Science.gov

Sample records for acyl-homoserine lactone hsl

  1. Are There Acyl-Homoserine Lactones within Mammalian Intestines?

    PubMed Central

    Swearingen, Matthew C.; Sabag-Daigle, Anice

    2013-01-01

    Many Proteobacteria are capable of quorum sensing using N-acyl-homoserine lactone (acyl-HSL) signaling molecules that are synthesized by LuxI or LuxM homologs and detected by transcription factors of the LuxR family. Most quorum-sensing species have at least one LuxR and one LuxI homolog. However, members of the Escherichia, Salmonella, Klebsiella, and Enterobacter genera possess only a single LuxR homolog, SdiA, and no acyl-HSL synthase. The most obvious hypothesis is that these organisms are eavesdropping on acyl-HSL production within the complex microbial communities of the mammalian intestinal tract. However, there is currently no evidence of acyl-HSLs being produced within normal intestinal communities. A few intestinal pathogens, including Yersinia enterocolitica, do produce acyl-HSLs, and Salmonella can detect them during infection. Therefore, a more refined hypothesis is that SdiA orthologs are used for eavesdropping on other quorum-sensing pathogens in the host. However, the lack of acyl-HSL signaling among the normal intestinal residents is a surprising finding given the complexity of intestinal communities. In this review, we examine the evidence for and against the possibility of acyl-HSL signaling molecules in the mammalian intestine and discuss the possibility that related signaling molecules might be present and awaiting discovery. PMID:23144246

  2. Reaction of Acylated Homoserine Lactone Bacterial Signaling Molecules with Oxidized Halogen Antimicrobials

    PubMed Central

    Borchardt, S. A.; Allain, E. J.; Michels, J. J.; Stearns, G. W.; Kelly, R. F.; McCoy, W. F.

    2001-01-01

    Oxidized halogen antimicrobials, such as hypochlorous and hypobromous acids, have been used extensively for microbial control in industrial systems. Recent discoveries have shown that acylated homoserine lactone cell-to-cell signaling molecules are important for biofilm formation in Pseudomonas aeruginosa, suggesting that biofouling can be controlled by interfering with bacterial cell-to-cell communication. This study was conducted to investigate the potential for oxidized halogens to react with acylated homoserine lactone-based signaling molecules. Acylated homoserine lactones containing a 3-oxo group were found to rapidly react with oxidized halogens, while acylated homoserine lactones lacking the 3-oxo functionality did not react. The Chromobacterium violaceum CV026 bioassay was used to determine the effects of such reactions on acylated homoserine lactone activity. The results demonstrated that 3-oxo acyl homoserine lactone activity was rapidly lost upon exposure to oxidized halogens; however, acylated homoserine lactones lacking the 3-oxo group retained activity. Experiments with the marine alga Laminaria digitata demonstrated that natural haloperoxidase systems are capable of mediating the deactivation of acylated homoserine lactones. This may illustrate a natural defense mechanism to prevent biofouling on the surface of this marine alga. The Chromobacterium violaceum activity assay illustrates that reactions between 3-oxo acylated homoserine lactone molecules and oxidized halogens do occur despite the presence of biofilm components at much greater concentrations. This work suggests that oxidized halogens may control biofilm not only via a cidal mechanism, but also by possibly interfering with 3-oxo acylated homoserine lactone-based cell signaling. PMID:11425738

  3. Pseudomonas cremoricolorata Strain ND07 Produces N-acyl Homoserine Lactones as Quorum Sensing Molecules

    PubMed Central

    Yunos, Nina Yusrina Muhamad; Tan, Wen-Si; Koh, Chong-Lek; Sam, Choon-Kook; Mohamad, Nur Izzati; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing (QS) is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs). We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-l-homoserine lactone (C8-HSL) and N-decanoyl-l-homoserine lactone (C10-HSL). To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07. PMID:24984061

  4. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers

    PubMed Central

    Bottomley, Peter J.

    2015-01-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS. PMID:26092466

  5. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers.

    PubMed

    Mellbye, Brett L; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2015-09-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.

  6. A New Acyl-homoserine Lactone Molecule Generated by Nitrobacter winogradskyi

    PubMed Central

    Shen, Qiuxuan; Gao, Jie; Liu, Jun; Liu, Shuangjiang; Liu, Zijun; Wang, Yinghuan; Guo, Baoyuan; Zhuang, Xuliang; Zhuang, Guoqiang

    2016-01-01

    It is crucial to reveal the regulatory mechanism of nitrification to understand nitrogen conversion in agricultural systems and wastewater treatment. In this study, the nwiI gene of Nitrobacter winogradskyi was confirmed to be a homoserine lactone synthase by heterologous expression in Escherichia coli that synthesized several acyl-homoserine lactone signals with 7 to 11 carbon acyl groups. A novel signal, 7, 8-trans-N-(decanoyl) homoserine lactone (C10:1-HSL), was identified in both N. winogradskyi and the recombined E. coli. Furthermore, this novel signal also triggered variances in the nitrification rate and the level of transcripts for the genes involved in the nitrification process. These results indicate that quorum sensing may have a potential role in regulating nitrogen metabolism. PMID:26965192

  7. Acyl-Homoserine Lactone Quorum Sensing in the Roseobacter Clade

    PubMed Central

    Zan, Jindong; Liu, Yue; Fuqua, Clay; Hill, Russell T.

    2014-01-01

    Members of the Roseobacter clade are ecologically important and numerically abundant in coastal environments and can associate with marine invertebrates and nutrient-rich marine snow or organic particles, on which quorum sensing (QS) may play an important role. In this review, we summarize current research progress on roseobacterial acyl-homoserine lactone-based QS, particularly focusing on three relatively well-studied representatives, Phaeobacter inhibens DSM17395, the marine sponge symbiont Ruegeria sp. KLH11 and the dinoflagellate symbiont Dinoroseobacter shibae. Bioinformatic survey of luxI homologues revealed that over 80% of available roseobacterial genomes encode at least one luxI homologue, reflecting the significance of QS controlled regulatory pathways in adapting to the relevant marine environments. We also discuss several areas that warrant further investigation, including studies on the ecological role of these diverse QS pathways in natural environments. PMID:24402124

  8. Pantoea sp. isolated from tropical fresh water exhibiting N-acyl homoserine lactone production.

    PubMed

    Tan, Wen-Si; Muhamad Yunos, Nina Yusrina; Tan, Pui-Wan; Mohamad, Nur Izzati; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    N-Acyl homoserine lactone (AHL) serves as signaling molecule for quorum sensing (QS) in Gram-negative bacteria to regulate various physiological activities including pathogenicity. With the aim of isolating freshwater-borne bacteria that can cause outbreak of disease in plants and portrayed QS properties, environmental water sampling was conducted. Here we report the preliminary screening of AHL production using Chromobacterium violaceum CV026 and Escherichia coli [pSB401] as AHL biosensors. The 16S rDNA gene sequence of isolate M009 showed the highest sequence similarity to Pantoea stewartii S9-116, which is a plant pathogen. The isolated Pantoea sp. was confirmed to produce N-3-oxohexanoyl-L-HSL (3-oxo-C6-HSL) through analysis of high resolution mass tandem mass spectrometry.

  9. Pantoea sp. Isolated from Tropical Fresh Water Exhibiting N-Acyl Homoserine Lactone Production

    PubMed Central

    Tan, Wen-Si; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    N-Acyl homoserine lactone (AHL) serves as signaling molecule for quorum sensing (QS) in Gram-negative bacteria to regulate various physiological activities including pathogenicity. With the aim of isolating freshwater-borne bacteria that can cause outbreak of disease in plants and portrayed QS properties, environmental water sampling was conducted. Here we report the preliminary screening of AHL production using Chromobacterium violaceum CV026 and Escherichia coli [pSB401] as AHL biosensors. The 16S rDNA gene sequence of isolate M009 showed the highest sequence similarity to Pantoea stewartii S9-116, which is a plant pathogen. The isolated Pantoea sp. was confirmed to produce N-3-oxohexanoyl-L-HSL (3-oxo-C6-HSL) through analysis of high resolution mass tandem mass spectrometry. PMID:25197715

  10. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens

    PubMed Central

    Hernández-Reyes, Casandra; Schenk, Sebastian T; Neumann, Christina; Kogel, Karl-Heinz; Schikora, Adam

    2014-01-01

    The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that have a significant impact on the worldwide economy and on human nutrition. Ensifer meliloti is usually associated with root nodulation in legumes and nitrogen fixation. Here, we suggest that the ability of S. meliloti to induce resistance depends on the production of the quorum-sensing molecule, oxo-C14-HSL. The capacity to enhanced resistance provides a possibility to the use these beneficial bacteria in agriculture. Using the Arabidopsis-Salmonella model, we also demonstrate that the application of N-acyl-homoserine lactones-producing bacteria could be a successful strategy to prevent plant-originated infections with human pathogens. PMID:25234390

  11. LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa.

    PubMed

    Chugani, Sudha; Greenberg, Everett Peter

    2010-06-01

    Pseudomonas aeruginosa quorum control of gene expression involves three LuxR-type signal receptors LasR, RhlR, and QscR that respond to the LasI- and RhlI-generated acyl-homoserine lactone (acyl-HSL) signals 3OC12-HSL and C4-HSL. We found that a LasR-RhlR-QscR triple mutant responds to acyl-HSLs by regulating at least 37 genes. LuxR homolog-independent activation of the representative genes antA and catB also occurs in the wild type. Expression of antA was influenced the most by C10-HSL and to a lesser extent by other acyl-HSLs, including the P. aeruginosa 3OC12-HSL and C4-HSL signals. The ant and cat operons encode enzymes for the degradation of anthranilate to tricarboxylic acid cycle intermediates. Our results indicate that LuxR homolog-independent acyl-HSL control of the ant and cat operons occurs via regulation of antR, which codes for the transcriptional activator of the ant operon. Although P. aeruginosa has multiple pathways for anthranilate synthesis, one pathway-the kynurenine pathway for tryptophan degradation-is required for acyl-HSL activation of the ant operon. The kynurenine pathway is also the critical source of anthranilate for energy metabolism via the antABC gene products, as well as the source of anthranilate for synthesis of the P. aeruginosa quinolone signal. Our discovery of LuxR homolog-independent responses to acyl-HSLs provides insight into acyl-HSL signaling. PMID:20498077

  12. Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein.

    PubMed

    Urbanowski, M L; Lostroh, C P; Greenberg, E P

    2004-02-01

    The Vibrio fischeri LuxR protein is the founding member of a family of acyl-homoserine lactone-responsive quorum-sensing transcription factors. Previous genetic evidence indicates that in the presence of its quorum-sensing signal, N-(3-oxohexanoyl) homoserine lactone (3OC6-HSL), LuxR binds to lux box DNA within the promoter region of the luxI gene and activates transcription of the luxICDABEG luminescence operon. We have purified LuxR from recombinant Escherichia coli. Purified LuxR binds specifically and with high affinity to DNA containing a lux box. This binding requires addition of 3OC6-HSL to the assay reactions, presumably forming a LuxR-3OC6-HSL complex. When bound to the lux box at the luxI promoter in vitro, LuxR-3OC6-HSL enables E. coli RNA polymerase to initiate transcription from the luxI promoter. Unlike the well-characterized LuxR homolog TraR in complex with its signal (3-oxo-octanoyl-HSL), the LuxR-30C6-HSL complex can be reversibly inactivated by dilution, suggesting that 3OC6-HSL in the complex is not tightly bound and is in equilibrium with the bulk solvent. Thus, although LuxR and TraR both bind 3-oxoacyl-HSLs, the binding is qualitatively different. The differences have implications for the ways in which these proteins respond to decreases in signal concentrations or rapid drops in population density.

  13. Evolution of Acyl-Substrate Recognition by a Family of Acyl-Homoserine Lactone Synthases

    PubMed Central

    Christensen, Quin H.; Brecht, Ryan M.; Dudekula, Dastagiri; Greenberg, E. Peter; Nagarajan, Rajesh

    2014-01-01

    Members of the LuxI protein family catalyze synthesis of acyl-homoserine lactone (acyl-HSL) quorum sensing signals from S-adenosyl-L-methionine and an acyl thioester. Some LuxI family members prefer acyl-CoA, and others prefer acyl-acyl carrier protein (ACP) as the acyl-thioester substrate. We sought to understand the evolutionary history and mechanisms mediating this substrate preference. Our phylogenetic and motif analysis of the LuxI acyl-HSL synthase family indicates that the acyl-CoA-utilizing enzymes evolved from an acyl-ACP-utilizing ancestor. To further understand how acyl-ACPs and acyl-CoAs are recognized by acyl-HSL synthases we studied BmaI1, an octanoyl-ACP-dependent LuxI family member from Burkholderia mallei, and BjaI, an isovaleryl-CoA-dependent LuxI family member from Bradyrhizobium japonicum. We synthesized thioether analogs of their thioester acyl-substrates to probe recognition of the acyl-phosphopantetheine moiety common to both acyl-ACP and acyl-CoA substrates. The kinetics of catalysis and inhibition of these enzymes indicate that they recognize the acyl-phosphopantetheine moiety and they recognize non-preferred substrates with this moiety. We find that CoA substrate utilization arose through exaptation of acyl-phosphopantetheine recognition in this enzyme family. PMID:25401334

  14. Involvement of Acylated Homoserine Lactones (AHLs) of Aeromonas sobria in Spoilage of Refrigerated Turbot (Scophthalmus maximus L.)

    PubMed Central

    Li, Tingting; Cui, Fangchao; Bai, Fengling; Zhao, Guohua; Li, Jianrong

    2016-01-01

    One quorum sensing strain was isolated from spoiled turbot. The species was determined by 16S rRNA gene analysis and classical tests, named Aeromonas sobria AS7. Quorum-sensing (QS) signals (N-acyl homoserine lactones (AHLs)) were detected by report strains and their structures were further determined by GC-MS. The activity changes of AHLs on strain growth stage as well as the influence of different culture conditions on secretion activity of AHLs were studied by the punch method. The result indicated that strain AS7 could induce report strains to produce typical phenotypic response. N-butanoyl-dl-homoserine lactone (C4–HSL), N-hexanoyl-dl-homoserine lactone (C6–HSL), N-octanoyl-dl-homoserine lactone (C8–HSL), N-decanoyl-dl-homoserine lactone (C10–HSL), N-dodecanoyl-dl-homoserine lactone (C12–HSL) could be detected. The activities of AHLs were density-dependent and the max secretion level was at pH 8, sucrose culture, 1% NaCl and 32 h, respectively. The production of siderophore in strain AS7 was regulated by exogenous C8–HSL, rather than C6–HSL. Exogenous C4–HSL and C8–HSL accelerated the growth rate and population density of AS7 in turbot samples under refrigerated storage. However, according to the total viable counts and total volatile basic nitrogen (TVB-N) values of the fish samples, exogenous C6–HSL did not cause spoilage of the turbot fillets. In conclusion, our results suggested that QS was involved in the spoilage of refrigerated turbot. PMID:27420072

  15. Involvement of Acylated Homoserine Lactones (AHLs) of Aeromonas sobria in Spoilage of Refrigerated Turbot (Scophthalmus maximus L.).

    PubMed

    Li, Tingting; Cui, Fangchao; Bai, Fengling; Zhao, Guohua; Li, Jianrong

    2016-01-01

    One quorum sensing strain was isolated from spoiled turbot. The species was determined by 16S rRNA gene analysis and classical tests, named Aeromonas sobria AS7. Quorum-sensing (QS) signals (N-acyl homoserine lactones (AHLs)) were detected by report strains and their structures were further determined by GC-MS. The activity changes of AHLs on strain growth stage as well as the influence of different culture conditions on secretion activity of AHLs were studied by the punch method. The result indicated that strain AS7 could induce report strains to produce typical phenotypic response. N-butanoyl-dl-homoserine lactone (C₄-HSL), N-hexanoyl-dl-homoserine lactone (C₆-HSL), N-octanoyl-dl-homoserine lactone (C₈-HSL), N-decanoyl-dl-homoserine lactone (C10-HSL), N-dodecanoyl-dl-homoserine lactone (C12-HSL) could be detected. The activities of AHLs were density-dependent and the max secretion level was at pH 8, sucrose culture, 1% NaCl and 32 h, respectively. The production of siderophore in strain AS7 was regulated by exogenous C₈-HSL, rather than C₆-HSL. Exogenous C₄-HSL and C₈-HSL accelerated the growth rate and population density of AS7 in turbot samples under refrigerated storage. However, according to the total viable counts and total volatile basic nitrogen (TVB-N) values of the fish samples, exogenous C₆-HSL did not cause spoilage of the turbot fillets. In conclusion, our results suggested that QS was involved in the spoilage of refrigerated turbot. PMID:27420072

  16. Involvement of Acylated Homoserine Lactones (AHLs) of Aeromonas sobria in Spoilage of Refrigerated Turbot (Scophthalmus maximus L.).

    PubMed

    Li, Tingting; Cui, Fangchao; Bai, Fengling; Zhao, Guohua; Li, Jianrong

    2016-07-13

    One quorum sensing strain was isolated from spoiled turbot. The species was determined by 16S rRNA gene analysis and classical tests, named Aeromonas sobria AS7. Quorum-sensing (QS) signals (N-acyl homoserine lactones (AHLs)) were detected by report strains and their structures were further determined by GC-MS. The activity changes of AHLs on strain growth stage as well as the influence of different culture conditions on secretion activity of AHLs were studied by the punch method. The result indicated that strain AS7 could induce report strains to produce typical phenotypic response. N-butanoyl-dl-homoserine lactone (C₄-HSL), N-hexanoyl-dl-homoserine lactone (C₆-HSL), N-octanoyl-dl-homoserine lactone (C₈-HSL), N-decanoyl-dl-homoserine lactone (C10-HSL), N-dodecanoyl-dl-homoserine lactone (C12-HSL) could be detected. The activities of AHLs were density-dependent and the max secretion level was at pH 8, sucrose culture, 1% NaCl and 32 h, respectively. The production of siderophore in strain AS7 was regulated by exogenous C₈-HSL, rather than C₆-HSL. Exogenous C₄-HSL and C₈-HSL accelerated the growth rate and population density of AS7 in turbot samples under refrigerated storage. However, according to the total viable counts and total volatile basic nitrogen (TVB-N) values of the fish samples, exogenous C₆-HSL did not cause spoilage of the turbot fillets. In conclusion, our results suggested that QS was involved in the spoilage of refrigerated turbot.

  17. Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones.

    PubMed

    Li, An-Jie; Hou, Bao-Lian; Li, Mei-Xi

    2015-11-01

    In this study, six N-acyl-homoserine lactone (AHL) molecules (C6-HSL, C8-HSL, C10-HSL, 3-oxo-C6-HSL, 3-oxo-C8-HSL and 3-oxo-C10-HSL) were each dosed into a bioreactor and seeded using autotrophic nitrifying sludge (ANS). The effects of the AHLs on cell adhesion, nitrification and sludge granulation were investigated. The results indicated that the efficiencies of cell adhesion and ammonia removal both had a close correlation with the side chain length and β position substituent group of the AHLs. The best-performing AHL in terms of accelerating bacterial attached-growth was 3-oxo-C6-HSL, whereas C6-HSL outperformed the others in terms of the ammonia degradation rate. The addition of 3-oxo-C6-HSL or C6-HSL increased the biomass growth rate, microbial activity, extracellular proteins and nitrifying bacteria, which can accelerate the formation of nitrifying granules. Consequently, selecting AHL molecules that could improve bacteria in attached-growth mode and nitrification efficiency simultaneously will most likely facilitate the rapid granulation of nitrifying sludge.

  18. Construction of a dual fluorescence whole-cell biosensor to detect N-acyl homoserine lactones.

    PubMed

    Deng, Xuemei; Zhuang, Guoqiang; Ma, Anzhou; Yu, Qing; Zhuang, Xuliang

    2014-02-01

    Detection of N-acyl homoserine lactones (AHLs) is useful for understanding quorum sensing (QS) behaviors, including biofilm formation, virulence and metabolism. For detecting AHLs and indicating the host cells in situ, we constructed the plasmid pUCGMA2T(1-4) to make a dual fluorescent whole-cell biosensor based on the AhlIR AHL system of Pseudomonas syringae pv. syringae B728a. The plasmid contains three components: constitutively expressed P(npatII::gfp) for indicating host cells, P(ahlI::mcherry) that produces red fluorescence in response to AHL, and the ahlR gene that encodes an AHL regulatory protein. Meanwhile, two copies of T(1-4) (four tandem copies of a transcriptional terminator) were added into the plasmid to reduce background. The results showed that when the plasmid was placed into Escherichia coli, the dual fluorescence whole-cell biosensor was able to respond with red fluorescence within 6 hr to 5 x 10(-8)-1 x 10(-5) mol/L of 3OC6-HSL. Bright green fluorescence indicated the host cells. Furthermore, when the plasmid was transferred to wildtype Pseudomonas PhTA125 (an AHL-producing bacterium), it also showed both green and red fluorescence. This result demonstrates that this plasmid can be used to construct whole-cell indicators that can indicate the AHL response and spatial behaviors of microbes in a microenvironmental niche.

  19. Acyl-homoserine lactone-mediated cross talk among epiphytic bacteria modulates behavior of Pseudomonas syringae on leaves.

    PubMed

    Dulla, Glenn F J; Lindow, Steven E

    2009-07-01

    The leaf surface harbors a host of bacterial epiphytes that are capable of influencing the quorum sensing (QS) system of the plant pathogen Pseudomonas syringae pv. syringae (Pss). Pss uses QS to regulate expression of genes conferring extracellular polysaccharide production, motility and factors contributing to virulence to plants. About 7% of bacterial epiphytes isolated in this study produce the Pss cognate signal, 3-oxohexanoyl-homoserine lactone (3OC6HSL), often in amounts more than 10-fold higher than Pss. Premature induction of QS in Pss by these 3OC6HSL-producing epiphytes suppressed swarming motility and subsequent disease of the leaf. Co-inoculation of 3OC6HSL-producing strains with Pss reduced the number of lesions when inoculated together onto leaves compared with that of plants inoculated with Pss alone. Strains in which 3OC6HSL accumulation was quenched by expression of an N-acyl-homoserine lactonase did not decrease disease when co-inoculated with Pss. Disease incidence caused by a nonmotile mutant of Pss was not affected by 3OC6HSL-producing bacteria, suggesting that exogenous 3OC6HSL signal that altered the motility of Pss was responsible for reducing the apparent virulence of this pathogen. Thus, considerable cross talk involving exogenous 3OC6HSL occurs on leaves and this process can be exploited for disease control.

  20. Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected].

    PubMed

    LaRock, Christopher N; Yu, Jing; Horswill, Alexander R; Parsek, Matthew R; Minion, F Chris

    2013-01-01

    The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature.

  1. Detection of acyl-homoserine lactones by Escherichia and Salmonella

    PubMed Central

    Soares, Jitesh A.; Ahmer, Brian M. M.

    2011-01-01

    Escherichia and Salmonella do not synthesize quorum sensing signaling molecules of the N-acyl-L-homoserine lactone (AHL) type but they can detect AHLs produced by other species of bacteria. AHLs are present in the bovine rumen but not in the remainder of the gastrointestinal tract. Enterohemorrhagic E. coli (EHEC) responds to AHLs extracted from the bovine rumen. Salmonella fails to detect AHLs in the gastrointestinal tracts of pathogen-free mice or pigs, suggesting that AHLs are not present. However, Salmonella does detect the AHL production of Yersinia enterocolitica in mouse Peyer’s patches. In response to AHLs, EHEC represses flagellar genes and the LEE pathogenicity island while it activates the acid fitness island, whereas Salmonella activates the rck operon and a gene, srgE, encoding a putative Type III secreted effector. PMID:21353625

  2. Triazole-containing N-acyl homoserine lactones targeting the quorum sensing system in Pseudomonas aeruginosa.

    PubMed

    Hansen, Mette R; Jakobsen, Tim H; Bang, Claus G; Cohrt, Anders Emil; Hansen, Casper L; Clausen, Janie W; Le Quement, Sebastian T; Tolker-Nielsen, Tim; Givskov, Michael; Nielsen, Thomas E

    2015-04-01

    In an attempt to devise new antimicrobial treatments for biofilm infections, the bacterial cell-cell communication system termed quorum sensing has emerged as an attractive target. It has proven possible to intercept the communication system by synthetic non-native ligands and thereby lower the pathogenesis and antibiotic tolerance of a bacterial biofilm. To identify the structural elements important for antagonistic or agonistic activity against the Pseudomonas aeruginosa LasR protein, we report the synthesis and screening of new triazole-containing mimics of natural N-acyl homoserine lactones. A series of azide- and alkyne-containing homoserine lactone building blocks was used to prepare an expanded set of 123 homoserine lactone analogues through a combination of solution- and solid-phase synthesis methods. The resulting compounds were subjected to cell-based quorum sensing screening assays, thereby revealing several bioactive compounds, including 13 compounds with antagonistic activity and 9 compounds with agonistic activity.

  3. Novel Reporter for Identification of Interference with Acyl Homoserine Lactone and Autoinducer-2 Quorum Sensing

    PubMed Central

    Weiland-Bräuer, Nancy; Pinnow, Nicole

    2014-01-01

    Two reporter strains were established to identify novel biomolecules interfering with bacterial communication (quorum sensing [QS]). The basic design of these Escherichia coli-based systems comprises a gene encoding a lethal protein fused to promoters induced in the presence of QS signal molecules. Consequently, these E. coli strains are unable to grow in the presence of the respective QS signal molecules unless a nontoxic QS-interfering compound is present. The first reporter strain designed to detect autoinducer-2 (AI-2)-interfering activities (AI2-QQ.1) contained the E. coli ccdB lethal gene under the control of the E. coli lsrA promoter. The second reporter strain (AI1-QQ.1) contained the Vibrio fischeri luxI promoter fused to the ccdB gene to detect interference with acyl-homoserine lactones. Bacteria isolated from the surfaces of several marine eukarya were screened for quorum-quenching (QQ) activities using the established reporter systems AI1-QQ.1 and AI2-QQ.1. Out of 34 isolates, two interfered with acylated homoserine lactone (AHL) signaling, five interfered with AI-2 QS signaling, and 10 were demonstrated to interfere with both signal molecules. Open reading frames (ORFs) conferring QQ activity were identified for three selected isolates (Photobacterium sp., Pseudoalteromonas sp., and Vibrio parahaemolyticus). Evaluation of the respective heterologously expressed and purified QQ proteins confirmed their ability to interfere with the AHL and AI-2 signaling processes. PMID:25527543

  4. Diversity and N-acyl-homoserine lactone production by Gammaproteobacteria associated with Avicennia marina rhizosphere of South Indian mangroves.

    PubMed

    Viswanath, Ganga; Jegan, Sekar; Baskaran, Viswanathan; Kathiravan, Raju; Prabavathy, Vaiyapuri Ramalingam

    2015-07-01

    The diversity of N-acyl-homoserine lactone (AHL)-producing rhizosphere bacterial community associated with Avicennia marina in the mangrove ecosystems of South India was investigated. Approximately 800 rhizobacteria were isolated from A. marina, and they were screened for the production of AHL using two biosensors, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NTL4 (pZLR4). Among the total isolates screened, 7% of the rhizobacteria showed positive induction for AHL signals. The BOX-PCR profile of 56 positive isolates represented 11 distinct genotypic groups. Phylogenetic analyses of the 16S rRNA sequences of 16 representatives showed that the isolates belonged to the class Gammaproteobacteria, which represented six different genera: Pseudomonas, Aeromonas, Vibrio, Photobacterium, Serratia and Halomonas. The study also identified three AHL-producing species, namely, Photobacterium halotolerans MSSRF QS48, Vibrio xiamenensis MSSRF QS47 and Pseudomonas sp. MSSRF QS1 that had not been reported previously. AHL profiling by TLC detected short chains C4, C6 and C8-HSL, and long chains C10 and C12-HSL with both unsubstituted and substituted side chains among the 16 representative AHL positives. This is the first report concerning the diversity of AHL-producing Gammaproteobacteria from mangrove ecosystems exhibiting diverse AHL profiles. PMID:25956585

  5. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication.

    PubMed

    Andersen, J B; Heydorn, A; Hentzer, M; Eberl, L; Geisenberger, O; Christensen, B B; Molin, S; Givskov, M

    2001-02-01

    In order to perform single-cell analysis and online studies of N-acyl homoserine lactone (AHL)-mediated communication among bacteria, components of the Vibrio fischeri quorum sensor encoded by luxR-P(luxI) have been fused to modified versions of gfpmut3* genes encoding unstable green fluorescent proteins. Bacterial strains harboring this green fluorescent sensor detected a broad spectrum of AHL molecules and were capable of sensing the presence of 5 nM N-3-oxohexanoyl-L-homoserine lactone in the surroundings. In combination with epifluorescent microscopy, the sensitivity of the sensor enabled AHL detection at the single-cell level and allowed for real-time measurements of fluctuations in AHL concentrations. This green fluorescent AHL sensor provides a state-of-the-art tool for studies of communication between the individuals present in mixed bacterial communities.

  6. Response of leaf-associated bacterial communities to primary acyl-homoserine lactone in the tobacco phyllosphere.

    PubMed

    Lv, Di; Ma, Anzhou; Bai, Zhihui; Zhuang, Xuliang; Zhuang, Guoqiang

    2012-02-01

    The phyllosphere is inhabited by large populations of epiphytic bacteria that are able to modulate their phenotypes and behavior by quorum sensing (QS). However, the impact of acyl-homoserine lactones (AHLs) involved in QS on the ecology of bacteria in their natural habitat remains unclear. Therefore, we used a bioassay and liquid chromatography-mass spectrometry to detect AHLs in the tobacco phyllosphere. Our results identified several AHLs in the tobacco phyllosphere, the majority of which were short-chain AHLs. Furthermore, the addition of an exogenous N-(3-oxohexanoyl) homoserine lactone (3OC6HSL), which is seen in the naturally occurring tobacco phyllosphere, generated variability in the composition of the bacterial community as determined by denaturing gradient gel electrophoresis (DGGE) analysis and phospholipid fatty acid (PLFA) analysis. Notably, the ratio of Gram-positive (GP) bacteria increased in response to treatment with 1 μM AHL, but decreased incipiently when treated with 10 μM AHL. These observations provide insight into the composition of the leaf-colonizing epiphyte community responsible for AHLs, particularly GP bacteria as they do not use AHLs as signaling molecules for QS.

  7. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6.

    PubMed

    Schikora, Adam; Schenk, Sebastian T; Stein, Elke; Molitor, Alexandra; Zuccaro, Alga; Kogel, Karl-Heinz

    2011-11-01

    Pathogenic and symbiotic bacteria rely on quorum sensing to coordinate the collective behavior during the interactions with their eukaryotic hosts. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as signals in such communication. Here we show that plants have evolved means to perceive AHLs and that the length of acyl moiety and the functional group at the γ position specify the plant's response. Root treatment with the N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) reinforced the systemic resistance to the obligate biotrophic fungi Golovinomyces orontii in Arabidopsis (Arabidopsis thaliana) and Blumeria graminis f. sp. hordei in barley (Hordeum vulgare) plants. In addition, oxo-C14-HSL-treated Arabidopsis plants were more resistant toward the hemibiotrophic bacterial pathogen Pseudomonas syringae pv tomato DC3000. Oxo-C14-HSL promoted a stronger activation of mitogen-activated protein kinases AtMPK3 and AtMPK6 when challenged with flg22, followed by a higher expression of the defense-related transcription factors WRKY22 and WRKY29, as well as the PATHOGENESIS-RELATED1 gene. In contrast to wild-type Arabidopsis and mpk3 mutant, the mpk6 mutant is compromised in the AHL effect, suggesting that AtMPK6 is required for AHL-induced resistance. Results of this study show that AHLs commonly produced in the rhizosphere are crucial factors in plant pathology and could be an agronomic issue whose full impact has to be elucidated in future analyses. PMID:21940998

  8. Acyl-homoserine lactone binding to and stability of the orphan Pseudomonas aeruginosa quorum-sensing signal receptor QscR.

    PubMed

    Oinuma, Ken-Ichi; Greenberg, E Peter

    2011-01-01

    The Pseudomonas aeruginosa transcription factor QscR responds to a variety of fatty acyl-homoserine lactones (HSLs), including N-3-oxododecanoyl-HSL (3OC12-HSL), which is produced and detected by the P. aeruginosa quorum-sensing circuit LasI and LasR. As is true for LasR and many other acyl-HSL-dependent transcription factors, production of soluble QscR in sufficient amounts for purification requires growth of recombinant bacteria in the presence of an appropriate acyl-HSL. QscR is thought to bind 3OC12-HSL relatively weakly compared to LasR, and unlike LasR, binding of purified QscR to target DNA was shown to strongly depend on exogenously added 3OC12-HSL. We show that purified QscR is dimeric at sufficiently high concentrations and monomeric at lower concentrations. Furthermore, QscR bound 3OC12-HSL more tightly than previously believed. Purified QscR retained 3OC12-HSL, and at sufficiently high concentrations, it bound target DNA in the absence of added 3OC12-HSL. We also obtained soluble QscR from recombinant Escherichia coli grown in the presence of N-3-oxohexanoyl-HSL (3OC6-HSL) instead of 3OC12-HSL, and because 3OC6-HSL bound much more loosely to QscR than other acyl-HSLs tested, we were able to exchange 3OC6-HSL with other acyl-HSLs in vitro and then estimate binding affinities of QscR for different acyl-HSLs and for target DNA. Our data support a model whereby QscR polypeptides fold properly in the absence of an acyl-HSL, but soluble, acyl-HSL-free QscR does not accumulate because it is subject to rapid aggregation or proteolysis.

  9. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors.

    PubMed

    Hu, Huizhi; He, Junguo; Liu, Jian; Yu, Huarong; Zhang, Jie

    2016-07-01

    This study verified the effect of N-acyl homoserine lactone (AHL) concentrations on mature biofilm systems. Three concentrations of an AHL mixture were used in the batch test. Introducing of 5nM AHLs significantly increased biofilm activity and increased sludge characteristics, which resulted in better pollutant removal performance, whereas exogenous 50nM and 500nM AHLs limited pollutant removal, especially COD and nitrogen removal. To further identify how exogenous signal molecular affects biofilm system nitrogen removal, analyzing of nitrifying bacteria through real-time polymerase chain reaction (RT-PCR) revealed that these additional signal molecules affect nitrifying to total bacteria ratio. In addition, the running state of the system was stable during 15days of operation without an AHL dose, which suggests that the changes in the system due to AHL are irreversible. PMID:27030953

  10. Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence

    PubMed Central

    Chan, Kok-Gan; Liu, Yi-Chia; Chang, Chien-Yi

    2015-01-01

    Bacteria sense their own population size, tune the expression of responding genes, and behave accordingly to environmental stimuli by secreting signaling molecules. This phenomenon is termed as quorum sensing (QS). By exogenously manipulating the signal transduction bacterial population behaviors could be controlled, which may be done through quorum quenching (QQ). QS related regulatory networks have been proven their involvement in regulating many virulence determinants in pathogenic bacteria in the course of infections. Interfering with QS signaling system could be a novel strategy against bacterial infections and therefore requires more understanding of their fundamental mechanisms. Here we review the development of studies specifically on the inhibition of production of N-acyl-homoserine lactone (AHL), a common proteobacterial QS signal. The opportunistic pathogen, Pseudomonas aeruginosa, equips the alkylquinolone (AQ)-mediated QS which also plays crucial roles in its pathogenicity. The studies in QQ targeting on AQ are also discussed. PMID:26539190

  11. Biofilm formation and acyl homoserine lactone production in Hafnia alvei isolated from raw milk.

    PubMed

    Viana, Eliseth Souza; Campos, Maria Emilene Martino; Ponce, Adriana Reis; Mantovani, Hilário Cuquetto; Vanetti, Maria Cristina Dantas

    2009-01-01

    The objective of this study was to detect the presence of acyl homoserine lactones (AHLs), signal molecules of the quorum sensing system in biofilm formed by Hafnia alvei strains. It also evaluated the effect of synthetic quorum sensing inhibitors in biofilm formation. AHLs were assayed using well diffusion techniques, thin layer chromatography (TLC) and detection directly in biofilm with biomonitors. The extracts obtained from planktonic and sessile cell of H. alvei induced at least two of three monitor strains evaluated. The presence of AHLs with up to six carbon atoms was confirmed by TLC. Biofilm formation by H. alvei was inhibited by furanone, as demonstrated by 96-well assay of crystal violet in microtitre plates and by scanning electron microscopy. The H. alvei 071 hall mutant was deficient in biofilm formation. All these results showed that the quorum sensing system is probably involved in the regulation of biofilm formation by H. alvei. PMID:20140298

  12. Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria.

    PubMed

    Hidalgo-Romano, Benjamin; Gollihar, Jimmy; Brown, Stacie A; Whiteley, Marvin; Valenzuela, Ernesto; Kaplan, Heidi B; Wood, Thomas K; McLean, Robert J C

    2014-11-01

    The LuxI/R quorum-sensing system and its associated N-acylated homoserine lactone (AHL) signal is widespread among Gram-negative bacteria. Although inhibition by indole of AHL quorum signalling in Pseudomonas aeruginosa and Acinetobacter oleivorans has been reported previously, it has not been documented among other species. Here, we show that co-culture with wild-type Escherichia coli, but not with E. coli tnaA mutants that lack tryptophanase and as a result do not produce indole, inhibits AHL-regulated pigmentation in Chromobacterium violaceum (violacein), Pseudomonas chlororaphis (phenazine) and Serratia marcescens (prodigiosin). Loss of pigmentation also occurred during pure culture growth of Chro. violaceum, P. chlororaphis and S. marcescens in the presence of physiologically relevant indole concentrations (0.5-1.0 mM). Inhibition of violacein production by indole was counteracted by the addition of the Chro. violaceum cognate autoinducer, N-decanoyl homoserine lactone (C10-HSL), in a dose-dependent manner. The addition of exogenous indole or co-culture with E. coli also affected Chro. violaceum transcription of vioA (violacein pigment production) and chiA (chitinase production), but had no effect on pykF (pyruvate kinase), which is not quorum regulated. Chro. violaceum AHL-regulated elastase and chitinase activity were inhibited by indole, as was motility. Growth of Chro. violaceum was not affected by indole or C10-HSL supplementation. Using a nematode-feeding virulence assay, we observed that survival of Caenorhabditis elegans exposed to Chro. violaceum, P. chlororaphis and S. marcescens was enhanced during indole supplementation. Overall, these studies suggest that indole represents a general inhibitor of AHL-based quorum signalling in Gram-negative bacteria. PMID:25165125

  13. Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria.

    PubMed

    Hidalgo-Romano, Benjamin; Gollihar, Jimmy; Brown, Stacie A; Whiteley, Marvin; Valenzuela, Ernesto; Kaplan, Heidi B; Wood, Thomas K; McLean, Robert J C

    2014-11-01

    The LuxI/R quorum-sensing system and its associated N-acylated homoserine lactone (AHL) signal is widespread among Gram-negative bacteria. Although inhibition by indole of AHL quorum signalling in Pseudomonas aeruginosa and Acinetobacter oleivorans has been reported previously, it has not been documented among other species. Here, we show that co-culture with wild-type Escherichia coli, but not with E. coli tnaA mutants that lack tryptophanase and as a result do not produce indole, inhibits AHL-regulated pigmentation in Chromobacterium violaceum (violacein), Pseudomonas chlororaphis (phenazine) and Serratia marcescens (prodigiosin). Loss of pigmentation also occurred during pure culture growth of Chro. violaceum, P. chlororaphis and S. marcescens in the presence of physiologically relevant indole concentrations (0.5-1.0 mM). Inhibition of violacein production by indole was counteracted by the addition of the Chro. violaceum cognate autoinducer, N-decanoyl homoserine lactone (C10-HSL), in a dose-dependent manner. The addition of exogenous indole or co-culture with E. coli also affected Chro. violaceum transcription of vioA (violacein pigment production) and chiA (chitinase production), but had no effect on pykF (pyruvate kinase), which is not quorum regulated. Chro. violaceum AHL-regulated elastase and chitinase activity were inhibited by indole, as was motility. Growth of Chro. violaceum was not affected by indole or C10-HSL supplementation. Using a nematode-feeding virulence assay, we observed that survival of Caenorhabditis elegans exposed to Chro. violaceum, P. chlororaphis and S. marcescens was enhanced during indole supplementation. Overall, these studies suggest that indole represents a general inhibitor of AHL-based quorum signalling in Gram-negative bacteria.

  14. Identification of N-acyl homoserine lactones produced by Gluconacetobacter diazotrophicus PAL5 cultured in complex and synthetic media.

    PubMed

    Nieto-Peñalver, Carlos G; Bertini, Elisa V; de Figueroa, Lucía I C

    2012-07-01

    The endophytic diazotrophic Gluconacetobacter diazotrophicus PAL5 was originally isolated from sugarcane (Saccharum officinarum). The biological nitrogen fixation, phytohormones secretion, solubilization of mineral nutrients and phytopathogen antagonism allow its classification as a plant growth-promoting bacterium. The recent genomic sequence of PAL5 unveiled the presence of a quorum sensing (QS) system. QS are regulatory mechanisms that, through the production of signal molecules or autoinducers, permit a microbial population the regulation of the physiology in a coordinated manner. The most studied autoinducers in gram-negative bacteria are the N-acyl homoserine lactones (AHLs). The usage of biosensor strains evidenced the presence of AHL-like molecules in cultures of G. diazotrophicus PAL5 grown in complex and synthetic media. Analysis of AHLs performed by LC-APCI-MS permitted the identification of eight different signal molecules, including C6-, C8-, C10-, C12- and C14-HSL. Mass spectra confirmed that this diazotrophic strain also synthesizes autoinducers with carbonyl substitutions in the acyl chain. No differences in the profile of AHLs could be determined under both culture conditions. However, although the level of short-chain AHLs was not affected, a decrease of 30% in the production of long-chain AHLs could be measured in synthetic medium. PMID:22350020

  15. Acyl-homoserine Lactone from Saccharum × officinarum with Stereochemistry-Dependent Growth Regulatory Activity.

    PubMed

    Olher, Vanessa G A; Ferreira, Nagela P; Souza, Alan G; Chiavelli, Lucas U R; Teixeira, Aline F; Santos, Wanderley D; Santin, Silvana M O; Ferrarese Filho, Osvaldo; Silva, Cleuza C; Pomini, Armando M

    2016-05-27

    Acyl-homoserine lactones (AHLs) are a class of compounds produced by Gram-negative bacteria that are used in a process of chemical communication called quorum sensing. Much is known about how bacteria use these chemical compounds to control the expression of important factors; however, there have been few reports about the presence and effects of AHLs in plants. In this study, the phytochemical study of leaves and culms of sugar cane (Saccharum × officinarum) led to the identification of N-(3-oxo-octanoyl)homoserine lactone. Since the absolute configuration of the natural product could not be determined, both R and S enantiomers of N-(3-oxo-octanoyl)homoserine lactone were synthesized and tested in sugar cane culms. The enantiomers caused changes in the mass and length of buds and roots when used at micromolar concentrations. Using the sugar cane RB96-6928 variety, the S enantiomer increased sprouting of roots more effectively than the R enantiomer. Furthermore, scanning electron microscopy showed that both the R and S enantiomers led to more stretched root cells compared with the control. PMID:27192014

  16. PA-I lectin from Pseudomonas aeruginosa binds acyl homoserine lactones.

    PubMed

    Boteva, Raina N; Bogoeva, Vanya P; Stoitsova, Stoyanka R

    2005-03-14

    The study analyses the binding affinities of Pseudomonas aeruginosa PA-I lectin (PA-IL) to three N-acyl homoserine lactones (AHSL), quorum sensing signal molecules responsible for cell-cell communication in bacteria. It shows that like some plant lectins, PA-IL has a dual function and, besides its carbohydrate-binding capacity, can accommodate AHLS. Formation of complexes between PA-IL and AHSL with acyl side chains composed of 4, 6 or 12 methyl groups is characterized by changes in the emissions of two incorporated fluorescent markers, TNS and IAEDANS, both derivatives of naphthalene sulfonic acid. PA-IL shows increasing affinities to lactones with longer aliphatic side chains. The values of the apparent dissociation constants (K(d)), which are similar to the previously determined K(d) for the adenine high affinity binding, and the similar effects of lactones and adenine on the TNS emission indicate one identical binding site for these ligands, which is suggested to represent the central cavity of the oligomeric molecule formed after the association of the four identical subunits of PA-IL. Intramolecular distances between the fluorescent markers and protein Trp residues are determined by fluorescence resonance energy transfer (FRET).

  17. Production of N-acyl Homoserine Lactones and Virulence Factors of Waterborne Aeromonas hydrophila.

    PubMed

    Chu, Weihua; Liu, Yongwang; Jiang, Yan; Zhu, Wei; Zhuang, Xiyi

    2013-09-01

    Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. The purpose of this study was to investigate the production of N-acyl-homoserine lactone (AHL) signal molecules and some virulence factors, including hemolysins, proteases, extracellular nucleases production and cytotoxicity by waterborne Aeromonas hydrophila. A total of 24 strains isolated from fresh-water or diseased fish were used in the study. The majority A.hydrophila strains produce two AHL molecules (21/24), one is N-butanoyl homoserine lactone (BHL), and the other is N-hexanoyl homoserine lactone (HHL) according to thin-layer chromatography analysis. Among the virulence factors tested, more than 83 % of the isolates produced β haemolysin when inoculated on sheep blood agar, only 50 % of the isolates displayed DNase activity, 75 % of the isolates shown proteolytic activity on skimmed milk plate, and cytotoxic activity was detected in 20 of 24 of the isolates. The strains producing AHLs possessed one or more virulence factors. In conclusion, the production of quorum sensing signal molecules is common among the strains that we examined, and there seems to some relationships between quorum sensing signal production and virulence factors in A. hydrophila.

  18. N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway[C][W][OPEN

    PubMed Central

    Schenk, Sebastian T.; Hernández-Reyes, Casandra; Samans, Birgit; Stein, Elke; Neumann, Christina; Schikora, Marek; Reichelt, Michael; Mithöfer, Axel; Becker, Annette; Kogel, Karl-Heinz; Schikora, Adam

    2014-01-01

    The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection. PMID:24963057

  19. A new role for penicillin acylases: degradation of acyl homoserine lactone quorum sensing signals by Kluyvera citrophila penicillin G acylase.

    PubMed

    Mukherji, Ruchira; Varshney, Nishant Kumar; Panigrahi, Priyabrata; Suresh, C G; Prabhune, Asmita

    2014-03-01

    Use of penicillin acylases for the production of semi-synthetic penicillins is well-known. Escherichia coli penicillin G acylase (EcPGA) has been extensively used for this purpose; however, Kluyvera citrophila penicillin G acylase (KcPGA) is assumed to be a better substitute, owing to its increased resilience to extreme pH conditions and ease of immobilization. In the present article we report a new dimension for the amidase activity of KcPGA by demonstrating its ability to cleave bacterial quorum sensing signal molecules, acyl homoserine lactones (AHL) with acyl chain length of 6-8 with or without oxo-substitution at third carbon position. Initial evidence of AHL degrading capability of KcPGA was obtained using CV026 based bioassay method. Kinetic studies performed at pH 8.0 and 50 °C revealed 3-oxo-C6 HSL to be the best substrate for the enzyme with V(max) and K(m) values of 21.37+0.85 mM/h/mg of protein and 0.1+0.01 mM, respectively. C6 HSL was found to be the second best substrate with V(max) and K(m) value of 10.06+0.27 mM/h/mg of protein and 0.28+0.02 mM, respectively. Molecular modeling and docking studies performed on the active site of the enzyme support these findings by showing the fitting of AHLs perfectly within the hydrophobic pocket of the enzyme active site.

  20. Quorum sensing signal molecules (acylated homoserine lactones) in gram-negative fish pathogenic bacteria.

    PubMed

    Bruhn, Jesper B; Dalsgaard, Inger; Nielsen, Kristian F; Buchholtz, Christiane; Larsen, Jens L; Gram, Lone

    2005-06-14

    The aim of the present study was to investigate the production of quorum sensing signals (specifically acylated homoserine lactones, AHLs) among a selection of strains of Gram-negative fish bacterial pathogens. These signals are involved in the regulation of virulence factors in some human and plant-pathogenic bacteria. A total of 59 strains, representing 9 different fish pathogenic species, were tested against 2 AHL monitor bacteria (Agrobacterium tumefaciens NT1 [pZLR4] and Chromobacterium violaceum CV026) in a well diffusion assay and by thin-layer chromatography (TLC). Representative samples were further characterized by high performance liquid chromatography-high resolution mass spectrometry (HPLC-HR-MS). AHLs were produced by all strains of Aeromonas salmonicida, Aeromonas hydrophila, Yersinia ruckeri, Vibrio salmonicida, and Vibrio vulnificus. Some strains of atypical Aeromonas salmonicida and Vibrio splendidus were also positive. Aeromonas species produced N-butanoyl homoserine lactone (BHL) and N-hexanoyl homoserine lactone (HHL) and 1 additional product, whereas N-3-oxo-hexanoyl homoserine lactone (OHHL) and HHL were detected in Vibrio salmonicida. N-3-oxo-octanoyl homoserine lactone (OOHL) and N-3-octanoyl homoserine lactone (OHL) were detected in Y. ruckeri. AHLs were not detected from strains of Photobacterium damselae, Flavobacterium psychrophilum or Moritella viscosa. AHLs were extracted from fish infected with Y. ruckeri but not from fish infected with A. salmonicida. In conclusion, the production of quorum sensing signals, AHLs, is common among the strains that we examined. If the AHL molecules regulate the expression of the virulence phenotype in these bacteria, as shown to occur in some bacterial pathogens, novel disease control measures may be developed by blocking AHL-mediated communication and suppressing virulence.

  1. Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    PubMed Central

    Barker Rasmussen, Bastian; Fog Nielsen, Kristian; Machado, Henrique; Melchiorsen, Jette; Gram, Lone; Sonnenschein, Eva C.

    2014-01-01

    Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl) (OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were the most common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity of different AHLs, including N-heptanoyl (C7) HL. AHL-producing Vibrionaceae were found in polar, temperate and tropical waters. The AHL profiles correlated with strain phylogeny based on gene sequence homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria. PMID:25419995

  2. Production of Acylated Homoserine Lactones by Psychrotrophic Members of the Enterobacteriaceae Isolated from Foods

    PubMed Central

    Gram, Lone; Christensen, Allan Beck; Ravn, Lars; Molin, Søren; Givskov, Michael

    1999-01-01

    Bacteria are able to communicate and gene regulation can be mediated through the production of acylated homoserine lactone (AHL) signal molecules. These signals play important roles in several pathogenic and symbiotic bacteria. The following study was undertaken to investigate whether AHLs are produced by bacteria found in food at temperatures and NaCl conditions commercially used for food preservation and storage. A minimum of 116 of 154 psychrotrophic Enterobacteriaceae strains isolated from cold-smoked salmon or vacuum-packed chilled meat produced AHLs. Analysis by thin-layer chromatography indicated that N-3-oxo-hexanoyl homoserine lactone was the major AHL of several of the strains isolated from cold-smoked salmon and meat. AHL-positive strains cultured at 5°C in medium supplemented with 4% NaCl produced detectable amounts of AHL(s) at cell densities of 106 CFU/ml. AHLs were detected in cold-smoked salmon inoculated with strains of Enterobacteriaceae stored at 5°C under an N2 atmosphere when mean cell densities increased to 106 CFU/g and above. Similarly, AHLs were detected in uninoculated samples of commercially produced cold-smoked salmon when the level of indigenous Enterobacteriaceae reached 106 CFU/g. This level of Enterobacteriaceae is often found in lightly preserved foods, and AHL-mediated gene regulation may play a role in bacteria associated with food spoilage or food toxicity. PMID:10427034

  3. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    PubMed Central

    Chankhamhaengdecha, Surang; Hongvijit, Suphatra; Srichaisupakit, Akkaraphol; Charnchai, Pattra; Panbangred, Watanalai

    2013-01-01

    Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9%) and 68 (51.5%) of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30 ± 3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces. PMID:23484156

  4. Endophytic actinomycetes: a novel source of potential acyl homoserine lactone degrading enzymes.

    PubMed

    Chankhamhaengdecha, Surang; Hongvijit, Suphatra; Srichaisupakit, Akkaraphol; Charnchai, Pattra; Panbangred, Watanalai

    2013-01-01

    Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9%) and 68 (51.5%) of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30 ± 3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.

  5. Acyl-homoserine lactone-dependent eavesdropping promotes competition in a laboratory co-culture model

    PubMed Central

    Chandler, Josephine R; Heilmann, Silja; Mittler, John E; Greenberg, E Peter

    2012-01-01

    Many Proteobacteria use acyl-homoserine lactone (AHL)-mediated quorum sensing to activate the production of antibiotics at high cell density. Extracellular factors like antibiotics can be considered public goods shared by individuals within a group. Quorum-sensing control of antibiotic production may be important for protecting a niche or competing for limited resources in mixed bacterial communities. To begin to investigate the role of quorum sensing in interspecies competition, we developed a dual-species co-culture model using the soil saprophytes Burkholderia thailandensis (Bt) and Chromobacterium violaceum (Cv). These bacteria require quorum sensing to activate the production of antimicrobial factors that inhibit growth of the other species. We demonstrate that quorum-sensing-dependent antimicrobials can provide a competitive advantage to either Bt or Cv by inhibiting growth of the other species in co-culture. Although the quorum-sensing signals differ for each species, we show that the promiscuous signal receptor encoded by Cv can sense signals produced by Bt, and that this ability to eavesdrop on Bt can provide Cv an advantage in certain situations. We use an in silico approach to investigate the effect of eavesdropping in competition, and show conditions where early activation of antibiotic production resulting from eavesdropping can promote competitiveness. Our work supports the idea that quorum sensing is important for interspecies competition and that promiscuous signal receptors allow eavesdropping on competitors in mixed microbial habitats. PMID:22763647

  6. Regulation of acylated homoserine lactones (AHLs) in beef by spice marination.

    PubMed

    Gopu, Venkadesaperumal; Shetty, Prathapkumar Halady

    2016-06-01

    Quorum sensing (QS) is a signaling mechanism used by bacteria to communicate each other through the release of auto-inducing signaling molecules. Despite the fact that bacteria regulate its phenotypes by QS mechanism, their potential role in meat spoilage is not yet elucidated. In the current study, beef samples were analyzed for its microbial association and for the presence of N-acyl-homoserine-lactone (AHLs) throughout the storage experiments. Isolates were screened for AHLs production and selected spices were screened for their quorum sensing inhibitory (QSI) activity. In addition, effect of spices on AHLs production of Y. enterocolitica was quantified through high performance thin layer chromatography (HP-TLC). Outcome showed that microbial association of beef mainly consists of lactic acid bacteria (LAB) and Enterobacteriaceae. Samples stored at both aerobic and modified atmospheric packaging (MAP) exhibited higher counts whereas; marinated samples stored at MAP exhibited the lowest. It was found that out of 35 isolates Y. enterocolitica induced reporter strain CV026 and its cell-free supernatant contained 26.36 nM/100 ml of AHLs when compared to standard. Among the tested spices, C. cyminum exhibited pronounced results by significantly reducing the AHLs concentration up to 47.75 %. Findings revealed the presence of quorum molecules (AHLs) in beef meat throughout the spoilage process and spices can acts as quorum quenchers to influence the spoilage rate by reducing AHLs production.

  7. Topical Administration of Acylated Homoserine Lactone Improves Epithelialization of Cutaneous Wounds in Hyperglycaemic Rats

    PubMed Central

    Kitamura, Aya; Quinetti, Paes C.; Nakagami, Gojiro; Mugita, Yuko; Oe, Makoto; Noguchi, Hiroshi; Mori, Taketoshi; Sanada, Hiromi

    2016-01-01

    Clinicians often experience delayed epithelialization in diabetic patients, for which a high glucose condition is one of the causes. However, the mechanisms underlying delayed wound closure have not been fully elucidated, and effective treatments to enhance epithelialization in patients with hyperglycaemia have not been established. Here we propose a new reagent, acylated homoserine lactone (AHL), to improve the delayed epithelialization due to the disordered formation of a basement membrane of epidermis in hyperglycaemic rats. Acute hyperglycaemia was induced by streptozotocin injection in this experiment. Full thickness wounds were created on the flanks of hyperglycaemic or control rats. Histochemical and immunohistochemical analyses were performed to identify hyperglycaemia-specific abnormalities in epidermal regeneration by comparison between groups. We then examined the effects of AHL on delayed epithelialization in hyperglycaemic rats. Histological analysis showed the significantly shorter epithelializing tissue (P < 0.05), abnormal structure of basement membrane (fragmentation and immaturity), and hypo- and hyperproliferation of basal keratinocytes in hyperglycaemic rats. Treating the wound with AHL resulted in the decreased abnormalities of basement membrane, normal distribution of proliferating epidermal keratinocytes, and significantly promoted epithelialization (P < 0.05) in hyperglycemic rats, suggesting the improving effects of AHL on abnormal epithelialization due to hyperglycemia. PMID:27404587

  8. Regulation of acylated homoserine lactones (AHLs) in beef by spice marination.

    PubMed

    Gopu, Venkadesaperumal; Shetty, Prathapkumar Halady

    2016-06-01

    Quorum sensing (QS) is a signaling mechanism used by bacteria to communicate each other through the release of auto-inducing signaling molecules. Despite the fact that bacteria regulate its phenotypes by QS mechanism, their potential role in meat spoilage is not yet elucidated. In the current study, beef samples were analyzed for its microbial association and for the presence of N-acyl-homoserine-lactone (AHLs) throughout the storage experiments. Isolates were screened for AHLs production and selected spices were screened for their quorum sensing inhibitory (QSI) activity. In addition, effect of spices on AHLs production of Y. enterocolitica was quantified through high performance thin layer chromatography (HP-TLC). Outcome showed that microbial association of beef mainly consists of lactic acid bacteria (LAB) and Enterobacteriaceae. Samples stored at both aerobic and modified atmospheric packaging (MAP) exhibited higher counts whereas; marinated samples stored at MAP exhibited the lowest. It was found that out of 35 isolates Y. enterocolitica induced reporter strain CV026 and its cell-free supernatant contained 26.36 nM/100 ml of AHLs when compared to standard. Among the tested spices, C. cyminum exhibited pronounced results by significantly reducing the AHLs concentration up to 47.75 %. Findings revealed the presence of quorum molecules (AHLs) in beef meat throughout the spoilage process and spices can acts as quorum quenchers to influence the spoilage rate by reducing AHLs production. PMID:27478224

  9. Second Acyl Homoserine Lactone Production System in the Extreme Acidophile Acidithiobacillus ferrooxidans▿

    PubMed Central

    Rivas, Mariella; Seeger, Michael; Jedlicki, Eugenia; Holmes, David S.

    2007-01-01

    The acidophilic proteobacterium Acidithiobacillus ferrooxidans is involved in the industrial biorecovery of copper. It is found in acidic environments in biofilms and is important in the biogeochemical cycling of metals and nutrients. Its genome contains a cluster of four genes, glyQ, glysS, gph, and act, that are predicted to encode the α and β subunits of glycine tRNA synthetase, a phosphatase, and an acyltransferase, respectively (GenBank accession no. DQ149607). act, cloned and expressed in Escherichia coli, produces acyl homoserine lactones (AHLs) principally of chain length C14 according to gas chromatography and mass spectrometry measurements. The AHLs have biological activity as shown by in vivo studies using the reporter strain Sinorhizobium meliloti Rm41 SinI−. Reverse transcription-PCR (RT-PCR) experiments indicate that the four genes are expressed as a single transcript, demonstrating that they constitute an operon. According to semiquantitative RT-PCR results, act is expressed more highly when A. ferrooxidans is grown in medium containing iron than when it is grown in medium containing sulfur. Since AHLs are important intercellular signaling molecules used by many bacteria to monitor their population density in quorum-sensing control of gene expression, this result suggests that A. ferrooxidans has two quorum-sensing systems, one based on Act, as described herein, and the other based on a Lux-like quorum-sensing system, reported previously. The latter system was shown to be upregulated in A. ferrooxidans grown in sulfur medium, suggesting that the two quorum-sensing systems respond to different environmental signals that may be related to their abilities to colonize and use different solid sulfur- and iron-containing minerals. PMID:17351095

  10. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase.

    PubMed

    Chung, Jiwoung; Goo, Eunhye; Yu, Sangheon; Choi, Okhee; Lee, Jeehyun; Kim, Jinwoo; Kim, Hongsup; Igarashi, Jun; Suga, Hiroaki; Moon, Jae Sun; Hwang, Ingyu; Rhee, Sangkee

    2011-07-19

    Quorum sensing (QS) controls certain behaviors of bacteria in response to population density. In gram-negative bacteria, QS is often mediated by N-acyl-L-homoserine lactones (acyl-HSLs). Because QS influences the virulence of many pathogenic bacteria, synthetic inhibitors of acyl-HSL synthases might be useful therapeutically for controlling pathogens. However, rational design of a potent QS antagonist has been thwarted by the lack of information concerning the binding interactions between acyl-HSL synthases and their ligands. In the gram-negative bacterium Burkholderia glumae, QS controls virulence, motility, and protein secretion and is mediated by the binding of N-octanoyl-L-HSL (C8-HSL) to its cognate receptor, TofR. C8-HSL is synthesized by the acyl-HSL synthase TofI. In this study, we characterized two previously unknown QS inhibitors identified in a focused library of acyl-HSL analogs. Our functional and X-ray crystal structure analyses show that the first inhibitor, J8-C8, binds to TofI, occupying the binding site for the acyl chain of the TofI cognate substrate, acylated acyl-carrier protein. Moreover, the reaction byproduct, 5'-methylthioadenosine, independently binds to the binding site for a second substrate, S-adenosyl-L-methionine. Closer inspection of the mode of J8-C8 binding to TofI provides a likely molecular basis for the various substrate specificities of acyl-HSL synthases. The second inhibitor, E9C-3oxoC6, competitively inhibits C8-HSL binding to TofR. Our analysis of the binding of an inhibitor and a reaction byproduct to an acyl-HSL synthase may facilitate the design of a new class of QS-inhibiting therapeutic agents.

  11. Short Chain N-acyl Homoserine Lactone Production by Soil Isolate Burkholderia sp. Strain A9

    PubMed Central

    Chen, Jian Woon; Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    In the bacteria kingdom, quorum sensing (QS) is a cell-to-cell communication that relies on the production of and response to specific signaling molecules. In proteobacteria, N-acylhomoserine lactones (AHLs) are the well-studied signaling molecules. The present study aimed to characterize the production of AHL of a bacterial strain A9 isolated from a Malaysian tropical soil. Strain A9 was identified as Burkholderia sp. using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rDNA nucleotide sequence analysis. AHL production by A9 was detected with two biosensors, namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Thin layer chromatography results showed N–hexanoylhomoserine lactone (C6-HSL) and N–octanoylhomoserine lactone (C8-HSL) production. Unequivocal identification of C6-HSL and C8-HSL was achieved by high resolution triple quadrupole liquid chromatography-mass spectrometry analysis. We have demonstrated that Burkholderia sp. strain A9 produces AHLs that are known to be produced by other Burkholderia spp. with CepI/CepR homologs. PMID:24084115

  12. N-Acyl-Homoserine Lactone Inhibition of Rhizobial Growth Is Mediated by Two Quorum-Sensing Genes That Regulate Plasmid Transfer

    PubMed Central

    Wilkinson, A.; Danino, V.; Wisniewski-Dyé, F.; Lithgow, J. K.; Downie, J. A.

    2002-01-01

    The growth of some strains of Rhizobium leguminosarum bv. viciae is inhibited by N-(3-hydroxy-7-cis tetradecenoyl)-l-homoserine lactone (3OH-C14:1-HSL), which was previously known as the small bacteriocin before its characterization as an N-acyl homoserine lactone (AHL). Tn5-induced mutants of R. leguminosarum bv. viciae resistant to 3OH-C14:1-HSL were isolated, and mutations in two genes were identified. These genes, bisR and triR, which both encode LuxR-type regulators required for plasmid transfer, were found downstream of an operon containing trb genes involved in the transfer of the symbiotic plasmid pRL1JI. The first gene in this operon is traI, which encodes an AHL synthase, and the trbBCDEJKLFGHI genes were found between traI and bisR. Mutations in bisR, triR, traI, or trbL blocked plasmid transfer. Using gene fusions, it was demonstrated that bisR regulates triR in response to the presence of 3OH-C14:1-HSL. In turn, triR is then required for the induction of the traI-trb operon required for plasmid transfer. bisR also represses expression of cinI, which is chromosomally located and determines the level of production of 3OH-C14:1-HSL. The cloned bisR and triR genes conferred 3OH-C14:1-HSL sensitivity to strains of R. leguminosarum bv. viciae normally resistant to this AHL. Furthermore, bisR and triR made Agrobacterium tumefaciens sensitive to R. leguminosarum bv. viciae strains producing 3OH-C14:1-HSL. Analysis of patterns of growth inhibition using mutant strains and synthetic AHLs revealed that maximal growth inhibition required, in addition to 3OH-C14:1-HSL, the presence of other AHLs such as N-octanoyl-l-homoserine lactone and/or N-(3-oxo-octanoyl)-l-homoserine lactone. In an attempt to identify the causes of growth inhibition, a strain of R. leguminosarum bv. viciae carrying cloned bisR and triR was treated with an AHL extract containing 3OH-C14:1-HSL. N-terminal sequencing of induced proteins revealed one with significant similarity to the protein

  13. Acyl-homoserine lactones from Erwinia psidii R. IBSBF 435T, a guava phytopathogen (Psidium guajava L.).

    PubMed

    Pomini, Armando M; Manfio, Gilson P; Araújo, Welington L; Marsaioli, Anita J

    2005-08-10

    The phytopathogen Erwinia psidii R. IBSBF 435T causes rot in branches, flowers, and fruits of guava (Psidium guajava L.), being responsible for crop losses, and has no effective control. It was demonstrated that this strain produces two compounds [S-(-)-N-hexanoyl and N-heptanoyl-homoserine lactone], both belonging to the class of quorum-sensing signaling substances. A protocol using gas chromatography-flame ionization detection with chiral stationary phase is described for the absolute configuration determination of a natural acyl-homoserine lactone. Biological assays with specific reporter and synthesis of identified substances are also described. This is the first report on the N-heptanoyl-homoserine lactone occurrence in the Erwinia genus.

  14. LasR receptor for detection of long-chain quorum-sensing signals: identification of N-acyl-homoserine lactones encoded by the avsI locus of Agrobacterium vitis.

    PubMed

    Savka, Michael A; Le, Phuong T; Burr, Thomas J

    2011-01-01

    Bacterial biosensor strains have greatly facilitated the rapid discovery, isolation, and study of quorum-sensing systems. In this study, we determined the relative sensitivity of a LasR-based E. coli bacterial bioluminescence biosensor JM109 (pSB1075) for 13 diverse long-chain N-acyl-homoserine lactones (AHLs) including oxygen-substituted and -unsubstituted AHLs containing 14, 16, and 18 carbons and with and without double bonds. Furthermore, we show by bioassay, HPLC, and GC/MS that four long-chain AHLs of the C16-HSL family are encoded by the avsI gene of Agrobacterium vitis strain F2/5, a non-tumorigenic strain that inhibits pathogenic strains of A. vitis from causing crown gall on grape. The four C16-HSLs include: C16-HSL, N-hexadecanoyl homoserine lactone; 3-oxo-C16-HSL, N-(3-oxohexadecanoyl)homoserine lactone; C16:1-HSL, N-(cis-9-octadecenoyl)homoserine lactone; and 3-oxo-C16:1-HSL, N-(3-oxo-cis-11-hexadecenoyl)homoserine lactone. Thus, the LasR-based bioluminescent biosensor tested in this study should serve as a useful tool for the detection of various long-chain AHLs with and without double bonds as well as those oxylated at the third carbon from uninvestigated species. PMID:20514483

  15. Autoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen.

    PubMed

    Molina, Lázaro; Rezzonico, Fabio; Défago, Geneviève; Duffy, Brion

    2005-05-01

    Erwinia amylovora causes fire blight disease of apple, pear, and other members of the Rosaceae. Here we present the first evidence for autoinduction in E. amylovora and a role for an N-acyl-homoserine lactone (AHL)-type signal. Two major plant virulence traits, production of extracellular polysaccharides (amylovoran and levan) and tolerance to free oxygen radicals, were controlled in a bacterial-cell-density-dependent manner. Two standard autoinducer biosensors, Agrobacterium tumefaciens NTL4 and Vibrio harveyi BB886, detected AHL in stationary-phase cultures of E. amylovora. A putative AHL synthase gene, eamI, was partially sequenced, which revealed homology with autoinducer genes from other bacterial pathogens (e.g., carI, esaI, expI, hsII, yenI, and luxI). E. amylovora was also found to carry eamR, a convergently transcribed gene with homology to luxR AHL activator genes in pathogens such as Erwinia carotovora. Heterologous expression of the Bacillus sp. strain A24 acyl-homoserine lactonase gene aiiA in E. amylovora abolished induction of AHL biosensors, impaired extracellular polysaccharide production and tolerance to hydrogen peroxide, and reduced virulence on apple leaves. PMID:15838048

  16. Complete genome sequencing of Pandoraea pnomenusa RB38 and Molecular Characterization of Its N-acyl homoserine lactone synthase gene ppnI

    PubMed Central

    Lim, Yan-Lue; Ee, Robson; How, Kah-Yan; Lee, Siew-Kim; Yong, Delicia; Tee, Kok Keng; Yin, Wai-Fong

    2015-01-01

    In this study, we sequenced the genome of Pandoraea pnomenusa RB38 using Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. A pair of cognate luxI/R homologs was identified where the luxI homolog, ppnI, was found adjacent to a luxR homolog, ppnR1. An additional orphan luxR homolog, ppnR2, was also discovered. Multiple sequence alignment and phylogenetic analysis revealed that ppnI is an N-acyl homoserine lactone (AHL) synthase gene that is distinct from those of the nearest phylogenetic neighbor viz. Burkholderia spp. High resolution tandem mass spectrometry (LC-MS/MS) analysis showed that Escherichia coli BL21 harboring ppnI produced a similar AHL profile (N-octanoylhomoserine lactone, C8-HSL) as P. pnomenusa RB38, the wild-type donor strain, confirming that PpnI directed the synthesis of AHL in P. pnomenusa RB38. To our knowledge, this is the first documentation of the luxI/R homologs of the genus Pandoraea. PMID:26336650

  17. N-Acyl-Homoserine Lactone Confers Resistance toward Biotrophic and Hemibiotrophic Pathogens via Altered Activation of AtMPK61[C][W

    PubMed Central

    Schikora, Adam; Schenk, Sebastian T.; Stein, Elke; Molitor, Alexandra; Zuccaro, Alga; Kogel, Karl-Heinz

    2011-01-01

    Pathogenic and symbiotic bacteria rely on quorum sensing to coordinate the collective behavior during the interactions with their eukaryotic hosts. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as signals in such communication. Here we show that plants have evolved means to perceive AHLs and that the length of acyl moiety and the functional group at the γ position specify the plant’s response. Root treatment with the N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) reinforced the systemic resistance to the obligate biotrophic fungi Golovinomyces orontii in Arabidopsis (Arabidopsis thaliana) and Blumeria graminis f. sp. hordei in barley (Hordeum vulgare) plants. In addition, oxo-C14-HSL-treated Arabidopsis plants were more resistant toward the hemibiotrophic bacterial pathogen Pseudomonas syringae pv tomato DC3000. Oxo-C14-HSL promoted a stronger activation of mitogen-activated protein kinases AtMPK3 and AtMPK6 when challenged with flg22, followed by a higher expression of the defense-related transcription factors WRKY22 and WRKY29, as well as the PATHOGENESIS-RELATED1 gene. In contrast to wild-type Arabidopsis and mpk3 mutant, the mpk6 mutant is compromised in the AHL effect, suggesting that AtMPK6 is required for AHL-induced resistance. Results of this study show that AHLs commonly produced in the rhizosphere are crucial factors in plant pathology and could be an agronomic issue whose full impact has to be elucidated in future analyses. PMID:21940998

  18. Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester.

    PubMed Central

    Flavier, A B; Ganova-Raeva, L M; Schell, M A; Denny, T P

    1997-01-01

    Bacteria employ autoinduction systems to sense the onset of appropriate cell density for expression of developmental genes. In many gram-negative bacteria, autoinduction involves the production of and response to diffusible acylated-homoserine lactones (acyl-HSLs) and is mediated by members of the LuxR and LuxI families. Ralstonia (Pseudomonas) solanacearum, a phytopathogenic bacterium that appears to autoregulate its virulence genes, produces compounds that promote expression of several heterologous acyl-HSL-responsive reporter gene constructs. High-pressure liquid chromatography of highly concentrated ethyl acetate extracts revealed that culture supernatants of strain AW1 contained two compounds with retention times similar to N-hexanoyl- and N-octanoyl-HSL. To investigate the role of these acyl-HSLs in R. solanacearum virulence gene expression, transposon mutants that were deficient for inducing an acyl-HSL-responsive reporter in Agrobacterium tumefaciens were generated. Three loci involved in normal acyl-HSL production were identified, one of which was shown to contain the divergently transcribed solR and solI genes, the luxR and luxI homologs, respectively. A 4.1-kb fragment containing solR and solI enabled all of the mutants (regardless of the locus inactivated) and a naturally acyl-HSL-defective strain of R. solanacearum to produce acyl-HSLs. Inactivation of solI abolished production of all detectable acyl-HSLs but affected neither the expression of virulence genes in culture nor the ability to wilt tomato plants. AW1 has a functional autoinduction system, because (i) expression of solI required SolR and acyl-HSL and (ii) expression of a gene linked to solR and solI, designated aidA, was acyl-HSL dependent. Because AidA has no homologs in the protein databases, its discovery provided no clues as to the role of acyl-HSLs in R. solanacearum gene regulation. However, expression of solR and solI required the global LysR-type virulence regulator PhcA, and both

  19. Characterization of N-acyl homoserine lactones (AHLs) producing bacteria isolated from vacuum-packaged refrigerated turbot (Scophthalmus maximus) and possible influence of exogenous AHLs on bacterial phenotype.

    PubMed

    Zhang, Caili; Zhu, Suqin; Jatt, Abdul-Nabi; Zeng, Mingyong

    2016-01-01

    Quorum sensing (QS) is a cell-to-cell communication mechanism through which microbial cells communicate and regulate their wide variety of biological activities. N-acyl homoserine lactones (AHLs) are considered to be the most important QS signaling molecules produced by several Gram-negative bacteria. The present study aimed to screen the AHLs-producing bacteria from spoiled vacuum-packaged refrigerated turbot (Scophthalmus maximus) by biosensor assays, and the profiles of AHLs produced by these bacteria were determined using reversed-phase thin-layer chromatography (RP-TLC) and gas chromatography-mass spectrometry (GC-MS). Effects of exogenous AHLs and QS inhibitor (QSI) on the phenotypes (i.e., extracellular proteolytic activity and biofilm formation) of the AHLs-producing bacteria were also evaluated. Our results demonstrated that eight out of twenty-two isolates were found to produce AHLs. Three of the AHLs-producing isolates were identified as Serratia sp., and the other five were found to belong to the family of Aeromonas. Two isolates (i.e., S. liquefaciens A2 and A. sobria B1) with higher AHLs-producing activities were selected for further studies. Mainly, RP-TLC and GC-MS analysis revealed three AHLs, i.e., 3-oxo-C6-HSL, C8-HSL and C10-HSL were produced by S. liquefaciens A2, while five AHLs, i.e., C4-HSL, C6-HSL, C8-HSL, C10-HSL, and C12-HSL, were produced by A. sobria B1. Moreover, production of AHLs in both bacterial strains were found to be density-dependent, and the AHLs activity reached a maximum level in their middle logarithmic phase and decreased in the stationary phase. The addition of exogenous AHLs and QSI decreased the specific protease activity both of the Serratia A2 and Aeromonas B1. Exogenous AHLs inhibited the biofilm formation of Serratia A2 while it enhanced the biofilm formation in Aeromonas B1. QSI inhibited the specific protease activity and biofilm formation in both bacterial strains. PMID:27118073

  20. Characterization of N-acyl homoserine lactones (AHLs) producing bacteria isolated from vacuum-packaged refrigerated turbot (Scophthalmus maximus) and possible influence of exogenous AHLs on bacterial phenotype.

    PubMed

    Zhang, Caili; Zhu, Suqin; Jatt, Abdul-Nabi; Zeng, Mingyong

    2016-01-01

    Quorum sensing (QS) is a cell-to-cell communication mechanism through which microbial cells communicate and regulate their wide variety of biological activities. N-acyl homoserine lactones (AHLs) are considered to be the most important QS signaling molecules produced by several Gram-negative bacteria. The present study aimed to screen the AHLs-producing bacteria from spoiled vacuum-packaged refrigerated turbot (Scophthalmus maximus) by biosensor assays, and the profiles of AHLs produced by these bacteria were determined using reversed-phase thin-layer chromatography (RP-TLC) and gas chromatography-mass spectrometry (GC-MS). Effects of exogenous AHLs and QS inhibitor (QSI) on the phenotypes (i.e., extracellular proteolytic activity and biofilm formation) of the AHLs-producing bacteria were also evaluated. Our results demonstrated that eight out of twenty-two isolates were found to produce AHLs. Three of the AHLs-producing isolates were identified as Serratia sp., and the other five were found to belong to the family of Aeromonas. Two isolates (i.e., S. liquefaciens A2 and A. sobria B1) with higher AHLs-producing activities were selected for further studies. Mainly, RP-TLC and GC-MS analysis revealed three AHLs, i.e., 3-oxo-C6-HSL, C8-HSL and C10-HSL were produced by S. liquefaciens A2, while five AHLs, i.e., C4-HSL, C6-HSL, C8-HSL, C10-HSL, and C12-HSL, were produced by A. sobria B1. Moreover, production of AHLs in both bacterial strains were found to be density-dependent, and the AHLs activity reached a maximum level in their middle logarithmic phase and decreased in the stationary phase. The addition of exogenous AHLs and QSI decreased the specific protease activity both of the Serratia A2 and Aeromonas B1. Exogenous AHLs inhibited the biofilm formation of Serratia A2 while it enhanced the biofilm formation in Aeromonas B1. QSI inhibited the specific protease activity and biofilm formation in both bacterial strains.

  1. Intracellular Ca(2+) mobilization and kinase activity during acylated homoserine lactone-dependent quorum sensing in Serratia liquefaciens.

