NASH, suggesting that alternative approaches are necessary to normalize free CoA during NASH. PMID:26403427

  16. Acyl Meldrum's acid derivatives: application in organic synthesis

    NASA Astrophysics Data System (ADS)

    Janikowska, K.; Rachoń, J.; Makowiec, S.

    2014-07-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references.

  17. Tracing microbiota changes in yamahai-moto, the traditional Japanese sake starter.

    PubMed

    Koyanagi, Takashi; Nakagawa, Akira; Kiyohara, Masashi; Matsui, Hiroshi; Tsuji, Atsushi; Barla, Florin; Take, Harumi; Katsuyama, Yoko; Tokuda, Koji; Nakamura, Shizuo; Minami, Hiromichi; Enomoto, Toshiki; Katayama, Takane; Kumagai, Hidehiko

    2016-01-01

    Sake is made from steamed rice, malted rice, and water. Sake production begins with the preparation of a small-scale starter (moto); the quality of moto significantly influences the flavor and richness of sake. In the traditional starter, yamahai-moto, the growth of naturally occurring lactic acid bacteria represses the putrefactive micro-organisms, whereas in the modern starter, sokujo-moto, this is achieved by adding lactic acid. In this study, the successive change in bacterial flora of yamahai-moto was analyzed by pyrosequencing 16S ribosomal RNA genes. Lactobacillus was dominant throughout the process (93-98%). Nitrate-reducing bacteria that have been generally assumed to be the first colonizers of yamahai-moto were scarcely found in the early stage, but Lactobacillus acidipiscis dominated. Lactobacillus sakei drastically increased in the middle stage. This is the first report, though one case study, to show how the early stage microbiota in Japanese yamahai-moto is varyingly controlled without nitrate-reducing bacteria using next-generation sequencing.

  18. Rapid Acyl-Homoserine Lactone Quorum Signal Biodegradation in Diverse Soils†

    PubMed Central

    Wang, Ya-Juan; Leadbetter, Jared Renton

    2005-01-01

    Signal degradation impacts all communications. Although acyl-homoserine lactone (acyl-HSL) quorum-sensing signals are known to be degraded by defined laboratory cultures, little is known about their stability in nature. Here, we show that acyl-HSLs are biodegraded in soils sampled from diverse U.S. sites and by termite hindgut contents. When amended to samples at physiologically relevant concentrations, 14C-labeled acyl-HSLs were mineralized to 14CO2 rapidly and, at most sites examined, without lag. A lag-free turf soil activity was characterized in further detail. Heating or irradiation of the soil prior to the addition of radiolabel abolished mineralization, whereas protein synthesis inhibitors did not. Mineralization exhibited an apparent Km of 1.5 μM acyl-HSL, ca. 1,000-fold lower than that reported for a purified acyl-HSL lactonase. Under optimal conditions, acyl-HSL degradation proceeded at a rate of 13.4 nmol · h−1 · g of fresh weight soil−1. Bioassays established that the final extent of signal inactivation was greater than for its full conversion to CO2 but that the two processes were well coupled kinetically. A most probable number of 4.6 × 105 cells · g of turf soil−1 degraded physiologically relevant amounts of hexanoyl-[1-14C]HSL to 14CO2. It would take chemical lactonolysis months to match the level of signal decay achieved in days by the observed biological activity. Rapid decay might serve either to quiet signal cross talk that might otherwise occur between spatially separated microbial aggregates or as a full system reset. Depending on the context, biological signal decay might either promote or complicate cellular communications and the accuracy of population density-based controls on gene expression in species-rich ecosystems. PMID:15746331

  19. An annotated database of Arabidopsis mutants of acyl lipid metabolism

    DOE PAGES

    McGlew, Kathleen; Shaw, Vincent; Zhang, Meng; ...

    2014-12-10

    Mutants have played a fundamental role in gene discovery and in understanding the function of genes involved in plant acyl lipid metabolism. The first mutant in Arabidopsis lipid metabolism ( fad4) was described in 1985. Since that time, characterization of mutants in more than 280 genes associated with acyl lipid metabolism has been reported. This review provides a brief background and history on identification of mutants in acyl lipid metabolism, an analysis of the distribution of mutants in different areas of acyl lipid metabolism and presents an annotated database (ARALIPmutantDB) of these mutants. The database provides information on the phenotypesmore » of mutants, pathways and enzymes/proteins associated with the mutants, and allows rapid access via hyperlinks to summaries of information about each mutant and to literature that provides information on the lipid composition of the mutants. Mutants for at least 30 % of the genes in the database have multiple names, which have been compiled here to reduce ambiguities in searches for information. Furthermore, the database should also provide a tool for exploring the relationships between mutants in acyl lipid-related genes and their lipid phenotypes and point to opportunities for further research.« less

  20. Die Starter: A New System to Manage Early Feasibility in Sheet Metal Forming

    NASA Astrophysics Data System (ADS)

    Narainen, Rodrigue; Porzner, Harald

    2016-08-01

    Die Starter, a new system developed by ESI Group, allows the user to drastically reduce the number of iterations during the early tool process feasibility. This innovative system automatically designs the first quick die face, generating binder and addendum surfaces (NURBS surfaces) by taking account the full die process. Die Starter also improves the initial die face based on feasibility criteria (avoiding splits, wrinkles) by automatically generating the geometrical modifications of the binder and addendum and the bead restraining forces with minimal material usage. This paper presents a description of the new system and the methodology of Die Starter. Some industrial examples are presented from the part geometry to final die face including automatic developed flanges, part on binder and inner binder.

  1. Plasma concentrations of glucagon-like peptide 1 and 2 in calves fed calf starters containing lactose.

    PubMed

    Inabu, Y; Saegusa, A; Inouchi, K; Koike, S; Oba, M; Sugino, T

    2017-11-01

    The objective of this study was to evaluate the effects of lactose inclusion in calf starters on plasma glucagon-like peptide (GLP)-1 and GLP-2 concentrations and gastrointestinal tract development in calves. Holstein bull calves (n = 45) were raised on an intensified nursing program using milk replacer containing 28.0% CP and 15.0% fat, and were fed a texturized calf starter containing 0 (control), 5.0 (LAC5), or 10.0% (LAC10; n = 15 for each treatment) lactose on a DM basis. Lactose was included in the starter by partially replacing dry ground corn in pelleted portion of the starter. All calf starters were formulated with 23.1% CP. The ethanol-soluble carbohydrate concentrations of the control, LAC5, and LAC10 starters were 7.3, 12.3, and 16.8% on a DM basis, respectively. Starch concentrations of the control, LAC5, and LAC10 starters were 29.7, 27.0, and 21.4% on a DM basis, respectively. All calves were fed treatment calf starters ad libitum. Blood samples were obtained weekly from 1 to 11 wk of age, and used to measure plasma GLP-1, GLP-2, and insulin concentrations, serum β-hydroxybutyrate (BHB) concentration, and blood glucose concentration. At 80 d of age, calves were euthanized, and weights of the reticulorumen, omasum, abomasum, small intestine, and large intestine tissue were measured. Serum BHB concentration was higher for calves fed the LAC10 (171 μmol/L) starter than for those fed the control (151 μmol/L) and LAC5 (145 μmol/L) starters. Plasma GLP-1 and GLP-2 concentrations did not differ between treatments. However, relative to the baseline (1 wk of age), the plasma GLP-1 concentration was higher for the LAC10 (125.9%) than for the LAC5 (68.2%) and control (36.8%), and for the LAC5 than for the control (36.8%). Moreover, similar differences between treatments were observed for GLP-2 concentration relative to the baseline (88.2, 76.9, and 74.9% for LAC10, LAC5, and control treatments, respectively). The serum BHB concentration was positively

  2. Sodium reduction in starter-free Queso Fresco

    USDA-ARS?s Scientific Manuscript database

    Creating lower sodium Queso Fresco (QF) for health conscious consumers is a challenge when this high-moisture, higher pH, starter-free cheese relies on high salt levels to control the microflora and to obtain its signature salty taste. In phase 1, QF made from pasteurized, homogenized bovine milk wi...

  3. From Good to Great: Discussion Starter Tool

    ERIC Educational Resources Information Center

    Center on Great Teachers and Leaders, 2014

    2014-01-01

    In the report "From Good to Great: Exemplary Teachers Share Perspectives on Increasing Teacher Effectiveness across the Career Continuum," (See full report in ERIC at ED555657) National and State Teachers of the Year shared their views on what helped them become great teachers. This accompanying "Discussion Starter Tool" builds…

  4. The development of tobacco use in adolescence among "snus starters" and "cigarette starters": an analysis of the Swedish "BROMS" cohort.

    PubMed

    Galanti, Maria Rosaria; Rosendahl, Ingvar; Wickholm, Seppo

    2008-02-01

    Whether the use of smokeless tobacco can facilitate the transition to cigarette smoking and/or to prolonged tobacco use in adolescence is unclear. We analyzed data from a cohort of 2,938 Swedish adolescents, with six follow-up assessments of tobacco use between the ages of 11 and 18 years. The majority of tobacco users (70%) started by smoking cigarettes, 11% took up snus before smoking, and 19% used both tobacco types close in time. Ever users of tobacco at baseline had a higher risk of being current smokers and/or smokeless tobacco users at the end of follow-up compared with never users, with the highest excess relative risk for "mixed users." Adolescents who initiated tobacco use with cigarettes had a non-significantly increased probability to end up as current smokers compared with snus starters (adjusted OR=1.42; 95% CI 0.98-2.10) The OR of smoking for "mixed starters" was 2.54 (95% CI 1.68-3.91). The risk of becoming current user of any tobacco was also significantly enhanced for "mixed starters." Marked sex differences were observed in these associations, as initiation with cigarettes rather than with snus predicted current smoking or tobacco use only among females. Progression of tobacco use in adolescence is not predicted by onset with snus or cigarettes, but rather by initiation with both tobacco types close in time and/or at young age. The proportion of adolescent smoking prevalence attributable to a potential induction effect of snus is likely small.

  5. Improvement of FK506 Production in Streptomyces tsukubaensis by Genetic Enhancement of the Supply of Unusual Polyketide Extender Units via Utilization of Two Distinct Site-Specific Recombination Systems

    PubMed Central

    Chen, Dandan; Zhang, Qi; Zhang, Qinglin; Cen, Peilin

    2012-01-01

    FK506 is a potent immunosuppressant that has a wide range of clinical applications. Its 23-member macrocyclic scaffold, mainly with a polyketide origin, features two methoxy groups at C-13 and C-15 and one allyl side chain at C-21, due to the region-specific incorporation of two unusual extender units derived from methoxymalonyl-acyl carrier protein (ACP) and allylmalonyl-coenzyme A (CoA), respectively. Whether their intracellular formations can be a bottleneck for FK506 production remains elusive. In this study, we report the improvement of FK506 yield in the producing strain Streptomyces tsukubaensis by the duplication of two sets of pathway-specific genes individually encoding the biosyntheses of these two extender units, thereby providing a promising approach to generate high-FK506-producing strains via genetic manipulation. Taking advantage of the fact that S. tsukubaensis is amenable to two actinophage (ΦC31 and VWB) integrase-mediated recombination systems, we genetically enhanced the biosyntheses of methoxymalonyl-ACP and allylmalonyl-CoA, as indicated by transcriptional analysis. Together with the optimization of glucose supplementation, the maximal FK506 titer eventually increased by approximately 150% in comparison with that of the original strain. The strategy of engineering the biosynthesis of unusual extender units described here may be applicable to improving the production of other polyketide or nonribosomal peptide natural products that contain pathway-specific building blocks. PMID:22582065

  6. Evaluation of Feruloylated and p-Coumaroylated Arabinosyl Units in Grass Arabinoxylans by Acidolysis in Dioxane/Methanol.

    PubMed

    Lapierre, Catherine; Voxeur, Aline; Karlen, Steven D; Helm, Richard F; Ralph, John

    2018-05-30

    The arabinosyl side chains of grass arabinoxylans are partially acylated by p-coumarate ( pCA) and ferulate (FA). These aromatic side chains can cross-couple wall polymers resulting in modulation of cell wall physical properties. The determination of p-coumaroylated and feruloylated arabinose units has been the target of analytical efforts with trifluoroacetic acid hydrolysis the standard method to release feruloylated and p-coumaroylated arabinose units from arabinoxylans. Herein, we report on a more robust method to measure these acylated units. Acidolysis of extractive-free grass samples in a dioxane/methanol/aqueous 2 M HCl mixture provided the methyl 5- O- p-coumaroyl- and 5- O-feruloyl-l-arabinofuranoside anomers ( pCA-MeAra and FA-MeAra). These conjugates were readily analyzed by liquid chromatography combined with both UV and MS detection. The method revealed the variability of the relative acylation of arabinose units by pCA or FA in grass cell walls. This methodology will permit delineation of hydroxycinnamate acylation patterns in arabinoxylans.

  7. Use of autochthonous Pediococcus acidilactici and Staphylococcus vitulus starter cultures in the production of "chorizo" in 2 different traditional industries.

    PubMed

    Casquete, Rocío; Benito, María J; Martín, Alberto; Ruiz-Moyano, Santiago; Aranda, Emilio; Córdoba, María G

    2012-01-01

    The present study determined how the different ripening conditions affected the growth and development of 3 autochthonous starter cultures, and the physico-chemical and sensory characteristics of chorizo. Each of 3 strains of Pediococcus acidilactici (MC184, MS198, and MS200) and one of Staphylococcus vitulus (RS34) were associated to prepare the starter cultures, P184S34, P198S34, and P200S34. Then, chorizo was prepared following 2 manufacturing procedures. The autochthonous starter cultures were able to compete and colonize the sausages in both ripening procedures. The use of the starter cultures showed evident differences by the texture analysis, with the control batches being generally tougher than the starter culture batches. Also, the highest biogenic amine (BA) levels were found in control batches and the lowest in P200S34 batches. While the use of these starter cultures does not change the sensory characteristics of these traditional fermented sausages, it improves their homogeneity and safety, except for P184S34 batch in which more BAs are detected in industry 2. The 3 autochthonous starter cultures selected could be used in traditional industries because they are able to compete well and colonize the dry fermented sausages "chorizo." The use of these starter cultures improves the texture and homogeneity of traditional fermented sausages. Biogenic amines decreased in the starter cultures batches improving the safety. © 2011 Institute of Food Technologists®

  8. Pellet starters in layering technique using concentrated drug solution.

    PubMed

    Gryczová, Eva; Rabisková, Miloslava; Vetchý, David; Krejcová, Katerina

    2008-12-01

    Characteristics of inert starters in drug solution layering are important for successful active pellet formation. Four types of starters composed of sucrose or microcrystalline cellulose (MCC) or lactose and MCC were compared in our study. The active pellets were prepared using Wurster type apparatus. Yield and pellet quality parameters were determined. The highest yield (85.66-89.41%) was obtained for cores composed of MCC due to their insolubility in water (the drug solvent) and good mechanical properties. On the contrary, soluble and brittle sucrose cores dissolved partially during the process forming undesirable agglomerates and giving lower yield (76.2%). All pellet samples showed good flow properties and drug content from 82.4 to 94.5% of the theoretical drug amount.

  9. Analysis of protein prenylation and S-acylation using gas chromatography-coupled mass spectrometry.

    PubMed

    Sorek, Nadav; Akerman, Amir; Yalovsky, Shaul

    2013-01-01

    Lipid modifications play a key role in protein targeting and function. The two Arabidopsis Gγ subunits, AGG1 and AGG2, have been shown to undergo prenylation (AGG1) and S-acylation (AGG2). Prenylation involves covalent nonreversible attachment of either farnesyl (15 carbons) or geranylgeranyl (20 carbons) isoprenoids to conserved cysteine residues at or near the C-terminus of proteins. S-acylation, frequently referred to as palmitoylation, involves the attachment of acyl fatty acids to thiol groups of cysteine residues through a reversible thioester bond. The procedures described below allow direct analysis of the prenyl and acyl moieties using gas chromatography-coupled mass spectrometry (GC-MS). These methods are based on (1) cleavage of prenyl groups with the Raney nickel catalyst and (2) analysis of protein S-acylation following cleavage of the acyl fatty acids from proteins by hydrogenation with platinum (IV) oxide. The hydrogenation under these conditions causes an acid transesterification of the acyl moieties, adding an ethyl group to the carboxyl head of the fatty acid. The addition of the ethyl group reduces the polarity of the fatty acids, allowing their efficient separation by gas chromatography.

  10. Production and monomer composition of exopolysaccharides by yogurt starter cultures.

    PubMed

    Frengova, G I; Simova, E D; Beshkova, D M; Simov, Z I

    2000-12-01

    As components of starter cultures for Bulgarian yogurt, Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus revealed extensive exopolysaccharide (EPS) production activity when cultivated in whole cow's milk. The polymer-forming activity of thermophilic streptococci was lower (230-270 mg EPS/L) than that of the lactobacilli (400-540 mg EPS/L). Mixed cultures stimulated EPS production in yogurt manufacture, and a maximum concentration of 720-860 mg EPS/L was recorded after full coagulation of milk. The monomer structure of the exopolysaccharides formed by the yogurt starter cultures principally consists of galactose and glucose (1:1), with small amounts of xylose, arabinose, and/or mannose.

  11. Structure of Mycobacterium tuberculosis mtFabD, a malonyl-CoA:acyl carrier protein transacylase (MCAT).

    PubMed

    Ghadbane, Hemza; Brown, Alistair K; Kremer, Laurent; Besra, Gurdyal S; Fütterer, Klaus

    2007-10-01

    Mycobacteria display a unique and unusual cell-wall architecture, central to which is the membrane-proximal mycolyl-arabinogalactan-peptidoglycan core (mAGP). The biosynthesis of mycolic acids, which form the outermost layer of the mAGP core, involves malonyl-CoA:acyl carrier protein transacylase (MCAT). This essential enzyme catalyses the transfer of malonyl from coenzyme A to acyl carrier protein AcpM, thus feeding these two-carbon units into the chain-elongation cycle of the type II fatty-acid synthase. The crystal structure of M. tuberculosis mtFabD, the mycobacterial MCAT, has been determined to 3.0 A resolution by multi-wavelength anomalous dispersion. Phasing was facilitated by Ni2+ ions bound to the 20-residue N-terminal affinity tag, which packed between the two independent copies of mtFabD.

  12. Differences between Cheddar cheese manufactured by the milled-curd and stirred-curd methods using different commercial starters.

    PubMed

    Shakeel-ur-Rehman; Drake, M A; Farkye, N Y

    2008-01-01

    Traditionally, Cheddar cheese is made by the milled-curd method. However, because of the mechanization of cheese making and time constraints, the stirred-curd method is more commonly used by many large-scale commercial manufacturers. This study was undertaken to evaluate quality differences during ripening (at 2 and 8 degrees C) of Cheddar cheese made by the milled-curd and stirred-curd methods, using 4 different commercial starters. Twenty-four vats (4 starters x 2 methods x 3 replicates) were made, with approximately 625 kg of pasteurized (72 degrees C x 16 s) whole milk in each vat. Fat, protein, and salt contents of the cheeses were not affected by the starter. Starter cell densities in cheese were not affected by the method of manufacture. Nonstarter lactic acid bacteria counts at 90, 180, and 270 d were influenced by the manufacturing method, with a higher trend in milled-curd cheeses. Proteolysis in cheese (percentage of water-soluble N) was influenced by the starter and manufacturing method (270 d). Sensory analysis by a trained descriptive panel (n = 8) revealed differences in cooked, whey, sulfur, brothy, milk fat, umami, and bitter attributes caused by the starter, whereas only brothy flavor was influenced by storage temperature. The method of manufacture influenced diacetyl, sour, and salty flavors.

  13. The Use of Lactic Acid Bacteria Starter Cultures during the Processing of Fermented Cereal-based Foods in West Africa: A Review.

    PubMed

    Soro-Yao, Amenan Anastasie; Brou, Kouakou; Amani, Georges; Thonart, Philippe; Djè, Koffi Marcelin

    2014-12-01

    Lactic acid bacteria (LAB) are the primary microorganisms used to ferment maize-, sorghum- or millet-based foods that are processed in West Africa. Fermentation contributes to desirable changes in taste, flavour, acidity, digestibility and texture in gruels (ogi, baca, dalaki), doughs (agidi, banku, komé) or steam-cooked granulated products (arraw, ciacry, dégué). Similar to other fermented cereal foods that are available in Africa, these products suffer from inconsistent quality. The use of LAB starter cultures during cereal dough fermentation is a subject of increasing interest in efforts to standardise this step and guaranty product uniformity. However, their use by small-scale processing units or small agro-food industrial enterprises is still limited. This review aims to illustrate and discuss major issues that influence the use of LAB starter cultures during the processing of fermented cereal foods in West Africa.

  14. Head-group acylation of monogalactosyldiacylglycerol is a common stress response, but the acyl-galactose acyl composition varies with the plant species and applied stress

    USDA-ARS?s Scientific Manuscript database

    Head group acylation of monogalactosyldiacylglycerol is a plant lipid modification occurring during bacterial infection. Little is known about the range of stresses that induce this lipid modification, the molecular species induced, and the function of the modification. Lipidomic analysis using trip...

  15. Acyl transfer from membrane lipids to peptides is a generic process.

    PubMed

    Dods, Robert H; Bechinger, Burkhard; Mosely, Jackie A; Sanderson, John M

    2013-11-15

    The generality of acyl transfer from phospholipids to membrane-active peptides has been probed using liquid chromatography-mass spectrometry analysis of peptide-lipid mixtures. The peptides examined include melittin, magainin II, PGLa, LAK1, LAK3 and penetratin. Peptides were added to liposomes with membrane lipid compositions ranging from pure phosphatidylcholine (PC) to mixtures of PC with phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol. Experiments were typically conducted at pH7.4 at modest salt concentrations (90 mM NaCl). In favorable cases, lipidated peptides were further characterized by tandem mass spectrometry methods to determine the sites of acylation. Melittin and magainin II were the most reactive peptides, with significant acyl transfer detected under all conditions and membrane compositions. Both peptides were lipidated at the N-terminus by transfer from PC, phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol, as well as at internal sites: lysine for melittin; serine and lysine for magainin II. Acyl transfer could be detected within 3h of melittin addition to negatively charged membranes. The other peptides were less reactive, but for each peptide, acylation was found to occur in at least one of the conditions examined. The data demonstrate that acyl transfer is a generic process for peptides bound to membranes composed of diacylglycerophospholipids. Phospholipid membranes cannot therefore be considered as chemically inert toward peptides and by extension proteins. © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Acyl Chain Preference in Foam Cell Formation from Mouse Peritoneal Macrophages.

    PubMed

    Fujiwara, Yuko; Hama, Kotaro; Tsukahara, Makoto; Izumi-Tsuzuki, Ryosuke; Nagai, Toru; Ohe-Yamada, Mihoko; Inoue, Keizo; Yokoyama, Kazuaki

    2018-01-01

    Macrophage foam cells play critical roles in the initiation and development of atherosclerosis by synthesizing and accumulating cholesteryl ester (CE) in lipid droplets. However, in analyzing lipid metabolism in foam cell formation, studies have focused on the sterol group, and little research has been done on the acyl chains. Therefore, we adapted a model system using liposomes containing particular acyl chains and examined the effect of various acyl chains on foam cell formation. Of the phosphatidylserine (PS) liposomes tested containing PS, phosphatidylcholine, and cholesterol, we found that unsaturated (C18:1), but not saturated (C16:0 and C18:0), PS liposomes induced lipid droplet formation, indicating that foam cell formation depends on the nature of the acyl chain of the PS liposomes. Experiments on the uptake and accumulation of cholesterol from liposomes by adding [ 14 C]cholesterol suggested that foam cell formation could be induced only when cholesterol was converted to CE in the case of C18:1 PS liposomes. Both microscopic observations and metabolic analysis suggest that cholesterol incorporated into either C16:0 or C18:0 PS liposomes may stay intact after being taken in by endosomes. The [ 14 C]C18:1 fatty acyl chain in the C18:1 PS liposome was used to synthesize CE and triacylglycerol (TG). Interestingly, the [ 14 C]C16:0 in the C18:1 PS liposome was metabolized to sphingomyelin rather than being incorporated into either CE or TG, which could be because of enzymatic acyl chain selectivity. In conclusion, our results indicate that the acyl chain preference of macrophages could have some impact on their progression to foam cells.

  17. Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations

    PubMed Central

    Meersman, Esther; Steensels, Jan; Paulus, Tinneke; Struyf, Nore; Saels, Veerle; Mathawan, Melissa; Koffi, Jean; Vrancken, Gino

    2015-01-01

    Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production. PMID:26150457

  18. Software interface for high-speed readout of particle detectors based on the CoaXPress communication standard

    NASA Astrophysics Data System (ADS)

    Hejtmánek, M.; Neue, G.; Voleš, P.

    2015-06-01

    This article is devoted to the software design and development of a high-speed readout application used for interfacing particle detectors via the CoaXPress communication standard. The CoaXPress provides an asymmetric high-speed serial connection over a single coaxial cable. It uses a widely available 75 Ω BNC standard and can operate in various modes with a data throughput ranging from 1.25 Gbps up to 25 Gbps. Moreover, it supports a low speed uplink with a fixed bit rate of 20.833 Mbps, which can be used to control and upload configuration data to the particle detector. The CoaXPress interface is an upcoming standard in medical imaging, therefore its usage promises long-term compatibility and versatility. This work presents an example of how to develop DAQ system for a pixel detector. For this purpose, a flexible DAQ card was developed using the XILINX Spartan 6 FPGA. The DAQ card is connected to the framegrabber FireBird CXP6 Quad, which is plugged in the PCI Express bus of the standard PC. The data transmission was performed between the FPGA and framegrabber card via the standard coaxial cable in communication mode with a bit rate of 3.125 Gbps. Using the Medipix2 Quad pixel detector, the framerate of 100 fps was achieved. The front-end application makes use of the FireBird framegrabber software development kit and is suitable for data acquisition as well as control of the detector through the registers implemented in the FPGA.

  19. Invited review: Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters.

    PubMed

    Gatti, Monica; Bottari, Benedetta; Lazzi, Camilla; Neviani, Erasmo; Mucchetti, Germano

    2014-02-01

    The robustness of the starter culture during cheese fermentation is enhanced by the presence of a rich consortium of microbes. Natural starters are consortia of microbes undoubtedly richer than selected starters. Among natural starters, natural whey starters (NWS) are the most common cultures currently used to produce different varieties of cheeses. Undefined NWS are typically used for Italian cooked, long-ripened, extra-hard, raw milk cheeses, such as Parmigiano Reggiano and Grana Padano. Together with raw milk microbiota, NWS are responsible for most cheese characteristics. The microbial ecology of these 2 cheese varieties is based on a complex interaction among starter lactic acid bacteria (SLAB) and nonstarter lactic acid bacteria (NSLAB), which are characterized by their different abilities to grow in a changing substrate. This review aims to summarize the latest findings on Parmigiano Reggiano and Grana Padano to better understand the dynamics of SLAB, which mainly arise from NWS, and NSLAB, which mainly arise from raw milk, and their possible role in determining the characteristics of these cheeses. The review is presented in 4 main sections. The first summarizes the main microbiological and chemical properties of the ripened cheese as determined by cheese-making process variables, as these variables may affect microbial growth. The second describes the microbiota of raw milk as affected by specific milk treatments, from milking to the filling of the cheese milk vat. The third describes the microbiota of NWS, and the fourth reviews the knowledge available on microbial dynamics from curd to ripened cheese. As the dynamics and functionality of complex undefined NWS is one of the most important areas of focus in current food microbiology research, this review may serve as a good starting point for implementing future studies on microbial diversity and functionality of undefined cheese starter cultures. Copyright © 2014 American Dairy Science Association

  20. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity.

    PubMed

    Jing, Fuyuan; Cantu, David C; Tvaruzkova, Jarmila; Chipman, Jay P; Nikolau, Basil J; Yandeau-Nelson, Marna D; Reilly, Peter J

    2011-08-10

    Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids.

  1. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity

    PubMed Central

    2011-01-01

    Background Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. Results To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. Conclusion These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids. PMID:21831316

  2. Structure-based mutational analysis of the 4'-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism.

    PubMed

    Mofid, Mohammad Reza; Finking, Robert; Essen, Lars Oliver; Marahiel, Mohamed A

    2004-04-13

    The activation of apo-peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases (NRPSs), apo-acyl carrier proteins (ACPs) of polyketide synthases (PKSs), and fatty acid synthases (FASs) to their active holo form is accomplished with dedicated 4'-phosphopantetheinyl transferases (PPTases). They catalyze the transfer of the essential prosthetic group 4'-phosphopantetheine (4'-Ppant) from coenzyme A (CoA) to a highly conserved serine residue in all PCPs and ACPs. PPTases, based on sequence and substrate specifity, have been classified into three types: bacterial holo-acyl carrier protein synthase (AcpS), fatty acid synthase of eukaryotes (FAS2) and Sfp, a PPTase of secondary metabolism. The recently solved crystal structures of AcpS and Sfp-type PPTases with CoA revealed a common alpha + beta-fold with a beta(1)alpha(3)beta(2) motif and similarities in CoA binding and polymerization mode. However, it was not possible to discern neither the PCP binding region of Sfp nor the priming reaction mechanism from the Sfp-CoA cocrystal. In this work, we provide a model for the reaction mechanism based on mutational analysis of Sfp that suggests a reaction mechanism in which the highly conserved E151 deprotonates the hydroxyl group of the invariant serine of PCP. That, in turn, acts as a nucleophile to attack the beta-phosphate of CoA. The Sfp mutants K112, E117, and K120 further revealed that the loop region between beta4 and alpha5 (residues T111-S124) in Sfp is the PCP binding region. Also, residues T44, K75, S89, H90, D107, E109, E151, and K155 that have been shown in the Sfp-CoA cocrystal structure to coordinate CoA are now all confirmed by mutational and biochemical analysis.

  3. [The microflora of sour dough. IV. Communication: bacterial composition of sourdough starters genus Lactobacillus beijerinck (author's transl)].

    PubMed

    Spicher, G; Schröder, R

    1978-11-28

    The bacterial composition of three so called pure culture sourdough starters of varying origin was investigated. 245 isolates were obtained all belonging to the genus Beijerinck. According to their morphological, physiological and biochemical characteristics they were classified into the subgroups: Thermobacterium (L. acidophilus), Streptobacterium (L. casei, L. plantarum, L. farciminis, L. alimentarius) and Betabacterium (L. brevis, L. brevis var. lindneri, L buchneri, L. fermentum, L. fructi vorans). In the three sourdough starters the identified lactic organisms varied in number and proportion. In starter preparation "A" only the varieties L. fructi vorans and L. fermentum were present. Preparation "B" contained a great variety of microorganisms with L. brevis and L. brevis L. lindneri predominating. In starter "C" L. brevis, L. plantarum and L. alimentarius predominated.

  4. Molecular cloning and expression of rat liver bile acid CoA ligase.

    PubMed

    Falany, Charles N; Xie, Xiaowei; Wheeler, James B; Wang, Jin; Smith, Michelle; He, Dongning; Barnes, Stephen

    2002-12-01

    Bile acid CoA ligase (BAL) is responsible for catalyzing the first step in the conjugation of bile acids with amino acids. Sequencing of putative rat liver BAL cDNAs identified a cDNA (rBAL-1) possessing a 51 nucleotide 5'-untranslated region, an open reading frame of 2,070 bases encoding a 690 aa protein with a molecular mass of 75,960 Da, and a 138 nucleotide 3'-nontranslated region followed by a poly(A) tail. Identity of the cDNA was established by: 1) the rBAL-1 open reading frame encoded peptides obtained by chemical sequencing of the purified rBAL protein; 2) expressed rBAL-1 protein comigrated with purified rBAL during SDS-polyacrylamide gel electrophoresis; and 3) rBAL-1 expressed in insect Sf9 cells had enzymatic properties that were comparable to the enzyme isolated from rat liver. Evidence for a relationship between fatty acid and bile acid metabolism is suggested by specific inhibition of rBAL-1 by cis-unsaturated fatty acids and its high homology to a human very long chain fatty acid CoA ligase. In summary, these results indicate that the cDNA for rat liver BAL has been isolated and expression of the rBAL cDNA in insect Sf9 cells results in a catalytically active enzyme capable of utilizing several different bile acids as substrates.

  5. Total and acylated ghrelin in liver cirrhosis: correlation with clinical and nutritional status.

    PubMed

    El-Shehaby, Amal M; Obaia, Eman M; Alwakil, Sahar S; Hiekal, Ahmed A

    2010-07-01

    The pathogenesis of anorexia in cirrhotic patients is complex and the appetite-modulating hormone ghrelin could be involved. Acylated ghrelin is the biologically active form that modifies insulin sensitivity and body composition. The aim of the present study was to compare acylated and total ghrelin concentration in patients with liver cirrhosis and to investigate the possible relationship between ghrelin and clinical and nutritional parameters. Sixty patients with viral liver cirrhosis who did not have hepatocellular carcinoma or acute infections were studied. Twenty healthy volunteers were recruited after matching for age, gender, and body mass index with the patients and served as controls. Fasting levels of total, acylated ghrelin, leptin, TNF-alpha and insulin were measured in all subjects, in addition, clinical and nutrition parameters were assessed. In cirrhotic patients, plasma levels of both acylated and total ghrelin were significantly higher than those in the controls. The mean plasma acylated ghrelin levels were significantly higher in Child C cirrhosis compared to Child A and B. Ghrelin (total and acylated) were negatively correlated with leptin in cirrhotic patients confirming the fact that leptin acts as a physiological counterpart of ghrelin. Nutritional and metabolic abnormalities in cirrhotic patients may be dependent on the changes in the ghrelin/leptin systems, mainly the acylated form of ghrelin.

  6. Defective Pollen Wall is Required for Anther and Microspore Development in Rice and Encodes a Fatty Acyl Carrier Protein Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, J.; Shanklin, J.; Tan, H.

    Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development.more » Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots.« less

  7. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity.

    PubMed

    Clifford, Michael N; Jaganath, Indu B; Ludwig, Iziar A; Crozier, Alan

    2017-12-13

    Covering: 2000 up to late 2017This review is focussed upon the acyl-quinic acids, the most studied group within the ca. 400 chlorogenic acids so far reported. The acyl-quinic acids, the first of which was characterised in 1846, are a diverse group of plant-derived compounds produced principally through esterification of an hydroxycinnamic acid and 1l-(-)-quinic acid. Topics addressed in this review include the confusing nomenclature, quantification and characterisation by NMR and MS, biosynthesis and role in planta, and the occurrence of acyl-quinic acids in coffee, their transformation during roasting and delivery to the beverage. Coffee is the major human dietary source world-wide of acyl-quinic acids and consideration is given to their absorption and metabolism in the upper gastrointestinal tract, and the colon where the microbiota play a key role in the formation of catabolites. Evidence on the potential of the in vivo metabolites and catabolites of acyl-quinic acids to promote the consumer's health is evaluated.

  8. Engineered short branched-chain acyl-CoA synthesis in E. coli and acylation of chloramphenicol to branched-chain derivatives.

    PubMed

    Bi, Huiping; Bai, Yanfen; Cai, Tao; Zhuang, Yibin; Liang, Xiaomei; Zhang, Xueli; Liu, Tao; Ma, Yanhe

    2013-12-01

    Short branched-chain acyl-CoAs are important building blocks for a wide variety of pharmaceutically valuable natural products. Escherichia coli has been used as a heterologous host for the production of a variety of natural compounds for many years. In the current study, we engineered synthesis of isobutyryl-CoA and isovaleryl-CoA from glucose in E. coli by integration of the branched-chain α-keto acid dehydrogenase complex from Streptomyces avermitilis. In the presence of the chloramphenicol acetyltransferase (cat) gene, chloramphenicol was converted to both chloramphenicol-3-isobutyrate and chloramphenicol-3-isovalerate by the recombinant E. coli strains, which suggested successful synthesis of isobutyryl-CoA and isovaleryl-CoA. Furthermore, we improved the α-keto acid precursor supply by overexpressing the alsS gene from Bacillus subtilis and the ilvC and ilvD genes from E. coli and thus enhanced the synthesis of short branched-chain acyl-CoAs. By feeding 25 mg/L chloramphenicol, 2.96 ± 0.06 mg/L chloramphenicol-3-isobutyrate and 3.94 ± 0.06 mg/L chloramphenicol-3-isovalerate were generated by the engineered E. coli strain, which indicated efficient biosynthesis of short branched-chain acyl-CoAs. HPLC analysis showed that the most efficient E. coli strain produced 80.77 ± 3.83 nmol/g wet weight isovaleryl-CoA. To our knowledge, this is the first report of production of short branched-chain acyl-CoAs in E. coli and opens a way to biosynthesize various valuable natural compounds based on these special building blocks from renewable carbon sources.

