Science.gov

Sample records for acyl-homoserine lactone quorum-sensing

  1. Acyl-homoserine lactone quorum sensing: from evolution to application.

    PubMed

    Schuster, Martin; Sexton, D Joseph; Diggle, Stephen P; Greenberg, E Peter

    2013-01-01

    Quorum sensing (QS) is a widespread process in bacteria that employs autoinducing chemical signals to coordinate diverse, often cooperative activities such as bioluminescence, biofilm formation, and exoenzyme secretion. Signaling via acyl-homoserine lactones is the paradigm for QS in Proteobacteria and is particularly well understood in the opportunistic pathogen Pseudomonas aeruginosa. Despite thirty years of mechanistic research, empirical studies have only recently addressed the benefits of QS and provided support for the traditional assumptions regarding its social nature and its role in optimizing cell-density-dependent group behaviors. QS-controlled public-goods production has served to investigate principles that explain the evolution and stability of cooperation, including kin selection, pleiotropic constraints, and metabolic prudence. With respect to medical application, appreciating social dynamics is pertinent to understanding the efficacy of QS-inhibiting drugs and the evolution of resistance. Future work will provide additional insight into the foundational assumptions of QS and relate laboratory discoveries to natural ecosystems.

  2. Acyl-Homoserine Lactone Quorum Sensing in the Roseobacter Clade

    PubMed Central

    Zan, Jindong; Liu, Yue; Fuqua, Clay; Hill, Russell T.

    2014-01-01

    Members of the Roseobacter clade are ecologically important and numerically abundant in coastal environments and can associate with marine invertebrates and nutrient-rich marine snow or organic particles, on which quorum sensing (QS) may play an important role. In this review, we summarize current research progress on roseobacterial acyl-homoserine lactone-based QS, particularly focusing on three relatively well-studied representatives, Phaeobacter inhibens DSM17395, the marine sponge symbiont Ruegeria sp. KLH11 and the dinoflagellate symbiont Dinoroseobacter shibae. Bioinformatic survey of luxI homologues revealed that over 80% of available roseobacterial genomes encode at least one luxI homologue, reflecting the significance of QS controlled regulatory pathways in adapting to the relevant marine environments. We also discuss several areas that warrant further investigation, including studies on the ecological role of these diverse QS pathways in natural environments. PMID:24402124

  3. Transcriptome analysis of acyl-homoserine lactone-based quorum sensing regulation in Yersinia pestis [corrected].

    PubMed

    LaRock, Christopher N; Yu, Jing; Horswill, Alexander R; Parsek, Matthew R; Minion, F Chris

    2013-01-01

    The etiologic agent of bubonic plague, Yersinia pestis, senses self-produced, secreted chemical signals in a process named quorum sensing. Though the closely related enteric pathogen Y. pseudotuberculosis uses quorum sensing system to regulate motility, the role of quorum sensing in Y. pestis has been unclear. In this study we performed transcriptional profiling experiments to identify Y. pestis quorum sensing regulated functions. Our analysis revealed that acyl-homoserine lactone-based quorum sensing controls the expression of several metabolic functions. Maltose fermentation and the glyoxylate bypass are induced by acyl-homoserine lactone signaling. This effect was observed at 30°C, indicating a potential role for quorum sensing regulation of metabolism at temperatures below the normal mammalian temperature. It is proposed that utilization of alternative carbon sources may enhance growth and/or survival during prolonged periods in natural habitats with limited nutrient sources, contributing to maintenance of plague in nature.

  4. Thermoregulation of N-acyl homoserine lactone-based quorum sensing in the soft rot bacterium Pectobacterium atrosepticum.

    PubMed

    Latour, Xavier; Diallo, Stéphanie; Chevalier, Sylvie; Morin, Danièle; Smadja, Bruno; Burini, Jean-François; Haras, Dominique; Orange, Nicole

    2007-06-01

    The psychrotolerant bacterium Pectobacterium atrosepticum produces four N-acyl homoserine lactones under a wide range of temperatures. Their thermoregulation differs from that of the exoenzyme production, described as being under quorum-sensing control. A mechanism involved in this thermoregulation consists of controlling N-acyl homoserine lactones synthase production at a transcriptional level.

  5. Triazole-containing N-acyl homoserine lactones targeting the quorum sensing system in Pseudomonas aeruginosa.

    PubMed

    Hansen, Mette R; Jakobsen, Tim H; Bang, Claus G; Cohrt, Anders Emil; Hansen, Casper L; Clausen, Janie W; Le Quement, Sebastian T; Tolker-Nielsen, Tim; Givskov, Michael; Nielsen, Thomas E

    2015-04-01

    In an attempt to devise new antimicrobial treatments for biofilm infections, the bacterial cell-cell communication system termed quorum sensing has emerged as an attractive target. It has proven possible to intercept the communication system by synthetic non-native ligands and thereby lower the pathogenesis and antibiotic tolerance of a bacterial biofilm. To identify the structural elements important for antagonistic or agonistic activity against the Pseudomonas aeruginosa LasR protein, we report the synthesis and screening of new triazole-containing mimics of natural N-acyl homoserine lactones. A series of azide- and alkyne-containing homoserine lactone building blocks was used to prepare an expanded set of 123 homoserine lactone analogues through a combination of solution- and solid-phase synthesis methods. The resulting compounds were subjected to cell-based quorum sensing screening assays, thereby revealing several bioactive compounds, including 13 compounds with antagonistic activity and 9 compounds with agonistic activity.

  6. Pseudomonas cremoricolorata Strain ND07 Produces N-acyl Homoserine Lactones as Quorum Sensing Molecules

    PubMed Central

    Yunos, Nina Yusrina Muhamad; Tan, Wen-Si; Koh, Chong-Lek; Sam, Choon-Kook; Mohamad, Nur Izzati; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing (QS) is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs). We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-l-homoserine lactone (C8-HSL) and N-decanoyl-l-homoserine lactone (C10-HSL). To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07. PMID:24984061

  7. Novel Reporter for Identification of Interference with Acyl Homoserine Lactone and Autoinducer-2 Quorum Sensing

    PubMed Central

    Weiland-Bräuer, Nancy; Pinnow, Nicole

    2014-01-01

    Two reporter strains were established to identify novel biomolecules interfering with bacterial communication (quorum sensing [QS]). The basic design of these Escherichia coli-based systems comprises a gene encoding a lethal protein fused to promoters induced in the presence of QS signal molecules. Consequently, these E. coli strains are unable to grow in the presence of the respective QS signal molecules unless a nontoxic QS-interfering compound is present. The first reporter strain designed to detect autoinducer-2 (AI-2)-interfering activities (AI2-QQ.1) contained the E. coli ccdB lethal gene under the control of the E. coli lsrA promoter. The second reporter strain (AI1-QQ.1) contained the Vibrio fischeri luxI promoter fused to the ccdB gene to detect interference with acyl-homoserine lactones. Bacteria isolated from the surfaces of several marine eukarya were screened for quorum-quenching (QQ) activities using the established reporter systems AI1-QQ.1 and AI2-QQ.1. Out of 34 isolates, two interfered with acylated homoserine lactone (AHL) signaling, five interfered with AI-2 QS signaling, and 10 were demonstrated to interfere with both signal molecules. Open reading frames (ORFs) conferring QQ activity were identified for three selected isolates (Photobacterium sp., Pseudoalteromonas sp., and Vibrio parahaemolyticus). Evaluation of the respective heterologously expressed and purified QQ proteins confirmed their ability to interfere with the AHL and AI-2 signaling processes. PMID:25527543

  8. Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence

    PubMed Central

    Chan, Kok-Gan; Liu, Yi-Chia; Chang, Chien-Yi

    2015-01-01

    Bacteria sense their own population size, tune the expression of responding genes, and behave accordingly to environmental stimuli by secreting signaling molecules. This phenomenon is termed as quorum sensing (QS). By exogenously manipulating the signal transduction bacterial population behaviors could be controlled, which may be done through quorum quenching (QQ). QS related regulatory networks have been proven their involvement in regulating many virulence determinants in pathogenic bacteria in the course of infections. Interfering with QS signaling system could be a novel strategy against bacterial infections and therefore requires more understanding of their fundamental mechanisms. Here we review the development of studies specifically on the inhibition of production of N-acyl-homoserine lactone (AHL), a common proteobacterial QS signal. The opportunistic pathogen, Pseudomonas aeruginosa, equips the alkylquinolone (AQ)-mediated QS which also plays crucial roles in its pathogenicity. The studies in QQ targeting on AQ are also discussed. PMID:26539190

  9. A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases.

    PubMed

    Christensen, Quin H; Grove, Tyler L; Booker, Squire J; Greenberg, E Peter

    2013-08-20

    Many Proteobacteria use N-acyl-homoserine lactone (acyl-HSL) quorum sensing to control specific genes. Acyl-HSL synthesis requires unique enzymes that use S-adenosyl methionine as an acyl acceptor and amino acid donor. We developed and executed an enzyme-coupled high-throughput cell-free screen to discover acyl-HSL synthase inhibitors. The three strongest inhibitors were equally active against two different acyl-HSL synthases: Burkholderia mallei BmaI1 and Yersinia pestis YspI. Two of these inhibitors showed activity in whole cells. The most potent compound behaves as a noncompetitive inhibitor with a Ki of 0.7 µM and showed activity in a cell-based assay. Quorum-sensing signal synthesis inhibitors will be useful in attempts to understand acyl-HSL synthase catalysis and as a tool in studies of quorum-sensing control of gene expression. Because acyl-HSL quorum-sensing controls virulence of some bacterial pathogens, anti-quorum-sensing chemicals have been sought as potential therapeutic agents. Our screen and identification of acyl-HSL synthase inhibitors serve as a basis for efforts to target quorum-sensing signal synthesis as an antivirulence approach.

  10. Microbial metabolism of quorum-sensing molecules acyl-homoserine lactones, γ-heptalactone and other lactones.

    PubMed

    Safari, Maryam; Amache, Rana; Esmaeilishirazifard, Elham; Keshavarz, Tajalli

    2014-04-01

    The cell-to-cell communication of microorganisms is known to be via exertion of certain chemical compounds (signal molecules) and is referred to as quorum sensing (QS). QS phenomenon is widespread in microbial communities. Several Gram-positive and Gram-negative bacteria and fungi use lactone-containing compounds (e.g. acyl-homoserine lactones (AHLs), γ-heptalactone, butyrolactone-I) as signalling molecules. The ability of microorganisms to metabolise these compounds and the mechanisms they employ for this purpose are not clearly understood. Many studies, however, have focused on identifying AHL and other lactone-degrading enzymes produced by bacteria and fungi. Various strains that are able to utilise these signalling molecules as carbon and energy sources have also been isolated. In addition, several reports have provided evidence on the involvement of lactones and lactone-degrading enzymes in numerous biological functions. These studies, although focused on processes other than metabolism of lactone signalling molecules, still provide insights into further understanding of the mechanisms employed by various microorganisms to metabolise the QS compounds. In this review, we consider conceivable microbial strategies to metabolise AHL and other lactone-containing signalling molecules such as γ-heptalactones.

  11. Possible Quorum Sensing in Marine Snow Bacteria: Production of Acylated Homoserine Lactones by Roseobacter Strains Isolated from Marine Snow

    PubMed Central

    Gram, Lone; Grossart, Hans-Peter; Schlingloff, Andrea; Kiørboe, Thomas

    2002-01-01

    We report here, for the first time, that bacteria associated with marine snow produce communication signals involved in quorum sensing in gram-negative bacteria. Four of 43 marine microorganisms isolated from marine snow were found to produce acylated homoserine lactones (AHLs) in well diffusion and thin-layer chromatographic assays based on the Agrobacterium tumefaciens reporter system. Three of the AHL-producing strains were identified by 16S ribosomal DNA gene sequence analysis as Roseobacter spp., and this is the first report of AHL production by these α-Proteobacteria. It is likely that AHLs in Roseobacter species and other marine snow bacteria govern phenotypic traits (biofilm formation, exoenzyme production, and antibiotic production) which are required mainly when the population reaches high densities, e.g., in the marine snow community. PMID:12147515

  12. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group.

    PubMed

    Schikora, Adam; Schenk, Sebastian T; Hartmann, Anton

    2016-04-01

    Bacterial quorum sensing (QS) mechanisms play a crucial role in the proper performance and ecological fitness of bacterial populations. Many key physiological processes are regulated in a QS-dependent manner by auto-inducers, like the N-acyl homoserine lactones (AHLs) in numerous Gram-negative bacteria. In addition, also the interaction between bacteria and eukaryotic hosts can be regulated by AHLs. Those mechanisms gained much attention, because of the positive effects of different AHL molecules on plants. This positive impact ranges from growth promotion to induced resistance and is quite contrasting to the rather negative effects observed in the interactions between bacterial AHL molecules and animals. Only very recently, we began to understand the molecular mechanisms underpinning plant responses to AHL molecules. In this review, we gathered the latest information in this research field. The first part gives an overview of the bacterial aspects of quorum sensing. Later we focus on the impact of AHLs on plant growth and AHL-priming, as one of the most understood phenomena in respect to the inter-kingdom interactions based on AHL-quorum sensing molecules. Finally, we discuss the potential benefits of the understanding of bacteria-plant interaction for the future agricultural applications.

  13. Effect of small chain N acyl homoserine lactone quorum sensing signals on biofilms of food-borne pathogens.

    PubMed

    A, Jamuna Bai; V, Ravishankar Rai

    2016-09-01

    Quorum sensing or cell to cell communication which includes inter- and intra-cellular communication has been implicated in the production of virulence factor and formation of biofilm in food-borne pathogens. In the present study, the effect of quorum sensing signals on the biofilms of food-borne pathogens has been elucidated. N-butryl homoserine lactone and N-hexanoyl homoserine lactone belonging to acyl homoserine lactone (AHL) family of signaling molecules were investigated for their effect on the biofilm formation (attachment and exopolymeric substance production) in the food-borne pathogens Escherichia coli, Salmonella enterica serovar Typhimurium and Vibrio parahemolyticus. The signaling molecules at a concentration of 1 µM were capable of increasing biofilm formation in all the tested pathogens. There was an increase in the attachment of the bacterial cells and biomass as observed by microtiter plate assay and exopolymeric substances production in the biofilms in presence of the AHLs. Further, it needs to be elucidated if the effect of AHLS on the biofilms of E. coli and S. enterica serovar Typhimurium is SdiA dependent.

  14. Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes.

    PubMed

    Hartmann, Anton; Schikora, Adam

    2012-06-01

    Many environmental and interactive important traits of bacteria, such as antibiotic, siderophore or exoenzyme (like cellulose, pectinase) production, virulence factors of pathogens, as well as symbiotic interactions, are regulated in a population density-dependent manner by using small signaling molecules. This phenomenon, called quorum sensing (QS), is widespread among bacteria. Many different bacterial species are communicating or "speaking" through diffusible small molecules. The production often is sophisticatedly regulated via an autoinducing mechanism. A good example is the production of N-acyl homoserine lactones (AHL), which occur in many variations of molecular structure in a wide variety of Gram-negative bacteria. In Gram-positive bacteria, other compounds, such as peptides, regulate cellular activity and behavior by sensing the cell density. The degradation of the signaling molecule--called quorum quenching--is probably another important integral part in the complex quorum sensing circuit. Most interestingly, bacterial quorum sensing molecules also are recognized by eukaryotes that are colonized by QS-active bacteria. In this case, the cross-kingdom interaction can lead to specific adjustment and physiological adaptations in the colonized eukaryote. The responses are manifold, such as modifications of the defense system, modulation of the immune response, or changes in the hormonal status and growth responses. Thus, the interaction with the quorum sensing signaling molecules of bacteria can profoundly change the physiology of higher organisms too. Higher organisms are obligatorily associated with microbial communities, and these truly multi-organismic consortia, which are also called holobionts, can actually be steered via multiple interlinked signaling substances that originate not only from the host but also from the associated bacteria.

  15. Metabolism of Acyl-Homoserine Lactone Quorum-Sensing Signals by Variovorax paradoxus

    PubMed Central

    Leadbetter, Jared R.; Greenberg, E. P.

    2000-01-01

    Acyl-homoserine lactones (acyl-HSLs) serve as dedicated cell-to-cell signaling molecules in many species of the class Proteobacteria. We have addressed the question of whether these compounds can be degraded biologically. A motile, rod-shaped bacterium was isolated from soil based upon its ability to utilize N-(3-oxohexanoyl)-l-homoserine lactone as the sole source of energy and nitrogen. The bacterium was classified as a strain of Variovorax paradoxus. The V. paradoxus isolate was capable of growth on all of the acyl-HSLs tested. The molar growth yields correlated with the length of the acyl group. HSL, a product of acyl-HSL metabolism, was used as a nitrogen source, but not as an energy source. Cleavage and partial mineralization of the HSL ring were demonstrated by using radiolabeled substrate. This study indicates that some strains of V. paradoxus degrade and grow on acyl-HSL signals as the sole energy and nitrogen sources. This study provides clues about the metabolic pathway of acyl-HSL degradation by V. paradoxus. PMID:11092851

  16. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus.

    PubMed

    Leadbetter, J R; Greenberg, E P

    2000-12-01

    Acyl-homoserine lactones (acyl-HSLs) serve as dedicated cell-to-cell signaling molecules in many species of the class Proteobacteria. We have addressed the question of whether these compounds can be degraded biologically. A motile, rod-shaped bacterium was isolated from soil based upon its ability to utilize N-(3-oxohexanoyl)-L-homoserine lactone as the sole source of energy and nitrogen. The bacterium was classified as a strain of Variovorax paradoxus. The V. paradoxus isolate was capable of growth on all of the acyl-HSLs tested. The molar growth yields correlated with the length of the acyl group. HSL, a product of acyl-HSL metabolism, was used as a nitrogen source, but not as an energy source. Cleavage and partial mineralization of the HSL ring were demonstrated by using radiolabeled substrate. This study indicates that some strains of V. paradoxus degrade and grow on acyl-HSL signals as the sole energy and nitrogen sources. This study provides clues about the metabolic pathway of acyl-HSL degradation by V. paradoxus.

  17. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein.

    PubMed

    Schaefer, A L; Val, D L; Hanzelka, B L; Cronan, J E; Greenberg, E P

    1996-09-03

    Many bacteria use acyl homoserine lactone signals to monitor cell density in a type of gene regulation termed quorum sensing and response. Synthesis of these signals is directed by homologs of the luxi gene of Vibrio fischeri. This communication resolves two critical issues concerning the synthesis of the V. fischeri signal. (i) The luxI product is directly involved in signal synthesis-the protein is an acyl homoserine lactone synthase; and (ii) the substrates for acyl homoserine lactone synthesis are not amino acids from biosynthetic pathways or fatty acid degradation products, but rather they are S-adenosylmethionine (SAM) and an acylated acyl carrier protein (ACP) from the fatty acid biosynthesis pathway. We purified a maltose binding protein-LuxI fusion polypeptide and showed that, when provided with the appropriate substrates, it catalyzes the synthesis of an acyl homoserine lactone. In V. fischeri, luxi directs the synthesis of N-(3-oxohexanoyl) homoserine lactone and hexanoyl homoserine lactone. The purified maltose binding protein-LuxI fusion protein catalyzes the synthesis of hexanoyl homoserine lactone from hexanoyl-ACP and SAM. There is a high level of specificity for hexanoyl-ACP over ACPs with differing acyl group lengths, and hexanoyl homoserine lactone was not synthesized when SAM was replaced with other amino acids, such as methionine, S-adenosylhomocysteine, homoserine, or homoserine lactone, or when hexanoyl-SAM was provided as the substrate. This provides direct evidence that the LuxI protein is an auto-inducer synthase that catalyzes the formation of an amide bond between SAM and a fatty acyl-ACP and then catalyzes the formation of the acyl homoserine lactone from the acyl-SAM intermediate.

  18. Acyl homoserine lactone-based quorum sensing stimulates biofilm formation by Salmonella Enteritidis in anaerobic conditions.

    PubMed

    Almeida, Felipe Alves de; Pimentel-Filho, Natan de Jesus; Pinto, Uelinton Manoel; Mantovani, Hilário Cuquetto; Oliveira, Leandro Licursi de; Vanetti, Maria Cristina Dantas

    2017-04-01

    Quorum sensing regulates a variety of phenotypes in bacteria including the production of virulence factors. Salmonella spp. have quorum sensing systems mediated by three autoinducers (AI-1, AI-2, and AI-3). The AI-1-mediated system is incomplete in that the bacterium relies on the synthesis of signaling molecules by other microorganisms. This study aimed to evaluate the influence of the AI-1 N-dodecanoyl-DL-homoserine lactone (C12-HSL) on the growth, motility, adhesion, and biofilm formation of Salmonella enterica serovar Enteritidis PT4 578 on a polystyrene surface. Experiments were conducted at 37 °C in anaerobic tryptone soy broth supplemented with C12-HSL and/or a mixture of four synthetic furanones, at the concentration of 50 nM each. The planktonic growth, adhesion, swarming, and twitching motility were not altered in the presence of C12-HSL and/or furanones under anaerobic conditions. However, C12-HSL induced biofilm formation after 36 h of cultivation as determined by quantification of biofilm formation, by enumeration of adhered cells to polystyrene coupons, and finally by imaging the presence of multilayered cells on an epifluorescence microscope. When furanones were present in the medium, an antagonistic effect against C12-HSL on the biofilm development was observed. The results demonstrate an induction of biofilm formation in Salmonella Enteritidis by AI-1 under anaerobic conditions. Considering that Salmonella does not produce AI-1 but respond to it, C12-HSL synthesized by other bacterial species could trigger biofilm formation by this pathogen in conditions that are relevant for its pathogenesis.

  19. [Synthesis of signaling N-acyl-homoserine-lactones participating in quorum sensing in rhizosphere and soil bacteria Pseudomonas and Xanthomonas].

    PubMed

    Khmel', I A; Veselova, M A; Metlitskaia, A Z; Klein, S; Lipasova, V A; Maiatskaia, A V; Chernin, L S

    2002-04-01

    Signaling molecules assigned to N-acyl-homoserine-lactones (AHL) serve as autoinducers for the genes controlling the quorum sensing regulatory system. In many gram-negative bacteria, AHL are the key factors responsible for density-dependent regulation of exoenzyme and secondary metabolite production; they also participate in interaction between bacteria and higher organisms. The soil and rhisosphere bacteria Pseudomonas and Xanthomonas from different geographical zones of Russia and the former USSR were analyzed for the presence of the AHL producers. Screening was conducted by using a test system based on the mutant strain Chromobacterium violaceum, which was unable to synthesize AHL but produced a pigment violacein in the presence of exogenous AHL. The AHL-like compounds proved to be formed by 9.7% of the studied bacteria. Various Pseudomonas species differed in the capacity to synthesize this compounds. In at least a half of the isolated P. aureofaciens and P. aeruginosa, an intense AHL production was observed, whereas the AHL-producers were far less frequent among the P. fluorescens, P. chlororaphis, P. lemonnieri, P. geniculata, and P. putida. None of the 41 Xanthomonas maltophilia strains examined synthesized AHL.

  20. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability.

    PubMed

    Studer, Sarah V; Schwartzman, Julia A; Ho, Jessica S; Geske, Grant D; Blackwell, Helen E; Ruby, Edward G

    2014-08-01

    Quorum sensing, a group behaviour coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR-type N-acyl L-homoserine (AHL) quorum sensing is common in Gram-negative Proteobacteria, and many members of this group have additional quorum-sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS-dependent quorum sensing converges with LuxI-dependent quorum sensing at the LuxR regulatory element. Both AinS- and LuxI-mediated signalling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI- and AinS-dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI- and AinS-mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non-native AHL analogues can be used to non-invasively and specifically modulate induction of symbiotic bioluminescence via LuxI-dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established.

  1. A new role for penicillin acylases: degradation of acyl homoserine lactone quorum sensing signals by Kluyvera citrophila penicillin G acylase.

    PubMed

    Mukherji, Ruchira; Varshney, Nishant Kumar; Panigrahi, Priyabrata; Suresh, C G; Prabhune, Asmita

    2014-03-05

    Use of penicillin acylases for the production of semi-synthetic penicillins is well-known. Escherichia coli penicillin G acylase (EcPGA) has been extensively used for this purpose; however, Kluyvera citrophila penicillin G acylase (KcPGA) is assumed to be a better substitute, owing to its increased resilience to extreme pH conditions and ease of immobilization. In the present article we report a new dimension for the amidase activity of KcPGA by demonstrating its ability to cleave bacterial quorum sensing signal molecules, acyl homoserine lactones (AHL) with acyl chain length of 6-8 with or without oxo-substitution at third carbon position. Initial evidence of AHL degrading capability of KcPGA was obtained using CV026 based bioassay method. Kinetic studies performed at pH 8.0 and 50 °C revealed 3-oxo-C6 HSL to be the best substrate for the enzyme with V(max) and K(m) values of 21.37+0.85 mM/h/mg of protein and 0.1+0.01 mM, respectively. C6 HSL was found to be the second best substrate with V(max) and K(m) value of 10.06+0.27 mM/h/mg of protein and 0.28+0.02 mM, respectively. Molecular modeling and docking studies performed on the active site of the enzyme support these findings by showing the fitting of AHLs perfectly within the hydrophobic pocket of the enzyme active site.

  2. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog.

    PubMed

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.

  3. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog

    PubMed Central

    Mamani, Sigde; Moinier, Danielle; Denis, Yann; Soulère, Laurent; Queneau, Yves; Talla, Emmanuel; Bonnefoy, Violaine; Guiliani, Nicolas

    2016-01-01

    While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270T and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidansT, the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidansT cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270T genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis. PMID:27683573

  4. LuxR- and acyl-homoserine-lactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri.

    PubMed

    Callahan, S M; Dunlap, P V

    2000-05-01

    The luminescence (lux) operon (luxICDABEG) of the symbiotic bacterium Vibrio fischeri is regulated by the transcriptional activator LuxR and two acyl-homoserine lactone (acyl-HSL) autoinducers (the luxI-dependent 3-oxo-hexanoyl-HSL [3-oxo-C6-HSL] and the ainS-dependent octanoyl-HSL [C8-HSL]) in a population density-responsive manner called quorum sensing. To identify quorum-sensing-regulated (QSR) proteins different from those encoded by lux genes, we examined the protein patterns of V. fischeri quorum-sensing mutants defective in luxI, ainS, and luxR by two-dimensional polyacrylamide gel electrophoresis. Five non-Lux QSR proteins, QsrP, RibB, AcfA, QsrV, and QSR 7, were identified; their production occurred preferentially at high population density, required both LuxR and 3-oxo-C6-HSL, and was inhibited by C8-HSL at low population density. The genes encoding two of the QSR proteins were characterized: qsrP directs cells to synthesize an apparently novel periplasmic protein, and ribB is a homolog of the Escherichia coli gene for 3,4-dihydroxy-2-butanone 4-phosphate synthase, a key enzyme for riboflavin synthesis. The qsrP and ribB promoter regions each contained a sequence similar to the lux operon lux box, a 20-bp region of dyad symmetry necessary for LuxR/3-oxo-C6-HSL-dependent activation of lux operon transcription. V. fischeri qsrP and ribB mutants exhibited no distinct phenotype in culture. However, a qsrP mutant, in competition with its parent strain, was less successful in colonizing Euprymna scolopes, the symbiotic host of V. fischeri. The newly identified QSR genes, together with the lux operon, define a LuxR/acyl-HSL-responsive quorum-sensing regulon in V. fischeri.

  5. LuxR- and Acyl-Homoserine-Lactone-Controlled Non-lux Genes Define a Quorum-Sensing Regulon in Vibrio fischeri

    PubMed Central

    Callahan, Sean M.; Dunlap, Paul V.

    2000-01-01

    The luminescence (lux) operon (luxICDABEG) of the symbiotic bacterium Vibrio fischeri is regulated by the transcriptional activator LuxR and two acyl-homoserine lactone (acyl-HSL) autoinducers (the luxI-dependent 3-oxo-hexanoyl-HSL [3-oxo-C6-HSL] and the ainS-dependent octanoyl-HSL [C8-HSL]) in a population density-responsive manner called quorum sensing. To identify quorum-sensing-regulated (QSR) proteins different from those encoded by lux genes, we examined the protein patterns of V. fischeri quorum-sensing mutants defective in luxI, ainS, and luxR by two-dimensional polyacrylamide gel electrophoresis. Five non-Lux QSR proteins, QsrP, RibB, AcfA, QsrV, and QSR 7, were identified; their production occurred preferentially at high population density, required both LuxR and 3-oxo-C6-HSL, and was inhibited by C8-HSL at low population density. The genes encoding two of the QSR proteins were characterized: qsrP directs cells to synthesize an apparently novel periplasmic protein, and ribB is a homolog of the Escherichia coli gene for 3,4-dihydroxy-2-butanone 4-phosphate synthase, a key enzyme for riboflavin synthesis. The qsrP and ribB promoter regions each contained a sequence similar to the lux operon lux box, a 20-bp region of dyad symmetry necessary for LuxR/3-oxo-C6-HSL-dependent activation of lux operon transcription. V. fischeri qsrP and ribB mutants exhibited no distinct phenotype in culture. However, a qsrP mutant, in competition with its parent strain, was less successful in colonizing Euprymna scolopes, the symbiotic host of V. fischeri. The newly identified QSR genes, together with the lux operon, define a LuxR/acyl-HSL-responsive quorum-sensing regulon in V. fischeri. PMID:10781550

  6. Thiourea-Catalyzed Aminolysis of N-acyl Homoserine Lactones

    DTIC Science & Technology

    2013-01-01

    of N-acyl homoserine lactones (AHLs), molecules integral to bacterial quorum sensing . The catalysts afford rate enhancement of up to 10 times the...SUBJECT TERMS quorum sensing Michael A. Bertucci, Stephen J. Lee, Michel R. Gagné University of North Carolina - Chapel Hill Office of Sponsored... quorum sensing . The catalysts afford rate enhancement of up to 10 times the control in CD3CN. Mild catalysis in other polar aprotic solvents is

  7. N-Acyl Homoserine Lactone-Mediated Quorum Sensing with Special Reference to Use of Quorum Quenching Bacteria in Membrane Biofouling Control

    PubMed Central

    Paul, Diby

    2014-01-01

    Membrane biofouling remains a severe problem to be addressed in wastewater treatment systems affecting reactor performance and economy. The finding that many wastewater bacteria rely on N-acyl homoserine lactone-mediated quorum sensing to synchronize their activities essential for biofilm formations; the quenching bacterial quorum sensing suggests a promising approach for control of membrane biofouling. A variety of quorum quenching compounds of both synthetic and natural origin have been identified and found effective in inhibition of membrane biofouling with much less environmental impact than traditional antimicrobials. Work over the past few years has demonstrated that enzymatic quorum quenching mechanisms are widely conserved in several prokaryotic organisms and can be utilized as a potent tool for inhibition of membrane biofouling. Such naturally occurring bacterial quorum quenching mechanisms also play important roles in microbe-microbe interactions and have been used to develop sustainable nonantibiotic antifouling strategies. Advances in membrane fabrication and bacteria entrapment techniques have allowed the implication of such quorum quenching bacteria for better design of membrane bioreactor with improved antibiofouling efficacies. In view of this, the present paper is designed to review and discuss the recent developments in control of membrane biofouling with special emphasis on quorum quenching bacteria that are applied in membrane bioreactors. PMID:25147787

  8. Characterisation of a marine bacterium Vibrio brasiliensis T33 producing N-acyl homoserine lactone quorum sensing molecules.

    PubMed

    Tan, Wen-Si; Yunos, Nina Yusrina Muhamad; Tan, Pui-Wan; Mohamad, Nur Izzati; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-07-08

    N-acylhomoserine lactones (AHL) plays roles as signal molecules in quorum sensing (QS) in most Gram-negative bacteria. QS regulates various physiological activities in relation with population density and concentration of signal molecules. With the aim of isolating marine water-borne bacteria that possess QS properties, we report here the preliminary screening of marine bacteria for AHL production using Chromobacterium violaceum CV026 as the AHL biosensor. Strain T33 was isolated based on preliminary AHL screening and further identified by using 16S rDNA sequence analysis as a member of the genus Vibrio closely related to Vibrio brasiliensis. The isolated Vibrio sp. strain T33 was confirmed to produce N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxodecanoyl)-L-homoserine lactone (3-oxo-C10 HSL) through high resolution tandem mass spectrometry analysis. We demonstrated that this isolate formed biofilms which could be inhibited by catechin. To the best of our knowledge, this is the first report that documents the production of these AHLs by Vibrio brasiliensis strain T33.

  9. A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation.

    PubMed

    Veliz-Vallejos, Debora F; van Noorden, Giel E; Yuan, Mengqi; Mathesius, Ulrike

    2014-01-01

    N-acyl homoserine lactones (AHLs) act as quorum sensing signals that regulate cell-density dependent behaviors in many gram-negative bacteria, in particular those important for plant-microbe interactions. AHLs can also be recognized by plants, and this may influence their interactions with bacteria. Here we tested whether the exposure to AHLs affects the nodule-forming symbiosis between legume hosts and rhizobia. We treated roots of the model legume, Medicago truncatula, with a range of AHLs either from its specific symbiont, Sinorhizobium meliloti, or from the potential pathogens, Pseudomonas aeruginosa and Agrobacterium vitis. We found increased numbers of nodules formed on root systems treated with the S. meliloti-specific AHL, 3-oxo-C14-homoserine lactone, at a concentration of 1 μM, while the other AHLs did not result in significant changes to nodule numbers. We did not find any evidence for altered nodule invasion by the rhizobia. Quantification of flavonoids that could act as nod gene inducers in S. meliloti did not show any correlation with increased nodule numbers. The effects of AHLs were specific for an increase in nodule numbers, but not lateral root numbers or root length. Increased nodule numbers following 3-oxo-C14-homoserine lactone treatment were under control of autoregulation of nodulation and were still observed in the autoregulation mutant, sunn4 (super numeric nodules4). However, increases in nodule numbers by 3-oxo-C14-homoserine lactone were not found in the ethylene-insensitive sickle mutant. A comparison between M. truncatula with M. sativa (alfalfa) and Trifolium repens (white clover) showed that the observed effects of AHLs on nodule numbers were specific to M. truncatula, despite M. sativa nodulating with the same symbiont. We conclude that plant perception of the S. meliloti-specific 3-oxo-C14-homoserine lactone influences nodule numbers in M. truncatula via an ethylene-dependent, but autoregulation-independent mechanism.