    PubMed

    Werthén, M; Lundgren, T

    2001-03-01

    Quorum sensing in Gram-negative bacteria involves acylated homoserine lactones (AHLs) and a transcription factor, activated by the AHLs. In this study, a possible involvement of intracellular Ca(2+) as second messenger and/or protein kinase activity during signal transduction is analyzed. When N-hexanoyl-l-homoserine lactone was added to a suspension of Fura-2-loaded Serratia liquefaciens, there was a decline in [Ca(2+)](i), measured as a decrease in the Fura-2 fluorescence ratio. As controls, the addition of the signal molecule N-3-oxohexanoyl-l-homoserine lactone, which is not produced by S. liquefaciens, did not induce changes in [Ca(2+)](i). Using a protein kinase activity assay on AHL-stimulated cells, an increase in kinase activity after N-butanoyl-l-homoserine lactone stimulation of S. liquefaciens cells was detected, whereas the kinase activity induced by N-3-oxohexanoyl-l-homoserine lactone was not statistically significant. The conclusion from this study is that changes in [Ca(2+)](i) are involved in quorum sensing signal transduction in the Gram-negative bacteria S. liquefaciens. We also conclude that kinase activity is induced in S. liquefaciens upon AHL stimulation. We suggest that the transient intracellular [Ca(2+)] changes and kinase activity, activated by the AHL signal, are critical for the quorum-sensing signal transduction.

  2. Short Chain N-Acyl Homoserine Lactone Production in Tropical Marine Vibrio sinaloensis Strain T47

    PubMed Central

    Tan, Pui-Wan; Tan, Wen-Si; Yunos, Nina Yusrina Muhamad; Mohamad, Nur Izzati; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing (QS), acts as one of the gene regulatory systems that allow bacteria to regulate their physiological activities by sensing the population density with synchronization of the signaling molecules that they produce. Here, we report a marine isolate, namely strain T47, and its unique AHL profile. Strain T47 was identified using 16S rRNA sequence analysis confirming that it is a member of Vibrio closely clustered to Vibrio sinaloensis. The isolated V. sinaloensis strain T47 was confirmed to produce N-butanoyl-L-homoserine lactone (C4-HSL) by using high resolution liquid chromatography tandem mass spectrometry. V. sinaloensis strain T47 also formed biofilms and its biofilm formation could be affected by anti-QS compound (cathechin) suggesting this is a QS-regulated trait in V. sinaloensis strain T47. To our knowledge, this is the first documentation of AHL and biofilm production in V. sinaloensis strain T47. PMID:25046018

  3. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean.

    PubMed

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants' pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to

  4. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean

    PubMed Central

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants’ pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to

  5. Two G-protein-coupled-receptor candidates, Cand2 and Cand7, are involved in Arabidopsis root growth mediated by the bacterial quorum-sensing signals N-acyl-homoserine lactones.

    PubMed

    Jin, Guoping; Liu, Fang; Ma, Hong; Hao, Shaoyan; Zhao, Qian; Bian, Zirui; Jia, Zhenhua; Song, Shuishan

    2012-01-20

    Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules to coordinate their group behavior. Recently, it was shown that plants can perceive and respond to these bacterial AHLs. However, little is known about the molecular mechanism underlying the response of plants to bacterial QS signals. In this study, we show that the promotion of root elongation in wild type Arabidopsis thaliana induced by the AHLs N-3-oxo-hexanoyl-homoserine lactone (3OC6-HSL) or N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) was completely abolished in plants with loss-of-function mutations in two candidate G-protein Coupled Receptors (GPCRs), Cand2 and Cand7. Furthermore, real-time PCR analysis revealed that the expression levels of Cand2 and Cand7 were elevated in plants treated with 3OC6-HSL or 3OC8-HSL. These results suggest that Cand2 and Cand7 are involved in the regulation of root growth by bacterial AHLs and that GPCRs play a role in mediating interactions between plants and microbes.

  6. Labrenzia sp. BM1: a quorum quenching bacterium that degrades N-acyl homoserine lactones via lactonase activity.

    PubMed

    Ghani, Norshazliza Ab; Norizan, Siti Nur Maisarah; Chan, Xin Yue; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    We report the degradation of quorum sensing N-acylhomoserine lactone molecules by a bacterium isolated from a Malaysian marine water sample. MALDI-TOF and phylogenetic analysis indicated this isolate BM1 clustered closely to Labrenzia sp. The quorum quenching activity of this isolate was confirmed by using a series of bioassays and rapid resolution liquid chromatography analysis. Labrenzia sp. degraded a wide range of N-acylhomoserine lactones namely N-(3-hexanoyl)-L-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-L-homoserine lactone (3-hydroxy-C6-HSL). Re-lactonisation bioassays confirmed Labrenzia sp. BM1 degraded these signalling molecules efficiently via lactonase activity. To the best of our knowledge, this is the first documentation of a Labrenzia sp. capable of degrading N-acylhomoserine lactones and confirmation of its lactonase-based mechanism of action.

  7. Labrenzia sp. BM1: A Quorum Quenching Bacterium That Degrades N-acyl Homoserine Lactones via Lactonase Activity

    PubMed Central

    Ghani, Norshazliza Ab; Norizan, Siti Nur Maisarah; Chan, Xin Yue; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    We report the degradation of quorum sensing N-acylhomoserine lactone molecules by a bacterium isolated from a Malaysian marine water sample. MALDI-TOF and phylogenetic analysis indicated this isolate BM1 clustered closely to Labrenzia sp. The quorum quenching activity of this isolate was confirmed by using a series of bioassays and rapid resolution liquid chromatography analysis. Labrenzia sp. degraded a wide range of N-acylhomoserine lactones namely N-(3-hexanoyl)-l-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-l-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-l-homoserine lactone (3-hydroxy-C6-HSL). Re-lactonisation bioassays confirmed Labrenzia sp. BM1 degraded these signalling molecules efficiently via lactonase activity. To the best of our knowledge, this is the first documentation of a Labrenzia sp. capable of degrading N-acylhomoserine lactones and confirmation of its lactonase-based mechanism of action. PMID:24995373

  8. N-Acyl Homoserine Lactones in Diverse Pectobacterium and Dickeya Plant Pathogens: Diversity, Abundance, and Involvement in Virulence

    PubMed Central

    Crépin, Alexandre; Beury-Cirou, Amélie; Barbey, Corinne; Farmer, Christine; Hélias, Valérie; Burini, Jean-François; Faure, Denis; Latour, Xavier

    2012-01-01

    Soft-rot bacteria Pectobacterium and Dickeya use N-acyl homoserine lactones (NAHSLs) as diffusible signals for coordinating quorum sensing communication. The production of NAHSLs was investigated in a set of reference strains and recently-collected isolates, which belong to six species and share the ability to infect the potato host plant. All the pathogens produced different NAHSLs, among which the 3-oxo-hexanoyl- and the 3-oxo-octanoyl-l-homoserine lactones represent at least 90% of total produced NAHSL-amounts. The level of NAHSLs varied from 0.6 to 2 pg/cfu. The involvement of NAHSLs in tuber maceration was investigated by electroporating a quorum quenching vector in each of the bacterial pathogen strains. All the NAHSL-lactonase expressing strains produced a lower amount of NAHSLs as compared to those harboring the empty vector. Moreover, all except Dickeya dadantii 3937 induced a lower level of symptoms in potato tuber assay. Noticeably, aggressiveness appeared to be independent of both nature and amount of produced signals. This work highlights that quorum sensing similarly contributed to virulence in most of the tested Pectobacterium and Dickeya, even the strains had been isolated recently or during the past decades. Thus, these key regulatory-molecules appear as credible targets for developing anti-virulence strategies against these plant pathogens. PMID:22737020

  9. Genomic Analysis Reveals Versatile Organisms for Quorum Quenching Enzymes: Acyl-Homoserine Lactone-Acylase and -Lactonase

    PubMed Central

    Kalia, Vipin Chandra; Raju, Sajan C; Purohit, Hemant J

    2011-01-01

    Microbial virulence and their resistance to multiple drugs have obliged researchers to look for novel drug targets. Virulence of pathogenic microbes is regulated by signal molecules such as acylated homoserine lactone (AHL) produced during a cell density dependent phenomenon of quorum sensing (QS). In contrast, certain microbes produce AHL-lactonases and -acylases to degrade QS signals, also termed as quorum quenching. Mining sequenced genome databases has revealed organisms possessing conserved domains for AHL-lactonases and –acylases: i) Streptomyces (Actinobacteria), ii) Deinococcus (Deinococcus-Thermus), iii) Hyphomonas (α-Proteobacteria), iv) Ralstonia (β-Proteobacteria), v) Photorhabdus (γ-Proteobacteria), and certain marine gamma proteobacterium. Presence of genes for both the enzymes within an organism was observed in the following: i) Deinococcus radiodurans R1, ii) Hyphomonas neptunium ATCC 15444 and iii) Photorhabdus luminescens subsp. laumondii TTO1. These observations are supported by the presence motifs for lactonase and acylase in these strains. Phylogenetic analysis and multiple sequence alignment of the gene sequences for AHL-lactonases and –acylases have revealed consensus sequences which can be used to design primers for amplifying these genes even among mixed cultures and metagenomes. Quorum quenching can be exploited to prevent food spoilage, bacterial infections and bioremediation. PMID:21660112

  10. The quorum sensing molecule N-acyl homoserine lactone produced by Acinetobacter baumannii displays antibacterial and anticancer properties.

    PubMed

    John, James; Saranathan, Rajagopalan; Adigopula, Lakshmi Narayana; Thamodharan, Vasanth; Singh, Satya Prakash; Lakshmi, T Pragna; CharanTej, Mallu Abhiram; Rao, R Srinivasa; Krishna, R; Rao, H Surya Prakash; Prashanth, K

    2016-10-01

    Secretory N-acyl homoserine lactones (AHLs) mediate quorum sensing (QS) in bacteria. AHLs are shown to be inhibitory for an unrelated group of bacteria and might mimic host signalling elements, thereby subverting the regulatory events in host cells. This study investigated the AHL produced by Acinetobacter baumannii and analysed its effect on other bacterial species and mammalian cells. Chemically characterized AHL had an m/z value of 325 with a molecular formula C18H31NO4 and showed its inhibitory potential against Staphylococcus aureus. Molecular docking studies identified D-alanine-D-alanine synthetase A, a cell wall synthesizing enzyme of S. aureus having a strong binding affinity towards AHL. Electron microscopy showed the disruption and sloughing off of the S. aureus cell wall when treated with AHL. In vitro experiments revealed that this bacteriostatic AHL showed time-dependent activity and induced apoptosis in cancer cell lines. This compound could be a potential structural backbone for constructing new AHL analogues against S. aureus. The findings emphasize the need to re-evaluate all previously characterized AHLs for any additional new biological functions other than QS. PMID:27643959

  11. Production of N-acyl homoserine lactones by gram-negative bacteria isolated from contact lens wearers.

    PubMed

    Zhu, H; Thuruthyil, S J; Willcox, M D

    2001-06-01

    The purpose of this study was to investigate the production of N-acyl-homoserine lactone (AHL) signal molecules in ocular gram-negative bacteria. A total of 91 ocular strains isolated from contact lens adverse response patients and asymptomatic subjects were used in the study. These included Acinetobacter, Aeromonas hydrophila, Escherichia coli, Haemophilus influenzae, Klebsiella oxytoca, Pseudomonas aeruginosa, Serratia liquefaciens, Serratia marcescens, and Stenotrophomonas maltophilia. The biosensor strains Chromobacterium violaceum mutant CV026 and Agrobacterium tumefaciens A136 were used for detection of AHL signal molecules. The majority of A. hydrophila, P. aeruginosa, and S. liquefaciens strains produced more than one AHL molecule. Serratia marcescens strains were AHL positive only under detection of A136. The rest of the test species did not show any AHL production under the current detection system. These findings indicate that AHL-mediated quorum-sensing systems are present in some of the ocular bacteria, and the different signal molecules may be involved with the quorum-sensing pathway in the other bacterial species.

  12. Targeting N-acyl-homoserine-lactones to mitigate membrane biofouling based on quorum sensing using a biofouling reducer.

    PubMed

    Siddiqui, Muhammad Faisal; Sakinah, Mimi; Singh, Lakhveer; Zularisam, A W

    2012-10-31

    Exploring novel biological anti-quorum sensing (QS) agents to control membrane biofouling is of great worth in order to allow sustainable performance of membrane bioreactors (MBRs) for wastewater treatment. In recent studies, QS inhibitors have provided evidence of alternative route to control membrane biofouling. This study investigated the role of Piper betle extract (PBE) as an anti-QS agent to mitigate membrane biofouling. Results demonstrated the occurrence of the N-acyl-homoserine-lactone (AHL) autoinducers (AIs), correlate QS activity and membrane biofouling mitigation. The AIs production in bioreactor was confirmed using an indicator strain Agrobacterium tumefaciens (NTL4) harboring plasmid pZLR4. Moreover, three different AHLs were found in biocake using thin layer chromatographic analysis. An increase in extracellular polymeric substances (EPS) and transmembrane pressure (TMP) was observed with AHL activity of the biocake during continuous MBR operation, which shows that membrane biofouling was in close relationship with QS activity. PBE was verified to mitigate membrane biofouling via inhibiting AIs production. SEM analysis further confirmed the effect of PBE on EPS and biofilm formation. These results exhibited that PBE could be a novel agent to target AIs for mitigation of membrane biofouling. Further work can be carried out to purify the active compound of Piper betle extract to target the QS to mitigate membrane biofouling.

  13. Sodium houttuyfonate affects production of N-acyl homoserine lactone and quorum sensing-regulated genes expression in Pseudomonas aeruginosa

    PubMed Central

    Wu, Daqiang; Huang, Weifeng; Duan, Qiangjun; Li, Fang; Cheng, Huijuan

    2014-01-01

    Quorum sensing (QS) is a means of cell-to-cell communication that uses diffusible signaling molecules that are sensed by the population to determine population density, thus allowing co-ordinate gene regulation in response to population density. In Pseudomonas aeruginosa, production of the QS signaling molecule, N-acyl homoserine lactone (AHL), co-ordinates expression of key factors of pathogenesis, including biofilm formation and toxin secretion. It is predicted that the inhibition of AHL sensing would provide an effective clinical treatment to reduce the expression of virulence factors and increase the effectiveness of antimicrobial agents. We previously demonstrated that sodium houttuyfonate (SH), commonly used in traditional Chinese medicine to treat infectious diseases, can effectively inhibit QS-regulated processes, including biofilm formation. Here, using a model system, we demonstrate that SH causes the dose-dependent inhibition of AHL production, through down-regulation of the AHL biosynthesis gene, lasI. Addition of SH also resulted in down-regulation of expression of the AHL sensor and transcriptional regulator, LasR, and inhibited the production of the QS-regulated virulence factors, pyocyanin and LasA. These results suggest that the antimicrobial activity of SH may be due to its ability to disrupt QS in P. aeruginosa. PMID:25505457

  14. A New N-Acyl Homoserine Lactone Synthase in an Uncultured Symbiont of the Red Sea Sponge Theonella swinhoei

    PubMed Central

    Britstein, Maya; Devescovi, Giulia; Handley, Kim M.; Malik, Assaf; Haber, Markus; Saurav, Kumar; Teta, Roberta; Costantino, Valeria; Burgsdorf, Ilia; Gilbert, Jack A.; Sher, Noa; Venturi, Vittorio

    2015-01-01

    Sponges harbor a remarkable diversity of microbial symbionts in which signal molecules can accumulate and enable cell-cell communication, such as quorum sensing (QS). Bacteria capable of QS were isolated from marine sponges; however, an extremely small fraction of the sponge microbiome is amenable to cultivation. We took advantage of community genome assembly and binning to investigate the uncultured majority of sponge symbionts. We identified a complete N-acyl-homoserine lactone (AHL)-QS system (designated TswIR) and seven partial luxI homologues in the microbiome of Theonella swinhoei. The TswIR system was novel and shown to be associated with an alphaproteobacterium of the order Rhodobacterales, here termed Rhodobacterales bacterium TS309. The tswI gene, when expressed in Escherichia coli, produced three AHLs, two of which were also identified in a T. swinhoei sponge extract. The taxonomic affiliation of the 16S rRNA of Rhodobacterales bacterium TS309 to a sponge-coral specific clade, its enrichment in sponge versus seawater and marine sediment samples, and the presence of sponge-specific features, such as ankyrin-like domains and tetratricopeptide repeats, indicate a likely symbiotic nature of this bacterium. PMID:26655754

  15. A New N-Acyl Homoserine Lactone Synthase in an Uncultured Symbiont of the Red Sea Sponge Theonella swinhoei.

    PubMed

    Britstein, Maya; Devescovi, Giulia; Handley, Kim M; Malik, Assaf; Haber, Markus; Saurav, Kumar; Teta, Roberta; Costantino, Valeria; Burgsdorf, Ilia; Gilbert, Jack A; Sher, Noa; Venturi, Vittorio; Steindler, Laura

    2016-02-01

    Sponges harbor a remarkable diversity of microbial symbionts in which signal molecules can accumulate and enable cell-cell communication, such as quorum sensing (QS). Bacteria capable of QS were isolated from marine sponges; however, an extremely small fraction of the sponge microbiome is amenable to cultivation. We took advantage of community genome assembly and binning to investigate the uncultured majority of sponge symbionts. We identified a complete N-acyl-homoserine lactone (AHL)-QS system (designated TswIR) and seven partial luxI homologues in the microbiome of Theonella swinhoei. The TswIR system was novel and shown to be associated with an alphaproteobacterium of the order Rhodobacterales, here termed Rhodobacterales bacterium TS309. The tswI gene, when expressed in Escherichia coli, produced three AHLs, two of which were also identified in a T. swinhoei sponge extract. The taxonomic affiliation of the 16S rRNA of Rhodobacterales bacterium TS309 to a sponge-coral specific clade, its enrichment in sponge versus seawater and marine sediment samples, and the presence of sponge-specific features, such as ankyrin-like domains and tetratricopeptide repeats, indicate a likely symbiotic nature of this bacterium. PMID:26655754

  16. Hypersensitive response and acyl-homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae.

    PubMed

    Jakovljevic, Vladimir; Jock, Susanne; Du, Zhiqiang; Geider, Klaus

    2008-09-01

    Fire blight caused by the Gram-negative bacterium Erwinia amylovora can be controlled by antagonistic microorganisms. We characterized epiphytic bacteria isolated from healthy apple and pear trees in Australia, named Erwinia tasmaniensis, and the epiphytic bacterium Erwinia billingiae from England for physiological properties, interaction with plants and interference with growth of E. amylovora. They reduced symptom formation by the fire blight pathogen on immature pears and the colonization of apple flowers. In contrast to E. billingiae, E. tasmaniensis strains induced a hypersensitive response in tobacco leaves and synthesized levan in the presence of sucrose. With consensus primers deduced from lsc as well as hrpL, hrcC and hrcR of the hrp region of E. amylovora and of related bacteria, these genes were successfully amplified from E. tasmaniensis DNA and alignment of the encoded proteins to other Erwinia species supported a role for environmental fitness of the epiphytic bacterium. Unlike E. tasmaniensis, the epiphytic bacterium E. billingiae produced an acyl-homoserine lactone for bacterial cell-to-cell communication. Their competition with the growth of E. amylovora may be involved in controlling fire blight.

  17. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group.

    PubMed

    Schikora, Adam; Schenk, Sebastian T; Hartmann, Anton

    2016-04-01

    Bacterial quorum sensing (QS) mechanisms play a crucial role in the proper performance and ecological fitness of bacterial populations. Many key physiological processes are regulated in a QS-dependent manner by auto-inducers, like the N-acyl homoserine lactones (AHLs) in numerous Gram-negative bacteria. In addition, also the interaction between bacteria and eukaryotic hosts can be regulated by AHLs. Those mechanisms gained much attention, because of the positive effects of different AHL molecules on plants. This positive impact ranges from growth promotion to induced resistance and is quite contrasting to the rather negative effects observed in the interactions between bacterial AHL molecules and animals. Only very recently, we began to understand the molecular mechanisms underpinning plant responses to AHL molecules. In this review, we gathered the latest information in this research field. The first part gives an overview of the bacterial aspects of quorum sensing. Later we focus on the impact of AHLs on plant growth and AHL-priming, as one of the most understood phenomena in respect to the inter-kingdom interactions based on AHL-quorum sensing molecules. Finally, we discuss the potential benefits of the understanding of bacteria-plant interaction for the future agricultural applications.

  18. Acyl-ACP Substrate Recognition in Burkholderia mallei BmaI1 Acyl-Homoserine Lactone Synthase

    PubMed Central

    2015-01-01

    The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates virulence in several pathogenic bacteria. The hallmark of an efficient quorum sensing system relies on the tight specificity in the signal generated by each bacterium. Since AHL signal specificity is derived from the acyl-chain of the acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must recognize and react with the native acyl-ACP with high catalytic efficiency while keeping reaction rates with non-native acyl-ACPs low. The mechanism of acyl-ACP substrate recognition in these enzymes, however, remains elusive. In this study, we investigated differences in catalytic efficiencies for shorter and longer chain acyl-ACP substrates reacting with an octanoyl-homoserine lactone synthase Burkholderia mallei BmaI1. With the exception of two-carbon shorter hexanoyl-ACP, the catalytic efficiencies of butyryl-ACP, decanoyl-ACP, and octanoyl-CoA reacting with BmaI1 decreased by greater than 20-fold compared to the native octanoyl-ACP substrate. Furthermore, we also noticed kinetic cooperativity when BmaI1 reacted with non-native acyl-donor substrates. Our kinetic data suggest that non-native acyl-ACP substrates are unable to form a stable and productive BmaI1·acyl-ACP·SAM ternary complex and are thus effectively discriminated by the enzyme. These results offer insights into the molecular basis of substrate recognition for the BmaI1 enzyme. PMID:25215658

  19. Induction and Loss of Ti Plasmid Conjugative Competence in Response to the Acyl-Homoserine Lactone Quorum-Sensing Signal▿

    PubMed Central

    Su, Shengchang; Khan, Sharik R.; Farrand, Stephen K.

    2008-01-01

    Conjugative transfer of the Ti plasmids of Agrobacterium tumefaciens is controlled by a quorum-sensing system composed of TraR and its signal N-(3-oxo-octanoyl)-l-homoserine lactone. This system is, in turn, controlled by the conjugative opines produced by crown gall tumors induced on plants by the bacteria. Using nonpolar traI mutants, we examined the kinetics of induction of conjugative transfer in response to exogenous acyl-homoserine lactone. In the absence of the antiactivator TraM, onset of induction of transfer requires about 30 min, 15 to 20 min of which is needed for expression and construction of the conjugative apparatus. TraM delays the onset of conjugation by 30 min. While the rate of development of conjugative competence was not significantly affected by levels of TraR, maximum efficiencies of transfer were correlated with amounts of the activator in the donors. Donors harboring Ti plasmids lacking TraM were fully induced by the quormone at concentrations as low as 100 pM. TraM raised the concentration of signal required for maximum activity to 1 nM. Donors grown in batch culture retained conjugative competence following signal removal, even when in stationary phase. However, donors kept in balanced growth rapidly lost transfer ability following signal removal. Loss of transfer was mirrored by a decrease in levels of active TraR. Decreases in TraR activity and conjugative competence could be accounted for by dilution associated with cell division, suggesting that while induction of Ti plasmid conjugation is an active process, the cells lack a mechanism for disassembling the conjugative apparatus when signals become limiting. PMID:18203831

  20. Insights into the Genome Sequences of an N-Acyl Homoserine Lactone Molecule Producing Two Pseudomonas spp. Isolated from the Arctic

    PubMed Central

    Dharmaprakash, Akhilandeswarre; Reghunathan, Dinesh; Sivakumar, Krishnakutty C.; Prasannakumar, Manoj

    2016-01-01

    We report for the first time the draft genome sequence of two psychrotrophic Pseudomonas species, Pseudomonas simiae RGCB 73 and Pseudomonas brenneri RGCB 108, from the Arctic that produce more than one acyl homoserine lactone molecule of varied N-acyl length. The study confirms the presence of a LuxR-LuxI (type) mediated quorum-sensing system in both the Pseudomonas species and enables us to understand the role of quorum sensing in their survival in extremely cold environments. PMID:27491995

  1. Characterization and complete sequence of lactonase enzyme from Bacillus weihenstephanensis isolate P65 with potential activity against acyl homoserine lactone signal molecules.

    PubMed

    Sakr, Masarra Mohammed; Aboshanab, Khaled Mohamed Anwar; Aboulwafa, Mohammad Mabrouk; Hassouna, Nadia Abdel-Haleem

    2013-01-01

    Acyl homoserine lactones (AHLs) are the most common class of quorum sensing signal molecules (autoinducers) that have been reported to be essential for virulence of many relevant pathogenic bacteria such as Pseudomonas aeruginosa. New approach for controlling infections of such bacteria is through quorum quenching. In this study, the acyl homoserine lactone inhibitory activity of the crude enzyme from a Bacillus weihenstephanensis-isolate P65 was characterized. The crude enzyme was found to have relatively high thermal stability and was stable in pH range 6 to 9. The crude enzyme extract was found to have lactonase activity of 36.3 U/mg total protein. Maximum enzyme activity was achieved within a range of 28-50°C and pH 6-9. None of the metals used enhanced the activity neither did EDTA inhibit it. However, a concentration of 10 mM Fe(+2) reduced the activity to 73.8%. Catalytic activity and kinetic constants were determined using hexanoyl homoserine lactone as a substrate. Studying enzyme substrate specificity using synthetic standard signals displayed broad spectrum of activity. The enzyme was found to be constitutive. Isolation and complete nucleotide sequence of the respective lactonase gene were done and submitted to the Genbank database under accession code KC823046.

  2. N-(3-oxo-acyl) homoserine lactone inhibits tumor growth independent of Bcl-2 proteins

    PubMed Central

    Zhao, Guoping; Neely, Aaron M.; Schwarzer, Christian; Lu, Huayi; Whitt, Aaron G.; Stivers, Nicole S.; Burlison, Joseph A.; White, Carl; Machen, Terry E.; Li, Chi

    2016-01-01

    Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule for bacterial communication. C12 has also been reported to induce apoptosis in various types of tumor cells. However, the detailed molecular mechanism of C12-triggerred tumor cell apoptosis is still unclear. In addition, it is completely unknown whether C12 possesses any potential therapeutic effects in vivo. Our data indicate that, unlike most apoptotic inducers, C12 evokes a novel form of apoptosis in tumor cells through inducing mitochondrial membrane permeabilization independent of both pro- and anti-apoptotic Bcl-2 proteins. Importantly, C12 inhibits tumor growth in animals regardless of either pro- or anti-apoptotic Bcl-2 proteins. Furthermore, opposite to conventional chemotherapeutics, C12 requires paraoxonase 2 (PON2) to exert its cytotoxicity on tumor cells in vitro and its inhibitory effects on tumor growth in vivo. Overall, our results demonstrate that C12 inhibits tumor growth independent of both pro- and anti-apoptotic Bcl-2 proteins, and through inducing unique apoptotic signaling mediated by PON2 in tumor cells. PMID:26758417

  3. Characterisation of a Marine Bacterium Vibrio Brasiliensis T33 Producing N-acyl Homoserine Lactone Quorum Sensing Molecules

    PubMed Central

    Tan, Wen-Si; Yunos, Nina Yusrina Muhamad; Tan, Pui-Wan; Mohamad, Nur Izzati; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    N-acylhomoserine lactones (AHL) plays roles as signal molecules in quorum sensing (QS) in most Gram-negative bacteria. QS regulates various physiological activities in relation with population density and concentration of signal molecules. With the aim of isolating marine water-borne bacteria that possess QS properties, we report here the preliminary screening of marine bacteria for AHL production using Chromobacterium violaceum CV026 as the AHL biosensor. Strain T33 was isolated based on preliminary AHL screening and further identified by using 16S rDNA sequence analysis as a member of the genus Vibrio closely related to Vibrio brasiliensis. The isolated Vibrio sp. strain T33 was confirmed to produce N-hexanoyl-l-homoserine lactone (C6-HSL) and N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10 HSL) through high resolution tandem mass spectrometry analysis. We demonstrated that this isolate formed biofilms which could be inhibited by catechin. To the best of our knowledge, this is the first report that documents the production of these AHLs by Vibrio brasiliensis strain T33. PMID:25006994

  4. Novel acridine-based N-acyl-homoserine lactone analogs induce endoreduplication in the human oral squamous carcinoma cell line SAS.

    PubMed

    Chai, Hongbo; Hazawa, Masaharu; Hosokawa, Yoichiro; Igarashi, Jun; Suga, Hiroaki; Kashiwakura, Ikuo

    2012-01-01

    The cytotoxicity of novel acridine-based N-acyl-homoserine lactone (AHL) analogs was investigated on the human oral squamous carcinoma cell line SAS. One analog induced G2/M phase arrest at 5.3-10.6 µM and induced polyploidy at a higher dose (21.2 µM). Importantly, treatment of SAS cells with a combination of the AHL analog and the Jun N-terminal kinase (JNK) inhibitor, SP600125, prevented mitosis and induced polyploidy. The AHL analog synergized with X-irradiation to inhibit clonogenic survival of SAS cells; however, its radiosensitizing effects were relative to not X-irradiation-induced apoptosis but mitotic failure following enhanced expression of Aurora A and B. These results suggest that the active AHL analog showed growth-suppressive and radiosensitizing effects, which involve polyploidy followed by G2/M accumulation and atypical cell death in the SAS cell line.

  5. [Activation of the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones in the presence of nitrofurans and NO generators].

    PubMed

    Zaĭtseva, Iu V; Granik, V G; Belik, A S; Koksharova, O A; Khmel', I A

    2010-01-01

    Nitrofurans (nitrofurazone, nitrofurantoin, furazidin, nifuroxazide), and nitric oxide generators (sodium nitroprusside and isosorbide mononitrate) in subinhibitory concentrations were shown to significantly increase the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones, signaling molecules of Quorum Sensing (QS) regulatory systems. The highest activation of bioluminescence (up to 250-400 fold) was observed in the presence of nitrofurazone on E. coli DH5alpha biosensors containing lux-reporter plasmids pSB401 or pSB536. However, this activation was not specifically associated with the functioning of QS systems. We suggest that the effect observed results from a direct action of nitrofurans and NO donors on the process of bioluminescence. The data indicate the necessity of using the biosensors that make it possible to detect specific effects of substances tested on QS regulation. PMID:20540359

  6. Homoserine and quorum-sensing acyl homoserine lactones as alternative sources of threonine: a potential role for homoserine kinase in insect-stage Trypanosoma brucei

    PubMed Central

    Ong, Han B; Lee, Wai S; Patterson, Stephen; Wyllie, Susan; Fairlamb, Alan H

    2015-01-01

    De novo synthesis of threonine from aspartate occurs via the β-aspartyl phosphate pathway in plants, bacteria and fungi. However, the Trypanosoma brucei genome encodes only the last two steps in this pathway: homoserine kinase (HSK) and threonine synthase. Here, we investigated the possible roles for this incomplete pathway through biochemical, genetic and nutritional studies. Purified recombinant TbHSK specifically phosphorylates L-homoserine and displays kinetic properties similar to other HSKs. HSK null mutants generated in bloodstream forms displayed no growth phenotype in vitro or loss of virulence in vivo. However, following transformation into procyclic forms, homoserine, homoserine lactone and certain acyl homoserine lactones (AHLs) were found to substitute for threonine in growth media for wild-type procyclics, but not HSK null mutants. The tsetse fly is considered to be an unlikely source of these nutrients as it feeds exclusively on mammalian blood. Bioinformatic studies predict that tsetse endosymbionts possess part (up to homoserine in Wigglesworthia glossinidia) or all of the β-aspartyl phosphate pathway (Sodalis glossinidius). In addition S. glossinidius is known to produce 3-oxohexanoylhomoserine lactone which also supports trypanosome growth. We propose that T. brucei has retained HSK and threonine synthase in order to salvage these nutrients when threonine availability is limiting. PMID:25367138

  7. A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation

    PubMed Central

    Veliz-Vallejos, Debora F.; van Noorden, Giel E.; Yuan, Mengqi; Mathesius, Ulrike

    2014-01-01

    N-acyl homoserine lactones (AHLs) act as quorum sensing signals that regulate cell-density dependent behaviors in many gram-negative bacteria, in particular those important for plant-microbe interactions. AHLs can also be recognized by plants, and this may influence their interactions with bacteria. Here we tested whether the exposure to AHLs affects the nodule-forming symbiosis between legume hosts and rhizobia. We treated roots of the model legume, Medicago truncatula, with a range of AHLs either from its specific symbiont, Sinorhizobium meliloti, or from the potential pathogens, Pseudomonas aeruginosa and Agrobacterium vitis. We found increased numbers of nodules formed on root systems treated with the S. meliloti-specific AHL, 3-oxo-C14-homoserine lactone, at a concentration of 1 μM, while the other AHLs did not result in significant changes to nodule numbers. We did not find any evidence for altered nodule invasion by the rhizobia. Quantification of flavonoids that could act as nod gene inducers in S. meliloti did not show any correlation with increased nodule numbers. The effects of AHLs were specific for an increase in nodule numbers, but not lateral root numbers or root length. Increased nodule numbers following 3-oxo-C14-homoserine lactone treatment were under control of autoregulation of nodulation and were still observed in the autoregulation mutant, sunn4 (super numeric nodules4). However, increases in nodule numbers by 3-oxo-C14-homoserine lactone were not found in the ethylene-insensitive sickle mutant. A comparison between M. truncatula with M. sativa (alfalfa) and Trifolium repens (white clover) showed that the observed effects of AHLs on nodule numbers were specific to M. truncatula, despite M. sativa nodulating with the same symbiont. We conclude that plant perception of the S. meliloti-specific 3-oxo-C14-homoserine lactone influences nodule numbers in M. truncatula via an ethylene-dependent, but autoregulation-independent mechanism. PMID

  8. Proteomic Analysis of Wild-Type Sinorhizobium meliloti Responses to N-Acyl Homoserine Lactone Quorum-Sensing Signals and the Transition to Stationary Phase†

    PubMed Central

    Chen, Hancai; Teplitski, Max; Robinson, Jayne B.; Rolfe, Barry G.; Bauer, Wolfgang D.

    2003-01-01

    Proteome analysis revealed that two long-chain N-acyl homoserine lactones (AHLs) produced by Sinorhizobium meliloti 1021 induced significant differences in the accumulation of more than 100 polypeptides in early-log-phase cultures of the wild type. Fifty-six of the corresponding proteins have been identified by peptide mass fingerprinting. The proteins affected by addition of these two AHLs had diverse functions in carbon and nitrogen metabolism, energy cycles, metabolite transport, DNA synthesis, and protein turnover. Two hours of exposure to 3-oxo-C16:1-homoserine lactone (3-oxo-C16:1-HL) affected the accumulation of 40 of the 56 identified proteins, whereas comparable exposure to C14-HL affected 13 of the 56 proteins. Levels of four proteins were affected by both AHLs. Exposure to 3-oxo-C16:1-HL for 8 h affected the accumulation of 17 proteins, 12 of which had reduced accumulation. Of the 80 proteins identified as differing in accumulation between early-log- and early-stationary-phase cultures, only 13 were affected by exposure to 3-oxo-C16:1-HL or C14-HL. These results provide a foundation for future studies of the functions regulated by AHL quorum sensing in S. meliloti and help to establish proteomic analysis as a powerful global approach to the identification of quorum-sensing regulatory patterns in wild-type bacteria. PMID:12923075

  9. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere.

    PubMed Central

    Wood, D W; Gong, F; Daykin, M M; Williams, P; Pierson, L S

    1997-01-01

    Pseudomonas aureofaciens 30-84 is a soilborne bacterium that colonizes the wheat rhizosphere. This strain produces three phenazine antibiotics which suppress take-all disease of wheat by inhibition of the causative agent Gaeumannomyces graminis var. tritici. Phenazines also enhance survival of 30-84 within the wheat rhizosphere in competition with other organisms. Expression of the phenazine biosynthetic operon is controlled by the phzR/phzI N-acyl-homoserine lactone (AHL) response system (L. S. Pierson III et al., J. Bacterial 176:3966-3974, 1994; D. W. Wood and L. S. Pierson III, Gene 168:49-53, 1996). By using high-pressure liquid chromatography coupled with high-resolution mass spectrometry, the AHL produced by PhzI has now been identified as N-hexanoyl-homoserine lactone (HHL). In addition, the ability of HHL to serve as an interpopulation signal molecule in the wheat rhizosphere has been examined by using isogenic reporter strains. Disruption of phzI reduced expression of the phenazine biosynthetic operon 1,000-fold in the wheat rhizosphere. Coinoculation of an isogenic strain which produced the endogenous HHL signal restored phenazine gene expression in the phzI mutant to wild-type levels in situ. These results demonstrate that HHL is required for phenazine expression in situ and is an effective interpopulation signal molecule in the wheat rhizosphere. PMID:9401023

  10. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein.

    PubMed

    Manefield, M; de Nys, R; Kumar, N; Read, R; Givskov, M; Steinberg, P; Kjelleberg, S

    1999-02-01

    Acylated homoserine lactone (AHL)-mediated gene expression controls phenotypes involved in colonization, often specifically of higher organisms, in both marine and terrestrial environments. The marine red alga Delisea pulchra produces halogenated furanones which resemble AHLs structurally and show inhibitory activity at ecologically realistic concentrations in AHL bioassays. Evidence is presented that halogenated furanones displace tritiated OHHL [N-3-(oxohexanoyl)-L-homoserine lactone] from Escherichia coli cells overproducing LuxR with potencies corresponding to their respective inhibitory activities in an AHL-regulated bioluminescence assay, indicating that this is the mechanism by which furanones inhibit AHL-dependent phenotypes. Alternative mechanisms for this phenomenon are also addressed. General metabolic disruption was assessed with two-dimensional PAGE, revealing limited non-AHL-related effects. A direct chemical interaction between the algal compounds and AHLs, as monitored by 1H NMR spectroscopy, was shown not to occur in vitro. These results support the contention that furanones, at the concentrations produced by the alga, can control bacterial colonization of surfaces by specifically interfering with AHL-mediated gene expression at the level of the LuxR protein.

  11. A Burkholderia thailandensis Acyl-Homoserine Lactone-Independent Orphan LuxR Homolog That Activates Production of the Cytotoxin Malleilactone

    PubMed Central

    Truong, Thao T.; Seyedsayamdost, Mohammad; Greenberg, E. Peter

    2015-01-01

    ABSTRACT Burkholderia thailandensis has three acyl-homoserine lactone (AHL) LuxR-LuxI quorum-sensing circuits and two orphan LuxR homologs. Orphans are LuxR-type transcription factors that do not have cognate LuxI-type AHL synthases. One of the orphans, MalR, is genetically linked to the mal gene cluster, which encodes enzymes required for production of the cytotoxic polyketide malleilactone. Under normal laboratory conditions the mal gene cluster is silent; however, antibiotics like trimethoprim induce mal transcription. We show that trimethoprim-dependent induction of the mal genes requires MalR. MalR has all of the conserved amino acid residues characteristic of AHL-responsive LuxR homologs, but in B. thailandensis, MalR activation of malleilactone synthesis genes is not responsive to AHLs. MalR can activate transcription from the mal promoter in E. coli without addition of AHLs or trimethoprim. Expression of malR in B. thailandensis is induced by trimethoprim. Our data indicate that MalR binds to a lux box-like element in the mal promoter and activates transcription of the mal genes in an AHL-independent manner. Antibiotics like trimethoprim appear to activate mal gene expression indirectly by somehow activating malR expression. MalR activation of the mal genes represents an example of a LuxR homolog that is not a receptor for an AHL quorum-sensing signal. Our evidence is consistent with the idea that mal gene activation depends solely on sufficient transcription of the malR gene. IMPORTANCE LuxR proteins are transcription factors that are typically activated by acyl-homoserine lactone (AHL) signals. We demonstrate that a conserved LuxR family protein, MalR, activates genes independently of AHLs. MalR is required for transcription of genes coding for synthesis of the cytotoxic polyketide malleilactone. These genes are not expressed when cells are grown under normal laboratory conditions. In laboratory culture, MalR induction of malleilactone requires certain

  12. Acyl-Homoserine Lactone Production Is More Common among Plant-Associated Pseudomonas spp. than among Soilborne Pseudomonas spp.†

    PubMed Central

    Elasri, Miena; Delorme, Sandrine; Lemanceau, Philippe; Stewart, Gordon; Laue, Bridget; Glickmann, Eric; Oger, Phil M.; Dessaux, Yves

    2001-01-01

    A total of 137 soilborne and plant-associated bacterial strains belonging to different Pseudomonas species were tested for their ability to synthesize N-acyl-homoserine lactones (NAHL). Fifty-four strains synthesized NAHL. Interestingly, NAHL production appears to be more common among plant-associated than among soilborne Pseudomonas spp. Indeed, 40% of the analyzed Pseudomonas syringae strains produced NAHL which were identified most often as the short-chain NAHL, N-hexanoyl-l-homoserine lactone, N-(3-oxo-hexanoyl)-homoserine lactone, and N-(3-oxo-octanoyl)-l-homoserine lactone (no absolute correlation between genomospecies of P. syringae and their ability to produce NAHL could be found). Six strains of fluorescent pseudomonads, belonging to the species P. chlororaphis, P. fluorescens, and P. putida, isolated from the plant rhizosphere produced different types of NAHL. In contrast, none of the strains isolated from soil samples were shown to produce NAHL. The gene encoding the NAHL synthase in P. syringae pv. maculicola was isolated by complementation of an NAHL-deficient Chromobacterium mutant. Sequence analysis revealed the existence of a luxI homologue that we named psmI. This gene is sufficient to confer NAHL synthesis upon its bacterial host and has strong homology to psyI and ahlI, two genes involved in NAHL production in P. syringae pv. tabaci and P. syringae pv. syringae, respectively. We identified another open reading frame that we termed psmR, transcribed convergently in relation to psmI and partly overlapping psmI; this gene encodes a putative LuxR regulatory protein. This gene organization, with luxI and luxR homologues facing each other and overlapping, has been found so far only in the enteric bacteria Erwinia and Pantoea and in the related species P. syringae pv. tabaci. PMID:11229911

  13. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1).

    PubMed

    Musthafa, K Syed; Saroja, V; Pandian, S Karutha; Ravi, A Veera

    2011-03-01

    Antipathogenic therapy is an outcome of the quorum-sensing inhibition (QSI) mechanism, which targets autoinducer-dependent virulent gene expression in bacterial pathogens. N-acyl homoserine lactone (AHL) acts as a key regulator in the production of virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 and violacein pigment production in Chromobacterium violaceum. In the present study, the marine bacterial strain SS4 showed potential QSI activity in a concentration-dependent manner (0.5-2 mg/ml) against the AHL-mediated violacein production in C. violaceum (33-86%) and biofilm formation (33-88%), total protease (20-65%), LasA protease (59-68%), LasB elastase (36-68%), pyocyanin (17-86%) and pyoverdin productions in PAO1. The light and confocal laser scanning microscopic analyses confirmed the reduction of the biofilm-forming ability of PAO1 when treated with SS4 extract. Furthermore, the antibiofilm potential was confirmed through static biofilm ring assay, in which ethyl acetate extract of SS4 showed concentration-dependent reduction in the biofilm-forming ability of PAO1. Thus, the result of this study clearly reveals the antipathogenic and antibiofilm properties of the bacterial isolate SS4. Through 16S rDNA analysis, the strain SS4 was identified as Bacillus sp. (GenBank Accession Number: GU471751). PMID:21451248

  14. N-Acyl Homoserine Lactone-Mediated Quorum Sensing with Special Reference to Use of Quorum Quenching Bacteria in Membrane Biofouling Control

    PubMed Central

    Paul, Diby

    2014-01-01

    Membrane biofouling remains a severe problem to be addressed in wastewater treatment systems affecting reactor performance and economy. The finding that many wastewater bacteria rely on N-acyl homoserine lactone-mediated quorum sensing to synchronize their activities essential for biofilm formations; the quenching bacterial quorum sensing suggests a promising approach for control of membrane biofouling. A variety of quorum quenching compounds of both synthetic and natural origin have been identified and found effective in inhibition of membrane biofouling with much less environmental impact than traditional antimicrobials. Work over the past few years has demonstrated that enzymatic quorum quenching mechanisms are widely conserved in several prokaryotic organisms and can be utilized as a potent tool for inhibition of membrane biofouling. Such naturally occurring bacterial quorum quenching mechanisms also play important roles in microbe-microbe interactions and have been used to develop sustainable nonantibiotic antifouling strategies. Advances in membrane fabrication and bacteria entrapment techniques have allowed the implication of such quorum quenching bacteria for better design of membrane bioreactor with improved antibiofouling efficacies. In view of this, the present paper is designed to review and discuss the recent developments in control of membrane biofouling with special emphasis on quorum quenching bacteria that are applied in membrane bioreactors. PMID:25147787

  15. N-acyl homoserine lactone-mediated quorum sensing with special reference to use of quorum quenching bacteria in membrane biofouling control.

    PubMed

    Lade, Harshad; Paul, Diby; Kweon, Ji Hyang

    2014-01-01

    Membrane biofouling remains a severe problem to be addressed in wastewater treatment systems affecting reactor performance and economy. The finding that many wastewater bacteria rely on N-acyl homoserine lactone-mediated quorum sensing to synchronize their activities essential for biofilm formations; the quenching bacterial quorum sensing suggests a promising approach for control of membrane biofouling. A variety of quorum quenching compounds of both synthetic and natural origin have been identified and found effective in inhibition of membrane biofouling with much less environmental impact than traditional antimicrobials. Work over the past few years has demonstrated that enzymatic quorum quenching mechanisms are widely conserved in several prokaryotic organisms and can be utilized as a potent tool for inhibition of membrane biofouling. Such naturally occurring bacterial quorum quenching mechanisms also play important roles in microbe-microbe interactions and have been used to develop sustainable nonantibiotic antifouling strategies. Advances in membrane fabrication and bacteria entrapment techniques have allowed the implication of such quorum quenching bacteria for better design of membrane bioreactor with improved antibiofouling efficacies. In view of this, the present paper is designed to review and discuss the recent developments in control of membrane biofouling with special emphasis on quorum quenching bacteria that are applied in membrane bioreactors.

  16. Investigation of N-acyl homoserine lactone (AHL) molecule production in Gram-negative bacteria isolated from cooling tower water and biofilm samples.

    PubMed

    Haslan, Ezgi; Kimiran-Erdem, Ayten

    2013-09-01

    In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p < 0.05). In addition, it was found that bacteria belonging to the same species isolated from cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria. PMID:23250628

  17. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview.

    PubMed

    Huang, Jinhui; Shi, Yahui; Zeng, Guangming; Gu, Yanling; Chen, Guiqiu; Shi, Lixiu; Hu, Yi; Tang, Bi; Zhou, Jianxin

    2016-08-01

    Quorum sensing (QS) is a communication process between cells, in which bacteria secrete and sense the specific chemicals, and regulate gene expression in response to population density. Quorum quenching (QQ) blocks QS system, and inhibits gene expression mediating bacterial behaviors. Given the extensive research of acyl-homoserine lactone (AHL) signals, existences and effects of AHL-based QS and QQ in biological wastewater treatments are being subject to high concern. This review summarizes AHL structure, synthesis mode, degradation mechanisms, analytical methods, environmental factors, AHL-based QS and QQ mechanisms. The existences and roles of AHL-based QS and QQ in biomembrane processes, activated sludge processes and membrane bioreactors are summarized and discussed, and corresponding exogenous regulation strategy by selective enhancement of AHL-based QS or QQ coexisting in biological wastewater treatments is suggested. Such strategies including the addition of AHL signals, AHL-producing bacteria as well as quorum quenching enzyme or bacteria can effectively improve wastewater treatment performance without killing or limiting bacterial survival and growth. This review will present the theoretical and practical cognition for bacterial AHL-based QS and QQ, suggest the feasibility of exogenous regulation strategies in biological wastewater treatments, and provide useful information to scientists and engineers who work in this field.

  18. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog.

    PubMed

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.

  19. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog.

    PubMed

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis. PMID:27683573

  20. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog

    PubMed Central

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270T and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidansT, the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidansT cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270T genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis. PMID:27683573

  1. Genome sequencing-assisted identification and the first functional validation of N-acyl-homoserine-lactone synthases from the Sphingomonadaceae family

    PubMed Central

    Gan, Han Ming; Dailey, Lucas K.; Halliday, Nigel; Williams, Paul; Hudson, André O.

    2016-01-01

    Background Members of the genus Novosphingobium have been isolated from a variety of environmental niches. Although genomics analyses have suggested the presence of genes associated with quorum sensing signal production e.g., the N-acyl-homoserine lactone (AHL) synthase (luxI) homologs in various Novosphingobium species, to date, no luxI homologs have been experimentally validated. Methods In this study, we report the draft genome of the N-(AHL)-producing bacterium Novosphingobium subterraneum DSM 12447 and validate the functions of predicted luxI homologs from the bacterium through inducible heterologous expression in Agrobacterium tumefaciens strain NTL4. We developed a two-dimensional thin layer chromatography bioassay and used LC-ESI MS/MS analyses to separate, detect and identify the AHL signals produced by the N. subterraneum DSM 12447 strain. Results Three predicted luxI homologs were annotated to the locus tags NJ75_2841 (NovINsub1), NJ75_2498 (NovINsub2), and NJ75_4146 (NovINsub3). Inducible heterologous expression of each luxI homologs followed by LC-ESI MS/MS and two-dimensional reverse phase thin layer chromatography bioassays followed by bioluminescent ccd camera imaging indicate that the three LuxI homologs are able to produce a variety of medium-length AHL compounds. New insights into the LuxI phylogeny was also gleemed as inferred by Bayesian inference. Discussion This study significantly adds to our current understanding of quorum sensing in the genus Novosphingobium and provide the framework for future characterization of the phylogenetically interesting LuxI homologs from members of the genus Novosphingobium and more generally the family Sphingomonadaceae.

  2. Genome sequencing-assisted identification and the first functional validation of N-acyl-homoserine-lactone synthases from the Sphingomonadaceae family

    PubMed Central

    Gan, Han Ming; Dailey, Lucas K.; Halliday, Nigel; Williams, Paul; Hudson, André O.

    2016-01-01

    Background Members of the genus Novosphingobium have been isolated from a variety of environmental niches. Although genomics analyses have suggested the presence of genes associated with quorum sensing signal production e.g., the N-acyl-homoserine lactone (AHL) synthase (luxI) homologs in various Novosphingobium species, to date, no luxI homologs have been experimentally validated. Methods In this study, we report the draft genome of the N-(AHL)-producing bacterium Novosphingobium subterraneum DSM 12447 and validate the functions of predicted luxI homologs from the bacterium through inducible heterologous expression in Agrobacterium tumefaciens strain NTL4. We developed a two-dimensional thin layer chromatography bioassay and used LC-ESI MS/MS analyses to separate, detect and identify the AHL signals produced by the N. subterraneum DSM 12447 strain. Results Three predicted luxI homologs were annotated to the locus tags NJ75_2841 (NovINsub1), NJ75_2498 (NovINsub2), and NJ75_4146 (NovINsub3). Inducible heterologous expression of each luxI homologs followed by LC-ESI MS/MS and two-dimensional reverse phase thin layer chromatography bioassays followed by bioluminescent ccd camera imaging indicate that the three LuxI homologs are able to produce a variety of medium-length AHL compounds. New insights into the LuxI phylogeny was also gleemed as inferred by Bayesian inference. Discussion This study significantly adds to our current understanding of quorum sensing in the genus Novosphingobium and provide the framework for future characterization of the phylogenetically interesting LuxI homologs from members of the genus Novosphingobium and more generally the family Sphingomonadaceae. PMID:27635318

  3. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog

    PubMed Central

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270T and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidansT, the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidansT cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270T genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.

  4. Draft Genome Perspective of Staphylococcus saprophyticus Strain SU8, an N-Acyl Homoserine Lactone-Degrading Bacterium.

    PubMed

    Chan, Kok-Gan; Sulaiman, Joanita; Yong, Delicia Ann; Tee, Kok Keng; Yin, Wai-Fong; Priya, Kumutha

    2015-09-24

    Staphylococcus saprophyticus strain SU8 was isolated from a pristine water source in Malaysia and it exhibited degradation of N-hexanoylhomoserine lactone. Here we report the draft genome sequence of S. saprophyticus strain SU8 to further understand its quorum quenching abilities.

  5. Draft Genome Perspective of Staphylococcus saprophyticus Strain SU8, an N-Acyl Homoserine Lactone-Degrading Bacterium

    PubMed Central

    Sulaiman, Joanita; Yong, Delicia Ann; Tee, Kok Keng; Yin, Wai-Fong; Priya, Kumutha

    2015-01-01

    Staphylococcus saprophyticus strain SU8 was isolated from a pristine water source in Malaysia and it exhibited degradation of N-hexanoylhomoserine lactone. Here we report the draft genome sequence of S. saprophyticus strain SU8 to further understand its quorum quenching abilities. PMID:26404582

  6. Draft Genome Perspective of Staphylococcus saprophyticus Strain SU8, an N-Acyl Homoserine Lactone-Degrading Bacterium.

    PubMed

    Chan, Kok-Gan; Sulaiman, Joanita; Yong, Delicia Ann; Tee, Kok Keng; Yin, Wai-Fong; Priya, Kumutha

    2015-01-01

    Staphylococcus saprophyticus strain SU8 was isolated from a pristine water source in Malaysia and it exhibited degradation of N-hexanoylhomoserine lactone. Here we report the draft genome sequence of S. saprophyticus strain SU8 to further understand its quorum quenching abilities. PMID:26404582

  7. Presence of acylated homoserine lactones (AHLs) and AHL-producing bacteria in meat and potential role of AHL in spoilage of meat.

    PubMed

    Bruhn, Jesper Bartholin; Christensen, Allan Beck; Flodgaard, Lars Ravn; Nielsen, Kristian Fog; Larsen, Thomas Ostenfeld; Givskov, Michael; Gram, Lone

    2004-07-01

    Quorum-sensing (QS) signals (N-acyl homoserine lactones [AHLs]) were extracted and detected from five commercially produced vacuum-packed meat samples. Ninety-six AHL-producing bacteria were isolated, and 92 were identified as Enterobacteriaceae. Hafnia alvei was the most commonly identified AHL-producing bacterium. Thin-layer chromatographic profiles of supernatants from six H. alvei isolates and of extracts from spoiling meat revealed that the major AHL species had an R(f) value and shape similar to N-3-oxo-hexanoyl homoserine lactone (OHHL). Liquid chromatography-mass spectrometry (MS) (high-resolution MS) analysis confirmed the presence of OHHL in pure cultures of H. alvei. Vacuum-packed meat spoiled at the same rate when inoculated with the H. alvei wild type compared to a corresponding AHL-lacking mutant. Addition of specific QS inhibitors to the AHL-producing H. alvei inoculated in meat or to naturally contaminated meat did not influence the spoilage of vacuum-packed meat. An extracellular protein of approximately 20 kDa produced by the H. alvei wild-type was not produced by the AHL-negative mutant but was restored in the mutant when complemented by OHHL, thus indicating that AHLs do have a regulatory role in H. alvei. Coinoculation of H. alvei wild-type with an AHL-deficient Serratia proteamaculans B5a, in which protease secretion is QS regulated, caused spoilage of liquid milk. By contrast, coinoculation of AHL-negative strains of H. alvei and S. proteamaculans B5a did not cause spoilage. In conclusion, AHL and AHL-producing bacteria are present in vacuum-packed meat during storage and spoilage, but AHL does not appear to influence the spoilage of this particular type of conserved meat. Our data indicate that AHL-producing H. alvei may induce food quality-relevant phenotypes in other bacterial species in the same environment. H. alvei may thus influence spoilage of food products in which Enterobacteriaceae participate in the spoilage process.

  8. Synthesis and Biological Evaluation of Triazole-Containing N-Acyl Homoserine Lactones as Quorum Sensing Modulators

    PubMed Central

    Stacy, Danielle M.; Le Quement, Sebastian T.; Hansen, Casper L.; Clausen, Janie W.; Tolker-Nielsen, Tim; Brummond, Jacob W.; Givskov, Michael; Nielsen, Thomas E.; Blackwell, Helen E.

    2013-01-01

    Many bacterial species are capable of assessing their local population densities through a cell-cell signaling mechanism termed quorum sensing (QS). This intercellular communication process is mediated by small molecule or peptide ligands and their cognate protein receptors. Numerous pathogens use QS to initiate virulence once they achieve a threshold cell number on a host. Consequently, approaches to intercept QS have attracted considerable attention as potential anti-infective therapies. Our interest in the development of small molecule tools to modulate QS pathways motivated us to evaluate triazole-containing analogs of natural N-acyl L-homoserine lactone (AHL) signals as non-native QS agonists and antagonists in Gram-negative bacteria. We synthesized 72 triazole derivatives of five broad structure types in high yields and purities using efficient Cu(I)-catalyzed azide-alkyne couplings. These compounds were evaluated for their ability to activate or inhibit two QS receptors from two prevalent pathogens – LasR from Pseudomonas aeruginosa and AbaR from Acinetobacter baumannii – using bacterial reporter strains. Several triazole derivatives were identified that were capable of strongly modulating the activity of LasR and AbaR. These compounds represent a new and synthetically accessible class of AHL analogs, and could find utility as chemical tools to study QS and its role in bacterial virulence. PMID:23258305

  9. Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target

    PubMed Central

    Chang, Chien-Yi; Krishnan, Thiba; Wang, Hao; Chen, Ye; Yin, Wai-Fong; Chong, Yee-Meng; Tan, Li Ying; Chong, Teik Min; Chan, Kok-Gan

    2014-01-01

    N-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography–mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach. PMID:25430794

  10. Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target.

    PubMed

    Chang, Chien-Yi; Krishnan, Thiba; Wang, Hao; Chen, Ye; Yin, Wai-Fong; Chong, Yee-Meng; Tan, Li Ying; Chong, Teik Min; Chan, Kok-Gan

    2014-01-01

    N-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography-mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach. PMID:25430794

  11. A simple, rapid, sensitive method detecting homoserine lactone (HSL)-related compounds in microbial extracts.

    PubMed

    Singh, Maya Prakash; Greenstein, Michael

    2006-04-01

    A simple, rapid, sensitive microtiter plate method detecting N-acyl homoserine lactone (HSL)-related compounds was established using an Agrobacterium tumefaciens strain harboring a traG::lacZ/traR reporter gene responsive to HSLs. This strain did not produce its own HSL, but the traG::lacZ reporter gene was induced only when its transcription activator TraR detected a cognate exogenous HSL. Therefore, the assay was expected to be highly specific for HSL-related compounds. Induction of the reporter gene, leading to production of beta-galactosidase enzyme, was measured by using two different beta-galactosidase substrates, X-gal and Galacton-Star, for colorimetric and chemiluminometric detection, respectively. The screen was validated in both the 96-well and 384-well plate formats, and extracts derived from 696 different microbial isolates, mostly unidentified actinomycetes isolated from diverse locations, were tested. Crude extracts of 81 (11.64%) cultures tested positive for HSL-related compounds, and an additional 34 (4.8%) crude extracts showed a moderate to weak signal for HSLs. Data from the fractionated samples, however, suggested a much higher prevalence of HSL signals in these extracts. Of 144 crude extracts fractionated into 10 individual samples at a 10x concentration, 72 (50%) cultures tested positive for HSLs. Six cultures were active only in the crude extract, 18 were active both in crude and one or more of their fractions, and an additional 48 were active in just one or more of their fractions. This finding may be the first to suggest such a high prevalence of HSL-signals found in nature, and a large number of actinomycetes in our collection appeared to produce HSL-related compounds.

  12. In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus species.

    PubMed

    Vinoj, Gopalakrishnan; Pati, Rashmirekha; Sonawane, Avinash; Vaseeharan, Baskaralingam

    2015-02-01

    N-acylated homoserine lactonases are known to inhibit the signaling molecules of the biofilm-forming pathogens. In this study, gold nanoparticles were coated with N-acylated homoserine lactonase proteins (AiiA AuNPs) purified from Bacillus licheniformis. The AiiA AuNPs were characterized by UV-visible spectra, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The synthesized AiiA AuNPs were found to be spherical in shape and 10 to 30 nm in size. Treatment with AiiA protein-coated AuNPs showed maximum reduction in exopolysaccharide production, metabolic activities, and cell surface hydrophobicity and potent antibiofilm activity against multidrug-resistant Proteus species compared to treatment with AiiA protein alone. AiiA AuNPs exhibited potent antibiofilm activity at 2 to 8 μM concentrations without being harmful to the macrophages. We conclude that at a specific dose, AuNPs coated with AiiA can kill bacteria without harming the host cells, thus representing a potential template for the design of novel antibiofilm and antibacterial protein drugs to decrease bacterial colonization and to overcome the problem of drug resistance. In summary, our data suggest that the combined effect of the lactonase and the gold nanoparticles of the AiiA AuNPs has promising antibiofilm activity against biofilm-forming and multidrug-resistant Proteus species.

  13. N-ACYL HOMOSERINE LACTONe LACTONASE, AiiA, INACTIVATION OF QUORUM-SENSING AGONISTS PRODUCED BY CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA) AND CHARACTERIZATION OF aiiA TRANSGENIC ALGAE(1).

    PubMed

    Rajamani, Sathish; Teplitski, Max; Kumar, Anil; Krediet, Cory J; Sayre, Richard T; Bauer, Wolfgang D

    2011-10-01

    Eukaryotes such as plants and the unicellular green alga Chlamydomonas reinhardtii P. A. Dang. produce and secrete compounds that mimic N-acyl homoserine lactone (AHL) bacterial quorum-sensing (QS) signals and alter QS-regulated gene expression in the associated bacteria. Here, we show that the set of C. reinhardtii signal-mimic compounds that activate the CepR AHL receptor of Burkholderia cepacia are susceptible to inactivation by AiiA, an AHL lactonase enzyme of Bacillus. Inactivation of these algal mimics by AiiA suggests that the CepR-stimulatory class of mimics produced by C. reinhardtii may have a conserved lactone ring structure in common with AHL QS signals. To examine the role of AHL mimic compounds in the interactions of C. reinhardtii with bacteria, the aiiA gene codon optimized for Chlamydomonas was generated for the expression of AiiA as a chimeric fusion with cyan fluorescent protein (AimC). Culture filtrates of transgenic strains expressing the fusion protein AimC had significantly reduced levels of CepR signal-mimic activities. When parental and transgenic algae were cultured with a natural pond water bacterial community, a morphologically distinct, AHL-producing isolate of Aeromonas veronii was observed to colonize the transgenic algal cultures and form biofilms more readily than the parental algal cultures, indicating that secretion of the CepR signal mimics by the alga can significantly affect its interactions with bacteria it encounters in natural environments. The parental alga was also able to sequester and/or destroy AHLs in its growth media to further disrupt or manipulate bacterial QS.

  14. Influence and mechanism of N-(3-oxooxtanoyl)-L-homoserine lactone (C8-oxo-HSL) on biofilm behaviors at early stage.

    PubMed

    Xia, Siqing; Zhou, Lijie; Zhang, Zhiqiang; Li, Jixiang

    2012-01-01

    N-acyl-homoserines quenching, enzymatic quenching of bacterial quorum sensing, has recently applied to mitigate biofilm in membrane bioreactor. However, the effect of AHLs on the behavior of biofilm formation is still sparse. In this study, Pseudomonas aeruginosa biofilm was formed on ultra-filtration membrane under a series of N-(3-oxooxtanoyl)-L-homoserine lactone (Cs-oxo-HSL) concentrations. Diffusing C8-oxo-HSL increased the growth rate of cells on biofilm where the concentration of C8-oxo-HSL was over 10(-7) g/L. The C8-oxo-HSL gradient had no observable influence on cell density and extracellular polymeric substances of biofilm with over 10(-7) g/L C8-oxo-HSL. Surprisingly, 10(-11)-10(-8) g/L of C8-oxo-HSL had no effect on cell growth in liquid culture. The cell analysis demonstrated that the quorum sensing system might enhance the growth of neighboring cells in contact with surfaces into biofilm and may influence the structure and organization of biofilm.

  15. Haloperoxidase Mediated Quorum Quenching by Nitzschia cf pellucida: Study of the Metabolization of N-Acyl Homoserine Lactones by a Benthic Diatom

    PubMed Central

    Syrpas, Michail; Ruysbergh, Ewout; Blommaert, Lander; Vanelslander, Bart; Sabbe, Koen; Vyverman, Wim; De Kimpe, Norbert; Mangelinckx, Sven

    2014-01-01

    Diatoms are known to produce a variety of halogenated compounds, which were recently shown to have a role in allelopathic interactions between competing species. The production of these compounds is linked to haloperoxidase activity. This research, has shown that this system may also be involved in diatom-bacteria interactions via the H2O2 dependent inactivation of a type of quorum sensing (QS) molecule, i.e., N-β-ketoacylated homoserine lactones (AHLs), by a natural haloperoxidase system from the benthic diatom Nitzschia cf pellucida. The AHL degradation pathway towards corresponding halogenated derivatives was elucidated via HPLC-MS analysis and the synthesis of a broad series of novel halogenated AHL analogues as reference compounds. Furthermore, their biological activity as quorum sensing modulators was directly compared and evaluated against a series of naturally occurring β-keto-AHLs. It has been demonstrated that the loss of the QS activity results from the final cleavage of the halogenated N-acyl chain of the signal molecules. PMID:24445305

  16. Identification of the Quorum-Sensing Target DNA Sequence and N-Acyl Homoserine Lactone Responsiveness of the Brucella abortus virB promoter▿

    PubMed Central

    Arocena, Gastón M.; Sieira, Rodrigo; Comerci, Diego J.; Ugalde, Rodolfo A.

    2010-01-01

    VjbR is a LuxR-type quorum-sensing (QS) regulator that plays an essential role in the virulence of the intracellular facultative pathogen Brucella, the causative agent of brucellosis. It was previously described that VjbR regulates a diverse group of genes, including the virB operon. The latter codes for a type IV secretion system (T4SS) that is central for the pathogenesis of Brucella. Although the regulatory role of VjbR on the virB promoter (PvirB) was extensively studied by different groups, the VjbR-binding site had not been identified so far. Here, we identified the target DNA sequence of VjbR in PvirB by DNase I footprinting analyses. Surprisingly, we observed that VjbR specifically recognizes a sequence that is identical to a half-binding site of the QS-related regulator MrtR of Mesorhizobium tianshanense. As shown by DNase I footprinting and electrophoretic mobility shift assays, generation of a palindromic MrtR-like-binding site in PvirB increased both the affinity and the stability of the VjbR-DNA complex, which confirmed that the QS regulator of Brucella is highly related to that of M. tianshanense. The addition of N-dodecanoyl homoserine lactone dissociated VjbR from the promoter, which confirmed previous reports that indicated a negative effect of this signal on the VjbR-mediated activation of PvirB. Our results provide new molecular evidence for the structure of the virB promoter and reveal unusual features of the QS target DNA sequence of the main regulator of virulence in Brucella. PMID:20400542

  17. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia.

    PubMed

    Tang, Kaihao; Su, Ying; Brackman, Gilles; Cui, Fangyuan; Zhang, Yunhui; Shi, Xiaochong; Coenye, Tom; Zhang, Xiao-Hua

    2015-01-01

    Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 10(5) s(-1) M(-1). Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the "HXHXDH" motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent.

  18. Suppressing Erwinia carotovora pathogenicity by projecting N-acyl homoserine lactonase onto the surface of Pseudomonas putida cells.

    PubMed

    Li, Qianqian; Ni, Hong; Meng, Shan; He, Yan; Yu, Ziniu; Li, Lin

    2011-12-01

    N-Acyl homoserine lactones (AHLs) serve as the vital quorum-sensing signals that regulate the virulence of the pathogenic bacterium Erwinia carotovora. In the present study, an approach to efficiently restrain the pathogenicity of E. carotovora-induced soft rot disease is described. Bacillus thuringiensis-derived N-acyl homoserine lactonase (AiiA) was projected onto the surface of Pseudomonas putida cells, and inoculation with both strains was challenged. The previously identified N-terminal moiety of the ice nucleation protein, InaQ-N, was applied as the anchoring motif. A surface display cassette with inaQ-N/ aiiA was constructed and expressed under the control of a constitutive promoter in P. putida AB92019. Surface localization of the fusion protein was confirmed by Western blot analysis, flow cytometry, and immunofluorescence microscopy. The antagonistic activity of P. putida MB116 expressing InaQ-N/AiiA toward E. carotovora ATCC25270 was evaluated by challenge inoculation in potato slices at different ratios. The results revealed a remarkable suppressing effect on E. carotovora infection. The active component was further analyzed using different cell fractions, and the cell surface-projected fusion protein was found to correspond to the suppressing effect. PMID:22210621

  19. Toxicological safety assessment of genetically modified Bacillus thuringiensis with additional N-acyl homoserine lactonase gene.

    PubMed

    Peng, Donghai; Zhou, Chenfei; Chen, Shouwen; Ruan, Lifang; Yu, Ziniu; Sun, Ming

    2008-01-01

    The aim of the present study is to evaluate the toxicology safety to mammals of a genetically modified (GM) Bacillus thuringiensis with an additional N-acyl homoserine lactones gene (aiiA), which possesses insecticidal activity together with restraint of bacterial pathogenicity and is intended for use as a multifunctional biopesticide. Safety assessments included an acute oral toxicity test and 28-d animal feeding study in Wistar rats, primary eye and dermal irritation in Zealand White rabbits, and delayed contact hypersensitivity in guinea pigs. Tests were conducted using spray-dried powder preparation. This GM product showed toxicity neither in oral acute toxicity test nor in 28-d animal feeding test at a dose of 5,000 mg/kg body weight. During the animal feeding test, there were no significant differences in growth, food and water consumption, hematology, blood biochemical indices, organ weights, and histopathology finding between rats in controls and tested groups. Tested animals in primary eye and dermal irritation and delayed contact hypersensitivity test were also devoid of any toxicity compared to controls. All the above results demonstrated that the GM based multifunctional B. thuringiensis has low toxicity and low eye and dermal irritation and would not cause hypersensitivity to laboratory mammals and therefore could be regarded as safe for use as a pesticide.

  20. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum.

    PubMed

    Lindemann, Andrea; Pessi, Gabriella; Schaefer, Amy L; Mattmann, Margrith E; Christensen, Quin H; Kessler, Aline; Hennecke, Hauke; Blackwell, Helen E; Greenberg, E Peter; Harwood, Caroline S

    2011-10-01

    Many species of Proteobacteria communicate by using LuxI-LuxR-type quorum-sensing systems that produce and detect acyl-homoserine lactone (acyl-HSL) signals. Most of the known signals are straight-chain fatty acyl-HSLs, and evidence indicates that LuxI homologs prefer fatty acid-acyl carrier protein (ACP) over fatty acyl-CoA as the acyl substrate for signal synthesis. Two related LuxI homologs, RpaI and BtaI from Rhodopseudomonas palustris and photosynthetic stem-nodulating bradyrhizobia, direct production of the aryl-HSLs p-coumaroyl-HSL and cinnamoyl-HSL, respectively. Here we report that BjaI from the soybean symbiont Bradyrhizobium japonicum USDA110 is closely related to RpaI and BtaI and catalyzes the synthesis of isovaleryl-HSL (IV-HSL), a branched-chain fatty acyl-HSL. We show that IV-HSL induces expression of bjaI, and in this way IV-HSL functions like many other acyl-HSL quorum-sensing signals. Purified histidine-tagged BjaI was an IV-HSL synthase, which was active with isovaleryl-CoA but not detectably so with isovaleryl-ACP. This suggests that the RpaI-BtaI-BjaI subfamily of acyl-HSL synthases may use CoA- rather than ACP-linked substrates for acyl-HSL synthesis. The bjaI-linked bjaR(1) gene is involved in the response to IV-HSL, and BjaR(1) is sensitive to IV-HSL at concentrations as low as 10 pM. Low but sufficient levels of IV-HSL (about 5 nM) accumulate in B. japonicum culture fluid. The low levels of IV-HSL synthesis have likely contributed to the fact that the quorum-sensing signal from this bacterium has not been described elsewhere.

  1. Functional characterization of a soybean growth stimulator Bradyrhizobium sp. strain SR-6 showing acylhomoserine lactone production.

    PubMed

    Ali, Amanat; Ayesha; Hameed, Sohail; Imran, Asma; Iqbal, Mazhar; Iqbal, Javed; Oresnik, Ivan J

    2016-09-01

    A soybean nodule endophytic bacterium Bradyrhizobium sp. strain SR-6 was characterized for production of acyl homoserine lactones (AHLs) as quorum sensing molecules. Mass spectrometry analysis of AHLs revealed the presence of C6-HSL, 3OH-C6-HSL, C8-HSL, C10-HSL, 3oxoC10-HSL, 3oxo-C12-HSL and 3OH-C12-HSL which are significantly different from those reported earlier in soybean symbionts. Purified AHL extracts significantly improved wheat and soybean seedling growth and root hair development along with increased soybean nodulation under axenic conditions. A positive correlation was observed among in vivo nitrogenase and catalase enzyme activities of the strain SR-6. Transmission electron microscopic analysis showed the cytochemical localization of catalase activity within the bacteroids, specifically attached to the peribacteroidal membrane. Root and nodule colonization proved rhizosphere competence of SR-6. The inoculation of SR-6 resulted in increased shoot length (13%), plant dry matter (50%), grain weight (16%), seed yield (20%) and N-uptake (14%) as compared to non-inoculated soybean plants. The symbiotic bacterium SR-6 has potential to improve soybean growth and yield in sub-humid climate of Azad Jammu and Kashmir region of Pakistan. The production and mass spectrometric profiling of AHLs as well as in vivo cytochemical localization of catalase enzyme activity in soybean Bradyrhizobium sp. have never been reported earlier elsewhere before our these investigations.

  2. Discovery of Pantoea rodasii Strain ND03 that Produces N-(3-Oxo-hexanoyl)-l-homoserine Lactone

    PubMed Central

    Yunos, Nina Yusrina Muhamad; Tan, Wen-Si; Mohamad, Nur Izzati; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Proteobacteria use quorum sensing to regulate target gene expression in response to population density. Quorum sensing (QS) is achieved via so-called signalling molecules and the best-studied QS signalling system uses N-acyl homoserine lactones (AHLs). This study aimed to identify and characterize the production of AHLs by a bacterium ND03 isolated from a Malaysian tropical rainforest waterfall. Molecular identification showed that ND03 is a Pantoea sp. closely related to Pantoea rodasii. We used Chromobacterium violaceum CV026, an AHL biosensor for preliminary AHL production screening and then used high resolution triple quadrupole liquid chromatography-mass spectrometry, to confirm that P. rodasii strain ND03 produced N-(3-oxo-hexanoyl)-l-homoserine lactone (3-oxo-C6-HSL). To the best of our knowledge, this is the first report for such a discovery in P. rodasii strain ND03. PMID:24859023

  3. Discovery of Pantoea rodasii strain ND03 that produces N-(3-Oxo-hexanoyl)-L-homoserine lactone.

    PubMed

    Yunos, Nina Yusrina Muhamad; Tan, Wen-Si; Mohamad, Nur Izzati; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Proteobacteria use quorum sensing to regulate target gene expression in response to population density. Quorum sensing (QS) is achieved via so-called signalling molecules and the best-studied QS signalling system uses N-acyl homoserine lactones (AHLs). This study aimed to identify and characterize the production of AHLs by a bacterium ND03 isolated from a Malaysian tropical rainforest waterfall. Molecular identification showed that ND03 is a Pantoea sp. closely related to Pantoea rodasii. We used Chromobacterium violaceum CV026, an AHL biosensor for preliminary AHL production screening and then used high resolution triple quadrupole liquid chromatography-mass spectrometry, to confirm that P. rodasii strain ND03 produced N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL). To the best of our knowledge, this is the first report for such a discovery in P. rodasii strain ND03.

  4. Discovery of Pantoea rodasii strain ND03 that produces N-(3-Oxo-hexanoyl)-L-homoserine lactone.

    PubMed

    Yunos, Nina Yusrina Muhamad; Tan, Wen-Si; Mohamad, Nur Izzati; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Proteobacteria use quorum sensing to regulate target gene expression in response to population density. Quorum sensing (QS) is achieved via so-called signalling molecules and the best-studied QS signalling system uses N-acyl homoserine lactones (AHLs). This study aimed to identify and characterize the production of AHLs by a bacterium ND03 isolated from a Malaysian tropical rainforest waterfall. Molecular identification showed that ND03 is a Pantoea sp. closely related to Pantoea rodasii. We used Chromobacterium violaceum CV026, an AHL biosensor for preliminary AHL production screening and then used high resolution triple quadrupole liquid chromatography-mass spectrometry, to confirm that P. rodasii strain ND03 produced N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL). To the best of our knowledge, this is the first report for such a discovery in P. rodasii strain ND03. PMID:24859023

  5. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone.

    PubMed

    Tao, Shiyu; Luo, Yanwen; Bin He; Liu, Jie; Qian, Xi; Ni, Yingdong; Zhao, Ruqian

    2016-07-01

    A mucus layer coats the gastrointestinal tract and serves as the first line of intestinal defense against infection. N-acyl-homoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence the homeostasis of intestinal epithelium. In this study, we investigated the effects of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on cell viability and mucus secretion in LS174T cells. C12-HSL but not C4-HSL significantly decreased cell viability by inducing mitochondrial dysfunction and activating cell apoptosis which led to a decrease in mucin expression. Pretreatment with lipid raft disruptor (Methyl-β-cyclodextrin, MβCD) and oxidative stress inhibitor (N-acetyl-L-cysteine, NAC) slightly rescued the viability of cells damaged by C12-HSL exposure, while the paraoxonase 2 (PON2) inhibitor (Triazolo[4,3-a]quinolone, TQ416) significantly affected recovering cells viability and mucin secretion. When LS174T cells were treated with C12-HSL and TQ416 simultaneously, TQ416 showed the maximal positive effect on cells viability. However, if cells were first treated with C12-HSL for 40 mins, and then TQ46 was added, the TQ416 had no effect on cell viability. These results suggest that the C12-HSL-acid process acts at an early step to activate apoptosis as part of C12-HSL's effect on intestinal mucus barrier function.

  6. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone.

    PubMed

    Tao, Shiyu; Luo, Yanwen; Bin He; Liu, Jie; Qian, Xi; Ni, Yingdong; Zhao, Ruqian

    2016-01-01

    A mucus layer coats the gastrointestinal tract and serves as the first line of intestinal defense against infection. N-acyl-homoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence the homeostasis of intestinal epithelium. In this study, we investigated the effects of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on cell viability and mucus secretion in LS174T cells. C12-HSL but not C4-HSL significantly decreased cell viability by inducing mitochondrial dysfunction and activating cell apoptosis which led to a decrease in mucin expression. Pretreatment with lipid raft disruptor (Methyl-β-cyclodextrin, MβCD) and oxidative stress inhibitor (N-acetyl-L-cysteine, NAC) slightly rescued the viability of cells damaged by C12-HSL exposure, while the paraoxonase 2 (PON2) inhibitor (Triazolo[4,3-a]quinolone, TQ416) significantly affected recovering cells viability and mucin secretion. When LS174T cells were treated with C12-HSL and TQ416 simultaneously, TQ416 showed the maximal positive effect on cells viability. However, if cells were first treated with C12-HSL for 40 mins, and then TQ46 was added, the TQ416 had no effect on cell viability. These results suggest that the C12-HSL-acid process acts at an early step to activate apoptosis as part of C12-HSL's effect on intestinal mucus barrier function. PMID:27364593

  7. Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants.