  9. Inoculation of starter cultures in a semi-dry coffee (Coffea arabica) fermentation process.

    PubMed

    Evangelista, Suzana Reis; Miguel, Maria Gabriela da Cruz Pedrozo; Cordeiro, Cecília de Souza; Silva, Cristina Ferreira; Pinheiro, Ana Carla Marques; Schwan, Rosane Freitas

    2014-12-01

    The aim of this study was to evaluate the use of yeasts as starter cultures in coffee semi-dry processing. Arabica coffee was inoculated with one of the following starter cultures: Saccharomyces cerevisiae UFLA YCN727, S. cerevisiae UFLA YCN724, Candida parapsilosis UFLA YCN448 and Pichia guilliermondii UFLA YCN731. The control was not inoculated with a starter culture. Denaturing gradient gel electrophoresis (DGGE) was used to assess the microbial population, and organic acids and volatile compounds were quantified by HPLC and HS-SPME/GC, respectively. Sensory analyses were evaluated using the Temporal Dominance of Sensations (TDS). DGGE analysis showed that the inoculated yeasts were present throughout the fermentation. Other yeast species were also detected, including Debaryomyces hansenii, Cystofilobasidium ferigula and Trichosporon cavernicola. The bacterial population was diverse and was composed of the following genera: Weissella, Leuconostoc, Gluconobacter, Pseudomonas, Pantoea, Erwinia and Klebsiella. Butyric and propionic acids, were not detected in any treatment A total of 47 different volatiles compounds have been identified. The coffee inoculated with yeast had a caramel flavor that was not detected in the control, as assessed by TDS. The use of starter cultures during coffee fermentation is an interesting alternative for obtaining a beverage quality with distinctive flavor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Improvement in sensory characteristics of Campbell Early wine by adding dual starters of Saccharomyces cerevisiae and Oenococcus oeni.

    PubMed

    Yoo, Ki-Seon; Kim, Ji Eun; Seo, Eun-Young; Kim, Yu Jin; Choi, Hwa Young; Yoon, Hyang-Sik; Kim, Myoung-Dong; Han, Nam Soo

    2010-07-01

    This study was performed to investigate the effects of adding a dual starter on the chemical and sensory characteristics of red wine made of Campbell Early grape. The yeast starter, Saccharomyces cerevisiae, and lactic acid bacteria (LAB) starter, Oenococcus oeni, were used for inoculation in the winemaking process for alcoholic and malolactic fermentation (MLF), respectively. After 200 days incubation, the chemical compositions of yeast/LAB-added wine (YL-wine) were compared with those of no starter-added wine (control) and yeast-added wine (Y-wine). The results show that no significant differences were observed in pH, total sugar, and alcohol content among wine samples, but the malic acid content in YL-wine was significantly reduced and various esters and higher alcohols were synthesized. The sensory test revealed that the addition of dual starters resulted in improved overall acceptability in wine. This study emphasizes the importance of O. oeni in addition to yeast in making Campbell Early wine.

  11. Sonochemical enzyme-catalyzed regioselective acylation of flavonoid glycosides.

    PubMed

    Ziaullah; Rupasinghe, H P Vasantha

    2016-04-01

    This work compares a highly efficient and alternative method of sonication-assisted lipase catalyzed acylation of quercetin-3-O-glucoside and phloretin-2'-glucoside, using Candida antarctica lipase B (Novozyme 435(®)), with a range of fatty acids. In this study, sonication-assisted irradiation coupled with stirring has been found to be more efficient and economical than conventional reaction conditions. Sonication-assisted acylation accelerated the reactions and reduced the time required by 4-5 folds. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Jejunal administration of glucose enhances acyl ghrelin suppression in obese humans

    PubMed Central

    Sidani, Reem M.; Garcia, Anna E.; Antoun, Joseph; Isbell, James M.; Abumrad, Naji N.

    2016-01-01

    Ghrelin is a gastric hormone that stimulates hunger and worsens glucose metabolism. Circulating ghrelin is decreased after Roux-en-Y gastric bypass (RYGB) surgery; however, the mechanism(s) underlying this change is unknown. We tested the hypothesis that jejunal nutrient exposure plays a significant role in ghrelin suppression after RYGB. Feeding tubes were placed in the stomach or jejunum in 13 obese subjects to simulate pre-RYGB or post-RYGB glucose exposure to the gastrointestinal (GI) tract, respectively, without the confounding effects of caloric restriction, weight loss, and surgical stress. On separate study days, the plasma glucose curves obtained with either gastric or jejunal administration of glucose were replicated with intravenous (iv) infusions of glucose. These “isoglycemic clamps” enabled us to determine the contribution of the GI tract and postabsorptive plasma glucose to acyl ghrelin suppression. Plasma acyl ghrelin levels were suppressed to a greater degree with jejunal glucose administration compared with gastric glucose administration (P < 0.05). Jejunal administration of glucose also resulted in a greater suppression of acyl ghrelin than the corresponding isoglycemic glucose infusion (P ≤ 0.01). However, gastric and isoglycemic iv glucose infusions resulted in similar degrees of acyl ghrelin suppression (P > 0.05). Direct exposure of the proximal jejunum to glucose increases acyl ghrelin suppression independent of circulating glucose levels. The enhanced suppression of acyl ghrelin after RYGB may be due to a nutrient-initiated signal in the jejunum that regulates ghrelin secretion. PMID:27279247

  13. Characterization of Lipid A Variants by Energy-Resolved Mass Spectrometry: Impact of Acyl Chains

    NASA Astrophysics Data System (ADS)

    Crittenden, Christopher M.; Akin, Lucas D.; Morrison, Lindsay J.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2017-06-01

    Lipid A molecules consist of a diglucosamine sugar core with a number of appended acyl chains that vary in their length and connectivity. Because of the challenging nature of characterizing these molecules and differentiating between isomeric species, an energy-resolved MS/MS strategy was undertaken to track the fragmentation trends and map genealogies of product ions originating from consecutive cleavages of acyl chains. Generalizations were developed based on the number and locations of the primary and secondary acyl chains as well as variations in preferential cleavages arising from the location of the phosphate groups. Secondary acyl chain cleavage occurs most readily for lipid A species at the 3' position, followed by primary acyl chain fragmentation at both the 3' and 3 positions. In the instances of bisphosphorylated lipid A variants, phosphate loss occurs readily in conjunction with the most favorable primary and secondary acyl chain cleavages. [Figure not available: see fulltext.

  14. Growth and morphology of thermophilic dairy starters in alginate beads.

    PubMed

    Lamboley, Laurence; St-Gelais, Daniel; Champagne, Claude P; Lamoureux, Maryse

    2003-06-01

    The aim of this research was to produce concentrated biomasses of thermophilic lactic starters using immobilized cell technology (ICT). Fermentations were carried out in milk using pH control with cells microentrapped in alginate beads. In the ICT fermentations, beads represented 17% of the weight. Some assays were carried out with free cells without pH control, in order to compare the ICT populations with those of classical starters. With Streptococcus thermophilus, overall populations in the fermentor were similar, but maximum bead population for (8.2 x 10(9) cfu/g beads) was 13 times higher than that obtained in a traditional starter (4.9 x 10(8) cfu/ml). For both Lactobacillus helveticus strains studied, immobilized-cell populations were about 3 x 10(9) cfu/g beads. Production of immobilized Lb. bulgaricus 210R strain was not possible, since no increases in viable counts occurred in beads. Therefore, production of concentrated cell suspension in alginate beads was more effective for S. thermophilus. Photomicrographs of cells in alginate beads demonstrated that, while the morphology of S. thermophilus remained unchanged during the ICT fermentation, immobilized cells of Lb. helveticus appeared wider. In addition, cells of Lb. bulgaricus were curved and elongated. These morphological changes would also impair the growth of immobilized lactobacilli.

  15. Acyl hydrazides as acyl donors for the synthesis of diaryl and aryl alkyl ketones.

    PubMed

    Akhbar, Ahmed R; Chudasama, Vijay; Fitzmaurice, Richard J; Powell, Lyn; Caddick, Stephen

    2014-01-21

    In this communication we describe a novel strategy for the formation of valuable diaryl and aryl alkyl ketones from acyl hydrazides. A wide variety of ketones are prepared and the mild reaction conditions allow for the use of a range of functionalities, especially in the synthesis of diaryl ketones.

  16. Bio-production of Baccatin III, an Important Precursor of Paclitaxel by a Cost-Effective Approach.

    PubMed

    Lin, Shu-Ling; Wei, Tao; Lin, Jun-Fang; Guo, Li-Qiong; Wu, Guang-Pei; Wei, Jun-Bin; Huang, Jia-Jun; Ouyang, Ping-Lan

    2018-07-01

    Natural production of anti-cancer drug taxol from Taxus has proved to be environmentally unsustainable and economically unfeasible. Currently, bioengineering the biosynthetic pathway of taxol is an attractive alternative production approach. 10-deacetylbaccatin III-10-O-acetyl transferase (DBAT) was previously characterized as an acyltransferase, using 10-deacetylbaccatin III (10-DAB) and acetyl CoA as natural substrates, to form baccatin III in the taxol biosynthesis. Here, we report that other than the natural acetyl CoA (Ac-CoA) substrate, DBAT can also utilize vinyl acetate (VA), which is commercially available at very low cost, acylate quickly and irreversibly, as acetyl donor in the acyl transfer reaction to produce baccatin III. Furthermore, mutants were prepared via a semi-rational design in this work. A double mutant, I43S/D390R was constructed to combine the positive effects of the different single mutations on catalytic activity, and its catalytic efficiency towards 10-DAB and VA was successfully improved by 3.30-fold, compared to that of wild-type DBAT, while 2.99-fold higher than the catalytic efficiency of WT DBAT towards 10-DAB and Ac-CoA. These findings can provide a promising economically and environmentally friendly method for exploring novel acyl donors to engineer natural product pathways.

  17. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a

    PubMed Central

    Wisner, Stephanie A; Chen, Xiao; Spiegelman, Nicole A; Linder, Maurine E

    2017-01-01

    Ras proteins play vital roles in numerous biological processes and Ras mutations are found in many human tumors. Understanding how Ras proteins are regulated is important for elucidating cell signaling pathways and identifying new targets for treating human diseases. Here we report that one of the K-Ras splice variants, K-Ras4a, is subject to lysine fatty acylation, a previously under-studied protein post-translational modification. Sirtuin 2 (SIRT2), one of the mammalian nicotinamide adenine dinucleotide (NAD)-dependent lysine deacylases, catalyzes the removal of fatty acylation from K-Ras4a. We further demonstrate that SIRT2-mediated lysine defatty-acylation promotes endomembrane localization of K-Ras4a, enhances its interaction with A-Raf, and thus promotes cellular transformation. Our study identifies lysine fatty acylation as a previously unknown regulatory mechanism for the Ras family of GTPases that is distinct from cysteine fatty acylation. These findings highlight the biological significance of lysine fatty acylation and sirtuin-catalyzed protein lysine defatty-acylation. PMID:29239724

  18. Identification of N-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins.

    PubMed

    Harrer, Henning; Laviad, Elad L; Humpf, Hans Ulrich; Futerman, Anthony H

    2013-03-01

    Fumonisins are mycotoxins produced by Fusarium species. The predominant derivative, fumonisin B1 (FB1), occurs in food and feed and is of health concern due to its hepatotoxic and carcinogenic effects. However, the role of FB1 metabolites on the mechanism of the toxicity, the inhibition of the ceramide synthesis, is unknown. The aim of this study was to identify new fumonisin metabolites and to evaluate their cytotoxic potential. MS, molecular biology, and in vitro enzyme assays were used to investigate fumonisin metabolism in mammalian cells overexpressing human ceramide synthase (CerS) genes. N-acyl-FB1 derivatives were detected as new metabolites in cultured cells at levels of up to 10 pmol/mg of protein. The N-acylation of FB1 and hydrolyzed FB1 was analyzed in several cell lines, including cells overexpressing CerS. The acyl-chain length of the N-acyl fumonisins depends on the CerS isoform acylating them. The N-acyl fumonisins are more cytotoxic than the parent fumonisin B1. The identification of N-acyl fumonisins with various acyl chain lengths together with the observed cytotoxicity of these compounds is a new aspect of fumonisin-related toxicity. Therefore, these new metabolites might play an important role in the mode of action of fumonisins. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. LOCATION OF ACYL GROUPS ON TWO PARTLY ACYLATED GLYCOLIPIDS FROM STRAINS OF USTILAGO (SMUT FUNGI),

    DTIC Science & Technology

    erythritol from Ustilago sp. (probably U. nuda (Jens.) Rostr. = U. tritici (Pers.) Rostr.) PRL-627 were acetalated with methyl vinyl ether, deacylated...Partly acylated ustilagic acids 8 (from Ustilago maydis (DC) Corda (= U. zeae Unger) PRL-119), consisting of partially esterified beta-cellobiosyl

  20. Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations.

    PubMed

    Meersman, Esther; Steensels, Jan; Paulus, Tinneke; Struyf, Nore; Saels, Veerle; Mathawan, Melissa; Koffi, Jean; Vrancken, Gino; Verstrepen, Kevin J

    2015-09-01

    Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. The Use of Lactic Acid Bacteria Starter Cultures during the Processing of Fermented Cereal-based Foods in West Africa: A Review

    PubMed Central

    Soro-Yao, Amenan Anastasie; Brou, Kouakou; Amani, Georges; Thonart, Philippe; Djè, Koffi Marcelin

    2014-01-01

    Lactic acid bacteria (LAB) are the primary microorganisms used to ferment maize-, sorghum- or millet-based foods that are processed in West Africa. Fermentation contributes to desirable changes in taste, flavour, acidity, digestibility and texture in gruels (ogi, baca, dalaki), doughs (agidi, banku, komé) or steam-cooked granulated products (arraw, ciacry, dégué). Similar to other fermented cereal foods that are available in Africa, these products suffer from inconsistent quality. The use of LAB starter cultures during cereal dough fermentation is a subject of increasing interest in efforts to standardise this step and guaranty product uniformity. However, their use by small-scale processing units or small agro-food industrial enterprises is still limited. This review aims to illustrate and discuss major issues that influence the use of LAB starter cultures during the processing of fermented cereal foods in West Africa. PMID:27073601

  2. Performance and Metabolism of Calves Fed Starter Feed Containing Sugarcane Molasses or Glucose Syrup as a Replacement for Corn.

    PubMed

    Oltramari, C E; Nápoles, G G O; De Paula, M R; Silva, J T; Gallo, M P C; Pasetti, M H O; Bittar, C M M

    2016-07-01

    The aim of this study was to evaluate the effect of replacing corn grain for sugar cane molasses (MO) or glucose syrup (GS) in the starter concentrate on performance and metabolism of dairy calves. Thirty-six individually housed Holstein male calves were blocked according to weight and date of birth and assigned to one of the starter feed treatments, during an 8 week study: i) starter containing 65% corn with no MO or GS (0MO); ii) starter containing 60% corn and 5% MO (5MO); iii) starter containing 55% corn and 10% MO (10MO); and iv) starter containing 60% corn and 5% GS (5GS). Animals received 4 L of milk replacer daily (20 crude protein, 16 ether extract, 12.5% solids), divided in two meals (0700 and 1700 h). Starter and water were provided ad libitum. Starter intake and fecal score were monitored daily until animals were eight weeks old. Body weight and measurements (withers height, hip width and heart girth) were measured weekly before the morning feeding. From the second week of age, blood samples were collected weekly, 2 h after the morning feeding, for glucose, β-hydroxybutyrate and lactate determination. Ruminal fluid was collected at 4, 6, and 8 weeks of age using an oro-ruminal probe and a suction pump for determination of pH and short-chain fatty acids (SCFA). At the end of the eighth week, animals were harvested to evaluate development of the proximal digestive tract. The composition of the starter did not affect (p>0.05) concentrate intake, weight gain, fecal score, blood parameters, and rumen development. However, treatment 5MO showed higher (p<0.05) total concentration of SCFAs, acetate and propionate than 0MO, and these treatments did not differ from 10MO and 5GS (p>0.05). Thus, it can be concluded that the replacement of corn by 5% or 10% sugar cane molasses or 5% GS on starter concentrate did not impact performance, however it has some positive effects on rumen fermentation which may be beneficial for calves with a developing rumen.

  3. Acylation-dependent protein export in Leishmania.

    PubMed

    Denny, P W; Gokool, S; Russell, D G; Field, M C; Smith, D F

    2000-04-14

    The surface of the protozoan parasite Leishmania is unusual in that it consists predominantly of glycosylphosphatidylinositol-anchored glycoconjugates and proteins. Additionally, a family of hydrophilic acylated surface proteins (HASPs) has been localized to the extracellular face of the plasma membrane in infective parasite stages. These surface polypeptides lack a recognizable endoplasmic reticulum secretory signal sequence, transmembrane spanning domain, or glycosylphosphatidylinositol-anchor consensus sequence, indicating that novel mechanisms are involved in their transport and localization. Here, we show that the N-terminal domain of HASPB contains primary structural information that directs both N-myristoylation and palmitoylation and is essential for correct localization of the protein to the plasma membrane. Furthermore, the N-terminal 18 amino acids of HASPB, encoding the dual acylation site, are sufficient to target the heterologous Aequorea victoria green fluorescent protein to the cell surface of Leishmania. Mutagenesis of the predicted acylated residues confirms that modification by both myristate and palmitate is required for correct trafficking. These data suggest that HASPB is a representative of a novel class of proteins whose translocation onto the surface of eukaryotic cells is dependent upon a "non-classical" pathway involving N-myristoylation/palmitoylation. Significantly, HASPB is also translocated on to the extracellular face of the plasma membrane of transfected mammalian cells, indicating that the export signal for HASPB is recognized by a higher eukaryotic export mechanism.

  4. Yeasts from autochthonal cheese starters: technological and functional properties.

    PubMed

    Binetti, A; Carrasco, M; Reinheimer, J; Suárez, V

    2013-08-01

    The aim of this work was to identify 20 yeasts isolated from autochthonal cheese starters and evaluate their technological and functional properties. The capacities of the yeasts to grow at different temperatures, pH, NaCl and lactic acid concentrations as well as the proteolytic and lipolytic activities were studied. Moreover, survival to simulated gastrointestinal digestion, hydrophobicity, antimicrobial activity against pathogens and auto- and co-aggregation abilities were evaluated. The sequentiation of a fragment from the 26S rDNA gene indicated that Kluyveromyces marxianus was the predominant species, followed by Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces lactis and Galactomyces geotrichum. RAPD with primer M13 allowed a good differentiation among strains from the same species. All strains normally grew at pH 4.7-5.5 and temperatures between 15 and 35°C. Most of them tolerated 10% NaCl and 3% lactic acid. Some strains showed proteolytic (eight isolates) and/or lipolytic (four isolates) capacities. All strains evidenced high gastrointestinal resistance, moderate hydrophobicity, intermediate auto-aggregation and variable co-aggregation abilities. No strains inhibited the growth of the pathogens assayed. Some strains from dairy sources showed interesting functional and technological properties. This study has been the first contribution to the identification and characterization of yeasts isolated from autochthonal cheese starters in Argentina. Many strains could be proposed as potential candidates to be used as probiotics and/or as co-starters in cheese productions. © 2013 The Society for Applied Microbiology.

  5. Overexpression of human diacylglycerol acyltransferase 1, acyl-coa:cholesterol acyltransferase 1, or acyl-CoA:cholesterol acyltransferase 2 stimulates secretion of apolipoprotein B-containing lipoproteins in McA-RH7777 cells.

    PubMed

    Liang, John J; Oelkers, Peter; Guo, Cuiying; Chu, Pi-Chun; Dixon, Joseph L; Ginsberg, Henry N; Sturley, Stephen L

    2004-10-22

    The relative importance of each core lipid in the assembly and secretion of very low density lipoproteins (VLDL) has been of interest over the past decade. The isolation of genes encoding diacylglycerol acyltransferase (DGAT) and acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) provided the opportunity to investigate the effects of isolated increases in triglycerides (TG) or cholesteryl esters (CE) on apolipoprotein B (apoB) lipoprotein biogenesis. Overexpression of human DGAT1 in rat hepatoma McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of TG. These effects were associated with decreased intracellular degradation and increased secretion of newly synthesized apoB as VLDL. Similarly, overexpression of human ACAT1 or ACAT2 in McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of CE. This led to decreased intracellular degradation and increased secretion of VLDL apoB. Overexpression of ACAT2 had a significantly greater impact upon assembly and secretion of VLDL from liver cells than did overexpression of ACAT1. The addition of oleic acid (OA) to media resulted in a further increase in VLDL secretion from cells expressing DGAT1, ACAT1, or ACAT2. VLDL secreted from DGAT1-expressing cells incubated in OA had a higher TG:CE ratio than VLDL secreted from ACAT1- and ACAT2-expressing cells treated with OA. These studies indicate that increasing DGAT1, ACAT1, or ACAT2 expression in McA-RH7777 cells stimulates the assembly and secretion of VLDL from liver cells and that the core composition of the secreted VLDL reflects the enzymatic activity that is elevated.

  6. Evaluation of freeze-dried kefir coculture as starter in feta-type cheese production.

    PubMed

    Kourkoutas, Y; Kandylis, P; Panas, P; Dooley, J S G; Nigam, P; Koutinas, A A

    2006-09-01

    The use of freeze-dried kefir coculture as a starter in the production of feta-type cheese was investigated. Maturation of the produced cheese at 4 degrees C was monitored for up to 70 days, and the effects of the starter culture, the salting method, and the ripening process on quality characteristics were studied. The use of kefir coculture as a starter led to increased lactic acid concentrations and decreased pH values in the final product associated with significantly higher conversion rates compared to salted rennet cheese. Determination of bacterial diversity at the end of the ripening process in salted kefir and rennet cheeses by denaturing gradient gel electrophoresis technology, based on both DNA and RNA analyses, suggested a potential species-specific inhibition of members of the genera Staphylococcus and Psychrobacter by kefir coculture. The main active microbial associations in salted kefir cheese appeared to be members of the genera Pseudomonas and Lactococcus, while in salted rennet cheese, Oxalobacteraceae, Janthinobacterium, Psychrobacter, and Pseudomonas species were noted. The effect of the starter culture on the production of aroma-related compounds responsible for cheese flavor was also studied by the solid-phase microextraction-gas chromatography-mass spectrometry technique. Kefir coculture also appeared to extend the shelf life of unsalted cheese. Spoilage of kefir cheese was observed on the 9th and 20th days of preservation at 10 and 5 degrees C, respectively, while spoilage in the corresponding rennet cheese was detected on the 7th and 16th days. Microbial counts during preservation of both types of unsalted cheese increased steadily and reached similar levels, with the exception of staphylococci, which were significantly lower in unsalted kefir cheese. All types of cheese produced with kefir as a starter were approved and accepted by the panel during the preliminary sensory evaluation compared to commercial feta-type cheese.

  7. Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products.

    PubMed

    Katla, A K; Kruse, H; Johnsen, G; Herikstad, H

    2001-07-20

    Commercial starter culture bacteria are widely used in the production of dairy products and could represent a potential source for spread of genes encoding resistance to antimicrobial agents. To learn more about the antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products, a total of 189 isolates of lactic acid bacteria were examined for susceptibility to ampicillin, penicillin G, cephalothin, vancomycin, bacitracin, gentamicin, streptomycin, erythromycin, tetracycline, chloramphenicol, quinupristin/dalfopristin, ciprofloxacin, trimethoprim and sulphadiazine using Etest for MIC determination. Most of the isolates (140) originated from 39 dairy products (yoghurt, sour cream, fermented milk and cheese), while 49 were isolated directly from nine commercial cultures. The bacteria belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Streptococcus. Only one of the 189 isolates was classified as resistant to an antimicrobial agent included in the study. This isolate, a lactobacillus, was classified as high level resistant to streptomycin. The remaining isolates were not classified as resistant to the antimicrobial agents included other than to those they are known to have a natural reduced susceptibility to. Thus, starter culture bacteria in Norwegian dairy products do not seem to represent a source for spread of genes encoding resistance to antimicrobial agents.

  8. Acylated flavonol tri- and tetraglycosides in the flavonoid metabolome of Cladrastis kentukea (Leguminosae).

    PubMed

    Kite, Geoffrey C; Rowe, Emily R; Lewis, Gwilym P; Veitch, Nigel C

    2011-04-01

    The foliar metabolome of Cladrastis kentukea (Leguminosae) contains a complex mixture of flavonoids including acylated derivatives of the 3-O-rhamnosyl(1→2)[rhamnosyl(1→6)]-galactosides of kaempferol and quercetin and their 7-O-rhamnosides, together with an array of non-acylated kaempferol and quercetin di-, tri- and tetraglycosides. Thirteen of the acylated flavonoids, 12 of which had not been reported previously, were characterised by spectroscopic and chemical methods. Eight of these were the four isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) and their 7-O-α-l-rhamnopyranosides, and three were isomers of quercetin 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) - the remaining 4Z isomer was identified by LC-UV-MS analysis of a crude extract. The final two acylated flavonoids characterised by NMR were the 3E and 4E isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E-feruloyl-β-d-galactopyranoside)-7-O-α-l-rhamnopyranoside while the 3Z and 4Z isomers were again detected by LC-UV-MS. Using the observed fragmentation behaviour of the isolated compounds following a variety of MS experiments, a further 18 acylated flavonoids were given tentative structures by LC-MS analysis of a crude extract. Acylated flavonoids were absent from the flowers of C. kentukea, which contained an array of non-acylated kaempferol and quercetin glycosides. Immature fruits contained kaempferol 3-O-α-rhamnopyranosyl(1→2)[α-rhamnopyranosyl(1→6)]-β-galactopyranoside and its 7-O-α-rhamnopyranoside as the major flavonoids with acylated flavonoids, different from those in the leaves, only present as minor constituents. The presence of acylated flavonoids distinguishes the foliar flavonoid metabolome of C. kentukea from that of a closely related legume, Styphnolobium japonicum, which contains a similar

  9. Evolution of the acyl-CoA binding protein (ACBP)

    PubMed Central

    Burton, Mark; Rose, Timothy M.; Færgeman, Nils J.; Knudsen, Jens

    2005-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein that binds C12–C22 acyl-CoA esters with high affinity. In vitro and in vivo experiments suggest that it is involved in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, regulation of the intracellular acyl-CoA pool size, donation of acyl-CoA esters for β-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified in all four eukaryotic kingdoms, Animalia, Plantae, Fungi and Protista, and eleven eubacterial species. ACBP homologues were not detected in any other known bacterial species, or in archaea. Nearly all of the ACBP-containing bacteria are pathogenic to plants or animals, suggesting that an ACBP gene could have been acquired from a eukaryotic host by horizontal gene transfer. Many bacterial, fungal and higher eukaryotic species only harbour a single ACBP homologue. However, a number of species, ranging from protozoa to vertebrates, have evolved two to six lineage-specific paralogues through gene duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage-specific paralogues have evolved altered functions. The appearance of ACBP very early on in evolution points towards a fundamental role of ACBP in acyl-CoA metabolism, including ceramide synthesis and in signalling. PMID:16018771

  10. Acylated and unacylated ghrelin confer neuroprotection to mesencephalic neurons.

    PubMed

    Wagner, Johanna; Vulinović, Franca; Grünewald, Anne; Unger, Marcus M; Möller, Jens C; Klein, Christine; Michel, Patrick P; Ries, Vincent; Oertel, Wolfgang H; Alvarez-Fischer, Daniel

    2017-12-04

    The polypeptide ghrelin is an endogenous ligand at the growth hormone secretagogue receptor 1a. To ghrelin multiple functions have been ascribed including promotion of gastrointestinal motility. Postprandial ghrelin levels have been reported to be reduced in patients suffering from Parkinson disease (PD). Experimental studies revealed neuroprotective effects of ghrelin in different PD models. The purpose of the present study was (i) to further elucidate the mechanism underlying the neuroprotective action of ghrelin and (ii) to determine whether these effects occur with both the acylated and the unacylated form. The study was conducted in primary mesencephalic cultures treated with mitochondrial complex I and complex II inhibitors. We show that protective effects of ghrelin against complex I inhibition with MPP + were independent of the acylation status of ghrelin, although acylated ghrelin appeared to be more potent. Protection by both forms was also observed when neurons were exposed to the complex II inhibitor 3-NP. Both forms led to higher oxygen consumption rates upon electron transport chain uncoupling, indicating that the two peptides may exert uncoupling effects themselves. We demonstrate that the rescue provided by ghrelin required calcium influx through L-type voltage-gated calcium channels. Whereas the protective effects of acylated ghrelin required receptor binding, effects of the unacylated form remained unaffected by treatment with a ghrelin receptor antagonist. Importantly, inhibition of ghrelin O-acyltransferase failed to reduce the activity of unacylated ghrelin. Overall, our data suggest that both acylated and unacylated ghrelin afford protection to dopamine neurons but through mechanisms that only partially overlap. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Effects of withdrawal rate and starter block size on crystal orientation of a single crystal Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Kermanpur, A.; Sadeghi, F.

    2018-03-01

    Fabrication of single crystal (SC) Ni-based gas turbine blades with a minimum crystal misorientation has always been a challenge in gas turbine industry, due to its significant influence on high temperature mechanical properties. This paper reports an experimental investigation and numerical simulation of the SC solidification process of a Ni-based superalloy to study effects of withdrawal rate and starter block size on crystal orientation. The results show that the crystal misorientation of the sample with 40 mm starter block height is decreased with increasing withdrawal rate up to about 9 mm/min, beyond which the amount of misorientation is increased. It was found that the withdrawal rate, height of the starter block and temperature gradient are completely inter-dependent and indeed achieving a SC specimen with a minimum misorientation needs careful optimization of these process parameters. The height of starter block was found to have higher impact on crystal orientation compared to the withdrawal rate. A suitable withdrawal rate regime along with a sufficient starter block height was proposed to produce SC parts with the lowest misorientation.

  12. Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs.

    PubMed

    Galle, Sandra; Schwab, Clarissa; Arendt, Elke; Gänzle, Michael

    2010-05-12

    The addition of sourdough fermented with lactic acid bacteria synthesizing organic acids and oligo- and exopolysaccharides (EPS) from sucrose enhances texture, nutritional value, shelf life, and machinability of wheat, rye, and gluten-free bread. This study compared acetate, mannitol, and oligosaccharide formation of EPS-producing strains of Weissella and Leuconostoc spp. to the traditional sourdough starter Lactobacillus sanfranciscensis. In broth, Leuconostoc strains generally formed acetate and mannitol, whereas Weissella produced only small amounts of acetate and no mannitol in the presence of sucrose. In the presence of sucrose and maltose, Weissella and Leuconostoc strains synthesized glucooligosaccharides and EPS. Strains of Weissella were employed as starter cultures for wheat and sorghum sourdough and formed 0.8-8 g kg(-1) EPS and gluco-oligosaccharides but only low amounts of acetate and mannitol. In contrast, the formation of EPS from sucrose led to the production of high amounts of acetate and mannitol by L. sanfranciscensis LTH 2950 in wheat sourdough. This study indicates that Weissella strains are suitable starter cultures for wheat and sorghum sourdoughs and efficiently produce gluco-oligosaccharides and EPS.

  13. Acyl spermidines in inflorescence extracts of elder (Sambucus nigra L., Adoxaceae) and elderflower drinks.

    PubMed

    Kite, Geoffrey C; Larsson, Sonny; Veitch, Nigel C; Porter, Elaine A; Ding, Ning; Simmonds, Monique S J

    2013-04-10

    LC-UV-MS analyses of inflorescence extracts of Sambucus nigra L. (elder, Adoxaceae) revealed the presence of numerous acyl spermidines, with isomers of N,N-diferuloylspermidine and N-acetyl-N,N-diferuloylspermidine being most abundant. Pollen was the main source of the acyl spermidines in the inflorescence. Three of the major acyl spermidines were isolated and their structures determined by NMR spectroscopy as N⁵,N¹⁰-di-(E,E)-feruloylspermidine and the new compounds N¹-acetyl-N⁵,N¹⁰-di-(Z,E)-feruloylspermidine and N¹-acetyl-N⁵,N¹⁰-di-(E,E)-feruloylspermidine. An isomer of N,N,N-triferuloylspermidine was also obtained and identified as N¹,N⁵,N¹⁰-tri-(E,E,E)-feruloylspermidine. In addition to stereoisomers of the isolated acyl spermidines, other acyl spermidines detected by the positive ion LC-UV-MS were isomers of N-caffeoyl-N,N-diferuloylspermidine, N-coumaroyl-N,N-diferuloylspermidine, N-caffeoyl-N-feruloylspermidine, N-coumaroyl-N-feruloylspermidine, N-acetyl-N-caffeoyl-N-feruloylspermidine, and N-acetyl-N-coumaroyl-N-feruloylspermidine. Analysis of commercial elderflower drinks showed that acyl spermidines were persistent in these processed elderflower products. Examination of inflorescence extracts from Sambucus canadensis L. (American elder) revealed the presence of acyl spermidines that were different from those of S. nigra.

  14. Digestive development in neonatal dairy calves with either whole or ground oats in the calf starter.

    PubMed

    Suarez-Mena, F X; Heinrichs, A J; Jones, C M; Hill, T M; Quigley, J D

    2015-05-01

    A series of 3 trials was conducted to determine effects of whole or ground oats in starter grain on reticulorumen fermentation and digestive system development of preweaned calves. Male Holstein calves (43.1±2.3kg at birth; n=8, 9, and 7 for trials 1, 2, and 3, respectively) were housed in individual pens in a heated facility; bedding was covered with landscape fabric to prevent consumption of bedding by the calves. In trials 1 and 2 only, calves were fitted with rumen cannulas by wk 2 of life. In all trials, a fixed amount of starter (containing 25% oats either ground and in the pellet or whole) was offered daily; orts were fed through the cannula in trials 1 and 2. Calves were randomly assigned to an all-pelleted starter or pellets plus whole oats. Rumen contents (trials 1 and 2) were sampled weekly at -8, -4, 0, 2, 4, 8, and 12 h after grain feeding for determination of pH and volatile fatty acids. Calves were killed 3 wk (trial 1) or 4 wk (trials 2 and 3) after grain was offered; organs were harvested, emptied, rinsed, and weighed to gauge digestive organ development. Starter intake was not different between treatments. Weekly measurements of rumen digesta pH did not change and only subtle changes were observed in molar proportions of individual volatile fatty acids. Molar proportion of butyrate and pH linearly decreased with age, whereas acetate proportion increased. Reticulorumen weight and papillae length tended to be greater for calves fed pelleted starter, whereas abomasum weight was greater for calves fed pellets plus whole oats. Fecal particle size and starch content were greater for calves fed pellets plus whole oats. Under the conditions of this study, physical form of oats in starter grain did not affect rumen fermentation measurements; greater rumen weight and papillae length in calves fed pelleted starter may be the result of greater nutrient availability of ground oats. Under the conditions of this study with young calves on treatments for <4 wk

  15. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    PubMed

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of

  16. Evaluation of genetic polymorphism among Lactobacillus rhamnosus non-starter Parmigiano Reggiano cheese strains.

    PubMed

    Bove, Claudio Giorgio; De Dea Lindner, Juliano; Lazzi, Camilla; Gatti, Monica; Neviani, Erasmo

    2011-01-05

    Parmigiano Reggiano (PR) is an Italian cooked, long-ripened cheese made with unheated cow's milk and natural whey starter. The microflora is involved in the manufacturing of this cheese, arising from the natural whey starter, the raw milk and the environment. Molecular studies have shown that mesophilic non-starter lactic acid bacteria (NSLAB) are the dominant microflora present during the ripening of PR. In this study, a characterisation of Lactobacillus rhamnosus isolated from a single PR manufacturing and ripening process is reported, using a combination of genotypic fingerprinting techniques (RAPD-PCR and REP-PCR). The intraspecies heterogeneity evidenced for 66 strains is correlated to their abilities to adapt to specific environmental and technological conditions. The detection of biotypes that correlate with specific moments in cheese ripening or differential development throughout this process suggests that these strains may have specific roles closely linked to their peculiar technological properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Chromosomal Diversity in Lactococcus lactis and the Origin of Dairy Starter Cultures

    PubMed Central

    Kelly, William J.; Ward, Lawrence J. H.; Leahy, Sinead C.