  10. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview.

    PubMed

    Huang, Jinhui; Shi, Yahui; Zeng, Guangming; Gu, Yanling; Chen, Guiqiu; Shi, Lixiu; Hu, Yi; Tang, Bi; Zhou, Jianxin

    2016-08-01

    Quorum sensing (QS) is a communication process between cells, in which bacteria secrete and sense the specific chemicals, and regulate gene expression in response to population density. Quorum quenching (QQ) blocks QS system, and inhibits gene expression mediating bacterial behaviors. Given the extensive research of acyl-homoserine lactone (AHL) signals, existences and effects of AHL-based QS and QQ in biological wastewater treatments are being subject to high concern. This review summarizes AHL structure, synthesis mode, degradation mechanisms, analytical methods, environmental factors, AHL-based QS and QQ mechanisms. The existences and roles of AHL-based QS and QQ in biomembrane processes, activated sludge processes and membrane bioreactors are summarized and discussed, and corresponding exogenous regulation strategy by selective enhancement of AHL-based QS or QQ coexisting in biological wastewater treatments is suggested. Such strategies including the addition of AHL signals, AHL-producing bacteria as well as quorum quenching enzyme or bacteria can effectively improve wastewater treatment performance without killing or limiting bacterial survival and growth. This review will present the theoretical and practical cognition for bacterial AHL-based QS and QQ, suggest the feasibility of exogenous regulation strategies in biological wastewater treatments, and provide useful information to scientists and engineers who work in this field.

  11. Quorum Sensing N-acyl Homoserine Lactones-SdiA Suppresses Escherichia coli-Pseudomonas aeruginosa Conjugation through Inhibiting traI Expression

    PubMed Central

    Lu, Yang; Zeng, Jianming; Wu, Binning; E, Shunmei; Wang, Lina; Cai, Renxin; Zhang, Ni; Li, Youqiang; Huang, Xianzhang; Huang, Bin; Chen, Cha

    2017-01-01

    Conjugation is a key mechanism for horizontal gene transfer and plays an important role in bacterial evolution, especially with respect to antibiotic resistance. However, little is known about the role of donor and recipient cells in regulation of conjugation. Here, using an Escherichia coli (SM10λπ)-Pseudomonas aeruginosa (PAO1) conjugation model, we demonstrated that deficiency of lasI/rhlI, genes associated with generation of the quorum sensing signals N-acyl homoserine lactones (AHLs) in PAO1, or deletion of the AHLs receptor SdiA in the donor SM10λπ both facilitated conjugation. When using another AHLs-non-producing E. coli strain EC600 as recipient cells, deficiency of sdiA in donor SM10λπ hardly affect the conjugation. More importantly, in the presence of exogenous AHLs, the conjugation efficiency between SM10λπ and EC600 was dramatically decreased, while deficiency of sdiA in SM10λπ attenuated AHLs-inhibited conjugation. These data suggest the conjugation suppression function of AHLs-SdiA chemical signaling. Further bioinformatics analysis, β-galactosidase reporter system and electrophoretic mobility shift assays characterized the binding site of SdiA on the promoter region of traI gene. Furthermore, deletion of lasI/rhlI or sdiA promoted traI mRNA expression in SM10λπ and PAO1 co-culture system, which was abrogated by AHLs. Collectively, our results provide new insight into an important contribution of quorum sensing system AHLs-SdiA to the networks that regulate conjugation. PMID:28164039

  12. Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target

    PubMed Central

    Chang, Chien-Yi; Krishnan, Thiba; Wang, Hao; Chen, Ye; Yin, Wai-Fong; Chong, Yee-Meng; Tan, Li Ying; Chong, Teik Min; Chan, Kok-Gan

    2014-01-01

    N-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography–mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach. PMID:25430794

  13. Synthesis and Biological Evaluation of Triazole-Containing N-Acyl Homoserine Lactones as Quorum Sensing Modulators

    PubMed Central

    Stacy, Danielle M.; Le Quement, Sebastian T.; Hansen, Casper L.; Clausen, Janie W.; Tolker-Nielsen, Tim; Brummond, Jacob W.; Givskov, Michael; Nielsen, Thomas E.; Blackwell, Helen E.

    2013-01-01

    Many bacterial species are capable of assessing their local population densities through a cell-cell signaling mechanism termed quorum sensing (QS). This intercellular communication process is mediated by small molecule or peptide ligands and their cognate protein receptors. Numerous pathogens use QS to initiate virulence once they achieve a threshold cell number on a host. Consequently, approaches to intercept QS have attracted considerable attention as potential anti-infective therapies. Our interest in the development of small molecule tools to modulate QS pathways motivated us to evaluate triazole-containing analogs of natural N-acyl L-homoserine lactone (AHL) signals as non-native QS agonists and antagonists in Gram-negative bacteria. We synthesized 72 triazole derivatives of five broad structure types in high yields and purities using efficient Cu(I)-catalyzed azide-alkyne couplings. These compounds were evaluated for their ability to activate or inhibit two QS receptors from two prevalent pathogens – LasR from Pseudomonas aeruginosa and AbaR from Acinetobacter baumannii – using bacterial reporter strains. Several triazole derivatives were identified that were capable of strongly modulating the activity of LasR and AbaR. These compounds represent a new and synthetically accessible class of AHL analogs, and could find utility as chemical tools to study QS and its role in bacterial virulence. PMID:23258305

  14. Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors.

    PubMed

    Saurav, Kumar; Costantino, Valeria; Venturi, Vittorio; Steindler, Laura

    2017-02-23

    Marine natural products with antibiotic activity have been a rich source of drug discovery; however, the emergence of antibiotic-resistant bacterial strains has turned attention towards the discovery of alternative innovative strategies to combat pathogens. In many pathogenic bacteria, the expression of virulence factors is under the regulation of quorum sensing (QS). QS inhibitors (QSIs) present a promising alternative or potential synergistic treatment since they disrupt the signaling pathway used for intra- and interspecies coordination of expression of virulence factors. This review covers the set of molecules showing QSI activity that were isolated from marine organisms, including plants (algae), animals (sponges, cnidarians, and bryozoans), and microorganisms (bacteria, fungi, and cyanobacteria). The compounds found and the methods used for their isolation are the emphasis of this review.

  15. Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors

    PubMed Central

    Saurav, Kumar; Costantino, Valeria; Venturi, Vittorio; Steindler, Laura

    2017-01-01

    Marine natural products with antibiotic activity have been a rich source of drug discovery; however, the emergence of antibiotic-resistant bacterial strains has turned attention towards the discovery of alternative innovative strategies to combat pathogens. In many pathogenic bacteria, the expression of virulence factors is under the regulation of quorum sensing (QS). QS inhibitors (QSIs) present a promising alternative or potential synergistic treatment since they disrupt the signaling pathway used for intra- and interspecies coordination of expression of virulence factors. This review covers the set of molecules showing QSI activity that were isolated from marine organisms, including plants (algae), animals (sponges, cnidarians, and bryozoans), and microorganisms (bacteria, fungi, and cyanobacteria). The compounds found and the methods used for their isolation are the emphasis of this review. PMID:28241461

  16. Theoretical and structural analysis of the active site of the transcriptional regulators LasR and TraR, using molecular docking methodology for identifying potential analogues of acyl homoserine lactones (AHLs) with anti-quorum sensing activity.

    PubMed

    Ahumedo, Maicol; Díaz, Antonio; Vivas-Reyes, Ricardo

    2010-02-01

    In the present study the homology of transcriptional receptors LuxR type were evaluated using as point of reference the receptors TraR and LasR of the bacterial types Agrobacterium tumefaciens and Pseudomonas aureginosa respectively. A series of alignments were performed in order to demonstrate that the active site of the protein is conserved in wide range of gram negative bacteria. Moreover, some docking calculations were carried out for analogs of the acyl homoserin lactones (AHLs) and regulatory proteins LasR and TraR, to understand the complex microenvironment in which the ligands are exposed. The molecular alignments show clearly that there are preserved motifs in the residues (Y53, Y61, W57, D70, W85 to TraR, Y56, Y64, W60, D73, W88 to LasR) analyzed, which may serve as site-specific targets for the development of potential antagonists. In this study was found that the anti-quorum sensing activity of the AHLs molecular analogs appears to depend on; the structure of the lactone ring and on appropriate combination of absolute and relative stereochemistry of the carbonyl (C=O) and amide (NH(2)) groups of the side chain of these AHLs molecular analogs, in combination with the interactions with the conserved amino acids (D73, W60, Y56, S129 to LasR and D70, W57, Y53 to TraR) of the LuxR type protein family.

  17. Defining the structure and function of acyl-homoserine lactone autoinducers.

    PubMed

    Churchill, Mair E A; Sibhatu, Hiruy M; Uhlson, Charis L

    2011-01-01

    Quorum sensing plays a central role in regulating many community-derived symbiotic and pathogenic relationships of bacteria, and as such has attracted much attention in recent years. Acyl-homoserine lactones (AHLs) are important signaling molecules in the quorum sensing gene-regulatory processes found in numerous gram-negative species of bacteria that interact with eukaryotic organisms. AHLs are produced by acyl-homoserine lactone synthases. Bacteria can have multiple genes for AHL synthase enzymes, and such species are likely to produce several different types of AHLs. Determination of the types and the relative amounts of AHLs produced by AHL synthases in bacteria under varied conditions provides important insights into the mechanism of AHL synthase function and the regulation of transcriptional cascades initiated by quorum sensing signaling. This chapter describes a mass spectrometry method for determining the types and relative amounts of AHLs present in a sample.

  18. Defining the structure and function of acyl-homoserine lactone autoinducers

    PubMed Central

    Churchill, Mair E.A.; Sibhatu, Hiruy M.; Uhlson, Charis L.

    2012-01-01

    Quorum sensing plays a central role in regulating many community derived symbiotic and pathogenic relationships of bacteria, and as such has attracted much attention in recent years. Acyl-homoserine lactones (AHLs) are important signaling molecules in the quorum sensing gene regulatory processes found in numerous gram-negative species of bacteria that interact with eukaryotic organisms. AHLs are produced by acyl-homoserine lactone synthases. Bacteria can have multiple genes for AHL synthase enzymes, and such species are likely to produce several different types of AHLs. Determination of the types and the relative amounts of AHLs produced by AHL synthases in bacteria under varied conditions provides important insights into the mechanism of AHL synthase function and the regulation of transcriptional cascades initiated by quorum sensing signaling. This chapter describes a mass spectrometry method for determining the types and relative amounts of AHLs present in a sample. PMID:21031311

  19. Identification of the Quorum-Sensing Target DNA Sequence and N-Acyl Homoserine Lactone Responsiveness of the Brucella abortus virB promoter▿

    PubMed Central

    Arocena, Gastón M.; Sieira, Rodrigo; Comerci, Diego J.; Ugalde, Rodolfo A.

    2010-01-01

    VjbR is a LuxR-type quorum-sensing (QS) regulator that plays an essential role in the virulence of the intracellular facultative pathogen Brucella, the causative agent of brucellosis. It was previously described that VjbR regulates a diverse group of genes, including the virB operon. The latter codes for a type IV secretion system (T4SS) that is central for the pathogenesis of Brucella. Although the regulatory role of VjbR on the virB promoter (PvirB) was extensively studied by different groups, the VjbR-binding site had not been identified so far. Here, we identified the target DNA sequence of VjbR in PvirB by DNase I footprinting analyses. Surprisingly, we observed that VjbR specifically recognizes a sequence that is identical to a half-binding site of the QS-related regulator MrtR of Mesorhizobium tianshanense. As shown by DNase I footprinting and electrophoretic mobility shift assays, generation of a palindromic MrtR-like-binding site in PvirB increased both the affinity and the stability of the VjbR-DNA complex, which confirmed that the QS regulator of Brucella is highly related to that of M. tianshanense. The addition of N-dodecanoyl homoserine lactone dissociated VjbR from the promoter, which confirmed previous reports that indicated a negative effect of this signal on the VjbR-mediated activation of PvirB. Our results provide new molecular evidence for the structure of the virB promoter and reveal unusual features of the QS target DNA sequence of the main regulator of virulence in Brucella. PMID:20400542

  20. Acyl-homoserine lactone-dependent eavesdropping promotes competition in a laboratory co-culture model

    PubMed Central

    Chandler, Josephine R; Heilmann, Silja; Mittler, John E; Greenberg, E Peter

    2012-01-01

    Many Proteobacteria use acyl-homoserine lactone (AHL)-mediated quorum sensing to activate the production of antibiotics at high cell density. Extracellular factors like antibiotics can be considered public goods shared by individuals within a group. Quorum-sensing control of antibiotic production may be important for protecting a niche or competing for limited resources in mixed bacterial communities. To begin to investigate the role of quorum sensing in interspecies competition, we developed a dual-species co-culture model using the soil saprophytes Burkholderia thailandensis (Bt) and Chromobacterium violaceum (Cv). These bacteria require quorum sensing to activate the production of antimicrobial factors that inhibit growth of the other species. We demonstrate that quorum-sensing-dependent antimicrobials can provide a competitive advantage to either Bt or Cv by inhibiting growth of the other species in co-culture. Although the quorum-sensing signals differ for each species, we show that the promiscuous signal receptor encoded by Cv can sense signals produced by Bt, and that this ability to eavesdrop on Bt can provide Cv an advantage in certain situations. We use an in silico approach to investigate the effect of eavesdropping in competition, and show conditions where early activation of antibiotic production resulting from eavesdropping can promote competitiveness. Our work supports the idea that quorum sensing is important for interspecies competition and that promiscuous signal receptors allow eavesdropping on competitors in mixed microbial habitats. PMID:22763647

  1. A novel plasmid for detection of N-acyl homoserine lactones.

    PubMed

    Ling, Elizabeth A; Ellison, Matthew L; Pesci, Everett C

    2009-07-01

    Many bacteria utilize acyl-homoserine lactones as cell to cell signals that can regulate the expression of numerous genes. Structural differences in acyl-homoserine lactones produced by different bacteria, such as acyl side chain length and the presence or absence of an oxy group, make many of the commonly used detection bioassays impractical for broad range detection. Here we present a simple, broad range acyl-homoserine lactone detection bioassay that can be used to detect a wide range of these chemical signals. A plasmid (pEAL01) was constructed and transformed into Pseudomonas aeruginosa strain QSC105 to allow for detection of a broad range of acyl-homoserine lactones through induction of a lasB'-lacZ transcriptional fusion. Monitoring beta-galactosidase activity from this bioassay showed that P. aeruginosa strain QSC105 (pEAL01) could detect the presence of eight acyl-homoserine lactones tested at physiological concentrations. This novel strain could also detect acyl-homoserine lactones from the extracts of four different bacteria that produce different acyl-homoserine lactones signals. These data indicate that strain QSC105 (pEAL01) can be used to detect a wide variety of acyl-homoserine lactones by a simple beta-galactosidase assay and this bioassay could be a useful and inexpensive tool to quickly identify the presence of these signal molecules.

  2. Extraction, purification and identification of bacterial signal molecules based on N‐acyl homoserine lactones

    PubMed Central

    Wang, Jianhua; Quan, Chunshan; Wang, Xue; Zhao, Pengchao; Fan, Shengdi

    2011-01-01

    Summary Bacteria possess an extraordinary repertoire for intercellular communication and social behaviour. This repertoire for bacterial communication, termed as quorum sensing (QS), depends on specific diffusible signal molecules. There are many different kinds of signal molecules in the bacterial community. Among those signal molecules, N‐acyl homoserine lactones (HSLs, in other publications also referred to as AHLs, acy‐HSLs etc.) are often employed as QS signal molecules for many Gram‐negative bacteria. Due to the specific structure and tiny amount of those HSL signal molecules, the characterization of HSLs has been the subject of extensive investigations in the last decades and has become a paradigm for bacteria intercellular signalling. In this article, different methods, including extraction, purification and characterization of HSLs, are reviewed. The review provides an insight into identification and characterization of new HSLs and other signal molecules for bacterial intercellular communication. PMID:21375695

  3. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens.

    PubMed

    Hernández-Reyes, Casandra; Schenk, Sebastian T; Neumann, Christina; Kogel, Karl-Heinz; Schikora, Adam

    2014-11-01

    The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that have a significant impact on the worldwide economy and on human nutrition. Ensifer meliloti is usually associated with root nodulation in legumes and nitrogen fixation. Here, we suggest that the ability of S. meliloti to induce resistance depends on the production of the quorum-sensing molecule, oxo-C14-HSL. The capacity to enhanced resistance provides a possibility to the use these beneficial bacteria in agriculture. Using the Arabidopsis-Salmonella model, we also demonstrate that the application of N-acyl-homoserine lactones-producing bacteria could be a successful strategy to prevent plant-originated infections with human pathogens.

  4. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens

    PubMed Central

    Hernández-Reyes, Casandra; Schenk, Sebastian T; Neumann, Christina; Kogel, Karl-Heinz; Schikora, Adam

    2014-01-01

    The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that have a significant impact on the worldwide economy and on human nutrition. Ensifer meliloti is usually associated with root nodulation in legumes and nitrogen fixation. Here, we suggest that the ability of S. meliloti to induce resistance depends on the production of the quorum-sensing molecule, oxo-C14-HSL. The capacity to enhanced resistance provides a possibility to the use these beneficial bacteria in agriculture. Using the Arabidopsis-Salmonella model, we also demonstrate that the application of N-acyl-homoserine lactones-producing bacteria could be a successful strategy to prevent plant-originated infections with human pathogens. PMID:25234390

  5. Pantoea sp. isolated from tropical fresh water exhibiting N-acyl homoserine lactone production.

    PubMed

    Tan, Wen-Si; Muhamad Yunos, Nina Yusrina; Tan, Pui-Wan; Mohamad, Nur Izzati; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    N-Acyl homoserine lactone (AHL) serves as signaling molecule for quorum sensing (QS) in Gram-negative bacteria to regulate various physiological activities including pathogenicity. With the aim of isolating freshwater-borne bacteria that can cause outbreak of disease in plants and portrayed QS properties, environmental water sampling was conducted. Here we report the preliminary screening of AHL production using Chromobacterium violaceum CV026 and Escherichia coli [pSB401] as AHL biosensors. The 16S rDNA gene sequence of isolate M009 showed the highest sequence similarity to Pantoea stewartii S9-116, which is a plant pathogen. The isolated Pantoea sp. was confirmed to produce N-3-oxohexanoyl-L-HSL (3-oxo-C6-HSL) through analysis of high resolution mass tandem mass spectrometry.

  6. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1.

    PubMed

    Sio, Charles F; Otten, Linda G; Cool, Robbert H; Diggle, Stephen P; Braun, Peter G; Bos, Rein; Daykin, Mavis; Cámara, Miguel; Williams, Paul; Quax, Wim J

    2006-03-01

    The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase that removes the fatty acid side chain from the homoserine lactone (HSL) nucleus of AHL-dependent quorum-sensing signal molecules. Analysis showed that the posttranslational processing of the acylase and the hydrolysis reaction type are similar to those of the beta-lactam acylases, strongly suggesting that the PA2385 protein is a member of the N-terminal nucleophile hydrolase superfamily. In a bioassay, the purified acylase was shown to degrade AHLs with side chains ranging in length from 11 to 14 carbons at physiologically relevant low concentrations. The substituent at the 3' position of the side chain did not affect activity, indicating broad-range AHL quorum-quenching activity. Of the two main AHL signal molecules of P. aeruginosa PAO1, N-butanoyl-l-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL), only 3-oxo-C12-HSL is degraded by the enzyme. Addition of the purified protein to P. aeruginosa PAO1 cultures completely inhibited accumulation of 3-oxo-C12-HSL and production of the signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone and reduced production of the virulence factors elastase and pyocyanin. Similar results were obtained when the PA2385 gene was overexpressed in P. aeruginosa. These results demonstrate that the protein has in situ quorum-quenching activity. The quorum-quenching AHL acylase may enable P. aeruginosa PAO1 to modulate its own quorum-sensing-dependent pathogenic potential and, moreover, offers possibilities for novel antipseudomonal therapies.

  7. Quorum Quenching by an N-Acyl-Homoserine Lactone Acylase from Pseudomonas aeruginosa PAO1

    PubMed Central

    Sio, Charles F.; Otten, Linda G.; Cool, Robbert H.; Diggle, Stephen P.; Braun, Peter G.; Bos, Rein; Daykin, Mavis; Cámara, Miguel; Williams, Paul; Quax, Wim J.

    2006-01-01

    The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase that removes the fatty acid side chain from the homoserine lactone (HSL) nucleus of AHL-dependent quorum-sensing signal molecules. Analysis showed that the posttranslational processing of the acylase and the hydrolysis reaction type are similar to those of the beta-lactam acylases, strongly suggesting that the PA2385 protein is a member of the N-terminal nucleophile hydrolase superfamily. In a bioassay, the purified acylase was shown to degrade AHLs with side chains ranging in length from 11 to 14 carbons at physiologically relevant low concentrations. The substituent at the 3′ position of the side chain did not affect activity, indicating broad-range AHL quorum-quenching activity. Of the two main AHL signal molecules of P. aeruginosa PAO1, N-butanoyl-l-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL), only 3-oxo-C12-HSL is degraded by the enzyme. Addition of the purified protein to P. aeruginosa PAO1 cultures completely inhibited accumulation of 3-oxo-C12-HSL and production of the signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone and reduced production of the virulence factors elastase and pyocyanin. Similar results were obtained when the PA2385 gene was overexpressed in P. aeruginosa. These results demonstrate that the protein has in situ quorum-quenching activity. The quorum-quenching AHL acylase may enable P. aeruginosa PAO1 to modulate its own quorum-sensing-dependent pathogenic potential and, moreover, offers possibilities for novel antipseudomonal therapies. PMID:16495538

  8. A Comparative Analysis of Acyl-Homoserine Lactone Synthase Assays.

    PubMed

    Shin, Daniel; Frane, Nicole D; Brecht, Ryan M; Keeler, Jesse; Nagarajan, Rajesh

    2015-12-01

    Quorum sensing is cell-to-cell communication that allows bacteria to coordinate attacks on their hosts by inducing virulent gene expression, biofilm production, and other cellular functions, including antibiotic resistance. AHL synthase enzymes synthesize N-acyl-l-homoserine lactones, commonly referred to as autoinducers, to facilitate quorum sensing in Gram-negative bacteria. Studying the synthases, however, has proven to be a difficult road. Two assays, including a radiolabeled assay and a colorimetric (DCPIP) assay are well-documented in literature to study AHL synthases. In this paper, we describe additional methods that include an HPLC-based, C-S bond cleavage and coupled assays to investigate this class of enzymes. In addition, we compare and contrast each assay for both acyl-CoA- and acyl-ACP-utilizing synthases. The expanded toolkit described in this study should facilitate mechanistic studies on quorum sensing signal synthases and expedite discovery of antivirulent compounds.

  9. Insights into the Genome Sequences of an N-Acyl Homoserine Lactone Molecule Producing Two Pseudomonas spp. Isolated from the Arctic

    PubMed Central

    Dharmaprakash, Akhilandeswarre; Reghunathan, Dinesh; Sivakumar, Krishnakutty C.; Prasannakumar, Manoj

    2016-01-01

    We report for the first time the draft genome sequence of two psychrotrophic Pseudomonas species, Pseudomonas simiae RGCB 73 and Pseudomonas brenneri RGCB 108, from the Arctic that produce more than one acyl homoserine lactone molecule of varied N-acyl length. The study confirms the presence of a LuxR-LuxI (type) mediated quorum-sensing system in both the Pseudomonas species and enables us to understand the role of quorum sensing in their survival in extremely cold environments. PMID:27491995

  10. Acyl-homoserine lactones from Erwinia psidii R. IBSBF 435T, a guava phytopathogen (Psidium guajava L.).

    PubMed

    Pomini, Armando M; Manfio, Gilson P; Araújo, Welington L; Marsaioli, Anita J

    2005-08-10

    The phytopathogen Erwinia psidii R. IBSBF 435T causes rot in branches, flowers, and fruits of guava (Psidium guajava L.), being responsible for crop losses, and has no effective control. It was demonstrated that this strain produces two compounds [S-(-)-N-hexanoyl and N-heptanoyl-homoserine lactone], both belonging to the class of quorum-sensing signaling substances. A protocol using gas chromatography-flame ionization detection with chiral stationary phase is described for the absolute configuration determination of a natural acyl-homoserine lactone. Biological assays with specific reporter and synthesis of identified substances are also described. This is the first report on the N-heptanoyl-homoserine lactone occurrence in the Erwinia genus.

  11. Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water.

    PubMed

    Biswa, Pramal; Doble, Mukesh

    2013-06-01

    Acylated homoserine lactone (AHL)-based quorum sensing (QS) has been reported to be present only in Gram-negative microorganisms. Isolation of a novel Gram-positive microorganism from sea water, capable of producing AHL, is reported here. The isolate (GenBank: JF915892, designated as MPO) belonging to the Exiguobacterium genera is capable of inducing the AHL bioreporters, namely Chromobacterium violaceum CV026, Agrobacterium tumefaceins A136, and E. coli JM 109(psb1075). This inducer is characterized as C3-oxo-octanoyl homoserine lactone (OOHL), and its production reaches a maximum of 15.6 μg L(-1), during the stationary growth phase of the organism. MPO extract when exogenously added inhibits the formation of biofilm for the same organism and lowers the extracellular polymeric substances, indicating an AHL-associated phenotypic trait. The isolated sequence of a probable LuxR homolog from MPO (designated as ExgR) shows similar functional domains and contains conserved residues in LuxR from other known bacterial QS LuxR regulators. Also present immediately downstream to ExgR was found a sequence showing homology to known LuxI synthase of Pseudomonas putida. qPCR analysis suggests an increment in exgR mRNA on addition of AHL, further proving the role of ExgR as a QS regulator.

  12. Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus.

    PubMed

    Flagan, Suvi; Ching, Weng-Ki; Leadbetter, Jared R

    2003-02-01

    Many Proteobacteria produce acyl-homoserine lactones (acyl-HSLs) and employ them as dedicated cell-to-cell signals in a process known as quorum sensing. Previously, Variovorax paradoxus VAI-C was shown to utilize diverse acyl-HSLs as sole sources of energy and nitrogen. We describe here the properties of a second isolate, Arthrobacter strain VAI-A, obtained from the same enrichment culture that yielded V. paradoxus VAI-C. Although strain VAI-A grew rapidly and exponentially on a number of substrates, it grew only slowly and aberrantly (i.e., linearly) in media amended with oxohexanoyl-HSL as the sole energy source. Increasing the culture pH markedly improved the growth rate in media containing this substrate but did not abolish the aberrant kinetics. The observed growth was remarkably similar to the known kinetics of the pH-influenced half-life of acyl-HSLs, which decay chemically to yield the corresponding acyl-homoserines. Strain VAI-A grew rapidly and exponentially when provided with an acyl-homoserine as the sole energy or nitrogen source. The isolate was also able to utilize HSL as a sole source of nitrogen but not as energy for growth. V. paradoxus, known to release HSL as a product of quorum signal degradation, was examined for the ability to support the growth of Arthrobacter strain VAI-A in defined cocultures. It did. Moreover, the acyl-HSL-dependent growth rate and yield of the coculture were dramatically superior to those of the monocultures. This suggested that the original coenrichment of these two organisms from the same soil sample was not coincidental and that consortia may play a role in quorum signal turnover and mineralization. The fact that Arthrobacter strain VAI-A utilizes the two known nitrogenous degradation products of acyl-HSLs, acyl-homoserine and HSL, begins to explain why none of the three compounds are known to accumulate in the environment.

  13. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    PubMed Central

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  14. Sensitive Whole-Cell Biosensor Suitable for Detecting a Variety of N-Acyl Homoserine Lactones in Intact Rhizosphere Microbial Communities▿

    PubMed Central

    DeAngelis, Kristen M.; Firestone, Mary K.; Lindow, Steven E.

    2007-01-01

    To investigate quorum sensing in rhizosphere soil, a whole-cell biosensor, Agrobacterium tumefaciens(pAHL-Ice), was constructed. The biosensor responded to all N-acyl homoserine lactones (AHLs) tested, except C4 homoserine lactone, with a minimum detection limit of 10−12 M, as well as to both exogenously added AHLs and AHL-producing bacterial strains in soil. This highly sensitive biosensor reveals for the first time the increased AHL availability in intact rhizosphere microbial communities compared to that in bulk soil. PMID:17400771

  15. Modified N-acyl-homoserine lactones as chemical probes for the elucidation of plant-microbe interactions.

    PubMed

    Thomanek, Heike; Schenk, Sebastian T; Stein, Elke; Kogel, Karl-Heinz; Schikora, Adam; Maison, Wolfgang

    2013-09-25

    Gram-negative bacteria often use N-acyl-homoserine lactones (AHLs) as signal molecules to monitor their local population densities and to regulate gene-expression in a process called "Quorum Sensing" (QS). This cell-to-cell communication allows bacteria to adapt to environmental changes and to behave as multicellular communities. QS plays a key role in both bacterial virulence towards the host and symbiotic interactions with other organisms. Plants also perceive AHLs and respond to them with changes in gene expression or modifications in development. Herein, we report the synthesis of new AHL-derivatives for the investigation and identification of AHL-interacting proteins. We show that our new compounds are still recognised by different bacteria and that a novel biotin-tagged-AHL derivative interacts with a bacterial AHL receptor.

  16. Involvement of Acylated Homoserine Lactones (AHLs) of Aeromonas sobria in Spoilage of Refrigerated Turbot (Scophthalmus maximus L.)

    PubMed Central

    Li, Tingting; Cui, Fangchao; Bai, Fengling; Zhao, Guohua; Li, Jianrong

    2016-01-01

    One quorum sensing strain was isolated from spoiled turbot. The species was determined by 16S rRNA gene analysis and classical tests, named Aeromonas sobria AS7. Quorum-sensing (QS) signals (N-acyl homoserine lactones (AHLs)) were detected by report strains and their structures were further determined by GC-MS. The activity changes of AHLs on strain growth stage as well as the influence of different culture conditions on secretion activity of AHLs were studied by the punch method. The result indicated that strain AS7 could induce report strains to produce typical phenotypic response. N-butanoyl-dl-homoserine lactone (C4–HSL), N-hexanoyl-dl-homoserine lactone (C6–HSL), N-octanoyl-dl-homoserine lactone (C8–HSL), N-decanoyl-dl-homoserine lactone (C10–HSL), N-dodecanoyl-dl-homoserine lactone (C12–HSL) could be detected. The activities of AHLs were density-dependent and the max secretion level was at pH 8, sucrose culture, 1% NaCl and 32 h, respectively. The production of siderophore in strain AS7 was regulated by exogenous C8–HSL, rather than C6–HSL. Exogenous C4–HSL and C8–HSL accelerated the growth rate and population density of AS7 in turbot samples under refrigerated storage. However, according to the total viable counts and total volatile basic nitrogen (TVB-N) values of the fish samples, exogenous C6–HSL did not cause spoilage of the turbot fillets. In conclusion, our results suggested that QS was involved in the spoilage of refrigerated turbot. PMID:27420072

  17. Elevated Temperature Enhances Short to Medium Chain Acyl Homoserine Lactone Production by Black Band Disease Associated Vibrios.

    PubMed

    Bhedi, Chinmayee D; Prevatte, Carson W; Lookadoo, Maggie S; Waikel, Patricia A; Gillevet, Patrick M; Sikaroodi, Masoumeh; Campagna, Shawn R; Richardson, Laurie L

    2017-01-29

    Black band disease (BBD) of corals is a horizontally migrating, pathogenic, polymicrobial mat community which is active above a temperature threshold of 27.5°C on the reef. Bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of healthy corals, and SML of healthy areas of BBD infected corals were tested for production of short to medium chain acyl homoserine lactones (AHLs) using the Chromobacterium violaceum CV026 reporter strain. Of 110 bacterial isolates tested, 19 produced AHLs and 15 of these were from BBD. Eight AHLs were identified using LC-MS/MS, with 3OHC4 the most commonly produced, followed by C6. AHL-producing isolates exposed to three temperatures (24°, 27°, 30°C) revealed that production of three AHLs (3OHC4, 3OHC5, and 3OHC6) significantly increased at 30°C when compared to 24°C. 16S rRNA gene sequencing revealed that all of the AHL producing BBD isolates were vibrios. Metagenomic data of BBD communities showed the presence of AHL (and autoinducer-2) genes, many of which are known to be associated with vibrios. These findings suggest that quorum sensing may be involved in BBD pathobiology and community structure due to enhanced production of quorum sensing signal molecules (AHLs) above the temperature threshold of this globally distributed coral disease.

  18. Profile of Citrobacter freundii ST2, a Multi-acyl-homoserine Lactone Producer Associated with Marine Dinoflagellates.

    PubMed

    Huang, Xinqi; Gao, Yan; Ma, Zhiping; Lin, Guanghui; Cai, Zhonghua; Zhou, Jin

    2017-01-01

    Marine algae provide a unique niche termed the phycosphere for microorganism inhabitation. The phycosphere environment is an important niche for mutualistic and competitive interactions between algae and bacteria. Quorum sensing (QS) serves as a gene regulatory system in the microbial biosphere that allows bacteria to sense the population density with signaling molecules, such as acyl-homoserine lactone (AHL), and adapt their physiological activities to their surroundings. Understanding the QS system is important to elucidate the interactions between algal-associated microbial communities in the phycosphere condition. In this study, we isolated an epidermal bacterium (ST2) from the marine dinoflagellate Scrippsiella trochoidea and evaluated its AHL production profile. Strain ST2 was classified as a member of the genus Citrobacter closely related to Citrobacter freundii by 16S rRNA gene sequence analysis. Thin-layer chromatography revealed that C. freundii ST2 secreted three active AHL compounds into the culture supernatant. Specific compounds, such as N-butyryl-L-homoserine lactone (C4-AHL), N-octanoyl-DL-homoserine lactone (C8-AHL), and N-decanoyl-DL-homoserine lactone (C10-AHL), were identified by high-resolution tandem mass spectrometry. Carbon metabolic profiling with Biolog EcoPlate™ indicated that C. freundii ST2 was widely used as a carbon source and preferred carbohydrates, amino acids, and carboxylic acids as carbon substrates. Our results demonstrated that C. freundii ST2 is a multi-AHL producer that participates in the phycosphere carbon cycle.