    PubMed

    Götz, Christine; Fekete, Agnes; Gebefuegi, Istvan; Forczek, Sándor T; Fuksová, Kvetoslava; Li, Xiaojing; Englmann, Matthias; Gryndler, Milan; Hartmann, Anton; Matucha, Miroslav; Schmitt-Kopplin, Philippe; Schröder, Peter

    2007-11-01

    Bacterial intraspecies and interspecies communication in the rhizosphere is mediated by diffusible signal molecules. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as autoinducers in the quorum sensing response. While bacterial signalling is well described, the fate of AHLs in contact with plants is much less known. Thus, adsorption, uptake and translocation of N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL) and N-decanoyl-homoserine lactone (C10-HSL) were studied in axenic systems with barley (Hordeum vulgare L.) and the legume yam bean (Pachyrhizus erosus (L.) Urban) as model plants using ultra-performance liquid chromatography (UPLC), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tritium-labelled AHLs. Decreases in AHL concentration due to abiotic adsorption or degradation were tolerable under the experimental conditions. The presence of plants enhanced AHL decline in media depending on the compounds' lipophilicity, whereby the legume caused stronger AHL decrease than barley. All tested AHLs were traceable in root extracts of both plants. While all AHLs except C10-HSL were detectable in barley shoots, only C6-HSL was found in shoots of yam bean. Furthermore, tritium-labelled AHLs were used to determine short-term uptake kinetics. Chiral separation by GC-MS revealed that both plants discriminated D-AHL stereoisomers to different extents. These results indicate substantial differences in uptake and degradation of different AHLs in the plants tested.

  8. Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants.

    PubMed

    Götz, Christine; Fekete, Agnes; Gebefuegi, Istvan; Forczek, Sándor T; Fuksová, Kvetoslava; Li, Xiaojing; Englmann, Matthias; Gryndler, Milan; Hartmann, Anton; Matucha, Miroslav; Schmitt-Kopplin, Philippe; Schröder, Peter

    2007-11-01

    Bacterial intraspecies and interspecies communication in the rhizosphere is mediated by diffusible signal molecules. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as autoinducers in the quorum sensing response. While bacterial signalling is well described, the fate of AHLs in contact with plants is much less known. Thus, adsorption, uptake and translocation of N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL) and N-decanoyl-homoserine lactone (C10-HSL) were studied in axenic systems with barley (Hordeum vulgare L.) and the legume yam bean (Pachyrhizus erosus (L.) Urban) as model plants using ultra-performance liquid chromatography (UPLC), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tritium-labelled AHLs. Decreases in AHL concentration due to abiotic adsorption or degradation were tolerable under the experimental conditions. The presence of plants enhanced AHL decline in media depending on the compounds' lipophilicity, whereby the legume caused stronger AHL decrease than barley. All tested AHLs were traceable in root extracts of both plants. While all AHLs except C10-HSL were detectable in barley shoots, only C6-HSL was found in shoots of yam bean. Furthermore, tritium-labelled AHLs were used to determine short-term uptake kinetics. Chiral separation by GC-MS revealed that both plants discriminated D-AHL stereoisomers to different extents. These results indicate substantial differences in uptake and degradation of different AHLs in the plants tested. PMID:17899036

  9. Mucin 3 is involved in intestinal epithelial cell apoptosis via N-(3-oxododecanoyl)-L-homoserine lactone-induced suppression of Akt phosphorylation.

    PubMed

    Taguchi, Ryoko; Tanaka, Shinya; Joe, Ga-Hyun; Maseda, Hideaki; Nomura, Nobuhiko; Ohnishi, Junji; Ishizuka, Satoshi; Shimizu, Hidehisa; Miyazaki, Hitoshi

    2014-07-15

    N-acyl-homoserine lactones (AHL) are quorum-sensing molecules in bacteria that play important roles in regulating virulence gene expression in pathogens such as Pseudomonas aeruginosa. The present study compared responses between undifferentiated and differentiated Caco-2 cells to N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL). A low concentration of 3-oxo-C12-HSL (30 μM) is sufficient to reduce viability accompanied by apoptosis via the suppression of phosphorylation by Akt in undifferentiated Caco-2 cells. The suppression of Akt phosphorylation appears specific in 3-oxo-C12-HSL, because other AHLs did not influence the phosphorylation status of Akt. The reduced viability induced by 3-oxo-C12-HSL was partially recovered by constitutively active Akt overexpression in undifferentiated Caco-2 cells. Since mucin is considered a vital component of the gut barrier, we investigated whether mucin protects cellular functions induced by 3-oxo-C12-HSL in undifferentiated Caco-2 cells. The results showed that mucin protected undifferentiated Caco-2 cells from apoptosis induced by 3-oxo-C12-HSL. 3-Oxo-C12-HSL did not induce cell death in differentiated Caco-2 cells that expressed higher levels of mucin 3 (MUC3) than undifferentiated Caco-2 cells. In addition, 3-oxo-C12-HSL promoted cell death in undifferentiated Caco-2 cells transfected with MUC3 siRNA and reduced MUC3 expression in undifferentiated Caco-2 cells. Therefore, MUC3 might be responsible for the survival of undifferentiated intestinal epithelial cells in the presence of 3-oxo-C12-HSL through regulating Akt phosphorylation. In conclusion, 3-oxo-C12-HSL might influence the survival of undifferentiated intestinal epithelial cells as well as interactions between these cells and pathogens.

  10. Cloning and expression of quorum sensing N-acyl-homoserine synthase (LuxI) gene detected in Acinetobacter baumannii

    PubMed Central

    Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Mansouri, Shahla

    2016-01-01

    Background and Objectives: In present study we aimed to clone the luxI gene encoding N-acyl-homoserine synthase detected in clinical isolates of Acinetobacter baumannii and study its expression in Escherichia coli transformants. Materials and Methods: Four A. baumannii hospital strains which demonstrated strong biofilm activity were selected in this investigation. The presence of luxI gene was detected using PCR technique. Purified PCR product DNA was initially cloned into pTG19 and transformed to E. coli DH5α. The gene was then recovered from agarose gel and ligated by T4 DNA ligase into pET28a expression vector using NdeI and XhoI enzymes. pET28a + luxI was transformed into E. coli BL21 (DE3). The luxI putative gene was further detected in the transformants by colony PCR. Expression of the luxI gene in the recombinant E. coli BL21 cells was studied by quantitative real time PCR (qRT-PCR) and the presence of N-acylhomoserine lactone (AHL) was checked by colorimetric assay and Fourier Transform Infra-Red (FT-IR) spectroscopy. Results: We successfully cloned AHL gene from A. baumannii strain 23 to pET28a expression vector. There was four fold increases in expression of luxI in the transformants (P ≤ 0.05). It was found that, strain 23 and the transformants showed highest amount of AHL activity (OD = 1.524). The FT-IR analysis indicated stretching C=O bond of the lactone ring and primary amides (N=H) at 1764.69 cm−1 and 1659.23 cm−1 respectively. Conclusion: From above results we concluded that, luxI in A. baumannii is indeed responsible for AHL production and not regulation and pET28a vector allows efficient AHL expression in E. coli BL21 transformants. PMID:27307980

  11. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone

    PubMed Central

    Tao, Shiyu; Luo, Yanwen; Bin He; Liu, Jie; Qian, Xi; Ni, Yingdong; Zhao, Ruqian

    2016-01-01

    A mucus layer coats the gastrointestinal tract and serves as the first line of intestinal defense against infection. N-acyl-homoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence the homeostasis of intestinal epithelium. In this study, we investigated the effects of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on cell viability and mucus secretion in LS174T cells. C12-HSL but not C4-HSL significantly decreased cell viability by inducing mitochondrial dysfunction and activating cell apoptosis which led to a decrease in mucin expression. Pretreatment with lipid raft disruptor (Methyl-β-cyclodextrin, MβCD) and oxidative stress inhibitor (N-acetyl-L-cysteine, NAC) slightly rescued the viability of cells damaged by C12-HSL exposure, while the paraoxonase 2 (PON2) inhibitor (Triazolo[4,3-a]quinolone, TQ416) significantly affected recovering cells viability and mucin secretion. When LS174T cells were treated with C12-HSL and TQ416 simultaneously, TQ416 showed the maximal positive effect on cells viability. However, if cells were first treated with C12-HSL for 40 mins, and then TQ46 was added, the TQ416 had no effect on cell viability. These results suggest that the C12-HSL-acid process acts at an early step to activate apoptosis as part of C12-HSL’s effect on intestinal mucus barrier function. PMID:27364593

  12. Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana

    PubMed Central

    Zhao, Qian; Zhang, Chao; Jia, Zhenhua; Huang, Yali; Li, Haili; Song, Shuishan

    2015-01-01

    Many bacteria use signal molecules of low molecular weight to monitor their local population density and to coordinate their collective behavior in a process called “quorum sensing” (QS). N-acyl-homoserine lactones (AHLs) are the primary QS signals among Gram-negative bacteria. AHL-mediated QS plays an essential role in diverse bacterial physiological processes. Recent evidence shows that plants are able to sense bacterial AHLs and respond to them appropriately. However, little is known about the mechanism by which plants perceive and transduce the bacterial AHLs within cells. In this study, we found that the stimulatory effect of N-3-oxo-hexanoyl homoserine lactone (3OC6-HSL) on primary root elongation of Arabidopsis was abolished by the calmodulin (CaM) antagonists N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7) and trifluoperazine (TFP). Western-blot and ELISA analysis revealed that the concentration of CaM protein in Arabidopsis roots increased after treatment with 1 μM 3OC6-HSL. Results from quantitative RT-PCR demonstrated that the transcription of all nine CaM genes in Arabidopsis genome was up-regulated in the plants treated with 3OC6-HSL. The loss-of-function mutants of each AtCaM gene (AtCaM1-9) were insensitive to 3OC6-HSL-stimulation of primary root elongation. On the other hand, the genetic evidence showed that CaM may not participates the inhibition of primary root length caused by application of long-chained AHLs such as C10-HSL and C12-HSL. Nevertheless, our results suggest that CaM is involved in the bacterial 3OC6-HSL signaling in plant cells. These data offer new insight into the mechanism of plant response to bacterial QS signals. PMID:25628641

  13. Characterization of N-butanoyl-L-homoserine lactone (C4-HSL) deficient clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Boşgelmez-Tinaz, Gülgün; Ulusoy, Seyhan

    2008-01-01

    In the opportunistic pathogen Pseudomonas aeruginosa, the production of several virulence factors such as elastase, rhamnolipids and pyocyanin depends on cell-to-cell signaling or quorum sensing (QS) involving N-acylhomoserine lactone (AHL) signal molecules. In vitro studies with laboratory strains and virulence studies in animals with these same strains have demonstrated the contribution of QS to the pathogenesis of P. aeruginosa. However, the importance of P. aeruginosa QS systems in the development of human infections is not clearly known. In order to determine if deficiency within the QS system compromises the ability of P. aeruginosa to cause infections in humans, we collected 50 P. aeruginosa clinical isolates. Phenotypic characterization showed that isolates I-457, I-458, I-459 and I-461 were defective in the production of N-butanoyl-l-homoserine lactone (C4-HSL) signaling molecule and virulence factors elastase, protease, pyocyanin and rhamnolipids. Analysis of the sequences of the lasR, lasI, rhlR and rhlI genes of these four isolates showed that two of the four isolates had mutational defects in both rhlR and rhlI genes while other two isolates were only mutated in the rhlI gene. The combination of rhlR and rhlI mutations or only rhlI mutation probably explains their C4-HSL and virulence factors deficiencies. These observations suggest that QS deficient P. aeruginosa clinical isolates are able to cause infections and that in addition to known virulence factors, factors yet unidentified may contribute to the pathogenesis of P. aeruginosa.

  14. Effects of Inhibiting Acylated Homoserine Lactones (AHLs) on Anammox Activity and Stability of Granules'.

    PubMed

    Zhao, Ran; Zhang, Hanmin; Zou, Xiang; Yang, Fenglin

    2016-07-01

    In this study, the effects of AHL-based QS signals on anammox activity and stability of granules' were investigated. Results clearly showed that the vanillin and porcine kidney acylase I could reduce the AHLs in anammox bacteria. Inactivation of AHLs by vanillin and porcine kidney acylase I depressed the nitrogen removal ability of anammox bacteria. A significant inhibition of specific anammox activity was observed when the concentration of vanillin and porcine kidney acylase I increased to 1 g/L. Anammox activity was depressed on enzyme level. Moreover, degradation of AHLs under vanillin and AHL-acylase exposure could result in anammox granules' disintegration. Further research showed that the contents of protein (PN) and polysaccharides (PS) in extracellular polymeric substances were reduced with AHLs blocked, and it further explained the instability and weakening strength of the anammox granules. The results of our investigation provided new insight into the AHL-based QS-regulated anammox activity, leading a potential way to enhance stability of anammox granules. PMID:27061587

  15. Imidazolines as non-classical bioisosteres of N-acyl homoserine lactones and quorum sensing inhibitors.

    PubMed

    Reyes-Arellano, Alicia; Bucio-Cano, Alejandro; Montenegro-Sustaita, Mabel; Curiel-Quesada, Everardo; Salgado-Zamora, Héctor

    2012-01-01

    A series of selected 2-substituted imidazolines were synthesized in moderate to excellent yields by a modification of protocols reported in the literature. They were evaluated as potential non-classical bioisosteres of AHL with the aim of counteracting bacterial pathogenicity. Imidazolines 18a, 18e and 18f at various concentrations reduced the violacein production by Chromobacterium violaceum, suggesting an anti-quorum sensing profile against Gram-negative bacteria. Imidazoline 18b did not affect the production of violacein, but had a bacteriostatic effect at 100 μM and a bactericidal effect at 1 mM. Imidazoline 18a bearing a hexyl phenoxy moiety was the most active compound of the series, rendering a 72% inhibitory effect of quorum sensing at 100 μM. Imidazoline 18f bearing a phenyl nonamide substituent presented an inhibitory effect on quorum sensing at a very low concentration (1 nM), with a reduction percentage of 28%. This compound showed an irregular performance, decreasing inhibition at concentrations higher than 10 μM, until reaching 100 μM, at which concentration it increased the inhibitory effect with a 49% reduction percentage. When evaluated on Serratia marcescens, compound 18f inhibited the production of prodigiosin by 40% at 100 μM.

  16. Construction of self-transmissible green fluorescent protein-based biosensor plasmids and their use for identification of N-acyl homoserine-producing bacteria in lake sediments.

    PubMed

    Lumjiaktase, Putthapoom; Aguilar, Claudio; Battin, Tom; Riedel, Kathrin; Eberl, Leo

    2010-09-01

    Many bacteria utilize quorum sensing (QS) systems to communicate with each other by means of the production, release, and response to signal molecules. N-Acyl homoserine lactone (AHL)-based QS systems are particularly widespread among the Proteobacteria, in which they regulate various functions. It has become evident that AHLs can also serve as signals for interspecies communication. However, knowledge on the impact of AHLs for the ecology of bacteria in their natural habitat is scarce, due mainly to the lack of tools that allow the study of QS in bacterial communities in situ. Here, we describe the construction of self-mobilizable green fluorescent protein (GFP)-based AHL sensors that utilize the conjugation and replication properties of the broad-host-range plasmid RP4. We show that these novel AHL sensor plasmids can be easily transferred to different bacterial species by biparental mating and that they give rise to green fluorescent cells in case the recipient is an AHL producer. We also demonstrate that these sensor plasmids are capable of self-spreading within mixed biofilms and are a suitable tool for the identification of AHL-producing bacteria in lake sediment.

  17. A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal

    SciTech Connect

    Miao, Chunjuan; Liu, Fang; Zhao, Qian; Jia, Zhenhua; Song, Shuishan

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer 3OC8-HSL can change the expression of diverse proteins in Arabidopsis. Black-Right-Pointing-Pointer 3OC8-HSL responsive proteins were identified using MALDI-TOF-MS. Black-Right-Pointing-Pointer Plant could have an extensive range of functional responses to bacterial AHL. -- Abstract: N-acyl-homoserine lactones (AHLs) are a class of bacterial quorum-sensing (QS) signals that are commonly used by Gram-negative bacteria for cell-to-cell communication. Recently, it has become evident that AHLs can regulate plant root growth and trigger plant defense responses; however, little is known about the plant response mechanisms to bacterial QS signals. In this study, we used a proteomic approach to investigate the responses of Arabidopsis thaliana seedlings to N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL), a bacterial QS signal. The results revealed that the abundance of 53 protein spots was significantly altered; two thirds of these proteins were found to be up-regulated after 3OC8-HSL treatment. Thirty-four proteins were identified using MALDI-TOF-MS. These 3OC8-HSL-responsive proteins, in addition to one protein of unknown function, are implicated in a variety of physiological processes, including metabolism of carbohydrate and energy, protein biosynthesis and quality control systems, defense response and signal transduction and cytoskeleton remodeling. Our bioinformatic analysis indicated that the chloroplasts are the intracellular organelles most influenced by the exposure to 3OC8-HSL. Our data indicate that plants have an extensive range of functional responses to bacterial AHLs that may play important roles in the interaction between plants and bacteria.

  18. The quorum-sensing molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) enhances the host defence by activating human polymorphonuclear neutrophils (PMN).

    PubMed

    Wagner, Christof; Zimmermann, Sabine; Brenner-Weiss, Gerald; Hug, Friederike; Prior, Birgit; Obst, Ursula; Hänsch, Gertrud Maria

    2007-01-01

    The P. aeruginosa quorum-sensing molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) interacts not only with bacteria, but also with mammalian cells, among others with those of the immune defence system. We focussed on the possible interaction of 3OC12-HSL with human polymorphonuclear neutrophils (PMN), because these cells are the first to enter an infected site. We found that 3OC12-HSL attracts PMN, and up-regulates expression of receptors known to be involved in host defence, including the adhesion proteins CD11b/CD18 and the immunoglobulin receptors CD16 and CD64. Furthermore, the uptake of bacteria (phagocytosis), which is crucial for an efficient defence against infection, was enhanced. Thus, recognising and responding to 3OC12-HSL not only attracts the PMN to the site of a developing biofilm, but also reinforces their defence mechanisms, and hence could be a means to control the infection in an early stage and to prevent biofilm formation.

  19. Infrared study of the bacterial autoinducer N-hexanoyl-homoserine lactone (C6-HSL) in the gas-phase, water, and octanol solutions.

    PubMed

    Kim, Jiah; Kim, Seong Keun; Grégoire, Gilles; Manil, Bruno; Schermann, Jean Pierre

    2011-08-25

    The N-hexanoyl-homoserine lactone (C6-HSL) molecule has been investigated by means of infrared multiphoton dissociation (IRMPD) and Fourier-transform infrared spectroscopy (FT-IR) under different conditions in an attempt to mimic biological situations encountered in communication between bacteria for quorum sensing. The protonated molecular ion was studied in the gas-phase that corresponds to a solvent-free situation somewhat analogous to that encountered in the receptor. The simulation of the IRMPD spectrum of the isolated ion was then conducted by means of quantum chemistry calculations in vacuum. In the case of the neutral species, the FT-IR spectra were recorded in D(2)O, mimicking the cytosolic and extracellular media as well as in 1-octanol that is often used for simulation of cell membranes. The interpretation was conducted by considering a C6-HSL molecule in its endo or exo conformation hydrogen-bonded to, respectively, six D(2)O and four 1-octanol molecules. A satisfying agreement with the experimental FT-IR studies conducted in solution at room temperature was obtained as long as a continuum IEFPCM model was added to the explicit solvent environment.

  20. Chania multitudinisentens gen. nov., sp. nov., an N-acyl-homoserine-lactone-producing bacterium in the family Enterobacteriaceae isolated from landfill site soil.

    PubMed

    Ee, Robson; Madhaiyan, Munusamy; Ji, Lianghui; Lim, Yan-Lue; Nor, Nuruddin Muhammad; Tee, Kok-Keng; Chen, Jian-Woon; Yin, Wai-Fong

    2016-06-01

    Phylogenetic and taxonomic characterization was performed for bacterium RB-25T, which was isolated from a soil sample collected in a former municipal landfill site in Puchong, Malaysia. Growth occurred at 20-37 °C at pH 5-8 but not in the presence of 9 % (w/v) NaCl or higher. The principal fatty acids were C16:0, C18:1ω7c and summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH). Ubiquinone-8 was the only isoprenoid quinone detected. Polar lipid analysis revealed the presence of phospholipid, phosphoaminolipid, phosphatidylethanolamine, phosphatidylglycerol and one unidentified aminolipid. DNA G+C content was 50.9 mol% phylogenetic analysis based on 16S rRNA gene sequence showed that strain RB-25T formed a distinct lineage within the family Enterobacteriaceae of the class Gammaproteobacteria. It exhibited a low level of 16S rRNA gene sequence similarity with its phylogenetic neighbours Pantoea rwandensis LMG 26275T (96.6 %), Rahnella aquatilis CIP 78.65T (96.5 %), Pectobacterium betavasculorum ATCC 43762T (96.4 %), Pantoea rodasii LMG 26273T (96.3 %), Gibbsiella dentisursi NUM 1720T (96.3 %) and Serratia glossinae C1T (96.2 %). Multilocus sequence analyses based on fusA, pyrG, rplB, rpoB and sucA sequences showed a clear distinction of strain RB-25T from the most closely related genera. Isolate RB-25T could also be distinguished from members of these genera by a combination of the DNA G+C content, respiratory quinone system, fatty acid profile, polar lipid composition and other phenotypic features. Strain RB-25T represents a novel species of a new genus, for which the name Chaniamultitudinisentens gen. nov., sp. nov. is proposed. The type strain is RB-25T (=DSM 28811T=LMG 28304T). PMID:26978486

  1. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones).

    PubMed

    Jiang, Hui; Jiang, Donglei; Shao, Jingdong; Sun, Xiulan

    2016-01-15

    We have developed a novel and economical electrochemical sensor to measure Gram-negative bacterial quorum signaling molecules (AHLs) using magnetic nanoparticles and molecularly imprinted polymer (MIP) technology. Magnetic molecularly imprinted polymers (MMIPs) capable of selectively absorbing AHLs were successfully synthesized by surface polymerization. The particles were deposited onto a magnetic carbon paste electrode (MGCE) surface, and characterized by electrochemical measurements. Differential Pulse Voltammetry (DPV) was utilized to record the oxidative current signal that is characteristic of AHL. The detection limit of this assay was determined to be 8×10(-10)molL(-1) with a linear detection range of 2.5×10(-9)molL(-1) to 1.0×10(-7)molL(-1). This Fe3O4@SiO2-MIP-based electrochemical sensor is a valuable new tool that allows quantitative measurement of Gram-negative bacterial quorum signaling molecules. It has potential applications in the fields of clinical diagnosis or food analysis with real-time detection capability, high specificity, excellent reproducibility, and good stability.

  2. Synthesis and biological evaluation of novel N-α-haloacylated homoserine lactones as quorum sensing modulators

    PubMed Central

    Syrpas, Michail; Ruysbergh, Ewout; Stevens, Christian V; De Kimpe, Norbert

    2014-01-01

    Summary Novel N-α-haloacylated homoserine lactones, in which a halogen atom was introduced at the α-position of the carbonyl function of the N-acyl chain, have been studied as quorum sensing (QS) modulators and compared with a library of natural N-acylated homoserine lactones (AHLs). The series of novel analogues consists of α-chloro, α-bromo and α-iodo AHL analogues. Furthermore, the biological QS activity of the synthetic AHL analogues compared to the natural AHLs was evaluated. Halogenated analogues demonstrated a reduced activity in the Escherichia coli JB523 bioassay, with the α-iodo lactones being the less active ones and the α-chloro AHLs the most potent QS agonists. Most of the α-haloacylated analogues did not exhibit a significant reduction when tested in the QS inhibition test. Therefore, these novel analogues could be utilized as chemical probes for QS structure–activity studies. PMID:25383125

  3. Characterization of Quorum Sensing and Quorum Quenching Soil Bacteria Isolated from Malaysian Tropical Montane Forest

    PubMed Central

    Chong, Teik-Min; Koh, Chong-Lek; Sam, Choon-Kook; Choo, Yeun-Mun; Yin, Wai-Fong; Chan, Kok-Gan

    2012-01-01

    We report the production and degradation of quorum sensing N-acyl-homoserine lactones by bacteria isolated from Malaysian montane forest soil. Phylogenetic analysis indicated that these isolates clustered closely to the genera of Arthrobacter, Bacillus and Pseudomonas. Quorum quenching activity was detected in six isolates of these three genera by using a series of bioassays and rapid resolution liquid chromatography analysis. Biosensor screening and high resolution liquid chromatography-mass spectrometry analysis revealed the production of N-dodecanoyl-L-homoserine lactone (C12-HSL) by Pseudomonas frederiksbergensis (isolate BT9). In addition to degradation of a wide range of N-acyl-homoserine lactones, Arthrobacter and Pseudomonas spp. also degraded p-coumaroyl-homoserine lactone. To the best of our knowledge, this is the first documentation of Arthrobacter and Pseudomonas spp. capable of degrading p-coumaroyl-homoserine lactone and the production of C12-HSL by P. frederiksbergensis. PMID:22666062

  4. Unravelling the genome of long chain N-acylhomoserine lactone-producing Acinetobacter sp. strain GG2 and identification of its quorum sensing synthase gene

    PubMed Central

    How, Kah Yan; Hong, Kar-Wai; Sam, Choon-Kook; Koh, Chong-Lek; Yin, Wai-Fong; Chan, Kok-Gan

    2015-01-01

    Myriad proteobacteria use N-acyl homoserine lactone (AHL) molecules as quorum sensing (QS) signals to regulate different physiological functions, including virulence, antibiotic production, and biofilm formation. Many of these proteobacteria possess LuxI/LuxR system as the QS mechanism. Recently, we reported the 3.89 Mb genome of Acinetobacter sp. strain GG2. In this work, the genome of this long chain AHL-producing bacterium was unravelled which led to the molecular characterization of luxI homologue, designated as aciI. This 552 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was ∼20.5 kDa and is highly similar to several autoinducer proteins of LuxI family among Acinetobacter species. To verify the AHL synthesis activity of this protein, high-resolution liquid chromatography–mass spectrometry analysis revealed the production of 3-oxo-dodecanoyl-homoserine lactone and 3-hydroxy-dodecanoyl-homoserine lactone from induced E. coli harboring the recombinant AciI. Our data show for the first time, the cloning and characterization of the luxI homologue from Acinetobacter sp. strain GG2, and confirmation of its AHLs production. These data are of great significance as the annotated genome of strain GG2 has provided a valuable insight in the study of autoinducer molecules and its roles in QS mechanism of the bacterium. PMID:25926817

  5. Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogues of N-(3-oxohexanoyl)-L-homoserine lactone.

    PubMed

    Chhabra, S R; Stead, P; Bainton, N J; Salmond, G P; Stewart, G S; Williams, P; Bycroft, B W

    1993-03-01

    N-(3-Oxohexanoyl)-L-homoserine lactone (HSL) (I) is the autoregulator controlling carbapenem antibiotic biosynthesis in Erwinia carotovora ATCC 39048. The chemical synthesis and biological evaluation of analogues of HSL are described. These include alterations of chirality, side-chain modifications, ring size and ring hetero atom. A number of compounds are reported which are capable of restoring the phenotype to a HSL negative mutant but at higher concentrations than HSL. A-factor, the autoregulator of streptomycin biosynthesis in Streptomyces griseus, was not active as an inducer of carbapenem biosynthesis in E. carotovora.

  6. Tandem Mass Spectrometry Detection of Quorum Sensing Activity in Multidrug Resistant Clinical Isolate Acinetobacter baumannii

    PubMed Central

    Chan, Kok-Gan; Cheng, Huey Jia; Chen, Jian Woon; Yin, Wai-Fong; Ngeow, Yun Fong

    2014-01-01

    Many Proteobacteria communicate via production followed by response of quorum sensing molecules, namely, N-acyl homoserine lactones (AHLs). These molecules consist of a lactone moiety with N-acyl side chain with various chain lengths and degrees of saturation at C-3 position. AHL-dependent QS is often associated with regulation of diverse bacterial phenotypes including the expression of virulence factors. With the use of biosensor and high resolution liquid chromatography tandem mass spectrometry, the AHL production of clinical isolate A. baumannii 4KT was studied. Production of short chain AHL, namely, N-hexanoyl-homoserine lactone (C6-HSL) and N-octanoyl-homoserine lactone (C8-HSL), was detected. PMID:25101326

  7. Human hormone-sensitive lipase (HSL): expression in white fat corrects the white adipose phenotype of HSL-deficient mice.

    PubMed

    Fortier, Mélanie; Soni, Krishnakant; Laurin, Nancy; Wang, Shu Pei; Mauriège, Pascale; Jirik, Frank R; Mitchell, Grant A

    2005-09-01

    In white adipose tissue (WAT), hormone-sensitive lipase (HSL) can mediate lipolysis, a central pathway in obesity and diabetes. Gene-targeted HSL-deficient (HSL-/-) mice with no detectable HSL peptide or activity (measured as cholesteryl esterase) have WAT abnormalities, including low mass, marked heterogeneity of cell diameter, increased diacylglycerol content, and low beta-adrenergic stimulation of adipocyte lipolysis. Three transgenic mouse strains preferentially expressing human HSL in WAT were bred to a HSL-/- background. One, HSL-/- N, expresses normal human HSL (41.3 +/- 9.1% of normal activity); two express a serine-to-alanine mutant (S554A) initially hypothesized to be constitutively active: HSL-/- ML, 50.3 +/- 12.3% of normal, and HSL-/- MH, 69.8 +/- 15.8% of normal. In WAT, HSL-/- N mice resembled HSL+/+ controls in WAT mass, histology, diacylglyceride content, and lipolytic response to beta-adrenergic agents. In contrast, HSL-/- ML and HSL-/- MH mice resembled nontransgenic HSL-/- mice, except that diacylglycerol content and perirenal and inguinal WAT masses approached normal in HSL-/- MH mice. Therefore, 1) WAT expression of normal human HSL markedly improves HSL-/- WAT biochemically, physiologically, and morphologically; 2) similar levels of S554A HSL have a low physiological effect despite being active in vitro; and 3) diacylglycerol accumulation is not essential for the development of the characteristic WAT pathology of HSL-/- mice.

  8. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity.

    PubMed

    Telford, G; Wheeler, D; Williams, P; Tomkins, P T; Appleby, P; Sewell, H; Stewart, G S; Bycroft, B W; Pritchard, D I

    1998-01-01

    Diverse gram-negative bacterial cells communicate with each other by using diffusible N-acyl homoserine lactone (AHL) signal molecules to coordinate gene expression with cell population density. Accumulation of AHLs above a threshold concentration renders the population "quorate," and the appropriate target gene is activated. In pathogenic bacteria, such as Pseudomonas aeruginosa, AHL-mediated quorum sensing is involved in the regulation of multiple virulence determinants. We therefore sought to determine whether the immune system is capable of responding to these bacterial signal molecules. Consequently the immunomodulatory properties of the AHLs N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL) and N-(3-oxohexanoyl)-L-homoserine lactone (OHHL) were evaluated in murine and human leukocyte immunoassays in vitro. OdDHL, but not OHHL, inhibited lymphocyte proliferation and tumor necrosis factor alpha production by lipopolysaccharide-stimulated macrophages. Furthermore, OdDHL simultaneously and potently down-regulated the production of IL-12, a Th-1-supportive cytokine. At high concentrations (>7 x 10(-5) M) OdDHL inhibited antibody production by keyhole limpet hemocyanin-stimulated spleen cells, but at lower concentrations (<7 x 10(-5) M), antibody production was stimulated, apparently by increasing the proportion of the immunoglobulin G1 (IgG1) isotype. OdDHL also promoted IgE production by interleukin-4-stimulated human peripheral blood mononuclear cells. These data indicate that OdDHL may influence the Th-1-Th-2 balance in the infected host and suggest that, in addition to regulating the expression of virulence determinants, OdDHL may contribute to the pathogenesis of P. aeruginosa infections by functioning as a virulence determinant per se.

  9. Leishmania donovani HslV does not interact stably with HslU proteins.

    PubMed

    Chrobak, Mareike; Förster, Sabine; Meisel, Sarah; Pfefferkorn, Roxana; Förster, Frank; Clos, Joachim

    2012-04-01

    Genes for HslVU-type peptidases are found in bacteria and in a few select Eukaryota, among those such important pathogens as Plasmodium spp. and Leishmania spp. In this study, we performed replacements of all three HslV/HslU gene homologues and found one of those, HslV, to be essential for Leishmania donovani viability. The Leishmania HslV gene can also partially relieve the thermosensitive phenotype of a combined HslVU/Lon/ClpXP knockout mutant of Escherichia coli, indicating a conserved function. However, we found that the role and function of the two Leishmania HslU genes has diverged since neither of those interacts stably with HslV. The latter forms a dodecameric complex by itself and shows a punctate distribution. We conclude that whilst the basic function of HslV may be conserved in Leishmania, its organisation and interaction with its canonical complex partner HslU is not. Nevertheless, given the absence of HslV from the proteome of mammals and its essential role in Leishmania viability, HslV is a promising target for intervention.

  10. Whole-Genome Analysis of Quorum-Sensing Burkholderia sp. Strain A9

    PubMed Central

    Chen, Jian Woon; Tee, Kok Keng; Chang, Chien-Yi; Yin, Wai-Fong; Chan, Xin-Yue

    2015-01-01

    Burkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene. PMID:25745000

  11. Characterization of N-Acylhomoserine Lactones Produced by Bacteria Isolated from Industrial Cooling Water Systems

    PubMed Central

    Okutsu, Noriya; Morohoshi, Tomohiro; Xie, Xiaonan; Kato, Norihiro; Ikeda, Tsukasa

    2015-01-01

    The cooling water systems are used to remove heat generated in the various industries. Biofouling of the cooling water systems causes blocking of condenser pipes and the heat exchanger tubes. In many Gram-negative bacteria, N-acylhomoserine lactone (AHL) are used as quorum-sensing signal molecule and associated with biofilm formation. To investigate the relationship between quorum sensing and biofouling in the cooling water system, we isolated a total of 192 bacterial strains from the five cooling water systems, and screened for AHL production. Seven isolates stimulated AHL-mediated purple pigment production in AHL reporter strain Chromobacterium violaceum CV026 or VIR07. Based on their 16S rRNA gene sequences, AHL-producing isolates were assigned to Aeromonas hydrophila, Lysobacter sp., Methylobacterium oryzae, and Bosea massiliensis. To the best of our knowledge, B. massiliensis and Lysobacter sp. have not been reported as AHL-producing species in the previous researches. AHLs extracted from the culture supernatants of B. massiliensis and Lysobacter sp. were identified by liquid chromatography-mass spectrometry. AHLs produced by B. massiliensis were assigned as N-hexanoyl-l-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-l-homoserine lactone (3-oxo-C6-HSL), and N-(3-oxooctanoyl)-l-homoserine lactone (3-oxo-C8-HSL). AHLs produced by Lysobacter sp. were assigned as N-decanoyl-l-homoserine lactone (C10-HSL) and N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL). This is the first report of identification of AHLs produced by B. massiliensis and Lysobacter sp. isolated from the cooling water system. PMID:26729121

  12. Characterization of N-Acylhomoserine Lactones Produced by Bacteria Isolated from Industrial Cooling Water Systems.

    PubMed

    Okutsu, Noriya; Morohoshi, Tomohiro; Xie, Xiaonan; Kato, Norihiro; Ikeda, Tsukasa

    2015-01-01

    The cooling water systems are used to remove heat generated in the various industries. Biofouling of the cooling water systems causes blocking of condenser pipes and the heat exchanger tubes. In many Gram-negative bacteria, N-acylhomoserine lactone (AHL) are used as quorum-sensing signal molecule and associated with biofilm formation. To investigate the relationship between quorum sensing and biofouling in the cooling water system, we isolated a total of 192 bacterial strains from the five cooling water systems, and screened for AHL production. Seven isolates stimulated AHL-mediated purple pigment production in AHL reporter strain Chromobacterium violaceum CV026 or VIR07. Based on their 16S rRNA gene sequences, AHL-producing isolates were assigned to Aeromonas hydrophila, Lysobacter sp., Methylobacterium oryzae, and Bosea massiliensis. To the best of our knowledge, B. massiliensis and Lysobacter sp. have not been reported as AHL-producing species in the previous researches. AHLs extracted from the culture supernatants of B. massiliensis and Lysobacter sp. were identified by liquid chromatography-mass spectrometry. AHLs produced by B. massiliensis were assigned as N-hexanoyl-L-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL), and N-(3-oxooctanoyl)-L-homoserine lactone (3-oxo-C8-HSL). AHLs produced by Lysobacter sp. were assigned as N-decanoyl-L-homoserine lactone (C10-HSL) and N-(3-oxodecanoyl)-L-homoserine lactone (3-oxo-C10-HSL). This is the first report of identification of AHLs produced by B. massiliensis and Lysobacter sp. isolated from the cooling water system.

  13. Quorum Sensing Activity of Mesorhizobium sp. F7 Isolated from Potable Water

    PubMed Central

    Yong, Pei-Ling; Chan, Kok-Gan

    2014-01-01

    We isolated a bacterial isolate (F7) from potable water. The strain was identified as Mesorhizobium sp. by 16S rDNA gene phylogenetic analysis and screened for N-acyl homoserine lactone (AHL) production by an AHL biosensor. The AHL profile of the isolate was further analyzed using high resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) which confirmed the production of multiple AHLs, namely, N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL) and N-3-oxo-decanoyl-L-homoserine lactone (3-oxo-C10-HSL). These findings will open the perspective to study the function of these AHLs in plant-microbe interactions. PMID:25177734

  14. Hormone-sensitive lipase (HSL) is also a retinyl ester hydrolase: evidence from mice lacking HSL.

    PubMed

    Ström, Kristoffer; Gundersen, Thomas E; Hansson, Ola; Lucas, Stéphanie; Fernandez, Céline; Blomhoff, Rune; Holm, Cecilia

    2009-07-01

    Here, we investigated the importance of hormone-sensitive lipase (HSL) as a retinyl ester hydrolase (REH). REH activity was measured in vitro using recombinant HSL and retinyl palmitate. The expression of retinoic acid (RA)-regulated genes and retinoid metabolites were measured in high-fat diet fed HSL-null mice using real-time quantitative PCR and triple-stage liquid chromatography/tandem mass spectrometry, respectively. Age- and gender-matched wild-type littermates were used as controls. The REH activity of rat HSL was found to be higher than that against the hitherto best known HSL substrate, i.e., diacylglycerols. REH activity in white adipose tissue (WAT) of HSL-null mice was completely blunted and accompanied by increased levels of retinyl esters and decreased levels of retinol, retinaldehyde and all-trans RA. Accordingly, genes known to be positively regulated by RA were down-regulated in HSL-null mice, including pRb and RIP140, key factors promoting differentiation into the white over the brown adipocyte lineage. Dietary RA supplementation partly restored WAT mass and the expression of RA-regulated genes in WAT of HSL-null mice. These findings demonstrate the importance of HSL as an REH of adipose tissue and suggest that HSL via this action provides RA and other retinoids for signaling events that are crucial for adipocyte differentiation and lineage commitment.

  15. Improvement of bioelectrochemical property and energy recovery by acylhomoserine lactones (AHLs) in microbial electrolysis cells (MECs)

    NASA Astrophysics Data System (ADS)

    Liu, Wenzong; Cai, Weiwei; Ma, Anzhou; Ren, Ge; Li, Zhiling; Zhuang, Guoqiang; Wang, Aijie

    2015-06-01

    Quorum sensing (QS) has been extensively studied as a cell-cell communication system, where small chemical signal molecules (acylhomoserine lactones, AHLs) can regulate the bacterial communications in bioelectrochemical systems via chemical signaling and electric signaling. In this study, electrochemical activity of bio-anode is substantially promoted by adding two kinds of AHLs with different chain length at the stage of community formation in microbial electrolysis cells (MECs). Hydrogen yield increase is observed by adding of two chain length AHLs, 3-oxo-hexanoyl-homoserine lactone (3OC6-HSL) and 3-oxo-dodecanoyl homoserine lactone (3OC12-HSL). A higher MEC current is acquired with addition of 3OC6-HSL than 3OC12-HSL at a fixed voltage of 0.8 V (vs. SHE). The highest yield is up to 3.8 ± 0.2 mol H2 mol-1 acetate at 10 μM 3OC6-HSL, which is increased 29% over control MECs. Evaluated on applied voltage, energy efficiency is increased to 171.6 ± 21.3% with short chain AHL, however, no significant improvement is performed on energy efficiency and coulombic efficiency with long-chain AHL. The study shows that bioelectrochemical characteristics of MECs varied on the chain length of AHL signal molecules and short-chain AHLs have a more positive effect on electron transfer and energy recovery in MECs.

  16. AHL signals induce rubrifacine production in a bruI mutant of Brenneria rubrifaciens.

    PubMed

    McClean, Ali E; Duerkop, Breck A; Greenberg, E Peter; Kluepfel, Daniel A

    2012-02-01

    Several members of the bacterial genus Brenneria are pathogenic on different tree species. Cell-free extracts from the bacterial phytopathogens Brenneria rubrifaciens, B. salicis, and B. nigrifluens induced production of the red pigment rubrifacine in the B. rubrifaciens bruI insertional mutant Br-212. Analysis of the bruI locus identified an adjacent open reading frame, designated bruR, with homology to luxR. High-performance liquid chromatography and mass spectrometry analysis of ethyl acetate extracts from wild-type B. rubrifaciens and Escherichia coli expressing the bruI gene identified two acyl homoserine lactone (AHL) peaks, N-(3-oxohexanoyl)-homoserine lactone (3OC6HSL) and N-hexanoyl-homoserine lactone (C6HSL). Addition of synthetic 3OC6HSL and C6HSL at 10 μM to the bruI mutant, strain Br-212, induced rubrifacine production and the ability to elicit a hypersensitive reaction (HR) in tobacco leaves. Synthetic C6HSL was less effective at inducing pigment production than 3OC6HSL at 10 μM. The bruI mutant Br-212 did not produce detectable AHLs, indicating that C6HSL and 3OC6HSL are the major AHLs produced by this species. The AHLs N-heptanoyl-DL-homoserine lactone (C7HSL), N-octanoyl-DL-homoserine lactone (C8HSL), and N-(3-oxooctanoyl)-DL-homoserine lactone (3OC8HSL) also induced pigment production in Br-212 and restored its ability to elicit an HR in tobacco, suggesting that cross-talk with other bacterial species may be possible.

  17. Disruption of N-Αcyl Homoserine Lactone-Mediated Cell Signaling and Iron Acquisition in Epiphytic Bacteria by Leaf Surface Compounds▿

    PubMed Central

    Karamanoli, Katerina; Lindow, Steven E.

    2006-01-01

    Since N-acyl homoserine lactones (AHLs) are key mediators of cell density-dependent regulation of traits involved in virulence and epiphytic fitness in gram-negative bacteria such as Pseudomonas syringae, a variety of plant species were examined to determine their production of leaf surface compounds that could interact with these signaling systems. Leaf washings of 17 of 52 plant species tested stimulated or inhibited AHL-dependent traits in at least one of the bacterial reporter strains used. The active compounds from most plants could be distinguished from known AHLs due to different patterns of mobility during C8 and C18 reverse-phase thin-layer chromatography (TLC) and normal-phase TLC compared to the patterns for authentic bacterial AHLs. All plant extracts were also tested to determine their abilities to sequester iron and trigger bacterial siderophore synthesis on a medium containing abundant iron. Leaf washings from 16 of the 52 plant species, as well as tannic acid solutions, stimulated pyoverdine synthesis in P. syringae in a high-iron medium. These preparations also inhibited the growth of a P. syringae mutant unable to produce pyoverdine siderophores but not the growth of the wild-type bacterium. The stimulation of siderophore production and the growth inhibition by plant extracts and purified tannins were both reversed by addition of ferric chloride to culture media, indicating that iron was made unavailable by the compounds released onto the leaf surface. PMID:16997987

  18. Identification of hydroxyl radical oxidation products of N-hexanoyl-homoserine lactone by reversed-phase high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Cui, Yiling; Frey, Rebecca L; Ferry, John L; Ferguson, P Lee

    2009-04-01

    A reversed-phase high-performance liquid chromatography/electrospray tandem mass spectrometry method was developed for the characterization of hydroxyl radical oxidation products of N-hexanoyl-homoserine lactone (C6-HSL), a member of the N-acylhomoserine lactone (AHL) class of microbial quorum-sensing signaling molecules identified in many Gram-negative strains of bacteria. Six products were identified: four with molecular weight (MW) of 213 and two with MW of 260. The characteristic product ions formed through collision-induced dissociation (CID) provided diagnostic structural information. One of the photolysis products was determined to be N-(3-oxohexanoyl)homoserine lactone (3OC6-HSL), a highly active quorum-sensing signal, by comparison with a reference standard. Three structural isomers with the same mass as 3OC6-HSL were identified as acyl side chain oxidized C6-HSL (keto/enol functionalized) by accurate mass measurement and the structures of these products were proposed from CID spectral interpretation. Two structural isomers formed from concurrent oxidation and nitration of C6-HSL were also observed and their structures were postulated based on CID spectra. In addition to the six hydroxyl radical oxidation products formed from the C6-HSL precursor, five additional compounds generated from combined oxidation and lactonolysis of C6-HSL were identified and structures were postulated.

  19. Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9.

    PubMed

    Jatt, Abdul Nabi; Tang, Kaihao; Liu, Jiwen; Zhang, Zenghu; Zhang, Xiao-Hua

    2015-02-01

    Marine snow is a continuous shower of organic and inorganic detritus, and plays a crucial role in transporting materials from the sea surface to the deep ocean. The aims of the current study were to identify N-acyl homoserine lactone (AHL)-based quorum sensing (QS) signaling molecules directly from marine snow particles and to investigate the possible regulatory link between QS signals and extracellular hydrolytic enzymes produced by marine snow bacteria. The marine snow samples were collected from the surface water of China marginal seas. Two AHLs, i.e. 3OC6-HSL and C8-HSL, were identified directly from marine snow particles, while six different AHL signals, i.e. C4-HSL, 3OC6-HSL, C6-HSL, C10-HSL, C12-HSL and C14-HSL were produced by Pantoea ananatis B9 inhabiting natural marine snow particles. Of the extracellular hydrolytic enzymes produced by P. ananatis B9, alkaline phosphatase activity was highly enhanced in growth medium supplemented with exogenous AHL (C10-HSL), while quorum quenching enzyme (AiiA) drastically reduced the enzyme activity. To our knowledge, this is the first report revealing six different AHL signals produced by P. ananatis B9 and AHL-based QS system enhanced the extracellular hydrolytic enzyme in P. ananatis B9. Furthermore, this study first time revealing 3OC6-HSL production by Paracoccus carotinifaciens affiliated with Alphaproteobacteria. PMID:25764555

  20. Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9.

    PubMed

    Jatt, Abdul Nabi; Tang, Kaihao; Liu, Jiwen; Zhang, Zenghu; Zhang, Xiao-Hua

    2015-02-01

    Marine snow is a continuous shower of organic and inorganic detritus, and plays a crucial role in transporting materials from the sea surface to the deep ocean. The aims of the current study were to identify N-acyl homoserine lactone (AHL)-based quorum sensing (QS) signaling molecules directly from marine snow particles and to investigate the possible regulatory link between QS signals and extracellular hydrolytic enzymes produced by marine snow bacteria. The marine snow samples were collected from the surface water of China marginal seas. Two AHLs, i.e. 3OC6-HSL and C8-HSL, were identified directly from marine snow particles, while six different AHL signals, i.e. C4-HSL, 3OC6-HSL, C6-HSL, C10-HSL, C12-HSL and C14-HSL were produced by Pantoea ananatis B9 inhabiting natural marine snow particles. Of the extracellular hydrolytic enzymes produced by P. ananatis B9, alkaline phosphatase activity was highly enhanced in growth medium supplemented with exogenous AHL (C10-HSL), while quorum quenching enzyme (AiiA) drastically reduced the enzyme activity. To our knowledge, this is the first report revealing six different AHL signals produced by P. ananatis B9 and AHL-based QS system enhanced the extracellular hydrolytic enzyme in P. ananatis B9. Furthermore, this study first time revealing 3OC6-HSL production by Paracoccus carotinifaciens affiliated with Alphaproteobacteria.

  1. Draft Genome Sequence of Jeotgalibacillus soli DSM 23228, a Bacterium Isolated from Alkaline Sandy Soil

    PubMed Central

    Chan, Kok-Gan; Yaakop, Amira Suriaty; Chan, Chia Sing; Ee, Robson; Tan, Wen-Si; Gan, Han Ming

    2015-01-01

    Jeotgalibacillus soli, a bacterium capable of degrading N-acyl homoserine lactone, was isolated from a soil sample in Portugal. J. soli constitutes the only Jeotgalibacillus species isolated from a non-marine source. Here, the draft genome, several interesting glycosyl hydrolases, and its putative N-acyl homoserine lactonases are presented. PMID:25999554

  2. Investigating a possible role for the bacterial signal molecules N-acylhomoserine lactones in Balanus improvisus cyprid settlement.

    PubMed

    Tait, Karen; Havenhand, Jon

    2013-05-01

    Increased settlement on bacterial biofilms has been demonstrated for a number of marine invertebrate larvae, but the nature of the cue(s) responsible is not well understood. We tested the hypothesis that the bay barnacle Balanus improvisus utilizes the bacterial signal molecules N-acylhomoserine lactones (AHLs) as a cue for the selection of sites for permanent attachment. Single species biofilms of the AHL-producing bacteria Vibrio anguillarum, Aeromonas hydrophila and Sulfitobacter sp. BR1 were attractive to settling cypris larvae of B. improvisus. However, when AHL production was inactivated, either by mutation of the AHL synthetic genes or by expression of an AHL-degrading gene (aiiA), the ability of the bacteria to attract cyprids was abolished. In addition, cyprids actively explored biofilms of E. coli expressing the recombinant AHL synthase genes luxI from Vibrio fischeri (3-oxo-C6-HSL), rhlI from Pseudomonas aeruginosa (C4-HSL/C6-HSL), vanI from V. anguillarum (3-oxo-C10-HSL) and sulI from Sulfitobacter sp. BR1 (C4-HSL, 3-hydroxy-C6-HSL, C8-HSL and 3-hydroxy-C10-HSL), but not E. coli that did not produce AHLs. Finally, synthetic AHLs (C8-HSL, 3-oxo-C10-HSL and C12-HSL) at concentrations similar to those found within natural biofilms (5 μm) resulted in increased cyprid settlement. Thus, B. improvisus cypris exploration of and settlement on biofilms appears to be mediated by AHL-signalling bacteria in the laboratory. This adds to our understanding of how quorum sensing inhibition may be used as for biofouling control. Nonetheless, the significance of our results for larvae settling naturally in the field, and the mechanisms that underlay the observed responses to AHLs, is as yet unknown.

  3. Quorum sensing activity of Aeromonas caviae strain YL12, a bacterium isolated from compost.

    PubMed

    Lim, Yan-Lue; Ee, Robson; Yin, Wai-Fong; Chan, Kok-Gan

    2014-04-22

    Quorum sensing is a well-studied cell-to-cell communication method that involves a cell-density dependent regulation of genes expression mediated by signalling molecules. In this study, a bacterium isolated from a plant material compost pile was found to possess quorum sensing activity based on bioassay screening. Isolate YL12 was identified using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and molecular typing using rpoD gene which identified the isolate as Aeromonas caviae. High resolution tandem mass spectrometry was subsequently employed to identify the N-acyl homoserine lactone profile of Aeromonas caviae YL12 and confirmed that this isolate produced two short chain N-acyl homoserine lactones, namely C4-HSL and C6, and the production was observed to be cell density-dependent. Using the thin layer chromatography (TLC) bioassay, both AHLs were found to activate C. violaceum CV026, whereas only C6-HSL was revealed to induce bioluminescence expression of E. coli [pSB401]. The data presented in this study will be the leading steps in understanding the role of quorum sensing in Aeromonas caviae strain YL12.

  4. A genetically engineered whole-cell pigment-based bacterial biosensing system for quantification of N-butyryl homoserine lactone quorum sensing signal.

    PubMed

    Yong, Yang-Chun; Zhong, Jian-Jiang

    2009-09-15

    N-acyl homoserine lactone (AHL) is a widely conserved quorum sensing (QS) signal of gram-negative bacteria and has received attention in fighting against human diseases and environmental pollution. However, a method for quantifying AHL is lacking although it is urgently required for diagnosis and bioprocess manipulation. This work screened out an aromatics degrader Pseudomonas aeruginosa for biosensing system development, which produced a blue-green pigment regulated by the RhlI-RhlR QS system. By taking advantage of the recognition of N-butyryl homoserine lactone (BHL, the signal molecule of RhlI-RhlR QS system and an AHL) by the product of rhlR, a new whole-cell biosensor P. aeruginosa Delta rhlIR/pYC-rhlR (rhlI(-)rhlR(++)) was developed. It was constructed through abolishing its BHL production by in-frame deletion of rhlIR and over-expressing rhlR by introducing a multi-copy plasmid pYC-rhlR into Delta rhlIR. By using the pigment production which responded to exogenous BHL as biosensor output, BHL quantification in samples was simply done spectrophotometrically. Under optimum conditions, the calibration curve had the limit of detection (LOD), the 50% activation/effect concentration, the limit of quantification (LOQ), and the quantitative detection range of 1.3 nM, 2.77+/-0.45 microM, 5.7 nM and 0.11-49.7 microM, respectively. The biosensor output was stable, culture samples could be stored 10 days under -20 degrees C, and this sensing system was resistant to interferences by toxic aromatic pollutants. It was successfully applied to environmental samples even without extraction. The new whole-cell biosensing system provided a simple, stable, toxic pollutants-tolerant, and cost-effective tool for quantitative investigation of the QS signals' role in environmental processes.

  5. Combined Effects of Curcumin and (-)-Epigallocatechin Gallate on Inhibition of N-Acylhomoserine Lactone-Mediated Biofilm Formation in Wastewater Bacteria from Membrane Bioreactor.

    PubMed

    Lade, Harshad; Paul, Diby; Kweon, Ji Hyang

    2015-11-01

    This work investigated the potential of curcumin (CCM) and (-)-epigallocatechin gallate (EGCG) to inhibit N-acyl homoserine lactone (AHL)-mediated biofilm formation in gramnegative bacteria from membrane bioreactor (MBR) activated sludge. The minimum inhibitory concentrations (MICs) of CCM alone against all the tested bacteria were 200-350 μg/ml, whereas those for EGCG were 300-600 μg/ml. Biofilm formation at one-half MICs indicated that CCM and EGCG alone respectively inhibited 52-68% and 59-78% of biofilm formation among all the tested bacteria. However, their combination resulted in 95-99% of biofilm reduction. Quorum sensing inhibition (QSI) assay with known biosensor strains demonstrated that CCM inhibited the expression of C4 and C6 homoserine lactones (HSLs)-mediated phenotypes, whereas EGCG inhibited C4, C6, and C10 HSLs-based phenotypes. The Center for Disease Control biofilm reactor containing a multispecies culture of nine bacteria with onehalf MIC of CCM (150 μg/ml) and EGCG (275 μg/ml) showed 17 and 14 μg/cm(2) of extracellular polymeric substances (EPS) on polyvinylidene fluoride membrane surface, whereas their combination (100 μg/ml of each) exhibited much lower EPS content (3 μg/cm(2)). Confocal laser scanning microscopy observations also illustrated that the combination of compounds tremendously reduced the biofilm thickness. The combined effect of CCM with EGCG clearly reveals for the first time the enhanced inhibition of AHL-mediated biofilm formation in bacteria from activated sludge. Thus, such combined natural QSI approach could be used for the inhibition of membrane biofouling in MBRs treating wastewaters.

  6. Real-time measurement of quorum-sensing signal autoinducer 3OC6HSL by a FRET-based nanosensor.

    PubMed

    Zhang, Chang; Ye, Bang-Ce

    2014-05-01

    Quorum sensing (QS) is involved in many important biological functions such as luminescence, antibiotic production, and biofilm formation. The autoinducer N-(3-oxo-hexanoyl)-L-homoserine lactone (3OC6HSL) plays a significant role in the QS system of the marine bacterium Vibrio fischeri. Tracing 3OC6HSL would be significant in studies related to QS signal transduction. Traditional detection of QS signaling molecules has relied on bacterial reporter strains and high-performance liquid chromatography, which are time consuming and have low sensitivity. Because 3OC6HSL binding to LuxR from V. fischeri causes a conformational change, we developed a genetically encoded biosensor based on Förster resonance energy transfer (FRET) by inserting LuxR between the FRET pair YFP/CFP. The detection limit of the sensor was 100 μM. We attained an optimized sensor with 70 % Δratio increase by screening different hydrophobic linkers, and demonstrated the feasibility of this sensor for visualizing 3OC6HSL both in vitro and in vivo.

  7. Kinetic modeling of the time course of N-butyryl-homoserine lactone concentration during batch cultivations of Pseudomonas aeruginosa PAO1.

    PubMed

    Henkel, Marius; Schmidberger, Anke; Kühnert, Christian; Beuker, Janina; Bernard, Thomas; Schwartz, Thomas; Syldatk, Christoph; Hausmann, Rudolf

    2013-09-01

    Quorum sensing affects the regulation of more than 300 genes in Pseudomonas aeruginosa, influencing growth, biofilm formation, and the biosynthesis of several products. The quorum sensing regulation mechanisms are mostly described in a qualitative character. Particularly, in this study, the kinetics of N-butyryl-homoserine lactone (C4-HSL) and rhamnolipid formation in P. aeruginosa PAO1 were of interest. In this system, the expression of the rhamnolipid biosynthesis genes rhlAB is directly coupled to the C4-HSL concentration via the rhl system. Batch cultivations in a bioreactor with sunflower oil have been used for these investigations. 3-oxo-dodecanoyl-homoserine lactone (3o-C12-HSL) displayed a lipophilic character and accumulated in the hydrophobic phase. Degradation of C4-HSL has been found to occur in the aqueous supernatant of the culture by yet unknown extracellular mechanisms, and production was found to be proportional to biomass concentration rather than by autoinduction mechanisms. Rhamnolipid production rates, as determined experimentally, were shown to correlate linearly with the concentration of autoinducer C4-HSL. These findings were used to derive a simple model, wherein a putative, extracellular protein with C4-HSL degrading activity was assumed (putative C4-HSL acylase). The model is based on data for catalytic efficiency of HSL-acylases extracted from literature (k cat/K m), experimentally determined basal C4-HSL production rates (q C4 - HSL (basal)), and two fitted parameters which describe the formation of the putative acylase and is therefore comparatively simple.

  8. Isolation and Molecular Characterization of Biofouling Bacteria and Profiling of Quorum Sensing Signal Molecules from Membrane Bioreactor Activated Sludge

    PubMed Central

    Lade, Harshad; Paul, Diby; Kweon, Ji Hyang

    2014-01-01

    The formation of biofilm in a membrane bioreactor depends on the production of various signaling molecules like N-acyl homoserine lactones (AHLs). In the present study, a total of 200 bacterial strains were isolated from membrane bioreactor activated sludge and screened for AHLs production using two biosensor systems, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136. A correlation between AHLs production and biofilm formation has been made among screened AHLs producing strains. The 16S rRNA gene sequence analysis revealed the dominance of Aeromonas and Enterobacter sp. in AHLs production; however few a species of Serratia, Leclercia, Pseudomonas, Klebsiella, Raoultella and Citrobacter were also identified. The chromatographic characterization of sludge extract showed the presence of a broad range of quorum sensing signal molecules. Further identification of sludge AHLs by thin layer chromatography bioassay and high performance liquid chromatography confirms the presence of C4-HSL, C6-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL, C12-HSL, 3-oxo-C12-HSL and C14-HSL. The occurrence of AHLs in sludge extract and dominance of Aeromonas and Enterobacter sp. in activated sludge suggests the key role of these bacterial strains in AHLs production and thereby membrane fouling. PMID:24499972

  9. Isolation and molecular characterization of biofouling bacteria and profiling of quorum sensing signal molecules from membrane bioreactor activated sludge.

    PubMed

    Lade, Harshad; Paul, Diby; Kweon, Ji Hyang

    2014-02-04

    The formation of biofilm in a membrane bioreactor depends on the production of various signaling molecules like N-acyl homoserine lactones (AHLs). In the present study, a total of 200 bacterial strains were isolated from membrane bioreactor activated sludge and screened for AHLs production using two biosensor systems, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136. A correlation between AHLs production and biofilm formation has been made among screened AHLs producing strains. The 16S rRNA gene sequence analysis revealed the dominance of Aeromonas and Enterobacter sp. in AHLs production; however few a species of Serratia, Leclercia, Pseudomonas, Klebsiella, Raoultella and Citrobacter were also identified. The chromatographic characterization of sludge extract showed the presence of a broad range of quorum sensing signal molecules. Further identification of sludge AHLs by thin layer chromatography bioassay and high performance liquid chromatography confirms the presence of C4-HSL, C6-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL, C12-HSL, 3-oxo-C12-HSL and C14-HSL. The occurrence of AHLs in sludge extract and dominance of Aeromonas and Enterobacter sp. in activated sludge suggests the key role of these bacterial strains in AHLs production and thereby membrane fouling.

  10. Regulation on expression of toll-like receptors on monocytes after stimulation with the 3-o-C12-HSL molecule from Pseudomonas aeruginosa.

    PubMed

    Lu, Qi; Lin, Yujia; Yang, Xiqiang; Liu, Wei; Zhang, Xianhong; Huang, Daochao; Zhong, Haiying

    2012-10-01

    Quorum sensing (QS) is a type of cell-to-cell communication. The Pseudomonas aeruginosa QS molecule N-3-(oxododecanoyl)-L-homoserine lactone (3-o-C12-HSL) has the potential to modulate the immune system of its host. However, the mechanism of that activity is yet to be fully characterized. To be able to understand this activity, we determined whether 3-o-C12-HSL has a direct effect on the immune function and the expression of toll-like receptors (TLRs) in monocytes. Monocytes were cultured with 3-o-C12-HSL at different concentrations (0, 10, 25, 50, and 100 μmol/L) for 12 h; upon exposure to 3-o-C12-HSL, IL-12 production in monocytes was inhibited, monocyte proliferation was blocked, TLR2- and 4-mRNA expressions were reduced, and TLR5-mRNA expression was increased in a dose-dependent manner. Strikingly, 3-o-C12-HSL was able to significantly induce mRNA changes in the monocytes even at the lowest concentration (10 μmol/L, P < 0.05). Interestingly, though TLR2- and 4-protein levels were reduced, TLR5 protein expression was not changed. These findings provide a new perspective toward understanding the persistence of chronic inflammation in P. aeruginosa infections. They also suggest that TLR2, 4, and 5 may not share the same signaling pathways during monocyte activation.

  11. Expression of human hormone-sensitive lipase (HSL) in postmeiotic germ cells confers normal fertility to HSL-deficient mice.

    PubMed

    Wang, Shu Pei; Chung, Shari; Soni, Krishnakant; Bourdages, Hugo; Hermo, Louis; Trasler, Jacquetta; Mitchell, Grant A

    2004-12-01

    Hormone-sensitive lipase (HSL, Lipe, E.C.3.1.1.3) is a multifunctional fatty acyl esterase that is essential for male fertility and spermatogenesis and that also plays important roles in the function of adipocytes, pancreatic beta-cells, and adrenal cortical cells. Gene-targeted HSL-deficient (HSL-/-) male mice are infertile, have a 2-fold reduction in testicular mass, a 2-fold elevation of the ratio of esterified to free cholesterol in testis, and unique morphological abnormalities in round and elongating spermatids. Postmeiotic germ cells in the testis express a specific HSL isoform. We created transgenic mice expressing a normal human testicular HSL cDNA from the mouse protamine-1 promoter, which mediates expression specifically in postmeiotic germ cells. Testicular cholesteryl esterase activity was undetectable in HSL-/- mice, but in HSL-/- males expressing the testicular transgene, activity was 2-fold greater than normal. HSL transgene mRNA became detectable in testes between 19 and 25 days of age, coinciding with the first wave of postmeiotic transcription in round spermatids. In contrast to nontransgenic HSL-/- mice, HSL-/- males expressing the testicular transgene were normal with respect to fertility, testicular mass, testicular esterified/free cholesterol ratio, and testicular histology. Their cauda epididymides contained abundant, normal-appearing spermatozoa. We conclude that human testicular HSL is functional in mouse testis and that the mechanism of infertility in HSL-deficient males is cell autonomous and resides in postmeiotic germ cells, because HSL expression in these cells is in itself sufficient to restore normal fertility.

  12. The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens.

    PubMed

    Horng, Yu-Tze; Deng, Su-Chen; Daykin, Mavis; Soo, Po-Chi; Wei, Jun-Rong; Luh, Kwen-Tay; Ho, Shen-Wu; Swift, Simon; Lai, Hsin-Chih; Williams, Paul

    2002-09-01

    Serratia marcescens SS-1 produces at least four N-acylhomoserine lactones (AHLs) which were identified using high-resolution mass spectrometry and chemical synthesis, as N-(3-oxohexanoyl) homo-serine lactone (3-oxo-C6-HSL), N-hexanoyl- (C6-HSL), N-heptanoyl (C7-HSL) and N-octanoyl- (C8-HSL) homoserine lactone. These AHLs are synthesized via the LuxI homologue SpnI, and regulate via the LuxR homologue SpnR, the production of the red pigment, prodigiosin, the nuclease, NucA, and a biosurfactant which facilitates surface translocation. spnR overexpression and spnR gene deletion show that SpnR, in contrast to most LuxR homologues, acts as a negative regulator. spnI overexpression, the provision of exogenous AHLs and spnI gene deletion suggest that SpnR is de-repressed by 3-oxo-C6-HSL. In addition, long chain AHLs antagonize the biosurfactant-mediated surface translocation of S. marcescens SS-1. Upstream of spnI there is a gene which we have termed spnT. spnI and spnT form an operon and although database searches failed to reveal any spnT homologues, overexpression of this novel gene negatively affected both sliding motility and prodigiosin production.

  13. Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer.

    PubMed

    Beck von Bodman, S; Farrand, S K

    1995-09-01

    N-Acylhomoserine lactone (acyl-HSL)-mediated gene expression, also called autoinduction, is conserved among diverse gram-negative bacteria. In the paradigm Vibrio fischeri system, bioluminescence is autoinducible, and the lux operon requires the transcriptional activator LuxR and the acyl-HSL autoinducer for expression. The production of the acyl-HSL signal molecule is conferred by the luxI gene, and luxR encodes the transcriptional regulator. We show here that Erwinia stewartii, the etiological agent of Stewart's wilt of sweet corn, synthesizes an acyl-HSL. Mass spectral analysis identified the signal molecule as N-(-3-oxohexanoyl)-L-homoserine lactone, which is identical to the V. fischeri autoinducer. We have cloned and sequenced the gene that confers acyl-HSL biosynthesis, called esaI, and the linked gene, esaR, that encodes a gene regulator. The two genes are convergently transcribed and show an unusual overlap of 31 bp at their 3' ends. Sequence analysis indicates that EsaI and EsaR are homologs of LuxI and LuxR, respectively. EsaR can repress its own expression but seems not to regulate the expression of esaI. The untranslated 5' region of esaR contains an inverted repeat with similarity to the lux box-like elements located in the promoter regions of other gene systems regulated by autoinduction. However, unlike the other systems, in which the inverted repeats are located upstream of the -35 promoter elements, the esaR-associated repeat overlaps a putative -10 element. We mutagenized the esaI gene in E. stewartii by gene replacement. The mutant no longer produced detectable levels of the acyl-HSL signal, leading to a concomitant loss of extracellular polysaccharide capsule production and pathogenicity. Both phenotypes were restored by complementation with esal or by exogenous addition of the acyl-HSL.

  14. Modeling Analysis of Signal Sensitivity and Specificity by Vibrio fischeri LuxR Variants.

    PubMed

    Colton, Deanna M; Stabb, Eric V; Hagen, Stephen J

    2015-01-01

    The LuxR protein of the bacterium Vibrio fischeri belongs to a family of transcriptional activators that underlie pheromone-mediated signaling by responding to acyl-homoserine lactones (-HSLs) or related molecules. V. fischeri produces two acyl-HSLs, N-3-oxo-hexanoyl-HSL (3OC6-HSL) and N-octanoyl-HSL (C8-HSL), each of which interact with LuxR to facilitate its binding to a "lux box" DNA sequence, thereby enabling LuxR to activate transcription of the lux operon responsible for bioluminescence. We have investigated the HSL sensitivity of four different variants of V. fischeri LuxR: two derived from wild-type strains ES114 and MJ1, and two derivatives of LuxRMJ1 generated by directed evolution. For each LuxR variant, we measured the bioluminescence induced by combinations of C8-HSL and 3OC6-HSL. We fit these data to a model in which the two HSLs compete with each other to form multimeric LuxR complexes that directly interact with lux to activate bioluminescence. The model reproduces the observed effects of HSL combinations on the bioluminescence responses directed by LuxR variants, including competition and non-monotonic responses to C8-HSL and 3OC6-HSL. The analysis yields robust estimates for the underlying dissociation constants and cooperativities (Hill coefficients) of the LuxR-HSL complexes and their affinities for the lux box. It also reveals significant differences in the affinities of LuxRMJ1 and LuxRES114 for 3OC6-HSL. Further, LuxRMJ1 and LuxRES114 differed sharply from LuxRs retrieved by directed evolution in the cooperativity of LuxR-HSL complex formation and the affinity of these complexes for lux. These results show how computational modeling of in vivo experimental data can provide insight into the mechanistic consequences of directed evolution.

  15. Effect of quorum sensing signals produced by seaweed-associated bacteria on carpospore liberation from Gracilaria dura

    PubMed Central

    Singh, Ravindra Pal; Baghel, Ravi S.; Reddy, C. R. K.; Jha, Bhavanath

    2015-01-01

    Epiphytic and endophytic bacteria associated with green macroalgae Ulva (U. fasciata and U. lactuca) and red macroalgae Gracilaria (G. corticata and G. dura) have been identified from three different seasons to evaluate the effect of quorum sensing (QS) molecules on carpospores liberation from Gracilaria dura. The bacterial isolates belonging to the orders Bacillales, Pseudomonadales, Alteromonadales, and Vibrionales were present in all seasons, whereas Actinomycetales and Enterobacteriales were confined to pre-monsoon and post-monsoon seasons, respectively. Among all the Gram-negative bacteria, seven isolates were found to produce different types of N-acyl homoserine lactones (AHLs). Interestingly, Shewanella algae produced five types of AHL: C4-HSL, HC4-HSL, C6-HSL, 3-oxo-C6-HSL, and 3-oxo-C12-HSL. Subsequently, the AHLs producing bacterial isolates were screened for carpospore liberation from G. dura and these isolates were found to positively induce carpospore liberation over the control. Also, observed that carpospore liberation increased significantly in C4- and C6-HSL treated cystocarps. Sodium dodecyl sulfate and native polyacrylamide gel electrophoresis of the total protein of the C4- and C6-HSL treated cystocarps showed two specific peptide bands of different molecular weights (50 kDa and 60 kDa) as compared to the control, confirming their indirect effect on carpospore liberation. PMID:25788899

  16. Effect of quorum sensing signals produced by seaweed-associated bacteria on carpospore liberation from Gracilaria dura.

    PubMed

    Singh, Ravindra Pal; Baghel, Ravi S; Reddy, C R K; Jha, Bhavanath

    2015-01-01

    Epiphytic and endophytic bacteria associated with green macroalgae Ulva (U. fasciata and U. lactuca) and red macroalgae Gracilaria (G. corticata and G. dura) have been identified from three different seasons to evaluate the effect of quorum sensing (QS) molecules on carpospores liberation from Gracilaria dura. The bacterial isolates belonging to the orders Bacillales, Pseudomonadales, Alteromonadales, and Vibrionales were present in all seasons, whereas Actinomycetales and Enterobacteriales were confined to pre-monsoon and post-monsoon seasons, respectively. Among all the Gram-negative bacteria, seven isolates were found to produce different types of N-acyl homoserine lactones (AHLs). Interestingly, Shewanella algae produced five types of AHL: C4-HSL, HC4-HSL, C6-HSL, 3-oxo-C6-HSL, and 3-oxo-C12-HSL. Subsequently, the AHLs producing bacterial isolates were screened for carpospore liberation from G. dura and these isolates were found to positively induce carpospore liberation over the control. Also, observed that carpospore liberation increased significantly in C4- and C6-HSL treated cystocarps. Sodium dodecyl sulfate and native polyacrylamide gel electrophoresis of the total protein of the C4- and C6-HSL treated cystocarps showed two specific peptide bands of different molecular weights (50 kDa and 60 kDa) as compared to the control, confirming their indirect effect on carpospore liberation.

  17. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator.

    PubMed

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-05

    Quorum sensing is a bacterial communication mechanism that controls genes, enabling bacteria to live as communities, such as biofilms. Homoserine lactone (HSL) molecules function as quorum-sensing signals for Gram-negative bacteria. Plants also produce previously unidentified compounds that affect quorum sensing. We identified rosmarinic acid as a plant-derived compound that functioned as an HSL mimic. In vitro assays showed that rosmarinic acid bound to the quorum-sensing regulator RhlR of Pseudomonas aeruginosa PAO1 and competed with the bacterial ligand N-butanoyl-homoserine lactone (C4-HSL). Furthermore, rosmarinic acid stimulated a greater increase in RhlR-mediated transcription in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic acid induced quorum sensing-dependent gene expression and increased biofilm formation and the production of the virulence factors pyocyanin and elastase. Because P. aeruginosa PAO1 infection induces rosmarinic acid secretion from plant roots, our results indicate that rosmarinic acid secretion is a plant defense mechanism to stimulate a premature quorum-sensing response. P. aeruginosa is a ubiquitous pathogen that infects plants and animals; therefore, identification of rosmarinic acid as an inducer of premature quorum-sensing responses may be useful in agriculture and inform human therapeutic strategies.

  18. Pseudomonas aeruginosa quorum-sensing molecule homoserine lactone modulates inflammatory signaling through PERK and eI-F2α.

    PubMed

    Grabiner, Mark A; Fu, Zhu; Wu, Tara; Barry, Kevin C; Schwarzer, Christian; Machen, Terry E

    2014-08-01

    Pseudomonas aeruginosa secrete N-(3-oxododecanoyl)-homoserine lactone (HSL-C12) as a quorum-sensing molecule to regulate bacterial gene expression. Because HSL-C12 is membrane permeant, multiple cell types in P. aeruginosa-infected airways may be exposed to HSL-C12, especially adjacent to biofilms where local (HSL-C12) may be high. Previous reports showed that HSL-C12 causes both pro- and anti-inflammatory effects. To characterize HSL-C12's pro- and anti-inflammatory effects in host cells, we measured protein synthesis, NF-κB activation, and KC (mouse IL-8) and IL-6 mRNA and protein secretion in wild-type mouse embryonic fibroblasts (MEF). To test the role of the endoplasmic reticulum stress inducer, PERK we compared these responses in PERK(-/-) and PERK-corrected PERK(-/-) MEF. During 4-h treatments of wild-type MEF, HSL-C12 potentially activated NF-κB p65 by preventing the resynthesis of IκB and increased transcription of KC and IL-6 genes (quantitative PCR). HSL-C12 also inhibited secretion of KC and/or IL-6 into the media (ELISA) both in control conditions and also during stimulation by TNF-α. HSL-C12 also activated PERK (as shown by increased phosphorylation of eI-F2α) and inhibited protein synthesis (as measured by incorporation of [(35)S]methionine by MEF). Comparisons of PERK(-/-) and PERK-corrected MEF showed that HSL-C12's effects were explained in part by activation of PERK→phosphorylation of eI-F2α→inhibition of protein synthesis→reduced IκBα production→activation of NF-κB→increased transcription of the KC gene but reduced translation and secretion of KC. HSL-C12 may be an important modulator of early (up to 4 h) inflammatory signaling in P. aeruginosa infections.

  19. The plant pathogen Pantoea ananatis produces N-acylhomoserine lactone and causes center rot disease of onion by quorum sensing.

    PubMed

    Morohoshi, Tomohiro; Nakamura, Yuta; Yamazaki, Go; Ishida, Akio; Kato, Norihiro; Ikeda, Tsukasa

    2007-11-01

    A number of gram-negative bacteria have a quorum-sensing system and produce N-acyl-l-homoserine lactone (AHL) that they use them as a quorum-sensing signal molecule. Pantoea ananatis is reported as a common colonist of wheat heads at ripening and causes center rot of onion. In this study, we demonstrated that P. ananatis SK-1 produced two AHLs, N-hexanoyl-l-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl)-l-homoserine lactone (3-oxo-C6-HSL). We cloned the AHL-synthase gene (eanI) and AHL-receptor gene (eanR) and revealed that the deduced amino acid sequence of EanI/EanR showed high identity to those of EsaI/EsaR from P. stewartii. EanR repressed the ean box sequence and the addition of AHLs resulted in derepression of ean box. Inactivation of the chromosomal eanI gene in SK-1 caused disruption of exopolysaccharide (EPS) biosynthesis, biofilm formation, and infection of onion leaves, which were recovered by adding exogenous 3-oxo-C6-HSL. These results demonstrated that the quorum-sensing system involved the biosynthesis of EPS, biofilm formation, and infection of onion leaves in P. ananatis SK-1.

  20. New HSL and HSV color spaces and applications

    NASA Astrophysics Data System (ADS)

    Marcu, Gabriel G.; Abe, Satoshi

    1997-02-01

    The color classification applied for large documents requires simple color transformations that enables the implementation of high speed algorithms with reasonable performance. The use of HSV and HSL color spaces in such applications is limited due to their perceptual non- linearity, even if these spaces are attractive due to the simplicity of their definition and transformation. This paper proposes new relationships of the HSL and HSV color spaces based on the replacement of the lightness and brightness definitions, with new relationships based on more perceptual lightness and brightness. The new HSL and HSV color spaces are visualized in three dimensions and the shapes are compared with the old regulate spaces. These spaces remain device dependent as the conventional HSV and HSL spaces, but the distribution of color is more suitable for some application like color clusterization. The new defined color spaces are asymmetric. It is shown how the new HSV and HSL color spaces simplify and improve the accuracy of a clusterization process. The results of clusterization process are compared in the processed image area as well as in the 3D histogram diagram. The color spaces are used for clusterization of colormaps, with application to automatic color classification in large documents (maps, blueprint documents, etc.). Results of clusterization process for blueprint documents are provided for the new introduced HSL and HSV color spaces.