    2010-01-01

    A large collection of Lactococcus lactis strains, including wild-type isolates and dairy starter cultures, were screened on the basis of their phenotype and the macrorestriction patterns produced from pulsed-field gel electrophoresis (PFGE) analysis of SmaI digests of genomic DNA. Three groups of dairy starter cultures, used for different purposes in the dairy industry, and a fourth group made up of strains isolated from the environment were selected for analysis of their chromosomal diversity using the endonuclease I-CeuI. Chromosome architecture was largely conserved with each strain having six copies of the rRNA genes, and the chromosome size of individual strains ranged between 2,240 and 2,688 kb. The origin of L. lactis strains showed the greatest correlation with chromosome size, and dairy strains, particularly those with the cremoris phenotype, had smaller chromosomes than wild-type strains. Overall, this study, coupled with analysis of the sequenced L. lactis genomes, provides evidence that defined strain dairy starter cultures have arisen from plant L. lactis strains. Adaptation of these strains to the dairy environment has involved loss of functions resulting in smaller chromosomes and acquisition of genes (usually plasmid associated) that facilitate growth in milk. We conclude that dairy starter cultures generally and the industrially used cremoris and diacetylactis phenotype strains in particular comprise a specialized group of L. lactis strains that have been selected to become an essential component of industrial processes and have evolved accordingly, so that they are no longer fit to survive outside the dairy environment. PMID:20847124

  18. Diversion of a thioglycoligase for the synthesis of 1-O-acyl arabinofuranoses.

    PubMed

    Pavic, Quentin; Tranchimand, Sylvain; Lemiègre, Loïc; Legentil, Laurent

    2018-05-15

    An arabinofuranosylhydrolase from the GH51 family was transformed into an acyl transferase by mutation of the catalytic acid/base amino acid. The resulting enzyme was able to transfer carboxylic acid onto the anomeric position of arabinose with complete chemo- and stereoselectivity. A wide range of acyl α-l-arabinofuranoses was obtained with yields ranging from 25 to 83%. Using this method, ibuprofen and N-Boc phenylalanine were successfully transformed into their corresponding acyl conjugates, expanding the scope of the reaction to drugs and amino acids.

  19. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    PubMed

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.

  20. Design of N-acyl homoserine lactonase with high substrate specificity by a rational approach.

    PubMed

    Kyeong, Hyun-Ho; Kim, Jin-Hyun; Kim, Hak-Sung

    2015-06-01

    N-Acyl homoserine lactone (AHL) is a major quorum-sensing signaling molecule in many bacterial species. Quorum-quenching (QQ) enzymes, which degrade such signaling molecules, have attracted much attention as an approach to controlling and preventing bacterial virulence and pathogenesis. However, naturally occurring QQ enzymes show a broad substrate spectrum, raising the concern of unintentionally attenuating beneficial effects by symbiotic bacteria. Here we report the rational design of acyl homoserine lactonase with high substrate specificity. Through docking analysis, we identified three key residues which play a key role in the substrate preference of the enzyme. The key residues were changed in a way that increases hydrophobic contact with a substrate having a short acyl chain (C4-AHL) while generating steric clashes with that containing a long acyl chain (C12-AHL). The resulting mutants exhibited a significantly shifted preference toward a substrate with a short acyl chain. Molecular dynamics simulations suggested that the mutations affect the behavior of a flexible loop, allowing tighter binding of a substrate with a short acyl chain.

  1. Neuropsychological Outcomes in Fatty Acid Oxidation Disorders: 85 Cases Detected by Newborn Screening

    ERIC Educational Resources Information Center

    Waisbren, Susan E.; Landau, Yuval; Wilson, Jenna; Vockley, Jerry

    2013-01-01

    Mitochondrial fatty acid oxidation disorders include conditions in which the transport of activated acyl-Coenzyme A (CoA) into the mitochondria or utilization of these substrates is disrupted or blocked. This results in a deficit in the conversion of fat into energy. Most patients with fatty acid oxidation defects are now identified through…

  2. Shifting Native Chemical Ligation into Reverse through N→S Acyl Transfer

    PubMed Central

    Macmillan, Derek; Adams, Anna; Premdjee, Bhavesh

    2011-01-01

    Peptide thioester synthesis by N→S acyl transfer is being intensively explored by many research groups the world over. Reasons for this likely include the often straightforward method of precursor assembly using Fmoc-based chemistry and the fundamentally interesting acyl migration process. In this review we introduce recent advances in this exciting area and discuss, in more detail, our own efforts towards the synthesis of peptide thioesters through N→S acyl transfer in native peptide sequences. We have found that several peptide thioesters can be readily prepared and, what’s more, there appears to be ample opportunity for further development and discovery. PMID:22347724

  3. Exploring Cooperative Effects in Oxidative NHC Catalysis: Regioselective Acylation of Carbohydrates.

    PubMed

    Cramer, David L; Bera, Srikrishna; Studer, Armido

    2016-05-23

    The utility of oxidative NHC catalysis for both the regioselective and chemoselective functionalization of carbohydrates is explored. Chiral NHCs allow for the highly regioselective oxidative esterification of various carbohydrates using aldehydes as acylation precursors. The transformation was also shown to be amenable to both cis/trans diol isomers, free amino groups, and selective for specific sugar epimers in competition experiments. Efficiency and regioselectivity of the acylation can be improved upon using two different NHC catalysts that act cooperatively. The potential of the method is documented by the regioselective acylation of an amino-linked neodisaccharide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. II. Effects on lipolysis, glucose production, and liver acyl-CoA profile

    PubMed Central

    Gu, Lei; Zhang, Guo-Fang; Kombu, Rajan S.; Allen, Frederick; Kutz, Gerd; Brewer, Wolf-Ulrich; Roe, Charles R.

    2010-01-01

    The anaplerotic odd-medium-chain triglyceride triheptanoin is used in clinical trials for the chronic dietary treatment of patients with long-chain fatty acid oxidation disorders. We previously showed (Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, Kutz G, Brewer WU, Roe CR, Brunengraber H. Am J Physiol Endocrinol Metab 291: E860–E866, 2006) that the intravenous infusion of triheptanoin increases lipolysis traced by the turnover of glycerol. In this study, we tested whether lipolysis induced by triheptanoin infusion is accompanied by the potentially harmful release of long-chain fatty acids. Rats were infused with heptanoate ± glycerol or triheptanoin. Intravenous infusion of triheptanoin at 40% of caloric requirement markedly increased glycerol endogenous Ra but not oleate endogenous Ra. Thus, the activation of lipolysis was balanced by fatty acid reesterification in the same cells. The liver acyl-CoA profile showed the accumulation of intermediates of heptanoate β-oxidation and C5-ketogenesis and a decrease in free CoA but no evidence of metabolic perturbation of liver metabolism such as propionyl overload. Our data suggest that triheptanoin, administered either intravenously or intraduodenally, could be used for intensive care and nutritional support of metabolically decompensated long-chain fatty acid oxidation disorders. PMID:19903863

  5. Proteolytic enzyme activities in Cheddar cheese juice made using lactococcal starters of differing autolytic properties.

    PubMed

    Sheehan, A; Cuinn, G O'; Fitzgerald, R J; Wilkinson, M G

    2006-04-01

    To determine proteolytic enzyme activities released in Cheddar cheese juice manufactured using lactococcal starter strains of differing autolytic properties. The activities of residual chymosin, cell envelope proteinase and a range of intracellular proteolytic enzymes were determined during the first 70 days of ripening when starter lactococci predominate the microbial flora. In general, in cell free extracts (CFE) of the strains, the majority of proteolytic activities was highest for Lactococcus lactis HP, intermediate for L. lactis AM2 and lowest for L. lactis 303. However, in cheese juice, as ripening progressed, released proteolytic activities were highest for the highly autolytic strain L. lactis AM2, intermediate for L. lactis 303 and lowest for L. lactis HP. These results indicate that strain related differences in autolysis influence proteolytic enzyme activities released into Cheddar cheese during ripening. No correlation was found between proteolytic potential of the starter strains measured in CFE prior to cheese manufacture and levels of activities released in cheese juice. The findings further support the importance of autolysis of lactococcal starters in determining the levels of proteolytic activities present in cheese during initial stages of ripening.

  6. Acute aerobic exercise differentially alters acylated ghrelin and perceived fullness in normal-weight and obese individuals.

    PubMed

    Heden, Timothy D; Liu, Ying; Park, Youngmin; Dellsperger, Kevin C; Kanaley, Jill A

    2013-09-01

    Adiposity alters acylated ghrelin concentrations, but it is unknown whether adiposity alters the effect of exercise and feeding on acylated ghrelin responses. Therefore, the purpose of this study was to determine whether adiposity [normal-weight (NW) vs. obese (Ob)] influences the effect of exercise and feeding on acylated ghrelin, hunger, and fullness. Fourteen NW and 14 Ob individuals completed two trials in a randomized counterbalanced fashion, including a prior exercise trial (EX) and a no exercise trial (NoEX). During the EX trial, the participants performed 1 h of treadmill walking (55-60% peak O2 uptake) during the evening, 12 h before a 4-h standardized mixed meal test. Frequent blood samples were taken and analyzed for acylated ghrelin, and a visual analog scale was used to assess perceived hunger and fullness. In NW individuals, EX, compared with NoEX, reduced fasting acylated ghrelin concentrations by 18% (P = 0.03), and, in response to feeding, the change in acylated ghrelin (P = 0.02) was attenuated by 39%, but perceived hunger and fullness were unaltered. In Ob individuals, despite no changes in fasting or postprandial acylated ghrelin concentrations with EX, postprandial fullness was attenuated by 46% compared with NoEX (P = 0.05). In summary, exercise performed the night before a meal suppresses acylated ghrelin concentrations in NW individuals without altering perceived hunger or fullness. In Ob individuals, despite no changes in acylated ghrelin concentrations, EX reduced the fullness response to the test meal. Acylated ghrelin and perceived fullness responses are differently altered by acute aerobic exercise in NW and Ob individuals.

  7. An improved process of isomaltooligosaccharide production in kimchi involving the addition of a Leuconostoc starter and sugars.

    PubMed

    Cho, Seung Kee; Eom, Hyun-Ju; Moon, Jin Seok; Lim, Sae-Bom; Kim, Yong Kook; Lee, Ki Won; Han, Nam Soo

    2014-01-17

    Isomaltooligosaccharides (IMOs) are α-(1→6)-linked oligodextrans that show a prebiotic effect on Bifidobacterium spp. This study sought to improve IMO synthesis during lactate fermentation in kimchi by inoculating the kimchi fermentation mix with a starter and sugars; the psychrotrophic Leuconostoc citreum KACC 91035 strain with high dextransucrase activity was used as a starter and sucrose (58 mM) and maltose (56 mM) were added as the donor and acceptor for the glucose-transferring reaction of the dextransucrase, respectively. With the addition of both the starter and the sugars and incubation at 10°C, IMOs were produced in kimchi after 3d. Without the starter, the IMO production rate and maximal concentration in kimchi were 15.05 mM/d and 75.27 mM, respectively, whereas with the starter, the rate and concentration increased to 22.04 mM/d and 110.19 mM, respectively. In addition, the sucrose-maltose mix gave an appropriate level of sweetness by releasing fructose and prevented unfavorable polymer synthesis by IMO production. This result suggests that lactic acid bacteria expressing a highly active glycosyltransferase can be used for the synthesis of beneficial oligosaccharides in various fermented foods. © 2013.

  8. Quantum chemical study of penicillin: Reactions after acylation

    NASA Astrophysics Data System (ADS)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  9. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling.

    PubMed Central

    Faergeman, N J; Knudsen, J

    1997-01-01

    The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations in the presence of the appropriate acyl-CoA-buffering binding proteins. Re-evaluation of many of the reported effects is therefore urgently required. However, the observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl-CoA binding protein and that acetyl-CoA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of acyl-CoA indicate that long-chain acyl-CoA esters can act as regulatory molecules in vivo. This view is further supported by the observation that fatty acids do not repress expression of acetyl-CoA carboxylase or Delta9-desaturase in yeast deficient in acyl-CoA synthetase. PMID:9173866

  10. Microbiological and fermentative properties of baker's yeast starter used in breadmaking.

    PubMed

    Reale, A; Di Renzo, T; Succi, M; Tremonte, P; Coppola, R; Sorrentino, E

    2013-08-01

    This study assessed the levels of microbial contaminants in liquid, compressed and dry commercial baker's yeasts used as starters in breadmaking. Eumycetes, Enterobacteriaceae, total and fecal coliforms, Bacillus spp., and lactic acid bacteria (LAB), in particular enterococci, were quantified. Results obtained in this study highlighted that baker's yeast could represent a potential vehicle of spoilage and undesirable microorganisms into the baking environment, even if these do not influence the leavening activity in the dough, as ascertained by rheofermentometer analysis. Different microbial groups, such as spore-forming bacteria and moulds, were found in baker's yeast starters. Moreover, different species of LAB, which are considered the main contaminants in large-scale yeast fermentations, were isolated and identified by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rDNA sequencing. The most recurrent species were Lactobacillus plantarum, Enterococcus faecalis, and Enterococcus durans, isolated from both compressed and dry starters, whereas strains belonging to Leuconostoc and Pediococcus genera were found only in dry ones. Nested-Polymerase Chain Reaction (Nested-PCR) and Randomly Amplified Polymorphic DNA-PCR (RAPD-PCR) were also used to highlight the biodiversity of the different commercial yeast strains, and to ascertain the culture purity. © 2013 Institute of Food Technologists®

  11. Whey-cheese production using freeze-dried kefir culture as a starter.

    PubMed

    Dimitrellou, D; Kourkoutas, Y; Banat, I M; Marchant, R; Koutinas, A A

    2007-10-01

    The aim of the present study was to evaluate the use of a freeze-dried kefir culture in the production of a novel type of whey-cheese similar to traditional Greek Myzithra-cheese, to achieve improvement of the quality characteristics of the final product and the extension of shelf-life. The use of kefir culture as a starter led to increased lactic acid concentrations and decreased pH values in the final product compared with whey-cheese without starter culture. The effect of the starter culture on production of aroma-related compounds responsible for cheese flavour was also studied using the solid phase microextraction gas chromatography/mass spectrometry technique. Spoilage in unsalted kefir-whey-cheese was observed on the thirteenth and the twentieth day of preservation at 10 and 5 degrees C, respectively, while the corresponding times for unsalted whey-cheese preservation were 11 and 14 days. The cheeses produced were characterized as high-quality products during the preliminary sensory evaluation. An indication of increased preservation time was attributed to the freeze-dried kefir culture, which also seemed to suppress growth of pathogens. The results suggested the use of kefir culture as a means to extend the shelf-life of dairy products with reduced or no salt content.

  12. Evaluation of the use of malic acid decarboxylase-deficient starter culture in NaCl-free cucumber fermentations to reduce bloater incidence.

    PubMed

    Zhai, Y; Pérez-Díaz, I M; Diaz, J T; Lombardi, R L; Connelly, L E

    2018-01-01

    Accumulation of carbon dioxide (CO 2 ) in cucumber fermentations is known to cause hollow cavities inside whole fruits or bloaters, conducive to economic losses for the pickling industry. This study focused on evaluating the use of a malic acid decarboxylase (MDC)-deficient starter culture to minimize CO 2 production and the resulting bloater index in sodium chloride-free cucumber fermentations brined with CaCl 2 . Attempts to isolate autochthonous MDC-deficient starter cultures from commercial fermentations, using the MD medium for screening, were unsuccessful. The utilization of allochthonous MDC-deficient starter cultures resulted in incomplete utilization of sugars and delayed fermentations. Acidified fermentations were considered, to suppress the indigenous microbiota and favour proliferation of the allochthonous MDC-deficient Lactobacillus plantarum starter cultures. Inoculation of acidified fermentations with L. plantarum alone or in combination with Lactobacillus brevis minimally improved the conversion of sugars. However, inoculation of the pure allochthonous MDC-deficient starter culture to 10 7 CFU per ml in acidified fermentations resulted in a reduced bloater index as compared to wild fermentations and those inoculated with the mixed starter culture. Although use of an allochthonous MDC-deficient starter culture reduces bloater index in acidified cucumber fermentations brined with CaCl 2 , an incomplete conversion of sugars is observed. Economical losses due to the incidence of bloaters in commercial cucumber fermentations brined with CaCl 2 may be reduced utilizing a starter culture to high cell density. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  13. The effect of microbial starter composition on cassava chips fermentation for the production of fermented cassava flour

    NASA Astrophysics Data System (ADS)

    Kresnowati, M. T. A. P.; Listianingrum, Zaenudin, Ahmad; Trihatmoko, Kharisrama

    2015-12-01

    The processing of cassava into fermented cassava flour (fercaf) or the widely known as modified cassava flour (mocaf) presents an alternative solution to improve the competitiveness of local foods and to support national food security. However, the mass production of fercaf is being limited by several problems, among which is the availability of starter cultures. This paper presents the mapping of the effect of microbial starter compositions on the nutritional content of fercaf in order to obtain the suitable nutritional composition. Based on their enzymatic activities, the combination of Lactobacillus plantarum, Bacillus subtilis, and Aspergillus oryzae were tested during the study. In addition, commercial starter was also tested. During the fermentation, the dynamics in microbial population were measured as well as changes in cyanogenic glucoside content. The microbial starter composition was observed to affect the dynamics in microbial populationcynaogenic glucoside content of the produced fercaf. In general, steady state microbial population was reached within 12 hours of fermentation. Cyanogenic glucoside was observed to decrease along the fermentation.

  14. High specification starter diets improve the performance of low birth weight pigs to 10 weeks of age.

    PubMed

    Douglas, S L; Wellock, I; Edwards, S A; Kyriazakis, I

    2014-10-01

    Piglets born with low birth weights (LBiW) are likely to be lighter at weaning. Starter regimes tailored for pigs of average BW therefore may not be optimal for LBiW nursery performance. The objective was to determine if LBiW pigs benefit from a high specification starter regime and the provision of extra feed (additional allowance of last phase diet of the starter regime) in comparison to a standard commercial regime. Additionally, the effect of starter regime on performance of normal birth weight (NBiW) pigs at weaning was determined and compared to that of LBiW pigs. Finally, the cost effectiveness of the treatments was determined. The experiment was therefore an incomplete 2 × 2 × 2 factorial design, as the provision of extra feed was given only to LBiW pigs (n = 6 replicates per treatment; 5 pigs per replicate). Treatments comprised birth weight (LBiW or NBiW), starter regime (high specification [HS] or standard starter [SS]), and extra feed 3 quantity (yes [YF] or no [NF], for LBiW pigs only; feed 3 corresponded to the last phase diet of the starter regime). At weaning (d 28), pigs were randomly assigned within each birth weight category to treatment groups. Nutritional treatments were fed ad libitum on a kilogram/head basis for approximately 3 wk followed by a common weaner diet fed ad libitum until d 70. Starter regime (P = 0.019), feed 3 amount (P = 0.010), and their interaction (P = 0.029) had an effect on ADG of LBiW pigs from d 28 to 49, with pigs on HS followed by YF (HY) performing best. An improvement in feed conversion ratio (FCR) was noted between d 28 and 49 for pigs fed the additional feed 3 (P = 0.030); between d 49 and 70, the only residual effect seen was of starter regime (P = 0.017) on ADG. In contrast, there was no significant effect of starter regime from d 28 to 70 on ADG, ADFI, or FCR of NBiW pigs. By d 49 and 70, LBiW pigs on regime HY weighed the same as NBiW pigs (d 70 BW; 30.0 vs. 30.6 kg; P = 0.413), with similar growth rates from

  15. Fastener starter tool

    NASA Technical Reports Server (NTRS)

    Chandler, Faith T. (Inventor); Arnett, Michael C. (Inventor); Garton, Harry L. (Inventor); Valentino, William D. (Inventor)

    2003-01-01

    A fastener starter tool includes a number of spring retention fingers for retaining a small part, or combination of parts. The tool has an inner housing, which holds the spring retention fingers, a hand grip, and an outer housing configured to slide over the inner housing and the spring retention fingers toward and away from the hand grip, exposing and opening, or respectively, covering and closing, the spring retention fingers. By sliding the outer housing toward (away from) the hand grip, a part can be released from (retained by) the tool. The tool may include replaceable inserts, for retaining parts, such as screws, and configured to limit the torque applied to the part, to prevent cross threading. The inner housing has means to transfer torque from the hand grip to the insert. The tool may include replaceable bits, the inner housing having means for transferring torque to the replaceable bit.

  16. Anorexia in hemodialysis patients: the possible role of des-acyl ghrelin.

    PubMed

    Muscaritoli, Maurizio; Molfino, Alessio; Chiappini, Maria Grazia; Laviano, Alessandro; Ammann, Thomas; Spinsanti, Paola; Melchiorri, Daniela; Inui, Akio; Alegiani, Filippo; Rossi Fanelli, Filippo

    2007-01-01

    Anorexia is frequently found in end-stage renal disease and is a reliable predictor of morbidity and mortality in hemodialysis (HD) patients. The pathogenesis of anorexia is complex and the appetite-modulating hormone ghrelin could be involved. Two forms of circulating ghrelin have been described: acylated ghrelin (<10% of circulating ghrelin) which promotes food intake, and des-acyl ghrelin which induces a negative energy balance. The aim of this cross-sectional study is to clarify whether anorexia and body weight change in HD patients relate to plasma des-acyl ghrelin levels. 34 HD patients and 15 healthy controls were studied. The presence of anorexia was assessed by a questionnaire. Serum des-acyl ghrelin was measured in HD patients and in 15 body mass index-, sex- and age-matched controls by ELISA. Energy intake was assessed by a 3-day dietary diary, and fat-free mass (FFM) was evaluated by body impedance analysis. Data have been statistically analyzed and are presented as mean +/- SD. 14 patients (41%) were found to be anorexic, and 20 patients (59%) non-anorexic. Energy intake (kcal/day) was significantly lower in anorexic than in non-anorexic patients (1,682 +/- 241 vs. 1,972.50 +/- 490; p < 0.05). FFM (%) was lower in anorexic than in non-anorexic patients (65.8 +/- 4.4 vs. 70.9 +/- 8.7; p = 0.05). Plasma des-acyl ghrelin levels (fmol/ml) were significantly higher in HD patients than in controls (214.88 +/- 154.24 vs. 128.93 +/- 51.07; p < 0.05), and in anorexic HD patients than in non-anorexic (301.7 +/- 162.4 vs. 159.1 +/- 115.5; p < 0.01). Anorexia is highly prevalent among HD patients and des-acyl ghrelin could be involved in its pathogenesis. Copyright 2007 S. Karger AG, Basel.

  17. Seeing Through the Fog: The Evolution of Problem Framing in United States Army Decision-Making Doctrine

    DTIC Science & Technology

    2014-05-22

    Commander and Staff 2: Mission Analysis 3: Mission analysis 3: Course of Action (COA) Development 4: Staff Estimates 4: COA Analysis 5: Commander’s...Commander and Staff 2: Mission Analysis 2: Mission Analysis 3: Mission analysis 3: Course of Action (COA) Development 3: Course of Action (COA... Development 4: Staff Estimates 4: COA Analysis 4: COA Analysis 5: Commander’s Estimate 5: COA Comparison 5: COA Comparison 6: Preparation

  18. 3. PLENUM INTERIOR, SHOWING DRAFT REGULATOR ARRANGEMENT AND STARTER MOTOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. PLENUM INTERIOR, SHOWING DRAFT REGULATOR ARRANGEMENT AND STARTER MOTOR. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  19. Table Olive Fermentation Using Starter Cultures with Multifunctional Potential

    PubMed Central

    Bonatsou, Stamatoula; Tassou, Chrysoula C.; Panagou, Efstathios Z.; Nychas, George-John E.

    2017-01-01

    Table olives are one of the most popular plant-derived fermented products. Their enhanced nutritional value due to the presence of phenolic compounds and monounsaturated fatty acids makes olives an important food commodity of the Mediterranean diet. However, despite its economic significance, table olive fermentation is mainly craft-based and empirically driven by the autochthonous microbiota of the olives depending on various intrinsic and extrinsic factors, leading to a spontaneous process and a final product of variable quality. The use of microorganisms previously isolated from olive fermentations and studied for their probiotic potential and technological characteristics as starter cultures may contribute to the reduction of spoilage risk resulting in a controlled fermentation process. This review focuses on the importance of the development and implementation of multifunctional starter cultures related to olives with desirable probiotic and technological characteristics for possible application on table olive fermentation with the main purpose being the production of a health promoting and sensory improved functional food. PMID:28555038

  20. Table Olive Fermentation Using Starter Cultures with Multifunctional Potential.

    PubMed

    Bonatsou, Stamatoula; Tassou, Chrysoula C; Panagou, Efstathios Z; Nychas, George-John E

    2017-05-28

    Table olives are one of the most popular plant-derived fermented products. Their enhanced nutritional value due to the presence of phenolic compounds and monounsaturated fatty acids makes olives an important food commodity of the Mediterranean diet. However, despite its economic significance, table olive fermentation is mainly craft-based and empirically driven by the autochthonous microbiota of the olives depending on various intrinsic and extrinsic factors, leading to a spontaneous process and a final product of variable quality. The use of microorganisms previously isolated from olive fermentations and studied for their probiotic potential and technological characteristics as starter cultures may contribute to the reduction of spoilage risk resulting in a controlled fermentation process. This review focuses on the importance of the development and implementation of multifunctional starter cultures related to olives with desirable probiotic and technological characteristics for possible application on table olive fermentation with the main purpose being the production of a health promoting and sensory improved functional food.

  1. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels

    PubMed Central

    Shipston, Michael J.

    2014-01-01

    Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease. PMID:25140154

  2. Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams.

    PubMed

    Kim, Young Joo; Park, Sung Yong; Lee, Hong Chul; Yoo, Seung Seok; Oh, Sejong; Kim, Kwang Hyun; Chin, Koo Bok

    2016-01-01

    The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham.

  3. Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams

    PubMed Central

    Yoo, Seung Seok

    2016-01-01

    The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham. PMID:27499673

  4. Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation

    PubMed Central

    2017-01-01

    Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC–MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure–property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response. PMID:28737384

  5. Penicillium salamii strain ITEM 15302: A new promising fungal starter for salami production.

    PubMed

    Magistà, D; Ferrara, M; Del Nobile, M A; Gammariello, D; Conte, A; Perrone, G

    2016-08-16

    Traditional sausages are often considered of superior quality to sausages inoculated with commercial starter cultures and this is partially due to the action of the typical house microflora. Penicillium nalgiovense is the species commonly used as starter culture for dry-cured meat production. Recently a new species, Penicillium salamii, was described as typical colonizer during salami seasoning. In order to understand its contribution to the seasoning process, two different experiments on curing of fresh pork sausages were conducted using P. salamii ITEM 15302 in comparison with P. nalgiovense ITEM 15292 at small and industrial scale, and the dry-cured sausages were subjected to sensory analyses. Additionally, proteolytic and lipolytic in vitro assays were performed on both strains. P. salamii ITEM 15302 proved to be a fast growing mould on dry-cured sausage casings, well adapted to the seasoning process, with high lipolytic and proteolytic enzymatic activity that confers typical sensory characteristics to meat products. Therefore, P. salamii ITEM 15302 was shown to be a good candidate as new starter for meat industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Starting System 2. Repair the Starter Rewind Spring. Student Manual. Small Engine Repair Series. First Edition.

    ERIC Educational Resources Information Center

    Hill, Pamela

    This student manual on repairing the starter rewind spring on a small gas engine is the third of three in an instructional package on the starting system in the Small Engine Repair Series for handicapped students. The stated purpose for the booklet is to help students learn what tools and equipment to use in repairing the starter rewind spring and…

  7. Aerobic Fitness of Starter and Non-Starter Soccer Players in the Champion’s League

    PubMed Central

    Paraskevas, Giorgos; Hadjicharalambous, Marios

    2018-01-01

    Abstract To identify individual response patterns in selected aerobic fitness variables of regular starters (ST; N = 7) and non-starters (Non-ST; N = 10), top level professional soccer players were tested for maximal oxygen uptake (VO2max), velocity at 4 mM of lactate (V4), velocity at maximal oxygen uptake (νVO2max) and oxygen pulse (O2-pulse) in July and December following consecutive periods of fixture congestion. V4 was the only variable that increased significantly in December compared to July (15.1 ± 0.5 vs. 14.6 ± 0.5, p = 0.001). There was an almost certain beneficial large mean team change for V4 (ES = 1.2 (0.67; 1.57), 100/0/0), while beneficial mean team changes were less likely for νVO2max and O2-pulse [ES = 0.31 (-0.08; 0.70), 68/30/2 and ES = 0.24 (0.01; 0.49), 64/36/0, respectively] and unclear for VO2max (ES = 0.02 (-0.31; 0.70), 18/69/13). With the exception of V4 where 10 out of 17 players (7 ST and 3 Non-ST) showed positive changes higher than the biological variability, all other variables were characterized by a substantial proportion of changes lower than the biological variability. The present study demonstrated that aerobic fitness variables that require maximal effort may be characterized by greater variability of the individual response pattern compared to that of submaximal aerobic fitness variables irrespective of the accumulated game time. Submaximal aerobic fitness variables appear to be more informative in the physiological evaluation of top level soccer players and this may be an advantage during exposure to periods of consecutive games. PMID:29599863

  8. Effects of ghrelin and des-acyl ghrelin on neurogenesis of the rat fetal spinal cord

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Miho; Nakahara, Keiko; Goto, Shintaro

    Expressions of the growth hormone secretagogue receptor (GHS-R) mRNA and its protein were confirmed in rat fetal spinal cord tissues by RT-PCR and immunohistochemistry. In vitro, over 3 nM ghrelin and des-acyl ghrelin induced significant proliferation of primary cultured cells from the fetal spinal cord. The proliferating cells were then double-stained using antibodies against the neuronal precursor marker, nestin, and the cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), and the nestin-positive cells were also found to be co-stained with antibody against GHS-R. Furthermore, binding studies using [{sup 125}I]des-acyl ghrelin indicated the presence of a specific binding site for des-acyl ghrelin, and confirmedmore » that the binding was displaced with unlabeled des-acyl ghrelin or ghrelin. These results indicate that ghrelin and des-acyl ghrelin induce proliferation of neuronal precursor cells that is both dependent and independent of GHS-R, suggesting that both ghrelin and des-acyl ghrelin are involved in neurogenesis of the fetal spinal cord.« less

  9. A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters.

    PubMed

    Rossetti, Lia; Carminati, Domenico; Zago, Miriam; Giraffa, Giorgio

    2009-03-15

    A Qualified Presumption of Safety (QPS) approach was applied to dominant lactic acid bacteria (LAB) associated with Grana Padano cheese whey starters. Thirty-two strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum, and representing the overall genotypic LAB diversity associated with 24 previously collected whey starters [Rossetti, L., Fornasari, M.E., Gatti, M., Lazzi, C., Neviani, E., Giraffa, G., 2008. Grana Padano cheese whey starters: microbial composition and strain distribution. International Journal of Food Microbiology 127, 168-171], were analyzed. All L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus isolates were susceptible to four (i.e. vancomycin, gentamicin, tetracycline, and erythromycin) of the clinically most relevant antibiotics. One L. fermentum strain displayed phenotypic resistance to tetracycline (Tet(R)), with MIC of 32 microg/ml, and gentamycin (Gm(R)), with MIC of 32 microg/ml. PCR was applied to this strain to test the presence of genes tet(L), tet(M), tet(S), and aac(6')-aph(2')-Ia, which are involved in horizontal transfer of Tet(R) and Gm(R), respectively but no detectable amplification products were observed. According to QPS criteria, we conclude that Grana cheese whey starters do not present particular safety concerns.

  10. Reduction of Biogenic Amines during Miso Fermentation by Lactobacillus plantarum as a Starter Culture.

    PubMed

    Lee, Yi-Chen; Kung, Hsien-Feng; Huang, Ya-Ling; Wu, Chien-Hui; Huang, Yu-Ru; Tsai, Yung-Hsiang

    2016-09-01

    Lactobacillus plantarum D-103 isolated from a miso product that possesses amine-degrading activity was used as a starter culture in miso fermentation (25°C for 120 days) in this study. The salt content in control samples (without starter culture) and inoculated samples (inoculated with L. plantarum D-103) remained constant at 10.4% of the original salt concentration throughout fermentation, whereas the pH value decreased from 6.2 to 4.6 during fermentation. The inoculated samples had significantly lower (P < 0.05) levels of total volatile basic nitrogen than control samples after 40 days of fermentation. After 120 days of fermentation, the histamine and overall biogenic amine contents in inoculated samples were reduced by 58 and 27%, respectively, compared with control samples. To our knowledge, this is the first report to demonstrate that application of a starter culture with amine-degrading activity in miso products was effective in reducing the accumulation of biogenic amines.

  11. Stable isotope labeling by essential nutrients in cell culture for preparation of labeled coenzyme A and its thioesters.

    PubMed

    Basu, Sankha S; Mesaros, Clementina; Gelhaus, Stacy L; Blair, Ian A

    2011-02-15

    Stable isotope dilution mass spectrometry (MS) represents the gold standard for quantification of endogenously formed cellular metabolites. Although coenzyme A (CoA) and acyl-CoA thioester derivatives are central players in numerous metabolic pathways, the lack of a commercially available isotopically labeled CoA limits the development of rigorous MS-based methods. In this study, we adapted stable isotope labeling by amino acids in cell culture (SILAC) methodology to biosynthetically generate stable isotope labeled CoA and thioester analogues for use as internal standards in liquid chromatography/multiple reaction monitoring mass spectrometry (LC/MRM-MS) assays. This was accomplished by incubating murine hepatocytes (Hepa 1c1c7) in media in which pantothenate (a precursor of CoA) was replaced with [(13)C(3)(15)N(1)]-pantothenate. Efficient incorporation into various CoA species was optimized to >99% [(13)C(3)(15)N(1)]-pantothenate after three passages of the murine cells in culture. Charcoal-dextran-stripped fetal bovine serum (FBS) was found to be more efficient for serum supplementation than dialyzed or undialyzed FBS, due to lower contaminating unlabeled pantothenate content. Stable isotope labeled CoA species were extracted and utilized as internal standards for CoA thioester analysis in cell culture models. This methodology of stable isotope labeling by essential nutrients in cell culture (SILEC) can serve as a paradigm for using vitamins and other essential nutrients to generate stable isotope standards that cannot be readily synthesized.

  12. Stress-related hormonal alterations, growth and pelleted starter intake in pre-weaning Holstein calves in response to thermal stress.

    PubMed

    López, E; Mellado, M; Martínez, A M; Véliz, F G; García, J E; de Santiago, A; Carrillo, E

    2018-04-01

    This study aimed to investigate the effect of heat stress and month of birth on growth performance, pelleted starter intake, and stress-related hormones in Holstein calves. Birth weight and growth records, representing 4735 Holstein calves from a large commercial dairy herd in northern Mexico (25° N; 22.3 °C mean annual temperature) from 2013 to 2015, were analyzed. Temperature-humidity index (THI) at calving, season of birth, and month of birth were the independent variables, whereas growth traits were the dependent variables. Increased THI at birth from < 65 to > 85 units was associated with a decrease in birth weight from 39.3 to 38.7 kg. Calves subjected to high THI (> 75 units) at calving showed lesser (P < 0.01) pre-weaning gains (405 ± 97 g/calf/day), whereas those calves born with THI < 70 units presented the highest gains (466 ± 112 g/calf/day). Birth during the fall months reduced (P < 0.01) weaning weight by about 5 kg compared with winter months. Also, the pre-weaning average daily gain for calves born in the fall was about 70 g less (P < 0.01) than calves delivered in winter months. Plasma triiodothyronine and tetraiodothyronine levels were lower (1.02 ± 0.21 and 48 ± 7.9 ng/mL, respectively; P < 0.01) in summer and highest in winter (1.64 ± 0.48 and 66 ± 11 ng/mL, respectively). Mean plasma cortisol concentration was higher in heat-stressed calves born in summer (59 ± 40 ng/mL) than calves born in winter (20 ± 28 ng/mL). Pelleted starter intake 1 week before weaning was lowest (P < 0.01) in the fall (0.82 ± 0.26 kg/calf/day; mean ± SD) and highest in spring (1.26 ± 0.43 kg/calf/day). It was concluded that in this particular environment, heat stress affects birth weight and growth rate of Holstein calves. Thus, environmental management of the newborn calf during hot spring and summer months is warranted to optimize pelleted starter intake and calf growth rates.

  13. Starter for inductively coupled plasma tube

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1988-01-01

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation.

  14. Starter for inductively coupled plasma tube

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1988-08-23

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initiate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation. 1 fig.

  15. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases.

    PubMed

    Guy, Jodie E; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-10-04

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals.

  16. Identification and characterization of filamentous fungi isolated from fermentation starters for Hong Qu glutinous rice wine brewing.