  19. Whole-Genome Analysis of Quorum-Sensing Burkholderia sp. Strain A9

    PubMed Central

    Chen, Jian Woon; Tee, Kok Keng; Chang, Chien-Yi; Yin, Wai-Fong; Chan, Xin-Yue

    2015-01-01

    Burkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene. PMID:25745000

  20. Cloning and expression of quorum sensing N-acyl-homoserine synthase (LuxI) gene detected in Acinetobacter baumannii

    PubMed Central

    Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Mansouri, Shahla

    2016-01-01

    Background and Objectives: In present study we aimed to clone the luxI gene encoding N-acyl-homoserine synthase detected in clinical isolates of Acinetobacter baumannii and study its expression in Escherichia coli transformants. Materials and Methods: Four A. baumannii hospital strains which demonstrated strong biofilm activity were selected in this investigation. The presence of luxI gene was detected using PCR technique. Purified PCR product DNA was initially cloned into pTG19 and transformed to E. coli DH5α. The gene was then recovered from agarose gel and ligated by T4 DNA ligase into pET28a expression vector using NdeI and XhoI enzymes. pET28a + luxI was transformed into E. coli BL21 (DE3). The luxI putative gene was further detected in the transformants by colony PCR. Expression of the luxI gene in the recombinant E. coli BL21 cells was studied by quantitative real time PCR (qRT-PCR) and the presence of N-acylhomoserine lactone (AHL) was checked by colorimetric assay and Fourier Transform Infra-Red (FT-IR) spectroscopy. Results: We successfully cloned AHL gene from A. baumannii strain 23 to pET28a expression vector. There was four fold increases in expression of luxI in the transformants (P ≤ 0.05). It was found that, strain 23 and the transformants showed highest amount of AHL activity (OD = 1.524). The FT-IR analysis indicated stretching C=O bond of the lactone ring and primary amides (N=H) at 1764.69 cm−1 and 1659.23 cm−1 respectively. Conclusion: From above results we concluded that, luxI in A. baumannii is indeed responsible for AHL production and not regulation and pET28a vector allows efficient AHL expression in E. coli BL21 transformants. PMID:27307980

  1. Acyl-homoserine lactones suppresses IEC-6 cell proliferation and increase permeability of isolated rat colon.

    PubMed

    Joe, Ga-Hyun; Andoh, Midori; Nomura, Mikako; Iwaya, Hitoshi; Lee, Jae-Sung; Shimizu, Hidehisa; Tsuji, Youhei; Maseda, Hideaki; Miyazaki, Hitoshi; Hara, Hiroshi; Ishizuka, Satoshi

    2014-01-01

    We investigated to determine whether a variety of acyl-homoserine lactones (AHLs) influences epithelial cell proliferation and mucosal permeability. 3-Oxo-C12-homoserine lactone (HSL) and 3-oxo-C14-HSL significantly suppressed IEC-6 cell proliferation. A significant increase in mucosal permeability was observed in isolated rat colon tissue exposed to C12-HSL, 3-oxo-C12-HSL, and 3-oxo-C14-HSL. These data indicate that AHLs suppress epithelial proliferation and disrupt barrier function in intestinal mucosa.

  2. Identification of N-acyl homoserine lactones produced by Gluconacetobacter diazotrophicus PAL5 cultured in complex and synthetic media.

    PubMed

    Nieto-Peñalver, Carlos G; Bertini, Elisa V; de Figueroa, Lucía I C

    2012-07-01

    The endophytic diazotrophic Gluconacetobacter diazotrophicus PAL5 was originally isolated from sugarcane (Saccharum officinarum). The biological nitrogen fixation, phytohormones secretion, solubilization of mineral nutrients and phytopathogen antagonism allow its classification as a plant growth-promoting bacterium. The recent genomic sequence of PAL5 unveiled the presence of a quorum sensing (QS) system. QS are regulatory mechanisms that, through the production of signal molecules or autoinducers, permit a microbial population the regulation of the physiology in a coordinated manner. The most studied autoinducers in gram-negative bacteria are the N-acyl homoserine lactones (AHLs). The usage of biosensor strains evidenced the presence of AHL-like molecules in cultures of G. diazotrophicus PAL5 grown in complex and synthetic media. Analysis of AHLs performed by LC-APCI-MS permitted the identification of eight different signal molecules, including C6-, C8-, C10-, C12- and C14-HSL. Mass spectra confirmed that this diazotrophic strain also synthesizes autoinducers with carbonyl substitutions in the acyl chain. No differences in the profile of AHLs could be determined under both culture conditions. However, although the level of short-chain AHLs was not affected, a decrease of 30% in the production of long-chain AHLs could be measured in synthetic medium.

  3. Exogenous N-acyl-homoserine lactones enhance the expression of flagella of Pseudomonas syringae and activate defence responses in plants.

    PubMed

    Cheng, Feifei; Ma, Anzhou; Zhuang, Guoqiang; Fray, Rupert G

    2016-10-18

    In order to cope with pathogens, plants have evolved sophisticated mechanisms to sense pathogenic attacks and to induce defence responses. The N-acyl-homoserine lactone (AHL)-mediated quorum sensing in bacteria regulates diverse physiological processes, including those involved in pathogenicity. In this work, we study the interactions between AHL-producing transgenic tobacco plants and Pseudomonas syringae pv. tabaci 11528 (P. syringae 11528). Both a reduced incidence of disease and decrease in the growth of P. syringae 11528 were observed in AHL-producing plants compared with wild-type plants. The present data indicate that plant-produced AHLs enhance disease resistance against this pathogen. Subsequent RNA-sequencing analysis showed that the exogenous addition of AHLs up-regulated the expression of P. syringae 11528 genes for flagella production. Expression levels of plant defence genes in AHL-producing and wild-type plants were determined by quantitative real-time polymerase chain reaction. These data showed that plant-produced AHLs activated a wide spectrum of defence responses in plants following inoculation, including the oxidative burst, hypersensitive response, cell wall strengthening, and the production of certain metabolites. These results demonstrate that exogenous AHLs alter the gene expression patterns of pathogens, and plant-produced AHLs either directly or indirectly enhance plant local immunity during the early stage of plant infection.

  4. A New N-Acyl Homoserine Lactone Synthase in an Uncultured Symbiont of the Red Sea Sponge Theonella swinhoei

    PubMed Central

    Britstein, Maya; Devescovi, Giulia; Handley, Kim M.; Malik, Assaf; Haber, Markus; Saurav, Kumar; Teta, Roberta; Costantino, Valeria; Burgsdorf, Ilia; Gilbert, Jack A.; Sher, Noa; Venturi, Vittorio

    2015-01-01

    Sponges harbor a remarkable diversity of microbial symbionts in which signal molecules can accumulate and enable cell-cell communication, such as quorum sensing (QS). Bacteria capable of QS were isolated from marine sponges; however, an extremely small fraction of the sponge microbiome is amenable to cultivation. We took advantage of community genome assembly and binning to investigate the uncultured majority of sponge symbionts. We identified a complete N-acyl-homoserine lactone (AHL)-QS system (designated TswIR) and seven partial luxI homologues in the microbiome of Theonella swinhoei. The TswIR system was novel and shown to be associated with an alphaproteobacterium of the order Rhodobacterales, here termed Rhodobacterales bacterium TS309. The tswI gene, when expressed in Escherichia coli, produced three AHLs, two of which were also identified in a T. swinhoei sponge extract. The taxonomic affiliation of the 16S rRNA of Rhodobacterales bacterium TS309 to a sponge-coral specific clade, its enrichment in sponge versus seawater and marine sediment samples, and the presence of sponge-specific features, such as ankyrin-like domains and tetratricopeptide repeats, indicate a likely symbiotic nature of this bacterium. PMID:26655754

  5. RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti.

    PubMed

    Baumgardt, Kathrin; Charoenpanich, Pornsri; McIntosh, Matthew; Schikora, Adam; Stein, Elke; Thalmann, Sebastian; Kogel, Karl-Heinz; Klug, Gabriele; Becker, Anke; Evguenieva-Hackenberg, Elena

    2014-04-01

    Quorum sensing of Sinorhizobium meliloti relies on N-acyl-homoserine lactones (AHLs) as autoinducers. AHL production increases at high population density, and this depends on the AHL synthase SinI and two transcriptional regulators, SinR and ExpR. Our study demonstrates that ectopic expression of the gene rne, coding for RNase E, an endoribonuclease that is probably essential for growth, prevents the accumulation of AHLs at detectable levels. The ectopic rne expression led to a higher level of rne mRNA and a lower level of sinI mRNA independently of the presence of ExpR, the AHL receptor, and AHLs. In line with this, IPTG (isopropyl-β-D-thiogalactopyranoside)-induced overexpression of rne resulted in a shorter half-life of sinI mRNA and a strong reduction of AHL accumulation. Moreover, using translational sinI-egfp fusions, we found that sinI expression is specifically decreased upon induced overexpression of rne, independently of the presence of the global posttranscriptional regulator Hfq. The 28-nucleotide 5' untranslated region (UTR) of sinI mRNA was sufficient for this effect. Random amplification of 5' cDNA ends (5'-RACE) analyses revealed a potential RNase E cleavage site at position +24 between the Shine-Dalgarno site and the translation start site. We postulate therefore that RNase E-dependent degradation of sinI mRNA from the 5' end is one of the steps mediating a high turnover of sinI mRNA, which allows the Sin quorum-sensing system to respond rapidly to changes in transcriptional control of AHL production.

  6. [Activation of the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones in the presence of nitrofurans and NO generators].

    PubMed

    Zaĭtseva, Iu V; Granik, V G; Belik, A S; Koksharova, O A; Khmel', I A

    2010-01-01

    Nitrofurans (nitrofurazone, nitrofurantoin, furazidin, nifuroxazide), and nitric oxide generators (sodium nitroprusside and isosorbide mononitrate) in subinhibitory concentrations were shown to significantly increase the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones, signaling molecules of Quorum Sensing (QS) regulatory systems. The highest activation of bioluminescence (up to 250-400 fold) was observed in the presence of nitrofurazone on E. coli DH5alpha biosensors containing lux-reporter plasmids pSB401 or pSB536. However, this activation was not specifically associated with the functioning of QS systems. We suggest that the effect observed results from a direct action of nitrofurans and NO donors on the process of bioluminescence. The data indicate the necessity of using the biosensors that make it possible to detect specific effects of substances tested on QS regulation.

  7. Production of N-acyl homoserine lactones by the sponge-associated marine actinobacteria Salinispora arenicola and Salinispora pacifica.

    PubMed

    Bose, Utpal; Ortori, Catharine A; Sarmad, Sarir; Barrett, David A; Hewavitharana, Amitha K; Hodson, Mark P; Fuerst, John A; Shaw, P Nicholas

    2017-01-12

    The structures of acyl homoserine lactone (AHL) compounds and their quantification was accomplished using an integrated liquid chromatography-mass spectrometry approach. The precursor and product ions, along with retention times of peaks, were searched against an in-house database of AHLs and structures confirmed by accurate mass and by comparison with authentic AHL standards. The two compounds, N-(3-oxodecanoyl)-L-homoserine lactone and N-(3-oxododecanoyl)-L-homoserine lactone were characterised and quantified in Salinispora sp. cultures.

  8. Caffeine as a Potential Quorum Sensing Inhibitor

    PubMed Central

    Norizan, Siti Nur Maisarah; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    Quorum sensing enables bacteria to control the gene expression in response to the cell density. It regulates a variety of bacterial physiological functions such as biofilm formation, bioluminescence, virulence factors and swarming which has been shown contribute to bacterial pathogenesis. The use of quorum sensing inhibitor would be of particular interest in treating bacterial pathogenicity and infections. In this work, we have tested caffeine as quorum sensing inhibitor by using Chromobacterium violaceum CV026 as a biosensor. We verified that caffeine did not degrade the N-acyl homoserine lactones tested. In this work, it is shown that caffeine could inhibit N-acyl homoserine lactone production and swarming of a human opportunistic pathogen, namely Pseudomonas aeruginosa PA01. To the best of our knowledge, this is the first documentation providing evidence on the presence of anti-quorum sensing activity in caffeine. Our work will allow caffeine to be explored as anti-infective drugs. PMID:23598500

  9. Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii.

    PubMed

    Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Mosadegh, Ellahe; Mansouri, Shahla

    2015-01-01

    Acinetobacter baumannii is an important source of infections in intensive care units (ICUs) of our hospitals in Kerman, Iran and the most frequently isolated strains produce biofilm. There is a little information about role of iron (Fe) levels on acyl homoserine lactone (AHL) production and biofilm formation in this microorganism. In the present study, we investigated the influence of iron-III limitation on AHL, siderophore, catechol and virulence factors in the biofilm forming clinical strains of A. baumannii. A total of 65 non-duplicated multidrug resistance (MDR) strains of A. baumannii were isolated from patients in ICUs of 2 hospitals in Kerman, Iran. Antibiotic susceptibility, siderophore and other iron chelators, hemolysis, cell twitching motility, capsule, gelatinase and DNase were studied. Presence of quorum sensing, LuxI and LuxR genes was detected by multiplex-PCR. AHL activity quantified by colorimetric method and the functional groups were determined by Fourier Transform Infra-Red Spectroscopy (FT-IR). Biofilm formation was detected by microtiter plate technique. All of the isolates were resistant to third generation of cephalosporins, ciprofloxacin, levofloxacin, tetracycline, whereas, 78% and 81% were resistant to amikacin and carbapenems, respectively. The siderophore activity was highest at 20 μM Fe(3+) (70%); however, it decreased to 45% as concentration of Fe(3+) increased to 80 μM. Furthermore, screening of the isolates for LuxI and LuxR genes showed that presence of both genes required in the isolates with high AHL activity. FT-IR analysis indicated C=O bond of the lactone ring and primary amides. Significantly, a higher amount of AHL (70%) was detected in the presence of low concentration of iron-III (20 μM); as iron concentration increased to 80 μM, the AHL activity was reduced to 40% (P ≤ 0.05). All the isolates exhibited twitching motility and had a capsule. No any gelatinase or DNase activity was detected. Quantification of the

  10. Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii

    PubMed Central

    Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Mosadegh, Ellahe; Mansouri, Shahla

    2015-01-01

    Abstract Acinetobacter baumannii is an important source of infections in intensive care units (ICUs) of our hospitals in Kerman, Iran and the most frequently isolated strains produce biofilm. There is a little information about role of iron (Fe) levels on acyl homoserine lactone (AHL) production and biofilm formation in this microorganism. In the present study, we investigated the influence of iron-III limitation on AHL, siderophore, catechol and virulence factors in the biofilm forming clinical strains of A. baumannii. A total of 65 non-duplicated multidrug resistance (MDR) strains of A. baumannii were isolated from patients in ICUs of 2 hospitals in Kerman, Iran. Antibiotic susceptibility, siderophore and other iron chelators, hemolysis, cell twitching motility, capsule, gelatinase and DNase were studied. Presence of quorum sensing, LuxI and LuxR genes was detected by multiplex-PCR. AHL activity quantified by colorimetric method and the functional groups were determined by Fourier Transform Infra-Red Spectroscopy (FT-IR). Biofilm formation was detected by microtiter plate technique. All of the isolates were resistant to third generation of cephalosporins, ciprofloxacin, levofloxacin, tetracycline, whereas, 78% and 81% were resistant to amikacin and carbapenems, respectively. The siderophore activity was highest at 20 μM Fe3+ (70%); however, it decreased to 45% as concentration of Fe3+ increased to 80 μM. Furthermore, screening of the isolates for LuxI and LuxR genes showed that presence of both genes required in the isolates with high AHL activity. FT-IR analysis indicated C=O bond of the lactone ring and primary amides. Significantly, a higher amount of AHL (70%) was detected in the presence of low concentration of iron-III (20 μM); as iron concentration increased to 80 μM, the AHL activity was reduced to 40% (P ≤ 0.05). All the isolates exhibited twitching motility and had a capsule. No any gelatinase or DNase activity was detected. Quantification of

  11. Acyl homoserine lactone changes the abundance of proteins and the levels of organic acids associated with stationary phase in Salmonella Enteritidis.

    PubMed

    de Almeida, Felipe Alves; Pimentel-Filho, Natan de Jesus; Carrijo, Lanna Clícia; Bento, Cláudia Braga Pereira; Baracat-Pereira, Maria Cristina; Pinto, Uelinton Manoel; de Oliveira, Leandro Licursi; Vanetti, Maria Cristina Dantas

    2017-01-01

    Quorum sensing (QS) is cell-cell communication mechanism mediated by signaling molecules known as autoinducers (AIs) that lead to differential gene expression. Salmonella is unable to synthesize the AI-1 acyl homoserine lactone (AHL), but is able to recognize AHLs produced by other microorganisms through SdiA protein. Our study aimed to evaluate the influence of AI-1 on the abundance of proteins and the levels of organic acids of Salmonella Enteritidis. The presence of N-dodecyl-homoserine lactone (C12-HSL) did not interfere on the growth or the total amount of extracted proteins of Salmonella. However, the abundance of the proteins PheT, HtpG, PtsI, Adi, TalB, PmgI (or GpmI), Eno, and PykF enhanced while the abundance of the proteins RplB, RplE, RpsB, Tsf, OmpA, OmpC, OmpD, and GapA decreased when Salmonella Enteritidis was anaerobically cultivated in the presence of C12-HSL. Additionally, the bacterium produced less succinic, lactic, and acetic acids in the presence of C12-HSL. However, the concentration of extracellular formic acid reached 20.46 mM after 24 h and was not detected when the growth was in the absence of AI-1. Considering the cultivation period for protein extraction, their abundance, process and function, as well as the levels of organic acids, we observed in cells cultivated in presence of C12-HSL a correlation with what is described in the literature as entry into the stationary phase of growth, mainly related to nitrogen and amino acid starvation and acid stress. Further studies are needed in order to determine the specific role of the differentially abundant proteins and extracellular organic acids secreted by Salmonella in the presence of quorum sensing signaling molecules.

  12. Topical Administration of Acylated Homoserine Lactone Improves Epithelialization of Cutaneous Wounds in Hyperglycaemic Rats

    PubMed Central

    Kitamura, Aya; Quinetti, Paes C.; Nakagami, Gojiro; Mugita, Yuko; Oe, Makoto; Noguchi, Hiroshi; Mori, Taketoshi; Sanada, Hiromi

    2016-01-01

    Clinicians often experience delayed epithelialization in diabetic patients, for which a high glucose condition is one of the causes. However, the mechanisms underlying delayed wound closure have not been fully elucidated, and effective treatments to enhance epithelialization in patients with hyperglycaemia have not been established. Here we propose a new reagent, acylated homoserine lactone (AHL), to improve the delayed epithelialization due to the disordered formation of a basement membrane of epidermis in hyperglycaemic rats. Acute hyperglycaemia was induced by streptozotocin injection in this experiment. Full thickness wounds were created on the flanks of hyperglycaemic or control rats. Histochemical and immunohistochemical analyses were performed to identify hyperglycaemia-specific abnormalities in epidermal regeneration by comparison between groups. We then examined the effects of AHL on delayed epithelialization in hyperglycaemic rats. Histological analysis showed the significantly shorter epithelializing tissue (P < 0.05), abnormal structure of basement membrane (fragmentation and immaturity), and hypo- and hyperproliferation of basal keratinocytes in hyperglycaemic rats. Treating the wound with AHL resulted in the decreased abnormalities of basement membrane, normal distribution of proliferating epidermal keratinocytes, and significantly promoted epithelialization (P < 0.05) in hyperglycemic rats, suggesting the improving effects of AHL on abnormal epithelialization due to hyperglycemia. PMID:27404587

  13. Accurate mass analysis of N-acyl-homoserine-lactones and cognate lactone-opened compounds in bacterial isolates of Pseudomonas aeruginosa PAO1 by LC-ESI-LTQ-FTICR-MS.

    PubMed

    Cataldi, Tommaso R I; Bianco, Giuliana; Abate, Salvatore

    2009-02-01

    N-acyl-homoserine-lactones (AHSLs) are widely conserved signal molecules present in quorum sensing systems of Gram-negative bacteria such as Pseudomonas aeruginosa. We present here the results obtained with a hybrid linear trap/Fourier transform ion cyclotron resonance (LTQ-FTICR) mass spectrometer used to investigate the occurrence of AHSLs and cognate N-acyl-homoserines (AHSs) in bacterial isolates of P. aeruginosa (strain PAO1). Two hydrolysed AHSs were found in significant amounts, most likely formed through the lactone opening of N-3-oxo-decanoyl-L-homoserine-lactone (3OC10-HSL) and N-3-oxo-dodecanoyl-L-homoserine-lactone (3OC12-HSL). Structure elucidation of these ring-opened molecules, i.e. N-3-oxo-decanoyl-L-homoserine (3OC10-HS), and N-3-oxo-dodecanoyl-L-homoserine (3OC12-HS), which are not detected by bacterial biosensors, was performed by high-resolution and accurate mass measurements upon liquid chromatography (LC) and confirmed by tandem MS in the LTQ analyser. Assignment of chemical formula, with mass spectra in the form of [M+H]+, was significantly expedited by extracted ion chromatograms (XICs) because the number of potentially plausible formulae for each protonated signalling molecule was considerably reduced a priori by the LC behaviour, the high mass measurement accuracy available in FTICR mass spectra and the isotopic patterns. At least two concentration levels were observed in spent culture supernatants of P. aeruginosa: compounds at a relatively high content (5-15 microM) that is C4-HSL, 3OC10-HS, and 3OC12-HS and those occurring at a lower content (<0.2 microM) that is C6-HSL and C8-HSL. The implications of this work extend to a great variety of Gram-negative bacteria.

  14. Genome sequencing-assisted identification and the first functional validation of N-acyl-homoserine-lactone synthases from the Sphingomonadaceae family

    PubMed Central

    Gan, Han Ming; Dailey, Lucas K.; Halliday, Nigel; Williams, Paul; Hudson, André O.

    2016-01-01

    Background Members of the genus Novosphingobium have been isolated from a variety of environmental niches. Although genomics analyses have suggested the presence of genes associated with quorum sensing signal production e.g., the N-acyl-homoserine lactone (AHL) synthase (luxI) homologs in various Novosphingobium species, to date, no luxI homologs have been experimentally validated. Methods In this study, we report the draft genome of the N-(AHL)-producing bacterium Novosphingobium subterraneum DSM 12447 and validate the functions of predicted luxI homologs from the bacterium through inducible heterologous expression in Agrobacterium tumefaciens strain NTL4. We developed a two-dimensional thin layer chromatography bioassay and used LC-ESI MS/MS analyses to separate, detect and identify the AHL signals produced by the N. subterraneum DSM 12447 strain. Results Three predicted luxI homologs were annotated to the locus tags NJ75_2841 (NovINsub1), NJ75_2498 (NovINsub2), and NJ75_4146 (NovINsub3). Inducible heterologous expression of each luxI homologs followed by LC-ESI MS/MS and two-dimensional reverse phase thin layer chromatography bioassays followed by bioluminescent ccd camera imaging indicate that the three LuxI homologs are able to produce a variety of medium-length AHL compounds. New insights into the LuxI phylogeny was also gleemed as inferred by Bayesian inference. Discussion This study significantly adds to our current understanding of quorum sensing in the genus Novosphingobium and provide the framework for future characterization of the phylogenetically interesting LuxI homologs from members of the genus Novosphingobium and more generally the family Sphingomonadaceae. PMID:27635318

  15. Short Chain N-Acyl Homoserine Lactone Production in Tropical Marine Vibrio sinaloensis Strain T47

    PubMed Central

    Tan, Pui-Wan; Tan, Wen-Si; Yunos, Nina Yusrina Muhamad; Mohamad, Nur Izzati; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing (QS), acts as one of the gene regulatory systems that allow bacteria to regulate their physiological activities by sensing the population density with synchronization of the signaling molecules that they produce. Here, we report a marine isolate, namely strain T47, and its unique AHL profile. Strain T47 was identified using 16S rRNA sequence analysis confirming that it is a member of Vibrio closely clustered to Vibrio sinaloensis. The isolated V. sinaloensis strain T47 was confirmed to produce N-butanoyl-L-homoserine lactone (C4-HSL) by using high resolution liquid chromatography tandem mass spectrometry. V. sinaloensis strain T47 also formed biofilms and its biofilm formation could be affected by anti-QS compound (cathechin) suggesting this is a QS-regulated trait in V. sinaloensis strain T47. To our knowledge, this is the first documentation of AHL and biofilm production in V. sinaloensis strain T47. PMID:25046018

  16. N-Acyl Homoserine Lactone Production by Klebsiella pneumoniae Isolated from Human Tongue Surface

    PubMed Central

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Koh, Chong-Lek; Sam, Choon-Kook; Chan, Kok-Gan

    2012-01-01

    Bacteria communicate by producing quorum sensing molecules called autoinducers, which include autoinducer-1, an N-hexanoyl homoserine lactone (AHL), and autoinducer-2. Bacteria present in the human oral cavity have been shown to produce autoinducer-2, but not AHL. Here, we report the isolation of two AHL-producing Klebsiella pneumoniae strains from the posterior dorsal surface of the tongue of a healthy individual. Spent culture supernatant extracts from K. pneumoniae activated the biosensors Agrobacterium tumefaciens NTL4(pZLR4) and Escherichia coli [pSB401], suggesting the presence of both long and short chain AHLs. High resolution mass spectrometry analyses of these extracts confirmed that both K. pneumoniae isolates produced N-octanoylhomoserine lactone and N-3-dodecanoyl-l-homoserine lactone. To the best of our knowledge, this is the first report of the isolation of K. pneumoniae from the posterior dorsal surface of the human tongue and the production of these AHLs by this bacterium. PMID:22737019

  17. N-acyl Homoserine Lactone-Producing Pseudomonas putida Strain T2-2 from Human Tongue Surface

    PubMed Central

    Chen, Jian-Woon; Chin, Shenyang; Tee, Kok Keng; Yin, Wai-Fong; Choo, Yeun Mun; Chan, Kok-Gan

    2013-01-01

    Bacterial cell-to-cell communication (quorum sensing) refers to the regulation of bacterial gene expression in response to changes in microbial population density. Quorum sensing bacteria produce, release and respond to chemical signal molecules called autoinducers. Bacteria use two types of autoinducers, namely autoinducer-1 (AI-1) and autoinducer-2 (AI-2) where the former are N-acylhomoserine lactones and the latter is a product of the luxS gene. Most of the reported literatures show that the majority of oral bacteria use AI-2 for quorum sensing but rarely the AI-1 system. Here we report the isolation of Pseudomonas putida strain T2-2 from the oral cavity. Using high resolution mass spectrometry, it is shown that this isolate produced N-octanoylhomoserine lactone (C8-HSL) and N-dodecanoylhomoserine lactone (C12-HSL) molecules. This is the first report of the finding of quorum sensing of P. putida strain T2-2 isolated from the human tongue surface and their quorum sensing molecules were identified. PMID:24084113

  18. N-Acyl-Homoserine Lactone Confers Resistance toward Biotrophic and Hemibiotrophic Pathogens via Altered Activation of AtMPK61[C][W

    PubMed Central

    Schikora, Adam; Schenk, Sebastian T.; Stein, Elke; Molitor, Alexandra; Zuccaro, Alga; Kogel, Karl-Heinz

    2011-01-01

    Pathogenic and symbiotic bacteria rely on quorum sensing to coordinate the collective behavior during the interactions with their eukaryotic hosts. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as signals in such communication. Here we show that plants have evolved means to perceive AHLs and that the length of acyl moiety and the functional group at the γ position specify the plant’s response. Root treatment with the N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) reinforced the systemic resistance to the obligate biotrophic fungi Golovinomyces orontii in Arabidopsis (Arabidopsis thaliana) and Blumeria graminis f. sp. hordei in barley (Hordeum vulgare) plants. In addition, oxo-C14-HSL-treated Arabidopsis plants were more resistant toward the hemibiotrophic bacterial pathogen Pseudomonas syringae pv tomato DC3000. Oxo-C14-HSL promoted a stronger activation of mitogen-activated protein kinases AtMPK3 and AtMPK6 when challenged with flg22, followed by a higher expression of the defense-related transcription factors WRKY22 and WRKY29, as well as the PATHOGENESIS-RELATED1 gene. In contrast to wild-type Arabidopsis and mpk3 mutant, the mpk6 mutant is compromised in the AHL effect, suggesting that AtMPK6 is required for AHL-induced resistance. Results of this study show that AHLs commonly produced in the rhizosphere are crucial factors in plant pathology and could be an agronomic issue whose full impact has to be elucidated in future analyses. PMID:21940998

  19. Quorum Sensing of Periodontal Pathogens.

    PubMed

    Plančak, Darije; Musić, Larisa; Puhar, Ivan

    2015-09-01

    The term 'quorum sensing' describes intercellular bacterial communication which regulates bacterial gene expression according to population cell density. Bacteria produce and secrete small molecules, named autoinducers, into the intercellular space. The concentration of these molecules increases as a function of population cell density. Once the concentration of the stimulatory threshold is reached, alteration in gene expression occurs. Gram-positive and Gram-negative bacteria possess different types of quorum sensing systems. Canonical LuxI/R-type/acyl homoserine lactone mediated quorum sensing system is the best studied quorum sensing circuit and is described in Gram-negative bacteria which employ it for inter-species communication mostly. Gram-positive bacteria possess a peptide-mediated quorum sensing system. Bacteria can communicate within their own species (intra-species) but also between species (inter-species), for which they employ an autoinducer-2 quorum sensing system which is called the universal language of the bacteria. Periodontal pathogenic bacteria possess AI-2 quorum sensing systems. It is known that they use it for regulation of biofilm formation, iron uptake, stress response and virulence factor expression. A better understanding of bacterial communication mechanisms will allow the targeting of quorum sensing with quorum sensing inhibitors to prevent and control disease.

  20. Production of acylated homoserine lactone by a novel marine strain of Proteus vulgaris and inhibition of its swarming by phytochemicals.

    PubMed

    Biswa, Pramal; Doble, Mukesh

    2014-10-01

    A marine strain of Proteus vulgaris capable of activating multiple acylated homoserine lactone (AHL)-based reporter cultures was isolated. The cognate signal molecule was characterized as octanoyl homoserine lactone (OHL) and its production was observed to be growth dependent, with maximum production (5.675 µg l(-1)) at 24 h growth. The strain exhibited swarming, but its motility was not affected upon addition of pure OHL or culture supernatant. Phytochemicals such as quercitin and berberine chloride inhibited OHL production and reduced swarming. FliA, the predominantly upregulated protein during swarming, was considered as a possible target for these inhibitors, and docking of the two most active and two least active inhibitors to this protein suggested preferential binding of the former set of compounds. Apart from adding new evidence to AHL production in Proteus vulgaris, active inhibitors shortlisted from this study could help in identifying lead compounds to act against this opportunistic pathogen of the respiratory and gastrointestinal tract.

  1. Diversity of culturable bacterial communities in the intestinal tracts of goldfish (Carassius auratus) and their ability to produce N-acyl homoserine lactone.

    PubMed

    Sugita, Haruo; Kitao, Shun; Narisawa, Satoshi; Minamishima, Ryosuke; Itoi, Shiro

    2017-01-26

    Intestinal bacteria isolated from goldfish (Carassius auratus) were identified based on 16 ribosomal RNA (rRNA) gene sequences and screened for their ability to produce N-acyl homoserine lactone (AHL), an autoinducer of the quorum sensing (QS) system. The 230 aerobes/facultative anaerobes that were isolated comprised members of the genera Aeromonas (184 isolates), Citrobacter (11), Enterobacter (2), Shewanella (28), Vagococcus (1), and Vibrio (4). Among these genera, the two most abundant species were Aeromonas veronii (163 isolates) and Shewanella xiamenensis (27). In addition, 142 obligate anaerobes consisting of Cetobacterium somerae (139 isolates), Clostridium frigidicarnis (2), and Cetobacterium sp. (1) were also isolated. One hundred seventy isolates (74.2%) belonging to the genera Aeromonas, Citrobacter, Enterobacter, Shewanella, and Vibrio produced AHL, while 155 (67.7%) and 91 (39.7%) isolates possessed the luxR and luxI gene homologs, respectively. None of the obligate anaerobes produced AHL or possessed luxRI homologs. Total viable counts ranged from 1.2 × 10(7) to 2.2 × 10(9) CFU/g, which were accounted for 0.8 to 15.2% of direct counts. Aeromonas veronii, S. xiamenensis, and C. somerae were detected from five goldfish at densities ranging from 4.0 × 10(6) to 1.7 × 10(9) CFU/g, indicating that these bacteria are dominant components of the culturable gut flora in goldfish. In addition, members of the genera Aeromonas and Shewanella appeared to communicate with each other by using the QS system to some extent when the concentration of AHL reaches a certain threshold. It is therefore suggested that bacteria with the ability to disrupt AHL secretion in intestinal environments are potential candidates for probionts for preventing opportunistic infections in freshwater fish such as goldfish.