  1. Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-L-homoserine lactone as immune modulators.

    PubMed

    Chhabra, Siri Ram; Harty, Chris; Hooi, Doreen S W; Daykin, Mavis; Williams, Paul; Telford, Gary; Pritchard, David I; Bycroft, Barrie W

    2003-01-01

    Comparative immune modulatory activity for a range of synthetic analogues of a Pseudomonas aeruginosa signal molecule, N-(3-oxododecanoyl)-l-homoserine lactone (3O, C(12)-HSL), is described. Twenty-four single or combination systematic alterations of the structural components of 3O, C(12)-HSL were introduced as described. Given the already defined immunological profile of the parent compound, 3O, C(12)-HSL, these compounds were assayed for their ability to inhibit murine and human leucocyte proliferation and TNF-alpha secretion by lipopolysaccharide (LPS) stimulated human leucocytes in order to provide an initial structure-activity profile. From IC(50) values obtained with a murine splenocyte proliferation assay, it is apparent that acylated l-homoserine lactones with an 11-13 C side chain containing either a 3-oxo or a 3-hydroxy group are optimal structures for immune suppressive activity. These derivatives of 3O, C(12)-HSL with monounsaturation and/or a terminal nonpolar substituent on the side chain were also potent immune suppressive agents. However, structures lacking the homoserine lactone ring, structures lacking the l-configuration at the chiral center, and those with polar substituents were essentially devoid of activity. The ability of compounds selected from the optimal activity range to modulate mitogen-driven human peripheral blood mononuclear cell proliferation and LPS-induced TNF-alpha secretion indicates the suitability of these compounds for further investigation in relation to their molecular mechanisms of action in TNF-alpha driven immunological diseases, particularly autoimmune diseases such as psoriasis, rheumatoid arthritis, and type 1 (autoimmune) diabetes. PMID:12502363

  2. Modelled microgravity cultivation modulates N-acylhomoserine lactone production in Rhodospirillum rubrum S1H independently of cell density.

    PubMed

    Mastroleo, Felice; Van Houdt, Rob; Atkinson, Steve; Mergeay, Max; Hendrickx, Larissa; Wattiez, Ruddy; Leys, Natalie

    2013-12-01

    The photosynthetic alphaproteobacterium Rhodospirillum rubrum S1H is part of the Micro-Ecological Life Support System Alternative (MELiSSA) project that is aiming to develop a closed life support system for oxygen, water and food production to support human life in space in forthcoming long-term space exploration missions. In the present study, R. rubrum S1H was cultured in a rotating wall vessel (RWV), simulating partial microgravity conditions on Earth. The bacterium showed a significant response to cultivation in simulated microgravity at the transcriptomic, proteomic and metabolic levels. In simulated microgravity conditions three N-acyl-l-homoserine lactones (C10-HSL, C12-HSL and 3-OH-C14-HSL) were detected in concentrations that were twice those detected under normal gravity, while no differences in cell density was detected. In addition, R. rubrum cultivated in modelled microgravity showed higher pigmentation than the normal gravity control, without change in culture oxygenation. When compared to randomized microgravity cultivation using a random positioning machine, significant overlap for the top differentially expressed genes and proteins was observed. Cultivation in this new artificial environment of simulated microgravity showed new properties of this well-known bacterium, including its first, to our knowledge, complete quorum-sensing-related N-acylhomoserine lactone profile.

  3. Absence of cardiac lipid accumulation in transgenic mice with heart-specific HSL overexpression.

    PubMed

    Suzuki, J; Shen, W J; Nelson, B D; Patel, S; Veerkamp, J H; Selwood, S P; Murphy, G M; Reaven, E; Kraemer, F B

    2001-10-01

    Hormone-sensitive lipase (HSL) hydrolyzes triglyceride (TG) in adipose tissue. HSL is also expressed in heart. To explore the actions of cardiac HSL, heart-specific, tetracycline (Tc)-controlled HSL-overexpressing mice were generated. Tc-responsive element-HSL transgenic (Tg) mice were generated and crossed with myosin heavy chain (MHC)alpha-tTA Tg mice, which express the Tc-responsive transactivator (tTA) in the heart. The double-Tg mice (MHC-HSL) were maintained with doxycycline (Dox) to suppress Tg HSL. Upon removal of Dox, cardiac HSL activity and protein increased 12- and 8-fold, respectively, and the expression was heart specific. Although cardiac TG content increased twofold in control mice after an overnight fast, it did not increase in HSL-induced mice. Electron microscopy showed numerous lipid droplets in the myocardium of fasted control mice, whereas fasted HSL-induced mice showed virtually no droplets. Microarray analysis showed altered expression of cardiac genes for fatty acid oxidation, transcription factors, signaling molecules, cytoskeletal proteins, and histocompatibility antigens in HSL-induced mice. Thus cardiac HSL plays a role in controlling accumulation of triglyceride droplets and can affect the expression of a number of cardiac genes.

  4. Biofilm Formation and Quorum-Sensing-Molecule Production by Clinical Isolates of Serratia liquefaciens

    PubMed Central

    Remuzgo-Martínez, Sara; Lázaro-Díez, María; Mayer, Celia; Aranzamendi-Zaldumbide, Maitane; Padilla, Daniel; Calvo, Jorge; Marco, Francesc; Martínez-Martínez, Luis; Icardo, José Manuel; Otero, Ana

    2015-01-01

    Serratia spp. are opportunistic human pathogens responsible for an increasing number of nosocomial infections. However, little is known about the virulence factors and regulatory circuits that may enhance the establishment and long-term survival of Serratia liquefaciens in the hospital environment. In this study, two reporter strains, Chromobacterium violaceum CV026 and VIR24, and high-resolution triple-quadrupole liquid chromatography–mass spectrometry (LC-MS) were used to detect and to quantify N-acyl-homoserine lactone (AHL) quorum-sensing signals in 20 S. liquefaciens strains isolated from clinical samples. Only four of the strains produced sufficient amounts of AHLs to activate the sensors. Investigation of two of the positive strains by high-performance liquid chromatography (HPLC)-MS confirmed the presence of significant amounts of short-acyl-chain AHLs (N-butyryl-l-homoserine lactone [C4-HSL] and N-hexanoyl-l-homoserine lactone [C6-HSL]) in both strains, which exhibited a complex and strain-specific signal profile that included minor amounts of other short-acyl-chain AHLs (N-octanoyl-l-homoserine lactone [C8-HSL] and N-3-oxohexanoyl-l-homoserine lactone [OC6-HSL]) and long-acyl-chain (C10, C12, and C14) AHLs. No correlation between biofilm formation and the production of large amounts of AHLs could be established. Fimbria-like structures were observed by transmission electron microscopy, and the presence of the type 1 fimbrial adhesin gene fimH in all strains was confirmed by PCR. The ability of S. liquefaciens to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment, increasing the probability of causing nosocomial infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes. PMID:25746999

  5. Biofilm Formation and Quorum-Sensing-Molecule Production by Clinical Isolates of Serratia liquefaciens.

    PubMed

    Remuzgo-Martínez, Sara; Lázaro-Díez, María; Mayer, Celia; Aranzamendi-Zaldumbide, Maitane; Padilla, Daniel; Calvo, Jorge; Marco, Francesc; Martínez-Martínez, Luis; Icardo, José Manuel; Otero, Ana; Ramos-Vivas, José

    2015-05-15

    Serratia spp. are opportunistic human pathogens responsible for an increasing number of nosocomial infections. However, little is known about the virulence factors and regulatory circuits that may enhance the establishment and long-term survival of Serratia liquefaciens in the hospital environment. In this study, two reporter strains, Chromobacterium violaceum CV026 and VIR24, and high-resolution triple-quadrupole liquid chromatography-mass spectrometry (LC-MS) were used to detect and to quantify N-acyl-homoserine lactone (AHL) quorum-sensing signals in 20 S. liquefaciens strains isolated from clinical samples. Only four of the strains produced sufficient amounts of AHLs to activate the sensors. Investigation of two of the positive strains by high-performance liquid chromatography (HPLC)-MS confirmed the presence of significant amounts of short-acyl-chain AHLs (N-butyryl-l-homoserine lactone [C4-HSL] and N-hexanoyl-l-homoserine lactone [C6-HSL]) in both strains, which exhibited a complex and strain-specific signal profile that included minor amounts of other short-acyl-chain AHLs (N-octanoyl-l-homoserine lactone [C8-HSL] and N-3-oxohexanoyl-l-homoserine lactone [OC6-HSL]) and long-acyl-chain (C10, C12, and C14) AHLs. No correlation between biofilm formation and the production of large amounts of AHLs could be established. Fimbria-like structures were observed by transmission electron microscopy, and the presence of the type 1 fimbrial adhesin gene fimH in all strains was confirmed by PCR. The ability of S. liquefaciens to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment, increasing the probability of causing nosocomial infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes.

  6. A Novel Metagenomic Short-Chain Dehydrogenase/Reductase Attenuates Pseudomonas aeruginosa Biofilm Formation and Virulence on Caenorhabditis elegans

    PubMed Central

    Bijtenhoorn, Patrick; Mayerhofer, Hubert; Müller-Dieckmann, Jochen; Utpatel, Christian; Schipper, Christina; Hornung, Claudia; Szesny, Matthias; Grond, Stephanie; Thürmer, Andrea; Brzuszkiewicz, Elzbieta; Daniel, Rolf; Dierking, Katja; Schulenburg, Hinrich; Streit, Wolfgang R.

    2011-01-01

    In Pseudomonas aeruginosa, the expression of a number of virulence factors, as well as biofilm formation, are controlled by quorum sensing (QS). N-Acylhomoserine lactones (AHLs) are an important class of signaling molecules involved in bacterial QS and in many pathogenic bacteria infection and host colonization are AHL-dependent. The AHL signaling molecules are subject to inactivation mainly by hydrolases (Enzyme Commission class number EC 3) (i.e. N-acyl-homoserine lactonases and N-acyl-homoserine-lactone acylases). Only little is known on quorum quenching mechanisms of oxidoreductases (EC 1). Here we report on the identification and structural characterization of the first NADP-dependent short-chain dehydrogenase/reductase (SDR) involved in inactivation of N-(3-oxo-dodecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and derived from a metagenome library. The corresponding gene was isolated from a soil metagenome and designated bpiB09. Heterologous expression and crystallographic studies established BpiB09 as an NADP-dependent reductase. Although AHLs are probably not the native substrate of this metagenome-derived enzyme, its expression in P. aeruginosa PAO1 resulted in significantly reduced pyocyanin production, decreased motility, poor biofilm formation and absent paralysis of Caenorhabditis elegans. Furthermore, a genome-wide transcriptome study suggested that the level of lasI and rhlI transcription together with 36 well known QS regulated genes was significantly (≥10-fold) affected in P. aeruginosa strains expressing the bpiB09 gene in pBBR1MCS-5. Thus AHL oxidoreductases could be considered as potent tools for the development of quorum quenching strategies. PMID:22046268

  7. Interference of Quorum Sensing by Delftia sp. VM4 Depends on the Activity of a Novel N-Acylhomoserine Lactone-Acylase

    PubMed Central

    Maisuria, Vimal B.; Nerurkar, Anuradha S.

    2015-01-01

    Background Turf soil bacterial isolate Delftia sp. VM4 can degrade exogenous N-acyl homoserine lactone (AHL), hence it effectively attenuates the virulence of bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum strain BR1 (Pcc BR1) as a consequence of quorum sensing inhibition. Methodology/Principal Findings Isolated Delftia sp. VM4 can grow in minimal medium supplemented with AHL as a sole source of carbon and energy. It also possesses the ability to degrade various AHL molecules in a short time interval. Delftia sp. VM4 suppresses AHL accumulation and the production of virulence determinant enzymes by Pcc BR1 without interference of the growth during co-culture cultivation. The quorum quenching activity was lost after the treatment with trypsin and proteinase K. The protein with quorum quenching activity was purified by three step process. Matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) and Mass spectrometry (MS/MS) analysis revealed that the AHL degrading enzyme (82 kDa) demonstrates homology with the NCBI database hypothetical protein (Daci_4366) of D. acidovorans SPH-1. The purified AHL acylase of Delftia sp. VM4 demonstrated optimum activity at 20–40°C and pH 6.2 as well as AHL acylase type mode of action. It possesses similarity with an α/β-hydrolase fold protein, which makes it unique among the known AHL acylases with domains of the N-terminal nucleophile (Ntn)-hydrolase superfamily. In addition, the kinetic and thermodynamic parameters for hydrolysis of the different AHL substrates by purified AHL-acylase were estimated. Here we present the studies that investigate the mode of action and kinetics of AHL-degradation by purified AHL acylase from Delftia sp. VM4. Significance We characterized an AHL-inactivating enzyme from Delftia sp. VM4, identified as AHL acylase showing distinctive similarity with α/β-hydrolase fold protein, described its biochemical and thermodynamic properties for the first time and

  8. Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease.

    PubMed

    Takaya, Akiko; Tabuchi, Fumiaki; Tsuchiya, Hiroko; Isogai, Emiko; Yamamoto, Tomoko

    2008-06-01

    Lon protease, a member of the ATP-dependent protease family, regulates numerous cellular systems by degrading specific substrates. Here, we demonstrate that Lon is involved in the regulation of quorum-sensing (QS) signaling systems in Pseudomonas aeruginosa, an opportunistic human pathogen. The organism has two acyl-homoserine lactone (HSL)-mediated QS systems, LasR/LasI and RhlR/RhlI. Many reports have demonstrated that these two systems are regulated and interconnected by global regulators. We found that lon-disrupted cells overproduce pyocyanin, the biosynthesis of which depends on the RhlR/RhlI system, and show increased levels of a transcriptional regulator, RhlR. The QS systems are organized hierarchically: the RhlR/RhlI system is subordinate to LasR/LasI. To elucidate the mechanism by which Lon negatively regulates RhlR/RhlI, we examined the effect of lon disruption on the LasR/LasI system. We found that Lon represses the expression of LasR/LasI by degrading LasI, an HSL synthase, leading to negative regulation of the RhlR/RhlI system. RhlR/RhlI was also shown to be regulated by Lon independently of LasR/LasI via regulation of RhlI, an HSL synthase. In view of these findings, it is suggested that Lon protease is a powerful negative regulator of both HSL-mediated QS systems in P. aeruginosa.

  9. The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production.

    PubMed

    Wood, D W; Pierson, L S

    1996-02-01

    The production of phenazine (Ph) antibiotics in Pseudomonas aureofaciens (Pau) 30-84 is positively regulated by PhzR, a protein belonging to the LuxR family of transcriptional activators. We have now identified phzI, a second gene required for PH production. The product of phzI is a member of the LuxI family of N-acyl-homoserine lactone (N-acyl-HSL) synthases. Inactivation of phzI results in the loss of Ph production in Pau 30-84. The presence of phzI in Escherichia coli is sufficient for the production of a diffusible signal which activates phzB expression in Pau 30-84 and traA expression in a N-acyl-HSL-dependent reporter strain of Agrobacterium tumefaciens. In addition, synthetic N-(3-oxohexanoyl)-L-HSL induces phzB expression in Pau 30-84. These results suggest that Pau 30-84 produces a N-acyl-HSL signal that regulates Ph production, and that phzI plays a central role in this signaling pathway.

  10. Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of N-acylhomoserine lactone.

    PubMed

    Morohoshi, Tomohiro; Shiono, Toshitaka; Takidouchi, Kiyomi; Kato, Masashi; Kato, Norihiro; Kato, Junichi; Ikeda, Tsukasa

    2007-10-01

    Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C(6)-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C(9)-CPA), had a strong inhibitory effect on prodigiosin production. C(9)-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C(9)-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C(6)-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C(9)-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1.

  11. Analysis of thermal adaptation in the HSL enzyme family.

    PubMed

    Mandrich, L; Pezzullo, M; Del Vecchio, P; Barone, G; Rossi, M; Manco, G

    2004-01-01

    The recently solved three-dimensional (3D) structures of two thermostable members of the carboxylesterase/lipase HSL family, namely the Alicyclobacillus (formerly Bacillus) acidocaldarius and Archaeoglobus fulgidus carboxylesterases (EST2 and AFEST, respectively) were compared with that of the mesophilic homologous counterpart Brefeldine A esterase from Bacillus subtilis. Since the 3D homology models of other members of the HSL family were also available, we performed a structural alignment with all these sequences. The resulting alignment was used to assess the amino acid "traffic rule" in the HSL family. Quite surprisingly, the data were in very good agreement with those recently reported from two independent groups and based on the comparison of a huge number of homologous sequences from the genus Bacillus, Methanococcus and Deinococcus/Thermus. Taken as a whole, the data point to the statistical meaning of defined amino acid conversions going from psychrophilic to hyperthermophilic sequences. We identified and mapped several such changes onto the EST2 structure and observed that such mutations were localized mostly in loops regions or alpha-helices and were mostly excluded from the active site. A site-directed mutagenesis of two of the identified residues confirmed they were involved in thermal stability.

  12. Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone.

    PubMed

    Chatterjee, A; Cui, Y; Liu, Y; Dumenyo, C K; Chatterjee, A K

    1995-05-01

    The soft-rotting bacterium, Erwinia carotovora subsp. carotovora 71, produces extracellular enzymes such as pectate lyase isozymes (Pels), cellulase (Cel), polygalacturonase (Peh), and protease (Prt). While the extracellular levels of these enzymes are extremely low when the bacterium is grown in salts-yeast extract-glycerol (SYG) medium, the enzymatic activities are highly induced in SYG medium supplemented with celery extract. By transposon (mini-Tn5) mutagenesis, we isolated a RsmA- mutant, AC5070, which overproduces extracellular enzymes; the basal levels of Pel, Peh, and Cel in AC5070 are higher than the induced levels in the RsmA+ parent, AC5047. While Peh production is mostly constitutive in AC5070, Pel, Cel, and Prt production is still inducible with celery extract. The high basal levels of pel-1, pel-3, and peh-1 mRNAs in AC5070 demonstrate that overproduction of the pectolytic enzymes is due to the stimulation of transcription. Using chromosomal DNA flanking mini-Tn5 as a probe, we cloned the wild-type rsmA+ allele, which suppresses Pel, Peh, Cel, and Prt production in both RsmA+ and RsmA- strains. The RsmA- mutant, like its parent, produces N-(3-oxohexanoyl)-L-homoserine lactone (HSL), a starvation/cell density-sensing signal required for extracellular enzyme production. To examine the role of HSL, we constructed HSL-deficient strains by replacing hslI, a locus required for HSL production, with hslI::Tn3HoHo1-Spc. While the basal levels of Pel, Peh, Cel, and Prt are comparable in the RsmA- mutant and its HSL- derivative, these enzymes are barely detectable in the Hsl- derivative of the RsmA+ parent strain.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. The Ralstonia solanacearum pathogenicity regulator HrpB induces 3-hydroxy-oxindole synthesis.

    PubMed

    Delaspre, Fabien; Nieto Peñalver, Carlos G; Saurel, Olivier; Kiefer, Patrick; Gras, Emmanuel; Milon, Alain; Boucher, Christian; Genin, Stéphane; Vorholt, Julia A

    2007-10-01

    The transcriptional activator HrpB of the bacterial wilt causing betaproteobacterium Ralstonia solanacearum represents a key regulator for pathogenicity. In particular, it drives expression of hrp genes encoding a type III secretion system (T3SS) as well as effector molecules for delivery into the host cytosol to promote disease. However, the HrpB regulon extends beyond this T3SS. We describe here an HrpB-activated operon of six genes that is responsible for the synthesis of a fluorescent isatin derivative of 149 Amu that we named HDF for HrpB-dependent factor and that we purified from culture supernatants. The structure of the labile molecule was solved by using NMR and CD spectroscopy to be (3S)-3-hydroxy-indolin-2-one and confirmed by its chemical synthesis and MS spectrometry. HDF was found to be present at 20 nM in wild-type cultures grown on minimal medium, and its synthesis increased 15-fold upon overproduction of HrpB, confirming that HrpB activates HDF synthesis. The addition of tryptophan significantly stimulated HDF biosynthesis and was shown to represent the precursor molecule for HDF synthesis. A search for the biological function of the molecule revealed that HDF induces acyl-homoserine lactone receptor-mediated reporter activity of the well studied LuxR transcriptional regulator of Vibrio fischeri. Thus, our results provide evidence that the specificity of acyl-homoserine lactone (acyl-HSL) receptors is clearly broader than previously considered. The failure to detect induction by HDF of the described endogenous quorum-sensing circuits of the pathogen points to a role in interfering with cell-cell signaling of rivalling bacteria. PMID:17890323

  14. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals.

    PubMed

    Pearson, J P; Van Delden, C; Iglewski, B H

    1999-02-01

    Many gram-negative bacteria communicate by N-acyl homoserine lactone signals called autoinducers (AIs). In Pseudomonas aeruginosa, cell-to-cell signaling controls expression of extracellular virulence factors, the type II secretion apparatus, a stationary-phase sigma factor (sigmas), and biofilm differentiation. The fact that a similar signal, N-(3-oxohexanoyl) homoserine lactone, freely diffuses through Vibrio fischeri and Escherichia coli cells has led to the assumption that all AIs are freely diffusible. In this work, transport of the two P. aeruginosa AIs, N-(3-oxododecanoyl) homoserine lactone (3OC12-HSL) (formerly called PAI-1) and N-butyryl homoserine lactone (C4-HSL) (formerly called PAI-2), was studied by using tritium-labeled signals. When [3H]C4-HSL was added to cell suspensions of P. aeruginosa, the cellular concentration reached a steady state in less than 30 s and was nearly equal to the external concentration, as expected for a freely diffusible compound. In contrast, [3H]3OC12-HSL required about 5 min to reach a steady state, and the cellular concentration was 3 times higher than the external level. Addition of inhibitors of the cytoplasmic membrane proton gradient, such as azide, led to a strong increase in cellular accumulation of [3H]3OC12-HSL, suggesting the involvement of active efflux. A defined mutant lacking the mexA-mexB-oprM-encoded active-efflux pump accumulated [3H]3OC12-HSL to levels similar to those in the azide-treated wild-type cells. Efflux experiments confirmed these observations. Our results show that in contrast to the case for C4-HSL, P. aeruginosa cells are not freely permeable to 3OC12-HSL. Instead, the mexA-mexB-oprM-encoded efflux pump is involved in active efflux of 3OC12-HSL. Apparently the length and/or degree of substitution of the N-acyl side chain determines whether an AI is freely diffusible or is subject to active efflux by P. aeruginosa.

  15. Identification of peroxisome-proliferator responsive element in the mouse HSL gene

    SciTech Connect

    Yajima, Hiroaki . E-mail: hyajima@kirin.co.jp; Kobayashi, Yumie; Kanaya, Tomoka; Horino, Yoko

    2007-01-12

    Hormone-sensitive lipase (HSL) catalyzes the rate-limiting step of lipolysis in adipose tissue. Several studies suggest that protein phosphorylation regulates the HSL enzymatic activity. On the other hand, the precise mechanism of the transcriptional regulation of the HSL gene remains to be elucidated. Here, we identified a functional peroxisome-proliferator responsive element (PPRE) in the mouse HSL promoter by reporter assay in CV-1 cells using serial deletion and point mutants of the 5'-flanking region. Chromatin immunoprecipitation (ChIP) analysis revealed that both peroxisome-proliferator activated receptor (PPAR{gamma}) and retinoid X receptor (RXR{alpha}) interacted with the region. Binding of the PPAR{gamma}/RXR{alpha} heterodimer to the PPRE sequence was also confirmed by electrophoretic mobility shift assay. These results indicate that the HSL gene is transcriptionally regulated by PPAR{gamma}/RXR{alpha} heterodimer, and suggest that a cis-acting element regulates the HSL gene expression.

  16. Identification of peroxisome-proliferator responsive element in the mouse HSL gene.

    PubMed

    Yajima, Hiroaki; Kobayashi, Yumie; Kanaya, Tomoka; Horino, Yoko

    2007-01-12

    Hormone-sensitive lipase (HSL) catalyzes the rate-limiting step of lipolysis in adipose tissue. Several studies suggest that protein phosphorylation regulates the HSL enzymatic activity. On the other hand, the precise mechanism of the transcriptional regulation of the HSL gene remains to be elucidated. Here, we identified a functional peroxisome-proliferator responsive element (PPRE) in the mouse HSL promoter by reporter assay in CV-1 cells using serial deletion and point mutants of the 5'-flanking region. Chromatin immunoprecipitation (ChIP) analysis revealed that both peroxisome-proliferator activated receptor (PPARgamma) and retinoid X receptor (RXRalpha) interacted with the region. Binding of the PPARgamma/RXRalpha heterodimer to the PPRE sequence was also confirmed by electrophoretic mobility shift assay. These results indicate that the HSL gene is transcriptionally regulated by PPARgamma/RXRalpha heterodimer, and suggest that a cis-acting element regulates the HSL gene expression.

  17. Inhibition by chestnut honey of N-Acyl-L-homoserine lactones and biofilm formation in Erwinia carotovora, Yersinia enterocolitica, and Aeromonas hydrophila.

    PubMed

    Truchado, Pilar; Gil-Izquierdo, Angel; Tomás-Barberán, Francisco; Allende, Ana

    2009-12-01

    Bacteria are able to communicate and coordinate certain processes using small secreted signaling molecules called autoinducers. This phenomenon, known as "quorum sensing" (QS), may be essential for the synchronization of virulence factors as well as biofilm development. The interruption of bacterial QS is acknowledged to attenuate virulence and considered to be a potential new therapy to treat infections caused by pathogenic bacteria. N-Acyl-L-homoserine lactones (AHLs) have been identified as the main bacterial signaling molecules in Gram-negative bacteria. This study evaluates the capacity of chestnut honey and its aqueous and methanolic extracts to inhibit bacterial AHL-controlled processes in Erwinia carotovora , Yersinia enterocolitica , and Aeromonas hydrophila . This study is the first in applying liquid chromatography coupled with tandem mass spectrometry to determine the QS inhibitory activity of honey against pathogenic bacteria. The tandem mass spectrometry analysis of culture supernatants confirmed the presence of three main AHLs: N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-hexanoyl-L-homoserine lactone (C6-HSL) in E. carotovora and Y. enterocolitica and N-butanoyl-L-homoserine lactone (C4-HSL) in A. hydrophila. The effect of chestnut honey and its aqueous and methanolic extracts (0.2 g/mL) on AHL concentration and biofilm formation in bacterial cultures was determined. The obtained results revealed their potential use as QS inhibitors or regulators of the degradation of QS signals, with the methanolic extract showing less inhibitory capacity. Thus, the QS inhibitory activity of chestnut honey seems to be related to the aqueous phase, suggesting that the carbohydrate fraction contains an antipathogenic substance responsible for the inhibitory activity.

  18. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue.

    PubMed

    Watt, Matthew J; Holmes, Anna G; Pinnamaneni, Srijan K; Garnham, Andrew P; Steinberg, Gregory R; Kemp, Bruce E; Febbraio, Mark A

    2006-03-01

    Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser(563) and Ser(660), the PKA regulatory sites, and Ser(565), the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by approximately 80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser(563) and Ser(660) phosphorylation were increased by 27% at 15 min (P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser(565) phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser(660) was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser(660) but not Ser(563) phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser(660) phosphorylation. Taken together

  19. Cholesteryl ester hydrolase activity is abolished in HSL-/- macrophages but unchanged in macrophages lacking KIAA1363.

    PubMed

    Buchebner, Marlene; Pfeifer, Thomas; Rathke, Nora; Chandak, Prakash G; Lass, Achim; Schreiber, Renate; Kratzer, Adelheid; Zimmermann, Robert; Sattler, Wolfgang; Koefeler, Harald; Fröhlich, Eleonore; Kostner, Gerhard M; Birner-Gruenberger, Ruth; Chiang, Kyle P; Haemmerle, Guenter; Zechner, Rudolf; Levak-Frank, Sanja; Cravatt, Benjamin; Kratky, Dagmar

    2010-10-01

    Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363(-/-) and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL(-/-) mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363(-/-) but unchanged in HSL(-/-) mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL(-/-) macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages.

  20. Structural and biochemical analyses of the eukaryotic heat shock locus V (HslV) from Trypanosoma brucei.

    PubMed

    Sung, Kwang Hoon; Lee, So Yeon; Song, Hyun Kyu

    2013-08-01

    In many bacteria, heat shock locus V (HslV) functions as a protease, which is activated by heat shock locus U (HslU). The primary sequence and structure of HslV are well conserved with those of the β-subunit of the 20 S proteasome core particle in eukaryotes. To date, the HslVU complex has only been characterized in the prokaryotic system. Recently, however, the coexistence of a 20 S proteasome with HslV protease in the same living organism has been reported. In Trypanosoma brucei, a protozoan parasite that causes human sleeping sickness in Africa, HslV is localized in the mitochondria, where it has a novel function in regulating mitochondrial DNA replication. Although the prokaryotic HslVU system has been studied extensively, little is known regarding its eukaryotic counterpart. Here, we report the biochemical characteristics of an HslVU complex from T. brucei. In contrast to the prokaryotic system, T. brucei possesses two potential HslU molecules, and we found that only one of them activates HslV. A key activating residue, Tyr(494), was identified in HslU2 by biochemical and mutational studies. Furthermore, to our knowledge, this study is the first to report the crystal structure of a eukaryotic HslV, determined at 2.4 Å resolution. Drawing on our comparison of the biochemical and structural data, we discuss herein the differences and similarities between eukaryotic and prokaryotic HslVs.

  1. Pseudomonas aeruginosa quorum-sensing signaling molecule N-3-oxododecanoyl homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblasts.

    PubMed

    Nakagami, Gojiro; Minematsu, Takeo; Morohoshi, Tomohiro; Yamane, Takumi; Kanazawa, Toshiki; Huang, Lijuan; Asada, Mayumi; Nagase, Takashi; Ikeda, Shin-ichi; Ikeda, Tsukasa; Sanada, Hiromi

    2015-01-01

    Quorum sensing is a cell-to-cell communication mechanism, which is responsible for regulating a number of bacterial virulence factors and biofilm maturation and therefore plays an important role for establishing wound infection. Quorum-sensing signals may induce inflammation and predispose wounds to infection by Pseudomonas aeruginosa; however, the interaction has not been well investigated. We examined the effects of the P. aeruginosa las quorum-sensing signal, N-3-oxo-dodecanoyl homoserine lactone (3OC12-HSL), on matrix metalloproteinase (MMP) 9 expression in Rat-1 fibroblasts. 3OC12-HSL upregulated the expression of the MMP9 gene bearing an activator protein-1 (AP-1) binding site in the promoter region. We further investigated the mechanism underlying this effect. c-Fos gene expression increased rapidly after exposure to 3OC12-HSL, and nuclear translocation of c-Fos protein was observed; both effects were reduced by pretreatment with an AP-1 inhibitor. These results suggest that 3OC12-HSL can alter MMP9 gene expression in fibroblasts via the AP-1 signaling pathway.

  2. Homoserine Lactones, Methyl Oligohydroxybutyrates, and Other Extracellular Metabolites of Macroalgae-Associated Bacteria of the Roseobacter Clade: Identification and Functions.

    PubMed

    Ziesche, Lisa; Bruns, Hilke; Dogs, Marco; Wolter, Laura; Mann, Florian; Wagner-Döbler, Irene; Brinkhoff, Thorsten; Schulz, Stefan

    2015-09-21

    Twenty-four strains of marine Roseobacter clade bacteria were isolated from macroalgae and investigated for the production of quorum-sensing autoinducers, N-acylhomoserine lactones (AHLs). GC/MS analysis of the extracellular metabolites allowed us to evaluate the release of other small molecules as well. Nineteen strains produced AHLs, ranging from 3-OH-C10:0-HSL (homoserine lactone) to (2E,11Z)-C18:2-HSL, but no specific phylogenetic or ecological pattern of individual AHL occurrence was observed when cluster analysis was performed. Other identified compounds included indole, tropone, methyl esters of oligomers of 3-hydroxybutyric acid, and various amides, such as N-9-hexadecenoylalanine methyl ester (9-C16:1-NAME), a structural analogue of AHLs. Several compounds were tested for their antibacterial and antialgal activity on marine isolates likely to occur in the habitat of the macroalgae. Both AHLs and 9-C16:1-NAME showed high antialgal activity against Skeletonema costatum, whereas their antibacterial activity was low. PMID:26212108

  3. Perilipin Promotes HSL-Mediated Adipocyte Lipolysis via Phosphorylation-dependent and Independent Mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hormone-sensitive lipase (HSL) is the predominant lipase effector of catecholamine-stimulated lipolysis in adipocytes. HSL-dependent lipolysis, in response to catecholamines, is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin A (Peri A), an essential lipid droplet (LD)-ass...

  4. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa.

    PubMed

    Zeng, Jianming; Zhang, Ni; Huang, Bin; Cai, Renxin; Wu, Binning; E, Shunmei; Fang, Chengcai; Chen, Cha

    2016-04-14

    Pseudomonas aeruginosa is an opportunistic pathogen and a leading cause of nosocomial infections. Unfortunately, P. aeruginosa has low antibiotic susceptibility due to several chromosomally encoded antibiotic resistance genes. Hence, we carried out mechanistic studies to determine how azithromycin affects quorum sensing and virulence in P. aeruginosa. lasI and rhlI single and double mutants were constructed. We then undertook a quantitative approach to determine the optimal concentration of azithromycin and culture time that can affect the expression of HSLs. Furthermore, based on the above results, the effect on quorum sensing was analyzed at a transcriptional level. It was found that 2 μg/mL azithromycin caused a 79% decrease in 3-oxo-C12-HSL secretion during cultivation, while C4-HSL secretion was strongly repressed in the early stages. Azithromycin acts on ribosomes; to determine whether this can elicit alternative modes of gene expression, transcriptional regulation of representative virulence genes was analyzed. We propose a new relationship for lasI and rhlI: lasI acts as a cell density sensor, and rhlI functions as a fine-tuning mechanism for coordination between different quorum sensing systems.

  5. Boundary emphasis transfer function generation based on HSL color space

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Wu, Jianhuang; Luo, Shengzhou; Ma, Xin

    2011-10-01

    Direct volume rendering has been received much attention since it need not to extract geometric primitives for visualization and its performance is generally better than surface rendering. Transfer functions, which are used for mapping scalar field to optical properties, are of vital importance in obtaining a sensible rendering result from volume data. Though traditional color transfer functions are in RGB color space, HSL color space that conveys semantic meanings is more intuitive and user-friendly. In this paper, we present a novel approach aims to emphasize and distinguish strong boundaries between different materials. We achieve it by using data value, gradient magnitude and dimension of the volumetric data to set opacity. Then, through a linear map from data value, gradient magnitude and second derivative to hue, saturation and lightness respectively, a color transfer function is obtained in HSL color space. Experimental tests on real-world datasets indicate that our method could achieve desirable rendering results with revealing important boundaries between different structures and indicating data value's distribution in the volume by using different colors.

  6. Inhibition of quorum sensing in Serratia marcescens H30 by molecular regulation.

    PubMed

    Zhu, H; Shen, Y L; Wei, D Z; Zhu, J W

    2008-06-01

    Quorum sensing in Serratia marcescens, which uses two types of signaling molecules-N-acyl homoserine lactones and furanosyl borate diester-play important regulatory roles in the synthesis of 2,3-butanediol and prodigiosin. In the hope of understanding the effect of quorum sensing on physiologic metabolism, we established two molecular strategies, one to express acyl-homoserine lactone hydrolase to inactivate AI-1 signaling molecule using an expression vector with lactose as the inducer and the other to mutate luxS gene with a suicide plasmid pUTKm2 to inhibit the synthesis of AI-2 signaling molecule.

  7. Selective imaging of quorum sensing receptors in bacteria using fluorescent Au nanocluster probes surface functionalized with signal molecules.

    PubMed

    Mukherji, Ruchira; Samanta, Anupam; Illathvalappil, Rajith; Chowdhury, Somak; Prabhune, Asmita; Devi, R Nandini

    2013-12-26

    Fluorescent ultrasmall gold clusters decorated with bacterial quorum sensing signal molecules, acyl homoserine lactone, are synthesized. These fluorescent probes are found to have emission in the near-infrared spectral region advantageous for bioimaging. Imaging studies using different strains of bacteria with and without acyl homoserine lactone receptors with the aid of confocal microscopy have shown that the probe interacts preferentially with cells possessing these receptors. This indicates that, with appropriate surface functionalization, the Au clusters can be used for receptor specific detection with enhanced selectivity.

  8. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone attenuates lipopolysaccharide-induced inflammation by activating the unfolded protein response.

    PubMed

    Zhang, Jiangguo; Gong, Fengyun; Li, Ling; Zhao, Manzhi; Song, Jianxin

    2014-03-01

    N-3-oxododecanoyl homoserine lactone (3-oxo-C12-HSL), a quorum-sensing signal molecule produced by Pseudomonas aeruginosa (P. aeruginosa), is involved in the expression of bacterial virulence factors and in the modulation of host immune responses by directly disrupting nuclear factor-κB (NF-κB) signaling and inducing cell apoptosis. The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress may suppress inflammatory responses in the later phase by blocking NF-κB activation. It was recently demonstrated that 3-oxo-C12-HSL may induce UPR in human aortic endothelial cells (HAECs). Therefore, 3-oxo-C12-HSL may also inhibit NF-κB activation and suppress inflammatory responses by activating UPR. However, the possible underlying mechanism has not been fully elucidated. Accordingly, we investigated the effects of 3-oxo-C12-HSL on cellular viability, UPR activation, lipopolysaccharide (LPS)-induced NF-κB activation and inflammatory response in the RAW264.7 mouse macrophage cell line. Treatment with 6.25 μM 3-oxo-C12-HSL was not found to affect the viability of RAW264.7 cells. However, pretreating RAW264.7 cells with 6.25 μM 3-oxo-C12-HSL effectively triggered UPR and increased the expression of UPR target genes, such as CCAAT/enhancer-binding protein β (C/EBP β) and CCAAT/enhancer-binding protein-homologous protein (CHOP). The expression of C/EBP β and CHOP was found to be inversely correlated with LPS-induced NF-κB activation. 3-Oxo-C12-HSL pretreatment was also shown to inhibit LPS-stimulated proinflammatory cytokine production. Hence, 3-oxo-C12-HSL may attenuate LPS-induced inflammation via UPR-mediated NF-κB inhibition without affecting cell viability. This may be another mechanism through which P. aeruginosa evades the host immune system and maintains a persistent infection.

  9. HSL-knockout mouse testis exhibits class B scavenger receptor upregulation and disrupted lipid raft microdomains.

    PubMed

    Casado, María Emilia; Huerta, Lydia; Ortiz, Ana Isabel; Pérez-Crespo, Mirian; Gutiérrez-Adán, Alfonso; Kraemer, Fredric B; Lasunción, Miguel Ángel; Busto, Rebeca; Martín-Hidalgo, Antonia

    2012-12-01

    There is a tight relationship between fertility and changes in cholesterol metabolism during spermatogenesis. In the testis, class B scavenger receptors (SR-B) SR-BI, SR-BII, and LIMP II mediate the selective uptake of cholesterol esters from HDL, which are hydrolyzed to unesterified cholesterol by hormone-sensitive lipase (HSL). HSL is critical because HSL knockout (KO) male mice are sterile. The aim of the present work was to determine the effects of the lack of HSL in testis on the expression of SR-B, lipid raft composition, and related cell signaling pathways. HSL-KO mouse testis presented altered spermatogenesis associated with decreased sperm counts, sperm motility, and infertility. In wild-type (WT) testis, HSL is expressed in elongated spermatids; SR-BI, in Leydig cells and spermatids; SR-BII, in spermatocytes and spermatids but not in Leydig cells; and LIMP II, in Sertoli and Leydig cells. HSL knockout male mice have increased expression of class B scavenger receptors, disrupted caveolin-1 localization in lipid raft plasma membrane microdomains, and activated phospho-ERK, phospho-AKT, and phospho-SRC in the testis, suggesting that class B scavenger receptors are involved in cholesterol ester uptake for steroidogenesis and spermatogenesis in the testis.

  10. Pseudomonas aeruginosa N-3-oxo-dodecanoyl-homoserine Lactone Elicits Changes in Cell Volume, Morphology, and AQP9 Characteristics in Macrophages.

    PubMed

    Holm, Angelika; Magnusson, Karl-Eric; Vikström, Elena

    2016-01-01

    Quorum sensing (QS) communication allows Pseudomonas aeruginosa to collectively control its population density and the production of biofilms and virulence factors. QS signal molecules, like N-3-oxo-dodecanoyl-L-homoserine lactone (3O-C12-HSL), can also affect the behavior of host cells, e.g., by modulating the chemotaxis, migration, and phagocytosis of human leukocytes. Moreover, host water homeostasis and water channels aquaporins (AQP) are critical for cell morphology and functions as AQP interact indirectly with the cell cytoskeleton and signaling cascades. Here, we investigated how P. aeruginosa 3O-C12-HSL affects cell morphology, area, volume and AQP9 expression and distribution in human primary macrophages, using quantitative PCR, immunoblotting, two- and three-dimensional live imaging, confocal and nanoscale imaging. Thus, 3O-C12-HSL enhanced cell volume and area and induced cell shape and protrusion fluctuations in macrophages, processes tentatively driven by fluxes of water across cell membrane through AQP9, the predominant AQP in macrophages. Moreover, 3O-C12-HSL upregulated the expression of AQP9 at both the protein and mRNA levels. This was accompanied with enhanced whole cell AQP9 fluorescent intensity and redistribution of AQP9 to the leading and trailing regions, in parallel with increased cell area in the macrophages. Finally, nanoscopy imaging provided details on AQP9 dynamics and architecture within the lamellipodial area of 3O-C12-HSL-stimulated cells. We suggest that these novel events in the interaction between P. aeruginosa and macrophage may have an impact on the effectiveness of innate immune cells to fight bacteria, and thereby resolve the early stages of infections and inflammations.

  11. Pseudomonas aeruginosa N-3-oxo-dodecanoyl-homoserine Lactone Elicits Changes in Cell Volume, Morphology, and AQP9 Characteristics in Macrophages

    PubMed Central

    Holm, Angelika; Magnusson, Karl-Eric; Vikström, Elena

    2016-01-01

    Quorum sensing (QS) communication allows Pseudomonas aeruginosa to collectively control its population density and the production of biofilms and virulence factors. QS signal molecules, like N-3-oxo-dodecanoyl-L-homoserine lactone (3O-C12-HSL), can also affect the behavior of host cells, e.g., by modulating the chemotaxis, migration, and phagocytosis of human leukocytes. Moreover, host water homeostasis and water channels aquaporins (AQP) are critical for cell morphology and functions as AQP interact indirectly with the cell cytoskeleton and signaling cascades. Here, we investigated how P. aeruginosa 3O-C12-HSL affects cell morphology, area, volume and AQP9 expression and distribution in human primary macrophages, using quantitative PCR, immunoblotting, two- and three-dimensional live imaging, confocal and nanoscale imaging. Thus, 3O-C12-HSL enhanced cell volume and area and induced cell shape and protrusion fluctuations in macrophages, processes tentatively driven by fluxes of water across cell membrane through AQP9, the predominant AQP in macrophages. Moreover, 3O-C12-HSL upregulated the expression of AQP9 at both the protein and mRNA levels. This was accompanied with enhanced whole cell AQP9 fluorescent intensity and redistribution of AQP9 to the leading and trailing regions, in parallel with increased cell area in the macrophages. Finally, nanoscopy imaging provided details on AQP9 dynamics and architecture within the lamellipodial area of 3O-C12-HSL-stimulated cells. We suggest that these novel events in the interaction between P. aeruginosa and macrophage may have an impact on the effectiveness of innate immune cells to fight bacteria, and thereby resolve the early stages of infections and inflammations. PMID:27047801

  12. Regulon studies and in planta role of the BraI/R quorum-sensing system in the plant-beneficial Burkholderia cluster.

    PubMed

    Coutinho, Bruna G; Mitter, Birgit; Talbi, Chouhra; Sessitsch, Angela; Bedmar, Eulogio J; Halliday, Nigel; James, Euan K; Cámara, Miguel; Venturi, Vittorio

    2013-07-01

    The genus Burkholderia is composed of functionally diverse species, and it can be divided into several clusters. One of these, designated the plant-beneficial-environmental (PBE) Burkholderia cluster, is formed by nonpathogenic species, which in most cases have been found to be associated with plants. It was previously established that members of the PBE group share an N-acyl-homoserine lactone (AHL) quorum-sensing (QS) system, designated BraI/R, that produces and responds to 3-oxo-C14-HSL (OC14-HSL). Moreover, some of them also possess a second AHL QS system, designated XenI2/R2, producing and responding to 3-hydroxy-C8-HSL (OHC8-HSL). In the present study, we performed liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis to determine which AHL molecules are produced by each QS system of this group of bacteria. The results showed that XenI2/R2 is mainly responsible for the production of OHC8-HSL and that the BraI/R system is involved in the production of several different AHLs. This analysis also revealed that Burkholderia phymatum STM815 produces greater amounts of AHLs than the other species tested. Further studies showed that the BraR protein of B. phymatum is more promiscuous than other BraR proteins, responding equally well to several different AHL molecules, even at low concentrations. Transcriptome studies with Burkholderia xenovorans LB400 and B. phymatum STM815 revealed that the BraI/R regulon is species specific, with exopolysaccharide production being the only common phenotype regulated by this system in the PBE cluster. In addition, BraI/R was shown not to be important for plant nodulation by B. phymatum strains or for endophytic colonization and growth promotion of maize by B. phytofirmans PsJN. PMID:23686262

  13. ATGL and HSL are not coordinately regulated in response to fuel partitioning in fasted rats.

    PubMed

    Bertile, Fabrice; Raclot, Thierry

    2011-04-01

    Prolonged fasting is characterized by lipid mobilization (Phase 2), followed by protein breakdown (Phase 3). Knowing that body lipids are not exhausted in Phase 3, we investigated whether changes in the metabolic status of prolonged fasted rats are associated with differences in the expression of epididymal adipose tissue proteins involved in lipid mobilization. The final body mass, body lipid content, locomotor activity and metabolite and hormone plasma levels differed between groups. Compared with fed rats, adiposity and epididymal fat mass decreased in Phase 2 (approximately two- to threefold) and Phase 3 (∼4.5-14-fold). Plasma nonesterified fatty acids (NEFA) concentrations were increased in Phase 2 (approximately twofold) and decreased in Phase 3 (approximately twofold). Daily locomotor activity was markedly increased in Phase 3 (∼11-fold). Compared with the fed state, expressions of adipose triglyceride lipase (ATGL; mRNA and protein), hormone-sensitive lipase (HSL; mRNA) and phosphorylated HSL at residue Ser660 (HSL Ser(660)) were increased during Phase 2 (∼1.5-2-fold). HSL (mRNA and protein) and HSL Ser(660) levels were lowered during Phase 3 (∼3-12-fold). Unlike HSL and HSL Ser(660), ATGL expression did not correlate with circulating NEFA, mostly due to data from animals in Phase 3. At this stage, ATGL could play an essential role for maintaining a low mobilization rate of NEFA, possibly to sustain muscle performance and hence increased locomotor activity. We conclude that ATGL and HSL are not coordinately regulated in response to changes in fuel partitioning during prolonged food deprivation, ATGL appearing as the major lipase in late fasting.

  14. Freshwater-borne bacteria isolated from a Malaysian rainforest waterfall exhibiting quorum sensing properties.

    PubMed

    Tan, Wen-Si; Yunos, Nina Yusrina Muhamad; Tan, Pui-Wan; Mohamad, Nur Izzati; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-06-13

    One obvious requirement for concerted action by a bacterial population is for an individual to be aware of and respond to the other individuals of the same species in order to form a response in unison. The term "quorum sensing" (QS) was coined to describe bacterial communication that is able to stimulate expression of a series of genes when the concentration of the signaling molecules has reached a threshold level. Here we report the isolation from aquatic environment of a bacterium that was later identified as Enterobacter sp.. Chromobacterium violaceum CV026 and Escherichia coli [pSB401] were used for preliminary screening of N-acyl homoserine lactone (AHL) production. The Enterobacter sp. isolated was shown to produce two types of AHLs as confirmed by analysis using high resolution tandem mass spectrometry. To the best of our knowledge, this is the first documentation of an Enterobacter sp. that produced both 3-oxo-C6-HSL and 3-oxo-C8-HSL as QS signaling molecules.

  15. Freshwater-borne bacteria isolated from a Malaysian rainforest waterfall exhibiting quorum sensing properties.

    PubMed

    Tan, Wen-Si; Yunos, Nina Yusrina Muhamad; Tan, Pui-Wan; Mohamad, Nur Izzati; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    One obvious requirement for concerted action by a bacterial population is for an individual to be aware of and respond to the other individuals of the same species in order to form a response in unison. The term "quorum sensing" (QS) was coined to describe bacterial communication that is able to stimulate expression of a series of genes when the concentration of the signaling molecules has reached a threshold level. Here we report the isolation from aquatic environment of a bacterium that was later identified as Enterobacter sp.. Chromobacterium violaceum CV026 and Escherichia coli [pSB401] were used for preliminary screening of N-acyl homoserine lactone (AHL) production. The Enterobacter sp. isolated was shown to produce two types of AHLs as confirmed by analysis using high resolution tandem mass spectrometry. To the best of our knowledge, this is the first documentation of an Enterobacter sp. that produced both 3-oxo-C6-HSL and 3-oxo-C8-HSL as QS signaling molecules. PMID:24932870

  16. Masoprocol decreases rat lipolytic activity by decreasing the phosphorylation of HSL.

    PubMed

    Gowri, M S; Azhar, R K; Kraemer, F B; Reaven, G M; Azhar, S

    2000-09-01

    Masoprocol (nordihydroguaiaretic acid), a lipoxygenase inhibitor isolated from the creosote bush, has been shown to decrease adipose tissue lipolytic activity both in vivo and in vitro. The present study was initiated to test the hypothesis that the decrease in lipolytic activity by masoprocol resulted from modulation of adipose tissue hormone-sensitive lipase (HSL) activity. The results indicate that oral administration of masoprocol to rats with fructose-induced hypertriglyceridemia significantly decreased their serum free fatty acid (FFA; P < 0.05), triglyceride (TG; P < 0.001), and insulin (P < 0.05) concentrations. In addition, isoproterenol-induced lipolytic rate and HSL activity were significantly lower (P < 0.001) in adipocytes isolated from masoprocol compared with vehicle-treated rats and was associated with a decrease in HSL protein. Incubation of masoprocol with adipocytes from chow-fed rats significantly inhibited isoproterenol-induced lipolytic activity and HSL activity, associated with a decrease in the ability of isoproterenol to phosphorylate HSL. Masoprocol had no apparent effect on adipose tissue phosphatidylinositol 3-kinase activity, but okadaic acid, a serine/threonine phosphatase inhibitor, blocked the antilipolytic effect of masoprocol. The results of these in vitro and in vivo experiments suggest that the antilipolytic activity of masoprocol is secondary to its ability to inhibit HSL phosphorylation, possibly by increasing phosphatase activity. As a consequence, masoprocol administration results in lower serum FFA and TG concentrations in hypertriglyceridemic rodents.

  17. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle.

    PubMed

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel; Brzezinska, Zofia; Klapcinska, Barbara; Galbo, Henrik; Gorski, Jan

    2010-09-01

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid and carbohydrate metabolism.

  18. 14-Methylpentadecano-15-lactone (muscolide): a new macrocyclic lactone from the oil of Angelica archangelica L.

    PubMed

    Lopes, Daíse; Strobl, Herbert; Kolodziejczyk, Paul

    2004-12-01

    The chemical composition of seed and root oils from Angelica archangelica L. was investigated. Analyses were performed by GC/MS and GC using two columns of different polarities (polyethylene glycol (DB-Wax) and 5% phenyl/95% polydimethylsiloxane (HP-5)), for the separation of several co-eluting components. A total of 58 compounds were identified, accounting for 96.3% (seed) and 93.5% (root) of the oils, respectively. A high content of beta-phellandrene (74.7%) was found in Angelica seed oil. Root oil contained a larger amount of macrocyclic lactones (1.3%) in comparison to the seed oil (0.4%). Different harvest dates produced only slight changes in the root-oil composition. In root oil harvested in summer, the beta-phellandrene content increased by ca. 36%, but no significant changes in the relative compositions of other components were observed. Fresh root oils were collected in five fractions (constant time intervals) during steam distillation (see Table). The highest-boiling fraction contained 9.3% of macrocyclic lactones such as tridecano-13-lactone (5.0%), 12-methyltridecano-13-lactone (0.4%), tetradecano-14-lactone (0.1%), pentadecano-15-lactone (3.5%), 14-methylpentadecano-15-lactone (1; trace), hexadecano-16-lactone (trace), and heptadecano-17-lactone (0.2%). This is the first report of the occurrence of 14-methylpentadecano-15-lactone (muscolide; 1) in a natural product.

  19. 14-Methylpentadecano-15-lactone (muscolide): a new macrocyclic lactone from the oil of Angelica archangelica L.

    PubMed

    Lopes, Daíse; Strobl, Herbert; Kolodziejczyk, Paul

    2004-12-01

    The chemical composition of seed and root oils from Angelica archangelica L. was investigated. Analyses were performed by GC/MS and GC using two columns of different polarities (polyethylene glycol (DB-Wax) and 5% phenyl/95% polydimethylsiloxane (HP-5)), for the separation of several co-eluting components. A total of 58 compounds were identified, accounting for 96.3% (seed) and 93.5% (root) of the oils, respectively. A high content of beta-phellandrene (74.7%) was found in Angelica seed oil. Root oil contained a larger amount of macrocyclic lactones (1.3%) in comparison to the seed oil (0.4%). Different harvest dates produced only slight changes in the root-oil composition. In root oil harvested in summer, the beta-phellandrene content increased by ca. 36%, but no significant changes in the relative compositions of other components were observed. Fresh root oils were collected in five fractions (constant time intervals) during steam distillation (see Table). The highest-boiling fraction contained 9.3% of macrocyclic lactones such as tridecano-13-lactone (5.0%), 12-methyltridecano-13-lactone (0.4%), tetradecano-14-lactone (0.1%), pentadecano-15-lactone (3.5%), 14-methylpentadecano-15-lactone (1; trace), hexadecano-16-lactone (trace), and heptadecano-17-lactone (0.2%). This is the first report of the occurrence of 14-methylpentadecano-15-lactone (muscolide; 1) in a natural product. PMID:17191826

  20. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti.

    PubMed

    Gao, Mengsheng; Chen, Hancai; Eberhard, Anatol; Gronquist, Matthew R; Robinson, Jayne B; Rolfe, Barry G; Bauer, Wolfgang D

    2005-12-01

    Quorum sensing (QS) in Sinorhizobium meliloti, the N-fixing bacterial symbiont of Medicago host plants, involves at least half a dozen different N-acyl homoserine lactone (AHL) signals and perhaps an equal number of AHL receptors. The accumulation of 55 proteins was found to be dependent on SinI, the AHL synthase, and/or on ExpR, one of the AHL receptors. Gas chromatography-mass spectrometry and electrospray ionization tandem mass spectrometry identified 3-oxo-C(14)-homoserine lactone (3-oxo-C(14)-HSL), C(16)-HSL, 3-oxo-C(16)-HSL, C(16:1)-HSL, and 3-oxo-C(16:1)-HSL as the sinI-dependent AHL QS signals accumulated by the 8530 expR(+) strain under the conditions used for proteome analysis. The 8530 expR(+) strain secretes additional, unidentified QS-active compounds. Addition of 200 nM C(14)-HSL or C(16:1)-HSL, two of the known SinI AHLs, affected the levels of 75% of the proteins, confirming that their accumulation is QS regulated. A number of the QS-regulated proteins have functions plausibly related to symbiotic interactions with the host, including ExpE6, IdhA, MocB, Gor, PckA, LeuC, and AglE. Seven of 10 single-crossover beta-glucuronidase (GUS) transcriptional reporters in genes corresponding to QS-regulated proteins showed significantly different activities in the sinI and expR mutant backgrounds and in response to added SinI AHLs. The sinI mutant and several of the single-crossover strains were significantly delayed in the ability to initiate nodules on the primary root of the host plant, Medicago truncatula, indicating that sinI-dependent QS regulation and QS-regulated proteins contribute importantly to the rate or efficiency of nodule initiation. The sinI and expR mutants were also defective in surface swarming motility. The sinI mutant was restored to normal swarming by 5 nM C(16:1)-HSL.

  1. sinI- and expR-Dependent Quorum Sensing in Sinorhizobium meliloti†

    PubMed Central

    Gao, Mengsheng; Chen, Hancai; Eberhard, Anatol; Gronquist, Matthew R.; Robinson, Jayne B.; Rolfe, Barry G.; Bauer, Wolfgang D.

    2005-01-01

    Quorum sensing (QS) in Sinorhizobium meliloti, the N-fixing bacterial symbiont of Medicago host plants, involves at least half a dozen different N-acyl homoserine lactone (AHL) signals and perhaps an equal number of AHL receptors. The accumulation of 55 proteins was found to be dependent on SinI, the AHL synthase, and/or on ExpR, one of the AHL receptors. Gas chromatography-mass spectrometry and electrospray ionization tandem mass spectrometry identified 3-oxo-C14-homoserine lactone (3-oxo-C14-HSL), C16-HSL, 3-oxo-C16-HSL, C16:1-HSL, and 3-oxo-C16:1-HSL as the sinI-dependent AHL QS signals accumulated by the 8530 expR+ strain under the conditions used for proteome analysis. The 8530 expR+ strain secretes additional, unidentified QS-active compounds. Addition of 200 nM C14-HSL or C16:1-HSL, two of the known SinI AHLs, affected the levels of 75% of the proteins, confirming that their accumulation is QS regulated. A number of the QS-regulated proteins have functions plausibly related to symbiotic interactions with the host, including ExpE6, IdhA, MocB, Gor, PckA, LeuC, and AglE. Seven of 10 single-crossover β-glucuronidase (GUS) transcriptional reporters in genes corresponding to QS-regulated proteins showed significantly different activities in the sinI and expR mutant backgrounds and in response to added SinI AHLs. The sinI mutant and several of the single-crossover strains were significantly delayed in the ability to initiate nodules on the primary root of the host plant, Medicago truncatula, indicating that sinI-dependent QS regulation and QS-regulated proteins contribute importantly to the rate or efficiency of nodule initiation. The sinI and expR mutants were also defective in surface swarming motility. The sinI mutant was restored to normal swarming by 5 nM C16:1-HSL. PMID:16291666

  2. Sesquiterpenoids Lactones: Benefits to Plants and People

    PubMed Central

    Chadwick, Martin; Trewin, Harriet; Gawthrop, Frances; Wagstaff, Carol

    2013-01-01

    Sesquiterpenoids, and specifically sesquiterpene lactones from Asteraceae, may play a highly significant role in human health, both as part of a balanced diet and as pharmaceutical agents, due to their potential for the treatment of cardiovascular disease and cancer. This review highlights the role of sesquiterpene lactones endogenously in the plants that produce them, and explores mechanisms by which they interact in animal and human consumers of these plants. Several mechanisms are proposed for the reduction of inflammation and tumorigenesis at potentially achievable levels in humans. Plants can be classified by their specific array of produced sesquiterpene lactones, showing high levels of translational control. Studies of folk medicines implicate sesquiterpene lactones as the active ingredient in many treatments for other ailments such as diarrhea, burns, influenza, and neurodegradation. In addition to the anti-inflammatory response, sesquiterpene lactones have been found to sensitize tumor cells to conventional drug treatments. This review explores the varied ecological roles of sesquiterpenes in the plant producer, depending upon the plant and the compound. These include allelopathy with other plants, insects, and microbes, thereby causing behavioural or developmental modification to these secondary organisms to the benefit of the sesquiterpenoid producer. Some sesquiterpenoid lactones are antimicrobial, disrupting the cell wall of fungi and invasive bacteria, whereas others protect the plant from environmental stresses that would otherwise cause oxidative damage. Many of the compounds are effective due to their bitter flavor, which has obvious implications for human consumers. The implications of sesquiterpenoid lactone qualities for future crop production are discussed. PMID:23783276

  3. Sesquiterpenoids lactones: benefits to plants and people.

    PubMed

    Chadwick, Martin; Trewin, Harriet; Gawthrop, Frances; Wagstaff, Carol

    2013-01-01

    Sesquiterpenoids, and specifically sesquiterpene lactones from Asteraceae, may play a highly significant role in human health, both as part of a balanced diet and as pharmaceutical agents, due to their potential for the treatment of cardiovascular disease and cancer. This review highlights the role of sesquiterpene lactones endogenously in the plants that produce them, and explores mechanisms by which they interact in animal and human consumers of these plants. Several mechanisms are proposed for the reduction of inflammation and tumorigenesis at potentially achievable levels in humans. Plants can be classified by their specific array of produced sesquiterpene lactones, showing high levels of translational control. Studies of folk medicines implicate sesquiterpene lactones as the active ingredient in many treatments for other ailments such as diarrhea, burns, influenza, and neurodegradation. In addition to the anti-inflammatory response, sesquiterpene lactones have been found to sensitize tumor cells to conventional drug treatments. This review explores the varied ecological roles of sesquiterpenes in the plant producer, depending upon the plant and the compound. These include allelopathy with other plants, insects, and microbes, thereby causing behavioural or developmental modification to these secondary organisms to the benefit of the sesquiterpenoid producer. Some sesquiterpenoid lactones are antimicrobial, disrupting the cell wall of fungi and invasive bacteria, whereas others protect the plant from environmental stresses that would otherwise cause oxidative damage. Many of the compounds are effective due to their bitter flavor, which has obvious implications for human consumers. The implications of sesquiterpenoid lactone qualities for future crop production are discussed. PMID:23783276

  4. Beta-adrenergic stimulation of skeletal muscle HSL can be overridden by AMPK signaling.

    PubMed

    Watt, Matthew J; Steinberg, Gregory R; Chan, Stanley; Garnham, Andrew; Kemp, Bruce E; Febbraio, Mark A

    2004-09-01

    Hormone-sensitive lipase (HSL), an important regulatory enzyme for triacylglycerol hydrolysis within skeletal muscle, is controlled by beta-adrenergic signaling as well as intrinsic factors related to contraction and energy turnover. In the current study, we tested the capacity of 5'AMP-activated protein kinase (AMPK) to suppress beta-adrenergic stimulation of HSL activity. Eight male subjects completed 60 min of cycle exercise at 70% VO2 peak on two occasions: either with normal (CON) or low (LG) pre-exercise muscle glycogen content, which is known to enhance exercise-induced AMPK activity. Muscle samples were obtained before and immediately after exercise. Pre-exercise glycogen averaged 375 +/- 35 and 163 +/- 27 mmol x kg(-1) dm for CON and LG, respectively. AMPK alpha-2 was not different between trials at rest and was increased (3.7-fold, P<0.05) by exercise during LG only. HSL activity did not differ between trials at rest and increased (0 min: 1.67 +/- 0.13; 60 min: 2.60 +/- 0.26 mmol x min(-1) x kg(-1) dm) in CON. The exercise-induced increase in HSL activity was attenuated by AMPK alpha-2 activation in LG. The attenuated HSL activity during LG occurred despite higher plasma epinephrine levels (60 min: CON, 1.96 +/- 0.29 vs LG, 4.25 +/- 0.60 nM, P<0.05) compared with CON. Despite the attenuated HSL activity in LG, IMTG was decreased by exercise (0 min: 27.1 +/- 2.0; 60 min: 22.5 +/- 2.0 mmol x kg(-1) dm, P<0.05), whereas no net reduction occurred in CON. To confirm the apparent effect of AMPK on HSL activity, we performed experiments in muscle cell culture. The epineprine-induced increase in HSL activity was totally attenuated (P<0.05) by AICAR administration in L6 myotubes. These data provide new evidence indicating that AMPK is a major regulator of skeletal muscle HSL activity that can override beta-adrenergic stimulation. However, the increased IMTG degradation in LG suggests factors other than HSL activity are important for IMTG degradation.

  5. N-acylated alanine methyl esters (NAMEs) from Roseovarius tolerans, structural analogs of quorum-sensing autoinducers, N-acylhomoserine lactones.

    PubMed

    Bruns, Hilke; Thiel, Verena; Voget, Sonja; Patzelt, Diana; Daniel, Rolf; Wagner-Döbler, Irene; Schulz, Stefan

    2013-09-01

    The Roseobacter clade is one of the most important bacteria group living in the ocean. Liquid cultures of Roseovarius tolerans EL 164 were investigated for the production of autoinducers such as N-acylhomoserine lactones (AHLs) and other secondary metabolites. The XAD extracts were analyzed by GC/MS. Two AHLs, Z7-C14 : 1-homoserine lactone (HSL) and C15 : 1-HSL, were identified. Additionally, the extract contained five compounds with molecular-ion peaks at m/z 104, 145, and 158, thus exhibiting mass spectra similar to those of AHLs with corresponding peaks at m/z 102, 143, and 156. Isolation of the main compound by column chromatography, NMR analysis, dimethyl disulfide derivatization for the determination of the location of the CC bond and finally synthesis of the compound with the proposed structure confirmed the compound to be (Z)-N-(hexadec-9-enoyl)alanine methyl ester. Four additional minor compounds were identified as C14 : 0-, C15 : 0-, C16 : 0-, and C17 : 1-N-acylated alanine methyl esters (NAMEs). All NAMEs have not been described from natural sources before. A BLASTp search showed the presence of AHL-producing luxI genes, but no homologous genes potentially responsible for the structurally closely related NAMEs were found. The involvement of the NAMEs in chemical communication processes of the bacteria is discussed.

  6. Bioinspired, releasable quorum sensing modulators.

    PubMed

    Gomes, José; Grunau, Alexander; Lawrence, Adrien K; Eberl, Leo; Gademann, Karl

    2013-01-01

    We demonstrate the synthesis and immobilization of natural product hybrids featuring an acyl-homoserine lactone and a nitrodopamine onto biocompatible TiO(2) surfaces through an operationally simple dip-and-rinse procedure. The resulting immobilized hybrids were shown to be powerful quorum sensing (QS) activators in Pseudomonas strains acting by slow release from the surface. PMID:23169441

  7. Genome sequence of Novosphingobium sp. strain Rr 2-17, a nopaline crown gall-associated bacterium isolated from Vitis vinifera L. grapevine.

    PubMed

    Gan, Han Ming; Chew, Teong Han; Hudson, André O; Savka, Michael A

    2012-09-01

    Novosphingobium sp. strain Rr 2-17 is an N-acyl homoserine lactone (AHL)-producing bacterium isolated from the crown gall tumor of a grapevine. To our knowledge, this is the first draft genome announcement of a plant-associated strain from the genus Novosphingobium. PMID:22933764

  8. Whole-Genome Sequencing Reveals a New Genospecies of Methylobacterium sp. GXS13, Isolated from Vitis vinifera L. Xylem Sap

    PubMed Central

    Lai, Wan Xin; Gan, Han Ming; Hudson, André O.

    2016-01-01

    The whole-genome sequence of a new genospecies of Methylobacterium sp., named GXS13 and isolated from grapevine xylem sap, is reported and demonstrates potential for methylotrophy, cytokinin synthesis, and cell wall modification. In addition, biosynthetic gene clusters were identified for cupriachelin, carotenoid, and acyl-homoserine lactone using the antiSMASH server. PMID:26847900

  9. Quorum-Sensing-Regulated Bactobolin Production by Burkholderia thailandensis E264

    PubMed Central

    2010-01-01

    Bacterial acyl-homoserine lactones upregulated an uncharacterized gene cluster (bta) in Burkholderia thailandensis E264 to produce an uncharacterized polar antibiotic. The antibiotic is identified as a mixture of four bactobolins. Annotation of the bta cluster allows us to propose a biosynthetic scheme for bactobolin and reveals unusual enzymatic reactions for further study. PMID:20095633

  10. The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum sensing receptor

    PubMed Central

    Rajamani, Sathish; Bauer, Wolfgang D.; Robinson, Jayne B.; Farrow, John M.; Pesci, Everett C.; Teplitski, Max; Gao, Mengsheng; Sayre, Richard T.; Phillips, Donald A.

    2013-01-01

    Many bacteria use quorum sensing (QS) as an intercellular signaling mechanism to regulate gene expression in local populations. Plant and algal hosts, in turn, secrete compounds that mimic bacterial QS signals, allowing these hosts to manipulate QS-regulated gene expression in bacteria. Lumichrome, a derivative of the vitamin riboflavin, was purified and chemically identified from culture filtrates of the alga Chlamydomonas as a QS signal-mimic compound capable of stimulating the Pseudomonas aeruginosa LasR QS receptor. LasR normally recognizes the N-acyl homoserine lactone (AHL) signal, N-3-oxo-dodecanoyl homoserine lactone (3-oxo-C12-HSL). Authentic lumichrome and riboflavin stimulated the LasR receptor in bioassays, and lumichrome activated LasR in gel shift experiments. Amino acid substitutions in LasR residues required for AHL binding altered responses to both AHLs and lumichrome/riboflavin. These results and docking studies indicate that the AHL binding pocket of LasR recognizes both AHLs and the structurally dissimilar lumichrome/riboflavin. Bacteria, plants and algae commonly secrete riboflavin and/or lumichrome, raising the possibility that these compounds could serve as either QS signals or as interkingdom signal-mimics capable of manipulating QS in bacteria with a LasR-like receptor. PMID:18700823

  11. Theophylline-Based KMUP-1 Improves Steatohepatitis via MMP-9/IL-10 and Lipolysis via HSL/p-HSL in Obese Mice.

    PubMed

    Wu, Bin-Nan; Kuo, Kung-Kai; Chen, Yu-Hsun; Chang, Chain-Ting; Huang, Hung-Tu; Chai, Chee-Yin; Dai, Zen-Kong; Chen, Ing-Jun

    2016-01-01

    KMUP-1 (7-[2-[4-(2-chlorobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) has been reported to cause hepatic fat loss. However, the action mechanisms of KMUP-1 in obesity-induced steatohepatitis remains unclear. This study elucidated the steatohepatitis via matrix metallopeptidase 9 (MMP-9) and tumor necrosis factor α (TNFα), and related lipolysis via hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) by KMUP-1. KMUP-1 on steatohepatitis-associated HSL/p-HSL/ATGL/MMP-9/TNFα/interleukin-10 (IL-10) and infiltration of M1/M2 macrophages in obese mice were examined. KMUP-1 was administered by oral gavage from weeks 1-14 in high-fat diet (HFD)-supplemented C57BL/6J male mice (protection group) and from weeks 8-14, for 6 weeks, in HFD-induced obese mice (treatment group). Immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining of tissues, oil globules number and size, infiltration and switching of M1/M2 macrophages were measured to determine the effects on livers. IL-10 and MMP-9 proteins were explored to determine the effects of KMUP-1 on M1/M2 macrophage polarization in HFD-induced steatohepatitis. Long-term administration of KMUP-1 reversed HFD-fed mice increased in body weight, sGOT/sGPT, triglyceride (TG) and glucose. Additionally, KMUP-1 decreased MMP-9 and reactive oxygen species (ROS), and increased HSL/p-HSL and IL-10 in HFD mice livers. In conclusion, KMUP-1, a phosphodiesterase inhibitor (PDEI), was shown to reduce lipid accumulation in liver tissues, suggesting that it could be able to prevent or treat steatohepatitis induced by HFD. PMID:27548140

  12. Theophylline-Based KMUP-1 Improves Steatohepatitis via MMP-9/IL-10 and Lipolysis via HSL/p-HSL in Obese Mice.

    PubMed

    Wu, Bin-Nan; Kuo, Kung-Kai; Chen, Yu-Hsun; Chang, Chain-Ting; Huang, Hung-Tu; Chai, Chee-Yin; Dai, Zen-Kong; Chen, Ing-Jun

    2016-08-17

    KMUP-1 (7-[2-[4-(2-chlorobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) has been reported to cause hepatic fat loss. However, the action mechanisms of KMUP-1 in obesity-induced steatohepatitis remains unclear. This study elucidated the steatohepatitis via matrix metallopeptidase 9 (MMP-9) and tumor necrosis factor α (TNFα), and related lipolysis via hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) by KMUP-1. KMUP-1 on steatohepatitis-associated HSL/p-HSL/ATGL/MMP-9/TNFα/interleukin-10 (IL-10) and infiltration of M1/M2 macrophages in obese mice were examined. KMUP-1 was administered by oral gavage from weeks 1-14 in high-fat diet (HFD)-supplemented C57BL/6J male mice (protection group) and from weeks 8-14, for 6 weeks, in HFD-induced obese mice (treatment group). Immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining of tissues, oil globules number and size, infiltration and switching of M1/M2 macrophages were measured to determine the effects on livers. IL-10 and MMP-9 proteins were explored to determine the effects of KMUP-1 on M1/M2 macrophage polarization in HFD-induced steatohepatitis. Long-term administration of KMUP-1 reversed HFD-fed mice increased in body weight, sGOT/sGPT, triglyceride (TG) and glucose. Additionally, KMUP-1 decreased MMP-9 and reactive oxygen species (ROS), and increased HSL/p-HSL and IL-10 in HFD mice livers. In conclusion, KMUP-1, a phosphodiesterase inhibitor (PDEI), was shown to reduce lipid accumulation in liver tissues, suggesting that it could be able to prevent or treat steatohepatitis induced by HFD.

  13. Theophylline-Based KMUP-1 Improves Steatohepatitis via MMP-9/IL-10 and Lipolysis via HSL/p-HSL in Obese Mice

    PubMed Central

    Wu, Bin-Nan; Kuo, Kung-Kai; Chen, Yu-Hsun; Chang, Chain-Ting; Huang, Hung-Tu; Chai, Chee-Yin; Dai, Zen-Kong; Chen, Ing-Jun

    2016-01-01

    KMUP-1 (7-[2-[4-(2-chlorobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) has been reported to cause hepatic fat loss. However, the action mechanisms of KMUP-1 in obesity-induced steatohepatitis remains unclear. This study elucidated the steatohepatitis via matrix metallopeptidase 9 (MMP-9) and tumor necrosis factor α (TNFα), and related lipolysis via hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) by KMUP-1. KMUP-1 on steatohepatitis-associated HSL/p-HSL/ATGL/MMP-9/TNFα/interleukin-10 (IL-10) and infiltration of M1/M2 macrophages in obese mice were examined. KMUP-1 was administered by oral gavage from weeks 1–14 in high-fat diet (HFD)-supplemented C57BL/6J male mice (protection group) and from weeks 8–14, for 6 weeks, in HFD-induced obese mice (treatment group). Immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining of tissues, oil globules number and size, infiltration and switching of M1/M2 macrophages were measured to determine the effects on livers. IL-10 and MMP-9 proteins were explored to determine the effects of KMUP-1 on M1/M2 macrophage polarization in HFD-induced steatohepatitis. Long-term administration of KMUP-1 reversed HFD-fed mice increased in body weight, sGOT/sGPT, triglyceride (TG) and glucose. Additionally, KMUP-1 decreased MMP-9 and reactive oxygen species (ROS), and increased HSL/p-HSL and IL-10 in HFD mice livers. In conclusion, KMUP-1, a phosphodiesterase inhibitor (PDEI), was shown to reduce lipid accumulation in liver tissues, suggesting that it could be able to prevent or treat steatohepatitis induced by HFD. PMID:27548140

  14. Plant Pathogenic Microbial Communication Affected by Elevated Temperature in Pectobacterium carotovorum subsp. carotovorum.

    PubMed

    Saha, N D; Chaudhary, A; Singh, S D; Singh, D; Walia, S; Das, T K

    2015-11-01

    Gram-negative plant pathogenic bacteria regulate specific gene expression in a population density-dependent manner by sensing level of Acyl-Homoserine Lactone (HSL) molecules which they produce and liberate to the environment, called Quorum Sensing (QS). The production of virulence factors (extracellular enzyme viz. cellulase, pectinase, etc.) in Pectobacterium carotovorum subsp. carotovorum (Pcc) is under strong regulation of QS. The QS signal molecule, N-(3-oxohexanoyl)-L-Homoserine Lactone (OHHL) was found as the central regulatory system for the virulence factor production in Pcc and is also under strict regulation of external environmental temperature. Under seven different incubation temperatures (24, 26, 28, 30, 33, 35, and 37 °C) in laboratory condition, highest amount of OHHL (804 violacein unit) and highest (79 %) Disease Severity Index (DSI) were measured at 33 °C. The OHHL production kinetics showed accumulation of highest concentration of OHHL at late log phase of the growth but diminution in the concentration occurred during stationary phase onwards to death phase. At higher temperature (35 and 37 °C) exposure, OHHL was not at detectable range. The effect of temperature on virulence factor production is the concomitant effect of HSL production and degradation which justifies less disease severity index in cross-inoculated tomato fruits incubated at 35 and 37 °C. The nondetection of the OHHL in the elevated temperature may because of degradation as these signal molecules are quite sensitive and prone to get degraded under different physical factors. This result provides the rationale behind the highest disease severity up to certain elevated temperature and leaves opportunities for investigation on mutation, co-evolution of superior plant pathogen with more stable HSL signals-mediated pathogenesis under global warming context. PMID:26271295

  15. AHL-priming functions via oxylipin and salicylic acid

    PubMed Central

    Schenk, Sebastian T.; Schikora, Adam

    2015-01-01

    Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl homoserine lactones (AHLs) are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA). SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA) and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant–microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant protection. PMID

  16. Plant Pathogenic Microbial Communication Affected by Elevated Temperature in Pectobacterium carotovorum subsp. carotovorum.

    PubMed

    Saha, N D; Chaudhary, A; Singh, S D; Singh, D; Walia, S; Das, T K

    2015-11-01

    Gram-negative plant pathogenic bacteria regulate specific gene expression in a population density-dependent manner by sensing level of Acyl-Homoserine Lactone (HSL) molecules which they produce and liberate to the environment, called Quorum Sensing (QS). The production of virulence factors (extracellular enzyme viz. cellulase, pectinase, etc.) in Pectobacterium carotovorum subsp. carotovorum (Pcc) is under strong regulation of QS. The QS signal molecule, N-(3-oxohexanoyl)-L-Homoserine Lactone (OHHL) was found as the central regulatory system for the virulence factor production in Pcc and is also under strict regulation of external environmental temperature. Under seven different incubation temperatures (24, 26, 28, 30, 33, 35, and 37 °C) in laboratory condition, highest amount of OHHL (804 violacein unit) and highest (79 %) Disease Severity Index (DSI) were measured at 33 °C. The OHHL production kinetics showed accumulation of highest concentration of OHHL at late log phase of the growth but diminution in the concentration occurred during stationary phase onwards to death phase. At higher temperature (35 and 37 °C) exposure, OHHL was not at detectable range. The effect of temperature on virulence factor production is the concomitant effect of HSL production and degradation which justifies less disease severity index in cross-inoculated tomato fruits incubated at 35 and 37 °C. The nondetection of the OHHL in the elevated temperature may because of degradation as these signal molecules are quite sensitive and prone to get degraded under different physical factors. This result provides the rationale behind the highest disease severity up to certain elevated temperature and leaves opportunities for investigation on mutation, co-evolution of superior plant pathogen with more stable HSL signals-mediated pathogenesis under global warming context.