    PubMed

    Lv, Xu-Cong; Huang, Zhi-Qing; Zhang, Wen; Rao, Ping-Fan; Ni, Li

    2012-01-01

    Hong Qu glutinous rice wine is one of the most popular traditional rice wines in China. Traditionally, this wine is brewed from glutinous rice with the addition of wine fermentation starters (Hong Qu (also called red yeast rice) and White Qu). The objective of this study was to investigate the variability of filamentous fungi associated with traditional fermentation starters through a traditional culture-dependent method and a molecular identification approach. In this study, forty-three filamentous fungi were separated by traditional culture-dependent means (macro- and microscopic characteristics) from 10 fermentation starters and classified into 16 different species based on morphological examination and the internal transcribed spacer (ITS) sequences analysis. It was observed that the genus Aspergillus had the highest number (14 isolates) of isolates followed by Rhizopus (11 isolates), Monascus (5 isolates) and Penicillium (4 isolates). The species R. oryzae, A. niger, A. flavus and M. purpureus were frequently found in wine starter samples, among which R. oryzae was the most frequent species. The enzyme-producing properties (glucoamylase, α-amylase and protease) of all fungal isolates from different starters were also evaluated. A. flavus, R. oryzae and M. purpureus were found to be better glucoamylase producers. A. flavus, R. oryzae and A.oryzae exhibited higher activity of α-amylase. A. flavus and A. oryzae had higher protease activity. However, some fungal isolates of the same species exhibited a significant variability in the production levels for all determined enzyme activity. This study is the first to identify filamentous fungi associated with the starter of Hong Qu glutinous rice wine using both traditional and molecular methods. The results enrich our knowledge of liquor-related micro-organisms, and can be used to promote the development of the traditional fermentation technology.

  17. Toward Green Acylation of (Hetero)arenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones

    PubMed Central

    2017-01-01

    Green Friedel–Crafts acylation reactions belong to the most desired transformations in organic chemistry. The resulting ketones constitute important intermediates, building blocks, and functional molecules in organic synthesis as well as for the chemical industry. Over the past 60 years, advances in this topic have focused on how to make this reaction more economically and environmentally friendly by using green acylating conditions, such as stoichiometric acylations and catalytic homogeneous and heterogeneous acylations. However, currently well-established methodologies for their synthesis either produce significant amounts of waste or proceed under harsh conditions, limiting applications. Here, we present a new protocol for the straightforward and selective introduction of acyl groups into (hetero)arenes without directing groups by using available olefins with inexpensive CO. In the presence of commercial palladium catalysts, inter- and intramolecular carbonylative C–H functionalizations take place with good regio- and chemoselectivity. Compared to classical Friedel–Crafts chemistry, this novel methodology proceeds under mild reaction conditions. The general applicability of this methodology is demonstrated by the direct carbonylation of industrial feedstocks (ethylene and diisobutene) as well as of natural products (eugenol and safrole). Furthermore, synthetic applications to drug molecules are showcased. PMID:29392174

  18. Des-acyl ghrelin prevents heatstroke-like symptoms in rats exposed to high temperature and high humidity.

    PubMed

    Inoue, Yoshiyuki; Hayashi, Yujiro; Kangawa, Kenji; Suzuki, Yoshihiro; Murakami, Noboru; Nakahara, Keiko

    2016-02-26

    We have shown previously that des-acyl ghrelin decreases body temperature in rats through activation of the parasympathetic nervous system. Here we investigated whether des-acyl ghrelin ameliorates heatstroke in rats exposed to high temperature. Peripheral administration of des-acyl ghrelin significantly attenuated hyperthermia induced by exposure to high-temperature (35°C) together with high humidity (70-80%). Although biochemical analysis revealed that exposure to high temperature significantly increased hematocrit and the serum levels of aspartate amino transferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and electrolytes (Na(+), K(+), Cl(-)), most of these heatstroke-associated reactions were significantly reduced by treatment with des-acyl ghrelin. The level of des-acyl ghrelin in plasma was also found to be significantly increased under high-temperature conditions. These results suggest that des-acyl ghrelin could be useful for preventing heatstroke under high temperature condition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Antioxidative pyranonigrins in rice mold starters and their suppressive effect on the expression of blood adhesion molecules.

    PubMed

    Miyake, Yoshiaki; Mochizuki, Mika; Ito, Chihiro; Itoigawa, Masataka; Osawa, Toshihiko

    2008-06-01

    Antioxidants having a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity in rice mold starters, which are used for the preparation of various Japanese fermented foods, and their effectiveness against the expression of blood adhesion molecules were examined. An antioxidant was isolated from the rice mold starters used for shochu and identified as pyranonigrin-S (PG-S) by (1)H-NMR, (13)C-NMR, and FAB-MS analyses. It was a derivative of pyranonigrin-A (PG-A), which has been isolated as an antioxidant from the rice mold starters. Pyranonigrins PG-A and PG-S were found to exist in spores on rice mold starters which had been prepared by Aspergillus awamori, A. kawachii, and A. saitoi. PG-S exhibited a higher level of DPPH radical scavenging activity than PG-A. PG-A was found to have a significant suppressive effect on the expression of vascular cell adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-alpha (TNF-alpha) (P<0.05).

  20. Identification of potential probiotic starter cultures for Scandinavian-type fermented sausages.

    PubMed

    Klingberg, Trine Danø; Axelsson, Lars; Naterstad, Kristine; Elsser, Dieter; Budde, Birgitte Bjørn

    2005-12-15

    Potential probiotic cultures suitable as starter cultures for the Scandinavian-type fermented sausages were identified among strains well-adapted to fermented meats as well as strains originating from a culture collection. From 15 different fermented meat products, 22 strains were isolated as dominant non-starter lactic acid bacteria (NSLAB). The isolates were identified by RAPD, API and sequence analysis of 16S rRNA and showed to be five strains of Lactobacillus sakei, five strains of Lactobacillus farciminis, five strains belonging to the group of Lactobacillus plantarum/pentosus, four strains of Lactobacillus alimentarius, two strains of Lactobacillus brevis and one strain of Lactobacillus versmoldensis. Heterofermentative strains as well as strains not growing at 37 degrees C and not lowering pH below 5.1 in a meat model were excluded leaving 9 strains for further studies. These strains together with 19 strains from a culture collection were evaluated by in vitro methods including survival upon exposure to pH 2.5 or 0.3% oxgall and adhesion to the human colon adenocarcinoma cell line Caco-2 as well as antimicrobial activity against potential pathogens. Strains that fulfilled all the probiotic criteria and showed to be fast acid producers in a meat model included three strains belonging to the group of Lb. plantarum/pentosus (MF1291, MF1298, MF1300) which originated from the dominant NSLAB of fermented meat products. MF1291 and MF 1298 were further identified as Lb. plantarum and MF1300 as Lb. pentosus. The three strains were all successfully applied as starter cultures for the production of fermented sausage. The viable count at the end of the processing period reached high cell numbers (4.7x10(7)-2.9x10(8) cfu/g) and pH of the sausages decreased to pH 4.8-4.9 without any flavour deviation compared to sausage fermented by a commercial meat starter culture.

  1. Straw particle size in calf starters: Effects on digestive system development and rumen fermentation.

    PubMed

    Suarez-Mena, F X; Heinrichs, A J; Jones, C M; Hill, T M; Quigley, J D

    2016-01-01

    Two trials were conducted to determine effects of straw particle size in calf starter on rumen fermentation and development in calves. Holstein calves (n=17 in trial 1; n=25 in trial 2) were housed in individual pens; bedding (wood shavings) was covered with landscape fabric to completely avoid consumption of bedding. Milk replacer was fed at 12% of birth body weight per day and water offered free choice. Calves were randomly assigned to 4 treatments differing in geometric mean particle length (Xgm) of straw comprising 5% of starter dry matter. Straw was provided within the pellet at manufacture (PS; 0.82 mm Xgm) or mixed with the pellet at time of feeding at Xgm of 3.04 (SS), 7.10 (MS), or 12.7 (LS) mm. Calves (n=12; 3/treatment) in trial 1 were fitted with a rumen cannula by wk 2 of age. A fixed amount of starter that was adjusted with age and orts were fed through the cannula in cannulated calves. Calves were euthanized 6 wk after starter was offered (9 and 7 wk of age for trials 1 and 2, respectively). Rumen digesta pH linearly decreased with age, whereas volatile fatty acid concentration increased with age. Overall pH had a cubic trend with SS lower than that of PS and MS. Molar proportion of acetate decreased with age whereas propionate proportion increased. Overall molar proportions of volatile fatty acids were not affected by diet. Fecal Xgm was not different in spite of changes in diet particle size and rumen digesta of PS being greater than SS, MS, and LS at slaughter. Fecal pH and starch concentration were not affected by diet; however, pH decreased whereas starch content increased with age. Weight of stomach compartments, rumen papillae length and width, and rumen wall thickness did not differ between diets. Omasum weight as a percentage of body weight at harvest linearly decreased as straw particle size increased. Under the conditions of this study, modifying straw particle length in starter grain resulted in minimal rumen fermentation parameter

  2. N-Acyl derivatives of Asn, new bacterial N-acyl D-amino acids with surfactant activity.

    PubMed

    Peypoux, F; Laprévote, O; Pagadoy, M; Wallach, J

    2004-03-01

    New N-acyl D-amino acids were isolated from Bacillus pumilus IM 1801. Their structures were determined by chemical analysis and mass spectrometry. The lipid part was identified as a mixture of fatty acids with 11, 12, 13, 15, and 16 carbon atoms in the iso, anteiso or n configuration linked by an amide bond with a D-asparagine. They exhibited surfactant properties.

  3. Four-hour infusion of hydrocortisone does not suppress the nocturnal increase of circulating acyl- or desacyl-ghrelin concentrations in healthy young adults.

    PubMed

    Nass, Ralf; Liu, Jianhua; Patrie, James; Pezzoli, Suzan S; Farhy, Leon S; Gaylinn, Bruce D; Thorner, Michael O

    2014-09-01

    Ghrelin is a 28-amino acid peptide released from the stomach. Ghrelin is found in the circulation in two forms: acyl- and desacyl-ghrelin. Acyl- and desacyl-ghrelin concentrations increase at night, when cortisol concentrations are low. Acute ghrelin administration increases ACTH and cortisol concentrations and a feedback loop between the ghrelin and ACTH-cortisol axis has been postulated. A previous study showed that exogenously induced hypercortisolism for 5 days decreased plasma ghrelin concentrations. The objective of the study was to determine whether a 4-hour infusion of hydrocortisone given at a time of low endogenous cortisol concentrations (11:00 pm to 3:00 am) acutely suppresses acyl- and desacyl-ghrelin. Eight healthy young men aged (mean ± SD) 21.5 ± 2.7 years with a body mass index of 22.4 ± 2.5 kg/m(2) were studied in a single-blind, placebo-controlled study during two separate overnight admissions on the Clinical Research Unit. The volunteers received either a 4-hour (11:00 pm to 3:00 am) infusion of hydrocortisone or a saline infusion. The hydrocortisone infusion rate was 0.3 mg/kg·h for the initial 3 minutes, 0.24 mg/kg·h for 9 minutes, and then 0.135 mg/kg·h until the end of the infusion. Plasma acyl- and desacyl-ghrelin concentrations (in-house two site sandwich assay) and ACTH, cortisol, insulin, GH, and glucose levels were measured every 10 minutes for 16 hours (5:00 pm to 9:00 am). The mean differences (lower 95% limit; upper 95% limit) between the saline infusion and hydrocortisone infusion for acyl- and desacyl-ghrelin concentrations were not significantly different from zero. The infusion period (11:00 pm to 3:00 am) was as follows: acyl-ghrelin, 0.22 (-7.39; 7.83) (P = 1.00); desacyl-ghrelin, -3.36 (-17.66; 10.95) (P = 1.00). The postinfusion period (3:00-7:00 am) was as follows: acyl-ghrelin, 8.68 (1.07; 16.28); (P = .056); desacyl-ghrelin, 8.75 (-5.56; 23.05) (P = .403). A short-term increase in circulating cortisol concentrations

  4. Four-Hour Infusion of Hydrocortisone Does Not Suppress the Nocturnal Increase of Circulating Acyl- or Desacyl-Ghrelin Concentrations in Healthy Young Adults

    PubMed Central

    Liu, Jianhua; Patrie, James; Pezzoli, Suzan S.; Farhy, Leon S.; Gaylinn, Bruce D.; Thorner, Michael O.

    2014-01-01

    Background: Ghrelin is a 28-amino acid peptide released from the stomach. Ghrelin is found in the circulation in two forms: acyl- and desacyl-ghrelin. Acyl- and desacyl-ghrelin concentrations increase at night, when cortisol concentrations are low. Acute ghrelin administration increases ACTH and cortisol concentrations and a feedback loop between the ghrelin and ACTH-cortisol axis has been postulated. A previous study showed that exogenously induced hypercortisolism for 5 days decreased plasma ghrelin concentrations. Objective: The objective of the study was to determine whether a 4-hour infusion of hydrocortisone given at a time of low endogenous cortisol concentrations (11:00 pm to 3:00 am) acutely suppresses acyl- and desacyl-ghrelin. Methods: Eight healthy young men aged (mean ± SD) 21.5 ± 2.7 years with a body mass index of 22.4 ± 2.5 kg/m2 were studied in a single-blind, placebo-controlled study during two separate overnight admissions on the Clinical Research Unit. The volunteers received either a 4-hour (11:00 pm to 3:00 am) infusion of hydrocortisone or a saline infusion. The hydrocortisone infusion rate was 0.3 mg/kg·h for the initial 3 minutes, 0.24 mg/kg·h for 9 minutes, and then 0.135 mg/kg·h until the end of the infusion. Plasma acyl- and desacyl-ghrelin concentrations (in-house two site sandwich assay) and ACTH, cortisol, insulin, GH, and glucose levels were measured every 10 minutes for 16 hours (5:00 pm to 9:00 am). Results: The mean differences (lower 95% limit; upper 95% limit) between the saline infusion and hydrocortisone infusion for acyl- and desacyl-ghrelin concentrations were not significantly different from zero. The infusion period (11:00 pm to 3:00 am) was as follows: acyl-ghrelin, 0.22 (−7.39; 7.83) (P = 1.00); desacyl-ghrelin, −3.36 (−17.66; 10.95) (P = 1.00). The postinfusion period (3:00–7:00 am) was as follows: acyl-ghrelin, 8.68 (1.07; 16.28); (P = .056); desacyl-ghrelin, 8.75 (−5.56; 23.05) (P = .403). Conclusions

  5. Biochemical and Structural Basis for Controlling Chemical Modularity in Fungal Polyketide Biosynthesis

    DOE PAGES

    Winter, Jaclyn M.; Cascio, Duilio; Dietrich, David; ...

    2015-07-14

    Modular collaboration between iterative fungal polyketide synthases (IPKSs) is an important mechanism for generating structural diversity of polyketide natural products. Inter-PKS communication and substrate channeling are controlled in large by the starter unit acyl carrier protein transacylase (SAT) domain found in the accepting IPKS module. Here in this study, we reconstituted the modular biosynthesis of the benzaldehyde core of the chaetoviridin and chaetomugilin azaphilone natural products using the IPKSs CazF and CazM. Our studies revealed a critical role of CazM’s SAT domain in selectively transferring a highly reduced triketide product from CazF. In contrast, a more oxidized triketide that ismore » also produced by CazF and required in later stages of biosynthesis of the final product is not recognized by the SAT domain. The structural basis for the acyl unit selectivity was uncovered by the first X-ray structure of a fungal SAT domain, highlighted by a covalent hexanoyl thioester intermediate in the SAT active site. Finally, the crystal structure of SAT domain will enable protein engineering efforts aimed at mixing and matching different IPKS modules for the biosynthesis of new compounds.« less

  6. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting under...

  7. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting under...

  8. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting under...

  9. 30 CFR 75.819 - Motor-starter enclosures; barriers and interlocks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Motor-starter enclosures; barriers and interlocks. 75.819 Section 75.819 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High...

  10. Enantioselective N-Heterocyclic Carbene Catalysis via the Dienyl Acyl Azolium.

    PubMed

    Gillard, Rachel M; Fernando, Jared E M; Lupton, David W

    2018-04-16

    Herein we report the enantioselective N-heterocyclic carbene catalyzed (4+2) annulation of the dienyl acyl azolium with enolates. The reaction exploits readily accessible acyl fluorides and TMS enol ethers to give a range of highly enantio- and diastereo-enriched cyclohexenes (most >97:3 er and >20:1 dr). The reaction was found to require high nucleophilicity NHC catalysts with mechanistic studies supporting a stepwise 1,6-addition/β-lactonization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindqvist, Ylva; Schneider, Gunter

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  12. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, Edgar B.; Shanklin, John; Lindgvist, Ylva; Schneider, Gunter

    1998-01-06

    Disclosed is a methods for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity.

  13. Use of lacticin 481 to facilitate delivery of the bacteriophage resistance plasmid, pCBG104 to cheese starters.

    PubMed

    Mills, S; Coffey, A; O'Sullivan, L; Stokes, D; Hill, C; Fitzgerald, G F; Ross, R P

    2002-01-01

    Use of lacticin 481 to facilitate the conjugal transfer of the bacteriophage resistance plasmid pCBG104 to various starter cultures. A raw milk isolate of Lactococcus was found to harbour determinants for lacticin 481 production and immunity and phage resistance on a plasmid designated pCBG104. The lacticin 481 was successfully used to mobilize the phage resistance determinant to a variety of cheese starters enabling the formation of highly phage resistant starters. In addition, it facilitated the stacking of a number of phage resistance genes, namely a type I restriction modification system, a phage abortive infection system and a phage adsorption blocking system in a single Lactococcus strain without the use of recombinant techniques. The transconjugants were all shown to produce lacticin 481 and to contain the entire 481 operon. Subsequently one transconjugant was selected and successfully used for large-scale cheddar cheese manufacture. Lacticin 481 could be used as a food-grade selectable marker to facilitate the introduction of advantageous traits to starter cultures for industrial food fermentations. Food-grade selectable markers greatly facilitate the introduction of various advantageous traits to starter cultures for industrial food fermentation. Indeed self-cloning which is becoming increasingly important for strain improvement has a requirement for the identification and demonstration of the utility of tools such as lacticin 481.

  14. Substrate Binding and Catalytic Mechanism of Human Choline Acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim,A.; Rylett, J.; Shilton, B.

    2006-01-01

    Choline acetyltransferase (ChAT) catalyzes the synthesis of the neurotransmitter acetylcholine from choline and acetyl-CoA, and its presence is a defining feature of cholinergic neurons. We report the structure of human ChAT to a resolution of 2.2 {angstrom} along with structures for binary complexes of ChAT with choline, CoA, and a nonhydrolyzable acetyl-CoA analogue, S-(2-oxopropyl)-CoA. The ChAT-choline complex shows which features of choline are important for binding and explains how modifications of the choline trimethylammonium group can be tolerated by the enzyme. A detailed model of the ternary Michaelis complex fully supports the direct transfer of the acetyl group from acetyl-CoAmore » to choline through a mechanism similar to that seen in the serine hydrolases for the formation of an acyl-enzyme intermediate. Domain movements accompany CoA binding, and a surface loop, which is disordered in the unliganded enzyme, becomes localized and binds directly to the phosphates of CoA, stabilizing the complex. Interactions between this surface loop and CoA may function to lower the K{sub M} for CoA and could be important for phosphorylation-dependent regulation of ChAT activity.« less

  15. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  16. Effect of passion fruit seed meal on growth performance, carcass, and blood characteristics in starter pigs.

    PubMed

    Fachinello, Marcelise Regina; Pozza, Paulo Cesar; Moreira, Ivan; Carvalho, Paulo Levi Oliveira; Castilha, Leandro Dalcin; Pasquetti, Tiago Junior; Esteves, Lucas Antonio Costa; Huepa, Laura Marcela Diaz

    2015-10-01

    Two experiments were carried out in Paraná State, Brazil, to evaluate the nutritional value of passion fruit seed meal (PFM) and to study the effect of PFM on growth performance, carcass, and blood characteristics in starter pigs (Topigs 20 × Tybor). In experiment 1, 25 castrated males, averaging 19.1-kg body weight, were individually fed in a completely randomized block design, consisting of five treatments and five replicates and an experimental period that lasted 14 days. In experiment 2, a total of 60 pigs (30 females and 30 castrated males) were distributed in a randomized block design with five treatments, six replications, and two animals per experimental unit and 90 days of experimentation. For both experiments, the same PFM inclusion rates were used in the experimental diets, namely, 0, 4, 8, 12, and 16 %. The metabolizable energy of PFM was estimated to be 15.0 MJ/kg. Inclusion of PFM at any level did not affect average daily gain, daily feed intake, feed/gain ratio, backfat thickness, loin depth, and plasma or blood components. It is concluded that passion fruit seed meal for swine in the starting phase can be added at a rate of up to 16 % in the diet without any negative effects on growth performance, carcass, and blood characteristics in starter commercial line pigs.

  17. Characterization of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme of human small intestine.

    PubMed

    Hiramine, Yasushi; Tanabe, Toshizumi

    2011-06-01

    Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) enzyme plays a significant role in dietary triacylglycerol (TAG) absorption in the small intestine. However, the characteristics of human intestinal DGAT enzyme have not been examined in detail. The aim of our study was to characterize the human intestinal DGAT enzyme by examining acyl-CoA specificity, temperature dependency, and selectivity for 1,2-diacylglycerol (DAG) or 1,3-DAG. We detected DGAT activity of human intestinal microsome and found that the acyl-CoA specificity and temperature dependency of intestinal DGAT coincided with those of recombinant human DGAT1. To elucidate the selectivity of human intestinal DGAT to 1,2-DAG or 1,3-DAG, we conducted acyl-coenzyme A:monoacylglycerol acyltransferase assays using 1- or 2-monoacylglycerol (MAG) as substrates. When 2-MAG was used as acyl acceptor, both 1,2-DAG and TAG were generated; however, when 1-MAG was used, 1,3-DAG was predominantly observed and little TAG was detected. These findings suggest that human small intestinal DGAT, which is mainly encoded by DGAT1, utilizes 1,2-DAG as the substrate to form TAG. This study will contribute to understand the lipid absorption profile in the small intestine.

  18. Anti-proliferative effects of O-acyl-low-molecular-weight heparin derivatives on bovine pulmonary artery smooth muscle cells.

    PubMed

    Garg, Hari G; Mrabat, Hicham; Yu, Lunyin; Hales, Charles A; Li, Boyangzi; Moore, Casey N; Zhang, Fuming; Linhardt, Robert J

    2011-08-01

    Heparin (HP) inhibits the growth of several cell types in vitro including bovine pulmonary artery (BPA) smooth muscle cells (SMCs). In initial studies we discovered that an O-hexanoylated low-molecular-weight (LMW) HP derivative having acyl groups with 6-carbon chain length was more potent inhibitor of BPA-SMCs than the starting HP. We prepared several O-acylated LMWHP derivatives having 4-, 6-, 8-, 10-, 12-, and 18- carbon acyl chain lengths to determine the optimal acyl chain length for maximum anti-proliferative properties of BPA-SMCs. The starting LMWHP was prepared from unfractionated HP by sodium periodate treatment followed by sodium borohydride reduction. The tri-n-butylammonium salt of this LMWHP was O-acylated with butanoic, hexanoic, octanoic, decanoic, dodecanoic, and stearyl anhydrides separately to give respective O-acylated LMWHP derivatives. Gradient polyacrylamide gel electrophoresis (PAGE) was used to examine the average molecular weights of those O-acylated LMWHP derivatives. NMR analysis indicated the presence of one O-acyl group per disaccharide residue. Measurement of the inhibition of BPA-SMCS as a function of O-acyl chain length shows two optima, at a carbon chain length of 6 (O-hexanoylated LMWHP) and at a carbon chain length 12-18 (O-dodecanoyl and O-stearyl LMWHPs). A solution competition SPR study was performed to test the ability of different O-acylated LMWHP derivatives to inhibit fibroblast growth factor (FGF) 1 and FGF2 binding to surface-immobilized heparin. All the LMWHP derivatives bound to FGF1 and FGF2 but each exhibited slightly different binding affinity.

  19. Remote control of regioselectivity in acyl-acyl carrier protein-desaturases

    PubMed Central

    Guy, Jodie E.; Whittle, Edward; Moche, Martin; Lengqvist, Johan; Lindqvist, Ylva; Shanklin, John

    2011-01-01

    Regiospecific desaturation of long-chain saturated fatty acids has been described as approaching the limits of the discriminatory power of enzymes because the substrate entirely lacks distinguishing features close to the site of dehydrogenation. To identify the elusive mechanism underlying regioselectivity, we have determined two crystal structures of the archetypal Δ9 desaturase from castor in complex with acyl carrier protein (ACP), which show the bound ACP ideally situated to position C9 and C10 of the acyl chain adjacent to the diiron active site for Δ9 desaturation. Analysis of the structures and modeling of the complex between the highly homologous ivy Δ4 desaturase and ACP, identified a residue located at the entrance to the binding cavity, Asp280 in the castor desaturase (Lys275 in the ivy desaturase), which is strictly conserved within Δ9 and Δ4 enzymes but differs between them. We hypothesized that interaction between Lys275 and the phosphate of the pantetheine, seen in the ivy model, is key to positioning C4 and C5 adjacent to the diiron center for Δ4 desaturation. Mutating castor Asp280 to Lys resulted in a major shift from Δ9 to Δ4 desaturation. Thus, interaction between desaturase side-chain 280 and phospho-serine 38 of ACP, approximately 27 Å from the site of double-bond formation, predisposes ACP binding that favors either Δ9 or Δ4 desaturation via repulsion (acidic side chain) or attraction (positively charged side chain), respectively. Understanding the mechanism underlying remote control of regioselectivity provides the foundation for reengineering desaturase enzymes to create designer chemical feedstocks that would provide alternatives to those currently obtained from petrochemicals. PMID:21930947

  20. Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production

    PubMed Central

    Meersman, Esther; Steensels, Jan; Struyf, Nore; Paulus, Tinneke; Saels, Veerle; Mathawan, Melissa; Allegaert, Leen; Vrancken, Gino

    2015-01-01

    Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor. PMID:26590272

  1. Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production.

    PubMed

    Meersman, Esther; Steensels, Jan; Struyf, Nore; Paulus, Tinneke; Saels, Veerle; Mathawan, Melissa; Allegaert, Leen; Vrancken, Gino; Verstrepen, Kevin J

    2016-01-15

    Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Low-Cost Jet Fuel Starter Design Study

    DTIC Science & Technology

    1974-12-02

    2G 27 3^ 38 & 39 60 vi WflU I LIST OF TABLES (continued) TABLE NO, 7 D-l I>-2 TITLE PAGE NO, Sea Level Design Point Component...Improvements 60 Turbojet Performance Summary D-3 Turbofan Performance Summary D-5 vii 1 SECTION INTRODUCTION The purpose of this study was to define...temperature difference between the top and bot- tom of the starter, does not begin to have an effect until after 60 seconds from shutdown. The Jet fuel

  3. Association of acylated ghrelin profiles with chronic inflammatory markers in overweight and obese postmenopausal women: a MONET study.

    PubMed

    St-Pierre, David H; Bastard, Jean-Philippe; Coderre, Lise; Brochu, Martin; Karelis, Antony D; Lavoie, Marie-Eve; Malita, Florin; Fontaine, Jonathan; Mignault, Diane; Cianflone, Katherine; Imbeault, Pascal; Doucet, Eric; Rabasa-Lhoret, Rémi

    2007-10-01

    Recent reports have suggested that the existence of associations between hormonal dysregulation and chronic upregulation of inflammatory markers, which may cause obesity-related disturbances. Thus, we examined whether acylated ghrelin (AcylG) and total ghrelin (TotG) levels could be associated with the following inflammatory markers: C-reactive protein (CRP), tumor necrosis factor alpha (TNF-alpha), and soluble TNF receptor 1 (sTNF-R1). Cross-sectional study consisting of 50 overweight and obese postmenopausal women. AcylG and TotG levels were assessed at 0, 60, 160, 170, and 180 min of the euglycemic/hyperinsulinemic clamp (EHC). We evaluated insulin sensitivity, body composition, and blood lipid profiles as well as fasting concentrations of CRP, TNF-alpha, and sTNF-R1. In fasting conditions, sTNF-R1 was negatively correlated with AcylG (r = -0.48, P < 0.001) levels. In addition, AcylG/TotG was associated negatively with sTNF-R1 (r = -0.44, P = 0.002) and positively with TNF-alpha (r = 0.38, P = 0.009) values. During the EHC, TotG (at all time points) and AcylG (at 60 and 160 min) values were significantly decreased from fasting concentrations. AcylG maximal reduction and area under the curve (AUC) values were correlated to sTNF-R1 (r = -0.35, P = 0.02 and r = -0.34, P = 0.02, respectively). Meanwhile, the AcylG/TotG AUC ratio was associated negatively with sTNF-R1 (r = -0.29, P < 0.05) and positively with TNF-alpha (r = 0.36, P = 0.02). Following adjustments for total adiposity, sTNF-R1 remained correlated with fasting and maximal reduction AcylG values. Similarly, AcylG/TotG ratios remained significantly correlated with sTNF-R1 and TNF-alpha. Importantly, 23% of the variation in sTNF-R1 was independently predicted by fasting AcylG. These results are the first to suggest that both fasting and EHC-induced AcylG profiles are correlated with fasting values of sTNF-R1, a component of the TNF-alpha system. Thus, AcylG may act, at least in part, as one mediator of

  4. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs...

  5. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs...

  6. 40 CFR 721.7270 - 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs., chloride.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-trimethyl-N-soya acyl derivs., chloride. 721.7270 Section 721.7270 Protection of Environment ENVIRONMENTAL...-soya acyl derivs., chloride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanaminium, 3-amino-, N,N,N-trimethyl-N-soya acyl derivs...

  7. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11.

    PubMed

    Lagrange, Brice; Benaoudia, Sacha; Wallet, Pierre; Magnotti, Flora; Provost, Angelina; Michal, Fanny; Martin, Amandine; Di Lorenzo, Flaviana; Py, Bénédicte F; Molinaro, Antonio; Henry, Thomas

    2018-01-16

    Caspase-4/5 in humans and caspase-11 in mice bind hexa-acylated lipid A, the lipid moeity of lipopolysaccharide (LPS), to induce the activation of non-canonical inflammasome. Pathogens such as Francisella novicida express an under-acylated lipid A and escape caspase-11 recognition in mice. Here, we show that caspase-4 drives inflammasome responses to F. novicida infection in human macrophages. Caspase-4 triggers F. novicida-mediated, gasdermin D-dependent pyroptosis and activates the NLRP3 inflammasome. Inflammasome activation could be recapitulated by transfection of under-acylated LPS from different bacterial species or synthetic tetra-acylated lipid A into cytosol of human macrophage. Our results indicate functional differences between human caspase-4 and murine caspase-11. We further establish that human Guanylate-binding proteins promote inflammasome responses to under-acylated LPS. Altogether, our data demonstrate a broader reactivity of caspase-4 to under-acylated LPS than caspase-11, which may have important clinical implications for management of sepsis.

  8. Thermophilic Coenzyme B12-Dependent Acyl Coenzyme A (CoA) Mutase from Kyrpidia tusciae DSM 2912 Preferentially Catalyzes Isomerization of (R)-3-Hydroxybutyryl-CoA and 2-Hydroxyisobutyryl-CoA.

    PubMed

    Weichler, Maria-Teresa; Kurteva-Yaneva, Nadya; Przybylski, Denise; Schuster, Judith; Müller, Roland H; Harms, Hauke; Rohwerder, Thore

    2015-07-01

    The recent discovery of a coenzyme B12-dependent acyl-coenzyme A (acyl-CoA) mutase isomerizing 3-hydroxybutyryl- and 2-hydroxyisobutyryl-CoA in the mesophilic bacterium Aquincola tertiaricarbonis L108 (N. Yaneva, J. Schuster, F. Schäfer, V. Lede, D. Przybylski, T. Paproth, H. Harms, R. H. Müller, and T. Rohwerder, J Biol Chem 287:15502-15511, 2012, http://dx.doi.org/10.1074/jbc.M111.314690) could pave the way for a complete biosynthesis route to the building block chemical 2-hydroxyisobutyric acid from renewable carbon. However, the enzyme catalyzes only the conversion of the stereoisomer (S)-3-hydroxybutyryl-CoA at reasonable rates, which seriously hampers an efficient combination of mutase and well-established bacterial poly-(R)-3-hydroxybutyrate (PHB) overflow metabolism. Here, we characterize a new 2-hydroxyisobutyryl-CoA mutase found in the thermophilic knallgas bacterium Kyrpidia tusciae DSM 2912. Reconstituted mutase subunits revealed highest activity at 55°C. Surprisingly, already at 30°C, isomerization of (R)-3-hydroxybutyryl-CoA was about 7,000 times more efficient than with the mutase from strain L108. The most striking structural difference between the two mutases, likely determining stereospecificity, is a replacement of active-site residue Asp found in strain L108 at position 117 with Val in the enzyme from strain DSM 2912, resulting in a reversed polarity at this binding site. Overall sequence comparison indicates that both enzymes descended from different prokaryotic thermophilic methylmalonyl-CoA mutases. Concomitant expression of PHB enzymes delivering (R)-3-hydroxybutyryl-CoA (beta-ketothiolase PhaA and acetoacetyl-CoA reductase PhaB from Cupriavidus necator) with the new mutase in Escherichia coli JM109 and BL21 strains incubated on gluconic acid at 37°C led to the production of 2-hydroxyisobutyric acid at maximal titers of 0.7 mM. Measures to improve production in E. coli, such as coexpression of the chaperone MeaH and repression of

  9. Bacterial DNA Detected in Japanese Rice Wines and the Fermentation Starters.

    PubMed

    Terasaki, Momoka; Fukuyama, Akari; Takahashi, Yurika; Yamada, Masato; Nishida, Hiromi

    2017-12-01

    As Japanese rice wine (sake) brewing is not done aseptically, bacterial contamination is conceivable during the process of sake production. There are two types of the fermentation starter, sokujo-moto and yamahai-moto (kimoto). We identified bacterial DNA found in various sakes, the sokujo-moto and the yamahai-moto making just after sake yeast addition. Each sake has a unique variety of bacterial DNA not observed in other sakes. Although most bacterial DNA sequences detected in the sokujo-moto were found in sakes of different sake breweries, most bacterial DNA sequences detected in the yamahai-moto at the early stage of the starter fermentation were not detected in any sakes. Our findings demonstrate that various bacteria grow and then die during the process of sake brewing, as indicated by the presence of trace levels of bacterial DNA.

  10. Modified acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindgvist, Y.; Schneider, G.

    1998-01-06

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 1 fig.

  11. Modified Acyl-ACP desaturase

    DOEpatents

    Cahoon, E.B.; Shanklin, J.; Lindqvist, Y.; Schneider, G.

    1999-03-30

    Disclosed is a method for modifying the chain length and double bond positional specificities of a soluble plant fatty acid desaturase. More specifically, the method involves modifying amino acid contact residues in the substrate binding channel of the soluble fatty acid desaturase which contact the fatty acid. Specifically disclosed is the modification of an acyl-ACP desaturase. Amino acid contact residues which lie within the substrate binding channel are identified, and subsequently replaced with different residues to effect the modification of activity. 2 figs.

  12. Mechanism of α-Glycerophosphate Regulation of Acetyl-Coenzyme A Carboxylase of Saccharomyces cerevisiae

    PubMed Central

    Rasmussen, Roberta K.; Klein, Harold P.

    1968-01-01

    The mechanism proposed for the activation of animal acetyl-coenzyme A (CoA) carboxylase by α-glycerophosphate, namely, the removal of inhibitory palmityl-CoA via glyceride synthesis, is not the only possible one in the yeast system because extracts exhibiting marked stimulation of acetyl-CoA carboxylase activity by α-glyerophosphate show a lack of acyl-CoA compounds. PMID:5643049

  13. Responses to highly active antiretroviral therapy and clinical events in patients with a low CD4 cell count: late presenters vs. late starters.