  2. Quorum Sensing of Periodontal Pathogens

    PubMed Central

    Plančak, Darije; Musić, Larisa

    2015-01-01

    The term ‘quorum sensing’ describes intercellular bacterial communication which regulates bacterial gene expression according to population cell density. Bacteria produce and secrete small molecules, named autoinducers, into the intercellular space. The concentration of these molecules increases as a function of population cell density. Once the concentration of the stimulatory threshold is reached, alteration in gene expression occurs. Gram-positive and Gram-negative bacteria possess different types of quorum sensing systems. Canonical LuxI/R-type/acyl homoserine lactone mediated quorum sensing system is the best studied quorum sensing circuit and is described in Gram-negative bacteria which employ it for inter-species communication mostly. Gram-positive bacteria possess a peptide-mediated quorum sensing system. Bacteria can communicate within their own species (intra-species) but also between species (inter-species), for which they employ an autoinducer-2 quorum sensing system which is called the universal language of the bacteria. Periodontal pathogenic bacteria possess AI-2 quorum sensing systems. It is known that they use it for regulation of biofilm formation, iron uptake, stress response and virulence factor expression. A better understanding of bacterial communication mechanisms will allow the targeting of quorum sensing with quorum sensing inhibitors to prevent and control disease. PMID:27688408

  3. Labrenzia sp. BM1: A Quorum Quenching Bacterium That Degrades N-acyl Homoserine Lactones via Lactonase Activity

    PubMed Central

    Ghani, Norshazliza Ab; Norizan, Siti Nur Maisarah; Chan, Xin Yue; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    We report the degradation of quorum sensing N-acylhomoserine lactone molecules by a bacterium isolated from a Malaysian marine water sample. MALDI-TOF and phylogenetic analysis indicated this isolate BM1 clustered closely to Labrenzia sp. The quorum quenching activity of this isolate was confirmed by using a series of bioassays and rapid resolution liquid chromatography analysis. Labrenzia sp. degraded a wide range of N-acylhomoserine lactones namely N-(3-hexanoyl)-l-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-l-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-l-homoserine lactone (3-hydroxy-C6-HSL). Re-lactonisation bioassays confirmed Labrenzia sp. BM1 degraded these signalling molecules efficiently via lactonase activity. To the best of our knowledge, this is the first documentation of a Labrenzia sp. capable of degrading N-acylhomoserine lactones and confirmation of its lactonase-based mechanism of action. PMID:24995373

  4. Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis

    PubMed Central

    Liu, Dali; Lepore, Bryan W.; Petsko, Gregory A.; Thomas, Pei W.; Stone, Everett M.; Fast, Walter; Ringe, Dagmar

    2005-01-01

    The three-dimensional structure of the N-acyl-l-homoserine lactone hydrolase (AHL lactonase) from Bacillus thuringiensis has been determined, by using single-wavelength anomalous dispersion (SAD) phasing, to 1.6-Å resolution. AHLs are produced by many Gram-negative bacteria as signaling molecules used in quorum-sensing pathways that indirectly sense cell density and regulate communal behavior. Because of their importance in pathogenicity, quorum-sensing pathways have been suggested as potential targets for the development of novel therapeutics. Quorum-sensing can be disrupted by enzymes evolved to degrade these lactones, such as AHL lactonases. These enzymes are members of the metallo-β-lactamase superfamily and contain two zinc ions in their active sites. The zinc ions are coordinated to a number of ligands, including a single oxygen of a bridging carboxylate and a bridging water/hydroxide ion, thought to be the nucleophile that hydrolyzes the AHLs to ring-opened products, which can no longer act as quorum signals. PMID:16087890

  5. Quorum Sensing Activity in Pandoraea pnomenusa RB38

    PubMed Central

    Ee, Robson; Lim, Yan-Lue; Kin, Lin-Xin; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Strain RB38 was recovered from a former dumping area in Malaysia. MALDI-TOF mass spectrometry and genomic analysis identified strain RB-38 as Pandoraea pnomenusa. Various biosensors confirmed its quorum sensing properties. High resolution triple quadrupole liquid chromatography–mass spectrometry analysis was subsequently used to characterize the N-acyl homoserine lactone production profile of P. pnomenusa strain RB38, which validated that this isolate produced N-octanoyl homoserine lactone as a quorum sensing molecule. This is the first report of the production of N-octanoyl homoserine lactone by P. pnomenusa strain RB38. PMID:24919016

  6. Presence of Acylated Homoserine Lactones (AHLs) and AHL-Producing Bacteria in Meat and Potential Role of AHL in Spoilage of Meat

    PubMed Central

    Bruhn, Jesper Bartholin; Christensen, Allan Beck; Flodgaard, Lars Ravn; Nielsen, Kristian Fog; Larsen, Thomas Ostenfeld; Givskov, Michael; Gram, Lone

    2004-01-01

    Quorum-sensing (QS) signals (N-acyl homoserine lactones [AHLs]) were extracted and detected from five commercially produced vacuum-packed meat samples. Ninety-six AHL-producing bacteria were isolated, and 92 were identified as Enterobacteriaceae. Hafnia alvei was the most commonly identified AHL-producing bacterium. Thin-layer chromatographic profiles of supernatants from six H. alvei isolates and of extracts from spoiling meat revealed that the major AHL species had an Rf value and shape similar to N-3-oxo-hexanoyl homoserine lactone (OHHL). Liquid chromatography-mass spectrometry (MS) (high-resolution MS) analysis confirmed the presence of OHHL in pure cultures of H. alvei. Vacuum-packed meat spoiled at the same rate when inoculated with the H. alvei wild type compared to a corresponding AHL-lacking mutant. Addition of specific QS inhibitors to the AHL-producing H. alvei inoculated in meat or to naturally contaminated meat did not influence the spoilage of vacuum-packed meat. An extracellular protein of approximately 20 kDa produced by the H. alvei wild-type was not produced by the AHL-negative mutant but was restored in the mutant when complemented by OHHL, thus indicating that AHLs do have a regulatory role in H. alvei. Coinoculation of H. alvei wild-type with an AHL-deficient Serratia proteamaculans B5a, in which protease secretion is QS regulated, caused spoilage of liquid milk. By contrast, coinoculation of AHL-negative strains of H. alvei and S. proteamaculans B5a did not cause spoilage. In conclusion, AHL and AHL-producing bacteria are present in vacuum-packed meat during storage and spoilage, but AHL does not appear to influence the spoilage of this particular type of conserved meat. Our data indicate that AHL-producing H. alvei may induce food quality-relevant phenotypes in other bacterial species in the same environment. H. alvei may thus influence spoilage of food products in which Enterobacteriaceae participate in the spoilage process. PMID:15240313

  7. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean.

    PubMed

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants' pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to

  8. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean

    PubMed Central

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants’ pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to

  9. Novel linear polymers able to inhibit bacterial quorum sensing.

    PubMed

    Cavaleiro, Eliana; Duarte, Ana Sofia; Esteves, Ana Cristina; Correia, António; Whitcombe, Michael J; Piletska, Elena V; Piletsky, Sergey A; Chianella, Iva

    2015-05-01

    Bacterial phenotypes, such as biofilm formation, antibiotic resistance and virulence expression, are associated with quorum sensing. Quorum sensing is a density-dependent regulatory system of gene expression controlled by specific signal molecules, such as N-acyl homoserine lactones (AHLs), produced and released by bacteria. This study reports the development of linear polymers capable to attenuate quorum sensing by adsorption of AHLs. Linear polymers were synthesized using MMA as backbone monomer and methacrylic acid and itaconic acid as functional monomers. Two different quorum sensing-controlled phenotypes, Vibrio fischeri bioluminescence and Aeromonas hydrophila biofilm formation, were evaluated to test the polymers' efficiency. Results showed that both phenotypes were significantly affected by the polymers, with the itaconic acid-containing material being more effective than the methacrylic acid one. The polymer inhibitory effects were reverted by the addition of lactones, confirming attenuation of quorum sensing through sequestration of signal molecules. The polymers also showed no cytotoxicity when tested using a mammalian cell line.

  10. RND type efflux pump system MexAB-OprM of pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication

    PubMed Central

    2012-01-01

    Background Bacteria release a wide variety of small molecules including cell-to-cell signaling compounds. Gram-negative bacteria use a variety of self-produced autoinducers such as acylated homoserine lactones (acyl-HSLs) as signal compounds for quorum sensing (QS) within and between bacterial species. QS plays a significant role in the pathogenesis of infectious diseases and in beneficial symbiosis by responding to acyl-HSLs in Pseudomonas aeruginosa. It is considered that the selection of bacterial languages is necessary to regulate gene expression and thus it leads to the regulation of virulence and provides a growth advantage in several environments. In this study, we hypothesized that RND-type efflux pump system MexAB-OprM of P. aeruginosa might function in the selection of acyl-HSLs, and we provide evidence to support this hypothesis. Results Loss of MexAB-OprM due to deletion of mexB caused increases in QS responses, as shown by the expression of gfp located downstream of the lasB promoter and LasB elastase activity, which is regulated by a LasR-3-oxo-C12-HSL complex. Either complementation with a plasmid containing wild-type mexB or the addition of a LasR-specific inhibitor, patulin, repressed these high responses to 3-oxo-acyl-HSLs. Furthermore, it was shown that the acyl-HSLs-dependent response of P. aeruginosa was affected by the inhibition of MexB transport activity and the mexB mutant. The P. aeruginosa MexAB-OprM deletion mutant showed a strong QS response to 3-oxo-C10-HSL produced by Vibrio anguillarum in a bacterial cross-talk experiment. Conclusion This work demonstrated that MexAB-OprM does not control the binding of LasR to 3-oxo-Cn-HSLs but rather accessibility of non-cognate acyl-HSLs to LasR in P. aeruginosa. MexAB-OprM not only influences multidrug resistance, but also selects acyl-HSLs and regulates QS in P. aeruginosa. The results demonstrate a new QS regulation mechanism via the efflux system MexAB-OprM in P. aeruginosa. PMID:22574700

  11. Diversity and N-acyl-homoserine lactone production by Gammaproteobacteria associated with Avicennia marina rhizosphere of South Indian mangroves.

    PubMed

    Viswanath, Ganga; Jegan, Sekar; Baskaran, Viswanathan; Kathiravan, Raju; Prabavathy, Vaiyapuri Ramalingam

    2015-07-01

    The diversity of N-acyl-homoserine lactone (AHL)-producing rhizosphere bacterial community associated with Avicennia marina in the mangrove ecosystems of South India was investigated. Approximately 800 rhizobacteria were isolated from A. marina, and they were screened for the production of AHL using two biosensors, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NTL4 (pZLR4). Among the total isolates screened, 7% of the rhizobacteria showed positive induction for AHL signals. The BOX-PCR profile of 56 positive isolates represented 11 distinct genotypic groups. Phylogenetic analyses of the 16S rRNA sequences of 16 representatives showed that the isolates belonged to the class Gammaproteobacteria, which represented six different genera: Pseudomonas, Aeromonas, Vibrio, Photobacterium, Serratia and Halomonas. The study also identified three AHL-producing species, namely, Photobacterium halotolerans MSSRF QS48, Vibrio xiamenensis MSSRF QS47 and Pseudomonas sp. MSSRF QS1 that had not been reported previously. AHL profiling by TLC detected short chains C4, C6 and C8-HSL, and long chains C10 and C12-HSL with both unsubstituted and substituted side chains among the 16 representative AHL positives. This is the first report concerning the diversity of AHL-producing Gammaproteobacteria from mangrove ecosystems exhibiting diverse AHL profiles.

  12. Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165

    PubMed Central

    Saroj, Sunil D.; Holmer, Linda; Berengueras, Júlia M.; Jonsson, Ann-Beth

    2017-01-01

    Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence. PMID:28303956

  13. Quorum sensing in plant-associated bacteria.

    PubMed

    Loh, John; Pierson, Elizabeth A; Pierson, Leland S; Stacey, Gary; Chatterjee, Arun

    2002-08-01

    N-acyl homoserine lactone (AHL)-mediated quorum sensing by bacteria regulates traits that are involved in symbiotic, pathogenic and surface-associated relationships between microbial populations and their plant hosts. Recent advances demonstrate deviations from the classic LuxR/LuxI paradigm, which was first developed in Vibrio. For example, LuxR homologs can repress as well as activate gene expression, and non-AHL signals and signal mimics can affect the expression of genes that are controlled by quorum sensing. Many bacteria utilize multiple quorum-sensing systems, and these may be modulated via post-transcriptional and other global regulatory mechanisms. Microbes inhabiting plant surfaces also produce and respond to a diverse mixture of AHL signals. The production of AHL mimics by plants and the identification of AHL degradative pathways suggest that bacteria and plants utilize this method of bacterial communication as a key control point for influencing the outcome of their interactions.

  14. Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants.

    PubMed

    Majerczyk, Charlotte; Schneider, Emily; Greenberg, E Peter

    2016-05-16

    Burkholderia thailandensis uses acyl-homoserine lactone-mediated quorum sensing systems to regulate hundreds of genes. Here we show that cell-cell contact-dependent type VI secretion (T6S) toxin-immunity systems are among those activated by quorum sensing in B. thailandensis. We also demonstrate that T6S is required to constrain proliferation of quorum sensing mutants in colony cocultures of a BtaR1 quorum-sensing signal receptor mutant and its parent. However, the BtaR1 mutant is not constrained by and outcompetes its parent in broth coculture, presumably because no cell contact occurs and there is a metabolic cost associated with quorum sensing gene activation. The increased fitness of the wild type over the BtaR1 mutant during agar surface growth is dependent on an intact T6SS-1 apparatus. Thus, quorum sensing activates B. thailandensis T6SS-1 growth inhibition and this control serves to police and constrain quorum-sensing mutants. This work defines a novel role for T6SSs in intraspecies mutant control.

  15. Quorum sensing control of Type VI secretion factors restricts the proliferation of quorum-sensing mutants

    PubMed Central

    Majerczyk, Charlotte; Schneider, Emily; Greenberg, E Peter

    2016-01-01

    Burkholderia thailandensis uses acyl-homoserine lactone-mediated quorum sensing systems to regulate hundreds of genes. Here we show that cell-cell contact-dependent type VI secretion (T6S) toxin-immunity systems are among those activated by quorum sensing in B. thailandensis. We also demonstrate that T6S is required to constrain proliferation of quorum sensing mutants in colony cocultures of a BtaR1 quorum-sensing signal receptor mutant and its parent. However, the BtaR1 mutant is not constrained by and outcompetes its parent in broth coculture, presumably because no cell contact occurs and there is a metabolic cost associated with quorum sensing gene activation. The increased fitness of the wild type over the BtaR1 mutant during agar surface growth is dependent on an intact T6SS-1 apparatus. Thus, quorum sensing activates B. thailandensis T6SS-1 growth inhibition and this control serves to police and constrain quorum-sensing mutants. This work defines a novel role for T6SSs in intraspecies mutant control. DOI: http://dx.doi.org/10.7554/eLife.14712.001 PMID:27183270

  16. Novel acridine-based N-acyl-homoserine lactone analogs induce endoreduplication in the human oral squamous carcinoma cell line SAS.

    PubMed

    Chai, Hongbo; Hazawa, Masaharu; Hosokawa, Yoichiro; Igarashi, Jun; Suga, Hiroaki; Kashiwakura, Ikuo

    2012-01-01

    The cytotoxicity of novel acridine-based N-acyl-homoserine lactone (AHL) analogs was investigated on the human oral squamous carcinoma cell line SAS. One analog induced G2/M phase arrest at 5.3-10.6 µM and induced polyploidy at a higher dose (21.2 µM). Importantly, treatment of SAS cells with a combination of the AHL analog and the Jun N-terminal kinase (JNK) inhibitor, SP600125, prevented mitosis and induced polyploidy. The AHL analog synergized with X-irradiation to inhibit clonogenic survival of SAS cells; however, its radiosensitizing effects were relative to not X-irradiation-induced apoptosis but mitotic failure following enhanced expression of Aurora A and B. These results suggest that the active AHL analog showed growth-suppressive and radiosensitizing effects, which involve polyploidy followed by G2/M accumulation and atypical cell death in the SAS cell line.

  17. Unravelling the genome of long chain N-acylhomoserine lactone-producing Acinetobacter sp. strain GG2 and identification of its quorum sensing synthase gene

    PubMed Central

    How, Kah Yan; Hong, Kar-Wai; Sam, Choon-Kook; Koh, Chong-Lek; Yin, Wai-Fong; Chan, Kok-Gan

    2015-01-01

    Myriad proteobacteria use N-acyl homoserine lactone (AHL) molecules as quorum sensing (QS) signals to regulate different physiological functions, including virulence, antibiotic production, and biofilm formation. Many of these proteobacteria possess LuxI/LuxR system as the QS mechanism. Recently, we reported the 3.89 Mb genome of Acinetobacter sp. strain GG2. In this work, the genome of this long chain AHL-producing bacterium was unravelled which led to the molecular characterization of luxI homologue, designated as aciI. This 552 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was ∼20.5 kDa and is highly similar to several autoinducer proteins of LuxI family among Acinetobacter species. To verify the AHL synthesis activity of this protein, high-resolution liquid chromatography–mass spectrometry analysis revealed the production of 3-oxo-dodecanoyl-homoserine lactone and 3-hydroxy-dodecanoyl-homoserine lactone from induced E. coli harboring the recombinant AciI. Our data show for the first time, the cloning and characterization of the luxI homologue from Acinetobacter sp. strain GG2, and confirmation of its AHLs production. These data are of great significance as the annotated genome of strain GG2 has provided a valuable insight in the study of autoinducer molecules and its roles in QS mechanism of the bacterium. PMID:25926817

  18. Diverse Profiles of N-acyl Homoserine L-Lactones, Biofilm, Virulence Genes and Integrons in Food-Borne Aeromonas Isolates.

    PubMed

    Nagar, Vandan; Sinha, Vibha; Bandekar, Jayant R

    2015-08-01

    Aeromonas are regarded as opportunistic as well as primary pathogens of humans and fish, and are associated with gastroenteritis and septicemia in humans. Production of N-acyl-homoserine lactone (AHL) signal molecules and biofilm was determined in 22 Aeromonas isolates, from different food products in India, using thin-layer chromatography (TLC) analysis and microtiter-plate assay, respectively. Overall, highly heterogeneous patterns of AHL production were observed, with the production of N-butanoyl homoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL) by the majority (81.8%) of Aeromonas food isolates. Moreover, putative N-pentanoyl homoserine lactone (C5-HSL), N-heptanoyl homoserine lactone (C7-HSL), and N-octanoyl homoserine lactone (C8-HSL) were produced by 72.7%, 27.3%, and 9.1% of isolates, respectively. This is the 1st report of production of C7-HSL by Aeromonas species. Aeromonas food isolates were highly variable in their biofilm forming abilities with majority of them as weak biofilm producers in 2 different media, TSB and M9 minimal medium supplemented with 0.4% glucose. The genes encoding for putative virulence factors, glycerophospholipid cholesterol acyltransferase (gcat), heat-labile cytotonic enterotoxin (alt), heat-stable cytotonic enterotoxin (ast), serine protease (ser), polar flagella (fla), and lateral flagella (lafA) were present in 95.5%, 59.1%, 22.7%, 81.8%, 77.3%, and 22.7% of the strains, respectively. Class 1 integrons (100 to 3000 bp) were found in 68.2% of food isolates; whereas, 50% isolates contained class 2 integrons (150 to 1600 bp). This study provides a baseline data on the diversity of AHLs, biofilm forming ability and presence of virulence genes and integrons in Aeromonas food isolates from India.

  19. Complete genome sequencing of Pandoraea pnomenusa RB38 and Molecular Characterization of Its N-acyl homoserine lactone synthase gene ppnI

    PubMed Central

    Lim, Yan-Lue; Ee, Robson; How, Kah-Yan; Lee, Siew-Kim; Yong, Delicia; Tee, Kok Keng; Yin, Wai-Fong

    2015-01-01

    In this study, we sequenced the genome of Pandoraea pnomenusa RB38 using Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. A pair of cognate luxI/R homologs was identified where the luxI homolog, ppnI, was found adjacent to a luxR homolog, ppnR1. An additional orphan luxR homolog, ppnR2, was also discovered. Multiple sequence alignment and phylogenetic analysis revealed that ppnI is an N-acyl homoserine lactone (AHL) synthase gene that is distinct from those of the nearest phylogenetic neighbor viz. Burkholderia spp. High resolution tandem mass spectrometry (LC-MS/MS) analysis showed that Escherichia coli BL21 harboring ppnI produced a similar AHL profile (N-octanoylhomoserine lactone, C8-HSL) as P. pnomenusa RB38, the wild-type donor strain, confirming that PpnI directed the synthesis of AHL in P. pnomenusa RB38. To our knowledge, this is the first documentation of the luxI/R homologs of the genus Pandoraea. PMID:26336650

  20. Complex quorum-sensing regulatory systems regulate bacterial growth and symbiotic nodulation in Mesorhizobium tianshanense.

    PubMed

    Cao, Huijuan; Yang, Menghua; Zheng, Huiming; Zhang, Jiang; Zhong, Zengtao; Zhu, Jun

    2009-03-01

    LuxR/LuxI-type quorum-sensing systems have been shown to be important for symbiotic interactions between a number of rhizobium species and host legumes. In this study, we found that different isolates of Mesorhizobium tianshanense, a moderately-growing Rhizobium that forms nodules on a number of types of licorice plants, produces several different N-acyl homoserine lactone-like molecules. In M. tianshanense CCBAU060A, we performed a genetic screen and identified a network of regulatory components including a set of LuxI/LuxR-family regulators as well as a MarR-family regulator that is required for quorum-sensing regulation. Furthermore, compared with the wild-type strains, quorum-sensing deficient mutants showed a reduced growth rate and were defective in nodule formation on their host plant Glycyrrhiza uralensis. These data suggest that different M. tianshanense strains may use diverse quorum-sensing systems to regulate symbiotic process.

  1. AidP, a novel N-Acyl homoserine lactonase gene from Antarctic Planococcus sp.

    PubMed

    See-Too, Wah Seng; Ee, Robson; Lim, Yan-Lue; Convey, Peter; Pearce, David A; Yin, Wai-Fong; Chan, Kok-Gan

    2017-02-22

    Planococcus is a Gram-positive halotolerant bacterial genus in the phylum Firmicutes, commonly found in various habitats in Antarctica. Quorum quenching (QQ) is the disruption of bacterial cell-to-cell communication (known as quorum sensing), which has previously been described in mesophilic bacteria. This study demonstrated the QQ activity of a psychrotolerant strain, Planococcus versutus strain L10.15(T), isolated from a soil sample obtained near an elephant seal wallow in Antarctica. Whole genome analysis of this bacterial strain revealed the presence of an N-acyl homoserine lactonase, an enzyme that hydrolyzes the ester bond of the homoserine lactone of N-acyl homoserine lactone (AHLs). Heterologous gene expression in E. coli confirmed its functions for hydrolysis of AHLs, and the gene was designated as aidP (autoinducer degrading gene from Planococcus sp.). The low temperature activity of this enzyme suggested that it is a novel and uncharacterized class of AHL lactonase. This study is the first report on QQ activity of bacteria isolated from the polar regions.

  2. AidP, a novel N-Acyl homoserine lactonase gene from Antarctic Planococcus sp.

    PubMed Central

    See-Too, Wah Seng; Ee, Robson; Lim, Yan-Lue; Convey, Peter; Pearce, David A.; Yin, Wai-Fong; Chan, Kok-Gan

    2017-01-01

    Planococcus is a Gram-positive halotolerant bacterial genus in the phylum Firmicutes, commonly found in various habitats in Antarctica. Quorum quenching (QQ) is the disruption of bacterial cell-to-cell communication (known as quorum sensing), which has previously been described in mesophilic bacteria. This study demonstrated the QQ activity of a psychrotolerant strain, Planococcus versutus strain L10.15T, isolated from a soil sample obtained near an elephant seal wallow in Antarctica. Whole genome analysis of this bacterial strain revealed the presence of an N-acyl homoserine lactonase, an enzyme that hydrolyzes the ester bond of the homoserine lactone of N-acyl homoserine lactone (AHLs). Heterologous gene expression in E. coli confirmed its functions for hydrolysis of AHLs, and the gene was designated as aidP (autoinducer degrading gene from Planococcus sp.). The low temperature activity of this enzyme suggested that it is a novel and uncharacterized class of AHL lactonase. This study is the first report on QQ activity of bacteria isolated from the polar regions. PMID:28225085

  3. Strain-dependent diversity in the Pseudomonas aeruginosa quorum-sensing regulon.

    PubMed

    Chugani, Sudha; Kim, Byoung Sik; Phattarasukol, Somsak; Brittnacher, Mitchell J; Choi, Sang Ho; Harwood, Caroline S; Greenberg, E Peter

    2012-10-09

    Quorum sensing allows bacteria to sense and respond to changes in population density. Acyl-homoserine lactones serve as quorum-sensing signals for many Proteobacteria, and acyl-homoserine lactone signaling is known to control cooperative activities. Quorum-controlled activities vary from one species to another. Quorum-sensing controls a constellation of genes in the opportunistic pathogen Pseudomonas aeruginosa, which thrives in a number of habitats ranging from soil and water to animal hosts. We hypothesized that there would be significant variation in quorum-sensing regulons among strains of P. aeruginosa isolated from different habitats and that differences in the quorum-sensing regulons might reveal insights about the ecology of P. aeruginosa. As a test of our hypothesis we used RNA-seq to identify quorum-controlled genes in seven P. aeruginosa isolates of diverse origins. Although our approach certainly overlooks some quorum-sensing-regulated genes we found a shared set of genes, i.e., a core quorum-controlled gene set, and we identified distinct, strain-variable sets of quorum-controlled genes, i.e., accessory genes. Some quorum-controlled genes in some strains were not present in the genomes of other strains. We detected a correlation between traits encoded by some genes in the strain-variable subsets of the quorum regulons and the ecology of the isolates. These findings indicate a role for quorum sensing in extension of the range of habitats in which a species can thrive. This study also provides a framework for understanding the molecular mechanisms by which quorum-sensing systems operate, the evolutionary pressures by which they are maintained, and their importance in disparate ecological contexts.

  4. Quorum sensing inhibitory potential and molecular docking studies of sesquiterpene lactones from Vernonia blumeoides.

    PubMed

    Aliyu, Abubakar Babando; Koorbanally, Neil Anthony; Moodley, Brenda; Singh, Parvesh; Chenia, Hafizah Yousuf

    2016-06-01

    The increasing incidence of multidrug-resistant Gram-negative bacterial pathogens has focused research on the suppression of bacterial virulence via quorum sensing inhibition strategies, rather than the conventional antimicrobial approach. The anti-virulence potential of eudesmanolide sesquiterpene lactones previously isolated from Vernonia blumeoides was assessed by inhibition of quorum sensing and in silico molecular docking. Inhibition of quorum sensing-controlled violacein production in Chromobacterium violaceum was quantified using violacein inhibition assays. Qualitative modulation of quorum sensing activity and signal synthesis was investigated using agar diffusion double ring assays and C. violaceum and Agrobacterium tumefaciens biosensor systems. Inhibition of violacein production was concentration-dependent, with ⩾90% inhibition being obtained with ⩾2.4 mg ml(-1) of crude extracts. Violacein inhibition was significant for the ethyl acetate extract with decreasing inhibition being observed with dichloromethane, hexane and methanol extracts. Violacein inhibition ⩾80% was obtained with 0.071 mg ml(-1) of blumeoidolide B in comparison with ⩾3.6 mg ml(-1) of blumeoidolide A. Agar diffusion double ring assays indicated that only the activity of the LuxI synthase homologue, CviI, was modulated by blumeoidolides A and B, and V. blumeoides crude extracts, suggesting that quorum sensing signal synthesis was down-regulated or competitively inhibited. Finally, molecular docking was conducted to explore the binding conformations of sesquiterpene lactones into the binding sites of quorum sensing regulator proteins, CviR and CviR'. The computed binding energy data suggested that the blumeoidolides have a tendency to inhibit both CviR and CviR' with varying binding affinities. Vernonia eudesmanolide sesquiterpene lactones have the potential to be novel therapeutic agents, which might be important in reducing virulence and pathogenicity of drug-resistant bacteria

  5. Unusual long-chain N-acyl homoserine lactone production by and presence of quorum quenching activity in bacterial isolates from diseased tilapia fish.

    PubMed

    Chang, Chien-Yi; Koh, Chong-Lek; Sam, Choon-Kook; Chan, Xin-Yue; Yin, Wai Fong; Chan, Kok Gan

    2012-01-01

    Growth-dependent cell-cell communication termed quorum sensing is a key regulatory system in bacteria for controlling gene expression including virulence factors. In this study five potential bacterial pathogens including Bacillus sp. W2.2, Klebsiella sp. W4.2, Pseudomonas sp. W3 and W3.1 and Serratia sp. W2.3 were isolated from diseased Tilapia fish in Malaysia, supplied by the leading global fish supplier. Proteolytic activity assays confirmed that with the exception of Klebsiella sp. W4.2, all isolates showed distinct proteolytic activity. Furthermore Bacillus sp. W2.2 and Pseudomonas sp. strains W3 and W3.1 also displayed haemolytic activity. By using high resolution liquid chromatography mass spectrometry, we revealed the presence of unusually long-chain N-(3-oxohexadecanoyl)-homoserine lactone (3-oxo-C16-HSL) from Pseudomonas sp. W3.1 and N-dodecanoyl-homoserine lactone (C12-HSL) from Serratia sp. W2.3, respectively. Interestingly, Pseudomonas sp. W3.1 also produced a wide range of Pseudomonas quinolone signalling (PQS) molecules. Pseudomonas sp. W3 did not show any quorum sensing properties but possessed quorum quenching activity that inactivated AHLs. This study is the first documentation that shows unusual long-chain AHLs production in Serratia sp. and Pseudomonas sp. isolated from diseased fish and the latter also produce a wide range of PQS molecules.

  6. Unusual Long-Chain N-Acyl Homoserine Lactone Production by and Presence of Quorum Quenching Activity in Bacterial Isolates from Diseased Tilapia Fish

    PubMed Central

    Chang, Chien-Yi; Koh, Chong-Lek; Sam, Choon-Kook; Chan, Xin-Yue; Yin, Wai Fong; Chan, Kok Gan

    2012-01-01

    Growth-dependent cell-cell communication termed quorum sensing is a key regulatory system in bacteria for controlling gene expression including virulence factors. In this study five potential bacterial pathogens including Bacillus sp. W2.2, Klebsiella sp. W4.2, Pseudomonas sp. W3 and W3.1 and Serratia sp. W2.3 were isolated from diseased Tilapia fish in Malaysia, supplied by the leading global fish supplier. Proteolytic activity assays confirmed that with the exception of Klebsiella sp. W4.2, all isolates showed distinct proteolytic activity. Furthermore Bacillus sp. W2.2 and Pseudomonas sp. strains W3 and W3.1 also displayed haemolytic activity. By using high resolution liquid chromatography mass spectrometry, we revealed the presence of unusually long-chain N-(3-oxohexadecanoyl)-homoserine lactone (3-oxo-C16-HSL) from Pseudomonas sp. W3.1 and N-dodecanoyl-homoserine lactone (C12-HSL) from Serratia sp. W2.3, respectively. Interestingly, Pseudomonas sp. W3.1 also produced a wide range of Pseudomonas quinolone signalling (PQS) molecules. Pseudomonas sp. W3 did not show any quorum sensing properties but possessed quorum quenching activity that inactivated AHLs. This study is the first documentation that shows unusual long-chain AHLs production in Serratia sp. and Pseudomonas sp. isolated from diseased fish and the latter also produce a wide range of PQS molecules. PMID:22952864

  7. A strategy for antagonizing quorum sensing

    PubMed Central

    Chen, Guozhou; Swem, Lee R.; Swem, Danielle L.; Stauff, Devin L.; O’Loughlin, Colleen T.; Jeffrey, Philip D.; Bassler, Bonnie L.; Hughson, Frederick M.

    2011-01-01

    SUMMARY Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by ~60 Å, twice the ~30 Å separation required for operator binding. This approach may represent a general strategy for the inhibition of multi-domain proteins. PMID:21504831

  8. A Strategy for Antagonizing Quorum Sensing

    SciTech Connect

    G Chen; L Swem; D Swem; D Stauff; C OLoughlin; P Jeffrey; B Bassler; F Hughson

    2011-12-31

    Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by {approx}60 {angstrom}, twice the {approx}30 {angstrom} separation required for operator binding. This approach may represent a general strategy for the inhibition of multidomain proteins.

  9. The Acyl-Homoserine Lactone Synthase YenI from Yersinia enterocolitica Modulates Virulence Gene Expression in Enterohemorrhagic Escherichia coli O157:H7

    PubMed Central

    Nguyen, Y N.; Sheng, Haiqing; Dakarapu, Rambabu; Falck, John R.; Hovde, Carolyn J.

    2013-01-01

    The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes the rectoanal junction (RAJ) in cattle, its natural reservoir. Colonization at the RAJ poses a serious risk for fecal shedding and contamination of the environment. We previously demonstrated that EHEC senses acyl-homoserine lactones (AHLs) produced by the microbiota in the rumen to activate the gad acid resistance genes necessary for survival through the acidic stomachs in cattle and to repress the locus of enterocyte effacement (LEE) genes important for colonization of the RAJ, but unnecessary in the rumen. Devoid of AHLs, the RAJ is the prominent site of colonization of EHEC in cattle. To determine if the presence of AHLs in the RAJ could repress colonization at this site, we engineered EHEC to express the Yersinia enterocolitica AHL synthase gene yenI, which constitutively produces AHLs, to mimic a constant exposure of AHLs in the environment. The yenI+ EHEC produces oxo-C6-homoserine lactone (oxo-C6-HSL) and had a significant reduction in LEE expression, effector protein secretion, and attaching and effacing (A/E) lesion formation in vitro compared to the wild type (WT). The yenI+ EHEC also activated expression of the gad genes. To assess whether AHL production, which decreases LEE expression, would decrease RAJ colonization by EHEC, cattle were challenged at the RAJ with WT or yenI+ EHEC. Although the yenI+ EHEC colonized the RAJ with efficiency equal to that of the WT, there was a trend for the cattle to shed the WT strain longer than the yenI+ EHEC. PMID:23980115

  10. Global analysis of the Burkholderia thailandensis quorum sensing-controlled regulon.

    PubMed

    Majerczyk, Charlotte; Brittnacher, Mitchell; Jacobs, Michael; Armour, Christopher D; Radey, Mathew; Schneider, Emily; Phattarasokul, Somsak; Bunt, Richard; Greenberg, E Peter

    2014-04-01

    Burkholderia thailandensis contains three acyl-homoserine lactone quorum sensing circuits and has two additional LuxR homologs. To identify B. thailandensis quorum sensing-controlled genes, we carried out transcriptome sequencing (RNA-seq) analyses of quorum sensing mutants and their parent. The analyses were grounded in the fact that we identified genes coding for factors shown previously to be regulated by quorum sensing among a larger set of quorum-controlled genes. We also found that genes coding for contact-dependent inhibition were induced by quorum sensing and confirmed that specific quorum sensing mutants had a contact-dependent inhibition defect. Additional quorum-controlled genes included those for the production of numerous secondary metabolites, an uncharacterized exopolysaccharide, and a predicted chitin-binding protein. This study provides insights into the roles of the three quorum sensing circuits in the saprophytic lifestyle of B. thailandensis, and it provides a foundation on which to build an understanding of the roles of quorum sensing in the biology of B. thailandensis and the closely related pathogenic Burkholderia pseudomallei and Burkholderia mallei.