  17. The resurgence of Hormone-Sensitive Lipase (HSL) in mammalian lipolysis.

    PubMed

    Lampidonis, Antonis D; Rogdakis, Emmanuel; Voutsinas, Gerassimos E; Stravopodis, Dimitrios J

    2011-05-15

    The ability to store energy in the form of energy-dense triacylglycerol and to mobilize these stores rapidly during periods of low carbohydrate availability or throughout the strong metabolic demand is a highly conserved process, absolutely essential for survival. In the industrialized world the regulation of this pathway is viewed as an important therapeutic target for disease prevention. Adipose tissue lipolysis is a catabolic process leading to the breakdown of triacylglycerols stored in fat cells, and release of fatty acids and glycerol. Mobilization of adipose tissue fat is mediated by the MGL, HSL and ATGL, similarly functioning enzymes. ATGL initiates lipolysis followed by the actions of HSL on diacylglycerol, and MGL on monoacylglycerol. HSL is regulated by reversible phosphorylation on five critical residues. Phosphorylation alone, however, is not enough to activate HSL. Probably, conformational alterations and a translocation from the cytoplasm to lipid droplets are also involved. In accordance, Perilipin functions as a master regulator of lipolysis, protecting or exposing the triacylglycerol core of a lipid droplet to lipases. The prototype processes of hormonal lipolytic control are the β-adrenergic stimulation and suppression by insulin, both of which affect cytoplasmic cyclic AMP levels. Lipolysis in adipocytes is an important process in the management of body energy reserves. Its deregulation may contribute to the symptoms of type 2 diabetes mellitus and other pathological situations. We, herein, discuss the metabolic regulation and function of lipases mediating mammalian lipolysis with a focus on HSL, quoting newly identified members of the lipolytic proteome.

  18. The BlcC (AttM) Lactonase of Agrobacterium tumefaciens Does Not Quench the Quorum-Sensing System That Regulates Ti Plasmid Conjugative Transfer ▿ †

    PubMed Central

    Khan, Sharik R.; Farrand, Stephen K.

    2009-01-01

    The conjugative transfer of Agrobacterium plasmids is controlled by a quorum-sensing system consisting of TraR and its acyl-homoserine lactone (HSL) ligand. The acyl-HSL is essential for the TraR-mediated activation of the Ti plasmid Tra genes. Strains A6 and C58 of Agrobacterium tumefaciens produce a lactonase, BlcC (AttM), that can degrade the quormone, leading some to conclude that the enzyme quenches the quorum-sensing system. We tested this hypothesis by examining the effects of the mutation, induction, or mutational derepression of blcC on the accumulation of acyl-HSL and on the conjugative competence of strain C58. The induction of blc resulted in an 8- to 10-fold decrease in levels of extracellular acyl-HSL but in only a twofold decrease in intracellular quormone levels, a measure of the amount of active intracellular TraR. The induction or mutational derepression of blc as well as a null mutation in blcC had no significant effect on the induction of or continued transfer of pTiC58 from donors in any stage of growth, including stationary phase. In matings performed in developing tumors, wild-type C58 transferred the Ti plasmid to recipients, yielding transconjugants by 14 to 21 days following infection. blcC-null donors yielded transconjugants 1 week earlier, but by the following week, transconjugants were recovered at numbers indistinguishable from those of the wild type. Donors mutationally derepressed for blcC yielded transconjugants in planta at numbers 10-fold lower than those for the wild type at weeks 2 and 3, but by week 4, the two donors showed no difference in recoverable transconjugants. We conclude that BlcC has no biologically significant effect on Ti plasmid transfer or its regulatory system. PMID:19011037

  19. Cloning and functional characterization of the ovine Hormone Sensitive Lipase (HSL) full-length cDNAs: an integrated approach.

    PubMed

    Lampidonis, Antonis D; Argyrokastritis, Alexandros; Stravopodis, Dimitrios J; Voutsinas, Gerassimos E; Ntouroupi, Triantafyllia G; Margaritis, Lukas H; Bizelis, Iosif; Rogdakis, Emmanuel

    2008-06-15

    Hormone Sensitive Lipase (HSL) is a highly regulated enzyme that mediates lipolysis in adipocytes. HSL enzymatic activity is increased by adrenergic agonists, such as catecholamines and glucagons, which induce cyclic AMP (cAMP) intracellular production, subsequently followed by the activation of Protein Kinase A (PKA) and its downstream signalling cascade reactions. Since HSL constitutes the key enzyme in the regulation of lipid stores and the only enzyme being subjected to hormonal regulation [in terms of the recently identified Adipose Triglyceride Lipase (ATGL)], the ovine Hormone Sensitive Lipase (ovHSL) full-length cDNA clones were isolated, using a Polymerase Chain Reaction-based (PCR) strategy. The two isolated isoforms ovHSL-A and ovHSL-B contain two highly homologous Open Reading Frame (ORF) regions of 2.089 Kb and 2.086 Kb, respectively, the latter having been missed the 688th triplet coding for glutamine (DeltaQ(688)). The putative 695 and 694 amino acid respective sequences bear strong homologies with other HSL protein family members. Southern blotting analysis revealed that HSL is represented as a single copy gene in the ovine genome, while Reverse Transcription-PCR (RT-PCR) approaches unambiguously dictated its variable transcriptional expression profile in the different tissues examined. Interestingly, as undoubtedly corroborated by both RT-PCR and Western blotting analysis, ovHSL gene expression is notably enhanced in the adipose tissue during the fasting period, when lipolysis is highly increased in ruminant species. Based on the crystal structure of an Archaeoglobus fulgidus enzyme, a three-dimensional (3D) molecular model of the ovHSL putative catalytic domain was constructed, thus providing an inchoative insight into understanding the enzymatic activity and functional regulation mechanisms of the ruminant HSL gene product(s).

  20. The Stringent Response Modulates 4-Hydroxy-2-Alkylquinoline Biosynthesis and Quorum-Sensing Hierarchy in Pseudomonas aeruginosa

    PubMed Central

    Schafhauser, James; Lepine, Francois; McKay, Geoffrey; Ahlgren, Heather G.; Khakimova, Malika

    2014-01-01

    As a ubiquitous environmental organism and an important human pathogen, Pseudomonas aeruginosa readily adapts and responds to a wide range of conditions and habitats. The intricate regulatory networks that link quorum sensing and other global regulators allow P. aeruginosa to coordinate its gene expression and cell signaling in response to different growth conditions and stressors. Upon nutrient transitions and starvation, as well as other environmental stresses, the stringent response is activated, mediated by the signal (p)ppGpp. P. aeruginosa produces a family of molecules called HAQ (4-hydroxy-2-alkylquinolines), some of which exhibit antibacterial and quorum-sensing signaling functions and regulate virulence genes. In this study, we report that (p)ppGpp negatively regulates HAQ biosynthesis: in a (p)ppGpp-null (ΔSR) mutant, HHQ (4-hydroxyl-2-heptylquinoline) and PQS (3,4-dihydroxy-2-heptylquinoline) levels are increased due to upregulated pqsA and pqsR expression and reduced repression by the rhl system. We also found that (p)ppGpp is required for full expression of both rhl and las AHL (acyl-homoserine lactone) quorum-sensing systems, since the ΔSR mutant has reduced rhlI, rhlR, lasI, and lasR expression, butanoyl-homoserine lactone (C4-HSL) and 3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12-HSL) levels, and rhamnolipid and elastase production. Furthermore, (p)ppGpp significantly modulates the AHL and PQS quorum-sensing hierarchy, as the las system no longer has a dominant effect on HAQ biosynthesis when the stringent response is inactivated. PMID:24509318

  1. Transplantation of rat hepatic stem-like (HSL) cells with collagen matrices.

    PubMed

    Ueno, Yasuharu; Nagai, Hirokazu; Watanabe, Go; Ishikawa, Kiyoshi; Yoshikawa, Kiwamu; Koizumi, Yukio; Kameda, Takashi; Sugiyama, Toshihiro

    2005-12-01

    Organ restitution using somatic stem cells is of great clinical interest. Recent advances in the field of tissue engineering have demonstrated that the use of collagen matrices as scaffolds facilitates tissue reconstruction. Here, we examine the efficacy of transplantation of HSL cells, a previously established liver epithelial cell line with a potential for differentiation, using collagen scaffolds. To this end, HSL cells were transplanted into Nagase's analbuminemic rat with spongy or gelatinous type I collagen matrices. Consequently, immunohistochemical analyses and genomic PCR experiments revealed engraftment of the transplanted cells. Furthermore, the levels of serum albumin in recipient rats were found to increase up to 2.5-fold relative to controls after transplantation. These findings suggest that HSL cells are able to differentiate into functional hepatocytes in vivo, and that biodegradable collagen matrices enhance this phenomenon by providing an appropriate microenvironment for hepatocytic repopulation.

  2. Adequate evaluation of HSL mass and activity in rat adipose tissue in fasting and aging-related obesity.

    PubMed

    Tsujita, Takahiro; Sumiyoshi, Maho; Morimoto, Chie; Kameda, Kenji; Okuda, Hiromichi

    2002-04-01

    Adipose tissue is a unique tissue because its mass is readily changed by altering nutritional conditions. Therefore the activity and content of enzyme in the adipose tissue is significantly differed according to the way of their presentation: per g tissue, per whole tissue, or per cell number. In the present study, the effects of the ways of expressing the hormone sensitive lipase (HSL) activity and content were studied in rat by decreasing or increasing adipose tissue. Fasting caused a progressive decline in body weight and in the weight of the epididymal fat pad. When the HSL content was expressed per g of adipose tissue, the lipase activity and immunoreactive HSL protein content in fasting rats were higher than those in fed rats. On the other hand, when they were expressed as per fat pad, the lipase activity and immunoreactive HSL protein in fasting rats were lower than those in fed rats. The opposite results were observed in obesity. When the HSL content was expressed per g of adipose tissue, the lipase activity and immunoreactive HSL protein in obese rats were lower than in control rats. However, when the HSL content was expressed per fat pad, the lipase activity and immunoreactive HSL protein in the obese rats were higher than in the control rats. Therefore we must pay careful attention to the way of presentation of adipose tissue enzyme contents.

  3. Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp.

    PubMed

    Cui, Y; Chatterjee, A; Liu, Y; Dumenyo, C K; Chatterjee, A K

    1995-09-01

    The production of extracellular enzymes such as pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel), and protease (Prt) is activated by the cell density (quorum)-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone (HSL); plant signals; and aep genes during postexponential growth of Erwinia carotovora subsp. carotovora 71. Studies with mutants of E. carotovora subsp. carotovora 71 derepressed in exoenzyme production led to the identification of a negative regulator gene, rsmA (rsm, repressor of secondary metabolites). Nucleotide sequencing, transcript assays, and protein analysis established that a 183-bp open reading frame encodes the 6.8-kDa RsmA. rsmA has extensive homology with the csrA gene of Escherichia coli, which specifies a negative regulator of carbon storage. Moreover, the suppression of glycogen synthesis in E. coli by rsmA indicates that the Erwinia gene is functionally similar to csrA. Southern hybridizations revealed the presence of rsmA homologs in soft-rotting and non-soft-rotting Erwinia spp. and in other enterobacteria such as Enterobacter aerogenes, E. coli, Salmonella typhimurium, Shigella flexneri, Serratia marcescens, and Yersinia pseudotuberculosis. rsmA suppresses production of Pel, Peh, Cel, and Prt, plant pathogenicity, and synthesis of HSL in E. carotovora subsp. atroseptica, E. carotovora subsp. betavasculorum, E. carotovora subsp. carotovora, and E. chrysanthemi. In the E. carotovora subsp. carotovora 71, rsmA reduces the levels of transcripts of hslI, a luxI homolog required for HSL biosynthesis. This specific effect and the previous finding that HSL is required for extracellular enzyme production and pathogenicity in soft-rotting Erwinia spp. support the hypothesis that rsmA controls these traits by modulating the levels of the cell density (quorum)-sensing signal.

  4. [Chromosomal localization of the hormone-sensitive lipase gene (Hsl) in rice field eel].

    PubMed

    Ji, Fu-Yun; Yu, Qi-Xing; Pan, Pei-Wen

    2003-03-01

    Adipose tissue triacylglycerols are the quantitatively most important source of stored energy in animals. Hormone-sensitive lipase encoded by hormone-sensitive lipase gene (Hsl) is a multifunctional enzyme that catalyzes the hydrolysis of triacylglycerol stored in adipose tissue and cholesterol esters in the adrenals, ovaries, testes and macrophages. Using pig Hsl gene inserted into pBS labeled by the radioactive isotope and the digoxigenin as the probes respectively one band, 11.5kb, has been shown to hybridized with total DNA of rice field eel digested with Pst I by Southern blotting and Hsl gene has been assigned to metaphase chromosome 5, at the position of 78.35+/-1.26 from the centromere in rice field eel by fluorescent in situ hybridization (FISH). The mapping results are corresponding to that of "specific-chromosomal DNA pool" obtained by chromosome microisolation used to map gene and the mapping result is more accurate. The results of the study further illustrate the importance of the presence of Hsl gene in rice field eel genome and provide the first FISH mapping data for rice field eel chromosome 5. The current studies would advance the addition of known genetic markers and the construction of high resolution genetic map in rice field eel genome.

  5. Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine.

    PubMed

    Prats, Clara; Donsmark, Morten; Qvortrup, Klaus; Londos, Constantine; Sztalryd, Carole; Holm, Cecilia; Galbo, Henrik; Ploug, Thorkil

    2006-11-01

    A better understanding of skeletal muscle lipid metabolism is needed to identify the molecular mechanisms relating intramuscular triglyceride (IMTG) to muscle metabolism and insulin sensitivity. An increasing number of proteins have been reported to be associated with intracellular triglyceride (TG), among them the PAT family members: perilipin, ADRP (for adipocyte differentiation-related protein), and TIP47 (for tail-interacting protein of 47 kDa). Hormone-sensitive lipase (HSL) is thought to be the major enzyme responsible for IMTG hydrolysis in skeletal muscle. In adipocytes, regulation of HSL by intracellular redistribution has been demonstrated. The existence of such regulatory mechanisms in skeletal muscle has long been hypothesized but has never been demonstrated. The aim of this study was to characterize the PAT family proteins associated with IMTG and to investigate the effect of epinephrine stimulation or muscle contraction on skeletal muscle TG content and HSL intracellular distribution. Rat soleus muscles were either incubated with epinephrine or electrically stimulated for 15 min. Single muscle fibers were used for morphological analysis by confocal and transmission electron microscopy. We show a decrease in IMTG in response to both lipolytic stimuli. Furthermore, we identify two PAT family proteins, ADRP and TIP47, associated with IMTG. Finally, we demonstrate HSL translocation to IMTG and ADRP after stimulation with epinephrine or contraction.

  6. Cloning and functional characterization of the 5' regulatory region of ovine Hormone Sensitive Lipase (HSL) gene.

    PubMed

    Lampidonis, Antonis D; Stravopodis, Dimitrios J; Voutsinas, Gerassimos E; Messini-Nikolaki, Niki; Stefos, George C; Margaritis, Lukas H; Argyrokastritis, Alexandros; Bizelis, Iosif; Rogdakis, Emmanuel

    2008-12-31

    Hormone Sensitive Lipase (HSL) catalyzes the rate-limiting step in the mobilization of fatty acids from adipose tissue, thus determining the supply of energy substrates in the body. HSL enzymatic activity is increased by adrenergic agonists, such as catecholamines and glucagons, which induce cyclic AMP (cAMP) intracellular production, subsequently followed by the activation of Protein Kinase A (PKA) and its downstream signaling cascade reactions. HSL constitutes the critical enzyme in the modulation of lipid stores and the only component being subjected to hormonal control in terms of the recently identified Adipose Triglyceride Lipase (ATGL). In order to acquire detailed knowledge with regard to the mechanisms regulating ovine HSL (ovHSL) gene transcription activity, we initially isolated and cloned the 5' proximal and distal promoter regions through a genome walking approach, with the utilization of the already characterized ovHSL cDNAs. As evinced by BLAST analysis and a multiple alignment procedure, the isolated genomic fragment of 2.744 kb appeared to contain the already specified 5'-untranslated region (5'-UTR), which was interrupted by a relatively large intron of 1.448 kb. Regarding the upstream remaining part of 1.224 kb, it was demonstrated to represent a TATA-less promoter area, harboring several cis-regulatory elements that could be putatively recognized by relatively more general transcription factors, mainly including Stimulating protein 1 (Sp1), CCAAT-box Binding Factors (CBFs), Activator Protein 2 (AP2) and Glucocorticoid Receptor (GR), as well as other cis-acting regions denominated as Insulin Response Element (IRE), Glucose Response Element (GRE), Fat Specific Element (FSE) and cAMP Response Element (CRE), which could likely function in a nourishment (i.e. glucose)-/hormone-dependent fashion. When different genomic fragments were directionally (5' to 3') cloned into a suitable reporter vector upstream of a promoter-less luciferase gene and

  7. Abietane lactones and iridoids from Goldfussia yunnanensis.

    PubMed

    Yu, Hong-Wei; Li, Bo-Gang; Li, Guo-You; Li, Chang-Song; Fang, Dong-Mei; Zhang, Guo-Lin

    2007-12-01

    Two new abietane diterpene lactones (1--2), three new abietane diterpene lactone glycosides (3--5) and a new iridoid glycoside (6), together with five known compounds, were isolated from the aerial parts of Goldfussia yunnanensis. The new compounds were determined to be 18-hydroxyhelioscopinolide A (1), 18-oxohelioscopinolide A (2), 18-hydroxy-3-O-beta-D-glucopyranosylhelioscopinolide A (3), 3-O-beta-D-glucopyranosylhelioscopinolide A (4), 3-O-beta-D-galactopyranosylhelioscopinolide A (5), and 6-O-trans-cinnamoyl E-harpagoside (6) on the basis of spectral data and chemical evidence.

  8. Cellular effects of bacterial N-3-Oxo-dodecanoyl-L-Homoserine lactone on the sponge Suberites domuncula (Olivi, 1792): insights into an intimate inter-kingdom dialogue.

    PubMed

    Gardères, Johan; Henry, Joël; Bernay, Benoit; Ritter, Andrès; Zatylny-Gaudin, Céline; Wiens, Matthias; Müller, Werner E G; Le Pennec, Gaël

    2014-01-01

    Sponges and bacteria have lived together in complex consortia for 700 million years. As filter feeders, sponges prey on bacteria. Nevertheless, some bacteria are associated with sponges in symbiotic relationships. To enable this association, sponges and bacteria are likely to have developed molecular communication systems. These may include molecules such as N-acyl-L-homoserine lactones, produced by Gram-negative bacteria also within sponges. In this study, we examined the role of N-3-oxododecanoyl-L-homoserine lactone (3-oxo-C12-HSL) on the expression of immune and apoptotic genes of the host sponge Suberites domuncula. This molecule seemed to inhibit the sponge innate immune system through a decrease of the expression of genes coding for proteins sensing the bacterial membrane: a Toll-Like Receptor and a Toll-like Receptor Associated Factor 6 and for an anti-bacterial perforin-like molecule. The expression of the pro-apoptotic caspase-like 3/7 gene decreased as well, whereas the level of mRNA of anti-apoptotic genes Bcl-2 Homolog Proteins did not change. Then, we demonstrated the differential expression of proteins in presence of this 3-oxo-C12-HSL using 3D sponge cell cultures. Proteins involved in the first steps of the endocytosis process were highlighted using the 2D electrophoresis protein separation and the MALDI-TOF/TOF protein characterization: α and β subunits of the lysosomal ATPase, a cognin, cofilins-related proteins and cytoskeleton proteins actin, α tubulin and α actinin. The genetic expression of some of these proteins was subsequently followed. We propose that the 3-oxo-C12-HSL may participate in the tolerance of the sponge apoptotic and immune systems towards the presence of bacteria. Besides, the sponge may sense the 3-oxo-C12-HSL as a molecular evidence of the bacterial presence and/or density in order to regulate the populations of symbiotic bacteria in the sponge. This study is the first report of a bacterial secreted molecule acting on

  9. The regulation of HSL and LPL expression by DHT and flutamide in human subcutaneous adipose tissue.

    PubMed

    Anderson, L A; McTernan, P G; Harte, A L; Barnett, A H; Kumar, S

    2002-05-01

    Clinical observations suggest a role for testosterone in the accumulation of central adiposity and with an associated increased risk of disease. To date, no human study has analysed the role of dihydrotestosterone (DHT) on adipose tissue mass regulation in vitro. This study investigated the role of DHT and androgen receptors (AR) in the regulation of lipolysis and lipogenesis by examining the key enzymes hormone sensitive lipase (HSL) and lipoprotein lipase (LPL) respectively. Isolated abdominal subcutaneous adipocytes (Scad) (n = 15) were treated with either DHT (10(-7)-10(-9) m), an antiandrogen, flutamide (FLT: 10(-7)-10(-9) m) or a combination of DHT (10(-7)-10(-9) m) with FLT (10(-8) m). Relative protein expression of HSL, LPL and AR was determined. In Scad, DHT inhibited HSL expression maximally at 10(-9) m (0.7 +/- 0.4**; p < 0.01**) compared with control (control: 1.0 +/- (s.e.m.) 0.0), whereas LPL protein expression was stimulated at DHT10(-9) m (2.22 +/- 0.48*; p < 0.05*). Glycerol release assay results correlated with HSL expression data. LPL expression was reduced at all doses with combinations of DHT + FLT compared with DHT alone. Androgen receptor expression studies showed an inverse correlation with DHT, whereas DHT + FLT reduced AR expression. These studies indicate that DHT may alter HSL and LPL expression, whereas only LPL expression appears mediated by AR. These findings suggest a physiological role for DHT in the control of adipose tissue mass in women, and indicate that androgens may also play an important role in regulating lipid metabolism.

  10. Multiple sequence signals direct recognition and degradation of protein substrates by the AAA+ protease HslUV.

    PubMed

    Sundar, Shankar; McGinness, Kathleen E; Baker, Tania A; Sauer, Robert T

    2010-10-29

    Proteolysis is important for protein quality control and for the proper regulation of many intracellular processes in prokaryotes and eukaryotes. Discerning substrates from other cellular proteins is a key aspect of proteolytic function. The Escherichia coli HslUV protease is a member of a major family of ATP-dependent AAA+ degradation machines. HslU hexamers recognize and unfold native protein substrates and then translocate the polypeptide into the degradation chamber of the HslV peptidase. Although a wealth of structural information is available for this system, relatively little is known about mechanisms of substrate recognition. Here, we demonstrate that mutations in the unstructured N-terminal and C-terminal sequences of two model substrates alter HslUV recognition and degradation kinetics, including changes in V(max). By introducing N- or C-terminal sequences that serve as recognition sites for specific peptide-binding proteins, we show that blocking either terminus of the substrate interferes with HslUV degradation, with synergistic effects when both termini are obstructed. These results support a model in which one terminus of the substrate is tethered to the protease and the other terminus is engaged by the translocation/unfolding machinery in the HslU pore. Thus, degradation appears to consist of discrete steps, which involve the interaction of different terminal sequence signals in the substrate with different receptor sites in the HslUV protease. PMID:20837023

  11. HSL-knockout mouse testis exhibits class B scavenger receptor upregulation and disrupted lipid raft microdomains[S

    PubMed Central

    Casado, María Emilia; Huerta, Lydia; Ortiz, Ana Isabel; Pérez-Crespo, Mirian; Gutiérrez-Adán, Alfonso; Kraemer, Fredric B.; Lasunción, Miguel Ángel; Busto, Rebeca; Martín-Hidalgo, Antonia

    2012-01-01

    There is a tight relationship between fertility and changes in cholesterol metabolism during spermatogenesis. In the testis, class B scavenger receptors (SR-B) SR-BI, SR-BII, and LIMP II mediate the selective uptake of cholesterol esters from HDL, which are hydrolyzed to unesterified cholesterol by hormone-sensitive lipase (HSL). HSL is critical because HSL knockout (KO) male mice are sterile. The aim of the present work was to determine the effects of the lack of HSL in testis on the expression of SR-B, lipid raft composition, and related cell signaling pathways. HSL-KO mouse testis presented altered spermatogenesis associated with decreased sperm counts, sperm motility, and infertility. In wild-type (WT) testis, HSL is expressed in elongated spermatids; SR-BI, in Leydig cells and spermatids; SR-BII, in spermatocytes and spermatids but not in Leydig cells; and LIMP II, in Sertoli and Leydig cells. HSL knockout male mice have increased expression of class B scavenger receptors, disrupted caveolin-1 localization in lipid raft plasma membrane microdomains, and activated phospho-ERK, phospho-AKT, and phospho-SRC in the testis, suggesting that class B scavenger receptors are involved in cholesterol ester uptake for steroidogenesis and spermatogenesis in the testis. PMID:22988039

  12. Essential role of hormone-sensitive lipase (HSL) in the maintenance of lipid storage in Mycobacterium leprae-infected macrophages.

    PubMed

    Tanigawa, Kazunari; Degang, Yang; Kawashima, Akira; Akama, Takeshi; Yoshihara, Aya; Ishido, Yuko; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-05-01

    Mycobacterium leprae (M. leprae), the causative agent of leprosy, parasitizes within the foamy or enlarged phagosome of macrophages where rich lipids accumulate. Although the mechanisms for lipid accumulation in the phagosome have been clarified, it is still unclear how such large amounts of lipids escape degradation. To further explore underlying mechanisms involved in lipid catabolism in M. leprae-infected host cells, we examined the expression of hormone-sensitive lipase (HSL), a key enzyme in fatty acid mobilization and lipolysis, in human macrophage THP-1 cells. We found that infection by live M. leprae significantly suppressed HSL expression levels. This suppression was not observed with dead M. leprae or latex beads. Macrophage activation by peptidoglycan (PGN), the ligand for toll-like receptor 2 (TLR2), increased HSL expression; however, live M. leprae suppressed this increase. HSL expression was abolished in the slit-skin smear specimens from patients with lepromatous and borderline leprosy. In addition, the recovery of HSL expression was observed in patients who experienced a lepra reaction, which is a cell-mediated, delayed-type hypersensitivity immune response, or in patients who were successfully treated with multi-drug therapy. These results suggest that M. leprae suppresses lipid degradation through inhibition of HSL expression, and that the monitoring of HSL mRNA levels in slit-skin smear specimens may be a useful indicator of patient prognosis.

  13. The testicular form of hormone-sensitive lipase HSLtes confers rescue of male infertility in HSL-deficient mice.

    PubMed

    Vallet-Erdtmann, Virginie; Tavernier, Geneviève; Contreras, Juan Antonio; Mairal, Aline; Rieu, Cécile; Touzalin, Anne-Marie; Holm, Cecilia; Jégou, Bernard; Langin, Dominique

    2004-10-01

    Inactivation of the hormone-sensitive lipase gene (HSL) confers male sterility with a major defect in spermatogenesis. Several forms of HSL are expressed in testis. HSLtes mRNA and protein are found in early and elongated spermatids, respectively. The other forms are expressed in diploid germ cells and interstitial cells of the testis. To determine whether the absence of the testis-specific form of HSL, HSLtes, was responsible for the infertility in HSL-null mice, we generated transgenic mice expressing HSLtes under the control of its own promoter. The transgenic animals were crossed with HSL-null mice to produce mice deficient in HSL in nongonadal tissues but expressing HSLtes in haploid germ cells. Cholesteryl ester hydrolase activity was almost completely blunted in HSL-deficient testis. Mice with one allele of the transgene showed an increase in enzymatic activity and a small elevation in the production of spermatozoa. The few fertile hemizygous male mice produced litters of very small to small size. The presence of the two alleles led to a doubling in cholesteryl ester hydrolase activity, which represented 25% of the wild type values associated with a qualitatively normal spermatogenesis and a partial restoration of sperm reserves. The fertility of these mice was totally restored with normal litter sizes. In line with the importance of the esterase activity, HSLtes transgene expression reversed the cholesteryl ester accumulation observed in HSL-null mice. Therefore, expression of HSLtes and cognate cholesteryl ester hydrolase activity leads to a rescue of the infertility observed in HSL-deficient male mice. PMID:15292223

  14. The testicular form of hormone-sensitive lipase HSLtes confers rescue of male infertility in HSL-deficient mice.

    PubMed

    Vallet-Erdtmann, Virginie; Tavernier, Geneviève; Contreras, Juan Antonio; Mairal, Aline; Rieu, Cécile; Touzalin, Anne-Marie; Holm, Cecilia; Jégou, Bernard; Langin, Dominique

    2004-10-01

    Inactivation of the hormone-sensitive lipase gene (HSL) confers male sterility with a major defect in spermatogenesis. Several forms of HSL are expressed in testis. HSLtes mRNA and protein are found in early and elongated spermatids, respectively. The other forms are expressed in diploid germ cells and interstitial cells of the testis. To determine whether the absence of the testis-specific form of HSL, HSLtes, was responsible for the infertility in HSL-null mice, we generated transgenic mice expressing HSLtes under the control of its own promoter. The transgenic animals were crossed with HSL-null mice to produce mice deficient in HSL in nongonadal tissues but expressing HSLtes in haploid germ cells. Cholesteryl ester hydrolase activity was almost completely blunted in HSL-deficient testis. Mice with one allele of the transgene showed an increase in enzymatic activity and a small elevation in the production of spermatozoa. The few fertile hemizygous male mice produced litters of very small to small size. The presence of the two alleles led to a doubling in cholesteryl ester hydrolase activity, which represented 25% of the wild type values associated with a qualitatively normal spermatogenesis and a partial restoration of sperm reserves. The fertility of these mice was totally restored with normal litter sizes. In line with the importance of the esterase activity, HSLtes transgene expression reversed the cholesteryl ester accumulation observed in HSL-null mice. Therefore, expression of HSLtes and cognate cholesteryl ester hydrolase activity leads to a rescue of the infertility observed in HSL-deficient male mice.

  15. Chicory cultivars differ in sesquiterpene lactone composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chicory (Cichorium intybus L.) is a valuable forage species for small ruminants because it is nutritious and contains sesquiterpene lactones (SLs) that have anthelmintic activity. Three SLs, lactucin (lac), 8-deoxylactucin (dol), and lactucopicrin (lpic), occur in chicory leaves. Comprehensive dat...

  16. Triacetic acid lactone production from Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triacetic acid lactone (TAL) is a potential platform chemical produced from acetyl-CoA and malonyl-CoA by the Gerbera hybrida 2-pyrone synthase (2PS) gene. Studies are ongoing to optimize production, purification, and chemical modification of TAL, which can be used to create the commercial chemicals...

  17. The GtaR protein negatively regulates transcription of the gtaRI operon and modulates gene transfer agent (RcGTA) expression in Rhodobacter capsulatus

    PubMed Central

    Leung, Molly M.; Brimacombe, Cedric A.; Spiegelman, G. B.; Beatty, J. Thomas

    2013-01-01

    Summary The gtaI gene of Rhodobacter capsulatus encodes an N-acyl-homoserine lactone (acyl-HSL) synthase. Immediately 5′ of the gtaI gene is ORF rcc00328 that encodes a potential acyl-HSL receptor protein. A combination of genetic and biochemical approaches showed that rcc00328 (renamed gtaR) modulates the production of a genetic exchange element called the gene transfer agent (RcGTA), and regulates the transcription of gtaI. Although gtaI mutants exhibited decreased levels of RcGTA production, mutagenesis of gtaR did not, whereas a gtaR/gtaI double mutant produced wild-type levels of RcGTA. Because mutagenesis of gtaR suppressed the effect of the gtaI mutation, we suggest that the GtaR protein is a negative transcriptional regulator of RcGTA gene expression. We discovered that the gtaR and gtaI genes are co-transcribed, and also negatively regulated by the GtaR protein in the absence of acyl-HSL. A His-tagged GtaR protein was purified, and DNA-binding experiments revealed a binding site in the promoter region of the gtaRI operon. This GtaR protein did not bind to the RcGTA promoter region, and therefore modulation of RcGTA production appears to require at least one additional factor. We found that RcGTA production was stimulated by spent media from other species, and identified exogenous acyl-HSLs that induce RcGTA. PMID:22211723

  18. Investigation of the Genetics and Biochemistry of Roseobacticide Production in the Roseobacter Clade Bacterium Phaeobacter inhibens

    PubMed Central

    Wang, Rurun; Gallant, Étienne

    2016-01-01

    ABSTRACT Roseobacter clade bacteria are abundant in surface waters and are among the most metabolically diverse and ecologically significant species. This group includes opportunistic symbionts that associate with micro- and macroalgae. We have proposed that one representative member, Phaeobacter inhibens, engages in a dynamic symbiosis with the microalga Emiliania huxleyi. In one phase, mutualistically beneficial molecules are exchanged, including the Roseobacter-produced antibiotic tropodithietic acid (TDA), which is thought to protect the symbiotic interaction. In an alternative parasitic phase, triggered by algal senescence, the bacteria produce potent algaecides, the roseobacticides, which kill the algal host. Here, we employed genetic and biochemical screens to identify the roseobacticide biosynthetic gene cluster. By using a transposon mutagenesis approach, we found that genes required for TDA synthesis—the tda operon and paa catabolon—are also necessary for roseobacticide production. Thus, in contrast to the one-cluster–one-compound paradigm, the tda gene cluster can generate two sets of molecules with distinct structures and bioactivities. We further show that roseobacticide production is quorum sensing regulated via an N-acyl homoserine lactone signal (3-OH–C10-HSL). To ensure tight regulation of algaecide production, and thus of a lifestyle switch from mutualism to parasitism, roseobacticide biosynthesis necessitates the presence of both an algal senescence molecule and a quorum sensing signal. PMID:27006458

  19. Using Surface Enhanced Raman Scattering to Analyze the Interactions of Protein Receptors with Bacterial Quorum Sensing Modulators

    PubMed Central

    2015-01-01

    Many members of the LuxR family of quorum sensing (QS) transcriptional activators, including LasR of Pseudomonas aeruginosa, are believed to require appropriate acyl-homoserine lactone (acyl-HSL) ligands to fold into an active conformation. The failure to purify ligand-free LuxR homologues in nonaggregated form at the high concentrations required for their structural characterization has limited the understanding of the mechanisms by which QS receptors are activated. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can be applied to study proteins at extremely low concentrations in their active state. The high sensitivity of SERS has allowed us to detect molecular interactions between the ligand-binding domain of LasR (LasRLBD) as a soluble apoprotein and modulators of P. aeruginosa QS. We found that QS activators and inhibitors produce differential SERS fingerprints in LasRLBD, and in combination with molecular docking analysis provide insight into the relevant interaction mechanism. This study reveals signal-specific structural changes in LasR upon ligand binding, thereby confirming the applicability of SERS to analyze ligand-induced conformational changes in proteins. PMID:25927541

  20. Disrupting ER-associated protein degradation suppresses the abscission defect of a weak hae hsl2 mutant in Arabidopsis

    PubMed Central

    Baer, John; Taylor, Isaiah; Walker, John C.

    2016-01-01

    In Arabidopsis thaliana, the process of abscission, or the shedding of unwanted organs, is mediated by two genes, HAESA (HAE) and HAESA-LIKE 2 (HSL2), encoding receptor-like protein kinases (RLKs). The double loss-of-function mutant hae-3 hsl2-3 is completely deficient in floral abscission, but, interestingly, the hae-3 hsl2-9 mutant displays a less severe defect. This mutant was chosen for an ethyl methanesulfonate (EMS) screen to isolate enhancer and suppressor mutants, and two such suppressors are the focus of this study. Pooled DNA from the F2 generation of a parental backcross was analyzed by genome sequencing to reveal candidate genes, two of which complement the suppressor phenotype. These genes, EMS-MUTAGENIZED BRI1 SUPPRESSOR 3 (EBS3) and EBS4, both encode mannosyltransferases involved in endoplasmic reticulum (ER)-associated degradation (ERAD) of proteins. Further analysis of these suppressor lines revealed that suppressor mutations are acting solely on the partially functional hsl2-9 mutant receptor to modify the abscission phenotype. Expressing a hsl2-9–yellow fluorescent protein (YFP) transgene in ebs3 mutants yields a higher fluorescent signal than in EBS3/ebs3, suggesting that these mutants restore abscission by disrupting ERAD to allow accumulation of the hsl2-9 receptor, which probably escapes degradation to be trafficked to the plasma membrane to regain signaling. PMID:27566817

  1. Thermodynamic properties of sesquiterpene lactone grossheimin

    NASA Astrophysics Data System (ADS)

    Kasenova, Sh. B.; Atazhanova, G. A.; Sagintaeva, Zh. I.; Kasenov, B. K.; Kishkentaeva, A. S.; Adekenov, S. M.

    2016-08-01

    The enthalpy of dissolution of sesquiterpene lactone grossheimin C15H18O4 is measured using a DAK-I-IA calorimeter at a lactone/ethanol (96%) molar ratios equal to 1 : 18000, 1 : 36000, and 1 : 72000. The standard enthalpy of dissolution of grossheimin in a 96% ethanol solution is calculated based on the resulting data. The temperature dependence of the heat capacity of grossheimin C p ° ˜ f ( T) is studied by means of dynamic calorimetry using a IT-C-400 device in the temperature range of 298.15-423 K. An equation describing this dependence is derived. The standard enthalpies of combustion, melting, and formation of grossheimin are calculated using approximate methods.

  2. Atomic Force Microscopy Reveals a Morphological Differentiation of Chromobacterium violaceum Cells Associated with Biofilm Development and Directed by N-Hexanoyl-L-Homoserine Lactone

    PubMed Central

    Kamaeva, Anara A.; Vasilchenko, Alexey S.; Deryabin, Dmitry G.

    2014-01-01

    Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure. PMID:25111599

  3. Unusual lactones from Cananga odorata (Annonaceae).

    PubMed

    Caloprisco, Eric; Fourneron, Jean-Dominique; Faure, Robert; Demarne, Frédéric-Emmanuel

    2002-01-01

    Two lactone compounds have been isolated from the leaves and branches of ylang-ylang (Cananga odorata forma genuina Hook. f. et Thomson, Annonaceae). One was already known as isosiphonodin 1. The other, canangone 2, is a new terpenoid spirolactone with an unusual backbone. Its structure has been established as 6-hydroxy-1-oxo-2-oxaspiro[4.5]dec-7-ene-8-carbaldehyde by using 1-D and 2-D NMR. PMID:11754546

  4. N-Acylhomoserine lactones are potent neutrophil chemoattractants that act via calcium mobilization and actin remodeling.

    PubMed

    Karlsson, Thommie; Musse, Farah; Magnusson, Karl-Eric; Vikström, Elena

    2012-01-01

    In gram-negative bacteria, cell-cell communication based on HSL QS molecules is known to coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human immune cell behavior. Using a Transwell migration assay, we found that human primary neutrophils are strongly stimulated by 3O-C(12)-HSL and -C(10)-HSL but not C(4)-HSL in a concentration-dependent manner. Moreover, 3O-C(12)-HSL and -C(10)-HSL activate PLCγ1 but not -γ2, mobilize intracellular calcium, and up-regulate IP(3)R. These changes were paralleled by F-actin accumulation, primarily in the leading edge of neutrophils, as evidenced by phalloidin staining and confocal microscopy. F- and G-actin isolation and quantification by immunoblotting revealed that the F/G-actin ratio was increased significantly after treatment with all three HSLs. Furthemore, 3O-C(12)-HSL- and 3O-C(10)-HSL treatment resulted in phosphorylation of Rac1 and Cdc42. In contrast, C(4)-HSL had negligible influence on the phosphorylation status of PLC and Rac1/Cdc42 and failed to attract neutrophils and induce calcium release. The calcium inhibitor thapsigargin, which blocks ER calcium uptake, strongly prevented neutrophil migration toward 3O-C(12)-HSL and -C(10)-HSL. These findings show that the bacterial QS molecules 3O-C(12)-HSL and -C(10)-HSL may attract human neutrophils to the sites of bacterial infection and developing biofilms. Indeed, recognition of HSL QS signals by neutrophils may play a critical role in their recruitment during infections.

  5. Fragrance material review on 16-hydroxy-7-hexadecenoic acid lactone.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2011-12-01

    A toxicologic and dermatologic review of 16-hydroxy-7-hexadecenoic acid lactone when used as a fragrance ingredient is presented. 16-Hydroxy-7-hexadecenoic acid lactone is a member of the fragrance structural group macrocyclic lactone and lactide derivatives. The fragrance ingredient described herein is one of 12 structurally diverse C14, C15 and C16 compounds that include (1) saturated mono-and (2) saturated di-ester lactones and (3) unsaturated lactones. For the latter, the double bond is not adjacent to (in conjugation with) the ester group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to 16-hydroxy-7-hexadecenoic acid lactone and is not intended as a stand-alone document. Available data were evaluated, then summarized, and include physical properties data. A safety assessment of the entire macrocyclic lactone and lactide derivatives will be published simultaneously with this document. Please refer to Belsito et al., 2011 for an overall assessment of the safe use of this material and all macrocyclic lactone and lactide derivatives in fragrances. Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Hanifin, J.H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2011. A toxicologic and dermatologic assessment of macrocylic lactones and lactide derivatives when used as fragrance ingredients.

  6. Purification and characterization of a novel lactonohydrolase, catalyzing the hydrolysis of aldonate lactones and aromatic lactones, from Fusarium oxysporum.

    PubMed

    Shimizu, S; Kataoka, M; Shimizu, K; Hirakata, M; Sakamoto, K; Yamada, H

    1992-10-01

    A novel lactonohydrolase, an enzyme that catalyzes the hydrolysis of aldonate lactones to the corresponding aldonic acids, was purified 10-fold to apparent homogeneity, with a 61% overall recovery, from Fusarium oxysporum AKU 3702, through a purification procedure comprising DEAE-Sephacel, octyl-Sepharose CL-4B and hydroxyapatite chromatographies and crystallization. The molecular mass of the native enzyme, as estimated by high-performance gel-permeation chromatography, is 125 kDa, and the subunit molecular mass is 60 kDa. The enzyme contains 15.4% (by mass) glucose equivalent of carbohydrate, and about 1 mol calcium/subunit. The enzyme hydrolyzes aldonate lactones, such as D-galactono-gamma-lactone and L-mannono-gamma-lactone, stereospecifically. Furthermore, it can catalyze the asymmetric hydrolysis of D-pantoyl lactone, which is a promising chiral building block for the chemical synthesis of D-pantothenate. These reactions are reversible, and the reaction equilibrium at pH 6.0 has a molar ratio of nearly 1:1 with D-pantoyl lactone and D-pantoic acid. The Km and Vmax for D-galactono-gamma-lactone are 3.6 mM and 1440 U/mg, respectively, and those for D-galactonate are 52.6 mM and 216 U/mg, respectively. The enzyme also irreversibly hydrolyzes several aromatic lactones, such as dihydrocoumarin and homogentisic-acid lactone. PMID:1396712

  7. Lactones 42. Stereoselective enzymatic/microbial synthesis of optically active isomers of whisky lactone.

    PubMed

    Boratyński, Filip; Smuga, Małgorzata; Wawrzeńczyk, Czesław

    2013-11-01

    Two different methods, enzyme-mediated reactions and biotrasformations with microorganisms, were applied to obtain optically pure cis- and trans-isomers of whisky lactone 4a and 4b. In the first method, eight alcohol dehydrogenases were investigated as biocatalysts to enantioselective oxidation of racemic erythro- and threo-3-methyloctane-1,4-diols (1a and 1b). Oxidation processes with three of them, alcohol dehydrogenases isolated from horse liver (HLADH) as well as recombinant from Escherichia coli and primary alcohol dehydrogenase (PADH I), were characterized by the highest degree of conversion with moderate enantioselectivity (ee=27-82%) of the reaction. In all enzymatic reactions enantiomerically enriched not naturally occurring isomers of trans-(-)-(4R,5S)-4b or cis-(+)-(4R,5R)-4a were formed preferentially. In the second strategy, based on microbial lactonization of γ-oxoacids, naturally occurring opposite isomers of whisky lactones were obtained. Trans-(+)-(4S,5R)-isomer (ee=99%) of whisky lactone 4b was stereoselectively formed as the only product of biotransformations of 3-methyl-4-oxooctanoic acid (5) catalyzed by Didimospheria igniaria KCH6651, Laetiporus sulphurens AM525, Chaetomium sp.1 KCH6670 and Saccharomyces cerevisiae AM464. Biotransformation of γ-oxoacid 5, in the culture of Beauveria bassiana AM278 and Pycnidiella resinae KCH50 afforded a mixtures of trans-(+)-(4S,5R)-4b with enantiomeric excess ee=99% and cis-(-)-(4S,5S)-4a with enantiomeric excesses ee=77% and ee=45% respectively.

  8. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: Novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules

    PubMed Central

    Romano, Ariel A.; Hahn, Tobias; Davis, Nicole; Lowery, Colin A.; Struss, Anjali K.; Janda, Kim D.; Böttger, Lars H.; Matzanke, Berthold F.; Carrano, Carl J.

    2011-01-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671

  9. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules.

    PubMed

    Romano, Ariel A; Hahn, Tobias; Davis, Nicole; Lowery, Colin A; Struss, Anjali K; Janda, Kim D; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-02-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C(12)-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding.

  10. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules.

    PubMed

    Romano, Ariel A; Hahn, Tobias; Davis, Nicole; Lowery, Colin A; Struss, Anjali K; Janda, Kim D; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-02-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C(12)-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671

  11. Piromelatine decreases triglyceride accumulation in insulin resistant 3T3-L1 adipocytes: role of ATGL and HSL.

    PubMed

    Wang, Ping-Ping; She, Mei-Hua; He, Ping-Ping; Chen, Wu-Jun; Laudon, Moshe; Xu, Xuan-Xuan; Yin, Wei-Dong

    2013-08-01

    Piromelatine, a novel investigational multimodal sleep medicine, is developed for the treatment of patients with primary and co-morbid insomnia. Piromelatine has been shown to inhibit weight gain and improve insulin sensitivity in high-fat/high-sucrose-fed (HFHS) rats. Considering that piromelatine has also been implicated in lowering of triglyceride levels in HFHS rats, this work elucidated whether this effect involves in the regulation of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) in triglyceride (TG) metabolism. In this study, we investigated the effects of piromelatine and MT2 receptors inhibition on TG content, insulin-stimulated glucose uptake, and the expressions of ATGL and HSL in 3T3-L1 adipocytes preincubated in high glucose and high insulin (HGI) conditions. Our results showed that culturing 3T3-L1 adipocytes under HGI conditions increased triglyceride accumulation with concomitant decrease of ATGL and HSL expression, inducing insulin resistance in 3T3-L1 adipocytes. We also found that triglyceride accumulation was significantly inhibited and the levels of ATGL/HSL increased after melatonin or piromelatine treatment. The effects of melatonin/piromelatine (10 nM) were counteracted by pretreatment with the relatively selective MT2 receptor antagonist luzindole (100 nM). In this study, our data demonstrate that piromelatine reverses high glucose and high insulin-induced triglyceride accumulation in 3T3-L1 adipocytes, possibly through up-regulating of ATGL and HSL expression via a melatonin-dependent manner.

  12. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues.

    PubMed

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-12-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patterns of brown and white adipose tissue from ATGL (-/-) and HSL (-/-) mice using differential activity-based gel electrophoresis. This method is based on activity-recognition probes possessing the same substrate analogous structure but carrying different fluorophores for specific detection of the enzyme patterns of two different tissues in one electrophoresis gel. We found that ATGL-deficiency in brown adipose tissue had a profound effect on the expression levels of other lipolytic and esterolytic enzymes in this tissue, whereas HSL-deficiency hardly showed any effect in brown adipose tissue. Neither ATGL- nor HSL-deficiency greatly influenced the lipase patterns in white adipose tissue. Enzyme activities of mouse tissues on acylglycerol substrates were analyzed as well, showing that ATGL-and HSL-deficiencies can be compensated for at least in part by other enzymes. The proteins that responded to ATGL-deficiency in brown adipose tissue were overexpressed and their activities on acylglycerols were analyzed. Among these enzymes, Es1, Es10, and Es31-like represent lipase candidates as they catalyze the hydrolysis of long-chain acylglycerols.

  13. New sesquiterpene lactones from Ambrosia cumanensis Kunth.

    PubMed

    Jimenez-Usuga, Nora Del Socorro; Malafronte, Nicola; Cotugno, Roberta; De Leo, Marinella; Osorio, Edison; De Tommasi, Nunziatina

    2016-09-01

    Eleven sesquiterpene lactones, including three new natural products (1-3), were isolated from the n-butanolic extract of Ambrosia cumanensis Kunth. aerial parts. The structure of all isolated compounds was elucidated by 1D- and 2D-NMR, and MS analyses. All compounds were tested for their antiproliferative activity on HeLa, Jurkat, and U937 cell lines. Compound 3, 2,3-dehydropsilostachyn C, showed cytotoxic activity with different potency in all cell lines. By means of flow cytometric studies, compound 3 was demonstrated to induce in Jurkat cells a G2/M cell cycle block, while in U937 elicited both cytostatic and cytotoxic responses. PMID:27491754

  14. Quorum-dependent mannopine-inducible conjugative transfer of an Agrobacterium opine-catabolic plasmid.

    PubMed

    Wetzel, Margaret E; Kim, Kun-Soo; Miller, Marilyn; Olsen, Gary J; Farrand, Stephen K

    2014-03-01

    The Ti plasmid in Agrobacterium tumefaciens strain 15955 carries two alleles of traR that regulate conjugative transfer. The first is a functional allele, called traR, that is transcriptionally induced by the opine octopine. The second, trlR, is a nonfunctional, dominant-negative mutant located in an operon that is inducible by the opine mannopine (MOP). Based on these findings, we predicted that there exist wild-type agrobacterial strains harboring plasmids in which MOP induces a functional traR and, hence, conjugation. We analyzed 11 MOP-utilizing field isolates and found five where MOP induced transfer of the MOP-catabolic element and increased production of the acyl-homoserine lactone (acyl-HSL) quormone. The transmissible elements in these five strains represent a set of highly related plasmids. Sequence analysis of one such plasmid, pAoF64/95, revealed that the 176-kb element is not a Ti plasmid but carries genes for catabolism of MOP, mannopinic acid (MOA), agropinic acid (AGA), and the agrocinopines. The plasmid additionally carries all of the genes required for conjugative transfer, including the regulatory genes traR, traI, and traM. The traR gene, however, is not located in the MOP catabolism region. The gene, instead, is monocistronic and located within the tra-trb-rep gene cluster. A traR mutant failed to transfer the plasmid and produced little to no quormone even when grown with MOP, indicating that TraRpAoF64/95 is the activator of the tra regulon. A traM mutant was constitutive for transfer and acyl-HSL production, indicating that the anti-activator function of TraM is conserved. PMID:24363349

  15. Quorum Sensing Signal Production and Microbial Interactions in a Polymicrobial Disease of Corals and the Coral Surface Mucopolysaccharide Layer

    PubMed Central

    Zimmer, Beth L.; May, Amanda L.; Bhedi, Chinmayee D.; Dearth, Stephen P.; Prevatte, Carson W.; Pratte, Zoe; Campagna, Shawn R.; Richardson, Laurie L.

    2014-01-01

    Black band disease (BBD) of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS) and antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community) samples, as well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of apparently healthy corals, and SML of apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs) and for autoinducer-2 (AI-2) activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community) samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153) of the isolates were positive for AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the concentration of (S)-4,5-dihydroxy-2,3-pentanedione (DPD), the biosynthetic precursor of AI-2. C6-HSL was the most common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral microbiome. PMID:25268348

  16. Signal-amplifying genetic circuit enables in vivo observation of weak promoter activation in the Rhl quorum sensing system.

    PubMed

    Karig, David; Weiss, Ron

    2005-03-20

    Small changes in transcriptional activity often significantly affect phenotype but are not detectable in vivo by conventional means. To address this problem, we present a technique for detecting weak transcriptional responses using signal-amplifying genetic circuits. We apply this technique to reveal previously undetectable log phase responses of several Rhl quorum sensing controlled (qsc) promoters from Pseudomonas aeruginosa. Genetic circuits with Rhl promoters and transcriptional amplification components were built and tested in Escherichia coli. This enabled us to isolate the behavior of the promoters under study from Las and quinolone interactions. To amplify qsc promoter responses to acyl-homoserine lactones (AHL), the highly efficient lambda repressor gene was placed downstream of several Rhl promoters and coupled to a fluorescent reporter under the control of the lambda P(R) promoter. With amplification, up to approximately 100-fold differences in fluorescence levels between AHL induced and noninduced cultures were observed for promoters whose responses were otherwise not detectable. In addition, the combination of using signal amplification and performing experiments in E. coli simplified the analysis of AHL signal crosstalk. For example, we discovered that while a C4HSL/RhlR complex activates both qscrhlA and qscphzA1, a 3OC12HSL/RhlR complex activates qscphzA1 but not qscrhlA in our system. This crosstalk information is particularly important since one of the potential uses of amplification constructs is for the detection of specific quorum sensing signals in environmental and clinical isolates. Furthermore, the process of decomposing networks into basic parts, isolating these components in a well-defined background, and using amplification to characterize both crosstalk and cognate signal responses embodies an important approach to understanding complex genetic networks.

  17. Quorum-Dependent Mannopine-Inducible Conjugative Transfer of an Agrobacterium Opine-Catabolic Plasmid

    PubMed Central

    Wetzel, Margaret E.; Kim, Kun-Soo; Miller, Marilyn; Olsen, Gary J.

    2014-01-01

    The Ti plasmid in Agrobacterium tumefaciens strain 15955 carries two alleles of traR that regulate conjugative transfer. The first is a functional allele, called traR, that is transcriptionally induced by the opine octopine. The second, trlR, is a nonfunctional, dominant-negative mutant located in an operon that is inducible by the opine mannopine (MOP). Based on these findings, we predicted that there exist wild-type agrobacterial strains harboring plasmids in which MOP induces a functional traR and, hence, conjugation. We analyzed 11 MOP-utilizing field isolates and found five where MOP induced transfer of the MOP-catabolic element and increased production of the acyl-homoserine lactone (acyl-HSL) quormone. The transmissible elements in these five strains represent a set of highly related plasmids. Sequence analysis of one such plasmid, pAoF64/95, revealed that the 176-kb element is not a Ti plasmid but carries genes for catabolism of MOP, mannopinic acid (MOA), agropinic acid (AGA), and the agrocinopines. The plasmid additionally carries all of the genes required for conjugative transfer, including the regulatory genes traR, traI, and traM. The traR gene, however, is not located in the MOP catabolism region. The gene, instead, is monocistronic and located within the tra-trb-rep gene cluster. A traR mutant failed to transfer the plasmid and produced little to no quormone even when grown with MOP, indicating that TraRpAoF64/95 is the activator of the tra regulon. A traM mutant was constitutive for transfer and acyl-HSL production, indicating that the anti-activator function of TraM is conserved. PMID:24363349

  18. So different and still so similar: The plant compound rosmarinic acid mimics bacterial homoserine lactone quorum sensing signals.

    PubMed

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-01

    Apart from inter-bacteria communication quorum sensing (QS) mechanisms also enable inter-domain interactions. To interfere with bacterial QS, plants were found to secrete compounds; most of which of unknown identity. We have identified the plant compound rosmarinic acid (RA) to modulate Pseudomonas aeruginosa QS by binding to the RhlR QS regulator. RA was found to be a homoserine-lactone (HSL) mimic that caused agonistic effects on transcription, resulting ultimately in a stimulation of several RhlR controlled phenotypes like virulence factor synthesis or biofilm formation. Our study was initiated by in silico screening of an RhlR model with compound libraries, demonstrating that this approach is suitable to tackle a major bottleneck in signal transduction research, which is the identification of sensor protein ligands. Previous work has shown that plant compounds interfere with the function of orphan QS regulators. Our study demonstrates that this has not necessarily to be the case since RhlR forms a functional pair with the RhlI synthase. A wide range of structurally dissimilar compounds have been found to mimic HSLs suggesting that this class of QS regulators is characterized by a significant plasticity in the recognition of effector molecules. Further research will show to what extent RA impacts on QS mechanisms of other bacteria.

  19. So different and still so similar: The plant compound rosmarinic acid mimics bacterial homoserine lactone quorum sensing signals

    PubMed Central

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-01

    ABSTRACT Apart from inter-bacteria communication quorum sensing (QS) mechanisms also enable inter-domain interactions. To interfere with bacterial QS, plants were found to secrete compounds; most of which of unknown identity. We have identified the plant compound rosmarinic acid (RA) to modulate Pseudomonas aeruginosa QS by binding to the RhlR QS regulator. RA was found to be a homoserine-lactone (HSL) mimic that caused agonistic effects on transcription, resulting ultimately in a stimulation of several RhlR controlled phenotypes like virulence factor synthesis or biofilm formation. Our study was initiated by in silico screening of an RhlR model with compound libraries, demonstrating that this approach is suitable to tackle a major bottleneck in signal transduction research, which is the identification of sensor protein ligands. Previous work has shown that plant compounds interfere with the function of orphan QS regulators. Our study demonstrates that this has not necessarily to be the case since RhlR forms a functional pair with the RhlI synthase. A wide range of structurally dissimilar compounds have been found to mimic HSLs suggesting that this class of QS regulators is characterized by a significant plasticity in the recognition of effector molecules. Further research will show to what extent RA impacts on QS mechanisms of other bacteria. PMID:27195067

  20. Marine-Derived Metabolites of S-Adenosylmethionine as Templates for New Anti-Infectives

    PubMed Central

    Sufrin, Janice R.; Finckbeiner, Steven; Oliver, Colin M.

    2009-01-01

    S-Adenosylmethionine (AdoMet) is a key biochemical co-factor whose proximate metabolites include methylated macromolecules (e.g., nucleic acids, proteins, phospholipids), methylated small molecules (e.g., sterols, biogenic amines), polyamines (e.g., spermidine, spermine), ethylene, and N-acyl-homoserine lactones. Marine organisms produce numerous AdoMet metabolites whose novel structures can be regarded as lead compounds for anti-infective drug design. PMID:19841722

  1. Trichodermaerin: a diterpene lactone from Trichoderma asperellum

    PubMed Central

    Chantrapromma, Suchada; Jeerapong, Chotika; Phupong, Worrapong; Quah, Ching Kheng; Fun, Hoong-Kun

    2014-01-01

    The title compound, C20H28O3, known as ‘trichodermaerin’ [systematic name: (4E)-4,9,15,16,16-penta­methyl-6-oxa­tetra­cyclo­[10.3.1.01,10.05,9]hexa­dec-4-ene-7,13-dione], is a diterpene lactone which was isolated from Trichoderma asperellum. The structure has a tetra­cycic 6–5–7–5 ring system, with the cyclo­hexa­none ring adopting a twisted half-chair conformation and the cyclo­pentane ring adopting a half-chair conformation, whereas the cyclo­heptene and tetra­hydro­furan­anone rings are in chair and envelope (with the methyl-substituted C atom as the flap) conformations, respectively. The three-dimensional architecture is stabilized by C—H⋯O inter­actions. PMID:24826124

  2. Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts.

    PubMed

    Rasch, Maria; Andersen, Jens Bo; Nielsen, Kristian Fog; Flodgaard, Lars Ravn; Christensen, Henrik; Givskov, Michael; Gram, Lone

    2005-06-01

    Bacterial communication signals, acylated homoserine lactones (AHLs), were extracted from samples of commercial bean sprouts undergoing soft-rot spoilage. Bean sprouts produced in the laboratory did not undergo soft-rot spoilage and did not contain AHLs or AHL-producing bacteria, although the bacterial population reached levels similar to those in the commercial sprouts, 10(8) to 10(9) CFU/g. AHL-producing bacteria (Enterobacteriaceae and pseudomonads) were isolated from commercial sprouts, and strains that were both proteolytic and pectinolytic were capable of causing soft-rot spoilage in bean sprouts. Thin-layer chromatography and liquid chromatography-high-resolution mass spectrometry revealed the presence of N-3-oxo-hexanoyl-l-homoserine lactone in spoiled bean sprouts and in extracts from pure cultures of bacteria. During normal spoilage, the pH of the sprouts increased due to proteolytic activity, and the higher pH probably facilitated the activity of pectate lyase. The AHL synthetase gene (I gene) from a spoilage Pectobacterium was cloned, sequenced, and inactivated in the parent strain. The predicted amino acid sequence showed 97% homology to HslI and CarI in Erwinia carotovora. Spoilage of laboratory bean sprouts inoculated with the AHL-negative mutant was delayed compared to sprouts inoculated with the wild type, and the AHL-negative mutant did not cause the pH to rise. Compared to the wild-type strain, the AHL-negative mutant had significantly reduced protease and pectinase activities and was negative in an iron chelation (siderophore) assay. This is the first study demonstrating AHL regulation of iron chelation in Enterobacteriaceae. The present study clearly demonstrates that the bacterial spoilage of some food products is influenced by quorum-sensing-regulated phenotypes, and understanding these processes may be useful in the development of novel food preservation additives that specifically block the quorum-sensing systems.

  3. Genome analysis of quorum sensing Cedecea neteri SSMD04 leads to identification of its novel signaling synthase (cneI), cognate receptor (cneR) and an orphan receptor

    PubMed Central

    Tan, Kian-Hin; Tan, Jia-Yi; Yin, Wai-Fong

    2015-01-01

    Cedecea neteri is a very rare human pathogen. We have isolated a strain of C. neteri SSMD04 from pickled mackerel sashimi identified using molecular and phenotypics approaches. Using the biosensor Chromobacterium violaceum CV026, we have demonstrated the presence of short chain N-acyl-homoserine lactone (AHL) type quorum sensing (QS) activity in C. neteri SSMD04. Triple quadrupole LC/MS analysis revealed that C. neteri SSMD04 produced short chain N-butyryl-homoserine lactone (C4-HSL). With the available genome information of C. neteri SSMD04, we went on to analyse and identified a pair of luxI/R homologues in this genome that share the highest similarity with croI/R homologues from Citrobacter rodentium. The AHL synthase, which we named cneI(636 bp), was found in the genome sequences of C. neteri SSMD04. At a distance of 8bp from cneI is a sequence encoding a hypothetical protein, potentially the cognate receptor, a luxR homologue which we named it as cneR. Analysis of this protein amino acid sequence reveals two signature domains, the autoinducer-binding domain and the C-terminal effector which is typical characteristic of luxR. In addition, we found that this genome harboured an orphan luxR that is most closely related to easR in Enterobacter asburiae. To our knowledge, this is the first report on the AHL production activity in C. neteri, and the discovery of its luxI/R homologues, the orphan receptor and its whole genome sequence. PMID:26355540

  4. Fat-reducing effects of dehydroepiandrosterone involve upregulation of ATGL and HSL expression, and stimulation of lipolysis in adipose tissue.

    PubMed

    Karbowska, Joanna; Kochan, Zdzislaw

    2012-11-01

    Dehydroepiandrosterone (DHEA) reduces body fat in rodents and humans, and increases glycerol release from isolated rat epididymal adipocytes and human visceral adipose tissue explants. It suggests that DHEA stimulates triglyceride hydrolysis in adipose tissue; however, the mechanisms underlying this action are still unclear. We examined the effects of DHEA on the expression of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), the key enzymes of lipolysis, in rat epididymal white adipose tissue (eWAT). Male Wistar rats were fed a diet containing 0.6% DHEA for 2 weeks and eWAT was analyzed for mRNA and protein expression of ATGL and HSL, as well as mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ2) and its downstream target fatty acid translocase (FAT). Glycerol release from eWAT explants and serum free fatty acids (FFA) were also measured. Rats that received DHEA gained less weight, had 23% lower eWAT mass and 31% higher serum FFA levels than controls. Cultured explants of eWAT from DHEA-treated rats released 81% more glycerol than those from control rats. DHEA administration upregulated ATGL mRNA (1.62-fold, P<0.05) and protein (1.78-fold, P<0.05) expression as well as augmented HSL mRNA levels (1.36-fold, P<0.05) and Ser660 phosphorylation of HSL (2.49-fold, P<0.05). PPARγ2 and FAT mRNA levels were also increased in DHEA-treated rats (1.61-fold, P<0.05 and 2.16-fold, P<0.05; respectively). Moreover, ATGL, HSL, and FAT mRNA levels were positively correlated with PPARγ2 expression. This study demonstrates that DHEA promotes lipid mobilization in adipose tissue by increasing the expression and activity of ATGL and HSL. The effects of DHEA appear to be mediated, at least in part, via PPARγ2 activation, which in turn upregulates ATGL and HSL gene expression.

  5. Adrenergic regulation of HSL serine phosphorylation and activity in human skeletal muscle during the onset of exercise.

    PubMed

    Talanian, Jason L; Tunstall, Rebecca J; Watt, Matthew J; Duong, Mylinh; Perry, Christopher G R; Steinberg, Gregory R; Kemp, Bruce E; Heigenhauser, George J F; Spriet, Lawrence L

    2006-10-01

    Skeletal muscle hormone-sensitive lipase (HSL) activity is increased by contractions and increases in blood epinephrine (EPI) concentrations and cyclic AMP activation of the adrenergic pathway during prolonged exercise. To determine the importance of hormonal stimulation of HSL activity during the onset of moderate- and high-intensity exercise, nine men [age 24.3 +/- 1.2 yr, 80.8 +/- 5.0 kg, peak oxygen consumption (VO2 peak) 43.9 +/- 3.6 ml x kg(-1) x min(-1)] cycled for 1 min at approximately 65% VO2 peak, rested for 60 min, and cycled at approximately 90% VO2 peak for 1 min. Skeletal muscle biopsies were taken pre- and postexercise, and arterial blood was sampled throughout exercise. Arterial EPI increased (P < 0.05) postexercise at 65% (0.45 +/- 0.10 to 0.78 +/- 0.27 nM) and 90% VO2 peak (0.57 +/- 0.34 to 1.09 +/- 0.50 nM). HSL activity increased (P < 0.05) following 1 min of exercise at 65% VO2 peak [1.05 +/- 0.39 to 1.78 +/- 0.54 mmol x min(-1) x kg dry muscle (dm)(-1)] and 90% VO2 peak (1.07 +/- 0.24 to 1.91 +/- 0.62 mmol x min(-1) x kg dm(-1)). Cyclic AMP content also increased (P < 0.05) at both exercise intensities (65%: 1.52 +/- 0.67 to 2.75 +/- 1.12, 90%: 1.85 +/- 0.65 to 2.64 +/- 0.93 micromol/kg dm). HSL Ser660 phosphorylation (approximately 55% increase) and ERK1/2 phosphorylation ( approximately 33% increase) were augmented following exercise at both intensities, whereas HSL Ser563 and Ser565 phosphorylation were not different from rest. The results indicate that increases in arterial EPI concentration during the onset of moderate- and high-intensity exercise increase cyclic AMP content, which results in the phosphorylation of HSL Ser660. This adrenergic stimulation contributes to the increase in HSL activity that occurs in human skeletal muscle in the first minute of exercise at 65% and 90% VO2 peak.

  6. A new fungicidal lactone from Xylocarpus granatum (Meliaceae).

    PubMed

    Du, Shijie; Wang, Mingan; Zhu, Wen; Qin, Zhaohai

    2009-01-01

    A new lactone was isolated from the leaves of Xylocarpus granatum, along with three known compounds: triacontanol, beta-sitosterol and kaempferol-3-O-beta-D-glucoside. Its structure was elucidated as 3-(1-hydroxyethyl)-4,4-dimethyl-4-butyrolactone (1) by infrared, (1)H and (13)C NMR and ESI-MS data. At a concentration of 20 microg mL(-1), the new lactone gave a 67.4% inhibition rate against wheat powdery mildew.

  7. Treatment of MDR1 Mutant Dogs with Macrocyclic Lactones

    PubMed Central

    Geyer, Joachim; Janko, Christina

    2012-01-01

    P-glycoprotein, encoded by the multidrug resistance gene MDR1, is an ATP-driven drug efflux pump which is highly expressed at the blood-brain barrier of vertebrates. Drug efflux of macrocyclic lactones by P-glycoprotein is highly relevant for the therapeutic safety of macrocyclic lactones, as thereby GABA-gated chloride channels, which are confined to the central nervous system in vertebrates, are protected from high drug concentrations that otherwise would induce neurological toxicity. A 4-bp deletion mutation exists in the MDR1 gene of many dog breeds such as the Collie and the Australian Shepherd, which results in the expression of a non-functional P-glycoprotein and is associated with multiple drug sensitivity. Accordingly, dogs with homozygous MDR1 mutation are in general prone to neurotoxicity by macrocyclic lactones due to their increased brain penetration. Nevertheless, treatment of these dogs with macrocyclic lactones does not inevitably result in neurological symptoms, since, the safety of treatment highly depends on the treatment indication, dosage, route of application, and the individual compound used as outlined in this review. Whereas all available macrocyclic lactones can safely be administered to MDR1 mutant dogs at doses usually used for heartworm prevention, these dogs will experience neurological toxicity following a high dose regimen which is common for mange treatment in dogs. Here, we review and discuss the neurotoxicological potential of different macrocyclic lactones as well as their treatment options in MDR1 mutant dogs. PMID:22039792

  8. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2

    PubMed Central

    Stø, Ida M.; Orr, Russell J. S.; Fooyontphanich, Kim; Jin, Xu; Knutsen, Jonfinn M. B.; Fischer, Urs; Tranbarger, Timothy J.; Nordal, Inger; Aalen, Reidunn B.

    2015-01-01

    The peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2), controls different cell separation events in Arabidopsis thaliana. We hypothesize the involvement of this signaling module in abscission processes in other plant species even though they may shed other organs than A. thaliana. As the first step toward testing this hypothesis from an evolutionarily perspective we have identified genes encoding putative orthologs of IDA and its receptors by BLAST searches of publically available protein, nucleotide and genome databases for angiosperms. Genes encoding IDA or IDA-LIKE (IDL) peptides and HSL proteins were found in all investigated species, which were selected as to represent each angiosperm order with available genomic sequences. The 12 amino acids representing the bioactive peptide in A. thaliana have virtually been unchanged throughout the evolution of the angiosperms; however, the number of IDL and HSL genes varies between different orders and species. The phylogenetic analyses suggest that IDA, HSL2, and the related HSL1 gene, were present in the species that gave rise to the angiosperms. HAE has arisen from HSL1 after a genome duplication that took place after the monocot—eudicots split. HSL1 has also independently been duplicated in the monocots, while HSL2 has been lost in gingers (Zingiberales) and grasses (Poales). IDA has been duplicated in eudicots to give rise to functionally divergent IDL peptides. We postulate that the high number of IDL homologs present in the core eudicots is a result of multiple whole genome duplications (WGD). We substantiate the involvement of IDA and HAE/HSL2 homologs in abscission by providing gene expression data of different organ separation events from various species. PMID:26579174

  9. Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice.

    PubMed

    Harada, Kenji; Shen, Wen-Jun; Patel, Shailja; Natu, Vanita; Wang, Jining; Osuga, Jun-ichi; Ishibashi, Shun; Kraemer, Fredric B

    2003-12-01

    To elucidate the role of hormone-sensitive lipase (HSL) in diet-induced obesity, HSL-deficient (HSL-/-) and wild-type mice were fed normal chow or high-fat diets. HSL-/- mice were resistant to diet-induced obesity showing higher core body temperatures. Weight and triacylglycerol contents were decreased in white adipose tissue (WAT) but increased in both brown adipose tissue (BAT) and liver of HSL-/- mice. Serum insulin levels in the fed state and tumor necrosis factor-alpha mRNA levels in adipose tissues were higher, whereas serum levels of adipocyte complement-related protein of 30 kDa (ACRP30)/adiponectin and leptin, as well as mRNA levels of ACRP30/adiponectin, leptin, resistin, and adipsin in WAT, were lower in HSL-/- mice than in controls. Expression of transcription factors associated with adipogenesis (peroxisome proliferator-activated receptor-gamma, CAAT/enhancer-binding protein-alpha) and lipogenesis (carbohydrate response element-binding protein, adipocyte determination- and differentiation-dependent factor-1/sterol regulatory element-binding protein-1c), as well as of adipose differentiation markers (adipocyte lipid-binding protein, perilipin, lipoprotein lipase), lipogenic enzymes (glycerol-3-phosphate acyltransferase, acyl-CoA:diacylglycerol acyltransferase-1 and -2, fatty acid synthase, ATP citrate lyase) and insulin signaling proteins (insulin receptor, insulin receptor substrate-1, GLUT4), was suppressed in WAT but not in BAT of HSL-/- mice. In contrast, expression of genes associated with cholesterol metabolism (sterol-regulatory element-binding protein-2, 3-hydroxy-3-methylglutaryl-CoA reductase, acyl-CoA:cholesterol acyltransferase-1) and thermogenesis (uncoupling protein-2) was upregulated in both WAT and BAT of HSL-/- mice. Our results suggest that impaired lipolysis in HSL deficiency affects lipid metabolism through alterations of adipose differentiation and adipose-derived hormone levels.

  10. Variation in the ovine hormone-sensitive lipase gene (HSL) and its association with growth and carcass traits in New Zealand Suffolk sheep.

    PubMed

    Yang, Guo; Forrest, Rachel; Zhou, Huitong; Hickford, Jonathan

    2014-01-01

    The hormone-sensitive lipase (HSL) plays an important role in the regulation of lipolysis in adipose tissues, by catalysing a rate-limiting step in triglyceride hydrolysis. Variation within the human HSL gene (HSL) has been associated with an increased risk of obesity. In this study, variation within three regions (exon 3-4, exon 5-6 and exon 9) of ovine HSL was investigated in 538 Suffolk lambs bred from 13 independent sires using PCR-SSCP. Four sequence variants of intron 5 (designated A-D) and two variants of exon 9 (designated a and b) of ovine HSL were detected. No variation was found in exon 3-4 of the gene. The associations of the variation within ovine HSL with post-weaning growth and carcass traits including eye muscle depth (EMD), eye muscle width (EMW) and fat depth above the eye muscle (FDM) were assessed in 262 of the above 538 lambs using general linear mixed-effects models. In the single variant models, the presence of intron 5 A in a lamb's genotype was associated with reduced EMD (P = 0.036) and EMW (P = 0.018), whereas the presence of intron 5 C was associated with increased EMD (P < 0.001), EMW (P < 0.001) and FDM (P = 0.017). The association of C with increased EMD (P = 0.002) and EMW (P = 0.002) persisted in the multi-variant model. No association between HSL intron 5 variants and post-weaning growth, or between HSL exon 9 variants, post-weaning growth or carcass traits, were found.

  11. Herbicidal and Fungicidal Activities of Lactones in Kava (Piper methysticum).

    PubMed

    Xuan, T D; Elzaawely, A A; Fukuta, M; Tawata, S

    2006-02-01

    This is the first report showing that kava lactones are plant and plant fungus growth inhibitors. Aqueous extract of kava roots showed high allelopathic potential and strongly suppressed germination and growth of lettuce, radish, barnyardgrass, and monochoria. Nine kava lactones were detected using GC-MS including desmethoxyyagonin, kavain, 7,8-dihydrokavain, hydroxykavain, yagonin, 5,6,7,8-tetrahydroxyyagonin, methysticin, dihydromethysticin, and 11-hydroxy-12-methoxydihydrokavain. Quantities of desmethoxyyagonin, kavain, 7,8-dihydrokavain, yagonin, methysticin, and dihydromethysticin detected were 4.3, 6.9, 18.6, 5.7, 1.4, and 5.4 mg/g of dry weight, respectively. These six major lactones in kava roots showed great herbicidal and antifungal activities. Growth of lettuce and barnyardgrass were significantly inhibited at 1-10 ppm, and four plant fungi including Colletotrichum gloeosporides, Fusarium solani, Fusarium oxysporum, and Trichoderma viride were significantly inhibited at 10-50 ppm. The biological activities of kava lactones were characterized by different double-bond linkage patterns in positions 5,6 and 7,8. The findings of this study suggest that kava lactones may be useful for the development of bioactive herbicides and fungicides.

  12. Seasonal variation in sesquiterpene lactone concentration and composition of forage chicory (Cichorium intybus L.) cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chicory (Cichorium intybus L.) herbage contains sesquiterpene lactones that are believed to help control gastrointestinal nematodes in small ruminants. Because the anthelmintic effect could be related to both total sesquiterpene lactone concentration and the proportions of the principal constituent...

  13. Identification of crypto- and neochlorogenic lactones as potent xanthine oxidase inhibitors in roasted coffee beans.

    PubMed

    Honda, Sari; Miura, Yukari; Masuda, Akiko; Masuda, Toshiya

    2014-01-01

    Xanthine oxidase (XO) inhibitory activity has been found in boiling water extracts from roasted coffee beans. Therefore, assay-guided purification of the extracts was performed using size-exclusion column chromatography, and subsequently with reversed phase HPLC to afford lactone derivatives of chlorogenic acids. Among the tested lactones, crypto- and neochlorogenic lactones showed potent XO inhibitory activities compared with three major chlorogenic acids found in coffee beans. These XO inhibitory lactones may ameliorate gout and hyperuricemia in humans who drink coffee.