    PubMed

    Waters, L; Fisher, M; Anderson, J; Wood, C; Delpech, V; Hill, T; Walsh, J; Orkin, C; Bansi, L; Gompels, M; Phillips, A; Johnson, M; Gilson, R; Easterbrook, P; Leen, C; Porter, K; Gazzard, B; Sabin, C

    2011-05-01

    We investigated whether adverse responses to highly active antiretroviral therapy (HAART) associated with late HIV presentation are secondary to low CD4 cell count per se or other confounding factors. A longitudinal analysis of the UK Collaborative HIV Cohort (CHIC) Study of individuals starting HAART in 1998-2007 was carried out, comparing late presenters (presenting/starting HAART at a CD4 count <200 cells/μL) with late starters (presenting at a CD4 count>350 cells/μL; starting HAART at a CD4 count<200 cells/μL), using 'ideal starters' (presenting at a CD4 count>350 cells/μL; starting HAART at a CD4 count of 200-350 cells/μL) as a comparator. Virological, immunological and clinical (new AIDS event/death) outcomes at 48 and 96 weeks were analysed, with the analysis being limited to those remaining on HAART for>3 months. A total of 4978 of 9095 individuals starting first-line HAART with HIV RNA>500 HIV-1 RNA copies/mL were included in the analysis: 2741 late presenters, 947 late starters and 1290 ideal starters. Late presenters were more commonly female, heterosexual and Black African. Most started nonnucleoside reverse transcriptase inhibitors (NNRTIs); 48-week virological suppression was similar in late presenters and starters (and marginally lower than in ideal starters); by week 96 differences were reduced and nonsignificant. The median CD4 cell count increase in late presenters was significantly lower than that in late starters (weeks 48 and 96). During year 1, new clinical events were more frequent for late presenters [odds ratio (OR) 2.04; 95% confidence interval (CI) 1.19-3.51; P=0.01]; by year 2, event rates were similar in all groups. Amongst patients who initiate, and remain on, HAART, late presentation is associated with lower rates of virological suppression, blunted CD4 cell count increases and more clinical events compared with late starters in year 1, but similar clinical and immunological outcomes by year 2 to those of both late and ideal

  14. Physical characterisation of high amylose maize starch and acylated high amylose maize starches.

    PubMed

    Lim, Ya-Mei; Hoobin, Pamela; Ying, DanYang; Burgar, Iko; Gooley, Paul R; Augustin, Mary Ann

    2015-03-06

    The particle size, water sorption properties and molecular mobility of high amylose maize starch (HAMS) and high amylose maize starch acylated with acetate (HAMSA), propionate (HAMSP) and butyrate (HAMSB) were investigated. Acylation increased the mean particle size (D(4,3)) and lowered the specific gravity (G) of the starch granules with an inverse relationship between the length of the fatty acid chain and particle size. Acylation of HAMS with fatty acids lowered the monolayer moisture content with the trend being HAMSBacylated starches and that drying and storage of the starch granules further reduced T2 long. Analysis of the Free Induction Decay (FID) focussing on the short components of T2 (correlated to the solid matrix), indicated that drying and subsequent storage resulted in alterations of starch at 0.33a(w) and that these changes were reduced with acylation. In vitro enzymatic digestibility of heated starch dispersions by bacterial α-amylase was increased by acylation (HAMS

  15. Structure of Mycobacterium tuberculosis mtFabD, a malonyl-CoA:acyl carrier protein transacylase (MCAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadbane, Hemza; Brown, Alistair K.; Kremer, Laurent

    2007-10-01

    Binding of Ni{sup 2+} ions to the uncleaved affinity tag facilitated de novo phasing of the crystal structure of M. tuberculosis mtFabD to 3.0 Å resolution. Mycobacteria display a unique and unusual cell-wall architecture, central to which is the membrane-proximal mycolyl-arabinogalactan-peptidoglycan core (mAGP). The biosynthesis of mycolic acids, which form the outermost layer of the mAGP core, involves malonyl-CoA:acyl carrier protein transacylase (MCAT). This essential enzyme catalyses the transfer of malonyl from coenzyme A to acyl carrier protein AcpM, thus feeding these two-carbon units into the chain-elongation cycle of the type II fatty-acid synthase. The crystal structure of M. tuberculosismore » mtFabD, the mycobacterial MCAT, has been determined to 3.0 Å resolution by multi-wavelength anomalous dispersion. Phasing was facilitated by Ni{sup 2+} ions bound to the 20-residue N-terminal affinity tag, which packed between the two independent copies of mtFabD.« less

  16. Starting System 1. Check and Replace the Starter Rewind Rope. Student Manual. Small Engine Repair Series. First Edition.

    ERIC Educational Resources Information Center

    Hill, Pamela

    This student manual on checking and replacing the starter rewind rope is the second of three in an instructional package on the starting system in the Small Engine Repair Series for handicapped students. The stated purpose for the booklet is to help students learn what tools and equipment to use in checking and replacing the starter rewind rope…

  17. Evaluation of Fermented Sausages Manufactured with Reduced-fat and Functional Starter Cultures on Physicochemical, Functional and Flavor Characteristics

    PubMed Central

    Yoo, Seung Seok

    2014-01-01

    Fermented foods with probiotics having functional properties may provide beneficial effects on health. These effects are varied, depending on the type of lactic acid bacteria (LAB). Different probiotic LAB might have different functional properties. Thus, this study was performed to evaluate the quality of fermented sausages manufactured with functional starter cultures (Lactobacillus plantarum 115 and 167, and Pediococcus damnosus L12) and different fat levels, and to determine the optimum condition for the manufacture of these products. Medium-fat (~15%) fermented sausages reduced the drying time and cholesterol contents, as compared to regular-fat counterparts. In proximate analysis, the contents of moisture and protein of regular-fat products were lower than medium-fat with reduced fat content. The regular-fat products also had a lighter color and less redness, due to reduced fat content. Approximately 35 volatile compounds were identified in functional fermented sausages, and hexanal, trans-caryophyllene, and tetradecanal were the major volatile compounds. Selected mixed starter culture showed the potential possibility of replacing the commercial starter culture (LK30 plus) in flavor profiles. However, medium-fat fermented sausage containing selected mixed starter culture tended to be less acceptable than their high-fat counterparts, due to excess dry ring developed in the surface. These results indicate that the use of combinations of L. plantarum 115 and 167, and P. damnosus L12 as a starter culture, will prove useful for manufacturing the fermented sausage. PMID:26761176

  18. Lanthanum Tricyanide-Catalyzed Acyl Silane-Ketone Benzoin Additions and Kinetic Resolution of Resultant α-Silyloxyketones

    PubMed Central

    Tarr, James C.

    2010-01-01

    We report the full account of our efforts on the lanthanum tricyanide-catalyzed acyl silane-ketone benzoin reaction. The reaction exhibits a wide scope in both acyl silane (aryl, alkyl) and ketone (aryl-alkyl, alkyl-alkyl, aryl-aryl, alkenyl-alkyl, alkynyl-alkyl) coupling partners. The diastereoselectivity of the reaction has been examined in both cyclic and acyclic systems. Cyclohexanones give products arising from equatorial attack by the acyl silane. The diastereoselectivity of acyl silane addition to acyclic α-hydroxy ketones can be controlled by varying the protecting group to obtain either Felkin-Ahn or chelation control. The resultant α-silyloxyketone products can be resolved with selectivity factors from 10 to 15 by subjecting racemic ketone benzoin products to CBS reduction. PMID:20392127

  19. Lanthanum tricyanide-catalyzed acyl silane-ketone benzoin additions and kinetic resolution of resultant alpha-silyloxyketones.

    PubMed

    Tarr, James C; Johnson, Jeffrey S

    2010-05-21

    We report the full account of our efforts on the lanthanum tricyanide-catalyzed acyl silane-ketone benzoin reaction. The reaction exhibits a wide scope in both acyl silane (aryl, alkyl) and ketone (aryl-alkyl, alkyl-alkyl, aryl-aryl, alkenyl-alkyl, alkynyl-alkyl) coupling partners. The diastereoselectivity of the reaction has been examined in both cyclic and acyclic systems. Cyclohexanones give products arising from equatorial attack by the acyl silane. The diastereoselectivity of acyl silane addition to acyclic alpha-hydroxy ketones can be controlled by varying the protecting group to obtain either Felkin-Ahn or chelation control. The resultant alpha-silyloxyketone products can be resolved with selectivity factors from 10 to 15 by subjecting racemic ketone benzoin products to CBS reduction.

  20. Classification of Swiss cheese starter and adjunct cultures using Fourier transform infrared microspectroscopy.

    PubMed

    Prabhakar, V; Kocaoglu-Vurma, N; Harper, J; Rodriguez-Saona, L

    2011-09-01

    The acceptability of Swiss cheese largely depends on the flavor profile, and strain variations of cheese cultures will affect the final quality. Conventional biochemical methods to identify the cultures at the strain level are time-consuming and expensive, and require skilled labor. Our objective was to develop rapid classification methods of starter cultures at the strain level by using a combination of hydrophobic grid membrane filters and Fourier transform infrared (FTIR) spectroscopy. Forty-four pulsed-field gel electrophoresis-verified strains of starter and nonstarter cultures including Streptococcus thermophilus, Propionibacterium freudenreichii, and Lactobacillus spp. were analyzed. The strains were grown on their respective agar media, transferred to broth media, and incubated. Then, cultures were centrifuged and the pellets were resuspended in saline solution (10 μL). Aliquots (2 μL) of the suspended bacterial solution were placed onto a grid of the hydrophobic grid membrane filters, having 6 grids per each strain analyzed. The dried filters were read by FTIR microspectroscopy fitted with an attenuated total reflectance probe. Collected spectra were statistically analyzed by a soft independent modeling of class analogy (SIMCA) for pattern recognition. Classification models were developed for Streptococcus thermophilus, Propionibacterium freudenreichii, and Lactobacillus spp. strains. The models showed major discrimination in the spectral region from 1,200 to 900 cm(-1) associated with signals from phosphate-containing compounds and various polysaccharides in the cell wall. The developed method allowed for rapid classification of several Swiss cheese starter and nonstarter cultures at the strain level. This information provides a detailed overview of microbiological status, which would enable corrective measures to be taken early in the cheese making process, limiting production of inferior quality cheese and minimizing defects. This method could be an

  1. Materials and methods for the alteration of enzyme and acetyl CoA levels in plants

    DOEpatents

    Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Behal, Robert; Schnable, Patrick S.; Ke, Jinshan; Johnson, Jerry L.; Allred, Carolyn C.; Fatland, Beth; Lutziger, Isabelle; Wen, Tsui-Jung

    2005-09-13

    The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.

  2. Targeted Lipidomics in Drosophila melanogaster Identifies Novel 2-Monoacylglycerols and N-acyl Amides

    PubMed Central

    Takacs, Sara M.; Stuart, Jordyn M.; Basnet, Arjun; Raboune, Siham; Widlanski, Theodore S.; Doherty, Patrick; Bradshaw, Heather B.

    2013-01-01

    Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling. PMID:23874457

  3. Lanthanum tricyanide-catalyzed acyl silane-ketone benzoin additions.

    PubMed

    Tarr, James C; Johnson, Jeffrey S

    2009-09-03

    Lanthanum tricyanide efficiently catalyzes a benzoin-type coupling between acyl silanes and ketones. Yields range from moderate to excellent over a broad substrate scope encompassing aryl, alkyl, electron-rich, and sterically hindered ketones.

  4. Acylated ghrelin concentrations are markedly decreased during pregnancy in mothers with and without gestational diabetes: relationship with cholinesterase.

    PubMed

    Tham, Elaine; Liu, Jianhua; Innis, Sheila; Thompson, David; Gaylinn, Bruce D; Bogarin, Roberto; Haim, Alon; Thorner, Michael O; Chanoine, Jean-Pierre

    2009-05-01

    Acylated (octanoylated) ghrelin stimulates food intake and growth hormone secretion and is deacylated into desacyl ghrelin by butyrylcholinesterase. Acylated and desacyl ghrelin both promote adipogenesis. Ghrelin concentrations decrease with hyperglycemia and hyperinsulinism. We hypothesized that 1) acylated ghrelin increases during pregnancy, contributing positively to energy balance, but is lower in women with gestational diabetes and 2) butyrylcholinesterase activity is inversely correlated with acylated ghrelin concentrations. In a first group of subjects, using two-site sandwich ghrelin assays that specifically detect full-length forms, we investigated women with and without gestational diabetes (n = 14/group) during pregnancy and after delivery. We examined whether changes in ghrelin during a test meal were correlated with changes in pituitary growth hormone [assessed through calculation of the area under the curve (AUC) during the test meal]. In postpartum subjects, the percent of total ghrelin that is acylated was four to five times higher than previously observed using single antibody assays. During pregnancy, acylated ghrelin concentrations (mean +/- SE) were lower compared with the postpartum period throughout the meal (AUC 1.2 +/- 0.2 vs. 10.2 +/- 1.9 ng.ml(-1).90 min(-1), P < 0.001). In the postpartum, acylated ghrelin and growth hormone were positively correlated (r = 0.50, P = 0.007). Desacyl (but not acylated) ghrelin was increased in subjects with gestational diabetes during and after pregnancy (AUC 15.4 +/- 1.9 vs. 8.6 +/- 1.2 ng.ml(-1).90 min(-1), P = 0.005). In a second group of subjects (n = 13), acylated ghrelin was similarly suppressed during pregnancy. Circulating octanoate concentrations (3.1 +/- 0.5 vs. 4.5 +/- 0.6 microg/ml, P = 0.029) and cholinesterase activity (705 +/- 33 vs. 1,013 +/- 56 U/ml, P < 0.001) were lower during pregnancy compared with the postpartum period. In conclusion, acylated ghrelin markedly decreases during pregnancy

  5. An experimental evaluation of the performance deficit of an aircraft engine starter turbine

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Roelke, R. J.; Hermann, P.

    1980-01-01

    An experimental investigation is presented to determine the aerodynamic performance deficit of a 13.5 - centimeter-tip-diameter aircraft engine starter turbine. The two-phased evaluation comprised both the stator and the stage performance, and the experimental design is described in detail. Data obtained from the investigation of three honeycomb shrouds clearly showed that the filled honeycomb reached a total efficiency of 0.868, 8.2 points higher than the open honeycomb shroud, at design equivalent conditions of speed and blade-jet speed ratio. It was concluded that the use of an open honeycomb shroud caused the large performance deficit for the starter turbine. Further research is suggested to ascertain stator inlet boundary layer measurements.

  6. Mechanism and regulation of mycobactin fatty acyl-AMP ligase FadD33.

    PubMed

    Vergnolle, Olivia; Xu, Hua; Blanchard, John S

    2013-09-27

    Mycobacterial siderophores are critical components for bacterial virulence in the host. Pathogenic mycobacteria synthesize iron chelating siderophores named mycobactin and carboxymycobactin to extract intracellular macrophage iron. The two siderophores differ in structure only by a lipophilic aliphatic chain attached on the ε-amino group of the lysine mycobactin core, which is transferred by MbtK. Prior to acyl chain transfer, the lipophilic chain requires activation by a specific fatty acyl-AMP ligase FadD33 (also known as MbtM) and is then loaded onto phosphopantetheinylated acyl carrier protein (holo-MbtL) to form covalently acylated MbtL. We demonstrate that FadD33 prefers long chain saturated lipids and initial velocity studies showed that FadD33 proceeds via a Bi Uni Uni Bi ping-pong mechanism. Inhibition experiments suggest that, during the first half-reaction (adenylation), fatty acid binds first to the free enzyme, followed by ATP and the release of pyrophosphate to form the adenylate intermediate. During the second half-reaction (ligation), holo-MbtL binds to the enzyme followed by the release of products AMP and acylated MbtL. In addition, we characterized a post-translational regulation mechanism of FadD33 by the mycobacterial protein lysine acetyltransferase in a cAMP-dependent manner. FadD33 acetylation leads to enzyme inhibition, which can be reversed by the NAD(+)-dependent deacetylase, MSMEG_5175 (DAc1). To the best of our knowledge, this is the first time that bacterial siderophore synthesis has been shown to be regulated via post-translational protein acetylation.

  7. Inverse association of des-acyl ghrelin with worksite blood pressure in overweight/obese male workers.

    PubMed

    Narisada, Akihiko; Hasegawa, Tomomi; Nakahigashi, Maki; Hirobe, Takaaki; Ikemoto, Tatsunori; Ushida, Takahiro; Kobayashi, Fumio

    2015-05-01

    Job strain, defined as a combination of high job demands and low job control, has been reported to elevate blood pressure (BP) during work. Meanwhile, a recent experimental study showed that ghrelin blunted the BP response to such mental stress. In the present study, we examined the hypothesis that des-acyl ghrelin may have some beneficial effects on worksite BP through modulating the BP response to work-related mental stress, i.e., job strain. Subjects were 34 overweight/obese male day-shift workers (mean age 41.7 ± 6.7 years). No subjects had received any anti-hypertensive medication. A 24-h ambulatory BP monitoring was recorded every 30 min on a regular working day. The average BP was calculated for Work BP, Morning BP, and Home BP. Job strain was assessed using the short version of the Japanese Job Content Questionnaire. Des-acyl ghrelin showed significant inverse correlations with almost all BPs except Morning SBP, Morning DBP, and Home DBP. In multiple regression analysis, des-acyl ghrelin inversely correlated with Work SBP after adjusting for confounding factors. Des-acyl ghrelin was also negatively associated with BP changes from Sleep to Morning, Sleep to Work, and Sleep to Home. Des-acyl ghrelin was inversely associated with Worksite BP, suggesting a unique beneficial effect of des-acyl ghrelin on Worksite BP in overweight/obese male day-shift workers.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirimura, Kohtaro, E-mail: kkohtaro@waseda.jp; Watanabe, Shotaro; Kobayashi, Keiichi

    Type III polyketide synthases (PKSs) catalyze the formation of pyrone- and resorcinol-types aromatic polyketides. The genomic analysis of the filamentous fungus Aspergillus niger NRRL 328 revealed that this strain has a putative gene (chr-8-2: 2978617–2979847) encoding a type III PKS, although its functions are unknown. In this study, for functional analysis of this putative type III PKS designated as An-CsyA, cloning and heterologous expression of the An-CsyA gene (An-csyA) in Escherichia coli were performed. Recombinant His-tagged An-CsyA was successfully expressed in E. coli BL21 (DE3), purified by Ni{sup 2+}-affinity chromatography, and used for in vitro assay. Tests on the substrate specificity ofmore » the His-tagged An-CsyA with myriad acyl-CoAs as starter substrates and malonyl-CoA as extender substrate showed that His-tagged An-CsyA accepted fatty acyl-CoAs (C2-C14) and produced triketide pyrones (C2-C14), tetraketide pyrones (C2-C10), and pentaketide resorcinols (C10-C14). Furthermore, acetoacetyl-CoA, malonyl-CoA, isobutyryl-CoA, and benzoyl-CoA were also accepted as starter substrates, and both of triketide pyrones and tetraketide pyrones were produced. It is noteworthy that the His-tagged An-CsyA produced polyketides from malonyl-CoA as starter and extender substrates and produced tetraketide pyrones from short-chain fatty acyl-CoAs as starter substrates. Therefore, this is the first report showing the functional properties of An-CsyA different from those of other fungal type III PKSs. -- Highlights: •Type III PKS from Aspergillus niger NRRL 328, An-CsyA, was cloned and characterized. •An-CsyA produced triketide pyrones, tetraketide pyrones and pentaketide resorcinols. •Functional properties of An-CsyA differs from those of other fungal type III PKSs.« less

  9. Development of Safe and Flavor-Rich Doenjang (Korean Fermented Soybean Paste) Using Autochthonous Mixed Starters at the Pilot Plant Scale.

    PubMed

    Lee, Eun Jin; Hyun, Jiye; Choi, Yong-Ho; Hurh, Byung-Serk; Choi, Sang-Ho; Lee, Inhyung

    2018-06-01

    Doenjang (Korean fermented soybean paste) with an improved flavor and safety was prepared by the simultaneous fermentation of autochthonous mixed starters at the pilot plan scale. First, whole soybean meju was fermented by coculturing safety-verified starters Aspergillus oryzae MJS14 and Bacillus amyloliquefaciens zip6 or Bacillus subtilis D119C. These fermented whole soybean meju were aged in a brine solution after the additional inoculation of Tetragenococcus halophilus 7BDE22 and Zygosaccharomyces rouxii SMY045 to yield doenjang. Four doenjang batches prepared using a combination of mold, bacilli, lactic acid bacteria, and yeast starters were free of safety issues and had the general properties of traditional doenjang, a rich flavor and taste. All doenjang batches received a high consumer acceptability score, especially the ABsT and ABsTZ batches. This study suggests that flavor-rich doenjang similar to traditional doenjang can be manufactured safely and reproducibly in industry by mimicking the simultaneous fermentation of autochthonous mixed starters as in traditional doenjang fermentation. The development of a pilot plant process for doenjang fermentation using safety-verified autochthonous mixed starter will facilitate the manufacture of flavor-rich doenjang similar to traditional doenjang safely and reproducibly in industry. © 2018 Institute of Food Technologists®.

  10. Susceptibility of nine organophosphorus pesticides in skimmed milk towards inoculated lactic acid bacteria and yogurt starters.

    PubMed

    Zhou, Xin-Wei; Zhao, Xin-Huai

    2015-01-01

    Previous research has shown that fresh milk might be polluted by some organophosphorus pesticides (OPPs). In this study the dissipation of nine OPPs, namely chlorpyrifos, chlorpyrifos-methyl, diazinon, dichlorvos, fenthion, malathion, phorate, pirimiphos-methyl and trichlorphon, in skimmed milk was investigated to clarify their susceptibility towards lactic acid bacteria (LAB) and yogurt starters. Skimmed milk was spiked with nine OPPs, inoculated with five strains of LAB and two commercial yogurt starters at 42 °C for 24 and 5 h respectively and subjected to quantitative OPP analysis by gas chromatography. Degradation kinetic constants of these OPPs were calculated based on a first-order reaction model. OPP dissipation in the milk was enhanced by the inoculated strains and starters, resulting in OPP concentrations decreasing by 7.0-64.6 and 7.4-19.2% respectively. Totally, the nine OPPs were more susceptible to Lactobacillus bulgaricus, as it enhanced their degradation rate constants by 18.3-133.3%. Higher phosphatase production of the assayed stains was observed to bring about greater OPP degradation in the milk. Both LAB and yogurt starters could enhance OPP dissipation in skimmed milk, with the nine OPPs studied having different susceptibilities towards them. Phosphatase was a key factor governing OPP dissipation. The LAB of higher phosphatase production have more potential to decrease OPPs in fermented foods. © 2014 Society of Chemical Industry.

  11. Two efficient nitrite-reducing Lactobacillus strains isolated from traditional fermented pork (Nanx Wudl) as competitive starter cultures for Chinese fermented dry sausage.

    PubMed

    Chen, Xi; Li, Jiapeng; Zhou, Tong; Li, Jinchun; Yang, Junna; Chen, Wenhua; Xiong, Youling L

    2016-11-01

    Lactic acid bacteria isolated from traditional Dong pork product (Nanx Wudl) were investigated for their potential as starter cultures for Chinese fermented dry sausages. Based on preliminary screening, Lactobacillus plantarum CMRC6 and Lactobacillus sakei CMRC15, both showing excellent nitrite-reducing capacity, were used as single-strain starter cultures. For comparison, a commercial composite starter was also tested. In CMRC6 and CMRC15-inoculated sausages, lactic acid bacteria dominated the microflora and improved the microbiological safety by suppression of Enterobacteriaceae growth. Nitrite content of all inoculated sausages declined rapidly during ripening compared to non-inoculated. Texture profiles analysis showed inoculated sausages had more pronounced textural development during ripening. Sensory evaluation indicated CMRC6 and CMRC15-fermented sausages had comparable or more desirable organoleptic characteristics than sausage made with commercial starters. Therefore, CMRC6 and CMRC15 are promising candidates as multi-functional starter cultures for microbiological safety and residual nitrite control in gourmet Chinese dry sausage production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Kinetics of acyl transfer reactions in organic media catalysed by Candida antarctica lipase B.

    PubMed

    Martinelle, M; Hult, K

    1995-09-06

    The acyl transfer reactions catalysed by Candida antartica lipase B in organic media followed a bi-bi ping-pong mechanism, with competitive substrate inhibition by the alcohols used as acyl acceptors. The effect of organic solvents on Vm and Km was investigated. The Vm values in acetonitrile was 40-50% of those in heptane. High Km values in acetonitrile compared to those in heptane could partly be explained by an increased solvation of the substrates in acetonitrile. Substrate solvation caused a 10-fold change in substrate specificity, defined as (Vm/Km)ethyl octanoate/(Vm/Km)octanoic acid, going from heptane to acetonitrile. Deacylation was the rate determining step for the acyl transfer in heptane with vinyl- and ethyl octanoate as acyl donors and (R)-2-octanol as acyl acceptor. With 1-octanol, a rate determining deacylation step in heptane was indicated using the same acyl donors. Using 1-octanol as acceptor in heptane, S-ethyl thiooctanoate had a 25- to 30-fold lower Vm/Km value and vinyl octanoate a 4-fold higher Vm/Km value than that for ethyl octanoate. The difference showed to be a Km effect for vinyl octanoate and mainly a Km effect for S-ethyl thiooctanoate. The Vm values of the esterification of octanoic acid with different alcohols was 10-30-times lower than those for the corresponding transesterification of ethyl octanoate. The low activity could be explained by a low pH around the enzyme caused by the acid or a withdrawing of active enzyme by nonproductive binding by the acid.

  13. Engineering acyl carrier protein to enhance production of shortened fatty acids.

    PubMed

    Liu, Xueliang; Hicks, Wade M; Silver, Pamela A; Way, Jeffrey C

    2016-01-01

    The acyl carrier protein (ACP) is an essential and ubiquitous component of microbial synthesis of fatty acids, the natural precursor to biofuels. Natural fatty acids usually contain long chains of 16 or more carbon atoms. Shorter carbon chains, with increased fuel volatility, are desired for internal combustion engines. Engineering the length specificity of key proteins in fatty acid metabolism, such as ACP, may enable microbial synthesis of these shorter chain fatty acids. We constructed a homology model of the Synechococcus elongatus ACP, showing a hydrophobic pocket harboring the growing acyl chain. Amino acids within the pocket were mutated to increase steric hindrance to the acyl chain. Certain mutant ACPs, when over-expressed in Escherichia coli, increased the proportion of shorter chain lipids; I75 W and I75Y showed the strongest effects. Expression of I75 W and I75Y mutant ACPs also increased production of lauric acid in E. coli that expressed the C12-specific acyl-ACP thioesterase from Cuphea palustris. We engineered the specificity of the ACP, an essential protein of fatty acid metabolism, to alter the E. coli lipid pool and enhance production of medium-chain fatty acids as biofuel precursors. These results indicate that modification of ACP itself could be combined with enzymes affecting length specificity in fatty acid synthesis to enhance production of commodity chemicals based on fatty acids.

  14. Preparation of holo- and malonyl-[acyl-carrier-protein] in a manner suitable for analog development.

    PubMed

    Marcella, Aaron M; Jing, Fuyuan; Barb, Adam W

    2015-11-01

    The fatty acid biosynthetic pathway generates highly reduced carbon based molecules. For this reason fatty acid synthesis is a target of pathway engineering to produce novel specialty or commodity chemicals using renewable techniques to supplant molecules currently derived from petroleum. Malonyl-[acyl carrier protein] (malonyl-ACP) is a key metabolite in the fatty acid pathway and donates two carbon units to the growing fatty acid chain during each step of biosynthesis. Attempts to test engineered fatty acid biosynthesis enzymes in vitro will require malonyl-ACP or malonyl-ACP analogs. Malonyl-ACP is challenging to prepare due to the instability of the carboxylate leaving group and the multiple steps of post-translational modification required to activate ACP. Here we report the expression and purification of holo- and malonyl-ACP from Escherichia coli with high yields (>15 mg per L of expression). The malonyl-ACP is efficiently recognized by the E. coli keto-acyl synthase enzyme, FabH. A FabH assay using malonyl-ACP and a coumarin-based fluorescent reagent is described that provides a high throughput alternative to reported radioactive assays. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Biodiversity and growth dynamics of lactic acid bacteria in artisanal PDO Ossau-Iraty cheeses made from raw ewe's milk with different starters.

    PubMed

    Feutry, Fabienne; Oneca, María; Berthier, Françoise; Torre, Paloma

    2012-02-01

    The biodiversity and growth dynamics of Lactic Acid Bacteria (LAB) in farm-house Ossau-Iraty cheeses were investigated from vat milk to 180 days of ripening in six independent batches made from six raw ewe's milks using five typical cheese-making methods. Commercial starter S1 was used for three batches, starter S1 combined with S2 for one batch and no starter for two batches. Up to ten LAB species from five genera and up to two strains per species were identified per milk; up to eleven species from five genera and up to three strains per species were identified per cheese. Lactococcus lactis, Lactobacillus paracasei, Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, and Leuconostoc mesenteroides were detected in all cheeses. Lactococci reached the highest counts irrespective of the milk and starter used. Lactococci and enterococci increased during manufacture, and mesophilic lactobacilli increased during ripening. Strain and species numbers, the percentage of isolates originating from the raw milk, maximum counts of each genus/species and time for reaching them, all varied according to whether or not a starter was used and the composition of the starter. The genotypes of strains within species varied according to the raw milk used. This generated distinct LAB microbiotas throughout manufacture and ripening that will certainly impact on the characteristics of the ripened cheeses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Lanthanum Tricyanide-Catalyzed Acyl Silane-Ketone Benzoin Additions

    PubMed Central

    Tarr, James C.; Johnson, Jeffrey S.

    2009-01-01

    Lanthanum tricyanide efficiently catalyzes a benzoin-type coupling between acyl silanes and ketones. Yields range from moderate to excellent over a broad substrate scope encompassing aryl, alkyl, electron-rich, and sterically hindered ketones. PMID:19655731

  17. Effect of six different starter cultures on the concentration of residual nitrite in fermented sausages during in vitro human digestion.

    PubMed

    Kim, Hyeong Sang; Hur, Sun Jin

    2018-01-15

    The objective of this study was to determine the effect of six different starter cultures of enterobacteria on the concentration of residual nitrite in fermented sausages during in vitro human digestion. Before digestion, the concentration of residual nitrite was dependent on starter culture in fermented sausage and ranged from 25.2 to 33.2mg/kg. Among the six starter cultures of enterobacteria, Pediococcus acidilactici, Pediococcus pentosaceus, and Staphylococcus carnosus showed higher nitrite depletion ability than the other three strains in fermented sausages. The concentration of residual nitrite in fermented sausages was significantly (p<0.05) decreased after stomach digestion and ranged from 17.4 to 21.6mg/kg. Enterobacteria Escherichia coli (E. coli) and/or Lactobacillus casei (L. casei) effectively increased the degree of depletion of residual nitrite in large intestine digestion. In conclusion, starter cultures could influence the concentration of residual nitrite during in vitro human digestion. They could deplete residual nitrite in fermented sausages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield

    PubMed Central

    Gai, Zhijia; Zhang, Jingtao; Li, Caifeng

    2017-01-01

    The objective of this study was to examine the impact of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis, grain yield and their relationship. To achieve this objective, field experiments were conducted in 2013 and 2014, using a randomized complete block design, with three replications. Nitrogen was applied at planting at rates of 0, 25, 50, and 75 kg N ha-1. In both years, starter nitrogen fertilizer benefited root activity, leaf photosynthesis, and consequently its yield. Statistically significant correlation was found among root activity, leaf photosynthetic rate, and grain yield at the developmental stage. The application of N25, N50, and N75 increased grain yield by 1.28%, 2.47%, and 1.58% in 2013 and by 0.62%, 2.77%, and 2.06% in 2014 compared to the N0 treatment. Maximum grain yield of 3238.91 kg ha-1 in 2013 and 3086.87 kg ha-1 in 2014 were recorded for N50 treatment. Grain yield was greater for 2013 than 2014, possibly due to more favorable environmental conditions. This research indicated that applying nitrogen as starter is necessary to increase soybean yield in Sangjiang River Plain in China. PMID:28388620

  19. pHP-Tethered N-Acyl Carbamate: A Photocage for Nicotinamide.

    PubMed

    Salahi, Farbod; Purohit, Vatsal; Ferraudi, Guillermo; Stauffacher, Cynthia; Wiest, Olaf; Helquist, Paul

    2018-05-04

    The synthesis of a new photocaged nicotinamide having an N-acyl carbamate linker and a p-hydroxyphenacyl (pHP) chromophore is described. The photophysical and photochemical studies showed an absorption maximum at λ = 330 nm and a quantum yield for release of 11% that are dependent upon both pH and solvent. While the acyl carbamate releases nicotinamide efficiently, a simpler amide linker was inert to photocleavage. This photocaged nicotinamide has significant advantages with respect to quantum yield, absorbance wavelength, rate of release, and solubility that make it the first practical example of a photocaged amide.

  20. Acute effect of exercise intensity and duration on acylated ghrelin and hunger in men.

    PubMed

    Broom, David R; Miyashita, Masashi; Wasse, Lucy K; Pulsford, Richard; King, James A; Thackray, Alice E; Stensel, David J

    2017-03-01

    Acute exercise transiently suppresses the orexigenic gut hormone acylated ghrelin, but the extent to which exercise intensity and duration determine this response is not fully understood. The effects of manipulating exercise intensity and duration on acylated ghrelin concentrations and hunger were examined in two experiments. In experiment one, nine healthy males completed three, 4-h conditions (control, moderate-intensity running (MOD) and vigorous-intensity running (VIG)), with an energy expenditure of ~2.5 MJ induced in both MOD (55-min running at 52% peak oxygen uptake (V.O 2peak )) and VIG (36-min running at 75% V.O 2peak ). In experiment two, nine healthy males completed three, 9-h conditions (control, 45-min running (EX45) and 90-min running (EX90)). Exercise was performed at 70% V.O 2peak In both experiments, participants consumed standardised meals, and acylated ghrelin concentrations and hunger were quantified at predetermined intervals. In experiment one, delta acylated ghrelin concentrations were lower than control in MOD (ES = 0.44, P = 0.01) and VIG (ES = 0.98, P < 0.001); VIG was lower than MOD (ES = 0.54, P = 0.003). Hunger ratings were similar across the conditions (P = 0.35). In experiment two, delta acylated ghrelin concentrations were lower than control in EX45 (ES = 0.77, P < 0.001) and EX90 (ES = 0.68, P < 0.001); EX45 and EX90 were similar (ES = 0.09, P = 0.55). Hunger ratings were lower than control in EX45 (ES = 0.20, P = 0.01) and EX90 (ES = 0.27, P = 0.001); EX45 and EX90 were similar (ES = 0.07, P = 0.34). Hunger and delta acylated ghrelin concentrations remained suppressed at 1.5 h in EX90 but not EX45. In conclusion, exercise intensity, and to a lesser extent duration, are determinants of the acylated ghrelin response to acute exercise. © 2017 Society for Endocrinology.

  1. Characterization of the transacylase activity of rat liver 60-kDa lysophospholipase-transacylase. Acyl transfer from the sn-2 to the sn-1 position.

    PubMed

    Sugimoto, H; Yamashita, S

    1999-05-18

    Rat liver 60-kDa lysophospholipase-transacylase catalyzes not only the hydrolysis of 1-acyl-sn-glycero-3-phosphocholine, but also the transfer of its acyl chain to a second molecule of 1-acyl-sn-glycero-3-phosphocholine to form phosphatidylcholine (H. Sugimoto, S. Yamashita, J. Biol. Chem. 269 (1994) 6252-6258). Here we report the detailed characterization of the transacylase activity of the enzyme. The enzyme mediated three types of acyl transfer between donor and acceptor lipids, transferring acyl residues from: (1) the sn-1 to -1(3); (2) sn-1 to -2; and (3) sn-2 to -1 positions. In the sn-1 to -1(3) transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1(3) positions of glycerol and 2-acyl-sn-glycerol, producing 1(3)-acyl-sn-glycerol and 1,2-diacyl-sn-glycerol, respectively. In the sn-1 to -2 transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to not only the sn-2 positions of 1-acyl-sn-glycero-3-phosphocholine, but also 1-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. 1-Acyl-sn-glycero-3-phospho-myo-inositol and 1-acyl-sn-glycero-3-phosphoserine were much less effectively transacylated by the enzyme. In the sn-2 to -1 transfer, the sn-2 acyl residue of 2-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1 position of 2-acyl-sn-glycero-3-phosphocholine and 2-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. Consistently, the enzyme hydrolyzed the sn-2 acyl residue from 2-acyl-sn-glycero-3-phosphocholine. By the sn-2 to -1 transfer activity, arachidonic acid was transferred from the sn-2 position of donor lipids to the sn-1 position of acceptor lipids, thus producing 1-arachidonoyl phosphatidylcholine. When 2-arachidonoyl-sn-glycero-3-phosphocholine was used as the sole substrate, diarachidonoyl phosphatidylcholine was synthesized at a rate of 0

  2. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    PubMed

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-02

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.

  3. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications

    PubMed Central

    Biresaw, Girma; Gordon, Sherald

    2018-01-01

    Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2–C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba (Simmondsia chinensis) plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50–60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its –C=C– bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity. PMID:29484216

  4. Physical Characteristics of Tetrahydroxy and Acylated Derivatives of Jojoba Liquid Wax in Lubricant Applications.

    PubMed

    Harry-O'kuru, Rogers E; Biresaw, Girma; Gordon, Sherald; Xu, Jingyuan

    2018-01-01

    Jojoba liquid wax is a mixture of esters of long-chain fatty acids and fatty alcohols mainly C38:2-C46:2. The oil exhibits excellent emolliency on the skin and, therefore, is a component in many personal care cosmetic formulations. The virgin oil is a component of the seed of the jojoba ( Simmondsia chinensis ) plant which occurs naturally in the Sonora Desert in the United States and northwestern Mexico as well as in the northeastern Sahara desert. The seed contains 50-60% oil by dry weight. The plant has been introduced into Australia, Argentina, and Israel for commercial production of the jojoba oil. As a natural lubricant, we are seeking to explore its potential as a renewable industrial lubricant additive. Thus, we have chemically modified the carbon-carbon double bonds in the oil structure in order to improve its already good resistance to air oxidation so as to enhance its utility as well as its shelf life in nonpersonal care applications. To achieve this goal, we have hydroxylated its -C=C- bonds. Acylation of the resulting hydroxyl moieties has generated short-chain vicinal acyl substituents on the oil which keep the wax liquid, improving its cold flow properties and also protecting it from auto-oxidation and rancidity.