  11. Haloperoxidase Mediated Quorum Quenching by Nitzschia cf pellucida: Study of the Metabolization of N-Acyl Homoserine Lactones by a Benthic Diatom

    PubMed Central

    Syrpas, Michail; Ruysbergh, Ewout; Blommaert, Lander; Vanelslander, Bart; Sabbe, Koen; Vyverman, Wim; De Kimpe, Norbert; Mangelinckx, Sven

    2014-01-01

    Diatoms are known to produce a variety of halogenated compounds, which were recently shown to have a role in allelopathic interactions between competing species. The production of these compounds is linked to haloperoxidase activity. This research, has shown that this system may also be involved in diatom-bacteria interactions via the H2O2 dependent inactivation of a type of quorum sensing (QS) molecule, i.e., N-β-ketoacylated homoserine lactones (AHLs), by a natural haloperoxidase system from the benthic diatom Nitzschia cf pellucida. The AHL degradation pathway towards corresponding halogenated derivatives was elucidated via HPLC-MS analysis and the synthesis of a broad series of novel halogenated AHL analogues as reference compounds. Furthermore, their biological activity as quorum sensing modulators was directly compared and evaluated against a series of naturally occurring β-keto-AHLs. It has been demonstrated that the loss of the QS activity results from the final cleavage of the halogenated N-acyl chain of the signal molecules. PMID:24445305

  12. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone.

    PubMed

    Tao, Shiyu; Luo, Yanwen; Bin He; Liu, Jie; Qian, Xi; Ni, Yingdong; Zhao, Ruqian

    2016-07-01

    A mucus layer coats the gastrointestinal tract and serves as the first line of intestinal defense against infection. N-acyl-homoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence the homeostasis of intestinal epithelium. In this study, we investigated the effects of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on cell viability and mucus secretion in LS174T cells. C12-HSL but not C4-HSL significantly decreased cell viability by inducing mitochondrial dysfunction and activating cell apoptosis which led to a decrease in mucin expression. Pretreatment with lipid raft disruptor (Methyl-β-cyclodextrin, MβCD) and oxidative stress inhibitor (N-acetyl-L-cysteine, NAC) slightly rescued the viability of cells damaged by C12-HSL exposure, while the paraoxonase 2 (PON2) inhibitor (Triazolo[4,3-a]quinolone, TQ416) significantly affected recovering cells viability and mucin secretion. When LS174T cells were treated with C12-HSL and TQ416 simultaneously, TQ416 showed the maximal positive effect on cells viability. However, if cells were first treated with C12-HSL for 40 mins, and then TQ46 was added, the TQ416 had no effect on cell viability. These results suggest that the C12-HSL-acid process acts at an early step to activate apoptosis as part of C12-HSL's effect on intestinal mucus barrier function.

  13. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone

    PubMed Central

    Tao, Shiyu; Luo, Yanwen; Bin He; Liu, Jie; Qian, Xi; Ni, Yingdong; Zhao, Ruqian

    2016-01-01

    A mucus layer coats the gastrointestinal tract and serves as the first line of intestinal defense against infection. N-acyl-homoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence the homeostasis of intestinal epithelium. In this study, we investigated the effects of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on cell viability and mucus secretion in LS174T cells. C12-HSL but not C4-HSL significantly decreased cell viability by inducing mitochondrial dysfunction and activating cell apoptosis which led to a decrease in mucin expression. Pretreatment with lipid raft disruptor (Methyl-β-cyclodextrin, MβCD) and oxidative stress inhibitor (N-acetyl-L-cysteine, NAC) slightly rescued the viability of cells damaged by C12-HSL exposure, while the paraoxonase 2 (PON2) inhibitor (Triazolo[4,3-a]quinolone, TQ416) significantly affected recovering cells viability and mucin secretion. When LS174T cells were treated with C12-HSL and TQ416 simultaneously, TQ416 showed the maximal positive effect on cells viability. However, if cells were first treated with C12-HSL for 40 mins, and then TQ46 was added, the TQ416 had no effect on cell viability. These results suggest that the C12-HSL-acid process acts at an early step to activate apoptosis as part of C12-HSL’s effect on intestinal mucus barrier function. PMID:27364593

  14. Draft Genome Perspective of Staphylococcus saprophyticus Strain SU8, an N-Acyl Homoserine Lactone-Degrading Bacterium.

    PubMed

    Chan, Kok-Gan; Sulaiman, Joanita; Yong, Delicia Ann; Tee, Kok Keng; Yin, Wai-Fong; Priya, Kumutha

    2015-09-24

    Staphylococcus saprophyticus strain SU8 was isolated from a pristine water source in Malaysia and it exhibited degradation of N-hexanoylhomoserine lactone. Here we report the draft genome sequence of S. saprophyticus strain SU8 to further understand its quorum quenching abilities.

  15. Quorum sensing in metal tolerance of Acinetobacter junii BB1A is associated with biofilm production.

    PubMed

    Sarkar, Suchitra; Chakraborty, Ranadhir

    2008-05-01

    Acinetobacter junii strain BB1A, a novel metal-tolerant bacterium, produced biofilm in the presence of added ions such as Ni(2+), AsO(2)(-), Cd(2+) and Hg(2+) on surfaces such as glass and polystyrene. Generation of a metal-sensitive and adhesion-deficient mutant by transposition of Tn5-mob in the A. junii genome has putatively confirmed the association of metal tolerance with the production of biofilm. The requirement of a critical cell density for biofilm formation and presence of acyl-homoserine lactone-like autoinducer molecules in the cell-free supernatant indicated the phenomenon of quorum sensing. Addition of a natural quorum-sensing inhibitor (garlic extract) or synthetic quorum-sensing inhibitor (4-nitro-pyridine oxide) significantly inhibited cell growth and biofilm formation in the presence of metal/metalloid ions.

  16. A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal

    SciTech Connect

    Miao, Chunjuan; Liu, Fang; Zhao, Qian; Jia, Zhenhua; Song, Shuishan

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer 3OC8-HSL can change the expression of diverse proteins in Arabidopsis. Black-Right-Pointing-Pointer 3OC8-HSL responsive proteins were identified using MALDI-TOF-MS. Black-Right-Pointing-Pointer Plant could have an extensive range of functional responses to bacterial AHL. -- Abstract: N-acyl-homoserine lactones (AHLs) are a class of bacterial quorum-sensing (QS) signals that are commonly used by Gram-negative bacteria for cell-to-cell communication. Recently, it has become evident that AHLs can regulate plant root growth and trigger plant defense responses; however, little is known about the plant response mechanisms to bacterial QS signals. In this study, we used a proteomic approach to investigate the responses of Arabidopsis thaliana seedlings to N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL), a bacterial QS signal. The results revealed that the abundance of 53 protein spots was significantly altered; two thirds of these proteins were found to be up-regulated after 3OC8-HSL treatment. Thirty-four proteins were identified using MALDI-TOF-MS. These 3OC8-HSL-responsive proteins, in addition to one protein of unknown function, are implicated in a variety of physiological processes, including metabolism of carbohydrate and energy, protein biosynthesis and quality control systems, defense response and signal transduction and cytoskeleton remodeling. Our bioinformatic analysis indicated that the chloroplasts are the intracellular organelles most influenced by the exposure to 3OC8-HSL. Our data indicate that plants have an extensive range of functional responses to bacterial AHLs that may play important roles in the interaction between plants and bacteria.

  17. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea.

    PubMed

    Bruns, Alke; Cypionka, Heribert; Overmann, Jörg

    2002-08-01

    The effect of signal molecules on the cultivation efficiency of bacteria from the Gotland Deep in the central Baltic Sea was investigated. Numbers of cultivated cells were determined by the most-probable-number (MPN) technique. Artificial brackish water supplemented with different carbon substrates at low concentrations (200 microM each) was employed as the growth medium. Compared to the results of previous studies, this approach yielded significantly higher cultivation efficiencies (up to 11% in fluid media). A further and pronounced increase in cultivation success was accomplished by the addition of cyclic AMP (cAMP), N-butyryl homoserine lactone, or N-oxohexanoyl-DL-homoserine lactone at a low concentration of 10 microM. The most effective inducer was cAMP, which led to cultivation efficiencies of up to 100% of total bacterial counts. From the highest positive dilutions of these latter MPN series, several strains were isolated in pure culture and one strain (G100) was used to study the physiological effect of cAMP. Dot blot hybridization revealed, however, that strain G100 represented only a small fraction of the total bacterial community. This points towards an inherent limitation of the MPN approach, which does not necessarily recover abundant species from highly diverse communities. Bacterial cells of strain G100 that were starved for 6 weeks attained a higher growth rate and a higher biomass yield when resuscitated in the presence of cAMP instead of AMP.

  18. Quorum Sensing in Marine Microbial Environments

    NASA Astrophysics Data System (ADS)

    Hmelo, Laura R.

    2017-01-01

    Quorum sensing (QS) is a form of chemical communication used by certain bacteria that regulates a wide range of biogeochemically important bacterial behaviors. Although QS was first observed in a marine bacterium nearly four decades ago, only in the past decade has there been a rise in interest in the role that QS plays in the ocean. It has become clear that QS, regulated by signals such as acylated homoserine lactones (AHLs) or furanosyl-borate diesters [autoinducer-2 (AI-2) molecules], is involved in important processes within the marine carbon cycle, in the health of coral reef ecosystems, and in trophic interactions between a range of eukaryotes and their bacterial associates. The most well-studied QS systems in the ocean occur in surface-attached (biofilm) communities and rely on AHL signaling. AHL-QS is highly sensitive to the chemical and biological makeup of the environment and may respond to anthropogenic change, including ocean acidification and rising sea surface temperatures.

  19. ["Quorum sensing" or social behavior of bacteria].

    PubMed

    Gintsburg, A L; Il'ina, T S; Romanova, Iu M

    2003-01-01

    The review deals with the data of literature on the role of the "quorum sensing" (QS) system ensuring the social behavior of bacteria in the regulation of virulence genes. The mechanisms of the action of these systems in Gram-negative and Gram-positive bacteria, as well as the influence of acyl-homoserine lactones, one of the components of the QS system, on the immune response of the infected host are discussed. In addition, in this review the data of literature on the existence of bacteria in the form of biofilms are presented. The methods of the identification of biofilms, the methods of their experimental preparation and the role of the QS system in the process of their formation are considered.

  20. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator.

    PubMed

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-05

    Quorum sensing is a bacterial communication mechanism that controls genes, enabling bacteria to live as communities, such as biofilms. Homoserine lactone (HSL) molecules function as quorum-sensing signals for Gram-negative bacteria. Plants also produce previously unidentified compounds that affect quorum sensing. We identified rosmarinic acid as a plant-derived compound that functioned as an HSL mimic. In vitro assays showed that rosmarinic acid bound to the quorum-sensing regulator RhlR of Pseudomonas aeruginosa PAO1 and competed with the bacterial ligand N-butanoyl-homoserine lactone (C4-HSL). Furthermore, rosmarinic acid stimulated a greater increase in RhlR-mediated transcription in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic acid induced quorum sensing-dependent gene expression and increased biofilm formation and the production of the virulence factors pyocyanin and elastase. Because P. aeruginosa PAO1 infection induces rosmarinic acid secretion from plant roots, our results indicate that rosmarinic acid secretion is a plant defense mechanism to stimulate a premature quorum-sensing response. P. aeruginosa is a ubiquitous pathogen that infects plants and animals; therefore, identification of rosmarinic acid as an inducer of premature quorum-sensing responses may be useful in agriculture and inform human therapeutic strategies.

  1. Preliminary study on an innovative, simple mast cell-based electrochemical method for detecting foodborne pathogenic bacterial quorum signaling molecules (N-acyl-homoserine-lactones).

    PubMed

    Jiang, Donglei; Feng, Dongdong; Jiang, Hui; Yuan, Limin; Yongqi, Yin; Xu, Xin; Fang, Weiming

    2017-04-15

    This paper reports the a novel and simple mast cell-based electrochemical method for detecting of bacterial quorum signaling molecules, N-acylhomoserine lactones (AHLs), which can be utilized to preliminarily evaluate the toxicity of food-borne pathogenic bacteria. Rat basophilic leukemia (RBL-2H3) mast cells encapsulated in alginate/graphene oxide hydrogel were immobilized on a gold electrode, while mast cells as recognition elements were cultured in a 3D cell culture system. Electrochemical impedance spectroscopy (EIS) was utilized to record the cell impedance signal as-influenced by Pseudomonas aeruginosa quorum-sensing molecule, N-3-oxododecanoyl homoserine lactone (3OC12-HSL). The results indicated that cellular activities such as cell viability, apoptosis, intracellular calcium, and degranulation were markedly influenced by the AHLs. Importantly, the exposure of 3OC12-HSL to mast cells induced a marked decrease in the electrochemical impedance signal in a dose-dependent manner. The detection limit for 3OC12-HSL was 0.034μM with a linear range of 0.1-1μM. These results were confirmed via conventional cell assay and transmission electron microscope (TEM) analysis. Altogether, the proposed method appears to be an innovative and effective approach to the quantitative measurement of Gram-negative bacterial quorum signaling molecules; to this effect, it also may serve as a primary evaluation of the cytotoxicity of food-borne pathogens.

  2. Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester.

    PubMed

    Flavier, A B; Ganova-Raeva, L M; Schell, M A; Denny, T P

    1997-11-01

    Bacteria employ autoinduction systems to sense the onset of appropriate cell density for expression of developmental genes. In many gram-negative bacteria, autoinduction involves the production of and response to diffusible acylated-homoserine lactones (acyl-HSLs) and is mediated by members of the LuxR and LuxI families. Ralstonia (Pseudomonas) solanacearum, a phytopathogenic bacterium that appears to autoregulate its virulence genes, produces compounds that promote expression of several heterologous acyl-HSL-responsive reporter gene constructs. High-pressure liquid chromatography of highly concentrated ethyl acetate extracts revealed that culture supernatants of strain AW1 contained two compounds with retention times similar to N-hexanoyl- and N-octanoyl-HSL. To investigate the role of these acyl-HSLs in R. solanacearum virulence gene expression, transposon mutants that were deficient for inducing an acyl-HSL-responsive reporter in Agrobacterium tumefaciens were generated. Three loci involved in normal acyl-HSL production were identified, one of which was shown to contain the divergently transcribed solR and solI genes, the luxR and luxI homologs, respectively. A 4.1-kb fragment containing solR and solI enabled all of the mutants (regardless of the locus inactivated) and a naturally acyl-HSL-defective strain of R. solanacearum to produce acyl-HSLs. Inactivation of solI abolished production of all detectable acyl-HSLs but affected neither the expression of virulence genes in culture nor the ability to wilt tomato plants. AW1 has a functional autoinduction system, because (i) expression of solI required SolR and acyl-HSL and (ii) expression of a gene linked to solR and solI, designated aidA, was acyl-HSL dependent. Because AidA has no homologs in the protein databases, its discovery provided no clues as to the role of acyl-HSLs in R. solanacearum gene regulation. However, expression of solR and solI required the global LysR-type virulence regulator PhcA, and both

  3. Quorum Sensing Activity of Aeromonas Caviae Strain YL12, A Bacterium Isolated from Compost

    PubMed Central

    Lim, Yan-Lue; Ee, Robson; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing is a well-studied cell-to-cell communication method that involves a cell-density dependent regulation of genes expression mediated by signalling molecules. In this study, a bacterium isolated from a plant material compost pile was found to possess quorum sensing activity based on bioassay screening. Isolate YL12 was identified using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and molecular typing using rpoD gene which identified the isolate as Aeromonas caviae. High resolution tandem mass spectrometry was subsequently employed to identify the N-acyl homoserine lactone profile of Aeromonas caviae YL12 and confirmed that this isolate produced two short chain N-acyl homoserine lactones, namely C4-HSL and C6, and the production was observed to be cell density-dependent. Using the thin layer chromatography (TLC) bioassay, both AHLs were found to activate C. violaceum CV026, whereas only C6-HSL was revealed to induce bioluminescence expression of E. coli [pSB401]. The data presented in this study will be the leading steps in understanding the role of quorum sensing in Aeromonas caviae strain YL12. PMID:24759107

  4. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila.

    PubMed

    Jahid, Iqbal Kabir; Lee, Na-Young; Kim, Anna; Ha, Sang-Do

    2013-02-01

    Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.

  5. Lack of AHL-based quorum sensing in Pseudomonas fluorescens isolated from milk.

    PubMed

    Martins, Maurilio L; Pinto, Uelinton M; Riedel, Kathrin; Vanetti, Maria C D; Mantovani, Hilário C; de Araújo, Elza F

    2014-01-01

    Numerous bacteria coordinate gene expression in response to small signalling molecules in many cases known as acylhomoserine lactones (AHLs), which accumulate as a function of cell density in a process known as quorum sensing. This work aimed to determine if phenotypes that are important to define microbial activity in foods such as biofilm formation, swarming motility and proteolytic activity of two Pseudomonas fluorescens strains, isolated from refrigerated raw milk, are influenced by AHL molecules. The tested P. fluorescens strains did not produce AHL molecules in none of the evaluated media. We found that biofilm formation was dependent on the culture media, but it was not influenced by AHLs. Our results indicate that biofilm formation, swarming motility and proteolytic activity of the tested P. fluorescens strains are not regulated by acyl-homoserine lactones. It is likely that AHL-dependent quorum sensing system is absent from these strains.

  6. Whole-Cell Biosensors as Tools for the Detection of Quorum-Sensing Molecules: Uses in Diagnostics and the Investigation of the Quorum-Sensing Mechanism.

    PubMed

    O'Connor, Gregory; Knecht, Leslie D; Salgado, Nelson; Strobel, Sebastian; Pasini, Patrizia; Daunert, Sylvia

    2015-10-17

    Genetically engineered bacterial whole-cell biosensors are powerful tools that take advantage of bacterial proteins and pathways to allow for detection of a specific analyte. These biosensors have been employed for a broad range of applications, including the detection of bacterial quorum-sensing molecules (QSMs). Bacterial QSMs are the small molecules bacteria use for population density-dependent communication, a process referred to as quorum sensing (QS). Various research groups have investigated the presence of QSMs, including N-acyl homoserine lactones (AHLs) and autoinducer-2 (AI-2), in physiological samples in attempts to enhance our knowledge of the role of bacteria and QS in disease states. Continued studies in these fields may allow for improved patient care and therapeutics based upon QSMs. Furthermore, bacterial whole-cell biosensors have elucidated the roles of some antibiotics as QS agonists and antagonists. Graphical Abstract.

  7. In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus species.

    PubMed

    Vinoj, Gopalakrishnan; Pati, Rashmirekha; Sonawane, Avinash; Vaseeharan, Baskaralingam

    2015-02-01

    N-acylated homoserine lactonases are known to inhibit the signaling molecules of the biofilm-forming pathogens. In this study, gold nanoparticles were coated with N-acylated homoserine lactonase proteins (AiiA AuNPs) purified from Bacillus licheniformis. The AiiA AuNPs were characterized by UV-visible spectra, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The synthesized AiiA AuNPs were found to be spherical in shape and 10 to 30 nm in size. Treatment with AiiA protein-coated AuNPs showed maximum reduction in exopolysaccharide production, metabolic activities, and cell surface hydrophobicity and potent antibiofilm activity against multidrug-resistant Proteus species compared to treatment with AiiA protein alone. AiiA AuNPs exhibited potent antibiofilm activity at 2 to 8 μM concentrations without being harmful to the macrophages. We conclude that at a specific dose, AuNPs coated with AiiA can kill bacteria without harming the host cells, thus representing a potential template for the design of novel antibiofilm and antibacterial protein drugs to decrease bacterial colonization and to overcome the problem of drug resistance. In summary, our data suggest that the combined effect of the lactonase and the gold nanoparticles of the AiiA AuNPs has promising antibiofilm activity against biofilm-forming and multidrug-resistant Proteus species.

  8. Mechanistic analysis of a synthetic inhibitor of the Pseudomonas aeruginosa LasI quorum-sensing signal synthase

    PubMed Central

    Lidor, O.; Al-Quntar, A.; Pesci, E. C.; Steinberg, D.

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen responsible for many human infections. LasI is an acyl-homoserine lactone synthase that produces a quorum-sensing (QS) signal that positively regulates numerous P. aeruginosa virulence determinants. The inhibition of the LasI protein is therefore an attractive drug target. In this study, a novel in silico to in vitro complementation was applied to screen thiazolidinedione-type compounds for their ability to inhibit biofilm formation at concentrations not affecting bacterial growth. The compound (z)-5-octylidenethiazolidine-2, 4-dione (TZD-C8) was a strong inhibitor of biofilm formation and chosen for further study. Structural exploration of in silico docking predicted that the compound had high affinity for the LasI activity pocket. The TZD-C8 compound was also predicted to create hydrogen bonds with residues Arg30 and Ile107. Site-directed mutagenesis (SDM) of these two sites demonstrated that TZD-C8 inhibition was abolished in the lasI double mutant PAO-R30D, I107S. In addition, in vitro swarming motility and quorum sensing signal production were affected by TZD-C 8, confirming this compound alters the cell to cell signalling circuitry. Overall, this novel inhibitor of P. aeruginosa quorum sensing shows great promise and validates our mechanistic approach to discovering inhibitors of LuxI-type acyl-homoserine lactone synthases. PMID:26593271

  9. Detection of quorum-sensing-related molecules in Vibrio scophthalmi

    PubMed Central

    García-Aljaro, Cristina; Eberl, Leo; Riedel, Kathrin; Blanch, Anicet R

    2008-01-01

    Background Cell-to-cell communication (also referred to as quorum sensing) based on N-acyl-homoserine lactones (AHLs) is a widespread response to environmental change in Gram-negative bacteria. AHLs seem to be highly variable, both in terms of the acyl chain length and in the chemical structure of the radicals. Another quorum sensing pathway, the autoinducer-2-based system, is present both in Gram-positive and Gram-negative bacteria. In this study the presence of signal molecules belonging to both quorum sensing signalling pathways was analysed in the marine symbiotic species Vibrio scophthalmi. Results Three AHL-like signal molecules were detected in V. scophthalmi supernatants with the Agrobacterium tumefaciens sensor assay. This observation was further supported by the decrease in the presence of these signal molecules after cloning and expression of lactonase AiiA from Bacillus cereus in the V. scophthalmi strains. One of the signal molecules was identified as N-(3-hydroxy dodecanoyl)-L-homoserine lactone. V. scophthalmi was also shown to carry a functional LuxS synthase. The coding sequence for a luxS-like gene was obtained showing a maximum similarity of 78% with Vibrio vulnificus. Analysis of the translated sequence revealed that the sequenced luxS gene carried the conserved domain, which is common to luxS sequences found in other species, and which is essential for LuxS enzymatic activity. Conclusion The data are consistent with the presence of quorum-sensing signal molecules from both AHL- and autoinducer 2-based quorum sensing systems in V. scophthalmi, which are homologous to others previously described in various Vibrio species. How this bacterium interacts with other bacteria and eukaryotic cells to compete ecologically with other intestinal bacteria present in the fish Scophthalmus maximus warrants further investigation. PMID:18700048

  10. [The effect of topology of quorum sensing-related genes in Pectobacterium atrosepticumon their expression].

    PubMed

    Gogoleva, N E; Shlykova, L V; Gorshkov, V Iu; Daminova, A G; Gogolev, Iu V

    2014-01-01

    In prokaryotic genomes, the neighboring genes are often located on the complementary DNA strands and adjoin each other by their 5'- or 3'-ends or even overlap by their open reading frames. It was suggested that such gene topology hasfunctional purpose providing the regulation of their expression. For those genes that overlap by their coding 3'-termini this assumption has not been confirmed experimentally. In a broad group of bacteria that belong to proteobacteria such a convergent gene arrangement is typical for functionally connected quorum sensing-related genes "P" and "R" that encode synthases of N-acyl homoserine lactones and their sensors, respectively. In the present study on the example of overlapping quorum sensing-related genes of plant pathogenic bacterium Pectobacterium atrosepticum SCRI1043--expI and expR it was shown that the topology of these genes determines the regula- tion of their expression.

  11. Secondary Metabolites Produced by the Marine Bacterium Halobacillus salinus That Inhibit Quorum Sensing-Controlled Phenotypes in Gram-Negative Bacteria▿

    PubMed Central

    Teasdale, Margaret E.; Liu, Jiayuan; Wallace, Joselynn; Akhlaghi, Fatemeh; Rowley, David C.

    2009-01-01

    Certain bacteria use cell-to-cell chemical communication to coordinate community-wide phenotypic expression, including swarming motility, antibiotic biosynthesis, and biofilm production. Here we present a marine gram-positive bacterium that secretes secondary metabolites capable of quenching quorum sensing-controlled behaviors in several gram-negative reporter strains. Isolate C42, a Halobacillus salinus strain obtained from a sea grass sample, inhibits bioluminescence production by Vibrio harveyi in cocultivation experiments. With the use of bioassay-guided fractionation, two phenethylamide metabolites were identified as the active agents. The compounds additionally inhibit quorum sensing-regulated violacein biosynthesis by Chromobacterium violaceum CV026 and green fluorescent protein production by Escherichia coli JB525. Bacterial growth was unaffected at concentrations below 200 μg/ml. Evidence is presented that these nontoxic metabolites may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. PMID:19060172

  12. Interference of Quorum Sensing by Delftia sp. VM4 Depends on the Activity of a Novel N-Acylhomoserine Lactone-Acylase

    PubMed Central

    Maisuria, Vimal B.; Nerurkar, Anuradha S.

    2015-01-01

    Background Turf soil bacterial isolate Delftia sp. VM4 can degrade exogenous N-acyl homoserine lactone (AHL), hence it effectively attenuates the virulence of bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum strain BR1 (Pcc BR1) as a consequence of quorum sensing inhibition. Methodology/Principal Findings Isolated Delftia sp. VM4 can grow in minimal medium supplemented with AHL as a sole source of carbon and energy. It also possesses the ability to degrade various AHL molecules in a short time interval. Delftia sp. VM4 suppresses AHL accumulation and the production of virulence determinant enzymes by Pcc BR1 without interference of the growth during co-culture cultivation. The quorum quenching activity was lost after the treatment with trypsin and proteinase K. The protein with quorum quenching activity was purified by three step process. Matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) and Mass spectrometry (MS/MS) analysis revealed that the AHL degrading enzyme (82 kDa) demonstrates homology with the NCBI database hypothetical protein (Daci_4366) of D. acidovorans SPH-1. The purified AHL acylase of Delftia sp. VM4 demonstrated optimum activity at 20–40°C and pH 6.2 as well as AHL acylase type mode of action. It possesses similarity with an α/β-hydrolase fold protein, which makes it unique among the known AHL acylases with domains of the N-terminal nucleophile (Ntn)-hydrolase superfamily. In addition, the kinetic and thermodynamic parameters for hydrolysis of the different AHL substrates by purified AHL-acylase were estimated. Here we present the studies that investigate the mode of action and kinetics of AHL-degradation by purified AHL acylase from Delftia sp. VM4. Significance We characterized an AHL-inactivating enzyme from Delftia sp. VM4, identified as AHL acylase showing distinctive similarity with α/β-hydrolase fold protein, described its biochemical and thermodynamic properties for the first time and

  13. Functional Quorum Sensing Systems are Maintained during Chronic Burkholderia cepacia Complex Infections in Patients with Cystic Fibrosis

    PubMed Central

    McKeon, Suzanne A.; Nguyen, David T.; Viteri, Duber F.; Zlosnik, James E. A.

    2011-01-01

    Quorum sensing (QS) contributes to the virulence of Pseudomonas aeruginosa and Burkholderia cepacia complex lung infections. P. aeruginosa QS mutants are frequently isolated from patients with cystic fibrosis. The objective of this study was to determine whether similar adaptations occur over time in B. cepacia complex isolates. Forty-five Burkholderia multivorans and Burkholderia cenocepacia sequential isolates from patients with cystic fibrosis were analyzed for N-acyl-homoserine lactone activity. All but one isolate produced N-acyl-homoserine lactones. The B. cenocepacia N-acyl-homoserine lactone–negative isolate contained mutations in cepR and cciR. Growth competition assays were performed that compared B. cenocepacia clinical and laboratory defined wild-type and QS mutants. Survival of the laboratory wild-type and QS mutants varied, dependent on the mutation. The clinical wild-type isolate demonstrated a growth advantage over its QS mutant. These data suggest that there is a selective advantage for strains with QS systems and that QS mutations do not occur at a high frequency in B. cepacia complex isolates. PMID:21208930

  14. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans.

    PubMed

    Hall, Rebecca A; Turner, Kara J; Chaloupka, James; Cottier, Fabien; De Sordi, Luisa; Sanglard, Dominique; Levin, Lonny R; Buck, Jochen; Mühlschlegel, Fritz A

    2011-08-01

    Living as a commensal, Candida albicans must adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects on C. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C(12)-homoserine lactone, a quorum-sensing molecule secreted by Pseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of the Candida adenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving the C. albicans hyphal repressor, Sfl1p. Deletion of SFL1 did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing in C. albicans is mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that the Burkholderia cenocepacia diffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C(12)-homoserine lactone, may be used by other quorum-sensing molecules.

  15. Detection of Quorum Sensing Signal Molecules and Identification of an Autoinducer Synthase Gene among Biofilm Forming Clinical Isolates of Acinetobacter spp.

    PubMed Central

    Anbazhagan, Deepa; Mansor, Marzida; Yan, Gracie Ong Siok; Md Yusof, Mohd Yasim; Hassan, Hamimah; Sekaran, Shamala Devi

    2012-01-01

    Background Quorum sensing is a term that describes an environmental sensing system that allows bacteria to monitor their own population density which contributes significantly to the size and development of the biofilm. Many gram negative bacteria use N-acyl-homoserine lactones as quorum sensing signal molecules. In this study, we sought to find out if the biofilm formation among clinical isolates of Acinetobacter spp. is under the control of autoinducing quorum sensing molecules. Methodology/Principal Findings Biofilm formation among clinical isolates of Acinetobacter spp. was assessed and the production of signal molecules were detected with Chromobacterium violaceum CV026 biosensor system. Characterisation of autoinducers was carried out by mass spectrometric analysis. We have also reported the identification of an autoinducer synthase gene, abaΙ among the isolates that produce quorum sensing signal molecules and have reported that the mutation in the abaI gene influences their biofilm forming capabilities. Using a microtitre-plate assay it was shown that 60% of the 50 Acinetobacter spp. isolates significantly formed biofilms. Further detection with the biosensor strain showed that some of these isolates produced long chain signal molecules. Mass spectrometric analysis revealed that five of these isolates produced N-decanoyl homoserine lactone and two isolates produced acyl-homoserine lactone with a chain length equal to C12. The abaΙ gene was identified and a tetracycline mutant of the abaΙ gene was created and the inhibition in biofilm formation in the mutant was shown. Conclusions/Significance These data are of great significance as the signal molecules aid in biofilm formation which in turn confer various properties of pathogenicity to the clinical isolates including drug resistance. The use of quorum sensing signal blockers to attenuate bacterial pathogenicity is therefore highly attractive, particularly with respect to the emergence of multi antibiotic

  16. Enterobacter asburiae Strain L1: Complete Genome and Whole Genome Optical Mapping Analysis of a Quorum Sensing Bacterium

    PubMed Central

    Lau, Yin Yin; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae. PMID:25196111

  17. SigMol: repertoire of quorum sensing signaling molecules in prokaryotes.

    PubMed

    Rajput, Akanksha; Kaur, Karambir; Kumar, Manoj

    2016-01-04

    Quorum sensing is a widespread phenomenon in prokaryotes that helps them to communicate among themselves and with eukaryotes. It is driven through quorum sensing signaling molecules (QSSMs) in a density dependent manner that assists in numerous biological functions like biofilm formation, virulence factors secretion, swarming motility, bioluminescence, etc. Despite immense implications, dedicated resources of QSSMs are lacking. Therefore, we have developed SigMol (http://bioinfo.imtech.res.in/manojk/sigmol), a specialized repository of these molecules in prokaryotes. SigMol harbors information on QSSMs pertaining to different quorum sensing signaling systems namely acylated homoserine lactones (AHLs), diketopiperazines (DKPs), 4-hydroxy-2-alkylquinolines (HAQs), diffusible signal factors (DSFs), autoinducer-2 (AI-2) and others. Database contains 1382: entries of 182: unique signaling molecules from 215: organisms. It encompasses biological as well as chemical aspects of signaling molecules. Biological information includes genes, preliminary bioassays, identification assays and applications, while chemical detail comprises of IUPAC name, SMILES and structure. We have provided user-friendly browsing and searching facilities for easy data retrieval and comparison. We have gleaned information of diverse QSSMs reported in literature at a single platform 'SigMol'. This comprehensive resource will assist the scientific community in understanding intraspecies, interspecies or interkingdom networking and further help to unfold different facets of quorum sensing and related therapeutics.

  18. The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking.

    PubMed

    Ibacache-Quiroga, C; Ojeda, J; Espinoza-Vergara, G; Olivero, P; Cuellar, M; Dinamarca, M A

    2013-07-01

    Biosurfactants are produced by hydrocarbon-degrading marine bacteria in response to the presence of water-insoluble hydrocarbons. This is believed to facilitate the uptake of hydrocarbons by bacteria. However, these diffusible amphiphilic surface-active molecules are involved in several other biological functions such as microbial competition and intra- or inter-species communication. We report the isolation and characterization of a marine bacterial strain identified as Cobetia sp. MM1IDA2H-1, which can grow using the sulfur-containing heterocyclic aromatic hydrocarbon dibenzothiophene (DBT). As with DBT, when the isolated strain is grown in the presence of a microbial competitor, it produces a biosurfactant. Because the obtained biosurfactant was formed by hydroxy fatty acids and extracellular lipidic structures were observed during bacterial growth, we investigated whether the biosurfactant at its critical micelle concentration can interfere with bacterial communication systems such as quorum sensing. We focused on Aeromonas salmonicida subsp. salmonicida, a fish pathogen whose virulence relies on quorum sensing signals. Using biosensors for quorum sensing based on Chromobacterium violaceum and Vibrio anguillarum, we showed that when the purified biosurfactant was mixed with N-acyl homoserine lactones produced by A. salmonicida, quorum sensing was inhibited, although bacterial growth was not affected. In addition, the transcriptional activities of A. salmonicida virulence genes that are controlled by quorum sensing were repressed by both the purified biosurfactant and the growth in the presence of Cobetia sp. MM1IDA2H-1. We propose that the biosurfactant, or the lipid structures interact with the N-acyl homoserine lactones, inhibiting their function. This could be used as a strategy to interfere with the quorum sensing systems of bacterial fish pathogens, which represents an attractive alternative to classical antimicrobial therapies in fish aquaculture.