  14. Relationship between Menthiafolic Acid and Wine Lactone in Wine.

    PubMed

    Giaccio, Joanne; Curtin, Chris D; Sefton, Mark A; Taylor, Dennis K

    2015-09-23

    Menthiafolic acid (6-hydroxy-2,6-dimethylocta-2,7-dienoic acid, 2a) was quantified by GC-MS in 28 white wines, 4 Shiraz wines, and for the first time in 6 white grape juice samples. Menthiafolic acid was detected in all but one of the wine samples at concentrations ranging from 26 to 342 μg/L and in the juice samples from 16 to 236 μg/L. Various model fermentation experiments showed that some menthiafolic acid in wine could be generated from the grape-derived menthiafolic acid glucose ester (2b) during alcoholic and malolactic fermentation. Samples containing high concentrations of menthiafolic acid were also analyzed by enantioselective GC-MS and were shown to contain this compound in predominantly the (S)-configuration. Enantioselective analysis of wine lactone (1) in one of these samples, a four-year-old Chardonnay wine showed, for the first time, the presence of the 3R,3aR,7aS isomer of wine lactone (1b), which is the enantiomer of the form previously reported as the sole isomer present in young wine samples. The weakly odorous 3R,3aR,7aS 1b form comprised 69% of the total wine lactone in the sample. On the basis of the enantioselectivity of the hydrolytic conversion of menthiafolic acid to wine lactone at pH 3.0 determined previously and the relative proportions of (R)- and (S)-menthiafolic acid in the Chardonnay wine, the predicted ratio of wine lactone enantiomers that would be formed from hydrolysis at ambient temperature of the menthiafolic acid present in this wine was close to the ratio measured, which was consistent with menthiafolic acid being the major or sole precursor to wine lactone in this sample. PMID:26321591

  15. Relationship between Menthiafolic Acid and Wine Lactone in Wine.

    PubMed

    Giaccio, Joanne; Curtin, Chris D; Sefton, Mark A; Taylor, Dennis K

    2015-09-23

    Menthiafolic acid (6-hydroxy-2,6-dimethylocta-2,7-dienoic acid, 2a) was quantified by GC-MS in 28 white wines, 4 Shiraz wines, and for the first time in 6 white grape juice samples. Menthiafolic acid was detected in all but one of the wine samples at concentrations ranging from 26 to 342 μg/L and in the juice samples from 16 to 236 μg/L. Various model fermentation experiments showed that some menthiafolic acid in wine could be generated from the grape-derived menthiafolic acid glucose ester (2b) during alcoholic and malolactic fermentation. Samples containing high concentrations of menthiafolic acid were also analyzed by enantioselective GC-MS and were shown to contain this compound in predominantly the (S)-configuration. Enantioselective analysis of wine lactone (1) in one of these samples, a four-year-old Chardonnay wine showed, for the first time, the presence of the 3R,3aR,7aS isomer of wine lactone (1b), which is the enantiomer of the form previously reported as the sole isomer present in young wine samples. The weakly odorous 3R,3aR,7aS 1b form comprised 69% of the total wine lactone in the sample. On the basis of the enantioselectivity of the hydrolytic conversion of menthiafolic acid to wine lactone at pH 3.0 determined previously and the relative proportions of (R)- and (S)-menthiafolic acid in the Chardonnay wine, the predicted ratio of wine lactone enantiomers that would be formed from hydrolysis at ambient temperature of the menthiafolic acid present in this wine was close to the ratio measured, which was consistent with menthiafolic acid being the major or sole precursor to wine lactone in this sample.

  16. Coordinate action of distinct sequence elements localizes checkpoint kinase Hsl1 to the septin collar at the bud neck in Saccharomyces cerevisiae

    PubMed Central

    Finnigan, Gregory C.; Sterling, Sarah M.; Duvalyan, Angela; Liao, Elizabeth N.; Sargsyan, Aspram; Garcia, Galo; Nogales, Eva; Thorner, Jeremy

    2016-01-01

    Passage through the eukaryotic cell cycle requires processes that are tightly regulated both spatially and temporally. Surveillance mechanisms (checkpoints) exert quality control and impose order on the timing and organization of downstream events by impeding cell cycle progression until the necessary components are available and undamaged and have acted in the proper sequence. In budding yeast, a checkpoint exists that does not allow timely execution of the G2/M transition unless and until a collar of septin filaments has properly assembled at the bud neck, which is the site where subsequent cytokinesis will occur. An essential component of this checkpoint is the large (1518-residue) protein kinase Hsl1, which localizes to the bud neck only if the septin collar has been correctly formed. Hsl1 reportedly interacts with particular septins; however, the precise molecular determinants in Hsl1 responsible for its recruitment to this cellular location during G2 have not been elucidated. We performed a comprehensive mutational dissection and accompanying image analysis to identify the sequence elements within Hsl1 responsible for its localization to the septins at the bud neck. Unexpectedly, we found that this targeting is multipartite. A segment of the central region of Hsl1 (residues 611–950), composed of two tandem, semiredundant but distinct septin-associating elements, is necessary and sufficient for binding to septin filaments both in vitro and in vivo. However, in addition to 611–950, efficient localization of Hsl1 to the septin collar in the cell obligatorily requires generalized targeting to the cytosolic face of the plasma membrane, a function normally provided by the C-terminal phosphatidylserine-binding KA1 domain (residues 1379–1518) in Hsl1 but that can be replaced by other, heterologous phosphatidylserine-binding sequences. PMID:27193302

  17. Aii20J, a wide-spectrum thermostable N-acylhomoserine lactonase from the marine bacterium Tenacibaculum sp. 20J, can quench AHL-mediated acid resistance in Escherichia coli.

    PubMed

    Mayer, C; Romero, M; Muras, A; Otero, A

    2015-11-01

    Acyl homoserine lactones (AHLs) are produced by many Gram-negative bacteria to coordinate gene expression in cellular density dependent mechanisms known as quorum sensing (QS). Since the disruption of the communication systems significantly reduces virulence, the inhibition of quorumsensing processes or quorum quenching (QQ) represents an interesting anti-pathogenic strategy to control bacterial infections. Escherichia coli does not produce AHLs but possesses an orphan AHL receptor, SdiA, which is thought to be able to sense the QS signals produced by other bacteria and controls important traits as the expression of glutamate-dependent acid resistance mechanism, therefore constituting a putative target for QQ. A novel AHL-lactonase, named Aii20J, has been identified, cloned and over expressed from the marine bacterium Tenacibaculum sp. strain 20 J presenting a wide-spectrum QQ activity. The enzyme, belonging to the metallo-β-lactamase family, shares less than 31 % identity with the lactonase AiiA from Bacillus spp. Aii20J presents a much higher specific activity than the Bacillus enzyme, maintains its activity after incubation at 100 ºC for 10 minutes, is resistant to protease K and α-chymotrypsin, and is unaffected by wide ranges of pH. The addition of Aii20J (20 μg/mL) to cultures of E. coli K-12 to which OC6-HSL was added resulted in a significant reduction in cell viability in comparison with the acidresistant cultures derived from the presence of the signal. Results confirm the interaction between AHLs and SdiA in E. coli for the expression of virulence-related genes and reveal the potential use of Aii20J as anti-virulence strategy against important bacterial pathogens and in other biotechnological applications.

  18. Aii20J, a wide-spectrum thermostable N-acylhomoserine lactonase from the marine bacterium Tenacibaculum sp. 20J, can quench AHL-mediated acid resistance in Escherichia coli.

    PubMed

    Mayer, C; Romero, M; Muras, A; Otero, A

    2015-11-01

    Acyl homoserine lactones (AHLs) are produced by many Gram-negative bacteria to coordinate gene expression in cellular density dependent mechanisms known as quorum sensing (QS). Since the disruption of the communication systems significantly reduces virulence, the inhibition of quorumsensing processes or quorum quenching (QQ) represents an interesting anti-pathogenic strategy to control bacterial infections. Escherichia coli does not produce AHLs but possesses an orphan AHL receptor, SdiA, which is thought to be able to sense the QS signals produced by other bacteria and controls important traits as the expression of glutamate-dependent acid resistance mechanism, therefore constituting a putative target for QQ. A novel AHL-lactonase, named Aii20J, has been identified, cloned and over expressed from the marine bacterium Tenacibaculum sp. strain 20 J presenting a wide-spectrum QQ activity. The enzyme, belonging to the metallo-β-lactamase family, shares less than 31 % identity with the lactonase AiiA from Bacillus spp. Aii20J presents a much higher specific activity than the Bacillus enzyme, maintains its activity after incubation at 100 ºC for 10 minutes, is resistant to protease K and α-chymotrypsin, and is unaffected by wide ranges of pH. The addition of Aii20J (20 μg/mL) to cultures of E. coli K-12 to which OC6-HSL was added resulted in a significant reduction in cell viability in comparison with the acidresistant cultures derived from the presence of the signal. Results confirm the interaction between AHLs and SdiA in E. coli for the expression of virulence-related genes and reveal the potential use of Aii20J as anti-virulence strategy against important bacterial pathogens and in other biotechnological applications. PMID:26092757

  19. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  20. Statin Lactonization by Uridine 5'-Diphospho-glucuronosyltransferases (UGTs).

    PubMed

    Schirris, Tom J J; Ritschel, Tina; Bilos, Albert; Smeitink, Jan A M; Russel, Frans G M

    2015-11-01

    Statins are cholesterol-lowering drugs that have proven to be effective in lowering the risk of major cardiovascular events. Although well tolerated, statin-induced myopathies are the most common side effects. Compared to their pharmacologically active acid form, statin lactones are more potent inducers of toxicity. They can be formed by glucuronidation mediated by uridine 5'-diphospho-glucuronosyltransferases (UGTs), but a systematic characterization of subtype specificity and kinetics of lactonization is lacking. Here, we demonstrate for six clinically relevant statins that only UGT1A1, 1A3, and 2B7 contribute significantly to their lactonization. UGT1A3 appeared to have the highest lactonization capacity with marked differences in statin conversion rates: pitavastatin ≫ atorvastatin > cerivastatin > lovastatin > rosuvastatin (simvastatin not converted). Using in silico modeling we could identify a probable statin interaction region in the UGT binding pocket. Polymorphisms in these regions of UGT1A1, 1A3, and 2B7 may be a contributing factor in statin-induced myopathies, which could be used in personalization of statin therapy with improved safety.

  1. Natural Sesquiterpene Lactones Induce Oxidative Stress in Leishmania mexicana

    PubMed Central

    Barrera, Patricia; Sülsen, Valeria P.; Lozano, Esteban; Rivera, Mónica; Beer, María Florencia; Tonn, Carlos; Martino, Virginia S.; Sosa, Miguel A.

    2013-01-01

    Leishmaniasis is a worldwide parasitic disease, caused by monoflagellate parasites of the genus Leishmania. In the search for more effective agents against these parasites, the identification of molecular targets has been attempted to ensure the efficiency of drugs and to avoid collateral damages on the host's cells. In this work, we have investigated some of the mechanisms of action of a group of natural sesquiterpene lactones that are effective against Leishmania mexicana mexicana promastigotes. We first observed that the antiproliferative effect of mexicanin I (Mxc), dehydroleucodine (DhL), psilostachyin (Psi), and, at lesser extent, psilostachyin C (Psi C) is blocked by 1.5 mM reduced glutathione. The reducing agent was also able to reverse the early effect of the compounds, suggesting that lactones may react with intracellular sulfhydryl groups. Moreover, we have shown that all the sesquiterpene lactones, except Psi C, significantly decreased the endogenous concentration of glutathione within the parasite. Consistent with these findings, the active sesquiterpene lactones increased between 2.7 and 5.4 times the generation of ROS by parasites. These results indicate that the induction of oxidative stress is at least one of the mechanisms of action of DhL, Mxc, and Psi on parasites while Psi C would act by another mechanism. PMID:23861697

  2. Toward understanding how the lactone moiety of discodermolide affects activity.

    PubMed

    Shaw, Simon J; Sundermann, Kurt F; Burlingame, Mark A; Myles, David C; Freeze, B Scott; Xian, Ming; Brouard, Ignacio; Smith, Amos B

    2005-05-11

    A series of simplified discodermolide analogues have been designed and synthesized in an attempt to understand the role of the lactone ring. These synthetic efforts have led to an unsubstituted butyrolactone 9 being generated, which shows improved activity over the natural product.

  3. Statin Lactonization by Uridine 5'-Diphospho-glucuronosyltransferases (UGTs).

    PubMed

    Schirris, Tom J J; Ritschel, Tina; Bilos, Albert; Smeitink, Jan A M; Russel, Frans G M

    2015-11-01

    Statins are cholesterol-lowering drugs that have proven to be effective in lowering the risk of major cardiovascular events. Although well tolerated, statin-induced myopathies are the most common side effects. Compared to their pharmacologically active acid form, statin lactones are more potent inducers of toxicity. They can be formed by glucuronidation mediated by uridine 5'-diphospho-glucuronosyltransferases (UGTs), but a systematic characterization of subtype specificity and kinetics of lactonization is lacking. Here, we demonstrate for six clinically relevant statins that only UGT1A1, 1A3, and 2B7 contribute significantly to their lactonization. UGT1A3 appeared to have the highest lactonization capacity with marked differences in statin conversion rates: pitavastatin ≫ atorvastatin > cerivastatin > lovastatin > rosuvastatin (simvastatin not converted). Using in silico modeling we could identify a probable statin interaction region in the UGT binding pocket. Polymorphisms in these regions of UGT1A1, 1A3, and 2B7 may be a contributing factor in statin-induced myopathies, which could be used in personalization of statin therapy with improved safety. PMID:26412035

  4. Developmental changes of the FAS and HSL mRNA expression and their effects on the content of intramuscular fat in Kazak and Xinjiang sheep.

    PubMed

    Qiao, Yong; Huang, Zhiguo; Li, Qifa; Liu, Zhenshan; Hao, Chengli; Shi, Guoqing; Dai, Rong; Xie, Zhuang

    2007-10-01

    Twenty-four male Kazak sheep and 30 Xinjiang fine wool sheep at different ages were selected to investigate the development-dependent expression levels of fatty acid synthase (FAS) gene and hormone-sensitive lipase (HSL) gene in muscle and their effects on the contents of intramuscular fat (IMF). Longissimus dorsal muscle was sampled to measure IMF and total RNA was extracted to determine FAS and HSL mRNA expression levels by real-time PCR. The results showed that: 1) The IMF content increased continuously with growth and showed significant differences (P < 0.05) between different age groups in male Kazak sheep, but in Xinjiang fine wool sheep there was no such difference observed. Furthermore, the IMF contents in Kazak were much higher (P < 0.01) than that of the other breed from day 30 to 90. 2) FAS mRNA expression level was the highest (P < 0.05) on day 0 in Kazak sheep and then declined with growth, in the other breed the gene showed a 'decline-rise-decline-rise' expression manner as the animals grew. HSL mRNA expression level had a similar model in two breeds, in Kazak sheep it was the highest on day 0 (P < 0.05) and in Xinjiang fine wool sheep on day 30 (P < 0.01), then both decreased after this term. 3) In male Kazak sheep, FAS and HSL mRNA expression level were both negatively related to IMF content (r = -0.485 (P = 0.02), r = -0.423 (P = 0.05)), and the ratio of FAS/HSL expression exhibited significantly negatively related IMF contents. In male Xinjiang sheep, there were no obvious relationship between FAS and HSL expression and IMF content (P > 0.05).

  5. Lactonization-mediated glycosylations and their application to oligosaccharide synthesis.

    PubMed

    Kim, Kwan Soo; Jeon, Heung Bae

    2008-01-01

    The concept of lactonization-mediated and related glycosylations led us to develop new methods of glycosylation such as the 2'-carboxybenzyl (CB) glycoside method, the glycosyl pentenoate/phenylselenyl trifluoromethanesulfonate (PhSeOTf) method, and the glycosyl aryl phthalate method. Highly stereoselective beta-mannopyranosylations were achieved by employing the CB glycoside and the glycosyl pentenoate/PhSeOTf methods. The CB glycoside method was also utilized for stereoselective 2-deoxyglycosylation, beta-arabinofuranosylation, and alpha-galactofuranosylation. In addition, these lactonization-mediated methods of glycosylation were employed for the synthesis of complex oligosaccharides. In particular, the CB glycoside method was successfully applied to the synthesis of repeating oligosaccharide subunits of the O-polysaccharide of the lipopolysaccharide from Danish Helicobacter pylori strains and Escherichia coli 077, the synthesis of oligoarabinofuranosides in mycobacterial cell walls, and the total synthesis of antineoplastic agelagalastatin. PMID:18302265

  6. Biosynthesis of resorcylic acid lactone lasiodiplodin in Lasiodiplodia theobromae.

    PubMed

    Kashima, Takasumi; Takahashi, Kosaku; Matsuura, Hideyuki; Nabeta, Kensuke

    2009-05-01

    The biosynthesis of lasiodiplodin (1) and its (5S)-5-hydroxylated derivative (2) were investigated by the administration of (13)C-labeled acetates to Lasiodiplodia theobromae. The labeling patterns of biosynthetically (13)C-labeled 1 and 2 were determined by (13)C-NMR and INADEQUATE spectra, demonstrating the octaketide origins of 1 and 2. Taking into account the biosynthetic study of resorcylic acid lactones, the involvement of highly reduced acyl intermediates in the biosynthesis of lasiodiplodins was presumed; thus, we synthesized (2)H-labeled hypothetical acyl intermediates of 1, 9-hydroxydecanoic acid (4) and its N-acetylcysteamine thioester (SNAC, 5). When L. theobromae was incubated with 5 mM of a (2)H-labeled intermediate, the (2)H-label from the intermediate was incorporated at the expected position of 1. These incorporation studies revealed that 1 was produced via a pathway which closely resembles that of resorcylic acid lactone biosynthesis. PMID:19420710

  7. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL.

    PubMed

    Gaidhu, Mandeep P; Fediuc, Sergiu; Anthony, Nicole M; So, Mandy; Mirpourian, Mani; Perry, Robert L S; Ceddia, Rolando B

    2009-04-01

    This study was designed to investigate the effects of prolonged activation of AMP-activated protein kinase (AMPK) on lipid partitioning and the potential molecular mechanisms involved in these processes in white adipose tissue (WAT). Rat epididymal adipocytes were incubated with 5'-aminoimidasole-4-carboxamide-1-beta-d-ribofuranoside (AICAR;0.5 mM) for 15 h. Also, epididymal adipocytes were isolated 15 h after AICAR was injected (i.p. 0.7 g/kg body weight) in rats. Adipocytes were utilized for various metabolic assays and for determination of gene expression and protein content. Time-dependent in vivo plasma NEFA concentrations were determined. AICAR treatment significantly increased AMPK activation, inhibited lipogenesis, and increased FA oxidation. This was accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR)alpha, PPARdelta, and PPARgamma-coactivator-1alpha (PGC-1alpha) mRNA levels. Lipolysis was first suppressed, but then increased, both in vitro and in vivo, with prolonged AICAR treatment. Exposure to AICAR increased adipose triglyceride lipase (ATGL) content and FA release, despite inhibition of basal and epinephrine-stimulated hormone-sensitive lipase (HSL) activity. Here, we provide evidence that prolonged AICAR-induced AMPK activation can remodel adipocyte metabolism by upregulating pathways that favor energy dissipation versus lipid storage in WAT. Additionally, we show novel time-dependent effects of AICAR-induced AMPK activation on lipolysis, which involves antagonistic modulation of HSL and ATGL.

  8. Dispersant additives derived from lactone modified amido-amine adducts

    SciTech Connect

    Gutierrez, A.; Lundberg, R.D.

    1990-10-16

    This patent describes a lactone modified dispersant additive. It comprises one adduct of a polyolefin of 300 to 10,000 number average molecular weight substituted with at least 0.8 (e.g., from about 1 to 4) dicarboxylic acid producing moieties (preferably acid or anhydride moieties) per polyolefin molecule, an amido-amine or thioamido-amine characterized by being a reaction product of at least a polyamine and an alpha, beta-unsaturated compound.

  9. Lactonic Sophorolipids Increase Tumor Burden in Apcmin+/- Mice

    PubMed Central

    Callaghan, Breedge; Lydon, Helen; Roelants, Sophie L. K. W.; Van Bogaert, Inge N. A.; Marchant, Roger; Banat, Ibrahim M.; Mitchell, Christopher A.

    2016-01-01

    Sophorolipids (SL) are amphiphilic biosurfactant molecules consisting of a disaccharide sophorose with one fatty acid at the C1 position and optional acetylation at the C6’and C6” positions. They exist in a closed ring lactonic (LSL) or open acidic (ASL) structure Sophorolipids are produced in crude mixtures in economically viable amounts by the yeast Starmerella bombicola and used in a variety of consumer products. Varying levels of anti- proliferative and anti-cancer activity of crude sophorolipid mixtures are described in a number of tumor cell lines in vitro. However, significant inter-study variation exists in the composition of sophorolipid species as well as other biologically active compounds in these mixtures, which makes interpretation of in vitro and in vivo studies difficult. We produced a 96% pure C18:1 lactonic sophorolipid that dose-dependently reduces the viability of colorectal cancer, as well as normal human colonic and lung cell lines in vitro. Oral administration of vehicle-only; or lactonic sophorolipids (50 mg/kg for 70 days), to Apcmin+/- mice resulted in an increase in the number (55.5 ± 3.3 vs 70.50 ± 7.8: p < 0.05) and size (modal size 2mm vs 4mm) of intestinal polyps. Lactonic administration resulted in a systematic effect via reduced hematocrit (49.5 ± 1.0 vs 28.2 ± 2.0 vs: p<0.03) and splenomegaly (0.56 ± 0.03g vs 0.71 ± 0.04g; p<0.01) confirming exacerbation of disease progression in this model. PMID:27271048

  10. Structurally modified natural sesquiterpene lactones constitute effective and less toxic schistosomicidal compounds.

    PubMed

    Sass, Daiane Cristina; Morais, Gustavo Oliveira; Miranda, Ricardo Augusto Crema; Magalhães, Lizandra Guidi; Cunha, Wilson Roberto; dos Santos, Raquel Alves; Arakawa, Nilton Syogo; Da Costa, Fernando Batista; Constantino, Mauricio Gomes; Heleno, Vladimir Constantino Gomes

    2014-10-28

    Sesquiterpene lactones are known to be active, but are also known to present high cytotoxicity. In the present work an evaluation of how slight structural alterations affect the cytotoxicity and the schistosomicidal activity of sesquiterpene lactones was undertaken. More specifically, we assessed the activity of budlein-A, a furanoheliangolide sesquiterpene lactone, and four of its derivatives. The structural modifications of budlein-A, presented in this work, diminished the cytotoxicity and changed the antiparasitary behavior of the molecule. They also provided data for a better understanding of the sesquiterpene lactone cytotoxicity. The establishment of the structures of three synthesized sesquiterpene lactones on the basis of NMR and HRESIMS data is also presented here. Complete and detailed (1)H and (13)C 1D and 2D NMR data, with measurements of all J values and all multiplicities clarified, are presented for five sesquiterpene lactones for the first time.

  11. Cytotoxic sesquiterpene lactones from the aerial parts of Inula aucheriana.

    PubMed

    Gohari, Ahmad Reza; Mosaddegh, Mahmoud; Naghibi, Farzaneh; Eslami-Tehrani, Bahara; Pirani, Atefeh; Hamzeloo-Moghadam, Maryam; Read, Roger W

    2015-01-01

    Inula aucheriana DC is a member of the family Asteraceae which is known to produce cytotoxic secondary metabolites noted as sesquiterpene lactones. In the present study, sesquiterpene lactones inuchinenolide B, 6-deoxychamissonolide (stevin) and 14-acetoxy-1β,5α,7αH-4β-hydroxy-guai-9(10),11(13)-dien-12,8α-olide were isolated from I. aucheriana. Inuchinenolide B and 14-acetoxy-1β,5α,7αH-4β-hydroxy-guai-9(10),11(13)-dien-12,8α-olide were further evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay to demonstrate cytotoxic activity with IC50 values of (56.6, 19.0), (39.0, 11.8), and (55.7, 15.3) μg/mL against HepG-2, MCF-7 and A-549 cells, respectively. The cytotoxic activity of the two evaluated sesquiterpene lactones partly explains the cytotoxic activity that was previously observed for the extracts of Inula aucheriana. The isolated compounds could be further investigated in cancer research studies.

  12. Stereoselective synthesis of (+)-nephrosteranic acid, (+)-trans-cognac lactone, and (+)-trans-whisky lactone using a chiral cyclohexadienyl Ti compound.

    PubMed

    Schleth, Florian; Vogler, Thomas; Harms, Klaus; Studer, Armido

    2004-09-01

    We present the stereoselective transfer of cyclohexadienyl from 3-metalated 1,4-cyclohexadienes to various aldehydes. Lewis-acid-mediated "allylation" of aldehydes by treatment with 3-silylated and 3-stannylated 1,4-cyclohexadienes could not be achieved with high diastereoselectivity. In contrast, cyclohexadienyl titanium compounds reacted with both aliphatic and aromatic aldehydes with good-to-excellent diastereoselectivities. Reaction of a chiral TADDOL-derived (TADDOL, 2,2-dimethyl-alpha,alpha,alpha',alpha'-tetraphenyl-1,3-dioxolandimethanol) cyclohexadienyl Ti derivative with various aldehydes led to the corresponding homoallylic alcohols with excellent diastereo- and enantioselectivities. Lower selectivities were obtained with chiral B-cyclohexadienyldiisopinocampheylborane. The 1,3-cyclohexadienes are very useful building blocks for the preparation of biologically important gamma-butyrolactones. Short efficient syntheses of (+)-nephrosteranic acid, (+)-trans-whisky lactone, and (+)-trans-cognac lactone by desymmetrization of 1,4-cyclohexadiene are described.

  13. The fumigant and repellent activity of aliphatic lactones against Pediculus humanus capitis (Anoplura: Pediculidae).

    PubMed

    Toloza, Ariel Ceferino; Zygadlo, Julio; Mougabure-Cueto, Gastón; Zerba, Eduardo; Faillaci, Silvina; Picollo, María Inés

    2006-02-01

    New alternative insecticides are necessary for the chemical control of head lice. In this study the fumigant knockdown time 50% (KT50) and repellency index (RI) of three aliphatic lactones was compared with two essential oils and DDVP, against permethrin-resistance Pediculus humanus capitis from Argentina. In the fumigant assay, none of the lactones were effective compared to the highest activity of eucalyptus (KT50 15.53 m). In the repellency test, the three lactones were equally or more effective (RI ranging from 60.50 to 76.68) than the positive control (piperonal). These lactones are promising as head lice repellents. PMID:16699710

  14. Association of HSL gene E1-c.276C>T and E8-c.51C>T mutation with economical traits of Chinese Simmental cattle.

    PubMed

    Fang, X B; Zhang, L P; Yu, X Z; Li, J Y; Lu, C Y; Zhao, Z H; Yang, R J

    2014-01-01

    Hormone-sensitive lipase (HSL) is responsible for the decomposition of triglycerides in adipose tissue to release free fatty acids, and it is a key rate-limiting enzyme in the regulation of adipose tissue deposition and decomposition. The objective of this study was to evaluate the association between novel SNPs in the coding region of bovine HSL gene and carcass and meat quality traits of Chinese Simmental-cross steers. Two novel SNPs were genotyped and the 47 traits of carcass and meat quality traits were measured in the population studied. Statistical analysis revealed that the SNPs of HSL gene were associated with the carcass and meat quality traits. The individuals with TT genotypes of E1-276C>T showed significant higher dressing percentage, net meat rate, hind legs circumference, fat coverage rate, mesenteric fat and kidney fat (p < 0.05). E8-51C>T (P17S) also showed a significant association with the pH of beef and fatty acids content in Chinese Simmental cattle (p < 0.01). Our findings indicated that polymorphisms in HSL might be one of important genetic factors that influence carcass yield and meat quality in beef cattle, and it may be a useful marker for meat quality traits in future marker-assisted selection programs in beef cattle breeding and production. PMID:24213829

  15. The crystal structure of an HSL-homolog EstE5 complex with PMSF reveals a unique configuration that inhibits the nucleophile Ser144 in catalytic triads.

    PubMed

    Nam, Ki Hyun; Kim, Soo-Jin; Priyadarshi, Amit; Kim, Hyun Sook; Hwang, Kwang Yeon

    2009-11-13

    The esterase/lipase family (EC 3.1.1.3/EC 3.1.1.1) represents a diverse group of hydrolases that catalyze the cleavage of ester bonds and are widely distributed in animals, plants and microorganisms. Among these enzymes, hormone-sensitive lipases, play a critical role in the regulation of rodent fat cell lipolysis and are regarded as adipose tissue-specific enzymes. Recently, we reported the structural and biological characterization of EstE5 from the metagenome library [K.H. Nam, M.Y. Kim, S.J. Kim, A. Priyadarshi, W.H. Lee, K.Y. Hwang, Structural and functional analysis of a novel EstE5 belonging to the subfamily of hormone-sensitive lipase, Biochem. Biophys. Res. Commun. 379 (2009) 553-556]. The structure of this protein revealed that it belongs to the HSL-family. Here, we report the inhibition of the activity of the HSL-homolog EstE5 protein as determined by the use of esterase/lipase inhibitors. Our results revealed that the EstE5 protein is significantly inhibited by PMSF. In addition, this is the first study to identify the crystal structures of EstE5-PMSF at 2.4 and 2.5A among the HSL-homolog structures. This structural configuration is similar to that adopted when serine proteases are inhibited by PMSF. The results presented here provide valuable information regarding the properties of the HSL-family.

  16. Association of HSL gene E1-c.276C>T and E8-c.51C>T mutation with economical traits of Chinese Simmental cattle.

    PubMed

    Fang, X B; Zhang, L P; Yu, X Z; Li, J Y; Lu, C Y; Zhao, Z H; Yang, R J

    2014-01-01

    Hormone-sensitive lipase (HSL) is responsible for the decomposition of triglycerides in adipose tissue to release free fatty acids, and it is a key rate-limiting enzyme in the regulation of adipose tissue deposition and decomposition. The objective of this study was to evaluate the association between novel SNPs in the coding region of bovine HSL gene and carcass and meat quality traits of Chinese Simmental-cross steers. Two novel SNPs were genotyped and the 47 traits of carcass and meat quality traits were measured in the population studied. Statistical analysis revealed that the SNPs of HSL gene were associated with the carcass and meat quality traits. The individuals with TT genotypes of E1-276C>T showed significant higher dressing percentage, net meat rate, hind legs circumference, fat coverage rate, mesenteric fat and kidney fat (p < 0.05). E8-51C>T (P17S) also showed a significant association with the pH of beef and fatty acids content in Chinese Simmental cattle (p < 0.01). Our findings indicated that polymorphisms in HSL might be one of important genetic factors that influence carcass yield and meat quality in beef cattle, and it may be a useful marker for meat quality traits in future marker-assisted selection programs in beef cattle breeding and production.

  17. Structural and kinetic overview of the carboxylesterase EST2 from alicyclobacillus acidocaldarius: a comparison with the other members of the HSL family.

    PubMed

    Mandrich, Luigi; Merone, Luigia; Manco, Giuseppe

    2009-01-01

    Thermophilic and hyperthermophilic carboxylesterases (EC 3.1.1.1) are excellent model systems for studying structure function relationships as well as in vitro and in vivo evolution and possible biotechnological applications. In this paper we review the main aspect of one of most studied microbial representative of the hormone sensitive lipase family (HSL), namely carboxylesterase 2 (EST2) from Alicyclobacillus acidocaldarius.

  18. Genome Sequence of Klebsiella pneumoniae HSL4, a New Strain Isolated from Mangrove Sediment for Biosynthesis of 1,3-Propanediol.

    PubMed

    Zhou, Sheng; Li, Lili; Wei, Jingguang; Qin, Qiwei

    2013-01-01

    Klebsiella pneumoniae HSL4 is a 1,3-propanediol-producing bacterium strain isolated from mangrove sediment. We present here a 5,221,448-bp assembly of its genome sequence. Genome analysis revealed that it contains 10 coding sequences (CDSs) responsible for glycerol fermentation to 1,3-propanediol, 19 CDSs encoding glycerol utilization, and 140 CDSs related to its virulence.

  19. Role of Hsl7 in morphology and pathogenicity and its interaction with other signaling components in the plant pathogen Ustilago maydis.

    PubMed

    Lovely, C Ben; Aulakh, Kavita Burman; Perlin, Michael H

    2011-07-01

    The phytopathogenic fungus Ustilago maydis undergoes a dimorphic transition in response to mating pheromone, host, and environmental cues. On a solid medium deficient in ammonium (SLAD [0.17% yeast nitrogen base without ammonium sulfate or amino acids, 2% dextrose, 50 μM ammonium sulfate]), U. maydis produces a filamentous colony morphology, while in liquid SLAD, the cells do not form filaments. The p21-activated protein kinases (PAKs) play a substantial role in regulating the dimorphic transition in fungi. The PAK-like Ste20 homologue Smu1 is required for a normal response to pheromone, via upregulation of pheromone expression, and virulence, and its disruption affects both processes. Our experiments suggest that Smu1 also regulates cell length and the filamentous response on solid SLAD medium. Yeast two-hybrid analysis suggested an Hsl7 homologue as a potential interacting partner of Smu1, and a unique open reading frame for such an arginine methyltransferase was detected in the U. maydis genome sequence. Hsl7 regulates cell length and the filamentous response to solid SLAD in a fashion opposite to that of Smu1, but neither overexpression nor disruption of hsl7 attenuates virulence. Simultaneous disruption of hsl7 and overexpression of smu1 lead to a hyperfilamentous response on solid SLAD. Moreover, only this double mutant strain forms filaments in liquid SLAD. The double mutant strain was also significantly reduced in virulence. A similar filamentous response in both solid and liquid SLAD was observed in strains lacking another PAK-like protein kinase involved in cytokinesis and polar growth, Cla4. Our data suggest that Hsl7 may regulate cell cycle progression, while both Smu1 and Cla4 appear to be involved in the filamentous response in U. maydis.

  20. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK.

    PubMed

    Gaidhu, Mandeep P; Anthony, Nicole M; Patel, Prital; Hawke, Thomas J; Ceddia, Rolando B

    2010-04-01

    This study investigated the molecular mechanisms by which a high-fat diet (HFD) dysregulates lipolysis and lipid metabolism in mouse epididymal (visceral, VC) and inguinal (subcutaneous, SC) adipocytes. Eight-weeks of HFD feeding increased adipose triglyceride lipase (ATGL) content and comparative gene identification-58 (CGI-58) expression, whereas hormone-sensitive lipase (HSL) phosphorylation and perilipin content were severely reduced. Adipocytes from HFD mice elicited increased basal but blunted epinephrine-stimulated lipolysis and increased diacylglycerol content in both fat depots. Consistent with impaired adrenergic receptor signaling, HFD also increased adipose-specific phospholipase A(2) expression in both fat depots. Inhibition of E-prostanoid 3 receptor increased basal lipolysis in control adipocytes but failed to acutely alter the effects of HFD on lipolysis in both fat depots. In HFD visceral adipocytes, activation of adenylyl cyclases by forskolin increased HSL phosphorylation and surpassed the lipolytic response of control cells. However, in HFD subcutaneous adipocytes, forskolin induced lipolysis without detectable HSL phosphorylation, suggesting activation of an alternative lipase in response to HFD-induced suppression of HSL in VC and SC adipocytes. HFD also powerfully inhibited basal, epinephrine-, and forskolin-induced AMP kinase (AMPK) activation as well peroxisome proliferator-activated receptor gamma coactivator-1alpha expression, citrate synthase activity, and palmitate oxidation in both fat depots. In summary, novel evidence is provided that defective adrenergic receptor signaling combined with upregulation of ATGL and suppression of HSL and AMPK signaling mediate HFD-induced alterations in lipolysis and lipid utilization in VC and SC adipocytes, which may play an important role in defective lipid mobilization and metabolism seen in diet-induced obesity.

  1. Gracilone, a new sesquiterpene lactone from Tanacetum gracile (Tansies).

    PubMed

    Bhat, Gulzar; Masood, Akbar; Ganai, Bashir A; Hamza, Baseerat; Ganie, Showkat; Shafi, Tasfi; Idris, Ahmed; Shawl, Abdul S; Tantry, Mudasir A

    2016-10-01

    The methanolic extract of the Tanacetum gracile afforded the isolation of new sesquiterpene lactone, named gracilone (1) along with four known compounds as 14α-taraxeran-3-one (2), 14α-taraxeran-3-ol (3), apigenin (4) and β-sitosterol (5). The structure of compound 1 was elucidated on the basis of 1D, 2D NMR and MS spectroscopic analysis. Antimicrobial, antioxidant and anticancer activities of all compounds were evaluated, from which gracilone (1) showed a moderate antibacterial activity, while apigenin (4) showed comparatively more antibacterial activity against both gram-positive and gram-negative tested strains. PMID:27018200

  2. Anti-inflammatory sesquiterpene lactones from Lourteigia ballotaefolia.

    PubMed

    Rosas-Romero, Alfredo; Manchado, Carlos Martinez; Crescente, Oscar; Acosta, Mercedes; Curini, Massimo; Epifano, Francesco; Marcotullio, Maria Carla; Rosati, Ornelio; Tubaro, Aurelia; Sosa, Silvio

    2002-09-01

    Three sesquiterpene lactones were isolated from Lourteigia ballotaefolia (H. B. K.). 9beta-hydroxy-atripliciolide-8- O-tiglate ( 1) was isolated for the first time from this plant and was previously reported in Conocliniopsis prasiifolia (DC) K. et R., 9beta-hydroxy-atripliciolide-8- O-(5'-acetoxytiglate) ( 2) had been already reported in this species. The minor component, 9beta-(tigloyloxy)-atripliciolide, is a new compound. The anti-inflammatory activity of compounds 1 and 2 was evaluated using the croton oil ear test in mice.

  3. Sesquiterpene lactone composition of wild and cultivated sunflowers and biological activity against an insect pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sesquiterpene lactones in sunflowers, Helianthus spp., are important to interactions with pathogens, weeds and insects. Across a broad range of H. annuus, differences in composition of sesquiterpene lactones extracted from florets were found between wild and cultivated sunflowers, but also between d...

  4. Synthetic method and biological activities of cis-fused alpha-methylene gamma-lactones.

    PubMed

    Higuchi, Yohsuke; Shimoma, Fumito; Ando, Masayoshi

    2003-06-01

    A reliable method was developed for the synthesis of cis-fused alpha-methylene gamma-lactones via alpha-methyl gamma-lactones. Bromination of alpha-methyl gamma-lactones with LDA/CBr(4) or TMSOTf/PTAB and successive dehydrobromination with DBU or TBAF of the resulting alpha-bromo-alpha-methyl gamma-lactones gave the desired alpha-methylene gamma-lactones in high yield. This method was successfully applied to the synthesis of biologically active compounds. alpha-Methylene gamma-lactone derivatives 1c, 2c, 4c, and 17 showed cell growth inhibitory activity to P388 lymphocytic leukemia. They also showed significant activities to crop diseases. Thus, alpha-methylene gamma-lactone 1c showed preventive activity in controlling scab of apple caused by Venturia inaequalis. alpha-Methylene gamma-lactones 2c, 4c, 17, and 18 also showed significant preventive activities in controlling damping off of cucumber caused by Pythium aphanidermatum.

  5. Mechanism of the relaxant effect of rosuvastatin lactone on rat aortic rings.

    PubMed

    Ana Cecilia, Polanco-Ponce; Victor Manuel, Perez-Alvarez; Isabel, Wens-Flores; Enrique, Castillo-Henkel; Pedro, Lopez-Sanchez; Jorge Skiold, Lopez-Canales; Maria del Carmen, Castillo-Hernandez; Carlos, Castillo-Henkel

    2012-01-01

    The relaxant effect of the lactone of rosuvastatin was evaluated on aortic rings from male Wistar rats (250-300 g) with and without endothelium, precontracted with 1.0 microM phenylephrine. The lactone presented a greater potency than rosuvastatin in relaxing aortic rings. Unlike rosuvastatin, the effect of its lactone was endothelium-independent. Pretreatment with either indomethacin (10 microM) or mevalonate (1 mM) did not inhibit the relaxant effect of the lactone. L-NAME (10 microM), 1400 W (10 microM), or tetraethylammonium (TEA, 10 mM) partially inhibited the relaxant effect of the lactone on endothelium-denuded aortic rings. However, cycloheximide (10 microM) or the combination of TEA plus L-NAME completely inhibited the relaxant effect. The NOS-2 was only present in endothelium-denuded aortic rings, as demonstrated by immunoblot with lactone treated rings. In conclusion, rosuvastatin was associated with a relaxant effect dependent on both endothelium and HMG-CoA reductase in rat aorta, whereas the lactone exhibited an endothelium and HMG-CoA reductase-independent relaxant effect. Both nitric oxide produced by NOS-2 and K+ channels are involved in the relaxant effect of the lactone.

  6. A new 24-membered lactone and a new polyene delta-lactone from the marine bacterium Bacillus marinus.

    PubMed

    Xue, Chunmei; Tian, Li; Xu, Minjuan; Deng, Zhiwei; Lin, Wenhan

    2008-11-01

    A new 24-membered macrolide macrolactin T (1), and a new polyene delta-lactone macrolactin U (2), along with macrolactins A, B, D, O, and S, were isolated from the cultured broth of the bacterium Bacillus marinus, which was isolated from Suaeda salsa collected in the coastline of Bohai Sea of China. The structures of 1 and 2 were elucidated on the basis of extensive spectroscopic data analyses. The inhibitory activity of macrolactins T, B and D against fungi Pyricularia oryzae and Alternaria solani, and bacteria Staphylococcus aureus is reported. PMID:19168981

  7. Hologram QSAR studies of antiprotozoal activities of sesquiterpene lactones.

    PubMed

    Trossini, Gustavo H G; Maltarollo, Vinícius G; Schmidt, Thomas J

    2014-01-01

    Infectious diseases such as trypanosomiasis and leishmaniasis are considered neglected tropical diseases due the lack for many years of research and development into new drug treatments besides the high incidence of mortality and the lack of current safe and effective drug therapies. Natural products such as sesquiterpene lactones have shown activity against T. brucei and L. donovani, the parasites responsible for these neglected diseases. To evaluate structure activity relationships, HQSAR models were constructed to relate a series of 40 sesquiterpene lactones (STLs) with activity against T. brucei, T. cruzi, L. donovani and P. falciparum and also with their cytotoxicity. All constructed models showed good internal (leave-one-out q2 values ranging from 0.637 to 0.775) and external validation coefficients (r2test values ranging from 0.653 to 0.944). From HQSAR contribution maps, several differences between the most and least potent compounds were found. The fragment contribution of PLS-generated models confirmed the results of previous QSAR studies that the presence of α,β-unsatured carbonyl groups is fundamental to biological activity. QSAR models for the activity of these compounds against T. cruzi, L. donovani and P. falciparum are reported here for the first time. The constructed HQSAR models are suitable to predict the activity of untested STLs.

  8. Lactone modified viscosity modifiers useful in oleaginous compositions

    SciTech Connect

    Gutierrez, A.; Lundberg, R.D.

    1990-06-12

    This patent describes a lactone modified reaction product useful as a viscosity index improver additive for lubricating oil compositions. It comprises: the reaction produce of: oil soluble ethylene copolymer comprising within the range of about 15 to 90 wt.% ethylene and about 10 to 85 wt.% of one or more C{sub 3} to C{sub 28} alpha-olefin, having a number average molecular weight within a range of about 15,000 to 500,000 and grafted with ethylenically unsaturated C{sub 4}--C{sub 10} monocarboxylic acid or anhydride or C{sub 4}--C{sub 0} dicarboxylic acid or anhydride wherein the carboxylic acid groups or anhydride groups are located on vicinal carbon atoms; amine selected from the group consisting of amines having at least two primary amine groups and amines having at least one primary amine group and at least one secondary amine group; long chain hydrocarbyl substituted succinic anhydride or acid having 25 to 400 carbon atoms; and lactone.

  9. Copolymerization of carbon dioxide and butadiene via a lactone intermediate.

    PubMed

    Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2014-04-01

    Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted reactions between carbon dioxide and an olefin preferentially yield olefin homopolymerization. Here we report a strategy to circumvent the thermodynamic and kinetic barriers for copolymerizations of carbon dioxide and olefins by using a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one, which is formed by the palladium-catalysed condensation of carbon dioxide and 1,3-butadiene. Subsequent free-radical polymerization of the lactone intermediate afforded polymers of high molecular weight with a carbon dioxide content of 33 mol% (29 wt%). Furthermore, the protocol was applied successfully to a one-pot copolymerization of carbon dioxide and 1,3-butadiene, and one-pot terpolymerizations of carbon dioxide, butadiene and another 1,3-diene. This copolymerization technique provides access to a new class of polymeric materials made from carbon dioxide.

  10. Potent Cytotoxic Arylnaphthalene Lignan Lactones from Phyllanthus poilanei

    PubMed Central

    2015-01-01

    Two new (1 and 2) and four known arylnaphthalene lignan lactones (3–6) were isolated from different plant parts of Phyllanthus poilanei collected in Vietnam, with two further known analogues (7 and 8) being prepared from phyllanthusmin C (4). The structures of the new compounds were determined by interpretation of their spectroscopic data and by chemical methods, and the structure of phyllanthusmin D (1) was confirmed by single-crystal X-ray diffraction analysis. Several of these arylnaphthalene lignan lactones were cytotoxic toward HT-29 human colon cancer cells, with compounds 1 and 7-O-[(2,3,4-tri-O-acetyl)-α-l-arabinopyranosyl)]diphyllin (7) found to be the most potent, exhibiting IC50 values of 170 and 110 nM, respectively. Compound 1 showed activity when tested in an in vivo hollow fiber assay using HT-29 cells implanted in immunodeficient NCr nu/nu mice. Mechanistic studies showed that this compound mediated its cytotoxic effects by inducing tumor cell apoptosis through activation of caspase-3, but it did not inhibit DNA topoisomerase IIα activity. PMID:24937209

  11. Chronic TNFalpha and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis.

    PubMed

    Bézaire, Véronic; Mairal, Aline; Anesia, Rodica; Lefort, Corinne; Langin, Dominique

    2009-09-17

    We examined the effects of chronic TNFalpha and dibutyryl-cAMP (Db-cAMP) pre-treatment on the lipolytic machinery of human hMADS adipocytes. TNFalpha decreased adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) protein content and triglycerides (TG)-hydrolase activity but increased basal lipolysis due to a marked reduction in perilipin (PLIN) protein content. Conversely, Db-cAMP increased ATGL and HSL protein content but prevented PLIN phosphorylation, the net result being accentuated basal lipolysis. In forskolin-stimulated conditions, TNFalpha and Db-cAMP pre-treatment decreased stimulated TG-hydrolase activity and impaired PLIN phosphorylation. Together, this resulted in a severely attenuated response to forskolin-stimulated lipolysis. PMID:19695247

  12. Chronic TNFalpha and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis.

    PubMed

    Bézaire, Véronic; Mairal, Aline; Anesia, Rodica; Lefort, Corinne; Langin, Dominique

    2009-09-17

    We examined the effects of chronic TNFalpha and dibutyryl-cAMP (Db-cAMP) pre-treatment on the lipolytic machinery of human hMADS adipocytes. TNFalpha decreased adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) protein content and triglycerides (TG)-hydrolase activity but increased basal lipolysis due to a marked reduction in perilipin (PLIN) protein content. Conversely, Db-cAMP increased ATGL and HSL protein content but prevented PLIN phosphorylation, the net result being accentuated basal lipolysis. In forskolin-stimulated conditions, TNFalpha and Db-cAMP pre-treatment decreased stimulated TG-hydrolase activity and impaired PLIN phosphorylation. Together, this resulted in a severely attenuated response to forskolin-stimulated lipolysis.

  13. Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle.

    PubMed

    Watt, Matthew J; Holmes, Anna G; Steinberg, Gregory R; Mesa, Jose L; Kemp, Bruce E; Febbraio, Mark A

    2004-07-01

    Intramuscular triacylglycerols (IMTG) are proposed to be an important metabolic substrate for contracting muscle, although this remains controversial. To test the hypothesis that reduced plasma free fatty acid (FFA) availability would increase IMTG degradation during exercise, seven active men cycled for 180 min at 60% peak pulmonary O(2) uptake either without (CON) or with (NA) prior ingestion of nicotinic acid to suppress adipose tissue lipolysis. Skeletal muscle and adipose tissue biopsy samples were obtained before and at 90 and 180 min of exercise. NA ingestion decreased (P < 0.05) plasma FFA at rest and completely suppressed the exercise-induced increase in plasma FFA (180 min: CON, 1.42 +/- 0.07; NA, 0.10 +/- 0.01 mM). The decreased plasma FFA during NA was associated with decreased (P < 0.05) adipose tissue hormone-sensitive lipase (HSL) activity (CON: 13.9 +/- 2.5, NA: 9.1 +/- 3.0 nmol.min(-1).mg protein(-1)). NA ingestion resulted in decreased whole body fat oxidation and increased carbohydrate oxidation. Despite the decreased whole body fat oxidation, net IMTG degradation was greater in NA compared with CON (net change: CON, 2.3 +/- 0.8; NA, 6.3 +/- 1.2 mmol/kg dry mass). The increased IMTG degradation did not appear to be due to reduced fatty acid esterification, because glycerol 3-phosphate activity was not different between trials and was unaffected by exercise (rest: 0.21 +/- 0.07; 180 min: 0.17 +/- 0.04 nmol.min(-1).mg protein(-1)). HSL activity was not increased from resting rates during exercise in either trial despite elevated plasma epinephrine, decreased plasma insulin, and increased ERK1/2 phosphorylation. AMP-activated protein kinase (AMPK)alpha1 activity was not affected by exercise or NA, whereas AMPKalpha2 activity was increased (P < 0.05) from rest during exercise in NA and was greater (P < 0.05) than in CON at 180 min. These data suggest that plasma FFA availability is an important mediator of net IMTG degradation, and in the absence of

  14. Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family.

    PubMed

    Mandrich, Luigi; Merone, Luigia; Pezzullo, Margherita; Cipolla, Laura; Nicotra, Francesco; Rossi, Mosè; Manco, Giuseppe

    2005-01-21

    A superposition between the structures of Alicyclobacillus acidocaldarius esterase 2 (EST2) and Burkholderia cepacia lipase, the latter complexed with a phosphonate inhibitor, allowed us to hypothesize for the EST2 N terminus a role in restricting the access to the active site and therefore in modulating substrate specificity. In order to test this hypothesis we generated by site-directed mutagenesis some truncated versions of EST2 and its double mutant M211S/R215L (S/L) at the N terminus. In parallel, an analysis of the Sulfolobus solfataricus P2 genome allowed us to identify a gene coding for a putative esterase of the HSL family having a natural deletion of the corresponding region. The product of this gene and the above-mentioned EST2 mutants were expressed in Escherichia coli, purified and characterised. These studies support the notion that the N terminus affects substrate specificity other than several other enzyme parameters. Although the deletions afforded a tenfold and 550-fold decrease in catalytic efficiency towards the best substrate pNP-hexanoate at 50 degrees C for EST2 and S/L, respectively, the analysis of the specific activities with different triacylglycerols with respect to pNP-hexanoate showed that their ratios were higher for deleted versus non-deleted enzymes, on all tested substrates. In particular, the above ratios for glyceryl tridecanoate were 30-fold and 14-fold higher in S/L and EST2 deleted forms, respectively, compared with their full-length versions. This behaviour was confirmed by the analysis of the S.solfataricus esterase, which showed similar specific activities on pNP-hexanoate and triacylglycerols; in addition, higher activities on the latter substrates were observed in comparison with EST2, S/L and their deleted forms. Finally, a dramatic effect on thermophilicity and thermostability in the EST2 deleted forms was observed. This is the first report highlighting the importance of the "cap" domain in the HSL family, since the N

  15. Towards the industrialization of new biosurfactants: Biotechnological opportunities for the lactone esterase gene from Starmerella bombicola.

    PubMed

    Roelants, Sophie L K W; Ciesielska, Katarzyna; De Maeseneire, Sofie L; Moens, Helena; Everaert, Bernd; Verweire, Stijn; Denon, Quenten; Vanlerberghe, Brecht; Van Bogaert, Inge N A; Van der Meeren, Paul; Devreese, Bart; Soetaert, Wim

    2016-03-01

    Although sophorolipids (SLs) produced by S. bombicola are a real showcase for the industrialization of microbial biosurfactants, some important drawbacks are associated with this efficient biological process, e.g., the simultaneous production of acidic and lactonic SLs. Depending on the application, there is a requirement for the naturally produced mixture to be manipulated to give defined ratios of the components. Recently, the enzyme responsible for the lactonization of SLs was discovered. The discovery of the gene encoding this lactone esterase (sble) enabled the development of promising S. bombicola strains producing either solely lactonic (using a sble overexpression strain described in this paper: oe sble) or solely acidic SLs (using a sble deletion strain, which was recently described, but not characterized yet: Δsble). The new S. bombicola strains were used to investigate the production processes (fermentation and purification) of either lactonic or acidic SLs. The strains maintain the high inherent productivities of the wild-type or even perform slightly better and thus represent a realistic industrial opportunity. 100% acidic SLs with a mixed acetylation pattern were obtained for the Δsble strain, while the inherent capacity to selectively produce lactonic SLs was significantly increased (+42%) for the oe sble strain (99% lactonic SLs). Moreover, the regulatory effect of citrate on lactone SL formation for the wild-type was absent in this new strain, which indicates that it is more robust and better suited for the industrial production of lactonic SLs. Basic parameters were determined for the purified SLs, which confirm that the two new strains produce molecules with distinctive properties of which the application potential can now easily be investigated independently.

  16. Synthesis of natural fragrant molecules cis-3-methyl-4-decanolide and aerangis lactone. General enantioselective routes to beta,gamma-cis-disubstituted gamma-lactones and gamma,delta-cis-disubstituted delta-lactones.

    PubMed

    Wu, Yikang; Shen, Xin; Tang, Chao-Jun; Chen, Zhi-Long; Hu, Qi; Shi, Wei

    2002-05-31

    General enantioselective routes to 3,4-cis-dialkyl substituted gamma-lactones and 4,5-cis-dialkyl substituted delta-lactones using TiCl(4)-mediated Evans asymmetric aldolization as the key step are reported. The syntheses are exemplified with two natural fragrant molecules, cis-3-methyl-4-decanolide (1) and aerangis lactone (2). The (R,R) steroegenic centers were established using (S)-phenylalanine-derived 2-oxazolidinone or thiazolidinethione as chiral auxiliary, whereas the (S,S) ones were constructed with auxiliary prepared from (R)-phenylglycine. NaBH(4)/CaCl(2)/THF in the presence of a small amount of EtOH was introduced as a new effective method for reductive cleavage of chiral oxazolidinone auxiliaries. Previously unknown, tricky concentration effects were observed during the monotosylation of diol 7 and BOM protection of Evans aldol 23.

  17. Changes in the expression of HSL and OCTN2 in the female reproductive tract of the bat, Scotophilus heathii in relation to sperm storage.

    PubMed

    Roy, Vikas Kumar; Krishna, Amitabh

    2012-07-01

    The aim of this study was to compare the changes in the expression of hormone sensitive lipase (HSL) and organic cation transporter 2 (OCTN2) in different regions of the female reproductive tract of bats (Scotophilus heathii) during the period of sperm storage. Western blot analysis revealed that both HSL and OCTN2 showed elevated expression in the utero-tubal junction, the site of sperm storage, compared to the vagina, cervix and uterus. An immunohistochemical study showed localization of HSL and OCTN2 in the cytoplasm of luminal epithelial cells in the utero-tubal junction of S. heathii, which suggests a role of fatty acids metabolism at the site of sperm storage. Furthermore, this study showed the presence OCTN2 immunostaining in the tail of stored sperm, which suggests a direct role of carnitine in sperm physiology. However, the role of carnitine in sperm storage needs further investigation. It is hypothesized that the utero-tubal junction may be finely tuned with fat depletion to support sperm storage in the female genital tract of S. heathii.

  18. How do the macrocyclic lactones kill filarial nematode larvae?

    PubMed

    Wolstenholme, Adrian J; Maclean, Mary J; Coates, Ruby; McCoy, Ciaran J; Reaves, Barbara J

    2016-09-01

    The macrocyclic lactones (MLs) are one of the few classes of drug used in the control of the human filarial infections, onchocerciasis and lymphatic filariasis, and the only one used to prevent heartworm disease in dogs and cats. Despite their importance in preventing filarial diseases, the way in which the MLs work against these parasites is unclear. In vitro measurements of nematode motility have revealed a large discrepancy between the maximum plasma concentrations achieved after drug administration and the amounts required to paralyze worms. Recent evidence has shed new light on the likely functions of the ML target, glutamate-gated chloride channels, in filarial nematodes and supports the hypothesis that the rapid clearance of microfilariae that follows treatment involves the host immune system. PMID:27279086

  19. Antiplasmodial activities of sesquiterpene lactone from Carpesium cernum.

    PubMed

    Chung, Ill-Min; Moon, Hyung-In

    2009-02-01

    The whole plant of genus Carpesium is used in traditional medicine as an anti-pyretic, analgesic and vermifugic, including a topical application for sores and inflammation. Previous experiments on Carpesium rosulatum suggested that the antiplasmodial effect was due to the existence of ineupatorolide A. In present paper, screening of Carpesium species from South Korea showed that this plant refers to which species had promising antiplasmodial activity. Subsequently, this species was selected for bioassay-guided fractionation in order to identify the active principles. Fractionation of the ethyl acetate extract of the whole plants by chromatographic techniques yielded four characterised sesquiterpenoid lactones which exhibited antiplasmodial activity against Plasmodium falciparum. This being the first time that this has been reported from Carpesium cernum. The antiplasmodial activity of the isolated compounds was determined against the Plasmodium falciparum. PMID:18608786

  20. Optimization of fermentation conditions for 1,3-propanediol production by marine Klebsiella pneumonia HSL4 using response surface methodology

    NASA Astrophysics Data System (ADS)

    Li, Lili; Zhou, Sheng; Ji, Huasong; Gao, Ren; Qin, Qiwei

    2014-09-01

    The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was followed to determine and optimize fermentation conditions for the maximum production of 1,3-PDO using marine-derived Klebsiella pneumoniae HSL4. Four nutritional supplements together with three independent culture conditions were optimized as follows: 29.3 g/L glycerol, 8.0 g/L K2 HPO4, 7.6 g/L (NH4)2 SO4, 3.0 g/L KH2 PO4, pH 7.1, cultivation at 35°C for 12 h. Under the optimal conditions, a maximum 1,3-PDO concentration of 14.5 g/L, a productivity of 1.21 g/(L·h) and a conversion of glycerol of 0.49 g/g were obtained. In comparison with the control conditions, fermentation under the optimized conditions achieved an increase of 38.8% in 1,3-PDO concentration, 39.0% in productivity and 25.7% in glycerol conversion in flask. This enhancement trend was further confirmed when the fermentation was conducted in a 5-L fermentor. The optimized fermentation conditions could be an important basis for developing lowcost, large-scale methods for industrial production of 1,3-PDO in the future.

  1. Sesquiterpene Lactone Composition of Wild and Cultivated Sunflowers and Biological Activity against an Insect Pest.

    PubMed

    Prasifka, Jarrad R; Spring, Otmar; Conrad, Jürgen; Cook, Leonard W; Palmquist, Debra E; Foley, Michael E

    2015-04-29

    Sesquiterpene lactones in sunflowers, Helianthus spp., are important to interactions with pathogens, weeds, and insects. Across a broad range of Helianthus annuus, differences in composition of sesquiterpene lactones extracted from disc florets were found between wild and cultivated sunflowers and also between distinct groups of inbreds used to produce sunflower hybrids. Discriminant function analysis showed the presence and relative abundance of argophyllone B, niveusin B, and 15-hydroxy-3-dehydrodesoxyfruticin were usually (75%) effective at classifying wild sunflowers, cultivated inbreds, and hybrids. Argophyllone B reduced the larval mass of the sunflower moth, Homeosoma electellum, by >30%, but only at a dose greater than that found in florets. Low doses of mixed extracts from cultivated florets produced a similar (≈40%) reduction in larval mass, suggesting combinations of sesquiterpene lactones act additively. Although the results support a role for sesquiterpene lactones in herbivore defense of cultivated sunflowers, additional information is needed to use these compounds purposefully in breeding.

  2. [Kinetics of the lactone-carboxylate transition of hybrid camptothecin-netropsin molecules].

    PubMed

    Oleĭnikov, V A; Ustinova, O A; Mochalov, K E; Ermishov, M A; Grokhovskiĭ, S L; Zhuze, A L; Sukhanova, A V; Nabiev, I R

    2003-01-01

    The kinetics of the hydrolysis of the lactone ring of a hybrid molecule containing the molecules of the antitumor drug camptothecin and a derivative of the antibiotic netropsines, which is highly affine and specific to the DNA A-T sequences was investigated. It was shown that intramolecular interaction significantly slows down the rate of hydrolysis but does not change the equilibrium ratio of concentrations of the lactone and carboxylate forms of the camptothecin fragment of the hybrid molecule, which corresponds to the pH value. The use of intramolecular interaction for controlling the kinetics of the lactone/carboxylate transition makes it possible to create the drugs of the camptothecin family, which preserve the biologically active lactone form under the physiological conditions for a longer time and, therefore, are more effective as anticancer agents. PMID:12815854

  3. Variecolactol: A New Sesterterpene Lactone from the Sclerotia of Aspergillus auricomus (Guegen) Saito

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variecolactol (1), a new sesterterpene lactone related to variecolin (2), has been isolated from the organic extracts of Aspergillus auricomus. Structure determination of this compound was achieved primarily through HMQC, HMBC, and NOESY experiments. The known compounds dihydropenicillic acid (3) ...

  4. Sesquiterpene lactones derived from Saussurea lappa induce apoptosis and inhibit invasion and migration in neuroblastoma cells.

    PubMed

    Tabata, Keiichi; Nishimura, Yuki; Takeda, Taiji; Kurita, Masahiro; Uchiyama, Taketo; Suzuki, Takashi

    2015-04-01

    Neuroblastoma is among the most fatal of solid tumors in the pediatric age group, even when treated aggressively. Therefore, a new effective therapeutic drug(s) for neuroblastoma is urgently needed. To clarify the anticancer effects of the sesquiterpene lactones dehydrocostus lactone and costunolide, derived from Saussurea lappa, we examined the cytotoxic and migration/invasion-inhibitory effects of these compounds against neuroblastoma cell lines. Both the compounds exerted significant cytotoxicity against the neuroblastoma cell lines IMR-32, NB-39, SK-N-SH, and LA-N-1. Evidence of cellular apoptosis, such as nuclear condensation and membrane inversion, were observed after treatment with these compounds. Both compounds induced caspase-7 activation and PARP cleavage as confirmed by Western blotting. Furthermore, the sesquiterpene lactones also suppressed invasion and migration of the neuroblastoma cells. These results suggest that dehydrocostus lactone and costunolide are promising candidates for being developed into novel anticancer drugs effective against neuroblastoma.

  5. Organocatalytic alpha-hydroxymethylation of cyclopentanone with aqueous formaldehyde: easy access to chiral delta-lactones.

    PubMed

    Mase, Nobuyuki; Inoue, Azusa; Nishio, Masaki; Takabe, Kunihiko

    2009-07-15

    Optically active lactones are important synthons in perfume and aroma manufacturing. Therefore, developments of efficient asymmetric syntheses are desired. Organocatalytic asymmetric alpha-hydroxymethylations of cyclopentanone with aqueous formaldehyde have been developed, to furnish the corresponding alpha-(hydroxymethyl)cyclopentanone with high enantioselectivity. Further chemical transformation of alpha-(hydroxymethyl)cyclopentanone gave the key intermediate for jasmine lactone, which is widely found in fruits and flowers.

  6. Pharmacokinetics, tissue distribution, and the lactone/carboxylate equilibrium of hydroxycamptothecin delivered via aerosol in mice.

    PubMed

    Hu, Wei; Zhang, Chao; Hu, Wenjin; Fang, Yun; Hou, Wenjie

    2012-10-01

    Aerosol delivery is a route which is advantageous to the therapy of pulmonary diseases, such as lung cancer. The pharmacokinetics and tissue distribution after aerosol delivery of carboxylate form of hydroxycamptothecin (C-HCPT) were investigated. The concentrations of the three different types (lactone, carboxylate and the total of both forms) of HCPT were measured by HPLC analysis. The initial experiment showed no evident difference between lactone and carboxylate in the lungs during the aerosol treatment, compared with the HCPT content in plasma. The AUC(inf) value of lactone in the lungs was higher than that of carboxylate, which was 138,176.00 min ng g⁻¹ and 128,460.00 min ng g⁻¹, respectively. Meanwhile, AUC(inf) in the plasma during the entire treatment indicated that the lactone content was always at a lower level, and the carboxylate form tended to predominate, as shown by the lactone/carboxylate (L/C) equilibrium. The tissue distribution results showed that the lactone proportion in the liver increased up to the maximum value of 69.69% after aerosol administration, whereas the mean L/C equilibrium index for the liver was 2.07±1.06, and the C(max) and AUC(0-∞) values of the total HCPT were highest in the tissues. Based on these results we speculated that the initial wholly carboxylate form of the HCPT atomized liquid did not influence the transformation to lactone form. Moreover, the deposition of the total HCPT and lactone was higher in the lungs and other tissues than in the plasma after the aerosol treatment. This study will be beneficial to the therapy of pulmonary carcinoma. PMID:22858157

  7. Versatile Enantioselective Synthesis of Functionalized Lactones via Copper-Catalyzed Radical Oxyfunctionalization of Alkenes.

    PubMed

    Zhu, Rong; Buchwald, Stephen L

    2015-07-01

    A versatile method for the rapid synthesis of diverse enantiomerically enriched lactones has been developed based on Cu-catalyzed enantioselective radical oxyfunctionalization of alkenes. The scope of this strategy encompasses a series of enantioselective difunctionalization reactions: oxyazidation, oxysulfonylation, oxyarylation, diacyloxylation, and oxyalkylation. These reactions provide straightforward access to a wide range of useful chiral lactone building blocks containing tetrasubstituted stereogenic centers, which are hard to access traditionally.

  8. Lactonization and protonation of gluconic acid: a thermodynamicand kinetic study by potentiometry, nmr and esi-ms

    SciTech Connect

    Zhang, Z.; Gibson, P.; Clark, S.B.; Tian, G.; Zanonato, P.; Rao, L.

    2007-01-10

    In acidic aqueous solutions, gluconate protonation is coupled with lactonization of gluconic acid. With the decrease of pC{sub H}, two lactones ({delta}/{gamma}) are sequentially formed. The {delta}-lactone forms more readily than the {gamma}-lactone. In 0.1 M gluconate solutions, if pC{sub H} is above 2.5, only the {delta}-lactone is generated. When pC{sub H} is decreased below 2.0, the formation of the {gamma}-lactone is observable although the {delta}-lactone predominates. At I = 0.1 M NaClO{sub 4} and room temperature, the deprotonation constant of the carboxylic group, using the NMR technique, was determined to be log K{sub a} = 3.30 {+-} 0.02; the {delta}-lactonization constant, by the batch potentiometric titrations, was obtained to be log K{sub L} = - (0.54 {+-} 0.04). Using ESI-MS, the rate constants of the {delta}-lactonization and the hydrolysis at pC{sub H} {approx} 5.0 were estimated to be k{sub 1} = 3.2 x 10{sup -5} s{sup -1} and k{sup -1} = 1.1 x 10{sup -4} s{sup -1}, respectively.

  9. Precursor-directed biosynthesis of novel triketide lactones.

    PubMed

    Regentin, Rika; Kennedy, Jonathan; Wu, Nicholas; Carney, John R; Licari, Peter; Galazzo, Jorge; Desai, Ruchir

    2004-01-01

    Precursor-directed biosynthesis was used to produce different triketide lactones (R-TKLs) in a fermentation process. Plasmids expressing engineered versions of the first subunit of 6-deoxyerythronolide B synthase (DEBS1) fused to the terminal DEBS thioesterase (TE) were introduced into three different Streptomyces strains. The DEBS1 protein fused to TE had either an inactivated ketosynthase domain (KS1 degrees ) or a partial DEBS1 lacking module 1 but containing module 2 (M2+TE). Different synthetic precursors were examined for their effect on R-TKL production. An overproducing strain of S. coelicolor expressing the M2+TE protein was found to be best for production of R-TKLs. Racemic precursors were as effective as enantiomerically pure precursors in the fermentation process. The R group on the precursor significantly affected titer (propyl > chloromethyl > vinyl). The R-TKLs were unstable in fermentation broth at pH 6-8. A two-phase fermentation with a pH shift was implemented to stabilize the products. The fermentation pH initially was controlled at optimal values for cell growth (pH 6.5) and then shifted to 5.5 during production. This doubled peak titers and stabilized the product. Finally, the concentration of synthetic precursor in the fermentation was optimized to improve production. A maximum titer of 500 mg/L 5-chloromethyl-TKL was obtained using 3.5 g/L precursor. PMID:14763833

  10. Short communication: Macrocyclic lactone residues in butter from Brazilian markets.

    PubMed

    Macedo, Fabio; Marsico, Eliane Teixeira; Conte-Júnior, Carlos Adam; de Almeida Furtado, Leonardo; Brasil, Taila Figueredo; Pereira Netto, Annibal Duarte

    2015-06-01

    Macrocyclic lactones (ML) are commonly used in drug formulations for the treatment of parasites in cattle. In Brazil, except for drugs (or formulations) with long-term (half-life) effects, ML are registered for use in bovines. Indiscriminate use of ML may result in the presence of residues in milk and dairy products due to their lipophilic properties and thermal stability. This study applied a method of liquid chromatography with fluorimetric detection, recently developed and validated for the determination of residues of abamectin, doramectin, ivermectin, and moxidectin in butter. The method was applied to 38 samples of commercial butter purchased in the metropolitan area of Rio de Janeiro, Brazil, between June and September 2013, analyzed in triplicate. Ivermectin was detected in 89.5% of the samples, with concentrations between 0.3 and 119.4 µg/kg; 76.3% of the samples contained doramectin (0.6 to 64.7 µg/kg) and 55.2% contained abamectin (0.7 to 4.5 µg/kg). Most butter samples (76.3%) contained residues of more than 1 ML; however, no residues of moxidectin were detected. The results showed a high incidence of the presence of avermectins in butter samples. Butter is not included in the Brazilian National Plan for Control of Residues and Contaminants in Animal Products. As ML residues concentrate in lipophilic compounds, butter and other fatty dairy products should be screened for the presence of ML residues. PMID:25864054

  11. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea

    PubMed Central

    Youn, Ui Joung; Miklossy, Gabriella; Chai, Xingyun; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Turkson, James; Chang, Leng Chee

    2014-01-01

    Four new sesquiterpene lactones, 8α-(2′Z-tigloyloxy)-hirsutinolide (1), 8α-(2′Z-tigloyloxy)-hirsutinolide-13-O-acetate (2), 8α-(4-hydroxytigloyloxy)-hirsutinolide (3), and 8α-hydroxy-13-O-tigloyl-hirsutinolide (4), along with seven known derivatives (5–11), three norisoprenoids (12–14), a flavonoid (15), and a linoleic acid derivative (16), were isolated from the chloroform partition of a methanol extract from the combined leaves and stems of Vernonia cinerea. Their structures were established by 1D and 2D NMR, UV, and MS analyses. Compounds 1–16 were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbour aberrantly-active STAT3, compared to normal NIH3T3 mouse fibroblasts that show no evidence of activated STAT3. Among the isolates, compounds 2 and 7 inhibited the aberrant STAT3 activity in glioblastoma or breast cancer cells. Further, compounds 7 and 8 inhibited viability of all three cell lines, compounds 2, 4, and 9 predominantly inhibited the viability of the U251MG glioblastoma cell line. PMID:24370662

  12. Short communication: Macrocyclic lactone residues in butter from Brazilian markets.

    PubMed

    Macedo, Fabio; Marsico, Eliane Teixeira; Conte-Júnior, Carlos Adam; de Almeida Furtado, Leonardo; Brasil, Taila Figueredo; Pereira Netto, Annibal Duarte

    2015-06-01

    Macrocyclic lactones (ML) are commonly used in drug formulations for the treatment of parasites in cattle. In Brazil, except for drugs (or formulations) with long-term (half-life) effects, ML are registered for use in bovines. Indiscriminate use of ML may result in the presence of residues in milk and dairy products due to their lipophilic properties and thermal stability. This study applied a method of liquid chromatography with fluorimetric detection, recently developed and validated for the determination of residues of abamectin, doramectin, ivermectin, and moxidectin in butter. The method was applied to 38 samples of commercial butter purchased in the metropolitan area of Rio de Janeiro, Brazil, between June and September 2013, analyzed in triplicate. Ivermectin was detected in 89.5% of the samples, with concentrations between 0.3 and 119.4 µg/kg; 76.3% of the samples contained doramectin (0.6 to 64.7 µg/kg) and 55.2% contained abamectin (0.7 to 4.5 µg/kg). Most butter samples (76.3%) contained residues of more than 1 ML; however, no residues of moxidectin were detected. The results showed a high incidence of the presence of avermectins in butter samples. Butter is not included in the Brazilian National Plan for Control of Residues and Contaminants in Animal Products. As ML residues concentrate in lipophilic compounds, butter and other fatty dairy products should be screened for the presence of ML residues.

  13. Characterisation of D-arabinono-1,4-lactone oxidase from Candida albicans ATCC 10231.

    PubMed

    Huh, W K; Kim, S T; Yang, K S; Seok, Y J; Hah, Y C; Kang, S O

    1994-11-01

    D-Erythroascorbic acid was detected from the cell extracts of a dimorphic fungus, Candida albicans. Its concentration in yeast cells grown at 25 degrees C was estimated to be about 0.45 mumol/ml cell water. D-Arabinono-1,4-lactone oxidase, which catalyses the final step in the biosynthesis of D-erythroascorbic acid, was purified 639-fold from the mitochondrial fraction of C. albicans to apparent homogeneity, with an overall yield of 21.2%, by a purification procedure consisting of Triton X-100 solubilisation, ammonium sulphate precipitation, anion-exchange, hydrophobic-interaction, gel-filtration and dye-ligand chromatographies. Gel-filtration chromatography and polyacrylamide-gradient gel electrophoresis in the presence of deoxycholate gave apparent molecular masses of 110 kDa and 84.4 kDa, respectively. SDS/PAGE showed only one protein band corresponding to a molecular mass of 66.7 kDa. Considering the binding of detergents, the enzyme is suggested to be a single polypeptide. The enzyme showed a typical fluorescence excitation spectrum of a flavin-containing enzyme. The flavin was not released by treatment with SDS, CCl3CO2H or boiling, indicating that it may be covalently bound to the enzyme protein. The enzyme was optimally active at 40 degrees C and at pH 6.1. The enzyme was stable in the range pH 7.5-10. An apparent Km value for D-arabinono-1,4-lactone was 44.1 mM. L-Galactono-1,4-lactone, L-gulono-1,4-lactone and L-xylono-1,4-lactone could also serve as substrates. Competitive inhibition was demonstrated with D-glucono-1,5-lactone, L-arabinono-1,4-lactone, D-galactono-1,4-lactone and D-gulono-1,4-lactone. p-Chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, iodoacetamide and divalent metal ions such as Cd2+, Hg2+, Mn2+ and Zn2+ exhibited inhibitory effects on the enzyme.

  14. First identification of three p-menthane lactones and their potential precursor, menthofuran, in red wines.

    PubMed

    Picard, Magali; de Revel, Gilles; Marchand, Stéphanie

    2017-02-15

    The p-menthane lactones constitute a family of powerful odorants, including the isomers of mintlactone and menthofurolactone that occur naturally in peppermint oil, known for their potent, mint-like olfactory properties. These lactones are closely related to the monoterpene-limonene secondary biotransformation and menthofuran has been identified as their common precursor in Mentha species. Using targeted GC-olfactometry and GC-MS analyses, together with quantification methods, we were able to demonstrate, for the first time, the presence of the diastereoisomers of these p-menthane lactones, as well as their common precursor, menthofuran, in red wines. In addition, we linked the presence of those lactones to interesting odorant zones, reminiscent of mint, detected in the studied wine. Although these p-menthane lactones may contribute individually to mint and coconut odors, sensory studies suggested for the first time that their combination at the levels found in the red wine studied resulted in a significant accentuation of freshness and mint notes. PMID:27664637

  15. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis

    PubMed Central

    Ivanescu, Bianca; Miron, Anca; Corciova, Andreia

    2015-01-01

    Sesquiterpene lactones are a large group of natural compounds, found primarily in plants of Asteraceae family, with over 5000 structures reported to date. Within this family, genus Artemisia is very well represented, having approximately 500 species characterized by the presence of eudesmanolides and guaianolides, especially highly oxygenated ones, and rarely of germacranolides. Sesquiterpene lactones exhibit a wide range of biological activities, such as antitumor, anti-inflammatory, analgesic, antiulcer, antibacterial, antifungal, antiviral, antiparasitic, and insect deterrent. Many of the biological activities are attributed to the α-methylene-γ-lactone group in their molecule which reacts through a Michael-addition with free sulfhydryl or amino groups in proteins and alkylates them. Due to the fact that most sesquiterpene lactones are thermolabile, less volatile compounds, they present no specific chromophores in the molecule and are sensitive to acidic and basic mediums, and their identification and quantification represent a difficult task for the analyst. Another problematic aspect is represented by the complexity of vegetal samples, which may contain compounds that can interfere with the analysis. Therefore, this paper proposes an overview of the methods used for the identification and quantification of sesquiterpene lactones found in Artemisia genus, as well as the optimal conditions for their extraction and separation. PMID:26495156

  16. Sesquiterpene lactones induce distinct forms of cell death that modulate human monocyte-derived macrophage responses.

    PubMed

    López-Antón, Nancy; Hermann, Corinna; Murillo, Renato; Merfort, Irmgard; Wanner, Gerhard; Vollmar, Angelika M; Dirsch, Verena M

    2007-01-01

    Sesquiterpene lactones (SQTLs) are shown to possess anti-inflammatory as well as cytotoxic activity. No study, however, links both activities. We, therefore, hypothesized that SQTL-treated, dying cells might induce an anti-inflammatory response in cocultured THP-1 macrophages. Here we show that SQTLs bearing either an alpha,beta-unsaturated cyclopentenone or an alpha-methylene-gamma-lactone induce different forms of cell death. Whereas the cyclopentenone SQTL induced typical apoptosis, the alpha-methylene-gamma-lactone SQTLs-induced cell death lacked partly classical signs of apoptosis, such as DNA fragmentation. All SQTLs, however, activated caspases and the nuclear morphology of cell death was dependent on caspase activation. Most interestingly, alpha-methylene-gamma-lactone SQTLs induced a more pronounced phosphatidylserine (PS) exposure than the cyclopentenone SQTL. Especially, 7-hydroxycostunolide (HC), with an alpha-methylene-gamma-lactone substituted with a hydroxyl group, showed a striking fast and pronounced PS translocation. This result was in agreement with a strong activation of phagocytosis in cocultured THP-1 macrophages. Interestingly, HC-treated Jurkat cells led to an early (3.5 h) but transient increase in TNF-alpha levels in macrophage coculture. Release of TGF-beta remained unaffected after 18 h. We propose that this type of SQTL may influence local inflammation by transiently activating the immune system and help to clear cells by inducing a form of cell death that promotes phagocytosis.