  5. Effect of starter cultures on survival of Listeria monocytogenes in Čajna sausage

    NASA Astrophysics Data System (ADS)

    Bošković, M.; Tadić, V.; Đorđević, J.; Glišić, M.; Lakićević, B.; Dimitrijević, M.; Baltić, M. Ž.

    2017-09-01

    The aim of the study was to evaluate the survival of Listeria monocytogenes during the production of Čajna sausage with short maturation time. Sausage batter was inoculated with three different serotypes 4b and serotype 1/2a of L. monocytogenes. Control sausages were without any starter culture added; the second batch was inoculated with strains of Lactobacillus sakei, Staphylococcus carnosus and Staphylococcus xylosus, and the third batch was inoculated with strains of Debaryomyces hansenii, Lactobacillus sakei, Pediococcus acidilactici, Pediococcus pentosaceus, Staphylococcus carnosus and Staphylococcus xylosus. After 18 days of ripening, L. monocytogenes was not detected in any of the sausages, but during this fermentation and drying, the numbers of this pathogen was lower in the sausages inoculated with starter cultures.

  6. Sites of intermolecular crosslinking of fatty acyl chains in phospholipids carrying a photoactivable carbene precursor

    PubMed Central

    Gupta, Chhitar M.; Costello, Catherine E.; Khorana, H. Gobind

    1979-01-01

    Sonicated vesicles of 1-fatty acyl-2-ω-(2-diazo-3,3,3-trifluoropropionoxy) fatty acyl sn-glycero-3-phosphoryl-cholines were shown recently to form intermolecular crosslinks by insertion of the photogenerated carbene into a C—H bond of a neighboring hydrocarbon chain. We now report that photolysis of multilamellar dispersions gives a second series of products in which carbene insertion is accompanied by elimination of a molecule of hydrogen fluoride. The sites of crosslinking in the latter compounds have been studied by mass spectrometry using phospholipids with varying chain lengths of the fatty acyl groups carrying the carbene precursor. The patterns observed show that the point of maximum crosslinking is consistent with the recent conclusion that in phospholipids the sn-2 fatty acyl chain trails the sn-1 chain by 2-4 atoms. Images PMID:16592675

  7. Acylated ghrelin concentrations are markedly decreased during pregnancy in mothers with and without gestational diabetes: relationship with cholinesterase

    PubMed Central

    Tham, Elaine; Liu, Jianhua; Innis, Sheila; Thompson, David; Gaylinn, Bruce D.; Bogarin, Roberto; Haim, Alon; Thorner, Michael O.; Chanoine, Jean-Pierre

    2009-01-01

    Acylated (octanoylated) ghrelin stimulates food intake and growth hormone secretion and is deacylated into desacyl ghrelin by butyrylcholinesterase. Acylated and desacyl ghrelin both promote adipogenesis. Ghrelin concentrations decrease with hyperglycemia and hyperinsulinism. We hypothesized that 1) acylated ghrelin increases during pregnancy, contributing positively to energy balance, but is lower in women with gestational diabetes and 2) butyrylcholinesterase activity is inversely correlated with acylated ghrelin concentrations. In a first group of subjects, using two-site sandwich ghrelin assays that specifically detect full-length forms, we investigated women with and without gestational diabetes (n = 14/group) during pregnancy and after delivery. We examined whether changes in ghrelin during a test meal were correlated with changes in pituitary growth hormone [assessed through calculation of the area under the curve (AUC) during the test meal]. In postpartum subjects, the percent of total ghrelin that is acylated was four to five times higher than previously observed using single antibody assays. During pregnancy, acylated ghrelin concentrations (mean ± SE) were lower compared with the postpartum period throughout the meal (AUC 1.2 ± 0.2 vs. 10.2 ± 1.9 ng·ml−1·90 min−1, P < 0.001). In the postpartum, acylated ghrelin and growth hormone were positively correlated (r = 0.50, P = 0.007). Desacyl (but not acylated) ghrelin was increased in subjects with gestational diabetes during and after pregnancy (AUC 15.4 ± 1.9 vs. 8.6 ± 1.2 ng·ml−1·90 min−1, P = 0.005). In a second group of subjects (n = 13), acylated ghrelin was similarly suppressed during pregnancy. Circulating octanoate concentrations (3.1 ± 0.5 vs. 4.5 ± 0.6 μg/ml, P = 0.029) and cholinesterase activity (705 ± 33 vs. 1,013 ± 56 U/ml, P < 0.001) were lower during pregnancy compared with the postpartum period. In conclusion, acylated ghrelin markedly decreases during pregnancy, likely

  8. Effect of starters and ripening time on the physicochemical, nitrogen fraction and texture profile of goat's cheese coagulated with a vegetable coagulant (Cynara cardunculus).

    PubMed

    García, Víctor; Rovira, Silvia; Boutoial, Khalid; Ferrandini, Eduardo; López Morales, María B

    2014-02-01

    The increase in the demand for goat's cheese throughout the world has encouraged research into the development of new related products with different textural characteristics. The aim of this work was to study the effect of three commercial starter cultures through the assessment of physicochemical and textural characteristics of goat's milk cheeses made with vegetable coagulant (Cynara cardunculus) during ripening. Use of the different starter cultures produced a significant effect (P < 0.05) on moisture, proteins, pH, nitrogen fractions and hardness of the cheeses. Results show that the addition of mesophilic starters ensures the correct acidification rate and produced cheeses with lower pH values and greater hardness. Use of thermophilic starter cultures produces cheeses with less instrumental hardness and the use of mixed cultures produced less proteolysis. These results are found useful for selecting the most suitable starter for the development of new goat's cheeses. © 2013 Society of Chemical Industry.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavaty, Andrei S.; Northwestern University, Chicago, IL 60611; Kim, Youngchang

    The structural characterization of acyl-carrier-protein synthase (AcpS) from three different pathogenic microorganisms is reported. One interesting finding of the present work is a crystal artifact related to the activity of the enzyme, which fortuitously represents an opportunity for a strategy to design a potential inhibitor of a pathogenic AcpS. Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holomore » form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS{sub SA}), Vibrio cholerae (AcpS{sub VC}) and Bacillus anthracis (AcpS{sub BA}) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS{sub BA} is emphasized because of the two 3′, 5′-adenosine diphosphate (3′, 5′-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3′, 5′-ADP is bound as the 3′, 5′-ADP part of CoA in the known structures of the CoA–AcpS and 3′, 5′-ADP–AcpS binary complexes. The position of the second 3′, 5′-ADP has never been described before. It is in close proximity to the first 3′, 5′-ADP and the ACP-binding site. The coordination of two ADPs in AcpS{sub BA} may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.« less

  10. Examination of the technological properties of newly isolated strains of the genus Lactobacillus and possibilities for their application in the composition of starters.

    PubMed

    Denkova, Rositsa; Ilieva, Svetla; Denkova, Zapryana; Georgieva, Ljubka; Krastanov, Albert

    2014-05-04

    The ability of four Lactobacillus strains - Lactobacillus brevis LBRZ7 (isolated from fermented cabbage), Lactobacillus plantarum LBRZ12 (isolated from fermented cabbage), Lactobacillus fermentum LBRH9 (of human origin) and Lactobacillus casei ssp. rhamnosus LBRC11 (isolated from home-made cheese) - to grow in flour/water environment and to accumulate high concentrations of viable cells was examined. Two starters for sourdough were created for lab-scale production of wheat bread: a two-strain starter and a four-strain starter. Wheat bread with improved properties - greater loaf volume, enhanced flavour and softer and brighter crumb - was obtained from the 7% four-strain starter sourdough. The addition of sourdough in the production of wheat bread affected positively the technological and organoleptic characteristics of the final bread by inhibiting the growth of wild yeasts and mold and Bacillus spores without the addition of preservatives. The inclusion of 15% of the four-strain starter sourdough in the bread-making process led to enhanced safety and longer shelf life of the baked bread.

  11. Subsequent bone and metabolic responses of broilers to high-non-phytate phosphorus diets in the starter period.

    PubMed

    Baradaran, N; Shahir, M H; Asadi Kermani, Z

    2017-08-01

    1. An experiment was performed to elucidate the subsequent effects of high-non-phytate phosphorus (NPP) diets on growth performance, blood metabolites, bone characteristics and P retention of broilers fed on low-NPP grower diets. The 42-d study was designed as a 2 × 2 × 2 + 1 factorial, which included two starter NPP concentrations (4.5 and 5.5 g/kg; d 0-21), two grower NPP concentrations (1.5 and 2.3 g/kg; d 22-42), with or without phytase (1000 FTU/kg), with a reference diet containing an adequate NPP concentration over the course of the trial. 2. In the starter period, growth performance and P retention were not affected by experimental diets. The high-NPP diet increased plasma P concentration, increased tibia ash and tibia P contents and decreased plasma alkaline phosphatase (ALP) activity at d 21. 3. No significant interaction was observed between NPP concentrations in the starter and grower periods and phytase. The main effect data indicated that the increase in NPP concentration in the starter diets had no effects on growth performance in the grower period and overall. The high-NPP diet in the early stage of growth reduced plasma P concentration, plasma ALP activity and tibia ash content at d 42. The main effect data also showed that exogenous phytase increased body weight gain in the grower period and overall. 4. It can be concluded that feeding increased NPP diets have no effects on growth performance in the starter period. This feeding strategy results in negative effects on plasma P concentration and bone ash content at d 42. Also, exogenous phytase is effective in improving growth performance, bone characteristics and apparent P retention of growing broilers fed diets that are inadequate in phosphorus.

  12. New parasite inhibitors encompassing novel conformationally-locked 5'-acyl sulfamoyl adenosines.

    PubMed

    Dixit, Shailesh S; Upadhayaya, Ram Shankar; Chattopadhyaya, Jyoti

    2012-08-14

    We describe the design, synthesis and biological evaluation of conformationally-locked 5'-acyl sulfamoyl adenosine derivatives as new parasitic inhibitors against Trypanosoma and Leishmania. The conformationally-locked (3'-endo, North-type) nucleosides have been synthesized by covalently attaching a 4'-CH(2)-O-2' bridge () across C2'-C4' of adenosine in order to reduce the conformational flexibility of the pentose ring. This is designed to decrease the entropic penalty for complex formation with the target protein, which may improve free-energy of stabilization of the complex leading to improved potency. Conformationally-locked 5'-acyl sulfamoyl adenosine derivatives (16-22) were tested against parasitic protozoans for the first time in this work, and showed potent inhibition of Trypanosoma cruzi, Trypanosoma brucei, Trypanosoma rhodesiense and Leishmania infantum with IC(50) = 0.25-0.51 μM. In particular, the potent 5'-pentanyl acyl sulfamoyl adenosine derivative 17 (IC(50) = 0.25 μM) against intracellular L. infantum amastigotes and Trypanosoma subspecies is interesting in view of its almost insignificant cytotoxicity in murine macrophage host cells (CC(50) >4 μM) and in diploid human fibroblasts MRC-5 cell lines (CC(50) 4 μM). This work also suggests that variable alkyl chain length of the acyl group on the acylsulfamoyl side chain at 5' can modulate the toxicity of 5'-O-sulfamoylnucleoside analogues. This conformationally-locked sulfamoyl adenosine scaffold presents some interesting possibilities for further drug design and lead optimization.

  13. Halobacterium sp. SP1(1) as a starter culture for accelerating fish sauce fermentation.

    PubMed

    Akolkar, A V; Durai, D; Desai, A J

    2010-07-01

    Application of Halobacterium sp. SP1(1) for the acceleration of fish sauce fermentation. Traditional fish sauce fermentation was mimicked using Halobacterium sp. SP1(1) as starter culture. Protease activity, peptide release and α-amino content (parameters used to monitor the progress of the fermentation) were high at day 10 in tests and day 20 in un-inoculated controls. The total protein and nitrogen contents were also high in tests compared with controls. The amino acid profile observed at the end of fermentation in experimental samples, when compared with the commercial sauce preparation, was found to be better with respect to flavour and aroma contributing amino acids as well as essential amino acid lysine. Microflora analysis of the final fish sauce revealed the absence of any nonhalophilic or halotolerant micro-organisms. The protease-producing halophilic isolates obtained from the fish sauce of eviscerated and uneviscerated controls were identified as Halobacterium sp. F1 and F2, respectively, by 16S rDNA sequence analysis. Exogenous augmentation of Halobacterium sp. SP1(1) accelerated the fish sauce fermentation process with an additive effect on the existing natural microflora present in the fish during fermentation. Halobacterium sp SP1(1), therefore, can be used as an important starter culture for accelerating the fish fermentation process, which is attributed to its extracellular protease. The present study is the first report on use of Halobacterium species as a starter culture for accelerating fish sauce fermentation. Use of halobacterial starter cultures may revolutionize the process in fish sauce industries by reducing the fermentation time and making the process more economical with improved nutritive value of product. Journal compilation © 2009 The Society for Applied Microbiology. No claim to Indian Government works.

  14. Draft Genome Sequence of Burkholderia gladioli Coa14, a Bacterium with Petroleum Bioremediation Potential Isolated from Coari Lake, Amazonas, Brazil

    PubMed Central

    Da Costa, Josemar Gurgel; Wolf, Ivan Rodrigo; Lima, José Paulo de Araújo; Astolfi-Filho, Spartaco

    2018-01-01

    ABSTRACT Burkholderia gladioli Coa14 is a bacterium isolated from water collected from Coari Lake (Amazonas, Brazil) that shows a capacity for survival in a medium containing only oil as a carbon source. Here, we report its draft genome sequence, highlighting some genes involved with petroleum derivative degradation. PMID:29674552

  15. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    NASA Astrophysics Data System (ADS)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  16. Viability of Staphylococcus xylosus isolated from artisanal sausages for application as starter cultures in meat products.

    PubMed

    Fiorentini, Angela Maria; Sawitzki, Maristela Cortez; Bertol, Teresinha Marisa; Sant'anna, Ernani S

    2009-01-01

    Viability of Staphylococcus xylosus isolated from artisanal sausages for application as starter cultures in meat products Viability of Staphylococcus xylosus strains AD1 and U5 isolated from natural fermented sausages was investigated as starter cultures in fermented sausages produced in the South Region of Brazil. The study demonstrated that the Staphylococcus xylosus strains AD1 and U5 showed significant growth during fermentation, stability over freeze-dried process, negative reaction for staphylococcal enterotoxins and viability for using as a single-strain culture or associated with lactic acid bacteria for production of fermented sausages.

  17. Acyl carrier protein structural classification and normal mode analysis

    PubMed Central

    Cantu, David C; Forrester, Michael J; Charov, Katherine; Reilly, Peter J

    2012-01-01

    All acyl carrier protein primary and tertiary structures were gathered into the ThYme database. They are classified into 16 families by amino acid sequence similarity, with members of the different families having sequences with statistically highly significant differences. These classifications are supported by tertiary structure superposition analysis. Tertiary structures from a number of families are very similar, suggesting that these families may come from a single distant ancestor. Normal vibrational mode analysis was conducted on experimentally determined freestanding structures, showing greater fluctuations at chain termini and loops than in most helices. Their modes overlap more so within families than between different families. The tertiary structures of three acyl carrier protein families that lacked any known structures were predicted as well. PMID:22374859

  18. Evaluation of bacterial communities belonging to natural whey starters for Grana Padano cheese by length heterogeneity-PCR.

    PubMed

    Lazzi, C; Rossetti, L; Zago, M; Neviani, E; Giraffa, G

    2004-01-01

    To detect bacteria present in controlled dairy ecosystems with defined composition by length-heterogeneity (LH)-PCR. LH-PCR allows to distinguish different organisms on the basis of natural variations in the length of 16S rRNA gene sequences. LH-PCR was applied to depict population structure of the lactic acid bacteria (LAB) species recoverable from Grana Padano cheese whey starters. Typical bacterial species present in the LAB community were evidenced and well discriminated. Small differences in species composition, e.g. the frequent finding of Streptococcus thermophilus and the constant presence of thermophilic lactobacilli (Lactobacillus helveticus, Lact. delbrueckii subsp. lactis/bulgaricus and Lact. fermentum) were reliably highlighted. Specificity of LH-PCR was confirmed by species-specific PCR from total DNA of the cultures. LH-PCR is a useful tool to monitor microbial composition and population dynamics in dairy starter cultures. When present, non-dominant bacterial species present in the whey starters, such as Strep. thermophilus, can easily be visualized and characterized without isolating and cultivating single strains. A similar approach can be applied to more complex dairy ecosystems such as milk or cheese curd. Community members and differences in population structure of controlled dairy ecosystems such as whey starters for hard cheeses can be evaluated and compared in a relative easy, fast, reliable and highly reproducible way.

  19. Effects of raw milk and starter feed on intake and body composition of Holstein × Gyr male calves up to 64 days of age.

    PubMed

    Silva, A L; Marcondes, M I; Detmann, E; Machado, F S; Valadares Filho, S C; Trece, A S; Dijkstra, J

    2015-04-01

    The objective was to evaluate the effect of supplying different levels of raw milk, alone or in combination, with access to a starter feed, on the intake, digestibility, daily gain, N balance, and body composition of Holstein × Gyr crossbred suckling calves until 64 d of age. Thirty-nine male calves aged 4 d with an average initial live weight of 36 ± 1.0 kg were used. Five calves were defined as a reference group and slaughtered at 4 d of age to estimate the initial body composition of the animals. The other calves were distributed according to a completely randomized design in a 3 × 2 factorial arrangement consisting of 3 levels of milk (2, 4, or 8 L/d) and 2 levels of starter feed (presence or absence in diet). At 15 and 45 d of age, 4 animals from each treatment were subjected to digestibility trials with total collection of feces and urine and sampling of feeds. At 64 d of age, all animals were slaughtered and their body tissues were sampled for analyses. Total dry matter and nutrient intake increased linearly and starter intake decreased linearly in response to the supply of increasing amounts of milk. The digestibility coefficient of organic matter was not affected by the inclusion of starter feed and increased linearly as milk supply was elevated. Daily gain was greater at increased milk supply levels and also greater when starter was supplied, without any interaction between milk supply level and the presence or absence of starter. Fecal N excretion and N retention were higher in the animals fed starter feed. Fecal N excretion was not affected by milk levels, whereas N retention was affected. Body protein and ash contents decreased linearly according to increased milk allowance. In contrast, fat body content increased linearly according to milk supply. The presence of starter feed in the diet was responsible for the increased body fat content, but had no effect on protein or ash content. In conclusion, weight gain and N retention in calves up to 64 d of

  20. Discovering Targets of Non-enzymatic Acylation by Thioester Reactivity Profiling | Center for Cancer Research

    Cancer.gov

    The cover image illuminates the non-enzymatic “ghost writers” of lysine acylation. Meier et al. detail the development of a chemoproteomic strategy that harnesses thioester reactivity to discover candidate cellular targets of non-enzymatic acylation. Application of this approach reveals that glycolytic enzymes can be strongly inhibited by reactive thioesters, including the

  1. Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant defective in de novo and salvage phosphatidylcholine synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishino, Hideyuki; Eguchi, Hiroki; Takagi, Keiko

    2014-03-07

    Highlights: • Dioctanoyl-PC (diC8PC) supported growth of a yeast mutant defective in PC synthesis. • diC8PC was converted to PC species containing longer acyl residues in the mutant. • Both acyl residues of diC8PC were replaced by longer fatty acids in vitro. • This system will contribute to the elucidation of the acyl chain remodeling of PC. - Abstract: A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipidmore » methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of {sup 13}C-labeled diC8PC ((methyl-{sup 13}C){sub 3}-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions. In addition, both acyl residues of (methyl-{sup 13}C){sub 3}-diC8PC were replaced with 16:1 acyl chains in the in vitro reaction using the yeast cell extract in the presence of palmitoleoyl-CoA. These results indicate that PC containing short acyl residues was remodeled to those with acyl chains of physiological length in yeast.« less

  2. Further acylated flavonol bisdesmosides from Sinocrassula indica.

    PubMed

    Xie, Hai-Hui; Yoshikawa, Masayuki

    2013-01-01

    Further investigation on the whole herbs of Sinocrassula indica (Crassulaceae) led to the isolation of four new acylated flavonol bisdesmosides, sinocrassosides A₁₃, B₆, B₇, and D₄, together with kaempferol 3-O-β-D-(6-O-acetyl)glucopyranosyl-7-O-α-L-rhamnopyranoside. Their structures were established by spectral and chemical methods.

  3. Discovery of tumor-specific irreversible inhibitors of stearoyl CoA desaturase | Office of Cancer Genomics

    Cancer.gov

    A hallmark of targeted cancer therapies is selective toxicity among cancer cell lines. We evaluated results from a viability screen of over 200,000 small molecules to identify two chemical series, oxalamides and benzothiazoles, that were selectively toxic at low nanomolar concentrations to the same 4 of 12 human lung cancer cell lines. Sensitive cell lines expressed cytochrome P450 (CYP) 4F11, which metabolized the compounds into irreversible inhibitors of stearoyl CoA desaturase (SCD). SCD is recognized as a promising biological target in cancer and metabolic disease.

  4. The importance of calf sensory and physical preferences for starter concentrates during pre- and postweaning periods.

    PubMed

    Terré, M; Devant, M; Bach, A

    2016-09-01

    We performed 3 studies to evaluate the effects of feed sensory and form preferences in young calves on performance and rumen fermentation dynamics. In experiment 1, starter feeds containing wheat and soybean meal; wheat and canola meal; and oats and soybean meal were evaluated in 63 calves (9±0.9 d old). In experiment 2, 37 crossbreed female calves were used from 4 to 45 d of age (weaning) in a cafeteria study consisting of 4 different presentations of the same starter feed: meal, pellet, pellet mixed with whole-cereal grains (WHG), and pellet mixed with steamed-rolled cereal grains (SRG). In experiment 3, 63 Holstein male calves (10±1.03 d old) were randomly distributed to 2 treatments that consisted of feeding a pellet concentrate mixed with whole corn and barely grains (WHG) or the same pellet concentrate mixed with steamed-rolled corn and barley grains (SRG). In experiment 1, animals in all 3 treatments had similar intake and performance, and we found no differences in rumen fermentation parameters. In experiment 2, during the first week of study, calves had a greater preference for WHG; after the first week, calves had a greater preference for SRG. In experiment 3, starter concentrate intake was greater in WHG than in SRG concentrates between wk 5 and weaning. However, we observed no differences in growth or gain-to-feed ratio. Calves offered WHG concentrates had greater rumen pH and tended to have lower total rumen volatile fatty acid concentrations than those offered SRG concentrates. We concluded that preweaned calves preferred concentrates based on pellets mixed with steamed-rolled grains. When calves could not choose their starter feed, pellets mixed with steamed-rolled grains reduced concentrate intake and rumen pH compared to pellets mixed with whole grains, but performance was not impaired. Formulating starter concentrates according to calves' sensory and physical preferences had little effect on performance. Copyright © 2016 American Dairy Science

  5. Evaluation of an autochthonous starter culture on the production of a traditional dry fermented sausage from Chaco (Argentina) at a small-scale facility.

    PubMed

    Palavecino Prpich, Noelia Z; Garro, Oscar A; Romero, Mara; Judis, María A; Cayré, María E; Castro, Marcela P

    2016-05-01

    The performance of a mixed starter culture, SAS-1, comprised of the autochthonous strains Lactobacillus sakei ACU-2 and Staphylococcus vitulinus ACU-10, was evaluated into the production process of a traditional dry sausage. Microbiological, physicochemical and sensory analyses were carried out to accomplish this goal. Results showed an improvement in performance through the introduction of SAS-1; adding mixed starter culture rapidly decreased pH, inhibited the growth of contaminant microorganisms and enhanced the beneficial ones, diminished TBARS, and highlighted color and aroma attributes. However, most influential organoleptic descriptors among consumer acceptance were not affected by the addition of the starter. This starter culture would represent a valuable tool to improve the homogeneity of artisanal manufacture of this traditional food. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Metagenomics analysis of microbial communities associated with a traditional rice wine starter culture (Xaj-pitha) of Assam, India.

    PubMed

    Bora, Sudipta Sankar; Keot, Jyotshna; Das, Saurav; Sarma, Kishore; Barooah, Madhumita

    2016-12-01

    This is the first report on the microbial diversity of xaj-pitha, a rice wine fermentation starter culture through a metagenomics approach involving Illumine-based whole genome shotgun (WGS) sequencing method. Metagenomic DNA was extracted from rice wine starter culture concocted by Ahom community of Assam and analyzed using a MiSeq ® System. A total of 2,78,231 contigs, with an average read length of 640.13 bp, were obtained. Data obtained from the use of several taxonomic profiling tools were compared with previously reported microbial diversity studies through the culture-dependent and culture-independent method. The microbial community revealed the existence of amylase producers, such as Rhizopus delemar, Mucor circinelloides, and Aspergillus sp. Ethanol producers viz., Meyerozyma guilliermondii, Wickerhamomyces ciferrii, Saccharomyces cerevisiae, Candida glabrata, Debaryomyces hansenii, Ogataea parapolymorpha, and Dekkera bruxellensis, were found associated with the starter culture along with a diverse range of opportunistic contaminants. The bacterial microflora was dominated by lactic acid bacteria (LAB). The most frequent occurring LAB was Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc lactis, Weissella cibaria, Lactococcus lactis, Weissella para mesenteroides, Leuconostoc pseudomesenteroides, etc. Our study provided a comprehensive picture of microbial diversity associated with rice wine fermentation starter and indicated the superiority of metagenomic sequencing over previously used techniques.

  7. Enzymatic acylation of flavonoid glycosides by a carbohydrate esterase of family 16.

    PubMed

    Biely, Peter; Cziszárová, Mária; Wong, Ken K Y; Fernyhough, Alan

    2014-11-01

    The acetyl esterase of Trichoderma reesei belonging to carbohydrate esterase (CE) family 16 catalyzes transacylations to carbohydrate moieties of flavonoid glycosides, esculin and rutin. The enzyme recognizes as acyl donors vinyl esters of short carboxylic acids. Esculin was acylated at position 3 of the glucosyl residue in aqueous solutions saturated with vinyl acetate and vinyl propionate. The yields of esculin monoacetate and monopropionate of esculin in aqueous medium (esculin 40 mM, enzyme 40 µg/ml, 40 °C, 3 days) were 67 and 55 %, respectively. Replacement of water by 2-propanol was required for a similar acylation of rutin at 4 mM concentration. The yields of rutin monoacetate and propionate were 60 and 30 %, respectively. The results indicate that the enzyme could be used for an easy modification of solubility and hydrophobicity of glycosylated compounds, including drugs and functional food additives.

  8. Serum Levels of Acyl-Carnitines along the Continuum from Normal to Alzheimer's Dementia.

    PubMed

    Cristofano, Adriana; Sapere, Nadia; La Marca, Giancarlo; Angiolillo, Antonella; Vitale, Michela; Corbi, Graziamaria; Scapagnini, Giovanni; Intrieri, Mariano; Russo, Claudio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-01-01

    This study aimed to determine the serum levels of free L-carnitine, acetyl-L-carnitine and 34 acyl-L-carnitine in healthy subjects and in patients with or at risk of Alzheimer's disease. Twenty-nine patients with probable Alzheimer's disease, 18 with mild cognitive impairment of the amnestic type, 24 with subjective memory complaint and 46 healthy subjects were enrolled in the study, and the levels of carnitine and acyl-carnitines were measured by tandem mass spectrometry. The concentrations of acetyl-L-carnitine progressively decreased passing from healthy subjects group (mean±SD, 5.6±1.3 μmol/L) to subjective memory complaint (4.3±0.9 μmol/L), mild cognitive impairment (4.0±0.53 μmol/L), up to Alzheimer's disease (3.5±0.6 μmol/L) group (p<0.001). The differences were significant for the comparisons: healthy subjects vs. subjective memory complaint, mild cognitive impairment or Alzheimer's disease group; and subjective memory complaint vs. Alzheimer's disease group. Other acyl-carnitines, such as malonyl-, 3-hydroxyisovaleryl-, hexenoyl-, decanoyl-, dodecanoyl-, dodecenoyl-, myristoyl-, tetradecenoyl-, hexadecenoyl-, stearoyl-, oleyl- and linoleyl-L-carnitine, showed a similar decreasing trend, passing from healthy subjects to patients at risk of or with Alzheimer's disease. These results suggest that serum acetyl-L-carnitine and other acyl-L-carnitine levels decrease along the continuum from healthy subjects to subjective memory complaint and mild cognitive impairment subjects, up to patients with Alzheimer's disease, and that the metabolism of some acyl-carnitines is finely connected among them. These findings also suggest that the serum levels of acetyl-L-carnitine and other acyl-L-carnitines could help to identify the patients before the phenotype conversion to Alzheimer's disease and the patients who would benefit from the treatment with acetyl-L-carnitine. However, further validation on a larger number of samples in a longitudinal study is needed

  9. Serum Levels of Acyl-Carnitines along the Continuum from Normal to Alzheimer's Dementia

    PubMed Central

    Sapere, Nadia; La Marca, Giancarlo; Angiolillo, Antonella; Vitale, Michela; Corbi, Graziamaria; Scapagnini, Giovanni; Intrieri, Mariano; Russo, Claudio

    2016-01-01

    This study aimed to determine the serum levels of free L-carnitine, acetyl-L-carnitine and 34 acyl-L-carnitine in healthy subjects and in patients with or at risk of Alzheimer’s disease. Twenty-nine patients with probable Alzheimer’s disease, 18 with mild cognitive impairment of the amnestic type, 24 with subjective memory complaint and 46 healthy subjects were enrolled in the study, and the levels of carnitine and acyl-carnitines were measured by tandem mass spectrometry. The concentrations of acetyl-L-carnitine progressively decreased passing from healthy subjects group (mean±SD, 5.6±1.3 μmol/L) to subjective memory complaint (4.3±0.9 μmol/L), mild cognitive impairment (4.0±0.53 μmol/L), up to Alzheimer’s disease (3.5±0.6 μmol/L) group (p<0.001). The differences were significant for the comparisons: healthy subjects vs. subjective memory complaint, mild cognitive impairment or Alzheimer’s disease group; and subjective memory complaint vs. Alzheimer’s disease group. Other acyl-carnitines, such as malonyl-, 3-hydroxyisovaleryl-, hexenoyl-, decanoyl-, dodecanoyl-, dodecenoyl-, myristoyl-, tetradecenoyl-, hexadecenoyl-, stearoyl-, oleyl- and linoleyl-L-carnitine, showed a similar decreasing trend, passing from healthy subjects to patients at risk of or with Alzheimer’s disease. These results suggest that serum acetyl-L-carnitine and other acyl-L-carnitine levels decrease along the continuum from healthy subjects to subjective memory complaint and mild cognitive impairment subjects, up to patients with Alzheimer’s disease, and that the metabolism of some acyl-carnitines is finely connected among them. These findings also suggest that the serum levels of acetyl-L-carnitine and other acyl-L-carnitines could help to identify the patients before the phenotype conversion to Alzheimer’s disease and the patients who would benefit from the treatment with acetyl-L-carnitine. However, further validation on a larger number of samples in a longitudinal

  10. Synthesis of 2-acyl-1,4-diketones via the diacylation of {alpha},{beta}-unsaturated ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, N.S.; Yu, S.; Kabalka, G.W.

    1998-08-17

    The first example of a diacylation of the carbon-carbon double bond in {alpha},{beta}-unsaturated ketones is described. The reaction of acylcyanocuprate reagents with {alpha},{beta}-unsaturated ketones, followed by C-acylation, produces 2-acyl-1,4-diketones in good yields (50--89%). The 1,4-addition of organocuprate reagents to conjugated enones, followed by trapping of the enolate intermediates with various electrophiles, is one of the most useful synthetic reactions. However, to the best of the authors` knowledge, 1,4-acylation followed by trapping of the enolate intermediates with acid chloride has not been reported.

  11. A comparison of the metabolic fate of Fatty acids of different chain lengths in developing oilseeds.

    PubMed

    Battey, J F; Ohlrogge, J B

    1989-07-01

    To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates.

  12. A Comparison of the Metabolic Fate of Fatty Acids of Different Chain Lengths in Developing Oilseeds

    PubMed Central

    Battey, James F.; Ohlrogge, John B.

    1989-01-01

    To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates. PMID:16666885

  13. Draft Genome Sequence of Burkholderia gladioli Coa14, a Bacterium with Petroleum Bioremediation Potential Isolated from Coari Lake, Amazonas, Brazil.

    PubMed

    Lopes, Eraldo Ferreira; Da Costa, Josemar Gurgel; Wolf, Ivan Rodrigo; Lima, José Paulo de Araújo; Astolfi-Filho, Spartaco

    2018-04-19

    Burkholderia gladioli Coa14 is a bacterium isolated from water collected from Coari Lake (Amazonas, Brazil) that shows a capacity for survival in a medium containing only oil as a carbon source. Here, we report its draft genome sequence, highlighting some genes involved with petroleum derivative degradation. Copyright © 2018 Lopes et al.

  14. Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Rodrigo; Lan, Benson; Latif, Yama

    2014-04-01

    The crystal structures of Y. pestis RipA mutants were determined to provide insights into the CoA transferase reaction pathway. Yersinia pestis, the causative agent of bubonic plague, is able to survive in both extracellular and intracellular environments within the human host, although its intracellular survival within macrophages is poorly understood. A novel Y. pestis three-gene rip (required for intracellular proliferation) operon, and in particular ripA, has been shown to be essential for survival and replication in interferon γ-induced macrophages. RipA was previously characterized as a putative butyryl-CoA transferase proposed to yield butyrate, a known anti-inflammatory shown to lower macrophage-produced NOmore » levels. RipA belongs to the family I CoA transferases, which share structural homology, a conserved catalytic glutamate which forms a covalent CoA-thioester intermediate and a flexible loop adjacent to the active site known as the G(V/I)G loop. Here, functional and structural analyses of several RipA mutants are presented in an effort to dissect the CoA transferase mechanism of RipA. In particular, E61V, M31G and F60M RipA mutants show increased butyryl-CoA transferase activities when compared with wild-type RipA. Furthermore, the X-ray crystal structures of E61V, M31G and F60M RipA mutants, when compared with the wild-type RipA structure, reveal important conformational changes orchestrated by a conserved acyl-group binding-pocket phenylalanine, Phe85, and the G(V/I)G loop. Binary structures of M31G RipA and F60M RipA with two distinct CoA substrate conformations are also presented. Taken together, these data provide CoA transferase reaction snapshots of an open apo RipA, a closed glutamyl-anhydride intermediate and an open CoA-thioester intermediate. Furthermore, biochemical analyses support essential roles for both the catalytic glutamate and the flexible G(V/I)G loop along the reaction pathway, although further research is required to fully

  15. Fermented Apulian table olives: Effect of selected microbial starters on polyphenols composition, antioxidant activities and bioaccessibility.

    PubMed

    D'Antuono, Isabella; Bruno, Angelica; Linsalata, Vito; Minervini, Fiorenza; Garbetta, Antonella; Tufariello, Maria; Mita, Giovanni; Logrieco, Antonio F; Bleve, Gianluca; Cardinali, Angela

    2018-05-15

    The effects of fermentation by autochthonous microbial starters on phenolics composition of Apulian table olives, Bella di Cerignola (BDC), Termite di Bitetto (TDB) and Cellina di Nardò (CEL) were studied, highlighting also the cultivars influence. In BDC with starter, polyphenols amount doubled compared with commercial sample, while in TDB and CEL, phenolics remain almost unchanged. The main phenolics were hydroxytyrosol, tyrosol, verbascoside and luteolin, followed by hydroxytyrosol-acetate detected in BDC and cyanidine-3-glucoside and quercetin in CEL. Scavenger capacity in both DPPH and CAA assays, assessed the highest antioxidant effect for CEL with starters (21.7 mg Trolox eq/g FW; 8.5 μmol hydroxytyrosol eq/100 g FW). The polyphenols were highly in vitro bioaccessible (>60%), although modifications in their profile, probably for combined effect of environment and microorganisms, were noted. Finally, fermented table olives are excellent source of health promoting compounds, since hydroxytyrosol and tyrosol are almost 8 times more than in olive oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects.