  19. The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking

    PubMed Central

    Ibacache-Quiroga, C; Ojeda, J; Espinoza-Vergara, G; Olivero, P; Cuellar, M; Dinamarca, M A

    2013-01-01

    Summary Biosurfactants are produced by hydrocarbon-degrading marine bacteria in response to the presence of water-insoluble hydrocarbons. This is believed to facilitate the uptake of hydrocarbons by bacteria. However, these diffusible amphiphilic surface-active molecules are involved in several other biological functions such as microbial competition and intra-or inter-species communication. We report the isolation and characterization of a marine bacterial strain identified as Cobetia sp. MM1IDA2H-1, which can grow using the sulfur-containing heterocyclic aromatic hydrocarbon dibenzothiophene (DBT). As with DBT, when the isolated strain is grown in the presence of a microbial competitor, it produces a biosurfactant. Because the obtained biosurfactant was formed by hydroxy fatty acids and extracellular lipidic structures were observed during bacterial growth, we investigated whether the biosurfactant at its critical micelle concentration can interfere with bacterial communication systems such as quorum sensing. We focused on Aeromonas salmonicida subsp. salmonicida, a fish pathogen whose virulence relies on quorum sensing signals. Using biosensors for quorum sensing based on Chromobacterium violaceum and Vibrio anguillarum, we showed that when the purified biosurfactant was mixed with N-acyl homoserine lactones produced by A. salmonicida, quorum sensing was inhibited, although bacterial growth was not affected. In addition, the transcriptional activities of A. salmonicida virulence genes that are controlled by quorum sensing were repressed by both the purified biosurfactant and the growth in the presence of Cobetia sp. MM1IDA2H-1. We propose that the biosurfactant, or the lipid structures interact with the N-acyl homoserine lactones, inhibiting their function. This could be used as a strategy to interfere with the quorum sensing systems of bacterial fish pathogens, which represents an attractive alternative to classical antimicrobial therapies in fish

  20. The Systematic Investigation of the Quorum Sensing System of the Biocontrol Strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 Unveils aurI to Be a Biosynthetic Origin for 3-Oxo-Homoserine Lactones

    PubMed Central

    Bauer, Judith S.; Hauck, Nils; Christof, Lisa; Mehnaz, Samina; Gust, Bertolt; Gross, Harald

    2016-01-01

    The shoot endophytic biocontrol strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 produces a wide range of exoproducts, including enzymes and antibiotics. The production of exoproducts is commonly tightly regulated. In order to get a deeper insight into the regulatory network of PB-St2, the strain was systematically investigated regarding its quorum sensing systems, both on the genetic and metabolic level. The genome analysis of PB-St2 revealed the presence of four putative acyl homoserine lactone (AHL) biosynthesis genes: phzI, csaI, aurI, and hdtS. LC-MS/MS analyses of the crude supernatant extracts demonstrated that PB-St2 produces eight AHLs. In addition, the concentration of all AHL derivatives was quantified time-resolved in parallel over a period of 42 h during the growth of P. aurantiaca PB-St2, resulting in production curves, which showed differences regarding the maximum levels of the AHLs (14.6 nM– 1.75 μM) and the production period. Cloning and heterologous overexpression of all identified AHL synthase genes in Escherichia coli proved the functionality of the resulting synthases PhzI, CsaI, and AurI. A clear AHL production pattern was assigned to each of these three AHL synthases, while the HdtS synthase did not lead to any AHL production. Furthermore, the heterologous expression study demonstrated unequivocally and for the first time that AurI directs the synthesis of two 3-oxo-AHLs. PMID:27861617

  1. Degradation of bacterial quorum sensing signaling molecules by the microscopic yeast Trichosporon loubieri isolated from tropical wetland waters.

    PubMed

    Wong, Cheng-Siang; Koh, Chong-Lek; Sam, Choon-Kook; Chen, Jian Woon; Chong, Yee Meng; Yin, Wai-Fong; Chan, Kok-Gan

    2013-09-25

    Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast.

  2. Degradation of Bacterial Quorum Sensing Signaling Molecules by the Microscopic Yeast Trichosporon loubieri Isolated from Tropical Wetland Waters

    PubMed Central

    Wong, Cheng-Siang; Koh, Chong-Lek; Sam, Choon-Kook; Chen, Jian Woon; Chong, Yee Meng; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast. PMID:24072030

  3. MomL, a Novel Marine-Derived N-Acyl Homoserine Lactonase from Muricauda olearia

    PubMed Central

    Tang, Kaihao; Su, Ying; Brackman, Gilles; Cui, Fangyuan; Zhang, Yunhui; Shi, Xiaochong; Coenye, Tom

    2014-01-01

    Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 105 s−1 M−1. Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the “HXHXDH” motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent. PMID:25398866

  4. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia.

    PubMed

    Tang, Kaihao; Su, Ying; Brackman, Gilles; Cui, Fangyuan; Zhang, Yunhui; Shi, Xiaochong; Coenye, Tom; Zhang, Xiao-Hua

    2015-01-01

    Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 10(5) s(-1) M(-1). Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the "HXHXDH" motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent.

  5. Design, synthesis and biological evaluation of N-sulfonyl homoserine lactone derivatives as inhibitors of quorum sensing in Chromobacterium violaceum.

    PubMed

    Zhao, Mingming; Yu, Yingying; Hua, Yuhui; Feng, Fan; Tong, Yigang; Yang, Xiaohong; Xiao, Junhai; Song, Hongrui

    2013-03-13

    A novel series of N-sulfonyl homoserine lactone derivatives 5a-l has been designed, synthesized and evaluated for quorum sensing inhibitory activities towards violacein production. Of the compounds synthesized, compound 5h was found to possess an excellent level of enantiopurity (99.2% e.e.). The results indicated that compounds bearing an ortho substituent on their phenyl ring exhibited excellent levels of inhibitory activity against violacein production. Compounds 5h and 5k in particular, with IC₅₀ values of 1.64 and 1.66 µM, respectively, were identified as promising lead compounds for further structural modification.

  6. RETRACTED ARTICLE: Quorum-sensing of bacteria and its application

    NASA Astrophysics Data System (ADS)

    Jiang, Guoliang; Su, Mingxia

    2009-12-01

    Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is triggered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing industries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.

  7. Identification and characterization of a novel N-acyl-homoserine lactonase gene in Sphingomonas ursincola isolated from industrial cooling water systems.

    PubMed

    Morohoshi, Tomohiro; Sato, Niina; Iizumi, Taro; Tanaka, Airi; Ikeda, Tsukasa

    2017-01-24

    Biofilm formation by bacteria is one of the main causes of fouling in industrial cooling water systems. In many gram-negative bacteria, biofilm formation is regulated by N-acyl-homoserine lactone (AHL)-mediated quorum sensing. In this study, we isolated three AHL-degrading bacteria from cooling water systems and identified them as Sphingomonas ursincola. The draft genome sequence of S. ursincola A1 revealed the presence of an AHL-degrading gene homolog, designated qsdS. The qsdS region was also amplified by PCR from the genomes of the other two S. ursincola strains, SF1 and SF8. Escherichia coli DH5α harboring a QsdS-expressing plasmid showed high degradative activity against AHLs with short and 3-oxo-substituted acyl chains. High-performance liquid chromatography analysis revealed that QsdS is an AHL lactonase, an enzyme that catalyzes AHL ring opening. Furthermore, heterologous expression of QsdS in Pseudomonas aeruginosa PAO1 resulted in degradation of endogenous AHLs and interfered with the quorum-sensing-regulated phenotype.

  8. Toward development of an autonomous network of bacteria-based delivery systems (BacteriaBots): spatiotemporally high-throughput characterization of bacterial quorum-sensing response.

    PubMed

    Sahari, Ali; Traore, Mahama A; Stevens, Ann M; Scharf, Birgit E; Behkam, Bahareh

    2014-12-02

    Characterization of bacterial innate and engineered cooperative behavior, regulated through chemical signaling in a process known as quorum sensing, is critical to development of a myriad of bacteria-enabled systems including biohybrid drug delivery systems and biohybrid mobile sensor networks. Here, we demonstrate, for the first time, that microfluidic diffusive mixers can be used for spatiotemporally high-throughput characterization of bacterial quorum-sensing response. Using this batch characterization method, the quorum-sensing response in Escherichia coli MG1655, transformed with a truncated lux operon from Vibrio fischeri, in the presence of 1-100 nM exogenous acyl-homoserine lactone molecules has been quantified. This method provides a rapid and facile tool for high-throughput characterization of the quorum-sensing response of genetically modified bacteria in the presence of a wide concentration range of signaling molecules with a precision of ±0.5 nM. Furthermore, the quorum-sensing response of BacteriaBots has been characterized to determine if the results obtained from a large bacterial population can serve as a robust predictive tool for the small bacterial population attached to each BacteriaBot.

  9. Orally administered thermostable N-acyl homoserine lactonase from Bacillus sp. strain AI96 attenuates Aeromonas hydrophila infection in zebrafish.

    PubMed

    Cao, Yanan; He, Suxu; Zhou, Zhigang; Zhang, Meichao; Mao, Wei; Zhang, Huitu; Yao, Bin

    2012-03-01

    N-Acylated homoserine lactone (AHL) lactonases are capable of degrading signal molecules involved in bacterial quorum sensing and therefore represent a new approach to control bacterial infection. Here a gene responsible for the AHL lactonase activity of Bacillus sp. strain AI96, 753 bp in length, was cloned and then expressed in Escherichia coli. The deduced amino acid sequence of Bacillus sp. AI96 AiiA (AiiA(AI96)) is most similar to those of other Bacillus sp. AHL lactonases (~80% sequence identity) and was consequently categorized as a member of the metallo-β-lactamase superfamily. AiiA(AI96) maintains ~100% of its activity at 10°C to 40°C at pH 8.0, and it is very stable at 70°C at pH 8.0 for at least 1 h; no other Bacillus AHL lactonase has been found to be stable under these conditions. AiiA(AI96) resists digestion by proteases and carp intestinal juice, and it has broad-spectrum substrate specificity. The supplementation of AiiA(AI96) into fish feed by oral administration significantly attenuated Aeromonas hydrophila infection in zebrafish. This is the first report of the oral administration of an AHL lactonase for the efficient control of A. hydrophila.

  10. Quorum quenching is responsible for the underestimated quorum sensing effects in biological wastewater treatment reactors.

    PubMed

    Song, Xiang-Ning; Cheng, Yuan-Yuan; Li, Wen-Wei; Li, Bing-Bing; Sheng, Guo-Ping; Fang, Cai-Yun; Wang, Yun-Kun; Li, Xiao-Yan; Yu, Han-Qing

    2014-11-01

    Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes coexisting in various bacterial communities in bioreactors, e.g., activated sludge for biological wastewater treatment. Although QS signal molecules are detected in activated sludge reactors and known to affect sludge properties and reactor performance, there has been no direct evidence to prove the endogenous existence of QQ effects in activated sludge. In this study, for the first time, acyl homoserine lactones-degrading enzymatic activity, a typical QQ effect, was discovered in activated sludge and found to considerably affect the QS detection results. The coexistence of QS and QQ bacteria in activated sludge was further confirmed by bacterial screening and denaturing gradient gel electrophoresis analysis. The method developed in this study could also be used to evaluate QQ activities in bioreactors, and a possible way is provided to tune bioreactor performance through balancing the QS and QQ processes.

  11. Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms.

    PubMed

    Cárcamo-Oyarce, Gerardo; Lumjiaktase, Putthapoom; Kümmerli, Rolf; Eberl, Leo

    2015-01-16

    The term 'quorum sensing' (QS) is generally used to describe the phenomenon that bacteria release and perceive signal molecules to coordinate cooperative behaviour in response to their population size. QS-based communication has therefore been considered a social trait. Here we show that QS signals (N-acyl-homoserine lactones, AHLs) are stochastically produced in young biofilms of Pseudomonas putida and act mainly as self-regulatory signals rather than inducing neighbouring cells. We demonstrate that QS induces the expression of putisolvin biosurfactants that are not public goods, thereby triggering asocial motility of induced cells out of microcolonies. Phenotypic heterogeneity is most prominent in the early stages of biofilm development, whereas at later stages behaviour patterns across cells become more synchronized. Our findings broaden our perspective on QS by showing that AHLs can control the expression of asocial (self-directed) traits, and that heterogeneity in QS can serve as a mechanism to drive phenotypic heterogeneity in self-directed behaviour.

  12. Coprinopsis cinerea intracellular lactonases hydrolyze quorum sensing molecules of Gram-negative bacteria.

    PubMed

    Stöckli, Martina; Lin, Chia-Wei; Sieber, Ramon; Plaza, David F; Ohm, Robin A; Künzler, Markus

    2016-07-27

    Biofilm formation on fungal hyphae and production of antifungal molecules are strategies of bacteria in their competition with fungi for nutrients. Since these strategies are often coordinated and under control of quorum sensing by the bacteria, interference with this bacterial communication system can be used as a counter-strategy by the fungi in this competition. Hydrolysis of N-acyl-homoserine lactones (HSL), a quorum sensing molecule used by Gram-negative bacteria, by fungal cultures has been demonstrated. However, the enzymes that are responsible for this activity, have not been identified. In this study, we identified and characterized two paralogous HSL hydrolyzing enzymes from the coprophilous fungus Coprinopsis cinerea. The C. cinerea HSL lactonases belong to the metallo-β-lactamase family and show sequence homology to and a similar biochemical activity as the well characterized lactonase AiiA from Bacillus thuringiensis. We show that the fungal lactonases, similar to the bacterial enzymes, are kept intracellularly and act as a sink for the bacterial quorum sensing signals both in C. cinerea and in Saccharomyces cerevisiae expressing C. cinerea lactonases, due to the ability of these signal molecules to diffuse over the fungal cell wall and plasma membrane. The two isogenes coding for the C. cinerea HSL lactonases are arranged in the genome as a tandem repeat and expressed preferentially in vegetative mycelium. The occurrence of orthologous genes in genomes of other basidiomycetes appears to correlate with a saprotrophic lifestyle.

  13. Control of the pollution of antibiotic resistance genes in soils by quorum sensing inhibition.

    PubMed

    Lai, Bai-Min; Zhang, Kun; Shen, Dong-Sheng; Wang, Mei-Zhen; Shentu, Jia-Li; Li, Na

    2017-02-01

    To investigate whether pollution from antibiotic resistance genes (ARGs) could be affected by bacterial quorum sensing, the oxytetracycline (OTC)-containing manure was fertilized to establish the ARG-polluted soil environment. Under long-term OTC stress, substantial ARGs in the range from 10(-4) to 10(-3) RG/16S rRNA (resistance genes/16S rRNA) were detected in the antibiotics control (AC) group, in which OTC-containing manure was fertilized. Meanwhile, 10(-6) RG/16S rRNA was detected in biological control (BC) group, in which non-OTC-containing manure was fertilized. Subsequently, two typical quorum sensing inhibitors, 4-nitropyridine N-oxide (4-NPO) and 3,4-dibromo-2H-furan-5-one (DBF), were used to treat the ARG-polluted soils. These two groups called 4-NPO treatments (NT) and DBF treatments (FT), respectively. There were no significant differences in bacterial growth and OTC degradation in NT and FT groups, compared to AC group. However, acyl-homoserine lactones such as C4-HSL, C6-HSL, and C8-HSL decreased significantly in both NT and FT groups, compared to AC group. Meanwhile, the abundance of most ARGs decreased dramatically. In FT group, the concentrations of tet(L) and tet(Q) were below the detection limits. It was demonstrated that quorum sensing inhibition could be an effective way to prevent and control the pollution of ARGs in soil.

  14. Quorum Sensing Primes the Oxidative Stress Response in the Insect Endosymbiont, Sodalis glossinidius

    PubMed Central

    Pontes, Mauricio H.; Babst, Markus; Lochhead, Robert; Oakeson, Kelly; Smith, Kari; Dale, Colin

    2008-01-01

    Background Sodalis glossinidius, a maternally transmitted bacterial endosymbiont of tsetse flies (Glossina spp.), uses an acylated homoserine lactone (AHL)-based quorum sensing system to modulate gene expression in accordance with bacterial cell density. The S. glossinidius quorum sensing system relies on the function of two regulatory proteins; SogI (a LuxI homolog) synthesizes a signaling molecule, characterized as N-(3-oxohexanoyl) homoserine lactone (OHHL), and SogR1 (a LuxR homolog) interacts with OHHL to modulate transcription of specific target genes. Methodology/Principal Findings We used a tiling microarray to analyze the S. glossinidius transcriptome in the presence and absence of exogenous OHHL. The major finding is that OHHL increases transcription of a large number of genes that are known to be involved in the oxidative stress response. We also show that the obligate symbiont of the rice weevil, Sitophilus oryzae (SOPE), maintains copies of the quorum sensing regulatory genes that are found in S. glossinidius. Molecular evolutionary analyses indicate that these sequences are evolving under stabilizing selection, consistent with the maintenance of their functions in the SOPE symbiosis. Finally, the expression studies in S. glossinidius also reveal that quorum sensing regulates the expression of a cryptic, degenerate gene (carA) that arose from an ancient deletion in the last common ancestor of S. glossinidius and SOPE. Conclusions/Significance This oxidative stress response is likely mandated under conditions of dense intracellular symbiont infection, when intense metabolic activity is expected to generate a heavy oxidative burden. Such conditions are known to arise in the bacteriocytes of grain weevils, which harbor dense intracellular infections of symbiotic bacteria that are closely related to S. glossinidius. The presence of a degenerate carA sequence in S. glossinidius and SOPE indicates the potential for neofunctionalization to occur during the

  15. Biosynthesis of Glycomonoterpenes to Attenuate Quorum Sensing Associated Virulence in Bacteria.

    PubMed

    Patil, Amrita; Joshi-Navre, Kasturi; Mukherji, Ruchira; Prabhune, Asmita

    2017-04-01

    The acquisition of multidrug resistance in bacteria has become a bigger threat of late, mainly due to the bacterial signaling phenomenon, quorum sensing (QS). QS, among a population of bacteria, initiates the formation of biofilms and offers myriad advantages to bacteria. Burgeoning antibiotic resistance in biofilm-producing bacteria has motivated efforts toward finding new alternatives to these traditional antimicrobials. In the present study, we report the increased solubility and additional quorum quenching as well as biofilm disruption activity of glyco-derivatives of monoterpenes (citral and citronellal). Glycomonoterpenes of citral and citronellal were synthesized via conjugation of the monoterpenes with glucose by the non-pathogenic yeast Candida bombicola (ATCC 22214). Structural elucidation of newly synthesized glycomonoterpenes showed that one synthesized using citronellal contains three major lactonic forms with molecular weight 492.43, 473.47, and 330.39 Da whereas the one produced using citral has an acidic form with molecular weight 389.33 and 346.23 Da. The glycomonoterpenes were able to individually inhibit QS, mediated through various medium-chain and long-chain N-acyl homoserine lactones (AHLs). These new compounds are interesting additions to the known range of quorum sensing inhibitors (QSIs) and could be further explored for potential clinical applications.

  16. Phenotypic and Genotypic Characterisation of Burkholderia cenocepacia J2315 Mutants Affected in Homoserine Lactone and Diffusible Signal Factor-Based Quorum Sensing Systems Suggests Interplay between Both Types of Systems

    PubMed Central

    Udine, Claudia; Brackman, Gilles; Bazzini, Silvia; Buroni, Silvia; Van Acker, Heleen; Pasca, Maria Rosalia; Riccardi, Giovanna; Coenye, Tom

    2013-01-01

    Many putative virulence factors of Burkholderia cenocepacia are controlled by various quorum sensing (QS) circuits. These QS systems either use N-acyl homoserine lactones (AHL) or cis-2-dodecenoic acid (“Burkholderia diffusible signal factor”, BDSF) as signalling molecules. Previous work suggested that there is little cross-talk between both types of systems. We constructed mutants in B. cenocepacia strain J2315, in which genes encoding CepI (BCAM1870), CciI (BCAM0239a) and the BDSF synthase (BCAM0581) were inactivated, and also constructed double (ΔcepIΔBCAM0581, ΔcciIΔBCAM0581 and ΔcepIΔcciI) mutants and a triple (ΔcepIΔcciIΔBCAM0581) mutant. Subsequently we investigated phenotypic properties (antibiotic susceptibility, biofilm formation, production of AHL and BDSF, protease activity and virulence in Caenorhabditis elegans) and measured gene expression in these mutants, and this in the presence and absence of added BDSF, AHL or both. The triple mutant was significantly more affected in biofilm formation, antimicrobial susceptibility, virulence in C. elegans, and protease production than either the single or double mutants. The ΔBCAM0581 mutant and the ΔcepIΔBCAM0581 and ΔcciIΔBCAM0581 double mutants produced significantly less AHL compared to the WT strain and the ΔcepI and ΔcciI single mutant, respectively. The expression of cepI and cciI in ΔBCAM0581, was approximately 3-fold and 7-fold (p<0.05) lower than in the WT, respectively. The observed differences in AHL production, expression of cepI and cciI and QS-controlled phenotypes in the ΔBCAM0581 mutant could (at least partially) be restored by addition of BDSF. Our data suggest that, in B. cenocepacia J2315, AHL and BDSF-based QS systems co-regulate the same set of genes, regulate different sets of genes that are involved in the same phenotypes and/or that the BDSF system controls the AHL-based QS system. As the expression of the gene encoding the C6-HSL synthase CciI (and to a lesser

  17. Broad Spectrum Anti-Quorum Sensing Activity of Tannin-Rich Crude Extracts of Indian Medicinal Plants

    PubMed Central

    Shukla, Varsha; Bhathena, Zarine

    2016-01-01

    Quorum sensing (QS) mechanisms have been demonstrated to have significance in expression of pathogenicity in infectious bacteria. In Gram negative bacteria the autoinducer molecules that mediate QS are acyl homoserine lactones (AHL) and in Gram positive bacteria they are peptides called autoinducing peptides (AIP). A screening of tannin-rich medicinal plants was attempted to identify extracts that could interrupt the QS mechanisms in both Gram positive and Gram negative bacteria over a wide range of concentrations and therefore potentially be potent agents that could act as broad spectrum QS inhibitors. Six out of the twelve Indian medicinal plant extracts that were analyzed exhibited anti-QS activity in Chromobacterium violaceum 12472 and in S. aureus strain with agr:blaZ fusion over a broad range of subinhibitory concentrations, indicating that the extracts contain high concentration of molecules that can interfere with the QS mechanisms mediated by AHL as well as AIP. PMID:27190686

  18. The Stringent Response Modulates 4-Hydroxy-2-Alkylquinoline Biosynthesis and Quorum-Sensing Hierarchy in Pseudomonas aeruginosa

    PubMed Central

    Schafhauser, James; Lepine, Francois; McKay, Geoffrey; Ahlgren, Heather G.; Khakimova, Malika

    2014-01-01

    As a ubiquitous environmental organism and an important human pathogen, Pseudomonas aeruginosa readily adapts and responds to a wide range of conditions and habitats. The intricate regulatory networks that link quorum sensing and other global regulators allow P. aeruginosa to coordinate its gene expression and cell signaling in response to different growth conditions and stressors. Upon nutrient transitions and starvation, as well as other environmental stresses, the stringent response is activated, mediated by the signal (p)ppGpp. P. aeruginosa produces a family of molecules called HAQ (4-hydroxy-2-alkylquinolines), some of which exhibit antibacterial and quorum-sensing signaling functions and regulate virulence genes. In this study, we report that (p)ppGpp negatively regulates HAQ biosynthesis: in a (p)ppGpp-null (ΔSR) mutant, HHQ (4-hydroxyl-2-heptylquinoline) and PQS (3,4-dihydroxy-2-heptylquinoline) levels are increased due to upregulated pqsA and pqsR expression and reduced repression by the rhl system. We also found that (p)ppGpp is required for full expression of both rhl and las AHL (acyl-homoserine lactone) quorum-sensing systems, since the ΔSR mutant has reduced rhlI, rhlR, lasI, and lasR expression, butanoyl-homoserine lactone (C4-HSL) and 3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12-HSL) levels, and rhamnolipid and elastase production. Furthermore, (p)ppGpp significantly modulates the AHL and PQS quorum-sensing hierarchy, as the las system no longer has a dominant effect on HAQ biosynthesis when the stringent response is inactivated. PMID:24509318

  19. Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens.

    PubMed

    Gutiérrez-Barranquero, José A; Reen, F Jerry; McCarthy, Ronan R; O'Gara, Fergal

    2015-04-01

    The rapid unchecked rise in antibiotic resistance over the last few decades has led to an increased focus on the need for alternative therapeutic strategies for the treatment and clinical management of microbial infections. In particular, small molecules that can suppress microbial virulence systems independent of any impact on growth are receiving increased attention. Quorum sensing (QS) is a cell-to-cell signalling communication system that controls the virulence behaviour of a broad spectrum of bacterial pathogens. QS systems have been proposed as an effective target, particularly as they control biofilm formation in pathogens, a key driver of antibiotic ineffectiveness. In this study, we identified coumarin, a natural plant phenolic compound, as a novel QS inhibitor, with potent anti-virulence activity in a broad spectrum of pathogens. Using a range of biosensor systems, coumarin was active against short, medium and long chain N-acyl-homoserine lactones, independent of any effect on growth. To determine if this suppression was linked to anti-virulence activity, key virulence systems were studied in the nosocomial pathogen Pseudomonas aeruginosa. Consistent with suppression of QS, coumarin inhibited biofilm, the production of phenazines and swarming motility in this organism potentially linked to reduced expression of the rhlI and pqsA quorum sensing genes. Furthermore, coumarin significantly inhibited biofilm formation and protease activity in other bacterial pathogens and inhibited bioluminescence in Aliivibrio fischeri. In light of these findings, coumarin would appear to have potential as a novel quorum sensing inhibitor with a broad spectrum of action.

  20. Octanoyl-Homoserine Lactone Is the Cognate Signal for Burkholderia mallei BmaR1-BmaI1 Quorum Sensing

    DTIC Science & Technology

    2007-07-01

    Burkholderia species, the Burkholderia cepacia complex. In Burkholderia cenocepacia, there are two luxI-luxR homolog pairs. The primary product of...transcription factor. Mol. Microbiol. 59:602–609. 22. Lewenza, S., B. Conway, E. P. Greenberg, and P. A. Sokol. 1999. Quorum sensing in Burkholderia cepacia ...acyl-L-homoserine lactone production by CepR in Burkholderia cepacia . J. Bacteriol. 183:2212–2218. 24. Lumjiaktase, P., S. P. Diggle, S. Loprasert, S

  1. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon

    PubMed Central

    Schuster, Martin; Greenberg, E Peter

    2007-01-01

    Background Quorum-sensing regulation of gene expression in Pseudomonas aeruginosa is complex. Two interconnected acyl-homoserine lactone (acyl-HSL) signal-receptor pairs, 3-oxo-dodecanoyl-HSL-LasR and butanoyl-HSL-RhlR, regulate more than 300 genes. The induction of most of the genes is delayed during growth of P. aeruginosa in complex medium, cannot be advanced by addition of exogenous signal, and requires additional regulatory components. Many of these late genes can be induced by addition of signals early by using specific media conditions. While several factors super-regulate the quorum receptors, others may co-regulate target promoters or may affect expression posttranscriptionally. Results To better understand the contributions of super-regulation and co-regulation to quorum-sensing gene expression, and to better understand the general structure of the quorum sensing network, we ectopically expressed the two receptors (in the presence of their cognate signals) and another component that affects quorum sensing, the stationary phase sigma factor RpoS, early in growth. We determined the effect on target gene expression by microarray and real-time PCR analysis. Our results show that many target genes (e.g. lasB and hcnABC) are directly responsive to receptor protein levels. Most genes (e.g. lasA, lecA, and phnAB), however, are not significantly affected, although at least some of these genes are directly regulated by quorum sensing. The majority of promoters advanced by RhlR appeared to be regulated directly, which allowed us to build a RhlR consensus sequence. Conclusion The direct responsiveness of many quorum sensing target genes to receptor protein levels early in growth confirms the role of super-regulation in quorum sensing gene expression. The observation that the induction of most target genes is not affected by signal or receptor protein levels indicates that either target promoters are co-regulated by other transcription factors, or that expression is

  2. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    SciTech Connect

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.

  3. Quorum Sensing in Some Representative Species of Halomonadaceae

    PubMed Central

    Tahrioui, Ali; Schwab, Melanie; Quesada, Emilia; Llamas, Inmaculada

    2013-01-01

    Cell-to-cell communication, or quorum-sensing (QS), systems are employed by bacteria for promoting collective behaviour within a population. An analysis to detect QS signal molecules in 43 species of the Halomonadaceae family revealed that they produced N-acyl homoserine lactones (AHLs), which suggests that the QS system is widespread throughout this group of bacteria. Thin-layer chromatography (TLC) analysis of crude AHL extracts, using Agrobacterium tumefaciens NTL4 (pZLR4) as biosensor strain, resulted in different profiles, which were not related to the various habitats of the species in question. To confirm AHL production in the Halomonadaceae species, PCR and DNA sequencing approaches were used to study the distribution of the luxI-type synthase gene. Phylogenetic analysis using sequence data revealed that 29 of the species studied contained a LuxI homolog. Phylogenetic analysis showed that sequences from Halomonadaceae species grouped together and were distinct from other members of the Gammaproteobacteria and also from species belonging to the Alphaproteobacteria and Betaproteobacteria. PMID:25371343

  4. Synthesis of antimicrobial glucosamides as bacterial quorum sensing mechanism inhibitors.

    PubMed

    Biswas, Nripendra N; Yu, Tsz Tin; Kimyon, Önder; Nizalapur, Shashidhar; Gardner, Christopher R; Manefield, Mike; Griffith, Renate; Black, David StC; Kumar, Naresh

    2017-02-01

    Bacteria communicate with one another and regulate their pathogenicity through a phenomenon known as quorum sensing (QS). When the bacterial colony reaches a threshold density, the QS system induces the production of virulence factors and the formation of biofilms, a powerful defence system against the host's immune responses. The glucosamine monomer has been shown to disrupt the bacterial QS system by inhibiting autoinducer (AI) signalling molecules such as the acyl-homoserine lactones (AHLs). In this study, the synthesis of acetoxy-glucosamides 8, hydroxy-glucosamides 9 and 3-oxo-glucosamides 12 was performed via the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) and N,N'-dicyclohexylcarbodiimide (DCC) coupling methods. All of the synthesized compounds were tested against two bacterial strains, P. aeruginosa MH602 (LasI/R-type QS) and E. coli MT102 (LuxI/R-type QS), for QS inhibitory activity. The most active compound 9b showed 79.1% QS inhibition against P. aeruginosa MH602 and 98.4% against E. coli MT102, while compound 12b showed 64.5% inhibition against P. aeruginosa MH602 and 88.1% against E. coli MT102 strain at 2mM concentration. The ability of the compounds to inhibit the production of the virulence factor pyocyanin and biofilm formation in the P. aeruginosa (PA14) strain was also examined. Finally, computational docking studies were performed with the LasR receptor protein.

  5. Quorum Sensing Inhibition and Structure-Activity Relationships of β-Keto Esters.

    PubMed

    Forschner-Dancause, Stephanie; Poulin, Emily; Meschwitz, Susan

    2016-07-25

    Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS)-a cell-cell communication system in bacteria-controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype) in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure-activity relationships needed to allow for the development of novel anti-virulence agents.

  6. Towards Predictive Modeling of Information Processing in Microbial Ecosystems With Quorum-Sensing Interactions

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir; Boedicker, James

    Bacteria communicate using external chemical signals in a process known as quorum sensing. However, the efficiency of this communication is reduced by both limitations on the rate of diffusion over long distances and potential interference from neighboring strains. Therefore, having a framework to quantitatively predict how spatial structure and biodiversity shape information processing in bacterial colonies is important, both for understanding the evolutionary dynamics of natural microbial ecosystems, and for the rational design of synthetic ecosystems with desired computational properties. As a first step towards these goals, we implement a reaction-diffusion model to study the dynamics of a LuxI/LuxR quorum sensing circuit in a growing bacterial population. The spatiotemporal concentration profile of acyl-homoserine lactone (AHL) signaling molecules is analyzed, and used to define a measure of physical and functional signaling network connectivity. From this, we systematically investigate how different initial distributions of bacterial populations influence the subsequent efficiency of collective long-range signal propagation in the population. We compare our results with known experimental data, and discuss limitations and extensions to our modeling framework.-/abstract-

  7. Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability.

    PubMed

    McIntosh, Matthew; Meyer, Stefan; Becker, Anke

    2009-12-01

    The Sin quorum sensing system of Sinorhizobium meliloti depends upon at least three genes, sinR, sinI and expR, and N-acyl homoserine lactones (AHLs) as signals to regulate multiple processes in its free-living state in the rhizosphere and in the development towards symbiosis with its plant host. In this study, we have characterized novel mechanisms of transcription control through which the system regulates itself. At low AHL levels a positive feedback loop activates expression of sinI (AHL synthase), resulting in amplification of AHL levels. At high AHL levels, expression of sinI is reduced by a negative feedback loop. These feedback mechanisms are mediated by the LuxR-type regulators ExpR and SinR. Expression of sinR and expR is regulated by ExpR in the presence of AHLs. A novel ExpR binding site in the promoter of sinR is responsible for the reduction of expression of this gene. In addition, expression of sinR, upon which sinI expression is dependent, is induced by phoB during growth under phosphate-limiting conditions. This indicates that this response ensures quorum sensing in phosphate-restricted growth.

  8. Synthesis of “clickable” acylhomoserine lactone quorum sensing probes: unanticipated effects on mammalian cell activation

    PubMed Central

    Garner, Amanda L.; Yu, Jing; Struss, Anjali Kumari; Lowery, Colin A.; Zhu, Jie; Kim, Sook Kyung; Park, Junguk; Mayorov, Alexander V.; Kaufmann, Gunnar F.; Kravchenko, Vladimir V.; Janda, Kim D.