  17. First identification of three p-menthane lactones and their potential precursor, menthofuran, in red wines.

    PubMed

    Picard, Magali; de Revel, Gilles; Marchand, Stéphanie

    2017-02-15

    The p-menthane lactones constitute a family of powerful odorants, including the isomers of mintlactone and menthofurolactone that occur naturally in peppermint oil, known for their potent, mint-like olfactory properties. These lactones are closely related to the monoterpene-limonene secondary biotransformation and menthofuran has been identified as their common precursor in Mentha species. Using targeted GC-olfactometry and GC-MS analyses, together with quantification methods, we were able to demonstrate, for the first time, the presence of the diastereoisomers of these p-menthane lactones, as well as their common precursor, menthofuran, in red wines. In addition, we linked the presence of those lactones to interesting odorant zones, reminiscent of mint, detected in the studied wine. Although these p-menthane lactones may contribute individually to mint and coconut odors, sensory studies suggested for the first time that their combination at the levels found in the red wine studied resulted in a significant accentuation of freshness and mint notes.

  18. In vitro analysis of the anthelmintic activity of forage chicory (Cichorium intybus L.) sesquiterpene lactones against a predominatly Haemonchus contortus egg population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The anthelmintic activity of chicory (Cichorium intybus L.) herbage has been attributed to sesquiterpene lactones. Chicory leaves contain significant amounts of lactucin (LAC), 8-deoxylactucin (DOL), and lactucopicrin (LPIC), but the proportions of these three sesquiterpene lactones vary among fora...

  19. Crystallization and preliminary X-ray diffraction analysis of the lactonase VmoLac from Vulcanisaeta moutnovskia

    PubMed Central

    Hiblot, Julien; Gotthard, Guillaume; Champion, Charlotte; Chabriere, Eric; Elias, Mikael

    2013-01-01

    Phosphotriesterase-like lactonases (PLLs) are native lactonases that are capable of hydrolyzing lactones such as aliphatic lactones or acyl-homoserine lactones, which are involved in bacterial quorum sensing. Previously characterized PLLs are moreover endowed with a promiscuous phosphotriesterase activity and are therefore able to detoxify organophosphate insecticides. A novel PLL representative, dubbed VmoLac, has been identified from the hyperthermophilic crenarchaeon Vulcanisaeta moutnovskia. Because of its intrinsic high thermal stability, VmoLac may constitute an appealing candidate for engineering studies with the aim of producing an efficient biodecontaminant for organophosphorus compounds and a bacterial antivirulence agent. In combination with biochemical studies, structural information will allow the identification of the residues involved in substrate specificity and an understanding of the enzymatic catalytic mechanisms. Here, the expression, purification, crystallization and X-ray data collection at 2.4 Å resolution of VmoLac are reported. PMID:24192357

  20. Macrocyclic lactones: A versatile source for omega radiohalogenated fatty acid analogs

    SciTech Connect

    Dougan, A.H.; Lyster, D.M.; Robertson, K.A.; Vincent, J.S.

    1984-01-01

    For each omega halogenated fatty acid there exists a potential omega hydroxy fatty acid and the corresponding macrocyclic lactone. The authors have utilized such lactones as starting materials for omega /sup 123/I fatty acid analogs intended for myocardial imaging. Macrocyclic musk lactones are industrially available; 120 analogs are described in the literature. The preparation requires saponification, tosylation, and radio-iodide substitution. Iodo-fatty acids are readily separated from tosylate fatty acids on TLC. While providing a secure source of 16-iodo-hexadecanoic acid and 17-iodo-heptadecanoic acid, the scheme allows ready access to a large number of untried fatty acid analogs. Examples presented are 16-iodo-hexadecanoic acid, 16-iodo-7-hexadecanoic acid, 16-iodo-12-oxa-hexadecanoic acid, 15-iodo-pentadecanoic acid, and 15-iodo-12-keto-pentadecanoic acid. Metabolic studies are in progress in mice and dogs to assess the utility of these analogs for myocardial imaging.

  1. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects.

    PubMed

    Namekawa, S; Suda, S; Uyama, H; Kobayashi, S

    1999-01-01

    Lipase catalysis induced a ring-opening polymerization of lactones with different ring-sizes. Small-size (four-membered) and medium-size lactones (six- and seven-membered) as well as macrolides (12-, 13-, 16-, and 17-membered) were subjected to lipase-catalyzed polymerization. The polymerization behaviors depended primarily on the lipase origin and the monomer structure. The macrolides showing much lower anionic polymerizability were enzymatically polymerized faster than epsilon-caprolactone. The granular immobilized lipase derived from Candida antartica showed extremely efficient catalysis in the polymerization of epsilon-caprolactone. Single-step terminal functionalization of the polyester was achieved by initiator and terminator methods. The enzymatic polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics. PMID:10416661

  2. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects.

    PubMed

    Namekawa, S; Suda, S; Uyama, H; Kobayashi, S

    1999-01-01

    Lipase catalysis induced a ring-opening polymerization of lactones with different ring-sizes. Small-size (four-membered) and medium-size lactones (six- and seven-membered) as well as macrolides (12-, 13-, 16-, and 17-membered) were subjected to lipase-catalyzed polymerization. The polymerization behaviors depended primarily on the lipase origin and the monomer structure. The macrolides showing much lower anionic polymerizability were enzymatically polymerized faster than epsilon-caprolactone. The granular immobilized lipase derived from Candida antartica showed extremely efficient catalysis in the polymerization of epsilon-caprolactone. Single-step terminal functionalization of the polyester was achieved by initiator and terminator methods. The enzymatic polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics.

  3. Total assignment of 1H and 13C NMR data for the sesquiterpene lactone 15-deoxygoyazensolide.

    PubMed

    Heleno, Vladimir Constantino Gomes; Crotti, Antônio Eduardo Miller; Constantino, Mauricio Gomes; Lopes, Norberto Peporine; Lopes, João Luis Callegari

    2004-03-01

    We describe a complete analysis of the 1H and 13C spectra of the anti-inflamatory, schistossomicidal and trypanosomicidal sesquiterpene lactone 15-deoxygoyazensolide. This lactone, with a structure similar to other important ones, was studied by NMR techniques such as COSY, HMQC, HMBC, Jres and NOE experiments. The comparison of the data with some computational results led to an unequivocal assignment of all hydrogen and carbon chemical shifts, even eliminating some previous ambiguities. We were able to determine all hydrogen coupling constants (J) and signal multiplicities and to confirm the stereochemistry. A new method for the determination of the relative position of the lactonization and the position of the ester group on a medium-sized ring by NMR was developed.

  4. Synthesis and biological evaluation of homoserine lactone derived ureas as antagonists of bacterial quorum sensing.

    PubMed

    Frezza, Marine; Castang, Sandra; Estephane, Jane; Soulère, Laurent; Deshayes, Christian; Chantegrel, Bernard; Nasser, William; Queneau, Yves; Reverchon, Sylvie; Doutheau, Alain

    2006-07-15

    A series of 15 racemic alkyl- and aryl-N-substituted ureas, derived from homoserine lactone, were synthesized and tested for their ability to competitively inhibit the action of 3-oxohexanoyl-l-homoserine lactone, the natural inducer of bioluminescence in the bacterium Vibrio fischeri. N-alkyl ureas with an alkyl chain of at least 4 carbon atoms, as well as certain ureas bearing a phenyl group at the extremity of the alkyl chain, were found to be significant antagonists. In the case of N-butyl urea, it has been shown that the antagonist activity was related to the inhibition of the dimerisation of the N-terminal domain of ExpR, a protein of the receptor LuxR family. Molecular modelling suggested that this would result from the formation of an additional hydrogen bond in the protein acylhomoserine lactone binding cavity.

  5. Quantitative analysis of sesquiterpene lactones in extract of Arnica montana L. by 1H NMR spectroscopy.

    PubMed

    Staneva, Jordanka; Denkova, Pavletta; Todorova, Milka; Evstatieva, Ljuba

    2011-01-01

    (1)H NMR spectroscopy was used as a method for quantitative analysis of sesquiterpene lactones present in a crude lactone fraction isolated from Arnica montana. Eight main components - tigloyl-, methacryloyl-, isobutyryl- and 2-methylbutyryl-esters of helenalin (H) and 11α,13-dihydrohelenalin (DH) were identified in the studied sample. The method allows the determination of the total amount of sesquiterpene lactones and the quantity of both type helenalin and 11α,13-dihydrohelenalin esters separately. Furthermore, 6-O-tigloylhelenalin (HT, 1), 6-O-methacryloylhelenalin (HM, 2), 6-O-tigloyl-11α,13-dihydrohelenalin (DHT, 5), and 6-O-methacryloyl-11α,13-dihydrohelenalin (DHM, 6) were quantified as individual components.

  6. Benzenediol lactones: a class of fungal metabolites with diverse structural features and biological activities.

    PubMed

    Shen, Weiyun; Mao, Hongqiang; Huang, Qian; Dong, Jinyan

    2015-06-01

    Benzenediol lactones are a structurally variable family of fungal polyketide metabolites possessing a macrolide core structure fused into a resorcinol aromatic ring. These compounds are widespread in fungi mainly in the genera such as Aigialus, Cochliobolus, Curvularia, Fusarium, Humicola, Lasiodiplodia, Penicillium and Pochonia etc. Most of these fungal metabolites were reported to possess several interesting biological activities, such as cytotoxicities, nematicidal properties, inhibition of various kinases, receptor agonists, anti-inflammatory activities, heat shock response and immune system modulatory activities etc. This review summarizes the research on the isolation, structure elucidation, and biological activities of the benzenediol lactones, along with some available structure-activity relationships, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structure or stereochemistry, published up to the year of 2014. More than 190 benzenediol lactones are described, and over 300 references cited. PMID:25559850

  7. Neocosmospora sp.-derived resorcylic acid lactones with in vitro binding capacity for human opioid and cannabinoid receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassay-guided fractionation of a fungus Neocosmospora sp. (UM-031509) resulted in the isolation of three new resorcyclic acid lactones, neocosmosin A (2), neocosmosin B (3) and neocosmosin C (4). Three known resorcylic acid lactones, monocillin IV (1), monocillin II (5) and monorden (6) were also ...

  8. Mechanistic analysis of a synthetic inhibitor of the Pseudomonas aeruginosa LasI quorum-sensing signal synthase

    PubMed Central

    Lidor, O.; Al-Quntar, A.; Pesci, E. C.; Steinberg, D.

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen responsible for many human infections. LasI is an acyl-homoserine lactone synthase that produces a quorum-sensing (QS) signal that positively regulates numerous P. aeruginosa virulence determinants. The inhibition of the LasI protein is therefore an attractive drug target. In this study, a novel in silico to in vitro complementation was applied to screen thiazolidinedione-type compounds for their ability to inhibit biofilm formation at concentrations not affecting bacterial growth. The compound (z)-5-octylidenethiazolidine-2, 4-dione (TZD-C8) was a strong inhibitor of biofilm formation and chosen for further study. Structural exploration of in silico docking predicted that the compound had high affinity for the LasI activity pocket. The TZD-C8 compound was also predicted to create hydrogen bonds with residues Arg30 and Ile107. Site-directed mutagenesis (SDM) of these two sites demonstrated that TZD-C8 inhibition was abolished in the lasI double mutant PAO-R30D, I107S. In addition, in vitro swarming motility and quorum sensing signal production were affected by TZD-C 8, confirming this compound alters the cell to cell signalling circuitry. Overall, this novel inhibitor of P. aeruginosa quorum sensing shows great promise and validates our mechanistic approach to discovering inhibitors of LuxI-type acyl-homoserine lactone synthases. PMID:26593271

  9. Identification and analysis of the salt tolerant property of AHL lactonase (AiiATSAWB ) of Bacillus species.

    PubMed

    Easwaran, Nalini; Karthikeyan, Sivashanmugam; Sridharan, Balasundaram; Gothandam, Kodiveri Muthukaliannan

    2015-05-01

    Bacterial biofilms communicate by a process called Quorum Sensing. Gram negative bacterial pathogens specifically talk through the production, detection, and response to the signal or autoinducer called Acyl Homoserine Lactones. Bacterial lactonases are important AHL hydrolysing or quorum quenching enzymes. The present study deals with ten endospore forming gram positive isolates of the saltern soil. Preliminary screening for Quorum Quenching activity with the QS Inhibition indicator strain Chromobacterium violaceum ATCC 12472, showed positive activity in four isolates namely TS2, TS16, TSAWB, and TS53B. AHL lactonase (AiiA) specific primers amplified Acyl Homoserine Lactone lactonase gene in the TSAWB genome alone. Phylogenetic relationship of the identified AiiATSAWB confirmed its evolutionary relationship with bacterial AiiA like AHL lactonase of the metallo-beta-lactamase super family. Our in vitro AHL hydrolysis assay under wide percentage (0-5) of salt solutions with TSAWB isolate and also its intracellular soluble protein fraction showed halotolerant AHL hydrolysis ability of the AiiATSAWB enzyme. In silico determination of putative tertiary structure, the ESBRI derived conserved salt bridges, aminoacid residue characterization with high mole percent of acidic and hydrophobic residues reaffirmed the halotolerant ability of the enzyme. So we propound the future use of purified AiiATSAWB , as hypertonic suspension for inhalation to substitute the action of inactivated host's paraoxonase in treating Pseudomonas aeruginosa infection in cystic fibrosis patients. PMID:25041996

  10. Enterobacter asburiae strain L1: complete genome and whole genome optical mapping analysis of a quorum sensing bacterium.

    PubMed

    Lau, Yin Yin; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae.

  11. Synthesis and Antifeedant Activity of Racemic and Optically Active Hydroxy Lactones with the p-Menthane System.

    PubMed

    Grudniewska, Aleksandra; Kłobucki, Marek; Dancewicz, Katarzyna; Szczepanik, Maryla; Gabryś, Beata; Wawrzeńczyk, Czesław

    2015-01-01

    Two racemic and two enantiomeric pairs of new δ-hydroxy-γ-lactones based on the p-menthane system were prepared from racemic and optically active cis- and trans-piperitols. The Johnson-Claisen rearrangement of the piperitols, epoxidation of the γδ-unsaturated esters, and acidic lactonization of the epoxy esters were described. The structures of the compounds were confirmed spectroscopically. The antifeedant activities of the hydroxy lactones and racemic piperitone were evaluated against three insect pests: lesser mealworm, Alphitobius diaperinus (Panzer); Colorado potato beetle, Leptinotarsa decemlineata (Say); and peach-potato aphid, Myzus persicae (Sulz.). The chemical transformation of piperitone by the introduction of a lactone moiety and a hydroxy group changed its antifeedant properties. Behavioral bioassays showed that the feeding deterrent activity depended on the insect species and the structure of the compounds. All hydroxy lactones deterred the settling of M. persicae. Among chewing insects, the highest sensitivity showed A. diaperinus adults. PMID:26132506

  12. Studies on the mechanism, selectivity, and synthetic utility of lactone reduction using SmI(2) and H(2)O.

    PubMed

    Parmar, Dixit; Duffy, Lorna A; Sadasivam, Dhandapani V; Matsubara, Hiroshi; Bradley, Paul A; Flowers, Robert A; Procter, David J

    2009-10-28

    Although simple aliphatic esters and lactones have long been thought to lie outside the reducing range of SmI(2), activation of the lanthanide reagent by H(2)O allows some of these substrates to be manipulated in an unprecedented fashion. For example, the SmI(2)-H(2)O reducing system shows complete selectivity for the reduction of 6-membered lactones over other classes of lactones and esters. The kinetics of reduction has been studied using stopped-flow spectrophotometry. Experimental and computational studies suggest that the origin of the selectivity lies in the initial electron-transfer to the lactone carbonyl. The radical intermediates formed during lactone reduction with SmI(2)-H(2)O can be exploited in cyclizations to give cyclic ketone (or ketal) products with high diastereoselectivity. The cyclizations constitute the first examples of ester-alkene radical cyclizations in which the ester carbonyl acts as an acyl radical equivalent.

  13. Activation of antioxidant response element in mouse primary cortical cultures with sesquiterpene lactones isolated from Tanacetum parthenium

    PubMed Central

    Fischedick, Justin T; Standiford, Miranda; Johnson, Delinda A.; De Vos, Ric C.H.; Todorović, Slađana; Banjanac, Tijana; Verpoorte, Rob; Johnson, Jeffrey A.

    2012-01-01

    Tanacetum parthenium (Asteraceae) produces biologically active sesquiterpene lactones (SL). Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to activate a series of genes termed the antioxidant response element (ARE). Activation of the Nrf2/ARE may be useful for the treatment of neurodegenerative disease. In this study we isolated 11 sesquiterpene lactones from T. parthenium with centrifugal partition chromatography and semi-preparative HPLC. Compounds were screened in-vitro for their ability to activate the ARE on primary mouse cortical cultures as well as for their toxicity towards the cultures. All sesquiterpene lactones containing the α-methylene-γ-lactone moiety were able to activate the ARE although a number of compounds displayed significant cellular toxicity towards the cultures. The structure activity relationship of the sesquiterpene lactones indicate that the guaianolides isolated were more active and less toxic then the germacranolides. PMID:22923197

  14. Synthesis and Antifeedant Activity of Racemic and Optically Active Hydroxy Lactones with the p-Menthane System

    PubMed Central

    Grudniewska, Aleksandra; Kłobucki, Marek; Dancewicz, Katarzyna; Szczepanik, Maryla; Gabryś, Beata; Wawrzeńczyk, Czesław

    2015-01-01

    Two racemic and two enantiomeric pairs of new δ-hydroxy-γ-lactones based on the p-menthane system were prepared from racemic and optically active cis- and trans-piperitols. The Johnson-Claisen rearrangement of the piperitols, epoxidation of the γδ-unsaturated esters, and acidic lactonization of the epoxy esters were described. The structures of the compounds were confirmed spectroscopically. The antifeedant activities of the hydroxy lactones and racemic piperitone were evaluated against three insect pests: lesser mealworm, Alphitobius diaperinus (Panzer); Colorado potato beetle, Leptinotarsa decemlineata (Say); and peach-potato aphid, Myzus persicae (Sulz.). The chemical transformation of piperitone by the introduction of a lactone moiety and a hydroxy group changed its antifeedant properties. Behavioral bioassays showed that the feeding deterrent activity depended on the insect species and the structure of the compounds. All hydroxy lactones deterred the settling of M. persicae. Among chewing insects, the highest sensitivity showed A. diaperinus adults. PMID:26132506

  15. [Effects of ginkgo diterpene lactones meglumine injection's activated carbon adsorption technology on officinal components].

    PubMed

    Zhou, En-li; Wang, Ren-jie; Li, Miao; Wang, Wei; Xu, Dian-hong; Hu, Yang; Wang, Zhen-zhong; Bi, Yu-an; Xiao, Wei

    2015-10-01

    With the diversion rate of ginkgolide A, B, K as comprehensive evaluation indexes, the amount of activated carbon, ad- sorption time, mix rate, and adsorption temperature were selected as factors, orthogonal design which based on the evaluation method of information entropy was used to optimize activated carbon adsorption technology of ginkgo diterpene lactones meglumine injection. Opti- mized adsorption conditions were as follows: adsorbed 30 min with 0.2% activated carbon in 25 °C, 40 r ·min⁻¹, validation test re- sult display. The optimum extraction condition was stable and feasible, it will provide a basis for ginkgo diterpene lactone meglumine injection' activated carbon adsorption process.

  16. Short Flow-Photochemistry Enabled Synthesis of the Cytotoxic Lactone (+)-Goniofufurone.

    PubMed

    Ralph, Michael; Ng, Sean; Booker-Milburn, Kevin I

    2016-03-01

    A photochemical approach to the cytotoxic lactone (+)-goniofufurone (1) is reported. Paternò-Büchi [2 + 2] photocycloaddition from known enol ether 4, derived from the readily available sugar d-isosorbide, yielded oxetane 7. This slow, dilute reaction was scaled up by using flow photochemistry to yield >40 g of 7. Installation of the key lactone ring was achieved via a unique Wacker-style oxidation of an enol-ether bond. Acid-catalyzed aqueous ring opening provided 1 in five steps from 4 (11.5% overall).

  17. 1,5-glucono-δ-lactone-induced gelation of myofibrillar protein at chilled temperatures.

    PubMed

    Ngapo, T M; Wilkinson, B H; Chong, R

    1996-01-01

    In this study 1,5-glucono-δ-lactone was used to achieve acid-induced gelation of myofibrillar proteins at 4 °C. The characteristics of the myofibrillar gels were investigated by measuring Young's modulus and springiness. The effects of addition of sodium chloride and tetrasodium pyrophosphate on gel characteristics were also studied. Sodium chloride increased the Young's modulus of myofibrillar protein gels in the presence and absence of 1,5-glucono-δ-lactone, while tetrasodium pyrophosphate had no observable effect on the gels until the pH decreased to 4.1, when the Young's modulus was enhanced.

  18. [Effects of ginkgo diterpene lactones meglumine injection's activated carbon adsorption technology on officinal components].

    PubMed

    Zhou, En-li; Wang, Ren-jie; Li, Miao; Wang, Wei; Xu, Dian-hong; Hu, Yang; Wang, Zhen-zhong; Bi, Yu-an; Xiao, Wei

    2015-10-01

    With the diversion rate of ginkgolide A, B, K as comprehensive evaluation indexes, the amount of activated carbon, ad- sorption time, mix rate, and adsorption temperature were selected as factors, orthogonal design which based on the evaluation method of information entropy was used to optimize activated carbon adsorption technology of ginkgo diterpene lactones meglumine injection. Opti- mized adsorption conditions were as follows: adsorbed 30 min with 0.2% activated carbon in 25 °C, 40 r ·min⁻¹, validation test re- sult display. The optimum extraction condition was stable and feasible, it will provide a basis for ginkgo diterpene lactone meglumine injection' activated carbon adsorption process. PMID:27062815

  19. N-Sulfonyl homoserine lactones as antagonists of bacterial quorum sensing.

    PubMed

    Castang, Sandra; Chantegrel, Bernard; Deshayes, Christian; Dolmazon, René; Gouet, Patrice; Haser, Richard; Reverchon, Sylvie; Nasser, William; Hugouvieux-Cotte-Pattat, Nicole; Doutheau, Alain

    2004-10-18

    A series of 11 new analogues of N-acylhomoserine lactones in which the carboxamide bond was replaced by a sulfonamide one, has been synthesised. These compounds were evaluated for their ability to competitively inhibit the action of 3-oxohexanoyl-L-homoserine lactone, the natural ligand of the quorum sensing transcriptional regulator LuxR, which in turn activates expression of bioluminescence in the model bacterium Vibrio fischeri. Several compounds were found to display antagonist activity. Molecular modeling suggests that the latter prevent a cascade of structural rearrangements necessary for the formation of the active LuxR dimer.

  20. Investigation of the Genetics and Biochemistry of Roseobacticide Production in the Roseobacter Clade Bacterium Phaeobacter inhibens.

    PubMed

    Wang, Rurun; Gallant, Étienne; Seyedsayamdost, Mohammad R

    2016-01-01

    Roseobacterclade bacteria are abundant in surface waters and are among the most metabolically diverse and ecologically significant species. This group includes opportunistic symbionts that associate with micro- and macroalgae. We have proposed that one representative member,Phaeobacter inhibens, engages in a dynamic symbiosis with the microalgaEmiliania huxleyi In one phase, mutualistically beneficial molecules are exchanged, including theRoseobacter-produced antibiotic tropodithietic acid (TDA), which is thought to protect the symbiotic interaction. In an alternative parasitic phase, triggered by algal senescence, the bacteria produce potent algaecides, the roseobacticides, which kill the algal host. Here, we employed genetic and biochemical screens to identify the roseobacticide biosynthetic gene cluster. By using a transposon mutagenesis approach, we found that genes required for TDA synthesis-thetdaoperon andpaacatabolon-are also necessary for roseobacticide production. Thus, in contrast to the one-cluster-one-compound paradigm, thetdagene cluster can generate two sets of molecules with distinct structures and bioactivities. We further show that roseobacticide production is quorum sensing regulated via anN-acyl homoserine lactone signal (3-OH-C10-HSL). To ensure tight regulation of algaecide production, and thus of a lifestyle switch from mutualism to parasitism, roseobacticide biosynthesis necessitates the presence of both an algal senescence molecule and a quorum sensing signal.IMPORTANCEMarineRoseobacterspecies are abundant in the oceans and engage in symbiotic interactions with microscopic algae. One member,P. inhibens, produces the antibiotic TDA and a growth hormone thought to protect and promote algal growth. However, in the presence of molecules released by senescing algae, the bacteria produce potent algaecides, the roseobacticides, which kill the host. We examined the regulatory networks and biosynthetic genes required for roseobacticide production

  1. Crystal Structures of a Quorum-Quenching Antibody

    PubMed Central

    Debler, Erik W.; Kaufmann, Gunnar F.; Kirchdoerfer, Robert N.; Mee, Jenny M.; Janda, Kim D.; Wilson, Ian A.

    2007-01-01

    Summary A large number of Gram-negative bacteria employ N-acyl homoserine lactones (AHLs) as signaling molecules in quorum sensing, which is a population density-dependent mechanism to coordinate gene expression. Antibody RS2-1G9 was elicited against a lactam mimetic of the N-acyl homoserine lactone and represents the only reported monoclonal antibody that recognizes the naturally-occuring N-acyl homoserine lactone with high affinity. Due to its high cross-reactivity, RS2-1G9 showed remarkable inhibition of quorum sensing signaling in Pseudomonas aeruginosa, a common opportunistic pathogen in humans. The crystal structure of Fab RS2-1G9 in complex with a lactam analog revealed complete encapsulation of the polar lactam moiety in the antibody combining site. This mode of recognition provides an elegant immunological solution for tight binding to an aliphatic, lipid-like ligand with a small head group lacking typical haptenic features, such as aromaticity or charge, which are often incorporated into hapten design to generate high-affinity antibodies. The ability of RS2-1G9 to discriminate between closely-related AHLs is conferred by six hydrogen bonds to the ligand. Conversely, cross-reactivity of RS2-1G9 towards the lactone is likely to originate from conservation of these hydrogen bonds as well as an additional hydrogen bond to the oxygen of the lactone ring. A short and narrow tunnel exiting at the protein surface harbors a portion of the acyl chain and would not allow for entry of the head group. The crystal structure of the antibody without its cognate lactam or lactone ligands revealed a considerably altered antibody combining site with a closed binding pocket, suggestive of an induced fit mechanism for ligand binding. Curiously, a completely buried ethylene glycol molecule mimics the lactam ring and, thus, serves as a surrogate ligand. The detailed structural delineation of this quorum-quenching antibody will now aid in further development of an antibody

  2. Crystal Structures of a Quorum-Quenching Antibody

    SciTech Connect

    Debler, E.W.; Kaufmann, G.F.; Kirchdoerfer, R.N.; Mee, J.M.; Janda, K.D.; Wilson, I.A.; /Scripps Res. Inst. /Skaggs Inst. /WIRM, La Jolla

    2007-07-09

    A large number of Gram-negative bacteria employ N-acyl homoserine lactones (AHLs) as signaling molecules in quorum sensing, which is a population density-dependent mechanism to coordinate gene expression. Antibody RS2-1G9 was elicited against a lactam mimetic of the N-acyl homoserine lactone and represents the only reported monoclonal antibody that recognizes the naturally-occuring N-acyl homoserine lactone with high affinity. Due to its high cross-reactivity, RS2-1G9 showed remarkable inhibition of quorum sensing signaling in Pseudomonas aeruginosa, a common opportunistic pathogen in humans. The crystal structure of Fab RS2-1G9 in complex with a lactam analog revealed complete encapsulation of the polar lactam moiety in the antibody-combining site. This mode of recognition provides an elegant immunological solution for tight binding to an aliphatic, lipid-like ligand with a small head group lacking typical haptenic features, such as aromaticity or charge, which are often incorporated into hapten design to generate high-affinity antibodies. The ability of RS2-1G9 to discriminate between closely related AHLs is conferred by six hydrogen bonds to the ligand. Conversely, cross-reactivity of RS2-1G9 towards the lactone is likely to originate from conservation of these hydrogen bonds as well as an additional hydrogen bond to the oxygen of the lactone ring. A short, narrow tunnel exiting at the protein surface harbors a portion of the acyl chain and would not allow entry of the head group. The crystal structure of the antibody without its cognate lactam or lactone ligands revealed a considerably altered antibody-combining site with a closed binding pocket. Curiously, a completely buried ethylene glycol molecule mimics the lactam ring and, thus, serves as a surrogate ligand. The detailed structural delineation of this quorum-quenching antibody will aid further development of an antibody-based therapy against bacterial pathogens by interference with quorum sensing.

  3. Xanthine-based KMUP-1 improves HDL via PPARγ/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss[S

    PubMed Central

    Kuo, Kung-Kai; Wu, Bin-Nan; Liu, Chung-Pin; Yang, Tzu-Yang; Kao, Li-Pin; Wu, Jiunn-Ren; Lai, Wen-Ter; Chen, Ing-Jun

    2015-01-01

    The phosphodiesterase inhibitor (PDEI)/eNOS enhancer KMUP-1, targeting G-protein coupled receptors (GPCRs), improves dyslipidemia. We compared its lipid-lowering effects with simvastatin and explored hormone-sensitive lipase (HSL) translocation in hepatic fat loss. KMUP-1 HCl (1, 2.5, and 5 mg/kg/day) and simvastatin (5 mg/kg/day) were administered in C57BL/6J male mice fed a high-fat diet (HFD) by gavage for 8 weeks. KMUP-1 inhibited HFD-induced plasma/liver TG, total cholesterol, and LDL; increased HDL/3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)/Rho kinase II (ROCK II)/PPARγ/ABCA1; and decreased liver and body weight. KMUP-1 HCl in drinking water (2.5 mg/200 ml tap water) for 1–14 or 8–14 weeks decreased HFD-induced liver and body weight and scavenger receptor class B type I expression and increased protein kinase A (PKA)/PKG/LDLRs/HSL expression and immunoreactivity. In HepG2 cells incubated with serum or exogenous mevalonate, KMUP-1 (10−7∼10−5 M) reversed HMGR expression by feedback regulation, colocalized expression of ABCA1/apolipoprotein A-I/LXRα/PPARγ, and reduced exogenous geranylgeranyl pyrophosphate/farnesyl pyrophosphate (FPP)-induced RhoA/ROCK II expression. A guanosine 3′,5′-cyclic monophosphate (cGMP) antagonist reversed KMUP-1-induced ROCK II reduction, indicating cGMP/eNOS involvement. KMUP-1 inceased PKG and LDLRs surrounded by LDL and restored oxidized LDL-induced PKA expresion. Unlike simvastatin, KMUP-1 could not inhibit 14C mevalonate formation. KMUP-1 could, but simvastatin could not, decrease ROCK II expression by exogenous FPP/CGPP. KMUP-1 improves HDL via PPARγ/LXRα/ABCA1/Apo-I expression and increases LDLRs/PKA/PKG/HSL expression and immunoreactivity, leading to TG hydrolysis to lower hepatic fat and body weight. PMID:26351364

  4. Xanthine-based KMUP-1 improves HDL via PPARγ/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss.

    PubMed

    Kuo, Kung-Kai; Wu, Bin-Nan; Liu, Chung-Pin; Yang, Tzu-Yang; Kao, Li-Pin; Wu, Jiunn-Ren; Lai, Wen-Ter; Chen, Ing-Jun

    2015-11-01

    The phosphodiesterase inhibitor (PDEI)/eNOS enhancer KMUP-1, targeting G-protein coupled receptors (GPCRs), improves dyslipidemia. We compared its lipid-lowering effects with simvastatin and explored hormone-sensitive lipase (HSL) translocation in hepatic fat loss. KMUP-1 HCl (1, 2.5, and 5 mg/kg/day) and simvastatin (5 mg/kg/day) were administered in C57BL/6J male mice fed a high-fat diet (HFD) by gavage for 8 weeks. KMUP-1 inhibited HFD-induced plasma/liver TG, total cholesterol, and LDL; increased HDL/3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)/Rho kinase II (ROCK II)/PPARγ/ABCA1; and decreased liver and body weight. KMUP-1 HCl in drinking water (2.5 mg/200 ml tap water) for 1-14 or 8-14 weeks decreased HFD-induced liver and body weight and scavenger receptor class B type I expression and increased protein kinase A (PKA)/PKG/LDLRs/HSL expression and immunoreactivity. In HepG2 cells incubated with serum or exogenous mevalonate, KMUP-1 (10(-7)∼10(-5) M) reversed HMGR expression by feedback regulation, colocalized expression of ABCA1/apolipoprotein A-I/LXRα/PPARγ, and reduced exogenous geranylgeranyl pyrophosphate/farnesyl pyrophosphate (FPP)-induced RhoA/ROCK II expression. A guanosine 3',5'-cyclic monophosphate (cGMP) antagonist reversed KMUP-1-induced ROCK II reduction, indicating cGMP/eNOS involvement. KMUP-1 inceased PKG and LDLRs surrounded by LDL and restored oxidized LDL-induced PKA expresion. Unlike simvastatin, KMUP-1 could not inhibit (14)C mevalonate formation. KMUP-1 could, but simvastatin could not, decrease ROCK II expression by exogenous FPP/CGPP. KMUP-1 improves HDL via PPARγ/LXRα/ABCA1/Apo-I expression and increases LDLRs/PKA/PKG/HSL expression and immunoreactivity, leading to TG hydrolysis to lower hepatic fat and body weight.

  5. Xanthine-based KMUP-1 improves HDL via PPARγ/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss.

    PubMed

    Kuo, Kung-Kai; Wu, Bin-Nan; Liu, Chung-Pin; Yang, Tzu-Yang; Kao, Li-Pin; Wu, Jiunn-Ren; Lai, Wen-Ter; Chen, Ing-Jun

    2015-11-01

    The phosphodiesterase inhibitor (PDEI)/eNOS enhancer KMUP-1, targeting G-protein coupled receptors (GPCRs), improves dyslipidemia. We compared its lipid-lowering effects with simvastatin and explored hormone-sensitive lipase (HSL) translocation in hepatic fat loss. KMUP-1 HCl (1, 2.5, and 5 mg/kg/day) and simvastatin (5 mg/kg/day) were administered in C57BL/6J male mice fed a high-fat diet (HFD) by gavage for 8 weeks. KMUP-1 inhibited HFD-induced plasma/liver TG, total cholesterol, and LDL; increased HDL/3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)/Rho kinase II (ROCK II)/PPARγ/ABCA1; and decreased liver and body weight. KMUP-1 HCl in drinking water (2.5 mg/200 ml tap water) for 1-14 or 8-14 weeks decreased HFD-induced liver and body weight and scavenger receptor class B type I expression and increased protein kinase A (PKA)/PKG/LDLRs/HSL expression and immunoreactivity. In HepG2 cells incubated with serum or exogenous mevalonate, KMUP-1 (10(-7)∼10(-5) M) reversed HMGR expression by feedback regulation, colocalized expression of ABCA1/apolipoprotein A-I/LXRα/PPARγ, and reduced exogenous geranylgeranyl pyrophosphate/farnesyl pyrophosphate (FPP)-induced RhoA/ROCK II expression. A guanosine 3',5'-cyclic monophosphate (cGMP) antagonist reversed KMUP-1-induced ROCK II reduction, indicating cGMP/eNOS involvement. KMUP-1 inceased PKG and LDLRs surrounded by LDL and restored oxidized LDL-induced PKA expresion. Unlike simvastatin, KMUP-1 could not inhibit (14)C mevalonate formation. KMUP-1 could, but simvastatin could not, decrease ROCK II expression by exogenous FPP/CGPP. KMUP-1 improves HDL via PPARγ/LXRα/ABCA1/Apo-I expression and increases LDLRs/PKA/PKG/HSL expression and immunoreactivity, leading to TG hydrolysis to lower hepatic fat and body weight. PMID:26351364

  6. Concurrent and supercritical fluid chromatographic analysis of Terpene Lactones and ginkolic acids in Ginko biloba.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supercritical fluid chromatography was used to resolve and determine ginkgolic acids (GAs) and terpene lactones concurrently in ginkgo plant materials and commercial dietary supplements. Analysis of GAs (C13:0, C15:0, C15:1 and C17:1) was carried out by ESI (-) mass detection. The ESI (-) spectra of...

  7. 12-Membered Resorcylic Acid Lactones Isolated from Saccharicola bicolor, an Endophytic Fungi from Bergenia purpurascens.

    PubMed

    Guo, Da-Le; Zhao, Min; Xiao, Shi-Ji; Xia, Bing; Wan, Bo; Gu, Yu-Cheng; Ding, Li-Sheng; Zhou, Yan

    2015-12-01

    Two new resorcylic acid lactones, 13-hydroxyhidroresorcylide (1) and 12-hydroxyhidroresorcylide (2), along with four known congeners (3-6) were isolated from Saccharicola bicolor, an endophytic fungus from Bergenia purpurascens. Their structures were elucidated by interpretation of the spectroscopic evidence.

  8. Anthelmintic potential of chicory forage is influenced by sesquiterpene lactone composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The anthelmintic activity of chicory (Cichorium intybus L.) herbage has been attributed to sesquiterpene lactones (SLs). Chicory leaves contain lactucin (LAC), 8-deoxylactucin (DOL), and lactucopicrin (LPIC), but the amounts of these three SLs vary among cultivars. The objective of this study was...

  9. Haemonchus contortus P-glycoprotein-2: in situ localisation and characterisation of macrocyclic lactone transport.

    PubMed

    Godoy, Pablo; Lian, Jing; Beech, Robin N; Prichard, Roger K

    2015-01-01

    Haemonchus contortus is a veterinary nematode that infects small ruminants, causing serious decreases in animal production worldwide. Effective control through anthelmintic treatment has been compromised by the development of resistance to these drugs, including the macrocyclic lactones. The mechanisms of resistance in H. contortus have yet to be established but may involve efflux of the macrocyclic lactones by nematode ATP-binding-cassette transporters such as P-glycoproteins. Here we report the expression and functional activity of H. contortus P-glycoprotein 2 expressed in mammalian cells and characterise its interaction with the macrocyclic lactones, ivermectin, abamectin and moxidectin. The ability of H. contortus P-glycoprotein 2 to transport different fluorophore substrates was markedly inhibited by ivermectin and abamectin in a dose-dependent and saturable way. The profile of transport inhibition by moxidectin was markedly different. H. contortus P-glycoprotein 2 was expressed in the pharynx, the first portion of the worm's intestine and perhaps in adjacent nervous tissue, suggesting a role for this gene in regulating the uptake of avermectins and in protecting nematode tissues from the effects of macrocyclic lactone anthelmintic drugs. H. contortus P-glycoprotein 2 may thus contribute to resistance to these drugs in H. contortus.

  10. SELECTIVE HYDROGENATION OF ANHYDRIDES TO LACTONES UNDER SUPERCRITICAL CARBON DIOXIDE MEDIUM

    EPA Science Inventory

    Selective Hydrogenation of Anhydrides to Lactones Under Supercritical Carbon Dioxide Medium

    Endalkachew Sahle-Demessie Unnikrishnan R Pillai
    U.S. EPA , 26 W. Martin Luther King Dr. Cincinnati, OH 45268 Phone: 513-569-7739
    Fax: 513-569-7677
    Abstract:
    Hydrogenat...

  11. Structure-hepatoprotective activity relationship study of sesquiterpene lactones: A QSAR analysis

    NASA Astrophysics Data System (ADS)

    Paukku, Yuliya; Rasulev, Bakhtiyor; Syrov, Vladimir; Khushbaktova, Zainab; Leszczynski, Jerzy

    This study has been carried out using quantitative structure-activity relationship analysis (QSAR) for 22 sesquiterpene lactones to correlate and predict their hepatoprotective activity. Sesquiterpenoids, the largest class of terpenoids, are a widespread group of substances occurring in various plant organisms. QSAR analysis was carried out using methods such as genetic algorithm for variables selection among generated and calculated descriptors and multiple linear regression analysis. Quantum-chemical calculations have been performed by density functional theory at B3LYP/6-311G(d, p) level for evaluation of electronic properties using reference geometries optimized by semi-empirical AM1 approach. Three models describing hepatoprotective activity values for series of sesquiterpene lactones are proposed. The obtained models are useful for description of sesquiterpene lactones hepatoprotective activity and can be used to estimate the hepatoprotective activity of new substituted sesquiterpene lactones. The models obtained in our study show not only statistical significance, but also good predictive ability. The estimated predictive ability (rtest2) of these models lies within 0.942-0.969.

  12. Alkene Dioxygenation with Malonoyl Peroxides: Synthesis of γ-Lactones, Isobenzofuranones, and Tetrahydrofurans.

    PubMed

    Alamillo-Ferrer, Carla; Karabourniotis-Sotti, Marianna; Kennedy, Alan R; Campbell, Matthew; Tomkinson, Nicholas C O

    2016-07-01

    Treatment of homoallylic alcohols or carboxylic acids with malonoyl peroxide 1 provides a stereoselective method for the preparation of tetrahydrofurans, γ-lactones, and isobenzofuranones in 44-82% yield and up to 27:1 trans selectivity. Application of this simple and effective heterocyclization in the synthesis of the antidepressant citalopram is also described. PMID:27314605

  13. In vitro leishmanicidal activities of sesquiterpene lactones from Tithonia diversifolia against Leishmania braziliensis promastigotes and amastigotes.

    PubMed

    de Toledo, Juliano S; Ambrósio, Sergio R; Borges, Carly H G; Manfrim, Viviane; Cerri, Daniel G; Cruz, Angela K; Da Costa, Fernando B

    2014-01-01

    Natural compounds represent a rich and promising source of novel, biologically active chemical entities for treating leishmaniasis. Sesquiterpene lactones are a recognized class of terpenoids with a wide spectrum of biological activities, including activity against Leishmania spp. In this work, a sesquiterpene lactone-rich preparation-a leaf rinse extract (LRE) from Tithonia diversifolia-was tested against promastigote forms of L. braziliensis. The results revealed that the LRE is a rich source of potent leishmanicidal compounds, with an LD50 value 1.5 ± 0.50 µg·mL-1. Therefore, eight sesquiterpene lactones from the LRE were initially investigated against promastigote forms of L. braziliensis. One of them did not present any significant leishmanicidal effect (LD50 > 50 µg·mL-1). Another had a cytotoxic effect against macrophages (4.5 µg·mL-1). The five leishmanicidal compounds with the highest level of selectivity were further evaluated against intracellular parasites (amastigotes) using peritoneal macrophages. Tirotundin 3-O-methyl ether, tagitinin F, and a guaianolide reduced the internalization of parasites after 48 h, in comparison with the negative control. This is the first report on sesquiterpene lactones that have potent leishmanicidal effects on both developmental stages of L. braziliensis. PMID:24830711

  14. Developmental and Environmental Effects on Sesquiterpene Lactones in Cultivated Arnica montana L.

    PubMed

    Todorova, Milka; Trendafilova, Antoaneta; Vitkova, Antonina; Petrova, Maria; Zayova, Ely; Antonova, Daniela

    2016-08-01

    The amount of sesquiterpene lactones and the lactone profile of Arnica montana L. in flowering and seed formation stages in vitro and in vivo propagated from seeds of German, Ukrainian, and Austrian origin and grown in two experimental fields were studied. It was found that in vitro propagated 2-year plants in full flowering stage accumulated higher amount of lactones in comparison to in vivo propagated 3-year plants and to the seed formation stage, respectively. Helenalins predominated in in vivo propagated 2-year or in vitro propagated 3-year plants. 2-Methylbutyrate (2MeBu) was the principal ester in the samples with prevalence of helenalins, while isobutyrate (iBu) was the major one in the samples with predominance of 11,13-dihydrohelenalins. The results revealed that the environmental conditions on Vitosha Mt. are more suitable for cultivation of A. montana giving higher content of lactones.

  15. 12-Membered Resorcylic Acid Lactones Isolated from Saccharicola bicolor, an Endophytic Fungi from Bergenia purpurascens.

    PubMed

    Guo, Da-Le; Zhao, Min; Xiao, Shi-Ji; Xia, Bing; Wan, Bo; Gu, Yu-Cheng; Ding, Li-Sheng; Zhou, Yan

    2015-12-01

    Two new resorcylic acid lactones, 13-hydroxyhidroresorcylide (1) and 12-hydroxyhidroresorcylide (2), along with four known congeners (3-6) were isolated from Saccharicola bicolor, an endophytic fungus from Bergenia purpurascens. Their structures were elucidated by interpretation of the spectroscopic evidence. PMID:26882683

  16. Structural and Sensory Characterization of Novel Sesquiterpene Lactones from Iceberg Lettuce.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2016-01-13

    Lactuca sativa var. capitate (iceberg lettuce) is a delicious vegetable and popular for its mild taste. Nevertheless, iceberg lettuce is a source of bitter substances, such as the sesquiterpene lactones. Chemical investigations on the n-butanol extract led to the isolation of three novel sesquiterpene lactones. All compounds were isolated by multilayer countercurrent chromatography followed by preparative high-performance liquid chromatography. The structures were verified by means of spectroscopic methods, including NMR and mass spectrometry techniques. For the first time 11ß,13-dihydrolactucin-8-O-sulfate (jaquinelin-8-O-sulfate) was structurally elucidated and identified in plants. In addition, the sesquiterpene lactones cichorioside B and 8-deacetylmatricarin-8-O-sulfate were identified as novel ingredients of iceberg lettuce. Further flowering plants in the daisy family Asteraceae were examined for the above three compounds. At least one of the compounds was identified in nine plants. The comparison between the lettuce butt end and the leaves of five types of the Cichorieae tribe showed an accumulation of the compounds in the butt end. Further experiments addressed the impact of sesquiterpene lactones on color formation and bitter taste. PMID:26727458

  17. Structural and Sensory Characterization of Novel Sesquiterpene Lactones from Iceberg Lettuce.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2016-01-13

    Lactuca sativa var. capitate (iceberg lettuce) is a delicious vegetable and popular for its mild taste. Nevertheless, iceberg lettuce is a source of bitter substances, such as the sesquiterpene lactones. Chemical investigations on the n-butanol extract led to the isolation of three novel sesquiterpene lactones. All compounds were isolated by multilayer countercurrent chromatography followed by preparative high-performance liquid chromatography. The structures were verified by means of spectroscopic methods, including NMR and mass spectrometry techniques. For the first time 11ß,13-dihydrolactucin-8-O-sulfate (jaquinelin-8-O-sulfate) was structurally elucidated and identified in plants. In addition, the sesquiterpene lactones cichorioside B and 8-deacetylmatricarin-8-O-sulfate were identified as novel ingredients of iceberg lettuce. Further flowering plants in the daisy family Asteraceae were examined for the above three compounds. At least one of the compounds was identified in nine plants. The comparison between the lettuce butt end and the leaves of five types of the Cichorieae tribe showed an accumulation of the compounds in the butt end. Further experiments addressed the impact of sesquiterpene lactones on color formation and bitter taste.

  18. Self-Assembly and Lipid Interactions of Diacylglycerol Lactone Derivatives Studied at the Air/Water Interface

    PubMed Central

    Philosof-Mazor, Liron; Volinsky, Roman; Comin, Maria J.; Lewin, Nancy E.; Kedei, Noemi; Blumberg, Peter M.; Marquez, Victor E.; Jelinek, Raz

    2009-01-01

    Synthetic diacylglycerol lactones (DAG-lactones) have been shown to be effective modulators of critical cellular signaling pathways. The biological activity of these amphiphilic molecules depends in part upon their lipid interactions within the cellular plasma membrane. This study explores the thermodynamic and structural features of DAG-lactone derivatives and their lipid interactions at the air/water interface. Surface-pressure/area isotherms and Brewster angle microscopy revealed the significance of specific side-groups attached to the terminus of a very rigid 4-(2-phenylethynyl) benzoyl chain of the DAG-lactones, which affected both the self-assembly of the molecules and their interactions with phospholipids. The experimental data highlight the formation of different phases within mixed DAG-lactone/phospholipid monolayers and underscore the relationship between the two components in binary mixtures of different mole ratios. Importantly, the results suggest that DAG-lactones are predominantly incorporated within fluid phospholipid phases rather than in the condensed phases that form, for example, by cholesterol. Moreover, the size and charge of the phospholipid headgroups do not seem to affect DAG-lactone interactions with lipids. PMID:18788772

  19. Mode of Action of the Sesquiterpene Lactones Psilostachyin and Psilostachyin C on Trypanosoma cruzi.

    PubMed

    Sülsen, Valeria P; Puente, Vanesa; Papademetrio, Daniela; Batlle, Alcira; Martino, Virginia S; Frank, Fernanda M; Lombardo, María E

    2016-01-01

    Trypanosoma cruzi is the causative agent of Chagas' disease, which is a major endemic disease in Latin America and is recognized by the WHO as one of the 17 neglected tropical diseases in the world. Psilostachyin and psilostachyin C, two sesquiterpene lactones isolated from Ambrosia spp., have been demonstrated to have trypanocidal activity. Considering both the potential therapeutic targets present in the parasite, and the several mechanisms of action proposed for sesquiterpene lactones, the aim of this work was to characterize the mode of action of psilostachyin and psilostachyin C on Trypanosoma cruzi and to identify the possible targets for these molecules. Psilostachyin and psilostachyin C were isolated from Ambrosia tenuifolia and Ambrosia scabra, respectively. Interaction of sesquiterpene lactones with hemin, the induction of oxidative stress, the inhibition of cruzipain and trypanothione reductase and their ability to inhibit sterol biosynthesis were evaluated. The induction of cell death by apoptosis was also evaluated by analyzing phosphatidylserine exposure detected using annexin-V/propidium iodide, decreased mitochondrial membrane potential, assessed with Rhodamine 123 and nuclear DNA fragmentation evaluated by the TUNEL assay. Both STLs were capable of interacting with hemin. Psilostachyin increased about 5 times the generation of reactive oxygen species in Trypanosoma cruzi after a 4h treatment, unlike psilostachyin C which induced an increase in reactive oxygen species levels of only 1.5 times. Only psilostachyin C was able to inhibit the biosynthesis of ergosterol, causing an accumulation of squalene. Both sesquiterpene lactones induced parasite death by apoptosis. Upon evaluating the combination of both compounds, and additive trypanocidal effect was observed. Despite their structural similarity, both sesquiterpene lactones exerted their anti-T. cruzi activity through interaction with different targets. Psilostachyin accomplished its antiparasitic

  20. Mode of Action of the Sesquiterpene Lactones Psilostachyin and Psilostachyin C on Trypanosoma cruzi

    PubMed Central

    Papademetrio, Daniela; Batlle, Alcira; Martino, Virginia S.; Frank, Fernanda M.; Lombardo, María E.

    2016-01-01

    Trypanosoma cruzi is the causative agent of Chagas’ disease, which is a major endemic disease in Latin America and is recognized by the WHO as one of the 17 neglected tropical diseases in the world. Psilostachyin and psilostachyin C, two sesquiterpene lactones isolated from Ambrosia spp., have been demonstrated to have trypanocidal activity. Considering both the potential therapeutic targets present in the parasite, and the several mechanisms of action proposed for sesquiterpene lactones, the aim of this work was to characterize the mode of action of psilostachyin and psilostachyin C on Trypanosoma cruzi and to identify the possible targets for these molecules. Psilostachyin and psilostachyin C were isolated from Ambrosia tenuifolia and Ambrosia scabra, respectively. Interaction of sesquiterpene lactones with hemin, the induction of oxidative stress, the inhibition of cruzipain and trypanothione reductase and their ability to inhibit sterol biosynthesis were evaluated. The induction of cell death by apoptosis was also evaluated by analyzing phosphatidylserine exposure detected using annexin-V/propidium iodide, decreased mitochondrial membrane potential, assessed with Rhodamine 123 and nuclear DNA fragmentation evaluated by the TUNEL assay. Both STLs were capable of interacting with hemin. Psilostachyin increased about 5 times the generation of reactive oxygen species in Trypanosoma cruzi after a 4h treatment, unlike psilostachyin C which induced an increase in reactive oxygen species levels of only 1.5 times. Only psilostachyin C was able to inhibit the biosynthesis of ergosterol, causing an accumulation of squalene. Both sesquiterpene lactones induced parasite death by apoptosis. Upon evaluating the combination of both compounds, and additive trypanocidal effect was observed. Despite their structural similarity, both sesquiterpene lactones exerted their anti-T. cruzi activity through interaction with different targets. Psilostachyin accomplished its

  1. An approach to 8 stereoisomers of homonojirimycin from (D)-glucose via kinetic & thermodynamic azido-γ-lactones.

    PubMed

    Glawar, Andreas F G; Jenkinson, Sarah F; Newberry, Scott J; Thompson, Amber L; Nakagawa, Shinpei; Yoshihara, Akihide; Akimitsu, Kazuya; Izumori, Ken; Butters, Terry D; Kato, Atsushi; Fleet, George W J

    2013-09-25

    Crystal structures were obtained for the two C2 epimeric azido-γ-lactones 2-azido-2-deoxy-3,5:6,7-di-O-isopropylidene-d-glycero-d-ido-heptono-1,4-lactone and 2-azido-2-deoxy-3,5:6,7-di-O-isopropylidene-d-glycero-d-gulo-heptono-1,4-lactone prepared from kinetic and thermodynamic azide displacements of a triflate derived from d-glucoheptonolactone. Azido-γ-lactones are very useful intermediates in the synthesis of iminosugars and polyhydroxylated amino acids. In this study two epimeric azido-heptitols allow biotechnological transformations via Izumoring techniques to 8 of the 16 possible homonojirimycin analogues, 5 of which were isolated pure because of the lack of stereoselectivity of the final reductive amination. A side-by-side glycosidase inhibition profile of 11 of the possible 16 HNJ stereoisomers derived from d-glucose and d-mannose is presented.

  2. Effects of α,β-unsaturated lactones on larval survival and gut trypsin as well as oviposition response of Aedes aegypti.

    PubMed

    Barros, Maria Ester S B; Freitas, Juliano C R; Santos, Geanne K N; da Silva, Rayane Cristine Santos; Pontual, Emmanuel V; Paiva, Patrícia M G; Napoleão, Thiago H; Navarro, Daniela M A F; Menezes, Paulo H

    2015-09-01

    Lactones are organic cyclic esters that have been described as larvicides against Aedes aegypti and as components of oviposition pheromone of Culex quinquefasciatus. This work describes the effect of six α,β-unsaturated lactones (5a-5f) on survival of A. aegypti fourth instar larvae (L4). It is also reported the effects of the lactones on L4 gut trypsin activity and oviposition behavior of A. aegypti females. Five lactones were able to kill L4 being the lactones 5a (LC50 of 39.05 ppm), 5e (LC50 of 36.30 ppm) and 5f (LC50 of 40.46 ppm) the most promising larvicides. Only the lactone 5a inhibited L4 gut trypsin activity, with an IC50 of 115.15 µg/mL. Lactones 5a, 5c, 5d and 5e did not exert deterrent or stimulatory effects on oviposition, whereas lactone 5b exhibited a strong deterrent oviposition activity. In conclusion, this work introduces new α,β-unsaturated lactones as promising alternatives to control A. aegypti dissemination. The larvicidal mechanism of the lactone 5a can involve the disruption of proteolysis at larval gut.

  3. High resolution proton NMR studies of gangliosides. Structure of two types of GD3 lactones and their reactivity with monoclonal antibody R24.

    PubMed

    Ando, S; Yu, R K; Scarsdale, J N; Kusunoki, S; Prestegard, J H

    1989-02-25

    Ganglioside GD3 was converted at room temperature to two stable lactones, denoted as GD3 lactones I and II. The reaction sequence was presumed to be GD3----GD3 lactone I----GD3 lactone II based on the time course of their production. Lactone I behaved as a monosialoganglioside and lactone II as a neutral species. The two lactones were isolated by DEAE-Sephadex column chromatography. The positions of the inner ester linkages were investigated by two-dimensional J-correlated proton NMR spectroscopy. An ester linkage was most likely formed between the carboxyl group of the external sialic acid residue and C9-OH of the internal sialic acid residue in lactone I. In addition to this ester linkage, a second ester linkage between the carboxyl group of the internal sialic acid and C2-OH of the galactose residue was likely formed in lactone II. The structural changes induced by lactonization were further examined by their reactivity with the monoclonal antibody R24 (Puckel, C. S., Lloyd, K. O., Travassos, L. R., Dippold, W. G., Oettgen, H. F., and Old, L. J. (1982) J. Exp. Med. 155, 1133-1147), which reacted with GD3. R24 was found to bind weakly to GD3 lactone I, but not to GD3 lactone II. The results suggest that the monoclonal antibody requires both sialic acid residues for high affinity binding, and the complete lactonization results in a loss of negative charges and/or a change in the overall conformation of the oligosaccharide moiety which may account for the loss of binding.

  4. Comparison between the modes of action of novel meta-diamide and macrocyclic lactone insecticides on the RDL GABA receptor.

    PubMed

    Nakao, Toshifumi; Banba, Shinichi; Hirase, Kangetsu

    2015-05-01

    Macrocyclic lactones, avermectins, and milbemycins are widely used to control arthropods, nematodes, and endo- and ectoparasites in livestock and pets. Their main targets are glutamate-gated chloride channels. Furthermore, macrocyclic lactones reportedly interact with insect RDL γ-aminobutyric acid (GABA) receptors, but their modes of action on insect RDL GABA receptors remain unknown. In this study, we attempted to better understand the modes of action of macrocyclic lactones on RDL GABA receptors. We observed that ivermectin and milbemectin behaved as allosteric agonists of the Drosophila RDL GABA receptor. G336A, G336S, and G336T mutations had profound effects on the activities of ivermectin and milbemectin, and a G336M mutation abolished the allosteric agonist and antagonist activities of these macrocyclic lactones. These results suggest that G336 in TM3 of the Drosophila RDL GABA receptor is important for the binding of macrocyclic lactones. Recently, it has been suggested that a novel RDL GABA receptor antagonist, 3-benzamido-N-(2-bromo-4-perfluoroisopropyl-6-(trifluoromethyl)phenyl)-2-fluorobenzamide (meta-diamide 7), binds to the transmembrane intersubunit pocket near G336 in the Drosophila RDL GABA receptor. Thus, we compared the effects of mutations around G336 and A302 mutations in TM2 on the activities of macrocyclic lactone and meta-diamide 7. The effects of L281C, V340Q, V340N, A302S, and A302N mutations on the activity of meta-diamide 7 differed from those on ivermectin and milbemectin. Molecular modeling studies showed that macrocyclic lactones docked in the intersubunit pocket near G336 in the Drosophila RDL GABA receptor in the open state. In contrast, meta-diamide 7 docked into the Drosophila RDL GABA receptor in the closed state. This suggests that the modes of action of macrocyclic lactone binding to the wild-type Drosophila RDL GABA receptor differ from those of meta-diamide binding.

  5. Highly regio- and diastereoselective synthesis of CF3-substituted lactones via photoredox-catalyzed carbolactonization of alkenoic acids.

    PubMed

    Yasu, Yusuke; Arai, Yusuke; Tomita, Ren; Koike, Takashi; Akita, Munetaka

    2014-02-01

    Trifluoromethylative lactonization of both terminal and internal alkenoic acids by photoredox catalysis has been developed. The use of a Ru photocatalyst and Umemoto's reagent as a CF3 source is key in the present carbolactonization. This is the first example of a highly endo- and diastereoselective synthesis of CF3-substituted five-, six-, and seven-membered ring lactones from internal alkenoic acids. PMID:24422891

  6. Lack of AHL-based quorum sensing in Pseudomonas fluorescens isolated from milk

    PubMed Central

    Martins, Maurilio L.; Pinto, Uelinton M.; Riedel, Kathrin; Vanetti, Maria C.D.; Mantovani, Hilário C.; de Araújo, Elza F.

    2014-01-01

    Numerous bacteria coordinate gene expression in response to small signalling molecules in many cases known as acylhomoserine lactones (AHLs), which accumulate as a function of cell density in a process known as quorum sensing. This work aimed to determine if phenotypes that are important to define microbial activity in foods such as biofilm formation, swarming motility and proteolytic activity of two Pseudomonas fluorescens strains, isolated from refrigerated raw milk, are influenced by AHL molecules. The tested P. fluorescens strains did not produce AHL molecules in none of the evaluated media. We found that biofilm formation was dependent on the culture media, but it was not influenced by AHLs. Our results indicate that biofilm formation, swarming motility and proteolytic activity of the tested P. fluorescens strains are not regulated by acyl-homoserine lactones. It is likely that AHL-dependent quorum sensing system is absent from these strains. PMID:25477941

  7. Lack of AHL-based quorum sensing in Pseudomonas fluorescens isolated from milk.

    PubMed

    Martins, Maurilio L; Pinto, Uelinton M; Riedel, Kathrin; Vanetti, Maria C D; Mantovani, Hilário C; de Araújo, Elza F

    2014-01-01

    Numerous bacteria coordinate gene expression in response to small signalling molecules in many cases known as acylhomoserine lactones (AHLs), which accumulate as a function of cell density in a process known as quorum sensing. This work aimed to determine if phenotypes that are important to define microbial activity in foods such as biofilm formation, swarming motility and proteolytic activity of two Pseudomonas fluorescens strains, isolated from refrigerated raw milk, are influenced by AHL molecules. The tested P. fluorescens strains did not produce AHL molecules in none of the evaluated media. We found that biofilm formation was dependent on the culture media, but it was not influenced by AHLs. Our results indicate that biofilm formation, swarming motility and proteolytic activity of the tested P. fluorescens strains are not regulated by acyl-homoserine lactones. It is likely that AHL-dependent quorum sensing system is absent from these strains.

  8. Novel linear polymers able to inhibit bacterial quorum sensing.

    PubMed

    Cavaleiro, Eliana; Duarte, Ana Sofia; Esteves, Ana Cristina; Correia, António; Whitcombe, Michael J; Piletska, Elena V; Piletsky, Sergey A; Chianella, Iva

    2015-05-01

    Bacterial phenotypes, such as biofilm formation, antibiotic resistance and virulence expression, are associated with quorum sensing. Quorum sensing is a density-dependent regulatory system of gene expression controlled by specific signal molecules, such as N-acyl homoserine lactones (AHLs), produced and released by bacteria. This study reports the development of linear polymers capable to attenuate quorum sensing by adsorption of AHLs. Linear polymers were synthesized using MMA as backbone monomer and methacrylic acid and itaconic acid as functional monomers. Two different quorum sensing-controlled phenotypes, Vibrio fischeri bioluminescence and Aeromonas hydrophila biofilm formation, were evaluated to test the polymers' efficiency. Results showed that both phenotypes were significantly affected by the polymers, with the itaconic acid-containing material being more effective than the methacrylic acid one. The polymer inhibitory effects were reverted by the addition of lactones, confirming attenuation of quorum sensing through sequestration of signal molecules. The polymers also showed no cytotoxicity when tested using a mammalian cell line.

  9. Fluorine in fragrances: exploring the difluoromethylene (CF2) group as a conformational constraint in macrocyclic musk lactones.

    PubMed

    Corr, Michael J; Cormanich, Rodrigo A; von Hahmann, Cortney N; Bühl, Michael; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David

    2016-01-01

    The CF2 group is incorporated into specific positions within the lactone ring of the natural musk lactone, (12R)-(+)-12-methyl-13-tridecanolide, a constituent of Angelica root oil, Angelica archangelica L. The approach is taken as it was anticipated that CF2 groups would dictate corner locations in the macrocycle and limit the conformational space available to the lactone. Three fluorine containing lactones are prepared by organic synthesis. One (8) has CF2 groups located at the C-6 and C-9 positions, another (9) with CF2 groups at the C-5 and C-9 positions, and a third (10) with a CF2 group at C-8. Two of the fluorine containing lactones (8 and 10) were sufficiently crystalline to obtain X-ray crystal structures which revealed that the CF2 groups do adopt corner locations. All three lactones were subject to computational analysis at the B3LYP-D3/6-311+G** level to assess the relative energies of different conformers. In all cases, the global minima and most of the lowest energy minima have squared/rectangular geometries and located the CF2 groups at the corners. The lowest energy structures for 8 and 10 closely approximated the observed X-ray structures, suggesting good convergence of theory and experiment in determining relevant low energy conformations. All three compounds retained a pleasant odour suggesting the rings retained sufficient conformational flexibility to access relevant olfactory conformations. PMID:26584449

  10. Fluorine in fragrances: exploring the difluoromethylene (CF2) group as a conformational constraint in macrocyclic musk lactones.

    PubMed

    Corr, Michael J; Cormanich, Rodrigo A; von Hahmann, Cortney N; Bühl, Michael; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David

    2016-01-01

    The CF2 group is incorporated into specific positions within the lactone ring of the natural musk lactone, (12R)-(+)-12-methyl-13-tridecanolide, a constituent of Angelica root oil, Angelica archangelica L. The approach is taken as it was anticipated that CF2 groups would dictate corner locations in the macrocycle and limit the conformational space available to the lactone. Three fluorine containing lactones are prepared by organic synthesis. One (8) has CF2 groups located at the C-6 and C-9 positions, another (9) with CF2 groups at the C-5 and C-9 positions, and a third (10) with a CF2 group at C-8. Two of the fluorine containing lactones (8 and 10) were sufficiently crystalline to obtain X-ray crystal structures which revealed that the CF2 groups do adopt corner locations. All three lactones were subject to computational analysis at the B3LYP-D3/6-311+G** level to assess the relative energies of different conformers. In all cases, the global minima and most of the lowest energy minima have squared/rectangular geometries and located the CF2 groups at the corners. The lowest energy structures for 8 and 10 closely approximated the observed X-ray structures, suggesting good convergence of theory and experiment in determining relevant low energy conformations. All three compounds retained a pleasant odour suggesting the rings retained sufficient conformational flexibility to access relevant olfactory conformations.

  11. 23(S),25(R)-1,25-dihydroxyvitamin D3-26,23-lactone stimulates murine bone formation in vivo

    SciTech Connect

    Shima, M.; Tanaka, H.; Norman, A.W.; Yamaoka, K.; Yoshikawa, H.; Takaoka, K.; Ishizuka, S.; Seino, Y. )

    1990-02-01

    23(S),25(R)-1,25-Dihydroxyvitamin D3-26,23-lactone (1,25-lactone) has been shown to have unique actions different from those of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). In contrast to 1,25-(OH)2D3, 1,25-lactone causes a significant reduction in the serum Ca2+ level, stimulates collagen production in an osteoblastic cell line, and inhibits bone resorption induced by 1,25-(OH)2D3. A possible effect of 1,25-lactone on bone formation was examined in experiments on ectopic bone formation using a bone-inducing factor derived from Dunn osteosarcomas. 1,25-Lactone, a metabolite of 1,25-(OH)2D3, increased (3H)proline uptake at the stage of chondrogenesis and {sup 85}Sr uptake during bone formation. Significantly enlarged bone was also induced by this compound 3 weeks after implantation. These results suggest that the 1,25-lactone may be able to stimulate bone formation under in vivo conditions.

  12. Method to produce water-soluble sugars from biomass using solvents containing lactones

    DOEpatents

    Dumesic, James A.; Luterbacher, Jeremy S.

    2015-06-02

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  13. Sesquiterpene lactone dermatitis. Cross-sensitivity in costus-sensitized patients.

    PubMed

    Epstein, W L; Reynolds, G W; Rodriguez, E

    1980-01-01

    Thirteen costus-sensitive patients were patch tested with 38 sesquiterpene lactones of five different classes over a two-year period. Cross-reacting agents fell into two chemical categories: (1) those that resembled the primary sensitizer, and (2) those belonging to different skeletal classes. An exocyclic methylene group conjugated to a gamma-lactone was present in both chemicals that cross-reacted and those that did not. The difference between these two groups is that cross-reacting chemicals are not highly substituted, tending to be lipophilic, while those giving negative responses all are highly substituted at the C-8/C-6 position. This functional group may hinder binding of exocyclic methylene with skin protein or the actual antigenic site with an immune receptor cell.

  14. Cascade Synthesis of Five-Membered Lactones using Biomass-Derived Sugars as Carbon Nucleophiles.

    PubMed

    Yamaguchi, Sho; Matsuo, Takeaki; Motokura, Ken; Miyaji, Akimitsu; Baba, Toshihide

    2016-06-01

    We report the cascade synthesis of five-membered lactones from a biomass-derived triose sugar, 1,3-dihydroxyacetone, and various aldehydes. This achievement provides a new synthetic strategy to generate a wide range of valuable compounds from a single biomass-derived sugar. Among several examined Lewis acid catalysts, homogeneous tin chloride catalysts exhibited the best performance to form carbon-carbon bonds. The scope and limitations of the synthesis of five-membered lactones using aldehyde compounds are investigated. The cascade reaction led to high product selectivity as well as diastereoselectivity, and the mechanism leading to the diastereoselectivity was discussed based on isomerization experiments and density functional theory (DFT) calculations. The present results are expected to support new approaches for the efficient utilization of biomass-derived sugars. PMID:27061111

  15. Evaluation of sesquiterpene lactone fraction of Saussurea lappa on transudative, exudative and proliferative phases of inflammation.

    PubMed

    Damre, A A; Damre, A S; Saraf, M N

    2003-08-01

    The sesquiterpene lactone fraction of Saussurea lappa roots was evaluated for its effect on the transudative, exudative and proliferative phases of inflammation using the cotton pellet granuloma assay in rats. The fraction (25-100 mg/kg, p.o.) showed significant dose-dependent inhibition of the increase in wet weight of the cotton pellet at 3 h (transudative phase), leakage of dye from the bloodstream around granuloma at 24 h (exudative phase) and increase in dry weight of the cotton pellet on day 6 (proliferative phase). It significantly lowered the elevated biochemical parameters such as alkaline phosphatase, acid phosphatase, gamma-glutamyltranspeptidase and significantly elevated the lowered albumin concentration in serum. The studies suggest that the antiinflammatory activity of the sesquiterpene lactone fraction of S. lappa may, in part, be due to stabilization of lysosomal membranes and an antiproliferative effect.

  16. Anionic ring-opening polymerization of beta-alkoxymethyl-substituted beta-lactones.

    PubMed

    Adamus, Grazyna; Kowalczuk, Marek

    2008-02-01

    We report on anionic ring-opening polymerization (ROP) of racemic beta-(methoxymethyl)-beta-propiolactone (MOMPL) and beta-(ethoxymethyl)-beta-propiolactone (EOMPL) initiated by supramolecular complex of potassium acetate and tetrabutylammonium acetate (Bu4N+ Ac) as well as by tetrabutylammonium hydroxide, respectively. Structure of the resulting polymers has been established at the molecular level by electrospray ionization multistage mass spectrometry (ESI-MS(n)) and has been confirmed by FT-IR, NMR, and GPC analyses. Similar behavior of MOMPL and EOMPL with respect to already-studied beta-alkyl-substituted beta-lactones, e.g., beta-butyrolactone (MPL), has been observed under the conditions of anionic ROP (including observed side reactions leading to unsaturated end groups) and the already-established mechanisms of anionic polymerization of beta-alkyl-substituted beta-lactones are extended on beta-alkoxymethyl-substituted ones. PMID:18179174

  17. Design of countercurrent separation of Ginkgo biloba terpene lactones by nuclear magnetic resonance.

    PubMed

    Qiu, Feng; Friesen, J Brent; McAlpine, James B; Pauli, Guido F

    2012-06-15

    Terpene lactones such as bilobalide, ginkgolides A, B, C, and J are major bioactive compounds of Ginkgo biloba L. Purification of these compounds is tedious due to their similar chemical properties. For the purpose of developing an effective and efficient method for both analytical and preparative separation of terpene lactones in G. biloba, an innovative orthogonality-enhanced high-speed countercurrent chromatography (HSCCC) method was established. Taking advantage of quantitative (1)H NMR (qHNMR) methodology, partition coefficients (K) of individual terpene lactones were calculated directly from crude G. biloba leaf extract, using their H-12 signals as distinguishing feature. The partitioning experiment assisted the design of a two dimensional (2D) HSCCC procedure using a pair of orthogonal HSCCC solvent systems (SSs), ChMWat +4 and HEMSoWat +3/0.05%. It was surprising that the resolution of ginkgolides A and B was improved by 25% in the HEMWat +3 SS modified with 0.5% DMSO. Consequently, all five terpene lactones could be well separated with qHNMR purity>95% from G. biloba leaf extract. The separation was further evaluated by offline qHNMR analysis of HSCCC fractions associated with Gaussian curve fitting. The results showed less than 2% error in HSCCC retention predicted from the partitioning experiment. This compelling consistency demonstrates that qHNMR-derived K determination ("K-by-NMR") can be used to predict CCC fractionation and target purification of analytes from complex mixtures. Furthermore, Gaussian curve fitting enabled an accurate prediction of less than 2% impurity in the CCC fraction, which demonstrates its potential as a powerful tool to study the presence of minor constituents, especially when they are beyond the detection limit of conventional spectroscopic detectors.

  18. Development of Acid Functional Groups and Lactones During the Thermal Degradation of Wood and Wood Components

    USGS Publications Warehouse

    Rutherford, David W.; Wershaw, Robert L.; Reeves, James B.

    2008-01-01

    Black carbon (pyrogenic materials including chars) in soils has been recognized as a substantial portion of soil organic matter, and has been shown to play a vital role in nutrient cycling; however, little is known concerning the properties of this material. Previous studies have largely been concerned with the creation of high-surface-area materials for use as sorbents. These materials have been manufactured at high temperature and have often been activated. Chars occurring in the environment can be formed over a wide range of temperature. Because it is extremely difficult to isolate black carbon once it has been incorporated in soils, chars produced in the laboratory under controlled conditions can be used to investigate the range of properties possible for natural chars. This report shows that charring conditions (temperature and time) have substantial impact on the acid functional group and lactone content of chars. Low temperatures (250?C) and long charring times (greater than 72 hours) produce chars with the highest acid functional group and lactone content. The charring of cellulose appears to be responsible for the creation of the acid functional group and lactones. The significance of this study is that low-temperature chars can have acid functional group contents comparable to humic materials (as high as 8.8 milliequivalents per gram). Acid functional group and lactone content decreases as charring temperature increases. The variation in formation conditions expected under natural fire conditions will result in a wide range of sorption properties for natural chars which are an important component of soil organic matter. By controlling the temperature and duration of charring, it is possible to tailor the sorption properties of chars, which may be used as soil amendments.

  19. Two lactones in the androconial scent of the lycaenid butterfly Celastrina argiolus ladonides

    NASA Astrophysics Data System (ADS)

    Ômura, Hisashi; Yakumaru, Kazuhisa; Honda, Keiichi; Itoh, Takao

    2013-04-01

    Male adult butterflies of many species have characteristic odors originating from the disseminating organs known as androconia. Despite the fact that androconia exist in several species, there have been few investigations on adult scents from the lycaenid species. Celastrina argiolus ladonides (Lycaenidae) is a common species in Eurasia. We have reported that male adults of this species emit a faint odor, and the major components causing this odor have been newly found in the Insecta. By using field-caught individuals, we determined the chemical nature and location of this odor in the butterfly. Gas chromatography-mass spectrometry (GC-MS) analyses revealed that two lactone compounds, lavender lactone and δ-decalactone, are present in the extracts of males but absent in those of the females. On an average, approximately 50 ng of each compound was found per male. Chiral GC analyses performed using enantiomerically pure standards revealed that the natural lavender lactone was a mixture of two enantiomers with an R/ S ratio of 32:68, whereas the natural δ-decalactone contained only the R-enantiomer. When the analyses were conducted using different parts—forewings, hindwings, and body—of three males, the lactones were more abundantly found on the forewings and hindwings than on the body. Microscopic observation of the wings demonstrated that battledore scales known as androconia are scattered on the upper surface of both the wings of C. argiolus ladonides males. These results indicate that the specialized scales on the wings of males serve as scent-disseminating organs.

  20. A new sesquiterpene lactone glycoside and a new quinic acid methyl ester from Patrinia villosa.

    PubMed

    Yang, Yong-Fen; Ma, Hong-Mei; Chen, Gang; Wang, Hai-Feng; Xiang, Zheng; Feng, Qing-Mei; Hua, Hui-Ming; Pei, Yue-Hu

    2016-10-01

    A new sesquiterpene lactone glycoside (1) and a new quinic acid methyl ester (2) were isolated from Patrinia villosa, together with another two known compounds chlorogenic acid n-butyl ester (3), 3, 4-di-O-caffeoylquinic acid methyl ester (4). Their structures were established using 1D/2D-NMR spectroscopy, mass spectrometry, and comparing with spectroscopic data reported in the literature. PMID:27156969

  1. Two lactones in the androconial scent of the lycaenid butterfly Celastrina argiolus ladonides.

    PubMed

    Ômura, Hisashi; Yakumaru, Kazuhisa; Honda, Keiichi; Itoh, Takao

    2013-04-01

    Male adult butterflies of many species have characteristic odors originating from the disseminating organs known as androconia. Despite the fact that androconia exist in several species, there have been few investigations on adult scents from the lycaenid species. Celastrina argiolus ladonides (Lycaenidae) is a common species in Eurasia. We have reported that male adults of this species emit a faint odor, and the major components causing this odor have been newly found in the Insecta. By using field-caught individuals, we determined the chemical nature and location of this odor in the butterfly. Gas chromatography-mass spectrometry (GC-MS) analyses revealed that two lactone compounds, lavender lactone and δ-decalactone, are present in the extracts of males but absent in those of the females. On an average, approximately 50 ng of each compound was found per male. Chiral GC analyses performed using enantiomerically pure standards revealed that the natural lavender lactone was a mixture of two enantiomers with an R/S ratio of 32:68, whereas the natural δ-decalactone contained only the R-enantiomer. When the analyses were conducted using different parts-forewings, hindwings, and body-of three males, the lactones were more abundantly found on the forewings and hindwings than on the body. Microscopic observation of the wings demonstrated that battledore scales known as androconia are scattered on the upper surface of both the wings of C. argiolus ladonides males. These results indicate that the specialized scales on the wings of males serve as scent-disseminating organs. PMID:23509009

  2. A new sesquiterpene lactone glycoside and a new quinic acid methyl ester from Patrinia villosa.

    PubMed

    Yang, Yong-Fen; Ma, Hong-Mei; Chen, Gang; Wang, Hai-Feng; Xiang, Zheng; Feng, Qing-Mei; Hua, Hui-Ming; Pei, Yue-Hu

    2016-10-01

    A new sesquiterpene lactone glycoside (1) and a new quinic acid methyl ester (2) were isolated from Patrinia villosa, together with another two known compounds chlorogenic acid n-butyl ester (3), 3, 4-di-O-caffeoylquinic acid methyl ester (4). Their structures were established using 1D/2D-NMR spectroscopy, mass spectrometry, and comparing with spectroscopic data reported in the literature.