    PubMed

    Antinone, Sarah E; Ghadge, Ghanashyam D; Ostrow, Lyle W; Roos, Raymond P; Green, William N

    2017-01-25

    Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord.

  17. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects

    PubMed Central

    Antinone, Sarah E.; Ghadge, Ghanashyam D.; Ostrow, Lyle W.; Roos, Raymond P.; Green, William N.

    2017-01-01

    Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord. PMID:28120938

  18. Nonthermal rotational distribution of CO/A 1Pi/ fragments produced by dissociative excitation of CO2 by electron impact. [in Mars atmosphere

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Stone, E. J.; Zipf, E. C.

    1975-01-01

    Measurements were made of the rotational profiles of specific bands of the CO fourth-positive group (4PG). The CO 4PG bands were excited by electron impact dissociative excitation of CO2. The results are applicable to analysis of the Mariner observations of the CO 4PG in the dayglow of Mars. The results indicate that dissociative excitation of CO2 by electron impact leads to CO(A 1Pi) fragments with a rotational distribution that is highly nonthermal. The parent CO2 temperature was about 300 K in the experiment, while the fragment CO(A 1Pi) showed emission band profiles consistent with a rotational temperature greater than about 1500 K. Laboratory measurement of the reduced transmission of the hot bands by thermal CO appears to be the most direct way of determining the column density responsible for the CO(v',0) absorption of Mars.

  19. A Multibacteriocin Cheese Starter System, Comprising Nisin and Lacticin 3147 in Lactococcus lactis, in Combination with Plantaricin from Lactobacillus plantarum

    PubMed Central

    Mills, S.; Griffin, C.; O'Connor, P. M.; Serrano, L. M.; Meijer, W. C.; Hill, C.

    2017-01-01

    ABSTRACT Functional starter cultures demonstrating superior technological and food safety properties are advantageous to the food fermentation industry. We evaluated the efficacies of single- and double-bacteriocin-producing starters of Lactococcus lactis capable of producing the class I bacteriocins nisin A and/or lacticin 3147 in terms of starter performance. Single producers were generated by mobilizing the conjugative bacteriophage resistance plasmid pMRC01, carrying lacticin genetic determinants, or the conjugative transposon Tn5276, carrying nisin genetic determinants, to the commercial starter L. lactis CSK2775. The effect of bacteriocin coproduction was examined by superimposing pMRC01 into the newly constructed nisin transconjugant. Transconjugants were improved with regard to antimicrobial activity and bacteriophage insensitivity compared to the recipient strain, and the double producer was immune to both bacteriocins. Bacteriocin production in the starter was stable, although the recipient strain proved to be a more efficient acidifier than transconjugant derivatives. Overall, combinations of class I bacteriocins (the double producer or a combination of single producers) proved to be as effective as individual bacteriocins for controlling Listeria innocua growth in laboratory-scale cheeses. However, using the double producer in combination with the class II bacteriocin producer Lactobacillus plantarum or using the lacticin producer with the class II producer proved to be most effective for reducing bacterial load. As emergence of bacteriocin tolerance was reduced 10-fold in the presence of nisin and lacticin, we suggest that the double producer in conjunction with the class II producer could serve as a protective culture providing a food-grade, multihurdle approach to control pathogenic growth in a variety of industrial applications. IMPORTANCE We generated a suite of single- and double-bacteriocin-producing starter cultures capable of generating the

  20. Autochthonous fermentation starters for the industrial production of Negroamaro wines.

    PubMed

    Tristezza, Mariana; Vetrano, Cosimo; Bleve, Gianluca; Grieco, Francesco; Tufariello, Maria; Quarta, Angela; Mita, Giovanni; Spano, Giuseppe; Grieco, Francesco

    2012-01-01

    The aim of the present study was to establish a new procedure for the oenological selection of Saccharomyces cerevisiae strains isolated from natural must fermentations of an important Italian grape cultivar, denoted as "Negroamaro". For this purpose, 108 S. cerevisiae strains were selected as they did not produce H(2)S and then assayed by microfermentation tests. The adopted procedure made it possible to identify 10 strains that were low producers of acetic acid and hydrogen sulphide and showed that they completed sugar consumption during fermentation. These strains were characterized for their specific oenological and technological properties and, two of them, strains 6993 and 6920, are good candidates as industrial starter cultures. A novel protocol was set up for their biomass production and they were employed for industrial-scale fermentation in two industrial cellars. The two strains successfully dominated the fermentation process and contributed to increasing the wines' organoleptic quality. The proposed procedure could be very effective for selecting "company-specific" yeast strains, ideal for the production of typical regional wines. "Winery" starter cultures could be produced on request in a small plant just before or during the vintage season and distributed as a fresh liquid concentrate culture.

  1. Mycobacterial glycolipids di-O-acylated trehalose and tri-O-acylated trehalose downregulate inducible nitric oxide synthase and nitric oxide production in macrophages.

    PubMed

    Espinosa-Cueto, Patricia; Escalera-Zamudio, Marina; Magallanes-Puebla, Alejandro; López-Marín, Luz María; Segura-Salinas, Erika; Mancilla, Raúl

    2015-06-23

    Tuberculosis (TB) remains a serious human health problem that affects millions of people in the world. Understanding the biology of Mycobacterium tuberculosis (Mtb) is essential for tackling this devastating disease. Mtb possesses a very complex cell envelope containing a variety of lipid components that participate in the establishment of the infection. We have previously demonstrated that di-O-acylated trehalose (DAT), a non-covalently linked cell wall glycolipid, inhibits the proliferation of T lymphocytes and the production of cytokines. In this work we show that DAT and the closely related tri-O-acylated trehalose (TAT) inhibits nitric oxide (NO) production and the inducible nitric oxide synthase (iNOS) expression in macrophages (MØ). These findings show that DAT and TAT are cell-wall located virulence factors that downregulate an important effector of the immune response against mycobacteria.

  2. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. (a) Chemical substance and...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts (PMN P-03-46; CAS No. 136504-87-5) is subject to...

  3. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. (a) Chemical substance and...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts (PMN P-03-46; CAS No. 136504-87-5) is subject to...

  4. 40 CFR 721.10055 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. 721.10055 Section 721.10055 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts. (a) Chemical substance and...-(carboxymethyl)-N,N-dimethyl-, N-soya acyl derivs., inner salts (PMN P-03-46; CAS No. 136504-87-5) is subject to...

  5. Modeling of rheological characteristics of the fermented dairy products obtained by novel and traditional starter cultures.

    PubMed

    Vukić, Dajana V; Vukić, Vladimir R; Milanović, Spasenija D; Ilicić, Mirela D; Kanurić, Katarina G

    2018-06-01

    Tree different fermented dairy products obtained by conventional and non-conventional starter cultures were investigated in this paper. Textural and rheological characteristics as well as chemical composition during 21 days of storage were analysed and subsequent data processing was performed by principal component analysis. The analysis of samples` flow behaviour was focused on their time dependent properties. Parameters of Power law model described flow behaviour of samples depended on used starter culture and days of storage. The Power law model was applied successfully to describe the flow of the fermented milk, which had characteristics of shear thinning and non-Newtonian fluid behaviour.

  6. Viability of Staphylococcus xylosus isolated from artisanal sausages for application as starter cultures in meat products

    PubMed Central

    Fiorentini, Ângela Maria; Sawitzki, Maristela Cortez; Bertol, Teresinha Marisa; Sant’Anna, Ernani S.

    2009-01-01

    Viability of Staphylococcus xylosus isolated from artisanal sausages for application as starter cultures in meat products Viability of Staphylococcus xylosus strains AD1 and U5 isolated from natural fermented sausages was investigated as starter cultures in fermented sausages produced in the South Region of Brazil. The study demonstrated that the Staphylococcus xylosus strains AD1 and U5 showed significant growth during fermentation, stability over freeze-dried process, negative reaction for staphylococcal enterotoxins and viability for using as a single-strain culture or associated with lactic acid bacteria for production of fermented sausages. PMID:24031331

  7. Selection of Yeasts as Starter Cultures for Table Olives: A Step-by-Step Procedure

    PubMed Central

    Bevilacqua, Antonio; Corbo, Maria Rosaria; Sinigaglia, Milena

    2012-01-01

    The selection of yeasts intended as starters for table olives is a complex process, including a characterization step at laboratory level and a validation at lab level and factory-scale. The characterization at lab level deals with the assessment of some technological traits (growth under different temperatures and at alkaline pHs, effect of salt, and for probiotic strains the resistance to preservatives), enzymatic activities, and some new functional properties (probiotic traits, production of vitamin B-complex, biological debittering). The paper reports on these traits, focusing both on their theoretical implications and lab protocols; moreover, there are some details on predictive microbiology for yeasts of table olives and on the use of multivariate approaches to select suitable starters. PMID:22666220

  8. Plant acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions

    USDA-ARS?s Scientific Manuscript database

    Acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzymes have central roles inacyl editing of phosphatidylcholine (PC). Plant LPCAT genes were expressed in yeast and characterized biochemically in microsomal preparations of the cells. Specificities for different acyl-CoAs were similar for se...

  9. Enhancement of neurite outgrowth in PC12 cells stimulated with cyclic AMP and NGF by 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), novel lipophilic ascorbate derivatives.

    PubMed

    Zhou, Xiaohua; Tai, Akihiro; Yamamoto, Itaru

    2003-03-01

    It has been shown that ascorbate (AsA) and its stable derivative, ascorbic acid 2-O-alpha-glucoside (AA-2G), do not elicit neurite outgrowth in PC12 cells. However, these ascorbates are synergistically enhanced by both dibutyryl cyclic AMP (Bt(2)cAMP)- and nerve growth factor (NGF)-induced neurite outgrowth in this model. In the present study, the effects of a series of novel lipophilic ascorbate derivatives, 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), on neurite outgrowth induced by Bt(2)cAMP and NGF were examined in PC12 cells. We found that all the tested acylated ascorbate derivatives enhanced neurite formation induced by both agents in a dose-dependent manner. Of the 6-Acyl-AA-2G derivatives, 6-octanoyl ascorbic acid 2-O-alpha-glucoside (6-Octa-AA-2G) enhanced the Bt(2)cAMP-induced phosphorylated MAPK p44 and p42 expression. A alpha-glucosidase inhibitor, castanospermine, completely abrogated the promotion of neurite outgrowth and MAPK expression by 6-Octa-AA-2G. Addition of 6-Octa-AA-2G (0.5 mM) to PC12 cells caused a rapid and significant increase in intracellular AsA content, which reached a maximum and was maintained from 12 to 24 h after the culture. These findings suggest that 6-Acyl-AA-2G is rapidly hydrolyzed to AsA within the cell and enhances neurite differentiation through the interaction with the inducer-activated MAPK pathway.

  10. SUBSURFACE WELL-LOG CORRELATION OF ARSENIC-BEARING LITHOFACIES IN THE PERMIAN GARBER SANDSTONE AND WELLINGTON FORMATION, CENTRAL OKLAHOMA AQUIFER (COA), CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    The fluvial Garber Sandstone and the underlying Wellington Formation are important sources of drinking water in central Oklahoma. These formations, which make up much of the COA, consist of amalgamated sandstones with some interbedded mudstones, siltstones, and local mudstone- a...

  11. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology.

    PubMed

    Yu, Hyung-Seok; Lee, Na-Kyoung; Jeon, Hye-Lin; Eom, Su Jin; Yoo, Mi-Young; Lim, Sang-Dong; Paik, Hyun-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products.

  12. Benzoic Acid Production with Respect to Starter Culture and Incubation Temperature during Yogurt Fermentation using Response Surface Methodology

    PubMed Central

    Yoo, Mi-Young; Lim, Sang-Dong

    2016-01-01

    Benzoic acid is occasionally used as a raw material supplement in food products and is sometimes generated during the fermentation process. In this study, the production of naturally occurring yogurt preservatives was investigated for various starter cultures and incubation temperatures, and considered food regulations. Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus plantarum, Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve were used as yogurt starter cultures in commercial starters. Among these strains, L. rhamnosus and L. paracasei showed the highest production of benzoic acid. Therefore, the use of L. rhamnosus, L. paracasei, S. thermophilus, and different incubation temperatures were examined to optimize benzoic acid production. Response surface methodology (RSM) based on a central composite design was performed for various incubation temperatures (35-44℃) and starter culture inoculum ratios (0-0.04%) in a commercial range of dairy fermentation processes. The optimum conditions were 0.04% L. rhamnosus, 0.01% L. paracasei, 0.02% S. thermophilus, and 38.12℃, and the predicted and estimated concentrations of benzoic acid were 13.31 and 13.94 mg/kg, respectively. These conditions maximized naturally occurring benzoic acid production during the yogurt fermentation process, and the observed production levels satisfied regulatory guidelines for benzoic acid in dairy products. PMID:27433115

  13. α-melanocyte stimulating hormone modulates the central acyl ghrelin-induced stimulation of feeding, gastrointestinal motility, and colonic secretion.

    PubMed

    Huang, Hsien-Hao; Chen, Liang-Yu; Doong, Ming-Luen; Chang, Shi-Chuan; Chen, Chih-Yen

    2017-01-01

    Acyl ghrelin-induced intake depends on hypothalamic neuropeptide Y and agouti-related protein (AgRP) neurotransmitters. Intracerebroventricular (ICV) injection of AgRP increases feeding through competitive antagonism at melanocortin receptors. ICV administration of α-melanocyte stimulating hormone (α-MSH), a natural antagonist of AgRP, may modulate the acyl ghrelin-induced orexigenic effect. This study aimed to investigate the modulating effect of α-MSH on the central acyl ghrelin-induced food intake, gastrointestinal motility, and colonic secretion in rats. We examined the effects of α-MSH and acyl ghrelin on food intake, gastric emptying, small intestinal transit, colonic motility, and secretion in conscious rats with a chronic implant of ICV catheters. ICV injection of O - n -octanoylated ghrelin (0.1 nmol/rat) significantly increased the cumulative food intake up to 8 h ( P <0.01), enhanced non-nutrient semi-liquid gastric emptying ( P <0.001), increased the geometric center and running percentage of small intestinal transit ( P <0.001), accelerated colonic transit time ( P <0.05), and increased fecal pellet output ( P <0.01) and total fecal weight ( P <0.01). Pretreatment with ICV injection of α-MSH (1.0 and 2.0 nmol/rat) attenuated the acyl ghrelin-induced hyperphagic effect, fecal pellet output, and total fecal weight, while higher dose of α-MSH (2.0 nmol/rat) attenuated the increase in the geometric center of small intestinal transit ( P <0.01). However, neither dose of α-MSH altered acyl ghrelin-stimulated gastroprokinetic effect, increase in the running percentage of small intestinal transit, nor accelerated colonic transit time. α-MSH is involved in central acyl ghrelin-elicited feeding, small intestinal transit, fecal pellet output, and fecal weight. α-MSH does not affect central acyl ghrelin-induced acceleration of gastric emptying and colonic transit time in rats.

  14. Amino acid profile and sensory characteristics of dry fermented pork loins produced with a mixture of probiotic starter cultures.

    PubMed

    Neffe-Skocińska, Katarzyna; Okoń, Anna; Kołożyn-Krajewska, Danuta; Dolatowski, Zbigniew

    2017-07-01

    Proteolysis is a biochemical process in dry-aged meat products where proteins are metabolized and broken down to polypeptides, peptides, and free amino acids. In the literature it is reported that an appropriate choice of probiotic starter culture limits proteolytic changes in dry-fermented meat products. In this study the combined effect of a mixture of probiotic starter cultures on the free amino acid profile, total count of lactic acid bacteria, and the sensory quality of dry-aged pork loins after fermentation and after storing the vacuum-packed samples was evaluated. LOCK900 and BB12 probiotic strains were the technologically best two-species mixture of starter cultures for the production of probiotic dry-aged pork loins. They allowed us to obtain products with high and stable bacterial count and acceptable sensory quality, both after 21 days of fermentation and after 2 months of cold storage. Changes in the free amino acid profile and increased intensity of the selected sensory attributes result from a significant share of probiotics in meat proteolysis occurring during fermentation and storage. The results suggest the relevance of using probiotic bacteria as a two-species starter culture for the production of dry-aged products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. A new acylated isoflavone glucoside from Pterocarpus santalinus.

    PubMed

    Krishnaveni, K S; Srinivasa Rao, J V

    2000-09-01

    Phytochemical investigation on the constituents of heartwood of Pterocarpus santalinus resulted in the isolation of a new acylated isoflavone glucoside. The structure of the new compound was elucidated on the basis of spectral studies as 4',5-dihydroxy-7-O-methyl isoflavone 3'-O-D-(3''-E-cinnamoyl)glucoside.

  16. Impact of yeast starter formulations on the production of volatile compounds during wine fermentation.

    PubMed

    Romano, Patrizia; Pietrafesa, Rocchina; Romaniello, Rossana; Zambuto, Marianna; Calabretti, Antonella; Capece, Angela

    2015-01-01

    The most diffused starter formulation in winemaking is actually represented by active dry yeast (ADY). Spray-drying has been reported as an appropriate preservation method for yeast and other micro-organisms. Despite the numerous advantages of this method, the high air temperatures used can negatively affect cell viability and the fermentative performance of dried cells. In the present study, 11 wine S. cerevisiae strains (both indigenous and commercial) were submitted to spray-drying; different process conditions were tested in order to select the conditions allowing the highest strain survival. The strains exhibited high variability for tolerance to spray-drying treatment. Selected strains were tested in fermentation at laboratory scale in different formulations (free fresh cells, free dried cells, immobilized fresh cells and immobilized dried cells), in order to assess the influence of starter formulation on fermentative fitness of strains and aromatic quality of wine. The analysis of volatile fraction in the experimental wines produced by selected strains in different formulations allowed identification of > 50 aromatic compounds (alcohols, esters, ketones, aldehydes and terpenes). The results obtained showed that the starter formulation significantly influenced the content of volatile compounds. In particular, the wines obtained by strains in dried forms (as both free and immobilized cells) contained higher numbers of volatile compounds than wines obtained from fresh cells. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Identification of yeasts and evaluation of their distribution in Taiwanese Kefir and Viili starters.

    PubMed

    Wang, S Y; Chen, H C; Liu, J R; Lin, Y C; Chen, M J

    2008-10-01

    The objective of the present study was to investigate yeast communities in kefir grains and viili starters in Taiwan through conventional microbiological cultivation and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The DNA sequencing was used as a validity technique to ensure that all isolates within each group belonged to just one species, and to confirm the identified results of PCR-DGGE. Results indicated that a combination of conventional microbiological cultivation with PCR-DGGE and sequencing could successfully identify 4 yeast species from both types of cultures in Taiwan. Kluyveromyces marxianus, Saccharomyces turicensis, and Pichia fermentans were found in Taiwanese kefir grains with a distribution of 76, 22, and 2%, respectively, whereas Klu. marxianus, Saccharomyces unisporus and P. fermentans were identified in viili starters corresponding to 58, 11, and 31% of the total cell counts, respectively. Furthermore, the culture-independent method was applied to identify the yeast species using DGGE. Only 2 yeast species, Klu. marxianus and S. turicensis, were found in kefir grains and 2, Klu. marxianus and P. fermentans, in viili starters. These results suggest that in samples containing multiple species, PCR-DGGE may fail to detect some species. Sequences of yeast isolates reported in this study have been deposited in the GenBank database under accession nos. DQ139802, AF398485, DQ377652, and AY007920.

  18. Compromised Lactobacillus helveticus starter activity in the presence of facultative heterofermentative Lactobacillus casei DPC6987 results in atypical eye formation in Swiss-type cheese.

    PubMed

    O'Sullivan, Daniel J; McSweeney, Paul L H; Cotter, Paul D; Giblin, Linda; Sheehan, Jeremiah J

    2016-04-01

    Nonstarter lactic acid bacteria are commonly implicated in undesirable gas formation in several varieties, including Cheddar, Dutch-, and Swiss-type cheeses, primarily due to their ability to ferment a wide variety of substrates. This effect can be magnified due to factors that detrimentally affect the composition or activity of starter bacteria, resulting in the presence of greater than normal amounts of fermentable carbohydrates and citrate. The objective of this study was to determine the potential for a facultatively heterofermentative Lactobacillus (Lactobacillus casei DPC6987) isolated from a cheese plant environment to promote gas defects in the event of compromised starter activity. A Swiss-type cheese was manufactured, at pilot scale and in triplicate, containing a typical starter culture (Streptococcus thermophilus and Lactobacillus helveticus) together with propionic acid bacteria. Lactobacillus helveticus populations were omitted in certain vats to mimic starter failure. Lactobacillus casei DPC6987 was added to each experimental vat at 4 log cfu/g. Cheese compositional analysis and X-ray computed tomography revealed that the failure of starter bacteria, in this case L. helveticus, coupled with the presence of a faculatively heterofermentative Lactobacillus (L. casei) led to excessive eye formation during ripening. The availability of excess amounts of lactose, galactose, and citrate during the initial ripening stages likely provided the heterofermentative L. casei with sufficient substrates for gas formation. The accrual of these fermentable substrates was notable in cheeses lacking the L. helveticus starter population. The results of this study are commercially relevant, as they demonstrate the importance of viability of starter populations and the control of specific nonstarter lactic acid bacteria to ensure appropriate eye formation in Swiss-type cheese. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights

  19. Characterization of starter kimchi fermented with Leuconostoc kimchii GJ2 and its cholesterol-lowering effects in rats fed a high-fat and high-cholesterol diet.

    PubMed

    Jo, Se Yeon; Choi, Eun A; Lee, Jae Joon; Chang, Hae Choon

    2015-10-01

    The hypocholesterolemic effects of lactic acid bacteria and kimchi have been demonstrated previously. However, the kimchi fermentation process still relies on naturally present microorganisms. To obtain functional kimchi with consistent quality, we validated the capacity of Leuconostoc kimchii GJ2 as a starter culture to control kimchi fermentation. Moreover, cholesterol-lowering effects of starter kimchi as a health-promoting product were explored. Bacteriocin production by Lc. kimchii GJ2 was highly enhanced in the presence of 5% Lactobacillus sakei NJ1 cell fractions. When kimchi was fermented with bacteriocin-enhanced Lc. kimchii GJ2, Lc. kimchii GJ2 became overwhelmingly predominant (98.3%) at the end of fermentation and maintained its dominance (up to 82%) for 84 days. Growing as well as dead cells of Lc. kimchii GJ2 showed high cholesterol assimilation (in vitro). Rats were fed a high-fat and high-cholesterol diet supplemented with starter kimchi. The results showed that feeding of starter kimchi significantly reduced serum total cholesterol, triglyceride and low-density lipoprotein cholesterol levels. Additionally, atherogenic index, cardiac risk factor and triglyceride and total cholesterol levels in liver and epididymal adipose tissue decreased significantly in rats fed starter kimchi. Kimchi fermented with Lc. kimchii GJ2 as a starter culture has efficient cholesterol-lowering effects. © 2014 Society of Chemical Industry.

  20. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    PubMed

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  1. Paradoxical post-exercise responses of acylated ghrelin and leptin during a simulated night shift.

    PubMed

    Morris, Christopher J; Fullick, Sarah; Gregson, Warren; Clarke, Neil; Doran, Dominic; MacLaren, Don; Atkinson, Greg

    2010-05-01

    Approximately 10% of employees undertake night work, which is a significant predictor of weight gain, possibly because responses to activity and eating are altered at night. It is known that the appetite-related hormone, acylated ghrelin, is suppressed after an acute bout of exercise during the day, but no researcher has explored whether evening exercise alters acylated ghrelin and other appetite-related outcomes during a subsequent night shift. Six healthy men (mean +/- SD: age 30 +/- 8 yrs, body mass index 23.1 +/- 1.1 kg/m(2)) completed two crossover trials (control and exercise) in random order. Participants fasted from 10:00 h, consumed a test meal at 18:00 h, and then cycled at 50% peak oxygen uptake or rested between 19:00-20:00 h. Participants then completed light activities during a simulated night shift which ended at 05:00 h. Two small isocaloric meals were consumed at 22:00 and 02:00 h. Venous blood samples were drawn via cannulation at 1 h intervals between 19:00-05:00 h for the determination of acylated ghrelin, leptin, insulin, glucose, triglyceride, and non-esterified fatty acids concentrations. Perceived hunger and wrist actimetry were also recorded. During the simulated night shift, mean +/- SD acylated ghrelin concentration was 86.5 +/- 40.8 pg/ml following exercise compared with 71.7 +/- 37.7 pg/ml without prior exercise (p = 0.015). Throughout the night shift, leptin concentration was 263 +/- 242 pg/ml following exercise compared with 187 +/- 221 pg/ml without prior exercise (p = 0.017). Mean levels of insulin, triglyceride, non-esterified fatty acids, and wrist actimetry level were also higher during the night shift that followed exercise (p < 0.05). These data indicate that prior exercise increases acylated ghrelin and leptin concentrations during a subsequent simulated night shift. These findings differ from the known effects of exercise on acylated ghrelin and leptin during the day, and therefore have implications for energy balance during

  2. Paradoxical post-exercise responses of acylated ghrelin and leptin during a simulated night-shift

    PubMed Central

    Morris, Chris; Fullick, Sarah; Gregson, Warren; Clarke, Neil; Doran, Dominic; MacLaren, Don; Atkinson, Greg

    2009-01-01

    Approximately 10% of employees undertake night-work which is a significant predictor of weight-gain, possibly because responses to activity and eating are altered at night. It is known that the appetite-related hormone, acylated ghrelin is suppressed after an acute bout of exercise during the day, but no researcher has explored whether evening exercise alters acylated ghrelin and other appetite-related outcomes during a subsequent night-shift. Six healthy men (mean±SD: age 30±8 yrs, body mass index 23.1±1.1 kg/m2) completed two crossover trials (control and exercise) in a random order. Participants fasted from 10:00 h, consumed a test meal at 18:00 h and then cycled at 50% peak oxygen uptake or rested between 19:00-20:00 h. Participants then completed light activities during a simulated night-shift which ended at 05:00 h. Two small isocaloric meals were consumed at 22:00 and 02:00 h. Venous blood samples were drawn via cannulation at 1-h intervals between 19:00-05:00 h for the determination of acylated ghrelin, leptin, insulin, glucose, triglyceride and non-esterified fatty acids concentrations. Perceived hunger and wrist actimetry were also recorded. During the night-shift, mean±SD acylated ghrelin concentration was 86.5±40.8 pg/ml following exercise compared with 71.7±37.7 pg/ml without prior exercise (P=0.015). Throughout the night-shift, leptin concentration was 263±242 pg/ml following exercise compared with 187±221 pg/ml without prior exercise (P=0.017). Mean levels of insulin, triglyceride, non-esterified fatty acids and wrist actimetry were also higher during the night-shift that followed exercise (P<0.05). These data indicate that prior exercise increases acylated ghrelin and leptin concentrations during a subsequent simulated night-shift. These findings differ from the known effects of exercise on acylated ghrelin and leptin during the day, and therefore have implications for energy balance during night-work. PMID:20524803

  3. Impact of fatty acyl composition and quantity of triglycerides on bioaccessibility of dietary carotenoids.

    PubMed

    Huo, Tianyao; Ferruzzi, Mario G; Schwartz, Steven J; Failla, Mark L

    2007-10-31

    A carotenoid-rich salad meal with varying amounts and types of triglycerides (TG) was digested using simulated gastric and small intestinal conditions. Xanthophylls (lutein and zeaxanthin) and carotenes (alpha-carotene, beta-carotene, and lycopene) in chyme and micelle fraction were quantified to determine digestive stability and efficiency of micellarization (bioaccessibility). Micellarization of lutein (+zeaxanthin) exceeded that of alpha- and beta-carotenes, which was greater than that of lycopene for all test conditions. Micellarization of carotenes, but not lutein (+zeaxanthin), was enhanced (P < 0.05) by addition of TG (2.5% v/w) to the meal and was dependent on fatty acyl chain length in structured TG (c18:1 > c8:0 > c4:0). The degree of unsaturation of c18 fatty acyl chains in TG added to the salad purée did not significantly alter the efficiency of micellarization of carotenoids. Relatively low amounts of triolein and canola oil (0.5-1%) were required for maximum micellarization of carotenes, but more oil (approximately 2.5%) was required when TG with medium chain saturated fatty acyl groups (e.g., trioctanoin and coconut oil) was added to the salad. Uptake of lutein and beta-carotene by Caco-2 cells also was examined by exposing cells to micelles generated during the simulated digestion of salad purée with either triolein or trioctanoin. Cell accumulation of beta-carotene was independent of fatty acyl composition of micelles, whereas lutein uptake was slightly, but significantly, increased from samples with digested triolein compared to trioctanoin. The results show that the in vitro transfer of alpha-carotene, beta-carotene, and lycopene from chyme to mixed micelles during digestion requires minimal (0.5-1%) lipid content in the meal and is affected by the length of fatty acyl chains but not the degree of unsaturation in TG. In contrast, fatty acyl chain length has limited if any impact on carotenoid uptake by small intestinal epithelial cells. These

  4. Genetics Home Reference: short-chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... Orphanet: Short chain acyl-CoA dehydrogenase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (5 links) Children Living with Inherited Metabolic Disease (CLIMB) Children's Mitochondrial ...

  5. 40 CFR 721.10193 - 1-Butanaminium, N-(3-aminopropyl)-N-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts. 721.10193 Section 721.10193 Protection of...-aminopropyl)-N-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts. (a) Chemical substance and...-aminopropyl)-N-butyl-N-(2-carboxyethyl)-, N-coco acyl derivs., inner salts (PMN P-06-263, Chemical B; CAS No...

  6. 40 CFR 721.10174 - 1-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. 721.10174 Section 721.10174 Protection of...-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts. (a) Chemical substance...-Propanaminium, 3-amino-N-(carboxymethyl)-N,N-dimethyl-, N-peanut-oil acyl derivs., inner salts (PMN P-04-139...

  7. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    PubMed Central

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  8. Structure and function of polyketide biosynthetic enzymes: various strategies for production of structurally diverse polyketides.

    PubMed

    Miyanaga, Akimasa

    2017-12-01

    Polyketides constitute a large family of natural products that display various biological activities. Polyketides exhibit a high degree of structural diversity, although they are synthesized from simple acyl building blocks. Recent biochemical and structural studies provide a better understanding of the biosynthetic logic of polyketide diversity. This review highlights the biosynthetic mechanisms of structurally unique polyketides, β-amino acid-containing macrolactams, enterocin, and phenolic lipids. Functional and structural studies of macrolactam biosynthetic enzymes have revealed the unique biosynthetic machinery used for selective incorporation of a rare β-amino acid starter unit into the polyketide skeleton. Biochemical and structural studies of cyclization enzymes involved in the biosynthesis of enterocin and phenolic lipids provide mechanistic insights into how these enzymes diversify the carbon skeletons of their products.

  9. C-H carbonylation: In situ acyl triflates ace it

    NASA Astrophysics Data System (ADS)

    Lee, Yong Ho; Morandi, Bill

    2018-02-01

    A simple palladium catalyst has mediated the facile formation of aroyl triflates -- an extremely reactive class of electrophiles. These intermediates, generated in situ, enable the Friedel-Crafts acylation of traditionally unreactive arenes, addressing a significant gap in C-H carbonylation methodology.

  10. Growth performance of calves fed microbially enhanced soy protein in pelleted starters.

    PubMed

    Senevirathne, N D; Anderson, J L; Gibbons, W R; Clapper, J A

    2017-01-01

    Our objective was to determine effects of feeding calves pelleted starters with microbially enhanced (fungi-treated) soy protein (MSP) in replacement of soybean meal (SBM) with different milk replacers (MR). Thirty-six Holstein calves (2 d old; 24 females, 12 males) in individual hutches were used in a 12-wk randomized complete block design study. Treatments were (1) MSP pellets with MR formulated for accelerated growth (28% crude protein, 18% fat; MSPA), (2) SBM pellets with MR formulated for accelerated growth (SBMA), and (3) MSP pellets with conventional MR (20% crude protein, 20% fat; MSPC). Pellets were similar except for 23% MSP or 23% SBM (dry matter basis). Pellets and water were fed ad libitum throughout the study. Feeding rates of MR on a dry matter basis were 0.37kg twice daily during wk 1, 0.45kg twice daily during wk 2 to 5, and 0.45kg once daily during wk 6. Intakes were recorded daily. Body weights, frame size measurements, and jugular blood samples were collected 2 d every 2 wk at 3 h after the morning feeding. Fecal grab samples were collected 5 times per d for 3 d during wk 12 and then composited by calf for analysis of apparent total-tract digestibility of nutrients using acid detergent insoluble ash as an internal marker. Total and starter pellet dry matter intake were greatest for calves fed SBMA and least for MSPC. Calves had similar average daily gain among treatments, but there was a treatment by week interaction and during the last few weeks of the study calves on MSPC had less body weight compared with MSPA or SBMA. Gain-to-feed ratio was similar among treatments; however, there was a treatment by week interaction. Serum glucose was similar among treatments. Plasma urea nitrogen was greatest for calves fed MSPA and least for MSPC. Plasma concentrations of IGF-1 were greatest for calves fed SBMA. Plasma concentrations of triglycerides were greatest for calves fed MSPC. Plasma concentrations of β-hydroxybutyrate had a treatment by time

  11. Influence of winding construction on starter-generator thermal processes

    NASA Astrophysics Data System (ADS)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-01-01

    Dynamic processes in starter-generators features high winding are overcurrent. It can lead to insulation overheating and fault operation mode. For hybrid and electric vehicles, new high efficiency construction of induction machines windings is proposed. Stator thermal processes need be considered in the most difficult operation modes. The article describes construction features of new compact stator windings, electromagnetic and thermal models of processes in stator windings and explains the influence of innovative construction on thermal processes. Models are based on finite element method.

  12. The orexigenic hormone acyl-ghrelin increases adult hippocampal neurogenesis and enhances pattern separation

    PubMed Central

    Kent, Brianne A.; Beynon, Amy L.; Hornsby, Amanda K.E.; Bekinschtein, Pedro; Bussey, Timothy J.; Davies, Jeffrey S.; Saksida, Lisa M.

    2015-01-01

    Summary An important link exists between intact metabolic processes and normal cognitive functioning; however, the underlying mechanisms remain unknown. There is accumulating evidence that the gut hormone ghrelin, an orexigenic peptide that is elevated during calorie restriction (CR) and known primarily for stimulating growth hormone release, has important extra-hypothalamic functions, such as enhancing synaptic plasticity and hippocampal neurogenesis. The present study was designed to evaluate the long-term effects of elevating acyl-ghrelin levels, albeit within the physiological range, on the number of new adult born neurons in the dentate gyrus (DG) and performance on the Spontaneous Location Recognition (SLR) task, previously shown to be DG-dependent and sensitive to manipulations of plasticity mechanisms and cell proliferation. The results revealed that peripheral treatment of rats with acyl-ghrelin enhanced both adult hippocampal neurogenesis and performance on SLR when measured 8–10 days after the end of acyl-ghrelin treatment. Our data show that systemic administration of physiological levels of acyl-ghrelin can produce long-lasting improvements in spatial memory that persist following the end of treatment. As ghrelin is potentially involved in regulating the relationship between metabolic and cognitive dysfunction in ageing and neurodegenerative disease, elucidating the underlying mechanisms holds promise for identifying novel therapeutic targets and modifiable lifestyle factors that may have beneficial effects on the brain. PMID:25462915

  13. MCAT is not required for in vitro polyketide synthesis in a minimal actinorhodin polyketide synthase from Streptomyces coelicolor.

    PubMed

    Matharu, A L; Cox, R J; Crosby, J; Byrom, K J; Simpson, T J

    1998-12-01

    It has been proposed that Streptomyces malonyl CoA: holo acyl carrier protein transacylases (MCATs) provide a link between fatty acid and polyketide biosynthesis. Two recent studies have provided evidence that the presence of MCAT is essential for polyketide synthesis to proceed in reconstituted minimal polyketide synthases (PKSs). In contrast to this, we previously showed that the holo acyl carrier proteins (ACPs) from type II PKSs are capable of catalytic self-malonylation in the presence of malonyl CoA, which suggests that MCAT might not be necessary for polyketide biosynthesis. We reconstituted a homologous actinorhodin (act) type II minimal PKS in vitro. When act holo-ACP is present in limiting concentrations, MCAT is required by the synthase complex in order for polyketide biosynthesis to proceed. When holo-ACP is present in excess, however, efficient polyketide synthesis proceeds without MCAT. The rate of polyketide production increases with holo-ACP concentration, but at low ACP concentration or equimolar AC:KS:CLF (KS, ketosynthase; CLF, chain length determining factor) concentrations this rate is significantly lower than expected, indicating that free holo-ACP is sequestered by the KS/CLF complex. The rate of polyketide biosynthesis is dictated by the ratio of holo-ACP to KS and CLF, as well as by the total protein concentration. There is no absolute requirement for MCAT in polyketide biosynthesis in vitro, although the role of MCAT during polyketide synthesis in vivo remains an open question. MCAT might be responsible for the rate enhancement of malonyl transfer at very low free holo-ACP concentrations or it could be required to catalyse the transfer of malonyl groups from malonyl CoA to sequestered holo-ACP.