    2010-01-01

    Alkynyl- and azido-tagged 3-oxo-C12-acylhomoserine lactone probes have been synthesized to examine their potential utility as probes for discovering the mammalian protein target of the Pseudomonas aeruginosa autoinducer, 3-oxo-C12-acylhomoserine lactone. Although such substitutions are commonly believed to be quite conservative, from these studies, we have uncovered a drastic difference in activity between the alkynyl- and azido-modified compounds, and provide an example where such structural modification has proved to be much less than conservative. PMID:21190852

  9. N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings.

    PubMed

    Delalande, Laurie; Faure, Denis; Raffoux, Aurélie; Uroz, Stéphane; D'Angelo-Picard, Cathy; Elasri, Miena; Carlier, Aurélien; Berruyer, Romain; Petit, Annik; Williams, Paul; Dessaux, Yves

    2005-03-01

    The half-life of N-hexanoyl-l-homoserine lactone (C6-HSL) was determined under various pH and temperature conditions, and in several plant environments. C6-HSL was sensitive to alkaline pH, a process that was also temperature-dependent. In addition, C6-HSL disappeared from plant environments, i.e. axenic monocot and dicot plants cultivated under gnotobiotic, hydroponic conditions, albeit with variable kinetics. The disappearance was rapid at the root system of legume plants such as clover or Lotus, and slow or non-existent at the root system of monocots such as wheat or corn. These variable kinetics were not dependent upon pH changes that may have affected the growth media of the plants. Furthermore, C6-HSL did not accumulate in the plant, and the plant did not produce inhibitors of the C6-HSL signal. HPLC analyses revealed that C6-HSL disappeared from the media, and hence, Lotus exhibited a natural C6-HSL inactivating ability. This ability was not specific for C6-HSL and allowed the degradation of other N-acyl-homoserine lactones such as 3-oxo-C6-HSL, 3-oxo-octanoyl-HSL and 3-oxo-decanoyl-HSL. Preliminary investigation revealed that the inactivating ability is temperature-dependant and possibly of enzymatic origin.

  10. Pseudomonas aeruginosa quorum-sensing signaling molecule N-3-oxododecanoyl homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblasts.

    PubMed

    Nakagami, Gojiro; Minematsu, Takeo; Morohoshi, Tomohiro; Yamane, Takumi; Kanazawa, Toshiki; Huang, Lijuan; Asada, Mayumi; Nagase, Takashi; Ikeda, Shin-ichi; Ikeda, Tsukasa; Sanada, Hiromi

    2015-01-01

    Quorum sensing is a cell-to-cell communication mechanism, which is responsible for regulating a number of bacterial virulence factors and biofilm maturation and therefore plays an important role for establishing wound infection. Quorum-sensing signals may induce inflammation and predispose wounds to infection by Pseudomonas aeruginosa; however, the interaction has not been well investigated. We examined the effects of the P. aeruginosa las quorum-sensing signal, N-3-oxo-dodecanoyl homoserine lactone (3OC12-HSL), on matrix metalloproteinase (MMP) 9 expression in Rat-1 fibroblasts. 3OC12-HSL upregulated the expression of the MMP9 gene bearing an activator protein-1 (AP-1) binding site in the promoter region. We further investigated the mechanism underlying this effect. c-Fos gene expression increased rapidly after exposure to 3OC12-HSL, and nuclear translocation of c-Fos protein was observed; both effects were reduced by pretreatment with an AP-1 inhibitor. These results suggest that 3OC12-HSL can alter MMP9 gene expression in fibroblasts via the AP-1 signaling pathway.

  11. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    PubMed

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-05-31

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.

  12. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    PubMed Central

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  13. The Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl) homoserine lactone can accelerate cutaneous wound healing through myofibroblast differentiation in rats.

    PubMed

    Nakagami, Gojiro; Minematsu, Takeo; Asada, Mayumi; Nagase, Takashi; Akase, Tomoko; Huang, Lijuan; Morohoshi, Tomohiro; Ikeda, Tsukasa; Ohta, Yasunori; Sanada, Hiromi

    2011-07-01

    Quorum sensing is a cell density-dependent gene regulation system in bacteria. N-(3-oxododecanoyl) homoserine lactone (3-oxo-C12-HSL) is used in the las quorum-sensing system in Pseudomonas aeruginosa, which is an opportunistic pathogen that causes many human diseases. Although many studies have investigated the sole effects of quorum sensing on several types of mammalian cells, including lung cells, little is known about the effects of quorum sensing on the cells associated with wound healing. To better understand the mechanism of bacterial wound infection, we investigated the effects of 3-oxo-C12-HSL on cells using a rat full-thickness wound-healing model. We found that the wound contraction was significantly increased at 24 h after the administration of 3-oxo-C12-HSL to the surface of granulation tissue. Differentiation of fibroblasts to myofibroblasts was induced in the in vivo wound-healing model and was confirmed in vitro using the rat fibroblastic cell line Rat-1. Cyclooxygenase (Cox)-2 expression was also induced in Rat-1 cells by 3-oxo-C12-HSL. This finding suggested that Cox-2 upregulation may be related to the inflammatory findings in the histological examinations, in which infiltrating polymorphonuclear neutrophils were observed at the wound site. Taken together, these results imply that mammals have a potential defense system against invading pathogens by responding to the presence of 3-oxo-C12-HSL and inducing the differentiation of fibroblasts to myofibroblasts as well as inflammation for accelerating wound healing.

  14. Pseudomonas aeruginosa quorum-sensing molecule homoserine lactone modulates inflammatory signaling through PERK and eI-F2α.

    PubMed

    Grabiner, Mark A; Fu, Zhu; Wu, Tara; Barry, Kevin C; Schwarzer, Christian; Machen, Terry E

    2014-08-01

    Pseudomonas aeruginosa secrete N-(3-oxododecanoyl)-homoserine lactone (HSL-C12) as a quorum-sensing molecule to regulate bacterial gene expression. Because HSL-C12 is membrane permeant, multiple cell types in P. aeruginosa-infected airways may be exposed to HSL-C12, especially adjacent to biofilms where local (HSL-C12) may be high. Previous reports showed that HSL-C12 causes both pro- and anti-inflammatory effects. To characterize HSL-C12's pro- and anti-inflammatory effects in host cells, we measured protein synthesis, NF-κB activation, and KC (mouse IL-8) and IL-6 mRNA and protein secretion in wild-type mouse embryonic fibroblasts (MEF). To test the role of the endoplasmic reticulum stress inducer, PERK we compared these responses in PERK(-/-) and PERK-corrected PERK(-/-) MEF. During 4-h treatments of wild-type MEF, HSL-C12 potentially activated NF-κB p65 by preventing the resynthesis of IκB and increased transcription of KC and IL-6 genes (quantitative PCR). HSL-C12 also inhibited secretion of KC and/or IL-6 into the media (ELISA) both in control conditions and also during stimulation by TNF-α. HSL-C12 also activated PERK (as shown by increased phosphorylation of eI-F2α) and inhibited protein synthesis (as measured by incorporation of [(35)S]methionine by MEF). Comparisons of PERK(-/-) and PERK-corrected MEF showed that HSL-C12's effects were explained in part by activation of PERK→phosphorylation of eI-F2α→inhibition of protein synthesis→reduced IκBα production→activation of NF-κB→increased transcription of the KC gene but reduced translation and secretion of KC. HSL-C12 may be an important modulator of early (up to 4 h) inflammatory signaling in P. aeruginosa infections.

  15. Small molecules modulating AHL-based quorum sensing to attenuate bacteria virulence and biofilms as promising antimicrobial drugs.

    PubMed

    Wang, Y; Ma, S

    2014-01-01

    Clinically significant antibiotic resistance is one of the greatest challenges of the twenty-first century. Yet new antibiotics are currently being developed at a much slower pace than our growing need for such drugs. Instead of focusing on conventional therapeutics that target in vitro bacterial viability, an alternative therapy is to target virulence factors and biofilms. Such anti-virulence strategies have attracted more and more attention recently, for it would add both supplement and diversity to our current antimicrobial library. This approach has several potential advantages including imposing less evolutionary pressure on the development of antibiotic resistance, increasing the antibacterial targets and preserving the host endogenous microbiome. Quorum sensing is an intercellular communication process in bacterial communities, which can regulate coordinated expression of virulence factors and biofilms. N-Acyl homoserine lactones (AHLs) are autoinducers generated by a variety of Gram-negative bacteria. These signals combining with their cognate LuxR-type receptors trigger the expression of virulence genes. In this critical review, we summarize various structural types of small molecules targeting AHL-based quorum sensing to attenuate bacteria virulence factors and biofilms.

  16. Bacillus sp. QSI-1 Modulate Quorum Sensing Signals Reduce Aeromonas hydrophila Level and Alter Gut Microbial Community Structure in Fish.

    PubMed

    Zhou, Shuxin; Zhang, An; Yin, Hongping; Chu, Weihua

    2016-01-01

    Quorum sensing (QS) is a cell density dependent process that enables bacteria to communicate with each other based on the production, secretion and sensing of the auto-inducer molecules and then subsequently regulate virulence associated gene expression. Interrupting quorum sensing may represent a novel alternative approach to combat bacterial pathogen. Several bacteria can produce quorum quenching (QQ) enzymes. However, the role of QQ bacteria in shaping the microbiota and the level of N-acyl-homoserine lactones (AHLs, a prevalent type of QS molecules) producing bacteria remains largely unknown. The objective of this study was to examine the presence of AHLs in the fish intestine and investigate the modulation of gut microbiota and its effect on Aeromonas hydrophila level by a QQ enzyme producing probiotic Bacillus sp. QSI-1. AHLs were found in fish gut content and were confirmed in Aeromonas species using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens AT 136 (pZLR4) as reporter strains. We demonstrated that the composition of fish gut microbiota was affected by quenching bacteria QSI-1, and the percentage of A. hydrophila was decreased significantly. Taken together, these results provide valuable insights into QQ enzyme producing probiotics can modulate the microbiota structure and decrease the percentage of AHL-producing pathogenic bacteria in the gut. These data strongly suggest that QQ probiotics may serve as non-antibiotic feed additive in aquaculture to control bacterial diseases.

  17. Effect of Quorum Quenching Lactonase in Clinical Isolates of Pseudomonas aeruginosa and Comparison with Quorum Sensing Inhibitors.

    PubMed

    Guendouze, Assia; Plener, Laure; Bzdrenga, Janek; Jacquet, Pauline; Rémy, Benjamin; Elias, Mikael; Lavigne, Jean-Philippe; Daudé, David; Chabrière, Eric

    2017-01-01

    Pseudomonas aeruginosa is a Gram negative pathogenic bacterium involved in many human infections including otitis, keratitis, pneumonia, and diabetic foot ulcers. P. aeruginosa uses a communication system, referred to as quorum sensing (QS), to adopt a group behavior by synchronizing the expression of certain genes. Among the regulated traits, secretion of proteases or siderophores, motility and biofilm formation are mainly involved in the pathogenicity. Many efforts have been dedicated to the development of quorum sensing inhibitors (QSI) and quorum quenching (QQ) agents to disrupt QS. QQ enzymes have been particularly considered as they may act in a catalytic way without entering the cell. Here we focus on the lactonase SsoPox which was previously investigated for its ability to degrade the signaling molecules, acyl-homoserine lactones, in particular on the engineered variant SsoPox-W263I. We highlight the potential of SsoPox-W263I to inhibit the virulence of 51 clinical P. aeruginosa isolates from diabetic foot ulcers by decreasing the secretion of two virulence factors, proteases and pyocyanin, as well as biofilm formation. We further compared the effect of SsoPox-W263I to the comprehensively described QSI, 5-fluorouracil and C-30. We found the lactonase SsoPox-W263I to be significantly more effective than the tested QSI at their respective concentration optimum and to retain its activity after immobilization steps, paving the way for future therapeutic applications.

  18. Effect of Quorum Quenching Lactonase in Clinical Isolates of Pseudomonas aeruginosa and Comparison with Quorum Sensing Inhibitors

    PubMed Central

    Guendouze, Assia; Plener, Laure; Bzdrenga, Janek; Jacquet, Pauline; Rémy, Benjamin; Elias, Mikael; Lavigne, Jean-Philippe; Daudé, David; Chabrière, Eric

    2017-01-01

    Pseudomonas aeruginosa is a Gram negative pathogenic bacterium involved in many human infections including otitis, keratitis, pneumonia, and diabetic foot ulcers. P. aeruginosa uses a communication system, referred to as quorum sensing (QS), to adopt a group behavior by synchronizing the expression of certain genes. Among the regulated traits, secretion of proteases or siderophores, motility and biofilm formation are mainly involved in the pathogenicity. Many efforts have been dedicated to the development of quorum sensing inhibitors (QSI) and quorum quenching (QQ) agents to disrupt QS. QQ enzymes have been particularly considered as they may act in a catalytic way without entering the cell. Here we focus on the lactonase SsoPox which was previously investigated for its ability to degrade the signaling molecules, acyl-homoserine lactones, in particular on the engineered variant SsoPox-W263I. We highlight the potential of SsoPox-W263I to inhibit the virulence of 51 clinical P. aeruginosa isolates from diabetic foot ulcers by decreasing the secretion of two virulence factors, proteases and pyocyanin, as well as biofilm formation. We further compared the effect of SsoPox-W263I to the comprehensively described QSI, 5-fluorouracil and C-30. We found the lactonase SsoPox-W263I to be significantly more effective than the tested QSI at their respective concentration optimum and to retain its activity after immobilization steps, paving the way for future therapeutic applications. PMID:28261183

  19. Bacillus sp. QSI-1 Modulate Quorum Sensing Signals Reduce Aeromonas hydrophila Level and Alter Gut Microbial Community Structure in Fish

    PubMed Central

    Zhou, Shuxin; Zhang, An; Yin, Hongping; Chu, Weihua

    2016-01-01

    Quorum sensing (QS) is a cell density dependent process that enables bacteria to communicate with each other based on the production, secretion and sensing of the auto-inducer molecules and then subsequently regulate virulence associated gene expression. Interrupting quorum sensing may represent a novel alternative approach to combat bacterial pathogen. Several bacteria can produce quorum quenching (QQ) enzymes. However, the role of QQ bacteria in shaping the microbiota and the level of N-acyl-homoserine lactones (AHLs, a prevalent type of QS molecules) producing bacteria remains largely unknown. The objective of this study was to examine the presence of AHLs in the fish intestine and investigate the modulation of gut microbiota and its effect on Aeromonas hydrophila level by a QQ enzyme producing probiotic Bacillus sp. QSI-1. AHLs were found in fish gut content and were confirmed in Aeromonas species using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens AT 136 (pZLR4) as reporter strains. We demonstrated that the composition of fish gut microbiota was affected by quenching bacteria QSI-1, and the percentage of A. hydrophila was decreased significantly. Taken together, these results provide valuable insights into QQ enzyme producing probiotics can modulate the microbiota structure and decrease the percentage of AHL-producing pathogenic bacteria in the gut. These data strongly suggest that QQ probiotics may serve as non-antibiotic feed additive in aquaculture to control bacterial diseases. PMID:28018866

  20. Presence of quorum sensing signal molecules in minced beef stored under various temperature and packaging conditions.

    PubMed

    Blana, Vasiliki A; Nychas, George-John E

    2014-03-03

    The presence of acylated homoserine lactones (AHLs) and autoinducer-2 (AI-2)-like activity was observed in meat stored under various temperatures (0, 5, 10 and 15°C) and packaging (air, modified atmospheres and modified atmospheres with oregano essential oil) conditions, and correlated with the ephemeral spoilage organisms that comprise the microbial community generally associated with this product. Quorum sensing signal molecules were found to be affected by the packaging conditions e.g. temperature and atmosphere used for meat preservation as a consequence of the development of a distinct microbial community. AHL signal molecules were detected at all incubation temperatures in minced beef samples, both stored aerobically and under modified atmospheres, when both pseudomonads and Enterobacteriaceae populations ranged from 10(7) to 10(9)CFU/g, but no signal molecules were detected in minced beef stored under modified atmospheres in the presence of volatile compounds of oregano essential oil, where both these groups failed to grow in high numbers. Additionally, no significant AI-2 activity was observed in the tested cell-free meat extracts (CFME), regardless of the indigenous bacterial populations. The presence of N-(β-ketocaproyl)-homoserine lactone was confirmed with TLC analysis of CFME.

  1. Involvement of Bacterial Quorum-Sensing Signals in Spoilage of Bean Sprouts

    PubMed Central

    Rasch, Maria; Andersen, Jens Bo; Nielsen, Kristian Fog; Flodgaard, Lars Ravn; Christensen, Henrik; Givskov, Michael; Gram, Lone

    2005-01-01

    Bacterial communication signals, acylated homoserine lactones (AHLs), were extracted from samples of commercial bean sprouts undergoing soft-rot spoilage. Bean sprouts produced in the laboratory did not undergo soft-rot spoilage and did not contain AHLs or AHL-producing bacteria, although the bacterial population reached levels similar to those in the commercial sprouts, 108 to 109 CFU/g. AHL-producing bacteria (Enterobacteriaceae and pseudomonads) were isolated from commercial sprouts, and strains that were both proteolytic and pectinolytic were capable of causing soft-rot spoilage in bean sprouts. Thin-layer chromatography and liquid chromatography-high-resolution mass spectrometry revealed the presence of N-3-oxo-hexanoyl-l-homoserine lactone in spoiled bean sprouts and in extracts from pure cultures of bacteria. During normal spoilage, the pH of the sprouts increased due to proteolytic activity, and the higher pH probably facilitated the activity of pectate lyase. The AHL synthetase gene (I gene) from a spoilage Pectobacterium was cloned, sequenced, and inactivated in the parent strain. The predicted amino acid sequence showed 97% homology to HslI and CarI in Erwinia carotovora. Spoilage of laboratory bean sprouts inoculated with the AHL-negative mutant was delayed compared to sprouts inoculated with the wild type, and the AHL-negative mutant did not cause the pH to rise. Compared to the wild-type strain, the AHL-negative mutant had significantly reduced protease and pectinase activities and was negative in an iron chelation (siderophore) assay. This is the first study demonstrating AHL regulation of iron chelation in Enterobacteriaceae. The present study clearly demonstrates that the bacterial spoilage of some food products is influenced by quorum-sensing-regulated phenotypes, and understanding these processes may be useful in the development of novel food preservation additives that specifically block the quorum-sensing systems. PMID:15933035

  2. The Absence of the N-acyl-homoserine-lactone Autoinducer Synthase Genes traI and ngrI Increases the Copy Number of the Symbiotic Plasmid in Sinorhizobium fredii NGR234

    PubMed Central

    Grote, Jessica; Krysciak, Dagmar; Petersen, Katrin; Güllert, Simon; Schmeisser, Christel; Förstner, Konrad U.; Krishnan, Hari B.; Schwalbe, Harald; Kubatova, Nina; Streit, Wolfgang R.

    2016-01-01

    Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be essential for initiating the plant symbiosis with rhizobia affiliated with the Alphaproteobacteria. Here, we provide evidence that in the broad host range strain Sinorhizobium fredii NGR234 the complete lack of quorum sensing molecules results in an elevated copy number of its symbiotic plasmid (pNGR234a). This in turn triggers the expression of symbiotic genes and the production of Nod factors in the absence of plant signals. Therefore, increasing the copy number of specific plasmids could be a widespread mechanism of specialized bacterial populations to bridge gaps in signaling cascades. PMID:27917168

  3. Expression of the bviIR and cepIR quorum-sensing systems of Burkholderia vietnamiensis.

    PubMed

    Malott, Rebecca J; Sokol, Pamela A

    2007-04-01

    Burkholderia vietnamiensis has both the cepIR quorum-sensing system that is widely distributed among the Burkholderia cepacia complex (BCC) and the bviIR system. Comparison of the expression of cepI, cepR, bviI, and bviR-luxCDABE fusions in B. vietnamiensis G4 and the G4 cepR and bviR mutants determined that the expression of bviI requires both a functional cognate regulator, BviR, and functional CepR. The cepIR system, however, is not regulated by BviR. Unlike the cepIR genes in other BCC species, the cepIR genes are not autoregulated in G4. N-Acyl-homoserine lactone (AHL) production profiles in G4 cepI, cepR, bviI, and bviR mutants confirmed the regulatory organization of the G4 quorum-sensing systems. The regulatory network in strain PC259 is similar to that in G4, except that CepR positively regulates cepI and negatively regulates cepR. AHL production and the bviI expression levels in seven B. vietnamiensis isolates were compared. All strains produced N-octanoyl-homoserine lactone and N-hexanoyl-homoserine lactone; however, only one of four clinical strains but all three environmental strains produced the BviI synthase product, N-decanoyl-homoserine lactone (DHL). The three strains that did not produce DHL expressed bviR but not bviI. Heterologous expression of bviR restored DHL production in these strains. The bviIR loci of the non-DHL-producing strains were sequenced to confirm that bviR encodes a functional transcriptional regulator. Lack of expression of G4 bviI in these three strains indicated that an additional regulatory element may be involved in the regulation of bviIR expression in certain strains of B. vietnamiensis.

  4. Regulation of the violacein biosynthetic gene cluster by acylhomoserine lactone-mediated quorum sensing in Chromobacterium violaceum ATCC 12472.

    PubMed

    Morohoshi, Tomohiro; Fukamachi, Katsumasa; Kato, Masashi; Kato, Norihiro; Ikeda, Tsukasa

    2010-01-01

    Chromobacterium violaceum produces the purple pigment violacein by quorum-sensing regulation. 20-bp of the lux box-like sequence was found upstream of vioA in C. violaceum ATCC 12472. CviR received C10-HSL and C6-HSL and activated the transcription of vioA in Escherichia coli. However, in strain ATCC 12472, C6-HSL inhibited both C10-HSL-mediated violacein production and the transcription of vioA.

  5. Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa.

    PubMed

    Pessi, G; Haas, D

    2000-12-01

    Virulence factors of Pseudomonas aeruginosa include hydrogen cyanide (HCN). This secondary metabolite is maximally produced at low oxygen tension and high cell densities during the transition from exponential to stationary growth phase. The hcnABC genes encoding HCN synthase were identified on a genomic fragment complementing an HCN-deficient mutant of P. aeruginosa PAO1. The hcnA promoter was found to be controlled by the FNR-like anaerobic regulator ANR and by the quorum-sensing regulators LasR and RhlR. Primer extension analysis revealed two transcription starts, T1 and T2, separated by 29 bp. Their function was confirmed by transcriptional lacZ fusions. The promoter sequence displayed an FNR/ANR box at -42.5 bp upstream of T2 and a lux box centered around -42.5 bp upstream of T1. Expression of the hcn genes was completely abolished when this lux box was deleted or inactivated by two point mutations in conserved nucleotides. The lux box was recognized by both LasR [activated by N-(oxododecanoyl)-homoserine lactone] and RhlR (activated by N-butanoyl-homoserine lactone), as shown by expression experiments performed in quorum-sensing-defective P. aeruginosa mutants and in the N-acyl-homoserine lactone-negative heterologous host P. fluorescens CHA0. A second, less conserved lux box lying 160 bp upstream of T1 seems to account for enhanced quorum-sensing-dependent expression. Without LasR and RhlR, ANR could not activate the hcn promoter. Together, these data indicate that expression of the hcn promoter from T1 can occur under quorum-sensing control alone. Enhanced expression from T2 appears to rely on a synergistic action between LasR, RhlR, and ANR.

  6. Transcriptional Control of the Hydrogen Cyanide Biosynthetic Genes hcnABC by the Anaerobic Regulator ANR and the Quorum-Sensing Regulators LasR and RhlR in Pseudomonas aeruginosa

    PubMed Central

    Pessi, Gabriella; Haas, Dieter

    2000-01-01

    Virulence factors of Pseudomonas aeruginosa include hydrogen cyanide (HCN). This secondary metabolite is maximally produced at low oxygen tension and high cell densities during the transition from exponential to stationary growth phase. The hcnABC genes encoding HCN synthase were identified on a genomic fragment complementing an HCN-deficient mutant of P. aeruginosa PAO1. The hcnA promoter was found to be controlled by the FNR-like anaerobic regulator ANR and by the quorum-sensing regulators LasR and RhlR. Primer extension analysis revealed two transcription starts, T1 and T2, separated by 29 bp. Their function was confirmed by transcriptional lacZ fusions. The promoter sequence displayed an FNR/ANR box at −42.5 bp upstream of T2 and a lux box centered around −42.5 bp upstream of T1. Expression of the hcn genes was completely abolished when this lux box was deleted or inactivated by two point mutations in conserved nucleotides. The lux box was recognized by both LasR [activated by N-(oxododecanoyl)-homoserine lactone] and RhlR (activated by N-butanoyl-homoserine lactone), as shown by expression experiments performed in quorum-sensing-defective P. aeruginosa mutants and in the N-acyl-homoserine lactone-negative heterologous host P. fluorescens CHA0. A second, less conserved lux box lying 160 bp upstream of T1 seems to account for enhanced quorum-sensing-dependent expression. Without LasR and RhlR, ANR could not activate the hcn promoter. Together, these data indicate that expression of the hcn promoter from T1 can occur under quorum-sensing control alone. Enhanced expression from T2 appears to rely on a synergistic action between LasR, RhlR, and ANR. PMID:11092854

  7. Colostrum Hexasaccharide, a Novel Staphylococcus aureus Quorum-Sensing Inhibitor

    PubMed Central

    Srivastava, A.; Deepak, D.; Singh, B. R.

    2015-01-01

    The discovery of quorum-sensing (QS) systems regulating antibiotic resistance and virulence factors (VFs) has afforded a novel opportunity to prevent bacterial pathogenicity. Dietary molecules have been demonstrated to attenuate QS circuits of bacteria. But, to our knowledge, no study exploring the potential of colostrum hexasaccharide (CHS) in regulating QS systems has been published. In this study, we analyzed CHS for inhibiting QS signaling in Staphylococcus aureus. We isolated and characterized CHS from mare colostrum by high-performance thin-layer chromatography (HPTLC), reverse-phase high-performance liquid chromatography evaporative light-scattering detection (RP-HPLC-ELSD), 1H and 13C nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS). Antibiofilm activity of CHS against S. aureus and its possible interference with bacterial QS systems were determined. The inhibition and eradication potentials of the biofilms were studied by microscopic analyses and quantified by 96-well-microtiter-plate assays. Also, the ability of CHS to interfere in bacterial QS by degrading acyl-homoserine lactones (AHLs), one of the most studied signal molecules for Gram-negative bacteria, was evaluated. The results revealed that CHS exhibited promising inhibitory activities against QS-regulated secretion of VFs, including spreading ability, hemolysis, protease, and lipase activities, when applied at a rate of 5 mg/ml. The results of biofilm experiments indicated that CHS is a strong inhibitor of biofilm formation and also has the ability to eradicate it. The potential of CHS to interfere with bacterial QS systems was also examined by degradation of AHLs. Furthermore, it was documented that CHS decreased antibiotic resistance in S. aureus. The results thus give a lead that mare colostrum can be a promising source for isolating a next-generation antibacterial. PMID:25645850

  8. Bacterial quorum sensing and interference by naturally occurring biomimics.

    PubMed

    McDougald, Diane; Rice, Scott A; Kjelleberg, Staffan

    2007-01-01

    Bacteria are able to coordinate gene expression as a community through the secretion and detection of signalling molecules so that the members of the community can simultaneously express specific behaviours. This mechanism of regulation of behaviour appears to be a key trait for adaptation to specific environments and has been shown to regulate a variety of important phenotypes, from virulence factor production to biofilm formation to symbiosis related behaviours such as bioluminescence. The ability to communicate and communally regulate gene expression is hypothesised to have evolved as a way for organisms to delay expression of phenotypes until numerical supremacy is reached. For example, in the case of infection, if an invading microorganism were to express virulence factors too early, the host may be able to mount a successful defence and repel the invaders. There is growing evidence that bacterial quorum sensing (QS) systems are involved in cross-kingdom signalling with eukaryotic organisms and that eukaryotes are capable of actively responding to bacteria in their environment by detecting and acting upon the presence of these signalling molecules. Likewise, eukaryotes produce compounds that can interfere with QS systems in bacteria by acting as agonists or antagonists. An exciting new field of study, biomimetics, takes inspiration from nature's models and attempts to design solutions to human problems, and biomimics of QS systems may be one such solution. This article presents the acylated homoserine lactone and autoinducer 2 QS systems in bacteria, the means of intercepting or interfering with bacterial QS systems evolved by eukaryotes, and the rational design of synthetic antagonists.

  9. Marine-Derived Quorum-Sensing Inhibitory Activities Enhance the Antibacterial Efficacy of Tobramycin against Pseudomonas aeruginosa

    PubMed Central

    Busetti, Alessandro; Shaw, George; Megaw, Julianne; Gorman, Sean P.; Maggs, Christine A.; Gilmore, Brendan F.

    2014-01-01

    Bacterial epiphytes isolated from marine eukaryotes were screened for the production of quorum sensing inhibitory compounds (QSIs). Marine isolate KS8, identified as a Pseudoalteromonas sp., was found to display strong quorum sensing inhibitory (QSI) activity against acyl homoserine lactone (AHL)-based reporter strains Chromobacterium violaceum ATCC 12472 and CV026. KS8 supernatant significantly reduced biofilm biomass during biofilm formation (−63%) and in pre-established, mature P. aeruginosa PAO1 biofilms (−33%). KS8 supernatant also caused a 0.97-log reduction (−89%) and a 2-log reduction (−99%) in PAO1 biofilm viable counts in the biofilm formation assay and the biofilm eradication assay respectively. The crude organic extract of KS8 had a minimum inhibitory concentration (MIC) of 2 mg/mL against PAO1 but no minimum bactericidal concentration (MBC) was observed over the concentration range tested (MBC > 16 mg/mL). Sub-MIC concentrations (1 mg/mL) of KS8 crude organic extract significantly reduced the quorum sensing (QS)-dependent production of both pyoverdin and pyocyanin in P. aeruginosa PAO1 without affecting growth. A combinatorial approach using tobramycin and the crude organic extract at 1 mg/mL against planktonic P. aeruginosa PAO1 was found to increase the efficacy of tobramycin ten-fold, decreasing the MIC from 0.75 to 0.075 µg/mL. These data support the validity of approaches combining conventional antibiotic therapy with non-antibiotic compounds to improve the efficacy of current treatments. PMID:25546516

  10. Biofilm Formation and Quorum-Sensing-Molecule Production by Clinical Isolates of Serratia liquefaciens

    PubMed Central

    Remuzgo-Martínez, Sara; Lázaro-Díez, María; Mayer, Celia; Aranzamendi-Zaldumbide, Maitane; Padilla, Daniel; Calvo, Jorge; Marco, Francesc; Martínez-Martínez, Luis; Icardo, José Manuel; Otero, Ana

    2015-01-01

    Serratia spp. are opportunistic human pathogens responsible for an increasing number of nosocomial infections. However, little is known about the virulence factors and regulatory circuits that may enhance the establishment and long-term survival of Serratia liquefaciens in the hospital environment. In this study, two reporter strains, Chromobacterium violaceum CV026 and VIR24, and high-resolution triple-quadrupole liquid chromatography–mass spectrometry (LC-MS) were used to detect and to quantify N-acyl-homoserine lactone (AHL) quorum-sensing signals in 20 S. liquefaciens strains isolated from clinical samples. Only four of the strains produced sufficient amounts of AHLs to activate the sensors. Investigation of two of the positive strains by high-performance liquid chromatography (HPLC)-MS confirmed the presence of significant amounts of short-acyl-chain AHLs (N-butyryl-l-homoserine lactone [C4-HSL] and N-hexanoyl-l-homoserine lactone [C6-HSL]) in both strains, which exhibited a complex and strain-specific signal profile that included minor amounts of other short-acyl-chain AHLs (N-octanoyl-l-homoserine lactone [C8-HSL] and N-3-oxohexanoyl-l-homoserine lactone [OC6-HSL]) and long-acyl-chain (C10, C12, and C14) AHLs. No correlation between biofilm formation and the production of large amounts of AHLs could be established. Fimbria-like structures were observed by transmission electron microscopy, and the presence of the type 1 fimbrial adhesin gene fimH in all strains was confirmed by PCR. The ability of S. liquefaciens to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment, increasing the probability of causing nosocomial infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes. PMID:25746999

  11. Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo

    PubMed Central

    Scoffone, Viola C.; Chiarelli, Laurent R.; Makarov, Vadim; Brackman, Gilles; Israyilova, Aygun; Azzalin, Alberto; Forneris, Federico; Riabova, Olga; Savina, Svetlana; Coenye, Tom; Riccardi, Giovanna; Buroni, Silvia

    2016-01-01

    Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia. PMID:27580679

  12. Detection of Quorum Sensing Molecules and Biofilm Formation in Ralstonia solanacearum.

    PubMed

    Kumar, J Shiva; Umesha, S; Prasad, K Shiva; Niranjana, P

    2016-03-01

    Many bacteria use small diffusible signaling molecules to communicate each other termed as quorum sensing (QS). Most Gram-negative bacteria use acyl homoserine lactone (AHL) as QS signal molecules. Using these signaling molecules, bacteria are able to express specific genes in response to population density. This work aimed to detect the production of QS signal molecules and biofilm formation in Ralstonia solanacearum isolated from various diseased tomato plants with symptoms of bacterial wilt. A total of 30 R. solanacearum strains were investigated for the production of QS signal molecules using Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1 (pZLR4) biosensor systems. All 30 bacterial isolates from various bacterial wilt-affected tomato plants produced AHL molecules that induced the biosensor. The microtiter plate assay demonstrated that of the 30 bacterial isolates, 60 % formed biofilm, among which four isolates exhibited a higher degree of biofilm formation. The biofilm-inducing factor was purified from these four culture supernatants. The structure of the responsible molecule was solved using nuclear magnetic resonance and mass spectroscopy and was determined to be 2-hydroxy-4-((methylamino)(phenyl)methyl) cyclopentanone (HMCP), which was confirmed by chemical synthesis and NMR. The Confocal laser scanning microscopic analysis showed well-developed biofilm architecture of bacteria when treated with HMCP. The knowledge we obtained from this study will be useful for further researcher on the role of HMCP molecule in biofilm formation.