  3. Stereodivergent Organocatalytic Intramolecular Michael Addition/Lactonization for the Asymmetric Synthesis of Substituted Dihydrobenzofurans and Tetrahydrofurans

    PubMed Central

    Belmessieri, Dorine; de la Houpliere, Alix; Calder, Ewen D D; Taylor, James E; Smith, Andrew D

    2014-01-01

    A stereodivergent asymmetric Lewis base catalyzed Michael addition/lactonization of enone acids into substituted dihydrobenzofuran and tetrahydrofuran derivatives is reported. Commercially available (S)-(−)-tetramisole hydrochloride gives products with high syn diastereoselectivity in excellent enantioselectivity (up to 99:1 d.r.syn/anti, 99 % eesyn), whereas using a cinchona alkaloid derived catalyst gives the corresponding anti-diastereoisomers as the major product (up to 10:90 d.r.syn/anti, 99 % eeanti). PMID:24989672

  4. Purity Assessment of Aryltetralin Lactone Lignans by Quantitative 1H Nuclear Magnetic Resonance.

    PubMed

    Sun, Yan-Jun; Zhang, Yan-Li; Wang, Yu; Wang, Jun-Min; Zhao, Xuan; Gong, Jian-Hong; Gao, Wei; Guan, Yan-Bin

    2015-01-01

    In the present work, a quantitative 1H Nuclear Magnetic Resonance (qHNMR) was established for purity assessment of six aryltetralin lactone lignans. The validation of the method was carried out, including specificity, selectivity, linearity, accuracy, precision, and robustness. Several experimental parameters were optimized, including relaxation delay (D1), scan numbers (NS), and pulse angle. 1,4-Dinitrobenzene was used as internal standard (IS), and deuterated dimethyl sulfoxide (DMSO-d6) as the NMR solvent. The purities were calculated by the area ratios of H-2,6 from target analytes vs. aromatic protons from IS. Six aryltetralin lactone lignans (deoxypodophyllotoxin, podophyllotoxin, 4-demethylpodophyllotoxin, podophyllotoxin-7'-O-β-d-glucopyranoside, 4-demethylpodophyllotoxin-7'-O-β-d-glucopyranoside, and 6''-acetyl-podophyllotoxin-7'-O-β -d-glucopyranoside) were analyzed. The analytic results of qHNMR were further validated by high performance liquid chromatography (HPLC). Therefore, the qHNMR method was a rapid, accurate, reliable tool for monitoring the purity of aryltetralin lactone lignans. PMID:26016553

  5. Development of polymeric irinotecan nanoparticles using a novel lactone preservation strategy.

    PubMed

    Poudel, Bijay Kumar; Gupta, Biki; Ramasamy, Thiruganesh; Thapa, Raj Kumar; Youn, Yu Seok; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-10-15

    Irinotecan (IRT) is an important part of the first- and second-line regimen for metastatic colorectal and some other cancers. However, IRT suffers the constraints of pH-dependent conversion of active lactone form to inactive carboxylate form, burst release owing to its aqueous solubility, short half-life and dose-dependent side effects. In this study, we developed polymeric nanoparticles (NPs) that not only deliver IRT to tumor sites, but also overcome its drawbacks by preserving active lactone conformation, prolonging the plasma circulation time, and by providing sustained release. IRT complex was rendered hydrophobic by ion-pairing with anions (docusate sodium, sodium lauryl sulfate, and sodium tripolyphosphate), and loaded in PEG-PLGA NPs via water/oil/water double emulsification method. The NPs were spherical, ∼60nm, monodispersed, and had shell-core morphology. They retained >80% lactone form for more than 1 month of storage and exhibited sustained release characteristics. In addition, sub -100nm size of NPs offered elevated cellular internalization. Owing to the presence of hydrophilic PEG outer layer and drug-loaded hydrophobic PLGA core, NPs conferred excellent plasma stability and prolonged the retention time of IRT by more than 10-fold as compared to free IRT. Therefore, this system could provide an excellent platform for efficient and sustained delivery of IRT and similar labile drugs to the tumor site, while maintaining their chemical integrity. PMID:27558884

  6. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower.

    PubMed

    Ueno, Kotomi; Furumoto, Toshio; Umeda, Shuhei; Mizutani, Masaharu; Takikawa, Hirosato; Batchvarova, Rossitza; Sugimoto, Yukihiro

    2014-12-01

    Root exudates of sunflower (Helianthus annuus L.) line 2607A induced germination of seeds of root parasitic weeds Striga hermonthica, Orobanche cumana, Orobanche minor, Orobanche crenata, and Phelipanche aegyptiaca. Bioassay-guided purification led to the isolation of a germination stimulant designated as heliolactone. FT-MS analysis indicated a molecular formula of C20H24O6. Detailed NMR spectroscopic studies established a methylfuranone group, a common structural component of strigolactones connected to a methyl ester of a C14 carboxylic acid via an enol ether bridge. The cyclohexenone ring is identical to that of 3-oxo-α-ionol and the other part of the molecule corresponds to an oxidized carlactone at C-19. It is a carlactone-type molecule and functions as a germination stimulant for seeds of root parasitic weeds. Heliolactone induced seed germination of the above mentioned root parasitic weeds, while dehydrocostus lactone and costunolide, sesquiterpene lactones isolated from sunflower root exudates, were effective only on O. cumana and O. minor. Heliolactone production in aquacultures increased when sunflower seedlings were grown hydroponically in tap water and decreased on supplementation of the culture with either phosphorus or nitrogen. Costunolide, on the other hand, was detected at a higher concentration in well-nourished medium as opposed to nutrient-deficient media, thus suggesting a contrasting contribution of heliolactone and the sesquiterpene lactone to the germination of O. cumana under different soil fertility levels. PMID:25446236

  7. Heartworms, macrocyclic lactones, and the specter of resistance to prevention in the United States.

    PubMed

    Bowman, Dwight D

    2012-01-01

    In order to provide a background to current concerns relative to the possible resistance of heartworms to macrocyclic lactones, this review summarizes various studies in which lack of efficacies (LOEs) have been observed in dogs on macrocyclic lactone preventives relative to the United States of America. Some of these studies have been published in the peer-reviewed literature, others have appeared in various reports to the Center for Veterinary Medicine (CVM) of the Food and Drug Administration (FDA) of the USA as New Animal Drug Application (NADA) summaries, and one appeared as a letter to US veterinarians. This review also discusses reports relating to the potential problem of heartworm resistance in microfilariae and third-stage larvae, as well as molecular markers associated with resistance to macrocyclic lactones within Dirofilaria immitis. As more work is being done in this area of great concern relative to the protection of dogs from infection using this class of preventives, it seems timely to summarize what is known about heartworms, their potential resistance to treatment, and the means of selecting for resistance genes in populations of this helminth in the laboratory and in the field.

  8. Heartworms, macrocyclic lactones, and the specter of resistance to prevention in the United States

    PubMed Central

    2012-01-01

    In order to provide a background to current concerns relative to the possible resistance of heartworms to macrocyclic lactones, this review summarizes various studies in which lack of efficacies (LOEs) have been observed in dogs on macrocyclic lactone preventives relative to the United States of America. Some of these studies have been published in the peer-reviewed literature, others have appeared in various reports to the Center for Veterinary Medicine (CVM) of the Food and Drug Administration (FDA) of the USA as New Animal Drug Application (NADA) summaries, and one appeared as a letter to US veterinarians. This review also discusses reports relating to the potential problem of heartworm resistance in microfilariae and third-stage larvae, as well as molecular markers associated with resistance to macrocyclic lactones within Dirofilaria immitis. As more work is being done in this area of great concern relative to the protection of dogs from infection using this class of preventives, it seems timely to summarize what is known about heartworms, their potential resistance to treatment, and the means of selecting for resistance genes in populations of this helminth in the laboratory and in the field. PMID:22776618

  9. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana.

    PubMed

    Joel, Daniel M; Chaudhuri, Swapan K; Plakhine, Dina; Ziadna, Hammam; Steffens, John C

    2011-05-01

    The germination of the obligate root parasites of the Orobanchaceae depends on the perception of chemical stimuli from host roots. Several compounds, collectively termed strigolactones, stimulate the germination of the various Orobanche species, but do not significantly elicit germination of Orobanche cumana, a specific parasite of sunflower. Phosphate starvation markedly decreased the stimulatory activity of sunflower root exudates toward O. cumana, and fluridone - an inhibitor of the carotenoid biosynthesis pathway - did not inhibit the production of the germination stimulant in both shoots and roots of young sunflower plants, indicating that the stimulant is not a strigolactone. We identified the natural germination stimulant from sunflower root exudates by bioassay-driven purification. Its chemical structure was elucidated as the guaianolide sesquiterpene lactone dehydrocostus lactone (DCL). Low DCL concentrations effectively stimulate the germination of O. cumana seeds but not of Phelipanche aegyptiaca (syn. Orobanche aegyptiaca). DCL and other sesquiterpene lactones were found in various plant organs, but were previously not known to be exuded to the rhizosphere where they can interact with other organisms.

  10. Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus.

    PubMed

    Shao, Chang-Lun; Wu, Hui-Xian; Wang, Chang-Yun; Liu, Qing-Ai; Xu, Ying; Wei, Mei-Yan; Qian, Pei-Yuan; Gu, Yu-Cheng; Zheng, Cai-Juan; She, Zhi-Gang; Lin, Yong-Cheng

    2011-04-25

    Three new 14-membered resorcylic acid lactones, two with a rare natural acetonide group and one with a 5-chloro-substituted lactone, named cochliomycins A-C (1-3), together with four known analogues, zeaenol (4), LL-Z1640-1 (5), LL-Z1640-2 (6), and paecilomycin F (7), were isolated from the culture broth of Cochliobolus lunatus, a fungus obtained from the gorgonian Dichotella gemmacea collected in the South China Sea. Their structures and the relative configurations of 1-3 were elucidated using comprehensive spectroscopic methods including NOESY spectra and chemical conversions. A transetherification reaction was also observed in which cochliomycin B (2) in a solution of CDCl(3) slowly rearranged to give cochliomycin A (1) at room temperature. These resorcylic acid lactones were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. The antibacterial and cytotoxic activities of these compounds were also examined.

  11. Hepatocurative potential of sesquiterpene lactones of Taraxacum officinale on carbon tetrachloride induced liver toxicity in mice.

    PubMed

    Mahesh, A; Jeyachandran, R; Cindrella, L; Thangadurai, D; Veerapur, V P; Muralidhara Rao, D

    2010-06-01

    The hepatocurative potential of ethanolic extract (ETO) and sesquiterpene lactones enriched fraction (SL) of Taraxacum officinale roots was evaluated against carbon tetrachloride (CCl 4 ) induced hepatotoxicity in mice. The diagnostic markers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin contents were significantly elevated, whereas significant reduction in the level of reduced glutathione (GSH) and enhanced hepatic lipid peroxidation, liver weight and liver protein were observed in CCl 4 induced hepatotoxicity in mice. Post-treatment with ETO and SL significantly protected the hepatotoxicity as evident from the lower levels of hepatic enzyme markers, such as serum transaminase (ALT, AST), ALP and total bilirubin. Further, significant reduction in the liver weight and liver protein in drug-treated hepatotoxic mice and also reduced oxidative stress by increasing reduced glutathione content and decreasing lipid peroxidation level has been noticed. The histopathological evaluation of the liver also revealed that ETO and SL reduced the incidence of liver lesions induced by CCl 4 . The results indicate that sesquiterpene lactones have a protective effect against acute hepatotoxicity induced by the administration of CCl 4 in mice. Furthermore, observed activity of SL may be due to the synergistic action of two sesquiterpene lactones identified from enriched ethyl acetate fraction by HPLC method.

  12. Nonvolatile oxidation products of glucose in Maillard model systems: formation of saccharinic and aldonic acids and their corresponding lactones.

    PubMed

    Haffenden, Luke J W; Yaylayan, Varoujan A

    2008-03-12

    By using pyrolysis-gas chromatography-mass spectrometry-based methodologies, nonvolatile oxidation products of isotopically labeled glucose/glycine model systems were studied through a postpyrolytic in situ derivatization technique by using trimethylsilyldiethylamine. Analysis of the data indicated that the known reactive sugar intermediates such as glucosone and its deoxy derivatives can undergo in Maillard model systems three types of transformations: oxidation of the aldehydic groups into carboxylic acids, oxidative cleavage of alpha-dicarbonyl moieties into aldonic acids, and benzylic acid rearrangement of 1-deoxy-glucosone into saccharinic acids. The aldonic and saccharinic acids were identified through silylation of their lactone derivatives, and their origin was verified through (13)C-labeling studies. The following lactones were identified in glucose and glucose/glycine model systems: trans-dihydro-3,4-bis[(trimethylsilyl)oxy]-2(3 H)-furanone, cis-dihydro-3,4-bis[(trimethylsilyl)oxy]-2(3H)-furanone, 2-C-methyl-2,3,5-tris-O-(trimethylsilyl)-D-ribonic acid gamma-lactone, 3-deoxy-2,5,6-tris-O-(trimethylsilyl)-D-ribo-hexonic acid gamma-lactone, 2-deoxy-3,5-bis-O-(trimethylsilyl)-pentonic acid gamma-lactone, and 2,3,5-tris-O-(trimethylsilyl)-D-arabinonic acid gamma-lactone. The observed reduction in color and aroma in Maillard reactions performed under oxidative conditions may be attributed to the oxidation of reactive dicarbonyls into the corresponding carboxylic acids or their corresponding lactones. PMID:18251497

  13. Nonvolatile oxidation products of glucose in Maillard model systems: formation of saccharinic and aldonic acids and their corresponding lactones.

    PubMed

    Haffenden, Luke J W; Yaylayan, Varoujan A

    2008-03-12

    By using pyrolysis-gas chromatography-mass spectrometry-based methodologies, nonvolatile oxidation products of isotopically labeled glucose/glycine model systems were studied through a postpyrolytic in situ derivatization technique by using trimethylsilyldiethylamine. Analysis of the data indicated that the known reactive sugar intermediates such as glucosone and its deoxy derivatives can undergo in Maillard model systems three types of transformations: oxidation of the aldehydic groups into carboxylic acids, oxidative cleavage of alpha-dicarbonyl moieties into aldonic acids, and benzylic acid rearrangement of 1-deoxy-glucosone into saccharinic acids. The aldonic and saccharinic acids were identified through silylation of their lactone derivatives, and their origin was verified through (13)C-labeling studies. The following lactones were identified in glucose and glucose/glycine model systems: trans-dihydro-3,4-bis[(trimethylsilyl)oxy]-2(3 H)-furanone, cis-dihydro-3,4-bis[(trimethylsilyl)oxy]-2(3H)-furanone, 2-C-methyl-2,3,5-tris-O-(trimethylsilyl)-D-ribonic acid gamma-lactone, 3-deoxy-2,5,6-tris-O-(trimethylsilyl)-D-ribo-hexonic acid gamma-lactone, 2-deoxy-3,5-bis-O-(trimethylsilyl)-pentonic acid gamma-lactone, and 2,3,5-tris-O-(trimethylsilyl)-D-arabinonic acid gamma-lactone. The observed reduction in color and aroma in Maillard reactions performed under oxidative conditions may be attributed to the oxidation of reactive dicarbonyls into the corresponding carboxylic acids or their corresponding lactones.

  14. Multiple N-acyl-L-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri.

    PubMed

    Kuo, A; Blough, N V; Dunlap, P V

    1994-12-01

    In Vibrio fischeri, the synthesis of N-3-oxohexanoyl-L-homoserine lactone, the autoinducer for population density-responsive induction of the luminescence operon (the lux operon, luxICDABEG), is dependent on the autoinducer synthase gene luxI. Gene replacement mutants of V. fischeri defective in luxI, which had been expected to produce no autoinducer, nonetheless exhibited lux operon transcriptional activation. Mutants released into the medium a compound that, like N-3-oxohexanoyl-L-homoserine lactone, activated expression of the lux system in a dose-dependent manner and was both extractable with ethyl acetate and labile to base. The luxI-independent compound, also like N-3-oxohexanoyl-L-homoserine lactone, was produced by V. fischeri cells in a regulated, population density-responsive manner and required the transcriptional activator LuxR for activity in the lux system. The luxI-independent compound was identified as N-octanoyl-L-homoserine lactone by coelution with the synthetic compound in reversed-phase high-pressure liquid chromatography, by derivatization treatment with 2,4-dinitrophenylhydrazine, by mass spectrometry, and by nuclear magnetic resonance spectroscopy. A locus, ain, necessary and sufficient for Escherichia coli to synthesize N-octanoyl-L-homoserine lactone was cloned from the V. fischeri genome and found to be distinct from luxI by restriction mapping and Southern hybridization. N-Octanoyl-L-homoserine lactone and ain constitute a second, novel autoinduction system for population density-responsive signalling and regulation of lux gene expression, and possibly other genes, in V. fischeri. A third V. fischeri autoinducer, N-hexanoyl-L-homoserine lactone, dependent on luxI for its synthesis, was also identified. The presence of multiple chemically and genetically distinct but cross-acting autoinduction systems in V. fischeri indicates unexpected complexity for autoinduction as a regulatory mechanism in this bacterium.

  15. The binding of D-gluconohydroximo-1,5-lactone to glycogen phosphorylase. Kinetic, ultracentrifugation and crystallographic studies.

    PubMed Central

    Papageorgiou, A C; Oikonomakos, N G; Leonidas, D D; Bernet, B; Beer, D; Vasella, A

    1991-01-01

    Combined kinetic, ultracentrifugation and X-ray-crystallographic studies have characterized the effect of the beta-glucosidase inhibitor gluconohydroximo-1,5-lactone on the catalytic and structural properties of glycogen phosphorylase. In the direction of glycogen synthesis, gluconohydroximo-1,5-lactone was found to competitively inhibit both the b (Ki 0.92 mM) and the alpha form of the enzyme (Ki 0.76 mM) with respect to glucose 1-phosphate in synergism with caffeine. In the direction of glycogen breakdown, gluconohydroximo-1,5-lactone was found to inhibit phosphorylase b in a non-competitive mode with respect to phosphate, and no synergism with caffeine could be demonstrated. Ultracentrifugation and crystallization experiments demonstrated that gluconohydroximo-1,5-lactone was able to induce dissociation of tetrameric phosphorylase alpha and stabilization of the dimeric T-state conformation. A crystallographic binding study with 100 mM-gluconohydroximo-1,5-lactone at 0.24 nm (2.4 A) resolution showed a major peak at the catalytic site, and no significant conformational changes were observed. Analysis of the electron-density map indicated that the ligand adopts a chair conformation. The results are discussed with reference to the ability of the catalytic site of the enzyme to distinguish between two or more conformations of the glucopyranose ring. PMID:1900987

  16. Genetic and Biochemical Characterization of a Novel Monoterpene ɛ-Lactone Hydrolase from Rhodococcus erythropolis DCL14

    PubMed Central

    van der Vlugt-Bergmans, Cécile J. B; van der Werf, Mariët J.

    2001-01-01

    A monoterpene ɛ-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is active with (4R)-4-isopropenyl-7-methyl-2-oxo-oxepanone and (6R)-6-isopropenyl-3-methyl-2-oxo-oxepanone, lactones derived from (4R)-dihydrocarvone, and 7-isopropyl-4-methyl-2-oxo-oxepanone, the lactone derived from menthone. Both enantiomers of 4-, 5-, 6-, and 7-methyl-2-oxo-oxepanone were converted at equal rates, suggesting that the enzyme is not stereoselective. Maximal enzyme activity was measured at pH 9.5 and 30°C. Determination of the N-terminal amino acid sequence of purified MLH enabled cloning of the corresponding gene by a combination of PCR and colony screening. The gene, designated mlhB (monoterpene lactone hydrolysis), showed up to 43% similarity to members of the GDXG family of lipolytic enzymes. Sequencing of the adjacent regions revealed two other open reading frames, one encoding a protein with similarity to the short-chain dehydrogenase reductase family and the second encoding a protein with similarity to acyl coenzyme A dehydrogenases. Both enzymes are possibly also involved in the monoterpene degradation pathways of this microorganism. PMID:11157238

  17. Quorum sensing inhibitory potential and molecular docking studies of sesquiterpene lactones from Vernonia blumeoides.

    PubMed

    Aliyu, Abubakar Babando; Koorbanally, Neil Anthony; Moodley, Brenda; Singh, Parvesh; Chenia, Hafizah Yousuf

    2016-06-01

    The increasing incidence of multidrug-resistant Gram-negative bacterial pathogens has focused research on the suppression of bacterial virulence via quorum sensing inhibition strategies, rather than the conventional antimicrobial approach. The anti-virulence potential of eudesmanolide sesquiterpene lactones previously isolated from Vernonia blumeoides was assessed by inhibition of quorum sensing and in silico molecular docking. Inhibition of quorum sensing-controlled violacein production in Chromobacterium violaceum was quantified using violacein inhibition assays. Qualitative modulation of quorum sensing activity and signal synthesis was investigated using agar diffusion double ring assays and C. violaceum and Agrobacterium tumefaciens biosensor systems. Inhibition of violacein production was concentration-dependent, with ⩾90% inhibition being obtained with ⩾2.4 mg ml(-1) of crude extracts. Violacein inhibition was significant for the ethyl acetate extract with decreasing inhibition being observed with dichloromethane, hexane and methanol extracts. Violacein inhibition ⩾80% was obtained with 0.071 mg ml(-1) of blumeoidolide B in comparison with ⩾3.6 mg ml(-1) of blumeoidolide A. Agar diffusion double ring assays indicated that only the activity of the LuxI synthase homologue, CviI, was modulated by blumeoidolides A and B, and V. blumeoides crude extracts, suggesting that quorum sensing signal synthesis was down-regulated or competitively inhibited. Finally, molecular docking was conducted to explore the binding conformations of sesquiterpene lactones into the binding sites of quorum sensing regulator proteins, CviR and CviR'. The computed binding energy data suggested that the blumeoidolides have a tendency to inhibit both CviR and CviR' with varying binding affinities. Vernonia eudesmanolide sesquiterpene lactones have the potential to be novel therapeutic agents, which might be important in reducing virulence and pathogenicity of drug-resistant bacteria

  18. Operon for biosynthesis of lipstatin, the Beta-lactone inhibitor of human pancreatic lipase.

    PubMed

    Bai, Tingli; Zhang, Daozhong; Lin, Shuangjun; Long, Qingshan; Wang, Yemin; Ou, Hongyu; Kang, Qianjin; Deng, Zixin; Liu, Wen; Tao, Meifeng

    2014-12-01

    Lipstatin, isolated from Streptomyces toxytricini as a potent and selective inhibitor of human pancreatic lipase, is a precursor for tetrahydrolipstatin (also known as orlistat, Xenical, and Alli), the only FDA-approved antiobesity medication for long-term use. Lipstatin features a 2-hexyl-3,5-dihydroxy-7,10-hexadecadienoic-β-lactone structure with an N-formyl-l-leucine group attached as an ester to the 5-hydroxy group. It has been suggested that the α-branched 3,5-dihydroxy fatty acid β-lactone moiety of lipstatin in S. toxytricini is derived from Claisen condensation between two fatty acid substrates, which are derived from incomplete oxidative degradation of linoleic acid based on feeding experiments. In this study, we identified a six-gene operon (lst) that was essential for the biosynthesis of lipstatin by large-deletion, complementation, and single-gene knockout experiments. lstA, lstB, and lstC, which encode two β-ketoacyl-acyl carrier protein synthase III homologues and an acyl coenzyme A (acyl-CoA) synthetase homologue, were indicated to be responsible for the generation of the α-branched 3,5-dihydroxy fatty acid backbone. Subsequently, the nonribosomal peptide synthetase (NRPS) gene lstE and the putative formyltransferase gene lstF were involved in decoration of the α-branched 3,5-dihydroxy fatty acid chain with an N-formylated leucine residue. Finally, the 3β-hydroxysteroid dehydrogenase-homologous gene lstD might be responsible for the reduction of the β-keto group of the biosynthetic intermediate, thereby facilitating the formation of the unique β-lactone ring. PMID:25239907

  19. Detection of N-(3-oxohexanoyl)-L-homoserine lactone in mice infected with Yersinia enterocolitica serotype O8.

    PubMed

    Jacobi, Christoph A; Bach, Alexandra; Eberl, Leo; Steidle, Anette; Heesemann, Jürgen

    2003-11-01

    Yersinia enterocolitica synthesizes N-acyl-L-homoserine lactone (AHL) signal molecules via the LuxR-LuxI homologues YenR-YenI. In this study we checked two prototypes of mouse-virulent Y. enterocolitica serotype O8 strains WA-314 and 8081 for AHL production in vitro and in vivo (mouse infection model). We used thin-layer chromatography in combination with the Escherichia coli AHL biosensor to identify the AHL species produced. We detected only OHHL [N-(3-oxohexanoyl)-L-homoserine lactone] and not HHL (N-hexanoyl-L-homoserine lactone) produced by Y. enterocolitica O8 in culture supernatant or infected mouse tissue. This is the first report demonstrating AHL production by yersiniae during infection.

  20. Microphynolides A and B, new spiro-γ-lactone glycosides from Thymelaea microphylla.

    PubMed

    Ghanem, Hasna; Haba, Hamada; Marcourt, Laurence; Benkhaled, Mohammed; Wolfender, Jean-Luc

    2014-01-01

    Two new spiro-γ-lactone glycosides named microphynolide A (1) and microphynolide B (2), together with twelve known compounds including five biflavonoids namely neochamaejasmin A, neochamaejasmin B, daphnodorin B, genkwanol A and stelleranol, one bis-coumarin daphnoretin, two lignans called pinoresinol and matairesinol, one flavonoid glucoside, tiliroside, a sinapyl alcohol glucoside, syringin, and two phytosterols, β-sitosterol and β-sitosterol-3-O-glucoside, were isolated from ethyl acetate extracts of the aerial parts and roots of the plant Thymelaea microphylla Coss. and Dur. All the isolated compounds were characterised by using spectroscopic methods and comparison with the literature data.

  1. Varioxiranols I-L, new lactones from a sponge-associated Emericella variecolor fungus.

    PubMed

    Wu, Qi; Long, Hai-Lin; Liu, Dong; Proksch, Peter; Lin, Wen-Han

    2015-01-01

    Chemical examination of the sponge-associated fungus Emericella variecolor resulted in the isolation of four new lactones namely varioxiranols I-L(1-4)with different scaffolds, together with asteltoxin (5) and asteltoxin B (6). The structure elucidation of new compounds was accomplished by spectroscopic analysis, while the absolute configurations were determined by computed circular dichroism (ECD) and induced CD effects. Antitumor activities of these compounds were evaluated against different tumor cell lines, while the result indicated that the new compounds showed moderate cytotoxic activity against a panel of tumor cell lines. PMID:26700546

  2. Triterpenoids, essential oil and photo-oxidative 28 --> 13-lactonization of oleanolic acid from Lantana camara.

    PubMed

    Misra, L; Laatsch, H

    2000-08-01

    Two novel triterpenoids have been isolated from the roots of Lantana camara L.: 3beta,19alpha dihydroxy ursan-28-oic acid and 21,22beta-epoxy-3beta-hydroxy olean-12-en-28-oic acid in its methyl ester form. Its leaves have yielded an essential oil which is rich in sesquiterpenes. Oleanolic acid, which is thought to be a hepatoprotective compound, was isolated from L. camara roots and converted into its 28 --> 13beta lactone by a facile photo-oxidation reaction.

  3. Synthesis of naphthalene amino esters and arylnaphthalene lactone lignans through tandem reactions of 2-alkynylbenzonitriles.

    PubMed

    He, Yan; Zhang, Xinying; Fan, Xuesen

    2014-05-30

    Tandem reaction of 2-alkynylbenzonitriles with a Reformatsky reagent turned out to be a novel and efficient approach toward 1-aminonaphthalene-2-carboxylates. Interestingly, with 2-(3-hydroxyprop-1-ynyl)benzonitriles as the substrates, a more sophisticated cascade process occurred to give 9-aminonaphtho[2,3-c]furan-1(3H)-ones in good yields. By using this tandem reaction as a key step, a concise and versatile synthetic strategy for the total synthesis of arylnaphthalene lactone lignans has been developed. PMID:24733055

  4. Catalytic Asymmetric Synthesis of 3-Hydroxy-3-trifluoromethyl Benzofuranones via Tandem Friedel-Crafts/Lactonization Reaction.

    PubMed

    Ren, Hai; Wang, Pan; Wang, Lijia; Tang, Yong

    2015-10-01

    A highly enantioselective and regioselective chiral Lewis acid catalyzed tandem Friedel-Crafts/lactonization reaction is reported, providing direct access to plenty of 3-hydroxy-3-trifluoromethyl benzofuran-2-ones in up to 94% yields with up to >99% ee. Mechanistic study reveals that the interactions between the phenolic hydroxyl group and trifluoropyruvate are the most likely contributing factor to the high enantio- and regioselectivity. Optically pure (-)-BHFF can be obtained in gram-scale with 0.05 mol % catalyst, demonstrating the potentially utility of this method in medicinal chemistry. PMID:26400069

  5. Origin of Kinetic Resolution of Hydroxy Esters through Catalytic Enantioselective Lactonization by Chiral Phosphoric Acids.

    PubMed

    Changotra, Avtar; Sunoj, Raghavan B

    2016-08-01

    Kinetic resolution is a widely used strategy for separation and enrichment of enantiomers. Using density functional theory computations, the origin of how a chiral BINOL-phosphoric acid catalyzes the selective lactonization of one of the enantiomers of α-methyl γ-hydroxy ester is identified. In a stepwise mechanism, the stereocontrolling transition state for the addition of the hydroxyl group to the si face of the ester carbonyl in the case of the S isomer exhibits a network of more effective noncovalent interactions between the substrate and the chiral catalyst. PMID:27463593

  6. DDQ-promoted dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones by a radical ion mechanism.

    PubMed

    Ding, Ye; Huang, Zhangjian; Yin, Jian; Lai, Yisheng; Zhang, Shibo; Zhang, Zhiguo; Fang, Lei; Peng, Sixun; Zhang, Yihua

    2011-09-01

    A novel and facile DDQ-mediated dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones is described. The formation of lactones proceeds by a radical ion mechanism, which has been established by DPPH˙-mediated chemical identification, ESR spectroscopy and an enol intermediate trapping. PMID:21766102

  7. Total Syntheses of the Resorcylic Acid Lactones Paecilomycin F and Cochliomycin C Using an Intramolecular Loh-Type α-Allylation Reaction for Macrolide Formation.

    PubMed

    Ma, Xiang; Bolte, Benoit; Banwell, Martin G; Willis, Anthony C

    2016-09-01

    Subjection of the resorcylic ester 16 to a Nozaki-Hiyama-Kishi reaction afforded the 12-membered lactone 17, while treatment of it under the Loh-type α-allylation conditions using indium metal gave the isomeric, 14-membered macrolide 18. Compound 18 was readily elaborated to the resorcylic acid lactone type natural products paecilomycin F and cochliomycin C. PMID:27541929

  8. Analysis of putative resistance gene loci in UK field populations of Haemonchus contortus after 6years of macrocyclic lactone use.

    PubMed

    Laing, Roz; Maitland, Kirsty; Lecová, Lenka; Skuce, Philip J; Tait, Andy; Devaney, Eileen

    2016-09-01

    Sheep farmers in the UK rely on strategic anthelmintic use to treat and control gastrointestinal roundworms in their flocks. However, resistance to these drugs is now widespread and threatens the sustainability of sheep production. The mechanisms underlying resistance to the most commonly used class, the macrocyclic lactones, are not known and sensitive diagnostic tools based on molecular markers are not currently available. This prohibits accurate surveillance of resistance or assessment of strategies aimed at controlling its spread. In this study, we examined four UK field populations of Haemonchus contortus, differing in macrocyclic lactone treatment history, for evidence of selection at 'candidate gene' loci identified as determining macrocyclic lactone resistance in previously published research. Individual worms were genotyped at Hc-lgc-37, Hc-glc-5, Hc-avr-14 and Hc-dyf-7, and four microsatellite loci. High levels of polymorphism were identified at the first three candidate gene loci with remarkably little polymorphism at Hc-dyf-7. While some between-population comparisons of individual farms with and without long-term macrocyclic lactone use identified statistically significant differences in allele frequency and/or fixation index at the Hc-lgc-37, Hc-glc-5 or Hc-avr-14 loci, we found no consistent evidence of selection in other equivalent comparisons. While it is possible that different mechanisms are important in different populations or that resistance may be conferred by small changes at multiple loci, our findings suggest that these are unlikely to be major loci conferring macrocyclic lactone resistance on UK farms or suitable for diagnostic marker development. More powerful approaches, using genome-wide or whole genome sequencing, may be required to define macrocyclic lactone resistance loci in such genetically variable populations. PMID:27179994

  9. Sesquiterpene Lactones from Cynara cornigera: Acetyl Cholinesterase Inhibition and In Silico Ligand Docking.

    PubMed

    Hegazy, Mohamed-Elamir F; Ibrahim, Abeer Y; Mohamed, Tarik A; Shahat, Abdelaaty A; El Halawany, Ali M; Abdel-Azim, Nahla S; Alsaid, Mansour S; Paré, Paul W

    2016-01-01

    Wild artichoke (Cynara cornigera), a thistle-like perennial belonging to the Asteraceae family, is native to the Mediterranean region, northwestern Africa, and the Canary Islands. While the pleasant, albeit bitter, taste of the leaves and flowers is attributed to the sesquiterpene lactones cynaropicrin and cynarin, a comprehensive phytochemical investigation still needs to be reported. In this study seven sesquiterpene lactones were isolated from an aqueous methanol plant extract, including a new halogenated metabolite (1), the naturally isolated compound sibthorpine (2), and five metabolites isolated for the first time from C. cornigera. Structures were established by spectroscopic methods, including HREIMS, (1 )H, (13 )C, DEPT, (1 )H-(1 )H COSY, HMQC, and HMBC-NMR experiments as well as by X-ray analysis. The isolated bioactive nutrients were analyzed for their antioxidant and metal chelating activity. Compound 1 exhibited a potent metal chelating activity as well as a high antioxidant capacity. Moreover, select compounds were effective as acetyl cholinesterase inhibitors presenting the possibility for such compounds to be examined for anti-neurodegenerative activity. A computational pharmacophore elucidation and docking study was performed to estimate the pharmacophoric features and binding conformation of isolated compounds in the acetyl cholinesterase active site. PMID:26441064

  10. Synthesis and analysis of thio-, thiono-, and dithio-derivatives of whiskey lactone.

    PubMed

    Schmarr, H G; Eisenreich, W; Engel, K H

    2001-12-01

    Cis- and trans-3-methyl-4-octanolide (1, whiskey lactones) were converted into their thio- (2), thiono- (3), and dithio- (4) derivatives by reaction with phosphorus pentasulfide. The reaction products were characterized by GC-mass spectrometry, (1)H NMR spectroscopy, and GC-olfactometry. Two-dimensional NOESY spectra showed that sulfur is incorporated into the ring with reversal of the absolute configuration at C-4, whereas substitution of the keto-oxygen atom by sulfur occurs with retention of ring configuration. The cis- and trans-pairs of 2, 3, and 4 were separated into enantiomers by GC on heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin and heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin as chiral stationary phases. GC-olfactometry revealed a sweet coconut-like odor for the cis-thio- and pleasant mushroom-like flavors for the cis-thiono- and trans-dithio-derivatives of whiskey lactone.

  11. Chemical and Biological Investigation of Olive Mill Waste Water - OMWW Secoiridoid Lactones.

    PubMed

    Vougogiannopoulou, Konstantina; Angelopoulou, Maria T; Pratsinis, Harris; Grougnet, Raphaël; Halabalaki, Maria; Kletsas, Dimitris; Deguin, Brigitte; Skaltsounis, Leandros A

    2015-08-01

    Olive mill waste water is the major byproduct of the olive oil industry containing a range of compounds related to Olea europaea and olive oil constituents. Olive mill waste water comprises an important environmental problem in olive oil producing countries, but it is also a valuable material for the isolation of high added value compounds. In this study, an attempt to investigate the secoiridoid content of olive mill waste water is described with the aid of ultrahigh-performance liquid chromatography-electrospray ionization (±)-high-resolution mass spectrometry and centrifugal partition chromatography methods. In total, seven secoiridoid lactones were isolated, four of which are new natural products. This is the first time that a conjugate of hydroxytyrosol and a secoiridoid lactone has been isolated from olive mill waste water and structurally characterized. Furthermore, the range of isolated compounds allowed for the proposal of a hypothesis for the biotransformation of olive secoiridoids during the production of olive mill waste water. Finally, the ability of the representative compounds to reduce the intracellular reactive oxygen species was assessed with the dichlorofluorescein assay in conjunction with the known antioxidant agent hydroxytyrosol.

  12. Pressure-induced polymerization of carbon monoxide: disproportionation and synthesis of an energetic lactonic polymer

    SciTech Connect

    Evans, W J; Lipp, M J; Yoo, C; Herberg, J L; Maxwell, R S; Nicol, M F

    2005-10-04

    We have studied pressure-induced chemical reactions in carbon monoxide using both a diamond-anvil cell and a modified large volume press. Our spectroscopic data reveal that carbon monoxide disproportionates into molecular CO{sub 2} and a solid lactone-type polymer; photochemically above 3.2 GPa, thermochemically above 5 GPa at 300K, or at 3 GPa and {approx}2000K as achieved by laser heating. The solid product can be recovered at ambient conditions with a high degree of conversion, measured to be up to 95% of the original CO. Its fundamental chemical structure includes {beta}-lactone and conjugated C=C, which can be considered a severely modified polymeric carbon suboxide with open ladders and smaller five-membered rings. The polymer is metastable at ambient conditions, spontaneously liberating CO{sub 2} gases exothermically. We find that the recovered polymer has a high energy density, 1-8 KJ/g, and is very combustible. We estimate the density of recovered CO polymer to be at least 1.65 g/cm cm{sup 3}.

  13. Genepolide, a sesterpene gamma-lactone with a novel carbon skeleton from mountain wormwood (Artemisia umbelliformis).

    PubMed

    Appendino, Giovanni; Taglialatela-Scafati, Orazio; Romano, Adriana; Pollastro, Federica; Avonto, Cristina; Rubiolo, Patrizia

    2009-03-27

    The sesterpene gamma-lactone genepolide (5) has been isolated from a Swiss horticultural variety of mountain wormwood (Artemisia umbelliformis) developed as a thujones-free alternative to native Western Alps wormwoods for the production of liqueurs. Genepolide is the formal Diels-Alder adduct of the exomethylene-gamma-lactone costunolide (2) and the diene myrcene (6), two poorly reactive partners in cycloaddition reactions, and its structure was elucidated through a combination of spectroscopic methods. An investigation on the thermal stability of mixtures of 2 and 6, as well as considerations on the sensitivity of 2 to Brønsted and Lewis acids, suggests that 5 is a genuine natural product and that the Swiss chemotype of A. umbelliformis contains Diels-Alderase enzymatic activity that is lacking in native mountain wormwoods from Western Alps. Remarkable differences in thermal and acid-catalyzed reactions of the cyclodecadiene moiety of 2 and 5 suggest that quaternarization at C-11 has far-reaching effects on the reactivity of their homoconjugated medium-sized diene system. The wide occurrence of this structural motif in sesquiterpenoids makes this issue worth a systematic investigation.

  14. Synthesis and analysis of thio-, thiono-, and dithio-derivatives of whiskey lactone.

    PubMed

    Schmarr, H G; Eisenreich, W; Engel, K H

    2001-12-01

    Cis- and trans-3-methyl-4-octanolide (1, whiskey lactones) were converted into their thio- (2), thiono- (3), and dithio- (4) derivatives by reaction with phosphorus pentasulfide. The reaction products were characterized by GC-mass spectrometry, (1)H NMR spectroscopy, and GC-olfactometry. Two-dimensional NOESY spectra showed that sulfur is incorporated into the ring with reversal of the absolute configuration at C-4, whereas substitution of the keto-oxygen atom by sulfur occurs with retention of ring configuration. The cis- and trans-pairs of 2, 3, and 4 were separated into enantiomers by GC on heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin and heptakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin as chiral stationary phases. GC-olfactometry revealed a sweet coconut-like odor for the cis-thio- and pleasant mushroom-like flavors for the cis-thiono- and trans-dithio-derivatives of whiskey lactone. PMID:11743786

  15. Effects of lactone, ketone, and phenolic compounds on methane production and metabolic intermediates during anaerobic digestion.

    PubMed

    Wikandari, Rachma; Sari, Noor Kartika; A'yun, Qurrotul; Millati, Ria; Cahyanto, Muhammad Nur; Niklasson, Claes; Taherzadeh, Mohammad J

    2015-02-01

    Fruit waste is a potential feedstock for biogas production. However, the presence of fruit flavors that have antimicrobial activity is a challenge for biogas production. Lactones, ketones, and phenolic compounds are among the several groups of fruit flavors that are present in many fruits. This work aimed to investigate the effects of two lactones, i.e., γ-hexalactone and γ-decalactone; two ketones, i.e., furaneol and mesifurane; and two phenolic compounds, i.e., quercetin and epicatechin on anaerobic digestion with a focus on methane production, biogas composition, and metabolic intermediates. Anaerobic digestion was performed in a batch glass digester incubated at 55 °C for 30 days. The flavor compounds were added at concentrations of 0.05, 0.5, and 5 g/L. The results show that the addition of γ-decalactone, quercetin, and epicathechin in the range of 0.5-5 g/L reduced the methane production by 50 % (MIC50). Methane content was reduced by 90 % with the addition of 5 g/L of γ-decalactone, quercetin, and epicathechin. Accumulation of acetic acid, together with an increase in carbon dioxide production, was observed. On the contrary, γ-hexalactone, furaneol, and mesifurane increased the methane production by 83-132 % at a concentration of 5 g/L.

  16. Catalytic Asymmetric Synthesis of Ketene Heterodimer β-Lactones: Scope and Limitations.

    PubMed

    Chen, Shi; Ibrahim, Ahmad A; Peraino, Nicholas J; Nalla, Divya; Mondal, Mukulesh; Van Raaphorst, Maxwell; Kerrigan, Nessan J

    2016-09-01

    In this article we describe extensive studies of the catalytic asymmetric heterodimerization of ketenes to give ketene heterodimer β-lactones. The optimal catalytic system was determined to be a cinchona alkaloid derivative (TMS-quinine or Me-quinidine). The desired ketene heterodimer β-lactones were obtained in good to excellent yields (up to 90%), with excellent levels of enantioselectivity (≥90% ee for 33 Z and E isomer examples), good to excellent (Z)-olefin isomer selectivity (≥90:10 for 20 examples), and excellent regioselectivity (only one regioisomer formed). Full details of catalyst development studies, catalyst loading investigations, substrate scope exploration, protocol innovations (including double in situ ketene generation for 7 examples), and an application to a cinnabaramide A intermediate are described. The addition of lithium perchlorate (1-2 equiv) as an additive to the alkaloid catalyst system was found to favor formation of the E isomer of the ketene heterodimer. Ten examples were formed with moderate to excellent (E)-olefin isomer selectivity (74:25 to 97:3) and with excellent enantioselectivity (84-98% ee). PMID:27490092

  17. A sesquiterpene lactone from Siegesbeckia glabrescens suppresses Hedgehog/Gli-mediated transcription in pancreatic cancer cells

    PubMed Central

    Lee, Hwa Jin; Wu, Qian; Li, Hua; Bae, Gyu-Un; Kim, An Keun; Ryu, Jae-Ha

    2016-01-01

    Pancreatic cancer is aggressive and therefore difficult to treat; however, continued efforts have been made with the aim of developing an effective therapy against the disease. The Hedgehog (Hh) signaling pathway is reportedly involved in the proliferation and survival of pancreatic cancer cells. The transcription factor glioma-associated oncogene (Gli) is a key component of the Hh signaling pathway and the primary effector of pancreatic cancer development. Inhibiting Gli is a proven therapeutic strategy for this disease. The present study examined the regulation of Gli and the expression of its target genes to identify an inhibitor of the Sonic Hh (Shh) pathway. A germacranolide sesquiterpene lactone (GSL) was isolated from Siegesbeckia glabrescens as an inhibitor of Gli-mediated transcription. The results demonstrated that GSL inhibited Shh-induced osteoblast differentiation and Gli homolog 1 (Gli1)-mediated transcriptional activity in mesenchymal C3H10T1/2 stem cells. Furthermore, GSL suppressed Gli-mediated transcriptional activity in human pancreatic cancer PANC-1 and AsPC-1 cells, which resulted in reduced cancer cell proliferation and downregulated expression of the Gli-target genes, Gli1 and cyclin D1. A sesquiterpene lactone from S. glabrescens may therefore serve as a candidate for the treatment of Hh/Gli-dependent pancreatic cancer.

  18. Design, synthesis and SAR analysis of antitumour styryl lactones related to (+)-crassalactones B and C.

    PubMed

    Benedeković, Goran; Popsavin, Mirjana; Francuz, Jovana; Kovačević, Ivana; Kojić, Vesna; Bogdanović, Gordana; Divjaković, Vladimir; Popsavin, Velimir

    2014-11-24

    A series of styryl lactones containing the cinnamic acid ester groups such as (+)-crassalactones B (3a) and C (4a), 5,7-di-O-cinamoyl derivative 6, the corresponding 7-epimers and 7-deoxy derivatives have been synthesized, characterized and evaluated for their in vitro antitumour activity against a panel of several human tumour cell lines. Twelve new analogues such as 5-O- or 7-O-(4-methoxycinnamoyl), 5-O- or 7-O-(4-nitrocinnamoyl) and 5-O- or 7-O-(4-fluorocinnamoyl) esters of (+)-goniofufurone (3b-d), 7-epi-(+)-goniofufurone (epi-3b-d), as well as 7-deoxy derivatives 5b-d have been prepared to correlate all compounds in a SAR study. Some of the analogues displayed powerful antiproliferative effects on selected human tumour cell lines, but none of them demonstrated cytotoxicity towards the normal foetal lung fibroblasts (MRC-5). Thus, for the 7-epi-crassalactone B (epi-3a) was found to be a potent inhibitor of HL-60 cells growth, with an IC50 value that is approximately 46-fold lower than that observed for the commercial antitumour drug doxorubicin in the culture of the same cells. A SAR analysis performed on these lactones reveals the main structural features that affect their antiproliferative activity, such as nature of the substituents at the C-4 in the aromatic rings of cinnamoyl moieties, the absolute stereochemistry, as well as the presence of a deoxy function at the C-7 position. PMID:25259516

  19. Enhanced activity of hormone sensitive lipase (HSL) in mesenteric but not epididymal fat correlates with higher production of epinephrine in mesenteric adipocytes in rat model of cachectic rheumatoid arthritis.

    PubMed

    Stofkova, Andrea; Krskova, Katarina; Vaculin, Simon; Jurcovicova, Jana

    2016-06-01

    Cachectic rheumatoid arthritis, the less frequent form of the disease, is associated with loss of fat mass and often more severe course of the disease. Its experimental model represents rat adjuvant arthritis (AA) characterized by edema, lack of appetite, sharp body weight and fat loss. As individual fat depots display functional differences, here we studied lipolytic activity and sensitivity to lipolytic stimuli of nodeless epididymal fat (eWAT) and perinodal mesenteric fat (mWAT) depots at the peak of AA. We also examined changes in catecholamine and cytokine levels involved in lipolysis in plasma and/or isolated adipocytes from both WATs to identify the contribution of local, adipocyte-based processes and/or systemic events to adiposity loss in cachectic rheumatoid arthritis. AA was induced to male Lewis rats by complete Freund's adjuvant. Groups of ad libitum-fed and pair-fed controls were used to distinguish the effects of food restriction from inflammation-induced cachexia. Adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and its phosphorylated form (pHSL) were analyzed by western blot. CRP and catecholamine levels in plasma or adipocyte lysates were determined using ELISA kits. Cytokine-induced neutrophil chemoattractant-1 (CINC-1/CXCL1), monocyte chemoattractant protein-1 (MCP-1/CCL2), IL-1β, IL-6, IL-10 and leptin in adipocyte lysate were analyzed by quantitative protein microarray. Plasma glycerol and FFA were measured spectrophotometrically. AA rats developed severe cachexia, with lower adiposity in mWAT compared to normal and pair-fed controls, whereas in eWAT the adiposity was similarly reduced in AA and pair-fed groups. ATGL levels in both WATs were not affected by AA or pair feeding. AA upregulated levels of HSL, pHSL and pHSL/HSL ratio in mWAT, whereas none of these parameters has changed in eWAT of AA rats or in either WATs of pair-fed rats. In AA rats plasma glycerol was elevated, whereas FFA concentration was reduced. Plasma

  20. Diastereoselective synthesis of γ-lactones through reaction of enediolates with α,β-unsaturated sulfoxonium salts.

    PubMed

    Peraino, Nicholas J; Wheeler, Kraig A; Kerrigan, Nessan J

    2015-04-01

    Studies of the reaction of lithium enediolates with α,β-unsaturated sulfoxonium salts are described. γ-Lactones were formed in very good to excellent yields (82% → 99% for 11 examples) and with very good to excellent diastereoselectivity (dr >90:10 for 10 examples), favoring the trans-diastereomer. PMID:25783172

  1. [Determination of three coriaria lactones in honey by ultra high performance liquid chromatography-high resolution mass spectrometry].

    PubMed

    Yin, Yao; Chen, Huilan; Chen, Lei; Bie, Xiaomei; Ding, Tao; Zhang, Xiaoyan; Wu, Bin; Shen, Chongyu; Zhang, Rui

    2015-07-01

    A method for the determination of three coriaria lactone residues in honey was developed using ultra high performance liquid chromatography-high resolution mass spectrometry. The honey samples were extracted with 0.2 mol/L phosphate buffer solution (pH = 7.5), and the extracts were cleaned up with Waters HLB solid phase extraction cartridges. The extracted components were separated on a Phenomenex C18 column by gradient elution. The qualitative and quantitative analyses were operated under t-MS2 by high resolution mass spectrometry. The results showed that the limits of detection and quantification for the three coriaria lactones in a spiked blank honey were 0.05 mg/kg and 0.1 mg/kg, respectively. The recoveries of the three coriaria lactones spiked in blank honey samples at the levels of 0.1 to 0.5 mg/kg were 86.3%-95.6% with the RSDs of 3.0%-8.4%. The method was applied for the determination of the manuka honey from New Zealand, and tutin was detected in one of the samples. The results showed that the method is suitable for the determination of the three coriaria lactone residues in honey.

  2. Effect of feeding linseed oil in diets differing in forage to concentrate ratio: 2. Milk lactone profile.

    PubMed

    Saliba, Leacady; Gervais, Rachel; Lebeuf, Yolaine; Vuillemard, Jean-Christophe; Fortin, Jacinthe; Chouinard, P Yvan

    2014-02-01

    Lactones are important contributors to the flavour and aroma of milk and dairy products. This study was conducted to evaluate the effects of dietary linseed oil (LO) and forage to concentrate ratio on milk lactone profile. Twenty four Holstein cows were used during a 4-week feeding trial in a randomised complete block design. Cows were fed diets containing 30% (LC) or 70% (HC) concentrate, and 0% (NLO) or 3% LO in a 2×2 factorial arrangement of treatments. Milk lactone profile was evaluated using the solid phase microextraction technique. The highest levels of δ-lactones (δ-6:0, δ-8:0, δ-10:0, and δ-12:0) were found with the LC/NLO diet. These concentrations were then decreased when cows received either a high level of concentrate or supplemental LO, but these effects were not additive (interaction of LO by concentrate, P<0·01). An interaction of LO by concentrate (P<0·01) was also noted on milk γ-12:0 for which the highest concentration was observed when supplementing LO in HC diet, while no effect was apparent when LO was added in LC diet. Moreover, feeding HC increased the level of γ-12:1 in milk as compared with LC, while LO had no effect on this γ-lactone. Finally, γ-12:2 was not detected in any of the milk samples studied. Organoleptic properties of milk were evaluated in a triangle test showing that a significant number of assessors perceived a difference between milk from cows fed LC/NLO as compared with milk from cows fed HC/LO. The sensory evaluation was completed by a ranking test where the intensities of fresh lactic, foreign and global flavours were not different between treatments. In conclusion, feeding LO in HC diet modified milk lactone profile with a shift toward more γ- and less δ-lactones as compared with LC diet not supplemented with LO. A difference was perceived in a triangle test between milk from these two treatments, but the sensory attributes responsible for this difference have not been identified in the current trial.

  3. Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules

    PubMed Central

    Schenk, Sebastian T.; Stein, Elke; Kogel, Karl-Heinz; Schikora, Adam

    2012-01-01

    N-acyl-homoserine lactones (AHLs) play an important role in the communication within the rhizosphere; they serve as a chemical base for interactions within and between different species of Gram-negative bacteria. Not only bacteria, also plants perceive and react to AHLs with diverse responses. Here we describe a negative correlation between the length of AHLs’ lipid chains and the observed growth promotion in Arabidopsis thaliana. Moreover, we speculate on a positive correlation between the reinforcement of defense mechanisms and the length of the lipid moieties. Observation presented here may be of great importance for understanding of the complex interplay between plants and their environment, as well as for agronomic applications. PMID:22307043

  4. Pseudomonas aeruginosa biofilm growth inhibition on medical plastic materials by immobilized esterases and acylase.

    PubMed

    Kisch, Johannes Martin; Utpatel, Christian; Hilterhaus, Lutz; Streit, Wolfgang R; Liese, Andreas

    2014-09-01

    Biofilms are matrix-encapsulated cell aggregates that cause problems in technical and health-related areas; for example, 65 % of all human infections are biofilm associated. This is mainly due to their ameliorated resistance against antimicrobials and immune systems. Pseudomonas aeruginosa, a biofilm-forming organism, is commonly responsible for nosocomial infections. Biofilm development is partly mediated by signal molecules, such as acyl-homoserine lactones (AHLs) in Gram-negative bacteria. We applied horse liver esterase, porcine kidney acylase, and porcine liver esterase; these can hydrolyze AHLs, thereby inhibiting biofilm formation. As biofilm infections are often related to foreign material introduced into the human body, we immobilized the enzymes on medical plastic materials. Biofilm formation was quantified by Crystal Violet staining and confocal laser scanning microscopy, revealing up to 97 % (on silicone), 54 % (on polyvinyl chloride), and 77 % (on polyurethane) reduced biomass after 68 h growth.

  5. Quorum Sensing Controls Swarming Motility of Burkholderia glumae through Regulation of Rhamnolipids.

    PubMed

    Nickzad, Arvin; Lépine, François; Déziel, Eric

    2015-01-01

    Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour. PMID:26047513

  6. [Regulation of Biofilm Formation by Pseudomonas chlororaphis in an vitro System].

    PubMed

    Gannesen, A V; Zhurina, M V; Veselova, M A; Khmel, I A; Plakunov, V K

    2015-01-01

    The mutants of Pseudomonas chlororaphis 449 with completely or partially suppressed accumulation of N-acyl homoserine lactones exhibited the absence or a pronounced decrease of their capacity for stimulation of biofilm growth in the presence of azithromycin. Biofilms of the wild type strain preformed in the presence of the stimulatory azithromycin concentrations exhibited more intense staining with a polysaccharide-specific dye 1,9-dimethyl methylene blue (DMMB) and were more resistant to heat shock. These findings indicate accumulation of the structural matrix polysaccharides, which play a protective role under the conditions of thermal shock. Extremely low azithromycin concentrations (0.001-0.01 μg/mL) inhibit biofilm formation by P. chlororaphis 449 and P. chlororaphis 66 with suppression of the synthesis of DMMB-staining polysaccharides.

  7. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium

    PubMed Central

    Brenner, Katie; Karig, David K.; Weiss, Ron; Arnold, Frances H.

    2007-01-01

    Microbial consortia form when multiple species colocalize and communally generate a function that none is capable of alone. Consortia abound in nature, and their cooperative metabolic activities influence everything from biodiversity in the global food chain to human weight gain. Here, we present an engineered consortium in which the microbial members communicate with each other and exhibit a “consensus” gene expression response. Two colocalized populations of Escherichia coli converse bidirectionally by exchanging acyl-homoserine lactone signals. The consortium generates the gene-expression response if and only if both populations are present at sufficient cell densities. Because neither population can respond without the other's signal, this consensus function can be considered a logical AND gate in which the inputs are cell populations. The microbial consensus consortium operates in diverse growth modes, including in a biofilm, where it sustains its response for several days. PMID:17959781

  8. Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects

    PubMed Central

    Wang, Yan; Song, Qinghao; Zhang, Xiao-Hua

    2016-01-01

    Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes. PMID:27669268

  9. Untapped Resources: Biotechnological Potential of Peptides and Secondary Metabolites in Archaea

    PubMed Central

    Charlesworth, James C.; Burns, Brendan P.

    2015-01-01

    Archaea are an understudied domain of life often found in “extreme” environments in terms of temperature, salinity, and a range of other factors. Archaeal proteins, such as a wide range of enzymes, have adapted to function under these extreme conditions, providing biotechnology with interesting activities to exploit. In addition to producing structural and enzymatic proteins, archaea also produce a range of small peptide molecules (such as archaeocins) and other novel secondary metabolites such as those putatively involved in cell communication (acyl homoserine lactones), which can be exploited for biotechnological purposes. Due to the wide array of metabolites produced there is a great deal of biotechnological potential from antimicrobials such as diketopiperazines and archaeocins, as well as roles in the cosmetics and food industry. In this review we will discuss the diversity of small molecules, both peptide and nonpeptide, produced by archaea and their potential biotechnological applications. PMID:26504428

  10. [The ability of the natural ketones to interact with bacterial quorum sensing systems].

    PubMed

    Pliuta, V A; Popova, F F; Koksharova, O A; Kuznetsov, A E; khmel', I A

    2014-01-01

    The effect of the natural ketones emitted by bacteria (2-nonanone, 2-heptanone, 2-undecanone) on the functioning of the Quorum Sensing (QS) systems was studied. In this work, three lux-reporter strains containing the components of the LasI/LasR, RhlI/RhlR, LuxI LuxR QS systems were used as biosensors for the N-acyl-homoserine lactones. It was shown that at concentrations of ketones that exhibited little or no bactericidal action the ketones could modulate the QS-response by suppressing the expression of the lux-operon reporter to a greater extent than the cell viability of these strains. PMID:25845135

  11. Draft Genome Sequence of Providencia sneebia Strain ST1, a Quorum Sensing Bacterium Associated with Marine Microalgae

    PubMed Central

    Zhou, Jin; Lao, Yong-Min; Cai, Zhong-Hua

    2016-01-01

    Providencia sneebia strain ST1 is a symbiotic bacterium (belonging to phylum gammaproteobacteria) with marine microalgae. This bacterium exhibits the ability to produce N-Acyl homoserine lactone signal molecule. To date, no genome that originates from marine Providencia spp. has been reported. In this study, we present the genome sequence of this strain. It has a genome size of 4.89 M, with 19 contigs and an average G+C of 51.97%. The function of 4,631 proteins was predicted, and 3,652 proteins were assigned to COG functional categories. Among them, 407 genes are involved in carbohydrate metabolism, 306 genes participate in nitrogen utilization and energy conversion, and 185 genes related to signal transduction process. Thus, this strain plays an active role in the biogeochemical cycle in algal life history. The whole-genome of this isolate and annotation will help enhance understanding of bacterial ecological behavior in the phycosphere. PMID:27026792

  12. Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects.

    PubMed

    Wang, Yan; Song, Qinghao; Zhang, Xiao-Hua

    2016-09-22

    Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes.

  13. Turing Patterning Using Gene Circuits with Gas-Induced Degradation of Quorum Sensing Molecules

    PubMed Central

    Hasty, Jeff; Tsimring, Lev

    2016-01-01

    The Turing instability was proposed more than six decades ago as a mechanism leading to spatial patterning, but it has yet to be exploited in a synthetic biology setting. Here we characterize the Turing instability in a specific gene circuit that can be implemented in vitro or in populations of clonal cells producing short-range activator N-Acyl homoserine lactone (AHL) and long-range inhibitor hydrogen peroxide (H2O2) gas. Slowing the production rate of the AHL-degrading enzyme, AiiA, generates stable fixed states, limit cycle oscillations and Turing patterns. Further tuning of signaling parameters determines local robustness and controls the range of unstable wavenumbers in the patterning regime. These findings provide a roadmap for optimizing spatial patterns of gene expression based on familiar quorum and gas sensitive E. coli promoters. The circuit design and predictions may be useful for (re)programming spatial dynamics in synthetic and natural gene expression systems. PMID:27148743

  14. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex

    PubMed Central

    Suppiger, Angela; Schmid, Nadine; Aguilar, Claudio; Pessi, Gabriella; Eberl, Leo

    2013-01-01

    The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed. PMID:23799665

  15. Applications of thin-layer chromatography in extraction and characterisation of ajoene from garlic bulbs.

    PubMed

    Vadekeetil, Anitha; Kaur, Gurpreet; Chhibber, Sanjay; Harjai, Kusum

    2015-01-01

    Novel and inexpensive methods of thin-layer chromatography (TLC) were employed for the extraction, characterisation and mechanism of quorum sensing inhibition by ajoene, a component from toluene garlic bulb (Allium sativum L.) extract (TGE). TLC profiling of TGE was carried out using ethyl acetate as solvent. Out of total spots extracted from TLC, four spots exhibited quorum sensing inhibitory (QSI) potential. Among those, spot 5 was identified as Z-ajoene by TLC and confirmed by NMR and MS. HPLC analysis indicated 97.7% purity for purified ajoene. TLC densitometric analysis quantified 221.08 μmol/g of ajoene in TGE and indicated that ajoene is stable at 4°C and at acidic pH. HPTLC profiling showed that ajoene exhibits QSI effect by inhibiting the production of both long-chain acyl homoserine lactones and Pseudomonas quinolone signal (PQS) by P. aeruginosa and also by inactivating PQS molecules.

  16. Broad Spectrum Anti-Quorum Sensing Activity of Tannin-Rich Crude Extracts of Indian Medicinal Plants

    PubMed Central

    Shukla, Varsha; Bhathena, Zarine

    2016-01-01

    Quorum sensing (QS) mechanisms have been demonstrated to have significance in expression of pathogenicity in infectious bacteria. In Gram negative bacteria the autoinducer molecules that mediate QS are acyl homoserine lactones (AHL) and in Gram positive bacteria they are peptides called autoinducing peptides (AIP). A screening of tannin-rich medicinal plants was attempted to identify extracts that could interrupt the QS mechanisms in both Gram positive and Gram negative bacteria over a wide range of concentrations and therefore potentially be potent agents that could act as broad spectrum QS inhibitors. Six out of the twelve Indian medicinal plant extracts that were analyzed exhibited anti-QS activity in Chromobacterium violaceum 12472 and in S. aureus strain with agr:blaZ fusion over a broad range of subinhibitory concentrations, indicating that the extracts contain high concentration of molecules that can interfere with the QS mechanisms mediated by AHL as well as AIP. PMID:27190686

  17. Untapped Resources: Biotechnological Potential of Peptides and Secondary Metabolites in Archaea.

    PubMed

    Charlesworth, James C; Burns, Brendan P

    2015-01-01

    Archaea are an understudied domain of life often found in "extreme" environments in terms of temperature, salinity, and a range of other factors. Archaeal proteins, such as a wide range of enzymes, have adapted to function under these extreme conditions, providing biotechnology with interesting activities to exploit. In addition to producing structural and enzymatic proteins, archaea also produce a range of small peptide molecules (such as archaeocins) and other novel secondary metabolites such as those putatively involved in cell communication (acyl homoserine lactones), which can be exploited for biotechnological purposes. Due to the wide array of metabolites produced there is a great deal of biotechnological potential from antimicrobials such as diketopiperazines and archaeocins, as well as roles in the cosmetics and food industry. In this review we will discuss the diversity of small molecules, both peptide and nonpeptide, produced by archaea and their potential biotechnological applications.

  18. Quorum Sensing Signal Synthesis May Represent a Selective Advantage Independent of Its Role in Regulation of Bioluminescence in Vibrio fischeri

    PubMed Central

    Chong, Grace; Kimyon, Önder; Manefield, Mike

    2013-01-01

    The evolution of biological signalling systems and apparently altruistic or cooperative traits in diverse organisms has required selection against the subversive tendencies of self-interested biological entities. The bacterial signalling and response system known as quorum sensing or Acylated Homoserine Lactone (AHL) mediated gene expression is thought to have evolved through kin selection. In this in vitro study on the model quorum sensing bioluminescent marine symbiont Vibrio fischeri, competition and long-term sub culturing experiments suggest that selection for AHL synthesis (encoded by the AHL synthase gene luxI) is independent of the quorum sensing regulated phenotype (bioluminescence encoded by luxCDABE). Whilst results support the hypothesis that signal response (AHL binding and transcriptional activation encoded by the luxR gene) is maintained through indirect fitness benefits (kin selection), signal synthesis is maintained in the V. fischeri genome over evolutionary time through direct fitness benefits at the individual level from an unknown function. PMID:23825662

  19. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66.

    PubMed

    You, JianLan; Xue, XiaoLi; Cao, LiXiang; Lu, Xin; Wang, Jian; Zhang, LiXin; Zhou, ShiNing

    2007-10-01

    China remains by far the largest aquaculture producer in the world. However, biofilms formed by pathogenic Vibrio strains pose serious problems to marine aquaculture. To provide a strategy for biofilm prevention, control, and eradication, extracts from 88 marine actinomycetes were screened. Thirty-five inhibited the biofilm formation of Vibrio harveyi, Vibrio vulnificus, and Vibrio anguillarum at a concentration of 2.5% (v/v). Thirty-three of the actinomycete extracts dispersed the mature biofilm. Six extracts inhibited the quorum-sensing system of V. harveyi by attenuating the signal molecules N-acylated homoserine lactones' activity. Strain A66, which was identified as Streptomyces albus, both attenuated the biofilms and inhibited their quorum-sensing system. It is suggested that strain A66 is a promising candidate to be used in future marine aquaculture. PMID:17624525

  20. Purification and antibiofilm activity of AHL-lactonase from endophytic Enterobacter aerogenes VT66.

    PubMed

    Rajesh, P S; Rai, V Ravishankar

    2015-11-01

    The opportunistic pathogen Pseudomonas aeruginosa uses biofilm lifestyle to resist antibiotic treatment. In our study, endophytic bacterium Enterobacter aerogenes VT66 quenched the N-acyl homoserine lactone (AHL) molecules produced by P. aeruginosa PAO1. The quorum quenching activity was attributed to the presence of AHL-lactonase. The AHL-lactonase was purified using column chromatography and purified AHL-lactonase was applied for the control of biofilm formation in P. aeruginosa PAO1. The results showed that purified AHL-lactonase obtained with a molecular weight about 30kDa was able to inhibit more than 70% of biofilm in P. aeruginosa PAO1 (P<0.001). Antibiofilm activity of AHL-lactonase was correlated well with results from staining technique used to determine inhibition of biomass and viable cell activity. Therefore, results unambiguously confirm that the AHL-lactonase from E. aerogenes VT66 could be used as antibiofilm therapeutics in P. aeruginosa associated biomedical applications.

  1. Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects.

    PubMed

    Wang, Yan; Song, Qinghao; Zhang, Xiao-Hua

    2016-01-01

    Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes. PMID:27669268

  2. Crystallization and rhenium MAD phasing of the acyl-homoserinelactone synthase EsaI

    SciTech Connect

    Watson, W.T.; Murphy IV, Frank V.; Gould, Ty A.; Jambeck, Per; Val, Dale L.; Cronan, Jr., John E.; Beck von Bodman, Susan; Churchill, Mair E.A.

    2009-04-22

    Acyl-homoserine-L-lactones (AHLs) are diffusible chemical signals that are required for virulence of many Gram-negative bacteria. AHLs are produced by AHL synthases from two substrates, S-adenosyl-L-methionine and acyl-acyl carrier protein. The AHL synthase EsaI, which is homologous to the AHL synthases from other pathogenic bacterial species, has been crystallized in the primitive tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 66.40, c = 47.33 {angstrom}. The structure was solved by multiple-wavelength anomalous diffraction with a novel use of the rhenium anomalous signal. The rhenium-containing structure has been refined to a resolution of 2.5 {angstrom} and the perrhenate ion binding sites and liganding residues have been identified.

  3. Quorum sensing in Serratia.

    PubMed

    Van Houdt, Rob; Givskov, Michael; Michiels, Chris W

    2007-07-01

    Many bacteria use cell-cell communication to monitor their population density, synchronize their behaviour and socially interact. This communication results in a coordinated gene regulation and is generally called quorum sensing. In gram-negative bacteria, the most common quorum signal molecules are acylated homoserine lactones (AHLs), although other low-molecular-mass signalling molecules have been described such as Autoinducer-2 (AI-2). The phenotypes that are regulated in Serratia species by means of AHLs are remarkably diverse and of profound biological and ecological significance, and often interconnected with other global regulators. Furthermore, AHL- and AI-2-mediated systems (less profoundly studied) are continuously being discovered and explored in Serratia spp., many having interesting twists on the basic theme. Therefore, this review will highlight the current known quorum sensing systems in Serratia spp., including the important nosocomial pathogen Serratia marcescens.

  4. Biosynthetic studies on the botcinolide skeleton: new hydroxylated lactones from Botrytis cinerea.

    PubMed

    Reino, José L; Durán-Patrón, Rosa M; Daoubi, Mourad; Collado, Isidro G; Hernández-Galán, Rosario

    2006-01-20

    [reaction: see text] The biosynthetic origin of the botcinolide skeleton was investigated by means of feeding 13C- and 2H-labeled precursors to Botrytis cinerea. Three new compounds, two homobotcinolide derivatives, 3-O-acetylhomobotcinolide (5) and 8-methylhomobotcinolide (6), and a new 11-membered lactone (7), were isolated. Their structures were elucidated on the basis of spectroscopic data, including one-bond and long-range 1H-13C correlations. The relative stereochemistries were determined by combined analyses of NOE data and 1H-1H coupling constants. According to the results of feeding experiments with 13C- and 2H-labeled acetate and l-S-methylmethionine, 5 is an acetate-derived polyketide whose methyl groups originate from l-S-methylmethionine. This is a rare example of the incorporation of a methyl from methionine into a supposed C3 starter unit of the polyketide synthesis.

  5. Spirobisnaphthalenes and lactones from the seeds of Strychnos angustiflora with potential anti-inflammatory activity.

    PubMed

    Jiang, Hua; Ma, Shuang-Gang; Li, Yong; Liu, Yun-Bao; Li, Li; Qu, Jing; Yu, Shi-Shan

    2016-10-01

    Three new spirobisnaphthalenes (1-3), a new, natural spirobisnaphthalene product (4), and two new 12-membered ring lactones (11-12), with six known compounds (5-10), were isolated from the seeds of Strychnos angustiflora. Their structures were elucidated by extensive spectroscopic analysis. The absolute configurations of 1-4 were assigned by computational methods. Compounds 1, 5 and 9 inhibited lipopolysaccharide-induced NO production in BV2 cells with IC50 values of 4.85, 2.05, and 1.16μM, respectively (positive control curcumin, IC50=1.42μM). This is the first report on the anti-inflammatory activities of spirobisnaphthalenes. PMID:27592135

  6. Synthesis and Biological Evaluation of Several Bryostatin Analogues Bearing a Diacylglycerol Lactone C-Ring.

    PubMed

    Baumann, David O; McGowan, Kevin M; Kedei, Noemi; Peach, Megan L; Blumberg, Peter M; Keck, Gary E

    2016-09-01

    As an initial step in designing a simplified bryostatin hybrid molecule, three bryostatin analogues bearing a diacylglycerol lactone-based C-ring, which possessed the requisite pharmacophores for binding to protein kinase C (PKC) together with a modified bryostatin-like A- and B-ring region, were synthesized and evaluated. Merle 46 and Merle 47 exhibited binding affinity to PKC alpha with Ki values of 7000 ± 990 and 4940 ± 470 nM, respectively. Reinstallation of the trans-olefin and gem-dimethyl group present in bryostatin 1 in Merle 48 resulted in improved binding affinity, 363 ± 42 nM. While Merle 46 and 47 were only marginally active biologically, Merle 48 showed sufficient activity on the U937 cells to confirm that it was PMA-like for growth and attachment, as predicted by the substitution pattern of its A- and B-rings. PMID:27494208

  7. In Vitro Shoot Cultures and Analysis of Steroidal Lactones in Withania coagulans (Stocks) Dunal.

    PubMed

    Jain, Rohit; Kachhwaha, Sumita; Kothari, S L

    2016-01-01

    Withania coagulans (Stocks) Dunal (Solanaceae), also known as 'Panir Bandh' is an important medicinal plant that is extensively used as a home remedy for several diseases in the Indian subcontinent. The plant possesses specific steroidal lactones known as withanolides which show high level of pharmaceutical activity against a broad spectrum of microorganisms. Natural propagation of the plant occurs through Seed but due to unisexual nature of the flowers; chances of Seed setting are very limited and the plant is on the verge of extinction because of overexploitation and reproductive failure. Plant tissue culture techniques offer opportunities for ex situ conservation and mass multiplication of endangered plant species through micropropagation and also enhancement of in vitro biosynthesis of bioactive compounds. In this chapter we present protocols for the mass multiplication of W. coagulans, assessment of clonal fidelity by RAPD, and estimation of bioactive compounds (withanolides) by thin layer chromatography (TLC) and reverse phase HPLC developed in our laboratory. PMID:27108323

  8. Stereospecific cross-coupling reactions of aryl-substituted tetrahydrofurans, tetrahydropyrans, and lactones.

    PubMed

    Tollefson, Emily J; Dawson, David D; Osborne, Charlotte A; Jarvo, Elizabeth R

    2014-10-22

    The stereospecific ring-opening of O-heterocycles to provide acyclic alcohols and carboxylic acids with controlled formation of a new C-C bond is reported. These reactions provide new methods for synthesis of acyclic polyketide analogs with complex stereochemical arrays. Stereoselective synthesis of the cyclic template is utilized to control relative configuration; subsequent stereospecific nickel-catalyzed ring-opening affords the acyclic product. Aryl-substituted tetrahydrofurans and tetrahydropyrans undergo nickel-catalyzed Kumada-type coupling with a range of Grignard reagents to furnish acyclic alcohols with high diastereoselectivity. Enantioenriched lactones undergo Negishi-type cross-coupling with dimethylzinc to afford enantioenriched carboxylic acids. Application in a two-step enantioselective synthesis of an anti-dyslipidemia agent is demonstrated. PMID:25308512

  9. Dimethylfuran-lactone pheromone from males of Galerucella calmariensis and Galerucella pusilla.

    PubMed

    Bartelt, Robert J; Cossé, Allard A; Zilkowski, Bruce W; Weisleder, David; Grode, Stephen H; Wiedenmann, Robert N; Post, Susan L

    2006-03-01

    Male Galerucella calmariensis and Galerucella pusilla (Coleoptera: Chrysomelidae) emit an aggregation pheromone while feeding on host foliage. Isolation of the compound from collected volatiles was guided by comparisons of gas chromatograms of extracts from males and females and by gas chromatography-electroantennographic detection. The compound was identified by a combination of spectrometric methods and microchemical tests as the novel dimethylfuran lactone, 12,13-dimethyl-5,14-dioxabicyclo[9.2.1]tetradeca-1(13),11-dien-4-one. The structure was confirmed by synthesis, and the synthetic compound attracted males and females of both species in field bioassays. These beetles were previously introduced into North America as biological control agents for the invasive wetland weed, purple loosestrife Lythrum salicaria, and the pheromone could become a tool for monitoring populations. A new method is described for distinguishing the two species based on the tibial spurs of the males.

  10. Sesquiterpene lactone content in leaves of in vitro and field cultivated Arnica montana.

    PubMed

    Schmidt, T J; Bomme, U; Alfermann, A W

    1998-04-01

    On the basis of GC and GC/MS analyses we report on the full qualitative and quantitative sesquiterpene lactone (STL) content of in vitro cultivated A. montana plantlets consisting of helenalin and 11alpha,13-dihydrohelenalin esters in approximately equal amounts. The accumulation of STL was shown to be correlated with tissue differentiation in the above-ground parts. The seasonal variation of STL content in leaves of A. montana cultivated in the proving field was investigated. Changes in the composition of the STL fraction were detected. While young plants accumulate mainly helenalin derivatives, the content of such compounds decreases to almost zero within about 6 weeks from the beginning of leaf formation while that of dihydrohelenalin type compounds increases at the same rate and remains constant for a longer period.

  11. A study of the piezoelectric resonance in organic single crystal: glucuronic acid γ-lactone

    NASA Astrophysics Data System (ADS)

    Saripalli, Ravi Kiran; Chakraborty, Tirthankar; Bhat, H. L.; Elizabeth, Suja

    2016-04-01

    An organic nonlinear optical material, namely glucuronic acid γ-lactone or glucuronolactone, was crystallized from aqueous solution. Crystals of large dimensions and full morphology were obtained by slow-cooling method in a custom-built solution growth setup. CHN analysis and X-ray diffraction confirmed the phase formation in the grown crystal. High-resolution XRD studies followed by Rietveld refinement yielded accurate lattice parameters which compared well with the reported values. UV-Vis spectrum recorded for a b-plate of 2 mm thickness revealed the low UV-cutoff at 250 nm. Dielectric constant and dielectric loss were monitored as a function of frequency. Piezoelectric resonance peaks were observed in the range 0.2-1.5 MHz which are dependent on the plate thickness. The temperature dependence of the resonance peak frequency was studied. Piezoelectric coefficients were estimated by resonance-antiresonance method.

  12. GABAA receptor cysteinyl mutants and the ginkgo terpenoid lactones bilobalide and ginkgolides.

    PubMed

    Ng, Chiu Chin; Duke, Rujee K; Hinton, Tina; Johnston, Graham A R

    2016-04-15

    The terpenoid lactones from Ginkgo biloba, bilobalide and ginkgolides, have been shown to act as negative modulators at α1β2γ2L GABAA receptors. They have structural features similar to those of the chloride channel blocker picrotoxinin. Unlike picrotoxinin, however they are not known to produce convulsant effects. Using two-electrode voltage clamp electrophysiology, this study compared the effect of mutation of 2', 6' and 15' pore facing M2 domain residues to cysteine on the action of picrotoxinin, bilobalide and ginkgolides at α1β2γ2L GABAA receptors expressed in Xenopus oocytes. Picrotoxinin was affected by mutation differently from the ginkgo terpenoid lactones. Although some of these compounds were affected by the mutation at same position and/or subunit, the changes in their potency were found to be dissimilar. The results suggest that the intracellular pore binding site for picrotoxinin, bilobalide, ginkgolide A, ginkgolide B and ginkgolide C is comprised of 2'β-6'β6'γ, 2'α2'β-6'α6'β, 2'α2'β2'γ-6'β6'γ, 2'α, 2'β2'γ-6'β and 2'α2'β, respectively. Unlike bilobalide and ginkgolides, the inhibitory action of picrotoxinin was not affected by mutations at 15' position. It is proposed that 15'α15'β, 15'β, 15'α15'β and 15'α15'β15'γ forms an extracellular pore binding site for bilobalide, ginkgolide A, ginkgolide B and ginkgolide C, respectively. The lack of convulsant effects of bilobalide, and ginkgolide A and B may be associated in part with their different binding locations within the chloride channel. PMID:26953225