  14. Use of a Remote Car Starter in Relation to Smog and Climate Change Perceptions: A Population Survey in Québec (Canada)

    PubMed Central

    Bélanger, Diane; Gosselin, Pierre; Valois, Pierre; Germain, Stéphane; Abdous, Belkacem

    2009-01-01

    Remote car starters encourage motorists to warm up their vehicles by idling the motor – thus increasing atmospheric pollutants, including several greenhouse gas (GHG) with impacts on public health. This study about climate change (CC) adaptation and mitigation actions examined perceptions on air pollution and climate change and individual characteristics associated with the use of a remote car starter. A telephone survey (n = 2,570; response rate: 70%) of adults living in Québec (Canada) measured the respondents’ beliefs and current behaviours regarding CC. Approximately 32.9% (daily car users) and 27.4% (occasional users) reported using a remote car starter during winter. The odds of the use of a remote car starter was higher in the less densely populated central (OR: 1.5) and peripheral regions (OR: 2.7) compared to the urban centers (ex. Montreal). The odds was also higher in population with a mother tongue other than English or French (OR: 2.6) and francophones than anglophones (OR: 2.1), women than men (OR: 1.5), daily drivers than occasional ones (OR: 1.2), and respondents who at least sometimes consulted temperature/humidity reports than those who consulted them less often (OR: 1.5). In multivariate analysis, the perception of living in a region susceptible to winter smog, being aware of smog warnings, or the belief in the human contribution to CC did not significantly influence the use of a remote car starter. The use of remote car starters encourages idling which produces increased atmospheric pollution and GHG production and it should be more efficiently and vigorously managed by various activities. A five-minute daily reduction in idling is equivalent to reducing the total car emissions by 1.8%. This would constitute a “no-regrets” approach to CC as it can simultaneously reduce GHG, air pollution and their health impacts. PMID:19440410

  15. Use of a remote car starter in relation to smog and climate change perceptions: a population survey in Québec (Canada).

    PubMed

    Bélanger, Diane; Gosselin, Pierre; Valois, Pierre; Germain, Stéphane; Abdous, Belkacem

    2009-02-01

    Remote car starters encourage motorists to warm up their vehicles by idling the motor--thus increasing atmospheric pollutants, including several greenhouse gas (GHG) with impacts on public health. This study about climate change (CC) adaptation and mitigation actions examined perceptions on air pollution and climate change and individual characteristics associated with the use of a remote car starter. A telephone survey (n = 2,570; response rate: 70%) of adults living in Québec (Canada) measured the respondents' beliefs and current behaviours regarding CC. Approximately 32.9% (daily car users) and 27.4% (occasional users) reported using a remote car starter during winter. The odds of the use of a remote car starter was higher in the less densely populated central (OR: 1.5) and peripheral regions (OR: 2.7) compared to the urban centers (ex. Montreal). The odds was also higher in population with a mother tongue other than English or French (OR: 2.6) and francophones than anglophones (OR: 2.1), women than men (OR: 1.5), daily drivers than occasional ones (OR: 1.2), and respondents who at least sometimes consulted temperature/humidity reports than those who consulted them less often (OR: 1.5). In multivariate analysis, the perception of living in a region susceptible to winter smog, being aware of smog warnings, or the belief in the human contribution to CC did not significantly influence the use of a remote car starter. The use of remote car starters encourages idling which produces increased atmospheric pollution and GHG production and it should be more efficiently and vigorously managed by various activities. A five-minute daily reduction in idling is equivalent to reducing the total car emissions by 1.8%. This would constitute a "no-regrets" approach to CC as it can simultaneously reduce GHG, air pollution and their health impacts.

  16. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export.

    PubMed

    White, Phillip J; Lapworth, Amanda L; An, Jie; Wang, Liping; McGarrah, Robert W; Stevens, Robert D; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J; Bain, James R; Trimmer, Jeff K; Brosnan, M Julia; Rolph, Timothy P; Newgard, Christopher B

    2016-07-01

    A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Our data are consistent with a model wherein elevated circulating BCAA contribute to development of

  17. Expression of Cyanobacterial Acyl-ACP Reductase Elevates the Triacylglycerol Level in the Red Alga Cyanidioschyzon merolae.

    PubMed

    Sumiya, Nobuko; Kawase, Yasuko; Hayakawa, Jumpei; Matsuda, Mami; Nakamura, Mami; Era, Atsuko; Tanaka, Kan; Kondo, Akihiko; Hasunuma, Tomohisa; Imamura, Sousuke; Miyagishima, Shin-ya

    2015-10-01

    Nitrogen starvation is known to induce the accumulation of triacylglycerol (TAG) in many microalgae, and potential use of microalgae as a source of biofuel has been explored. However, nitrogen starvation also stops cellular growth. The expression of cyanobacterial acyl-acyl carrier protein (ACP) reductase in the unicellular red alga Cyanidioschyzon merolae chloroplasts resulted in an accumulation of TAG, which led to an increase in the number and size of lipid droplets while maintaining cellular growth. Transcriptome and metabolome analyses showed that the expression of acyl-ACP reductase altered the activities of several metabolic pathways. The activities of enzymes involved in fatty acid synthesis in chloroplasts, such as acetyl-CoA carboxylase and pyruvate dehydrogenase, were up-regulated, while pyruvate decarboxylation in mitochondria and the subsequent consumption of acetyl-CoA by the tricarboxylic acid (TCA) cycle were down-regulated. Aldehyde dehydrogenase, which oxidizes fatty aldehydes to fatty acids, was also up-regulated in the acyl-ACP reductase expresser. This activation was required for the lipid droplet accumulation and metabolic changes observed in the acyl-ACP reductase expresser. Nitrogen starvation also resulted in lipid droplet accumulation in C. merolae, while cell growth ceased as in the case of other algal species. The metabolic changes that occur upon the expression of acyl-ACP reductase are quite different from those caused by nitrogen starvation. Therefore, there should be a method for further increasing the storage lipid level while still maintaining cell growth that is different from the metabolic response to nitrogen starvation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Evaluation of Bacillus spp. as dough starters for Adhirasam - A traditional rice based fermented food of Southern India.

    PubMed

    Anisha, Anvar Hussain Noorul; Anandham, Rangasamy; Kwon, Soon Woo; Gandhi, Pandiyan Indira; Gopal, Nellaiappan Olaganathan

    2015-01-01

    Adhirasam is a cereal based, doughnut shaped, deep fried dessert consumed in the southern regions of India. The dough used to prepare adhirasam is fermented and contains rice flour and jaggery. The aim of the present study was to characterize the cultivable bacteria associated with this fermented dough and to identify a suitable starter culture for the production of quality adhirasam. In total, one hundred and seventy bacterial isolates were recovered from de Man Rogosa Sharp (MRS) agar, nutrient agar, lysogeny agar and tryptic soy agar media. Out of the 170 bacterial isolates, sixteen isolates were selected based on their ability to tolerate glucose and sucrose. All the bacterial isolates tolerated 15% glucose and 30% sucrose. Analyses of 16S rDNA gene sequences of the bacterial isolates showed that the dominant cultivable bacteria were members of the genus Bacillus. These strains were further used as starters and tested for their ability to ferment rice flour with jaggery to produce adhirasam dough. Organoleptic evaluation was carried out to choose the best starter strain. Adhirasam prepared from Bacillus subtilis isolates S4-P11, S2-G2-A1 and S1-G15, Bacillus tequilensis isolates S2-H16, S3-P9, S3-G10 and Bacillus siamensis isolate S2-G13 were highly acceptable to consumers. Adhirasam prepared using these starter cultures had superior product characteristics such as softness in texture, flavor and enhanced aroma and sweet taste.

  19. Evaluation of Bacillus spp. as dough starters for Adhirasam - A traditional rice based fermented food of Southern India

    PubMed Central

    Anisha, Anvar Hussain Noorul; Anandham, Rangasamy; Kwon, Soon Woo; Gandhi, Pandiyan Indira; Gopal, Nellaiappan Olaganathan

    2015-01-01

    Abstract Adhirasam is a cereal based, doughnut shaped, deep fried dessert consumed in the southern regions of India. The dough used to prepare adhirasam is fermented and contains rice flour and jaggery. The aim of the present study was to characterize the cultivable bacteria associated with this fermented dough and to identify a suitable starter culture for the production of quality adhirasam. In total, one hundred and seventy bacterial isolates were recovered from de Man Rogosa Sharp (MRS) agar, nutrient agar, lysogeny agar and tryptic soy agar media. Out of the 170 bacterial isolates, sixteen isolates were selected based on their ability to tolerate glucose and sucrose. All the bacterial isolates tolerated 15% glucose and 30% sucrose. Analyses of 16S rDNA gene sequences of the bacterial isolates showed that the dominant cultivable bacteria were members of the genus Bacillus. These strains were further used as starters and tested for their ability to ferment rice flour with jaggery to produce adhirasam dough. Organoleptic evaluation was carried out to choose the best starter strain. Adhirasam prepared from Bacillus subtilis isolates S4-P11, S2-G2-A1 and S1-G15, Bacillus tequilensis isolates S2-H16, S3-P9, S3-G10 and Bacillus siamensis isolate S2-G13 were highly acceptable to consumers. Adhirasam prepared using these starter cultures had superior product characteristics such as softness in texture, flavor and enhanced aroma and sweet taste. PMID:26691480

  20. Acyl Coenzyme A Thioesterase 7 Regulates Neuronal Fatty Acid Metabolism To Prevent Neurotoxicity

    PubMed Central

    Ellis, Jessica M.; Wong, G. William

    2013-01-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7N−/−, revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7N−/− mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7N−/− mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity. PMID:23459938

  1. Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity.

    PubMed

    Ellis, Jessica M; Wong, G William; Wolfgang, Michael J

    2013-05-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7(N-/-), revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7(N-/-) mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7(N-/-) mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity.

  2. Solubilization and partial purification of constituents of acyl-CoA elongase from Lunaria annua.

    PubMed

    Fehling, E; Lessire, R; Cassagne, C; Mukherjee, K D

    1992-06-05

    All the constituent enzymes of acyl-CoA elongase, i.e., beta-ketoacyl-CoA synthase, beta-ketoacyl-CoA reductase, beta-hydroxyacyl-CoA dehydrase and trans-2-enoyl-CoA reductase, have been solubilized from a 15,000 x g particulate fraction from developing seeds of honesty (Lunaria annua) using Triton X-100. All these activities were retained upon subsequent precipitation of the solubilized protein with polyethylene glycol and resuspension of the precipitate followed by ion exchange chromatography of the resulting protein on DEAE-cellulose. A 4.2-fold enrichment of the acyl-CoA elongase was thus obtained. Further chromatography of the DEAE fraction containing all the constituents of acyl-CoA elongase on Ultrogel yielded a major protein fraction exhibiting the activities of beta-ketoacyl-CoA synthase and beta-ketoacyl-CoA reductase only. Almost 30-fold purification of the beta-ketoacyl-CoA synthase was thus achieved. The beta-ketoacyl-CoA synthase was inhibited only at high concentrations of cerulenin, but at very low concentrations of iodoacetamide. Inhibition could be reduced by preincubation with thioesters, indicating that an enzyme thioester intermediate is involved in the condensation reaction of the acyl-CoA elongation.

  3. The structure of S . lividans acetoacetyl-CoA synthetase shows a novel interaction between the C-terminal extension and the N-terminal domain

    DOE PAGES

    Mitchell, Carter A.; Tucker, Alex C.; Escalante-Semerena, Jorge C.; ...

    2014-12-09

    The adenosine monoposphate-forming acyl-CoA synthetase enzymes catalyze a two-step reaction that involves the initial formation of an acyl adenylate that reacts in a second partial reaction to form a thioester between the acyl substrate and CoA. These enzymes utilize a Domain Alternation catalytic mechanism, whereby a ~110 residue C-terminal domain rotates by 140° to form distinct catalytic conformations for the two partial reactions. In this paper, the structure of an acetoacetyl-CoA synthetase (AacS) is presented that illustrates a novel aspect of this C-terminal domain. Specifically, several acetyl- and acetoacetyl-CoA synthetases contain a 30-residue extension on the C-terminus compared to othermore » members of this family. Finally, whereas residues from this extension are disordered in prior structures, the AacS structure shows that residues from this extension may interact with key catalytic residues from the N-terminal domain.« less

  4. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    PubMed Central

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  5. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization.

    PubMed

    Kumar, Manoj; Wightman, Raymond; Atanassov, Ivan; Gupta, Anjali; Hurst, Charlotte H; Hemsley, Piers A; Turner, Simon

    2016-07-08

    Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment. Copyright © 2016, American Association for the Advancement of Science.

  6. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel.).

    PubMed

    Yang, Jaesik; Ji, Yosep; Park, Hyunjoon; Lee, Jieun; Park, Soyoung; Yeo, Soyoung; Shin, Hyunkil; Holzapfel, Wilhelm H

    2014-11-17

    The purpose of this research was to find safe and suitable starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler), also known as garlic chives or Oriental garlic. This traditional herb has several functional properties and a strong flavour; its leaves are used as food material. Eighteen strains of lactic acid bacteria (LAB) were isolated from well-fermented leek kimchi. Controlled fermentation of the leek leaves was conducted with 2 strains (Weissella confusa LK4 and Lactobacillus plantarum LK8), selected as potential starter cultures on the basis of their safety properties, and on the pH, total titratable acidity (TTA), and viable cell numbers [colony forming units (CFUml(-1))] achieved during the fermentation. Microbial dynamics was also followed during fermentation by using PCR-DGGE (Denaturing Gradient Gel Electrophoresis) on DNA level. To analyse bioactive compounds such as thiols and allicin (diallyl thiosulfinates), the total flavonoid and polyphenolic contents were determined by colorimetric methods. Functional properties were assessed on the basis of anti-oxidative capacities by determining the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging effect, and ferric reducing antioxidant power (FRAP). W. confusa LK4 rapidly increased during the first stage of leek fermentation, and was mainly responsible for accelerated fermentation during the early period in contrast to L. plantarum LK8, a stronger acid producer during the later stages of fermentation. After 48 h fermentation, leeks fermented with W. confusa LK4 showed the highest radical scavenging effects and reducing ability. The detectable amount of allicin of fermented leeks decreased relative to the change in pH, whereas the concentration of thiols significantly increased. Total flavonoid and poly-phenolic contents changed during fermentation and showed correlation with anti-oxidant effects. We therefore suggest the suitability of W. confusa LK4 as a potential starter

  7. Can HMG Co-A reductase inhibitors (“statins”) slow the progression of age-related macular degeneration? The Age-Related Maculopathy Statin Study (ARMSS)

    PubMed Central

    Guymer, Robyn H; Dimitrov, Peter N; Varsamidis, Mary; Lim, Lyndell L; Baird, Paul N; Vingrys, Algis J; Robman, Luba

    2008-01-01

    Age-related macular degeneration (AMD) is responsible for the majority of visual impairment in the Western world. The role of cholesterol-lowering medications, HMG Co-A reductase inhibitors or statins, in reducing the risk of AMD or of delaying its progression has not been fully investigated. A 3-year prospective randomized controlled trial of 40 mg simvastatin per day compared to placebo in subjects at high risk of AMD progression is described. This paper outlines the primary aims of the Age-Related Maculopathy Statin Study (ARMSS), and the methodology involved. Standardized clinical grading of macular photographs and comparison of serial macular digital photographs, using the International grading scheme, form the basis for assessment of primary study outcomes. In addition, macular function is assessed at each visit with detailed psychophysical measurements of rod and cone function. Information collected in this study will assist in the assessment of the potential value of HMG Co-A reductase inhibitors (statins) in reducing the risk of AMD progression. PMID:18982929

  8. Plasma fatty acyl-carnitines during 8 weeks of overfeeding: relation to diet energy expenditure and body composition: the PROOF study.

    PubMed

    Bray, George A; Redman, Leanne M; de Jonge, Lilian; Rood, Jennifer; Sutton, Elizabeth F; Smith, Steven R

    2018-06-01

    Overfeeding is a strategy for evaluating the effects of excess energy intake. In this secondary analysis we tested the possibility that different levels of dietary protein might differentially modify the response of fatty acyl-carnitines to overfeeding. Twenty-three healthy adult men and women were overfed by 40% for 8 weeks while in-patients with diets containing 5% (LPD), 15% (NPD) or 25% (HPD) protein. Plasma fatty acyl-carnitines were measured by gas chromatography/mass spectrometry (GC/MS) at baseline and after 8 weeks of overfeeding. Measurements included: body composition by DXA, energy expenditure by ventilated hood and doubly-labeled water, fat cell size from subcutaneous fat biopsies, and fat distribution by CT scan. Analysis was done on 5 groups of fatty acyl-carnitines identified by principal components analysis and 6 individual short-chain fatty acyl carnitines. Higher protein intake was associated with significantly lower 8 week levels of medium chain fatty acids and C2, C4-OH and C 6:1, but higher values of C3 and C5:1 acyl-carnitines derived from essential amino acids. In contrast energy and fat intake were only weakly related to changes in fatty acyl-carnitines. A decease or smaller rise in 8 week medium chain acyl-carnitines was associated with an increase in sleeping energy expenditure (P = 0.0004), and fat free mass (P < 0.0001) and a decrease in free fatty acid concentrations (FFA) (P = 0.0067). In contrast changes in short-chain fatty acyl-carnitines were related to changes in resting energy expenditure (P = 0.0026), and fat free mass (P = 0.0007), and C4-OH was positively related to FFA (P = 0006). Protein intake was the major factor influencing changes in fatty acyl carnitines during overfeeding with higher values of most acyl-fatty acids on the low protein diet. The association of dietary protein and fat intake may explain the changes in energy expenditure and metabolic variables resulting in the observed

  9. An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435.

    PubMed

    Sánchez, Daniel Alberto; Tonetto, Gabriela Marta; Ferreira, María Luján

    2016-02-20

    In this work, the ethanolysis of triglycerides catalyzed by immobilized lipase was studied, focusing on the secondary reaction of acyl migration. The catalytic tests were performed in a solvent-free reaction medium using Novozym 435 as biocatalyst. The selected experimental variables were biocatalyst loading (5-20mg), reaction time (30-90min), and chain length of the fatty acids in triglycerides with and without unsaturation (short (triacetin), medium (tricaprylin) and long (tripalmitin/triolein)). The formation of 2-monoglyceride by ethanolysis of triglycerides was favored by long reaction times and large biocatalyst loading with saturated short- to medium-chain triglycerides. In the case of long-chain triglycerides, the formation of this monoglyceride was widely limited by acyl migration. In turn, acyl migration increased the yield of ethyl esters and minimized the content of monoglycerides and diglycerides. Thus, the enzymatic synthesis of biodiesel was favored by long-chain triglycerides (which favor the acyl migration), long reaction times and large biocatalyst loading. The conversion of acylglycerides made from long-chain fatty acids with unsaturation was relatively low due to limitations in their access to the active site of the lipase. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of different physical forms of wheat grain in corn-based starter on performance of young Holstein dairy calves.

    PubMed

    Pezhveh, N; Ghorbani, G R; Rezamand, P; Khorvash, M

    2014-10-01

    The objective of the present study was to examine the effects of partially replacing corn with 2 forms of wheat grain on daily intake of starter feed, average daily gain, feed efficiency, rumen pH, fecal score, weaning weight, skeletal growth, and blood metabolites of dairy calves. Thirty-two male and female Holstein dairy calves (n=8 calves per treatment) were used in a completely randomized block design. At d 3 of age, individually housed calves were randomly allocated to different treatments consisting of a starter diet with 60% ground corn (control), a starter diet with 60% whole corn, a starter diet with 30% ground corn plus 30% ground wheat (GCGW), and a starter with 30% ground corn plus 30% whole wheat (GCWW), with all other components in a meal form. All calves had free access to water and feed throughout the study period and received 4 L of milk replacer/d from d 3 to 50 and 2 L/d from d 50 to 52; weaning occurred at the end of d 52. Feed intake was recorded daily and body weight and skeletal growth measures were recorded on d 10 and every 10 d thereafter. Rumen pH was measured on d 30, 45, and 60. Blood sample were collected on d 30 and every 10 d thereafter through d 70. Data were analyzed using MIXED procedures of SAS (SAS Institute Inc., Cary, NC). Over the experimental period (d 1-70), the starter intake for the GCWW group was significantly different from the control group, but not different from the other groups. Calves fed whole wheat had a significantly greater average daily gain compared with other groups over the experimental period (d 1-70). Feed efficiency was only better in calves fed the GCWW diet than the GCGW group for postweaning and overall periods. No differences were observed for preweaning in body length, hip height, or withers height among the treatments; however, differences were significant in heart girth and body barrel. Postweaning, some of the body measurements were greater in calves fed the GCWW and GCGW starter diets. Blood

  11. Growth and activity of Bulgarian yogurt starter culture in iron-fortified milk.

    PubMed

    Simova, Emilina; Ivanov, Galin; Simov, Zhelyazko

    2008-10-01

    Bulgarian yogurts were manufactured and fortified with 8, 15 and 27 mg of iron kg(-1) of yogurt. The growth and acidifying activity of the starter culture bacteria Streptococcus thermophilus 13a and Lactobacillus delbrueckii subsp. bulgaricus 2-11 were monitored during milk fermentation and over 15 days of yogurt storage at 4 degrees C. Fortifying milk with iron did not affect significantly the growth of the starter culture during manufacture and storage of yogurt. Counts of yogurt bacteria at the end of fermentation of iron-fortified milks were between 2.1 x 10(10) and 4.6 x 10(10) CFU ml(-1), which were not significantly different from numbers in unfortified yogurts. In all batches of yogurt, the viable cell counts of S. thermophilus 13a were approximately three times higher than those of L. delbrueckii subsp. bulgaricus 2-11. Greater decrease in viable cell count over 15 days of storage was observed for S. thermophilus 13a compared to L. delbrueckii subsp. bulgaricus 2-11. Intensive accumulation of lactic acid was observed during incubation of milk and all batches reached pH 4.5 +/- 0.1 after 3.0 h. At the end of fermentation process, lactic acid concentrations in iron-fortified yogurts were between 6.9 +/- 0.4 and 7.3 +/- 0.5 g l(-1). The acidifying activity of starter culture bacteria in the control and iron-fortified milks was similar. There was no increase in oxidized, metallic and bitter off-flavors in iron-fortified yogurts compared to the control. Iron-fortified yogurts did not differ significantly in their sensorial, chemical and microbiological characteristics with unfortified yogurt, suggesting that yogurt is a suitable vehicle for iron fortification and that the ferrous lactate is an appropriate iron source for yogurt fortification.

  12. AMP-acetyl CoA synthetase from Leishmania donovani: identification and functional analysis of 'PX4GK' motif.

    PubMed

    Soumya, Neelagiri; Kumar, I Sravan; Shivaprasad, S; Gorakh, Landage Nitin; Dinesh, Neeradi; Swamy, Kayala Kambagiri; Singh, Sushma

    2015-04-01

    An adenosine monophosphate forming acetyl CoA synthetase (AceCS) which is the key enzyme involved in the conversion of acetate to acetyl CoA has been identified from Leishmania donovani for the first time. Sequence analysis of L. donovani AceCS (LdAceCS) revealed the presence of a 'PX4GK' motif which is highly conserved throughout organisms with higher sequence identity (96%) to lower sequence identity (38%). A ∼ 77 kDa heterologous protein with C-terminal 6X His-tag was expressed in Escherichia coli. Expression of LdAceCS in promastigotes was confirmed by western blot and RT-PCR analysis. Immunolocalization studies revealed that it is a cytosolic protein. We also report the kinetic characterization of recombinant LdAceCS with acetate, adenosine 5'-triphosphate, coenzyme A and propionate as substrates. Site directed mutagenesis of residues in conserved PX4GK motif of LdAceCS was performed to gain insight into its potential role in substrate binding, catalysis and its role in maintaining structural integrity of the protein. P646A, G651A and K652R exhibited more than 90% loss in activity signifying its indispensible role in the enzyme activity. Substitution of other residues in this motif resulted in altered substrate specificity and catalysis. However, none of them had any role in modulation of the secondary structure of the protein except G651A mutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Aminogenesis control in fermented sausages manufactured with pressurized meat batter and starter culture.

    PubMed

    Latorre-Moratalla, M L; Bover-Cid, S; Aymerich, T; Marcos, B; Vidal-Carou, M C; Garriga, M

    2007-03-01

    The application of high hydrostatic pressure (200MPa) to meat batter just before sausage fermentation and the inoculation of starter culture were studied to improve the safety and quality of traditional Spanish fermented sausages (fuet and chorizo). Higher amounts of biogenic amines were formed in chorizo than in fuet. Without interfering with the ripening performance in terms of acidification, drying and proteolysis, hydrostatic pressure prevented enterobacteria growth but did not affect Gram-positive bacteria significantly. Subsequently, a strong inhibition of diamine (putrescine and cadaverine) accumulation was observed, but that of tyramine was not affected. The inoculated decarboxylase-negative strains, selected from indigenous bacteria of traditional sausages, were resistant to the HHP treatment, being able to lead the fermentation process, prevent enterococci development and significantly reduce enterobacteria counts. In sausages manufactured with either non-pressurized or pressurized meat batter, starter culture was the most protective measure against the accumulation of tyramine and both diamines.

  14. Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes.

    PubMed

    Pennington, Edward Ross; Fix, Amy; Sullivan, E Madison; Brown, David A; Kennedy, Anthony; Shaikh, Saame Raza

    2017-02-01

    Cardiolipin (CL) has a critical role in maintaining mitochondrial inner membrane structure. In several conditions such as heart failure and aging, there is loss of CL content and remodeling of CL acyl chains, which are hypothesized to impair mitochondrial inner membrane biophysical organization. Therefore, this study discriminated how CL content and acyl chain composition influenced select properties of simple and complex mitochondrial mimicking model membranes. We focused on monolayer excess area/molecule (a measure of lipid miscibility), bilayer phase transitions, and microdomain organization. In monolayer compression studies, loss of tetralinoleoyl [(18:2) 4 ] CL content decreased the excess area/molecule. Replacement of (18:2) 4 CL acyl chains with tetraoleoyl [(18:1) 4 ] CL or tetradocosahexaenoyl [(22:6) 4 ] CL generally had little influence on monolayer excess area/molecule; in contrast, replacement of (18:2) 4 CL acyl chains with tetramyristoyl [(14:0) 4 ] CL increased monolayer excess area/molecule. In bilayers, calorimetric studies showed that substitution of (18:2) 4 CL with (18:1) 4 CL or (22:6) 4 CL lowered the phase transition temperature of phosphatidylcholine vesicles whereas (14:0) 4 CL had no effect. Finally, quantitative imaging of giant unilamellar vesicles revealed differential effects of CL content and acyl chain composition on microdomain organization, visualized with the fluorescent probe Texas Red DHPE. Notably, microdomain areas were decreased by differing magnitudes upon lowering of (18:2) 4 CL content and substitution of (18:2) 4 CL with (14:0) 4 CL or (22:6) 4 CL. Conversely, exchanging (18:2) 4 CL with (18:1) 4 CL increased microdomain area. Altogether, these data demonstrate that CL content and fatty acyl composition differentially target membrane physical properties, which has implications for understanding how CL regulates mitochondrial activity and the design of CL-specific therapeutics. Copyright © 2016 Elsevier B.V. All rights

  15. The Role of the β5-α11 Loop in the Active-Site Dynamics of Acylated Penicillin-Binding Protein A from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher

    Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in Mycobacterium tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of apoenzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured the second-order acylation rate constantsmore » for the antibiotics imipenem, penicillin G, and ceftriaxone. Of these, imipenem, which has demonstrable anti-tubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined, and all show conformational differences in the β5–α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5–α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that penicillin-binding proteins in apo form can occupy different conformational states.« less

  16. The Effects of Exercise on Food Intake and Hunger: Relationship with Acylated Ghrelin and Leptin

    PubMed Central

    Vatansever-Ozen, Serife; Tiryaki-Sonmez, Gul; Bugdayci, Guler; Ozen, Guclu

    2011-01-01

    This study investigated the effects of a long bout of aerobic exercise on hunger and energy intake and circulating levels of leptin and acylated ghrelin. Ten healthy male subjects undertook two, 4 h trials in a randomized crossover design. In the exercise trial subjects ran for 105 min at 50% of maximal oxygen uptake and the last 15 min at 70% of maximal oxygen uptake followed by a 120 min rest period. In the control trial, subjects rested for 4 h. Subjects consumed a buffet test meal at 180 min during each trial. Hunger ratings, acylated ghrelin, leptin, glucose and insulin concentrations were measured at 0, 1, 2, 3 and 4 h. No differences were found at baseline values for hunger, acylated ghrelin, leptin, insulin and glucose for both trials (p > 0.05). The estimated energy expenditure of the exercise trial was 1550 ± 136 kcal. Exercise did not change subsequent absolute energy intake, but produced a significant decrease (p < 0.05) in relative energy intake. A two-way ANOVA revealed a significant (p < 0. 05) interaction effect for hunger and acylated ghrelin. In conclusion, this exercise regimen had a positive effect on reducing appetite which is related to reduced acylated ghrelin responses over time. This finding lends support for a role of exercise in weight management. Key points Physical exercise is a strategy used to counteract obesity, since it lowers the energetic balance by increasing energy expenditure. However, because any energy expended in exercise elevates the intensity of hunger and drives food consumption, it is pertinent to ask how effective exercise could be in helping people to lose weight or to prevent weight gain. The effects of exercise on hunger sensations and food intake are fairly controversial and depend on the intensity and duration of exercise. 120 min prolonged treadmill exercise with mix intensity, temporarily decreased hunger sensations, acylated ghrelin and relative energy intake. Variations in exercise intensity should

  17. Acyl ghrelin improves cognition, synaptic plasticity deficits and neuroinflammation following amyloid β (Aβ1-40) administration in mice.

    PubMed

    Santos, V V; Stark, R; Rial, D; Silva, H B; Bayliss, J A; Lemus, M B; Davies, J S; Cunha, R A; Prediger, R D; Andrews, Z B

    2017-05-01

    Ghrelin is a metabolic hormone that has neuroprotective actions in a number of neurological conditions, including Parkinson's disease (PD), stroke and traumatic brain injury. Acyl ghrelin treatment in vivo and in vitro also shows protective capacity in Alzheimer's disease (AD). In the present study, we used ghrelin knockout (KO) and their wild-type littermates to test whether or not endogenous ghrelin is protective in a mouse model of AD, in which human amyloid β peptide 1-40 (Aβ 1-40 ) was injected into the lateral ventricles i.c.v. Recognition memory, using the novel object recognition task, was significantly impaired in ghrelin KO mice and after i.c.v. Aβ 1-40 treatment. These deficits could be prevented by acyl ghrelin injections for 7 days. Spatial orientation, as assessed by the Y-maze task, was also significantly impaired in ghrelin KO mice and after i.c.v. Aβ 1-40 treatment. These deficits could be prevented by acyl ghrelin injections for 7 days. Ghrelin KO mice had deficits in olfactory discrimination; however, neither i.c.v. Aβ 1-40 treatment, nor acyl ghrelin injections affected olfactory discrimination. We used stereology to show that ghrelin KO and Aβ 1-40 increased the total number of glial fibrillary acidic protein expressing astrocytes and ionised calcium-binding adapter expressing microglial in the rostral hippocampus. Finally, Aβ 1-40 blocked long-term potentiation induced by high-frequency stimulation and this effect could be acutely blocked with co-administration of acyl ghrelin. Collectively, our studies demonstrate that ghrelin deletion affects memory performance and also that acyl ghrelin treatment may delay the onset of early events of AD. This supports the idea that acyl ghrelin treatment may be therapeutically beneficial with respect to restricting disease progression in AD. © 2017 British Society for Neuroendocrinology.

  18. Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters.

    PubMed

    Siragusa, Sonya; Di Cagno, Raffaella; Ercolini, Danilo; Minervini, Fabio; Gobbetti, Marco; De Angelis, Maria

    2009-02-01

    The structure and stability of the dominant lactic acid bacterium population were assessed during wheat flour sourdough type I propagation by using singly nine strains of Lactobacillus sanfranciscensis. Under back-slopping propagation with wheat flour type 0 F114, cell numbers of presumptive lactic acid bacteria varied slightly between and within starters. As determined by randomly amplified polymorphic DNA-PCR and restriction endonuclease analysis-pulsed-field gel electrophoresis analyses, only three (LS8, LS14, and LS44) starters dominated throughout 10 days of propagation. The others progressively decreased to less than 3 log CFU g(-1). Partial sequence analysis of the 16S rRNA and recA genes and PCR-denaturating gradient gel electrophoresis analysis using the rpoB gene allowed identification of Weissella confusa, Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus rossiae, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Lactobacillus spp. as the dominant species of the raw wheat flour. At the end of propagation, one autochthonous strain of L. sanfranciscensis was found in all the sourdoughs. Except for L. brevis, strains of the above species were variously found in the mature sourdoughs. Persistent starters were found in association with other biotypes of L. sanfranciscensis and with W. confusa or L. plantarum. Sourdoughs were characterized for acidification, quotient of fermentation, free amino acids, and community-level catabolic profiles by USING Biolog 96-well Eco microplates. In particular, catabolic profiles of sourdoughs containing persistent starters behaved similarly and were clearly differentiated from the others. The three persistent starters were further used for the production of sourdoughs and propagated by using another wheat flour whose lactic acid bacterium population in part differed from the previous one. Also, in this case all three starter strains persisted during propagation.

  19. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.

    PubMed

    Liu, Shi; Zainuddin, Ima M; Vanderschuren, Herve; Doughty, James; Beeching, John R

    2017-05-01

    Cassava (Manihot esculenta Crantz) is a major world crop, whose storage roots provide food for over 800 million throughout the humid tropics. Despite many advantages as a crop, the development of cassava is seriously constrained by the rapid post-harvest physiological deterioration (PPD) of its roots that occurs within 24-72 h of harvest, rendering the roots unpalatable and unmarketable. PPD limits cassava's marketing possibilities in countries that are undergoing increased development and urbanisation due to growing distances between farms and consumers. The inevitable wounding of the roots caused by harvesting triggers an oxidative burst that spreads throughout the cassava root, together with the accumulation of secondary metabolites including phenolic compounds, of which the coumarin scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one) is the most abundant. Scopoletin oxidation yields a blue-black colour, which suggests its involvement in the discoloration observed during PPD. Feruloyl CoA 6'-hydroxylase is a controlling enzyme in the biosynthesis of scopoletin. The cassava genome contains a seven membered family of feruloyl CoA 6'-hydroxylase genes, four of which are expressed in the storage root and, of these, three were capable of functionally complementing Arabidopsis T-DNA insertion mutants in this gene. A RNA interference construct, designed to a highly conserved region of these genes, was used to transform cassava, where it significantly reduced feruloyl CoA 6'-hydroxylase gene expression, scopoletin accumulation and PPD symptom development. Collectively, our results provide evidence that scopoletin plays a major functional role in the development of PPD symptoms, rather than merely paralleling symptom development in the cassava storage root.

  20. Particle formation induced by sonication during yogurt fermentation - Impact of exopolysaccharide-producing starter cultures on physical properties.

    PubMed

    Körzendörfer, Adrian; Nöbel, Stefan; Hinrichs, Jörg

    2017-07-01

    Two major quality defects of yogurt are syneresis and the presence of large particles, and several reasons have been extensively discussed. Vibrations during fermentation, particularly generated by pumps, must be considered as a further cause as latest research showed that both ultrasound and low frequencies induced visible particles. The aim of this study was to investigate the impact of sonication during fermentation with starter cultures differing in exopolysaccharide (EPS) synthesis on the physical properties of set (syneresis, firmness) and stirred yogurt (large particles, laser diffraction, rheology). Skim milk was fermented with starter cultures YC-471 (low EPS) or YF-L 901 (high EPS) (Chr. Hansen) and sonicated for 5min at pH5.2. Sonicated set gels exhibited syneresis and were softer than respective controls. The mechanical treatment was adjusted to quantify visible particles (d≥0.9mm) in stirred yogurts properly. Sonication significantly increased particle numbers, however, the effect was less pronounced when YF-L 901 was used, indicating EPS as a tool to reduce syneresis and particle formation due to vibrations. Rheological parameters and size of microgel particles were rather influenced by starter cultures than by sonication. Copyright © 2017 Elsevier Ltd. All rights reserved.