  13. Potential Emergence of Multi-quorum Sensing Inhibitor Resistant (MQSIR) Bacteria.

    PubMed

    Koul, Shikha; Prakash, Jyotsana; Mishra, Anjali; Kalia, Vipin Chandra

    2016-03-01

    Expression of certain bacterial genes only at a high bacterial cell density is termed as quorum-sensing (QS). Here bacteria use signaling molecules to communicate among themselves. QS mediated genes are generally involved in the expression of phenotypes such as bioluminescence, biofilm formation, competence, nodulation, and virulence. QS systems (QSS) vary from a single in Vibrio spp. to multiple in Pseudomonas and Sinorhizobium species. The complexity of QSS is further enhanced by the multiplicity of signals: (1) peptides, (2) acyl-homoserine lactones, (3) diketopiperazines. To counteract this pathogenic behaviour, a wide range of bioactive molecules acting as QS inhibitors (QSIs) have been elucidated. Unlike antibiotics, QSIs don't kill bacteria and act at much lower concentration than those of antibiotics. Bacterial ability to evolve resistance against multiple drugs has cautioned researchers to develop QSIs which may not generate undue pressure on bacteria to develop resistance against them. In this paper, we have discussed the implications of the diversity and multiplicity of QSS, in acting as an arsenal to withstand attack from QSIs and may use these as reservoirs to develop multi-QSI resistance.

  14. Chemical Composition and Disruption of Quorum Sensing Signaling in Geographically Diverse United States Propolis

    PubMed Central

    Savka, Michael A.; Dailey, Lucas; Popova, Milena; Mihaylova, Ralitsa; Merritt, Benjamin; Masek, Marissa; Le, Phuong; Nor, Sharifah Radziah Mat; Ahmad, Muhammad; Hudson, André O.; Bankova, Vassya

    2015-01-01

    Propolis or bee glue has been used for centuries for various purposes and is especially important in human health due to many of its biological and pharmacological properties. In this work we showed quorum sensing inhibitory (QSI) activity of ten geographically distinct propolis samples from the United States using the acyl-homoserine lactone- (AHL-) dependent Chromobacterium violaceum strain CV026. Based on GC-MS chemical profiling the propolis samples can be classified into several groups that are as follows: (1) rich in cinnamic acid derivatives, (2) rich in flavonoids, and (3) rich in triterpenes. An in-depth analysis of the propolis from North Carolina led to the isolation and identification of a triterpenic acid that was recently isolated from Hondurian propolis (Central America) and ethyl ether of p-coumaric alcohol not previously identified in bee propolis. QSI activity was also observed in the second group US propolis samples which contained the flavonoid pinocembrin in addition to other flavonoid compounds. The discovery of compounds that are involved in QSI activity has the potential to facilitate studies that may lead to the development of antivirulence therapies that can be complementary and/or alternative treatments against antibiotic resistant bacterial pathogens and/or emerging pathogens that have yet to be identified. PMID:25960752

  15. Freshwater-borne bacteria isolated from a Malaysian rainforest waterfall exhibiting quorum sensing properties.

    PubMed

    Tan, Wen-Si; Yunos, Nina Yusrina Muhamad; Tan, Pui-Wan; Mohamad, Nur Izzati; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-06-13

    One obvious requirement for concerted action by a bacterial population is for an individual to be aware of and respond to the other individuals of the same species in order to form a response in unison. The term "quorum sensing" (QS) was coined to describe bacterial communication that is able to stimulate expression of a series of genes when the concentration of the signaling molecules has reached a threshold level. Here we report the isolation from aquatic environment of a bacterium that was later identified as Enterobacter sp.. Chromobacterium violaceum CV026 and Escherichia coli [pSB401] were used for preliminary screening of N-acyl homoserine lactone (AHL) production. The Enterobacter sp. isolated was shown to produce two types of AHLs as confirmed by analysis using high resolution tandem mass spectrometry. To the best of our knowledge, this is the first documentation of an Enterobacter sp. that produced both 3-oxo-C6-HSL and 3-oxo-C8-HSL as QS signaling molecules.

  16. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    PubMed Central

    Dourado, Manuella Nóbrega; Bogas, Andrea Cristina; Pomini, Armando M.; Andreote, Fernando Dini; Quecine, Maria Carolina; Marsaioli, Anita J.; Araújo, Welington Luiz

    2013-01-01

    Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically) with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules) and/or by the plant roots (e.g. flavonoids, ethanol and methanol), respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones) and plant exudates (including ethanol) in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF), adaptation to stressful environment (crtI, phoU and sss), to interactions with plant metabolism compounds (acdS) and pathogenicity (patatin and phoU). Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization), which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction. PMID:24688531

  17. The Organization of the Quorum Sensing luxI/R Family Genes in Burkholderia

    PubMed Central

    Choudhary, Kumari Sonal; Hudaiberdiev, Sanjarbek; Gelencsér, Zsolt; Coutinho, Bruna Gonçalves; Venturi, Vittorio; Pongor, Sándor

    2013-01-01

    Members of the Burkholderia genus of Proteobacteria are capable of living freely in the environment and can also colonize human, animal and plant hosts. Certain members are considered to be clinically important from both medical and veterinary perspectives and furthermore may be important modulators of the rhizosphere. Quorum sensing via N-acyl homoserine lactone signals (AHL QS) is present in almost all Burkholderia species and is thought to play important roles in lifestyle changes such as colonization and niche invasion. Here we present a census of AHL QS genes retrieved from public databases and indicate that the local arrangement (topology) of QS genes, their location within chromosomes and their gene neighborhoods show characteristic patterns that differ between the known Burkholderia clades. In sequence phylogenies, AHL QS genes seem to cluster according to the local gene topology rather than according to the species, which suggests that the basic topology types were present prior to the appearance of current Burkholderia species. The data are available at http://net.icgeb.org/burkholderia/. PMID:23820583

  18. Detection of Quorum Sensing Signal Molecules in Edwardsiella ictaluri Ei-151.

    PubMed

    Yang, Qian; Han, Yin; Tinh, Nguyen Thi Ngoc; Hien, Nguyen Thi; Bossier, Peter

    2012-12-01

    Edwardsiella ictaluri is a Gram-negative pathogenic bacterium in the family Enterobacteriaceae that causes enteric septicemia of catfish, which has become a significant problem in the aquaculture of striped catfish (Pangasianodon hypophthalmus) in Vietnam. In this study, a bacterium designated as Ei-151 was isolated from diseased striped catfish and proved to be virulent. Based on 16S rDNA sequencing and phenotypic tests, the pathogenic bacterium was identified as Edw. ictaluri. The presence of quorum sensing signal molecules in Edw. ictaluri Ei-151 was detected with different biosensor strains. The results showed that Ei-151 produced at least three kinds of acylated homoserine lactone (AHL) signal molecules as detected with the biosensor Agrobacterium tumefaciens KYC55, and the AHLs fingerprint was similar to that of Edw. tarda. During its entire growth, the levels of AHLs and autoinducer-2 produced by Ei-151 peaked at the stationary phase (OD600 1.8), which suggested that both of them may function at the stationary phase. No Cholerae autoinducer-1-like activity (including Edw. ictaluri LMG7860(T)) was detected.

  19. Exploiting Quorum Sensing Interfering Strategies in Gram-Negative Bacteria for the Enhancement of Environmental Applications

    PubMed Central

    Zhang, Weiwei; Li, Chenghua

    2016-01-01

    Quorum sensing (QS) is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past 10 years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture. PMID:26779175

  20. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol.

    PubMed

    Ilk, Sedef; Sağlam, Necdet; Özgen, Mustafa; Korkusuz, Feza

    2017-01-01

    Quorum sensing (QS) is a cell density dependent expression of species in bacteria mediated by compounds called autoinducers (AI). Several processes responsible for successful establishment of bacterial infection are mediated by QS. Inhibition of QS is therefore being considered as a new target for antimicrobial chemotherapy. Flavonoid compounds are strong antioxidant and antimicrobial agents but their applications are limited due to their poor dissolution and bioavailability. Our objective was to investigate the effect of kaempferol loaded chitosan nanoparticles on modulating QS mediated by AI in model bioassay test systems. For this purpose, kaempferol loaded nanoparticles were synthesized and characterized in terms of hydrodynamic diameter, hydrogen bonding, amorphous transformation and antioxidant activity. QS inhibition in time dependent manner of nanoparticles was measured in violacein pigment producing using the biosensor strain Chromobacterium violaceum CV026 mediated by AI known as acylated homoserine lactone (AHL). Our results indicated that the average kaempferol loaded chitosan/TPP nanoparticle size and zeta potential were 192.27±13.6nm and +35mV, respectively. The loading and encapsulation efficiency of kaempferol into chitosan/TPP nanoparticles presented higher values between 78 and 93%. Kaempferol loaded chitosan/TPP nanoparticle during the 30 storage days significantly inhibited the production of violacein pigment in Chromobacterium violaceum CV026. The observation that kaempferol encapsulated chitosan nanoparticles can inhibit QS related processes opens up an exciting new strategy for antimicrobial chemotherapy as stable QS-based anti-biofilm agents.

  1. Bioassays of quorum sensing compounds using Agrobacterium tumefaciens and Chromobacterium violaceum.

    PubMed

    Chu, Weihua; Vattem, Dhiraj A; Maitin, Vatsala; Barnes, Mary B; McLean, Robert J C

    2011-01-01

    In most bacteria, a global level of regulation exists involving intercellular communication via the production and response to cell density-dependent signal molecules. This cell density-dependent regulation has been termed quorum sensing (QS). QS is a global regulator, which has been associated with a number of important features in bacteria including virulence regulation and biofilm formation. Consequently, there is considerable interest in understanding, detecting, and inhibiting QS. Acyl homoserine lactones (acyl HSLs) are used as extracellular QS signals by a variety of Gram-negative bacteria. Chromobacterium violaceum, a Gram-negative bacterium commonly found in soil and water, produces the characteristic purple pigment violacein, the production of which is regulated by acyl HSL-mediated QS. Based on this readily observed pigmentation phenotype, C. violaceum strains can be used to detect various aspects of acyl HSL-mediated QS activity. In another commonly used bioassay organism, Agrobacterium tumefaciens, QS can be detected by the use of a reporter gene such as lacZ. Here, we describe several commonly used approaches incorporating C. violaceum and A. tumefaciens that can be used to detect acyl HSLs and QS inhibition.

  2. Structural insights into a novel interkingdom signaling circuit by cartography of the ligand-binding sites of the homologous quorum sensing LuxR-family.

    PubMed

    Covaceuszach, Sonia; Degrassi, Giuliano; Venturi, Vittorio; Lamba, Doriano

    2013-10-15

    Recent studies have identified a novel interkingdom signaling circuit, via plant signaling molecules, and a bacterial sub-family of LuxR proteins, bridging eukaryotes and prokaryotes. Indeed pivotal plant-bacteria interactions are regulated by the so called Plant Associated Bacteria (PAB) LuxR solo regulators that, although closely related to the quorum sensing (QS) LuxR family, do not bind or respond to canonical quorum sensing N-acyl homoserine lactones (AHLs), but only to specific host plant signal molecules. The large body of structural data available for several members of the QS LuxR family complexed with different classes of ligands (AHLs and other compounds), has been exploited to dissect the cartography of their regulatory domains through structure-based multiple sequence alignments, structural superimposition and a comparative analysis of the contact residues involved in ligand binding. In the absence of experimentally determined structures of members of the PAB LuxR solos subfamily, an homology model of its prototype OryR is presented, aiming to elucidate the architecture of its ligand-binding site. The obtained model, in combination with the cartography of the regulatory domains of the homologous QS LuxRs, provides novel insights into the 3D structure of its ligand-binding site and unveils the probable molecular determinants responsible for differences in selectivity towards specific host plant signal molecules, rather than to canonical QS compounds.

  3. Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway.

    PubMed

    Corbett, Mark; Virtue, Sam; Bell, Kenneth; Birch, Paul; Burr, Tom; Hyman, Lysbeth; Lilley, Kathryn; Poock, Susannah; Toth, Ian; Salmond, George

    2005-04-01

    Two-dimensional polyacrylamide gel electrophoresis of the secreted proteins of Erwinia carotovora subsp. atroseptica revealed a low-abundance protein that was identified by mass spectrometry as a homologue of a Xanthomonas campestris avirulence protein with unknown function. The predicted Svx protein has an N-terminal signal sequence and zinc binding-region signature, and the mature protein is post-translationally modified. A 2D difference gel electrophoresis (DIGE) showed that the protein is secreted by the type II (out) secretion apparatus, which is also responsible for the secretion of the major known virulence factors, PelC and CelV. Transcription of the svx gene is under N-acyl-homoserine lactone-mediated quorum-sensing control. The svx gene was inactivated by transposon insertion. The mutant showed a decrease in virulence in potato plant assays, demonstrating a role for Svx in the pathogenicity of E. carotovora subsp. atroseptica. These results show that Svx is a previously unidentified virulence determinant which is secreted by the out machinery and is regulated by quorum sensing, two systems employed by several other virulence factors. Thus, the type II secretory machine is a conduit for virulence factors other than the main pectinnases and cellulase in E. carotovora subsp. atroseptica.

  4. Structural and Mechanistic Roles of Novel Chemical Ligands on the SdiA Quorum-Sensing Transcription Regulator

    SciTech Connect

    Nguyen, Y.; Nguyen, Nam X.; Rogers, Jamie L.; Liao, Jun; MacMillan, John B.; Jiang, Youxing; Sperandio, Vanessa

    2015-05-19

    Bacteria engage in chemical signaling, termed quorum sensing (QS), to mediate intercellular communication, mimicking multicellular organisms. The LuxR family of QS transcription factors regulates gene expression, coordinating population behavior by sensing endogenous acyl homoserine lactones (AHLs). However, some bacteria (such as Escherichia coli) do not produce AHLs. These LuxR orphans sense exogenous AHLs but also regulate transcription in the absence of AHLs. Importantly, this AHL-independent regulatory mechanism is still largely unknown. Here we present several structures of one such orphan LuxR-type protein, SdiA, from enterohemorrhagic E. coli (EHEC), in the presence and absence of AHL. SdiA is actually not in an apo state without AHL but is regulated by a previously unknown endogenous ligand, 1-octanoyl-rac-glycerol (OCL), which is ubiquitously found throughout the tree of life and serves as an energy source, signaling molecule, and substrate for membrane biogenesis. While exogenous AHL renders to SdiA higher stability and DNA binding affinity, OCL may function as a chemical chaperone placeholder that stabilizes SdiA, allowing for basal activity. Structural comparison between SdiA-AHL and SdiA-OCL complexes provides crucial mechanistic insights into the ligand regulation of AHL-dependent and -independent function of LuxR-type proteins. Importantly, in addition to its contribution to basic science, this work has implications for public health, inasmuch as the SdiA signaling system aids the deadly human pathogen EHEC to adapt to a commensal lifestyle in the gastrointestinal (GI) tract of cattle, its main reservoir. These studies open exciting and novel avenues to control shedding of this human pathogen in the environment. IMPORTANCE Quorum sensing refers to bacterial chemical signaling. The QS acyl homoserine lactone (AHL) signals are recognized by LuxR-type receptors that regulate gene transcription. However, some bacteria have orphan LuxR-type receptors and

  5. Structural and Mechanistic Roles of Novel Chemical Ligands on the SdiA Quorum-Sensing Transcription Regulator

    DOE PAGES

    Nguyen, Y.; Nguyen, Nam X.; Rogers, Jamie L.; ...

    2015-05-19

    Bacteria engage in chemical signaling, termed quorum sensing (QS), to mediate intercellular communication, mimicking multicellular organisms. The LuxR family of QS transcription factors regulates gene expression, coordinating population behavior by sensing endogenous acyl homoserine lactones (AHLs). However, some bacteria (such as Escherichia coli) do not produce AHLs. These LuxR orphans sense exogenous AHLs but also regulate transcription in the absence of AHLs. Importantly, this AHL-independent regulatory mechanism is still largely unknown. Here we present several structures of one such orphan LuxR-type protein, SdiA, from enterohemorrhagic E. coli (EHEC), in the presence and absence of AHL. SdiA is actually not inmore » an apo state without AHL but is regulated by a previously unknown endogenous ligand, 1-octanoyl-rac-glycerol (OCL), which is ubiquitously found throughout the tree of life and serves as an energy source, signaling molecule, and substrate for membrane biogenesis. While exogenous AHL renders to SdiA higher stability and DNA binding affinity, OCL may function as a chemical chaperone placeholder that stabilizes SdiA, allowing for basal activity. Structural comparison between SdiA-AHL and SdiA-OCL complexes provides crucial mechanistic insights into the ligand regulation of AHL-dependent and -independent function of LuxR-type proteins. Importantly, in addition to its contribution to basic science, this work has implications for public health, inasmuch as the SdiA signaling system aids the deadly human pathogen EHEC to adapt to a commensal lifestyle in the gastrointestinal (GI) tract of cattle, its main reservoir. These studies open exciting and novel avenues to control shedding of this human pathogen in the environment. IMPORTANCE Quorum sensing refers to bacterial chemical signaling. The QS acyl homoserine lactone (AHL) signals are recognized by LuxR-type receptors that regulate gene transcription. However, some bacteria have orphan Lux

  6. Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI.

    PubMed

    Lewenza, S; Conway, B; Greenberg, E P; Sokol, P A

    1999-02-01

    Burkholderia cepacia has emerged as an important pathogen in patients with cystic fibrosis. Many gram-negative pathogens regulate the production of extracellular virulence factors by a cell density-dependent mechanism termed quorum sensing, which involves production of diffusible N-acylated homoserine lactone signal molecules, called autoinducers. Transposon insertion mutants of B. cepacia K56-2 which hyperproduced siderophores on chrome azurol S agar were identified. One mutant, K56-R2, contained an insertion in a luxR homolog that was designated cepR. The flanking DNA region was used to clone the wild-type copy of cepR. Sequence analysis revealed the presence of cepI, a luxI homolog, located 727 bp upstream and divergently transcribed from cepR. A lux box-like sequence was identified upstream of cepI. CepR was 36% identical to Pseudomonas aeruginosa RhlR and 67% identical to SolR of Ralstonia solanacearum. CepI was 38% identical to RhlI and 64% identical to SolI. K56-R2 demonstrated a 67% increase in the production of the siderophore ornibactin, was protease negative on dialyzed brain heart infusion milk agar, and produced 45% less lipase activity in comparison to the parental strain. Complementation of a cepR mutation restored parental levels of ornibactin and protease but not lipase. An N-acylhomoserine lactone was purified from culture fluids and identified as N-octanoylhomoserine lactone. K56-I2, a cepI mutant, was created and shown not to produce N-octanoylhomoserine lactone. K56-I2 hyperproduced ornibactin and did not produce protease. These data suggest both a positive and negative role for cepIR in the regulation of extracellular virulence factor production by B. cepacia.

  7. Isolation and characterization of quorum-sensing signalling molecules in Pseudomonas aeruginosa isolates recovered from nosocomial infections.

    PubMed

    Lakshmana Gowda, Krishnappa; John, James; Marie, Mohammed A M; Sangeetha, Gopalkrishnan; Bindurani, Shanta Range

    2013-09-01

    Pseudomonas aeruginosa is one of the most common pathogens in nosocomial infections. Many studies have documented the role of quorum-sensing (QS) systems in antibiotic tolerance of P. aeruginosa. N-acyl homoserine lactones (AHLs) serve as QS signalling molecules and can be a target for modulating bacterial pathogenicity. In this study, nosocomial isolates of P. aeruginosa were characterized for the presence of different types of QS signalling molecules. AHLs were solvent extracted and quantified by determination of β-galactosidase activity using the Escherichia coli MG4 reporter strain. Further characterization was performed by analytical thin layer chromatography coupled with detection using the Agrobacterium tumefaciens A136 biosensor strain. All P. aeruginosa isolates produced AHLs, but there were differences in the quantity and nature of AHLs. We identified AHLs belonging to C4-homoserine lactone (HSL), C6-HSL, C8-HSL, C10-HSL and C12-HSL. AHL profiling of P. aeruginosa isolates showed differences in the amounts and types of AHLs, suggesting differences in the virulence factors and the potential for infection. Our results may be investigated further using animal model systems.

  8. Mutational analysis of the quorum-sensing receptor LasR reveals interactions that govern activation and inhibition by non-lactone ligands

    PubMed Central

    Gerdt, Joseph P.; McInnis, Christine E.; Schell, Trevor L.; Rossi, Francis M.; Blackwell, Helen E.

    2014-01-01

    SUMMARY Gram-negative bacteria use N-acyl L-homoserine lactone (AHL) quorum sensing (QS) signals to regulate the expression of myriad phenotypes. Non-native AHL analogs can strongly attenuate QS receptor activity and thereby QS signaling; however, we currently lack a molecular understanding of the mechanisms by which most of these compounds elicit their agonistic or antagonistic profiles. In this study, we investigated the origins of striking activity profile switches (i.e., receptor activator to inhibitor, and vice versa) observed upon alteration of the lactone head group in certain AHL analogs. Reporter gene assays of mutant versions of the Pseudomonas aeruginosa QS receptor LasR revealed that interactions between the ligands and Trp60, Tyr56, and Ser129 govern whether these ligands behave as LasR activators or inhibitors. Using this knowledge, we propose a model for the modulation of LasR by AHL analogs—encompassing a subtly different interaction with the binding pocket to a global change in LasR conformation. PMID:25242287

  9. In Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway.

    PubMed

    Barbey, Corinne; Crépin, Alexandre; Bergeau, Dorian; Ouchiha, Asma; Mijouin, Lily; Taupin, Laure; Orange, Nicole; Feuilloley, Marc; Dufour, Alain; Burini, Jean-François; Latour, Xavier

    2013-01-01

    The virulence of numerous Gram-negative bacteria is under the control of a quorum sensing process based on synthesis and perception of N-acyl homoserine lactones. Rhodococcus erythropolis, a Gram-positive bacterium, has recently been proposed as a biocontrol agent for plant protection against soft-rot bacteria, including Pectobacterium. Here, we show that the γ-lactone catabolic pathway of R. erythropolis disrupts Pectobacterium communication and prevents plant soft-rot. We report the first characterization and demonstration of N-acyl homoserine lactone quenching in planta. In particular, we describe the transcription of the R. erythropolis lactonase gene, encoding the key enzyme of this pathway, and the subsequent lactone breakdown. The role of this catabolic pathway in biocontrol activity was confirmed by deletion of the lactonase gene from R. erythropolis and also its heterologous expression in Escherichia coli. The γ-lactone catabolic pathway is induced by pathogen communication rather than by pathogen invasion. This is thus a novel and unusual biocontrol pathway, differing from those previously described as protecting plants from phytopathogens. These findings also suggest the existence of an additional pathway contributing to plant protection.

  10. Novel insights from molecular docking of SdiA from Salmonella Enteritidis and Escherichia coli with quorum sensing and quorum quenching molecules.

    PubMed

    Almeida, Felipe Alves de; Pinto, Uelinton Manoel; Vanetti, Maria Cristina Dantas

    2016-10-01

    Quorum sensing is a cell-to-cell communication mechanism leading to differential gene expression in response to high population density. The autoinducer-1 (AI-1) type quorum sensing system is incomplete in Escherichia coli and Salmonella due to the lack of the AI-1 synthase (LuxI homolog) responsible for acyl homoserine lactone (AHL) synthesis. However, these bacteria encode the AHL receptor SdiA (a LuxR homolog) leading to gene regulation in response to AI-1 produced by other bacteria. This study aimed to model the SdiA protein of Salmonella enterica serovar Enteritidis PT4 578 based on three crystallized SdiA structures from Enterohemorrhagic E. coli (EHEC) with different ligands. Molecular docking of these predicted structures with AHLs, furanones and 1-octanoyl-rac-glycerol were also performed. The available EHEC SdiA structures provided good prototypes for modeling SdiA from Salmonella. The molecular docking of these proteins showed that residues Y63, W67, Y71, D80 and S134 are common binding sites for different quorum modulating signals, besides being conserved among other LuxR type proteins. We also show that AHLs with twelve carbons presented better binding affinity to SdiA than AHLs with smaller side chains in our docking analysis, regardless of the protein structures used. Interestingly, the conformational changes provided by AHL binding resulted in structural models with increased affinities to brominated furanones. These results suggest that the use of brominated furanones to inhibit phenotypes controlled by quorum sensing in Salmonella and EHEC may present a good strategy since these inhibitors seem to specifically compete with AHLs for binding to SdiA in both pathogens.

  11. A quorum sensing-defective mutant of Pectobacterium carotovorum ssp. brasiliense 1692 is attenuated in virulence and unable to occlude xylem tissue of susceptible potato plant stems.

    PubMed

    Moleleki, Lucy Novungayo; Pretorius, Rudolph Gustav; Tanui, Collins Kipngetich; Mosina, Gabolwelwe; Theron, Jacques

    2017-01-01

    Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post-harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall-degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild-type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild-type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild-type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI-inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild-type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down-regulated in the mutant compared with the wild-type strain.

  12. Responses of the Microalga Chlorophyta sp. to Bacterial Quorum Sensing Molecules (N-Acylhomoserine Lactones): Aromatic Protein-Induced Self-Aggregation.

    PubMed

    Zhou, Dandan; Zhang, Chaofan; Fu, Liang; Xu, Liang; Cui, Xiaochun; Li, Qingcheng; Crittenden, John C

    2017-03-21

    Bacteria and microalgae often coexist during the recycling of microalgal bioresources in wastewater treatment processes. Although the bacteria may compete with the microalgae for nutrients, they could also facilitate microalgal harvesting by forming algal-bacterial aggregates. However, very little is known about interspecies interactions between bacteria and microalgae. In this study, we investigated the responses of a model microalga, Chlorophyta sp., to the typical quorum sensing (QS) molecules N-acylhomoserine lactones (AHLs) extracted from activated sludge bacteria. Chlorophyta sp. self-aggregated in 200 μm bioflocs by secreting 460-1000 kDa aromatic proteins upon interacting with AHLs, and the settling efficiency of Chlorophyta sp. reached as high as 41%. However, Chlorophyta sp. cells were essentially in a free suspension in the absence of AHLs. Fluorescence intensity of the aromatic proteins had significant (P < 0.05) relationship with the Chlorophyta sp. settleability, and showed a positive correlation, indicating that aromatic proteins helped aggregate microalga. Transcriptome results further revealed up-regulation of synthesis pathways for aromatic proteins from tyrosine and phenylalanine that was assisted by anthranilate accumulation. To the best of our knowledge, this is the first study to confirm that eukaryotic microorganisms can sense and respond to prokaryotic QS molecules.

  13. Quorum sensing by N-acylhomoserine lactones is not required for Aeromonas hydrophila during growth with organic particles in lake water microcosms.

    PubMed

    Styp von Rekowski, Katharina; Hempel, Melanie; Philipp, Bodo

    2008-05-01

    It was investigated whether quorum sensing (QS) mediated by N-acylhomoserine lactones (AHLs) was important for heterotrophic bacteria from the littoral zone of the oligotrophic Lake Constance for growth with organic particles. More than 900 colonies from lake water microcosms with artificial organic aggregates consisting of autoclaved unicellular algae embedded in agarose beads were screened for AHL-production. AHL-producing bacteria of the genus Aeromonas enriched in the microcosms but AHLs could not be detected in any microcosm. To test for a potential function of AHL-mediated QS, growth experiments with the wild type and an AHL-deficient mutant of Aeromonas hydrophila in lake water microcosms were performed. Growth of both strains did not differ in single cultures and showed no mutual influence in co-cultures. In co-cultures with a competitor bacterium belonging to the Cytophaga-Flavobacterium group, growth of both A. hydrophila strains was reduced while growth of the competitor bacterium was not affected. Exogenous AHL-addition did not influence growth of the Aeromonas strains in any microcosm experiment. These results showed that AHL-mediated QS was not required for A. hydrophila during colonization and degradation of organic particles in lake water microcosms, suggesting that cell-cell signalling of heterotrophic bacteria in oligotrophic waters relies on novel signal molecules.

  14. Effect of quorum sensing signals produced by seaweed-associated bacteria on carpospore liberation from Gracilaria dura.

    PubMed

    Singh, Ravindra Pal; Baghel, Ravi S; Reddy, C R K; Jha, Bhavanath

    2015-01-01

    Epiphytic and endophytic bacteria associated with green macroalgae Ulva (U. fasciata and U. lactuca) and red macroalgae Gracilaria (G. corticata and G. dura) have been identified from three different seasons to evaluate the effect of quorum sensing (QS) molecules on carpospores liberation from Gracilaria dura. The bacterial isolates belonging to the orders Bacillales, Pseudomonadales, Alteromonadales, and Vibrionales were present in all seasons, whereas Actinomycetales and Enterobacteriales were confined to pre-monsoon and post-monsoon seasons, respectively. Among all the Gram-negative bacteria, seven isolates were found to produce different types of N-acyl homoserine lactones (AHLs). Interestingly, Shewanella algae produced five types of AHL: C4-HSL, HC4-HSL, C6-HSL, 3-oxo-C6-HSL, and 3-oxo-C12-HSL. Subsequently, the AHLs producing bacterial isolates were screened for carpospore liberation from G. dura and these isolates were found to positively induce carpospore liberation over the control. Also, observed that carpospore liberation increased significantly in C4- and C6-HSL treated cystocarps. Sodium dodecyl sulfate and native polyacrylamide gel electrophoresis of the total protein of the C4- and C6-HSL treated cystocarps showed two specific peptide bands of different molecular weights (50 kDa and 60 kDa) as compared to the control, confirming their indirect effect on carpospore liberation.

  15. Mouse nasal epithelial innate immune responses to Pseudomonas aeruginosa quorum-sensing molecules require taste signaling components.

    PubMed

    Lee, Robert J; Chen, Bei; Redding, Kevin M; Margolskee, Robert F; Cohen, Noam A

    2014-08-01

    We previously observed that the human bitter taste receptor T2R38 is an important component of upper respiratory innate defense because it detects acyl homoserine lactone (AHL) quorum-sensing molecules secreted by Gram-negative bacteria. T2R38 activation in human sinonasal epithelial cells stimulates calcium and NO signals that increase mucociliary clearance, the major physical respiratory defense against inhaled pathogens. While mice do not have a clear T2R38 ortholog, they do have bitter taste receptors capable of responding to T2R38 agonists, suggesting that T2R-mediated innate immune mechanisms may be conserved in mice. We examined whether AHLs activate calcium and NO signaling in mouse nasal epithelial cells, and utilized pharmacology, as well as cells from knockout mice lacking important components of canonical taste signal transduction pathways, to determine if AHL-stimulated responses require taste signaling molecules. We found that AHLs stimulate calcium-dependent NO production that increases mucociliary clearance and thus likely serves an innate immune role against Gram-negative bacteria. These responses require PLCβ2 and TRPM5 taste signaling components, but not α-gustducin. These data suggest the mouse may be a useful model for further studies of T2R-mediated innate immunity.

  16. Effect of quorum sensing signals produced by seaweed-associated bacteria on carpospore liberation from Gracilaria dura

    PubMed Central

    Singh, Ravindra Pal; Baghel, Ravi S.; Reddy, C. R. K.; Jha, Bhavanath

    2015-01-01

    Epiphytic and endophytic bacteria associated with green macroalgae Ulva (U. fasciata and U. lactuca) and red macroalgae Gracilaria (G. corticata and G. dura) have been identified from three different seasons to evaluate the effect of quorum sensing (QS) molecules on carpospores liberation from Gracilaria dura. The bacterial isolates belonging to the orders Bacillales, Pseudomonadales, Alteromonadales, and Vibrionales were present in all seasons, whereas Actinomycetales and Enterobacteriales were confined to pre-monsoon and post-monsoon seasons, respectively. Among all the Gram-negative bacteria, seven isolates were found to produce different types of N-acyl homoserine lactones (AHLs). Interestingly, Shewanella algae produced five types of AHL: C4-HSL, HC4-HSL, C6-HSL, 3-oxo-C6-HSL, and 3-oxo-C12-HSL. Subsequently, the AHLs producing bacterial isolates were screened for carpospore liberation from G. dura and these isolates were found to positively induce carpospore liberation over the control. Also, observed that carpospore liberation increased significantly in C4- and C6-HSL treated cystocarps. Sodium dodecyl sulfate and native polyacrylamide gel electrophoresis of the total protein of the C4- and C6-HSL treated cystocarps showed two specific peptide bands of different molecular weights (50 kDa and 60 kDa) as compared to the control, confirming their indirect effect on carpospore liberation. PMID:25788899

  17. Diverse Profiles of AI-1 Type Quorum Sensing Molecules in Cultivable Bacteria from the Mangrove (Kandelia obovata) Rhizosphere Environment.

    PubMed

    Ma, Zhi P; Lao, Yong M; Jin, Hui; Lin, Guang H; Cai, Zhong H; Zhou, Jin

    2016-01-01

    Mangrove rhizosphere environment harbors diverse populations of microbes, and some evidence showed that rhizobacteria behavior was regulated by quorum sensing (QS). Investigating the diverse profiles of QS molecules in mangrove ecosystems may shed light on the bacterial roles and lead to a better understanding of the symbiotic interactions between plants and microbes. The aims of the current study focus on identifying AI-1 type QS signals, i.e., acyl homoserine lactones (AHLs), in Kandelia obovata rhizosphere environment. Approximately 1200 rhizobacteria were screened and 184 strains (15.3%) tested were positive. Subsequent 16s rRNA gene sequencing and dereplication analyses identified 24 species from the positive isolates, which were affiliated to three different phyla, including Proteobacteria, Firmicutes, and Actinobacteria. Thin-layer chromatography separation of extracts revealed diverse AHL profiles and detected at least one active compound in the supernatant of these 24 cultivable AHL-producers. The active extracts from these bacterial isolates were further evaluated by ultra performance liquid chromatography-mass spectrometry, and the carbon side chain length ranged from C4 to C14. This is the first report on the diversity of AI-1 type auto-inducers in the mangrove plant K. obovata, and it is imperative to expand our knowledge of plant-bacteria interactions with respect to the maintenance of wetland ecosystem health.

  18. Diverse Profiles of AI-1 Type Quorum Sensing Molecules in Cultivable Bacteria from the Mangrove (Kandelia obovata) Rhizosphere Environment

    PubMed Central

    Ma, Zhi P.; Lao, Yong M.; Jin, Hui; Lin, Guang H.; Cai, Zhong H.; Zhou, Jin

    2016-01-01

    Mangrove rhizosphere environment harbors diverse populations of microbes, and some evidence showed that rhizobacteria behavior was regulated by quorum sensing (QS). Investigating the diverse profiles of QS molecules in mangrove ecosystems may shed light on the bacterial roles and lead to a better understanding of the symbiotic interactions between plants and microbes. The aims of the current study focus on identifying AI-1 type QS signals, i.e., acyl homoserine lactones (AHLs), in Kandelia obovata rhizosphere environment. Approximately 1200 rhizobacteria were screened and 184 strains (15.3%) tested were positive. Subsequent 16s rRNA gene sequencing and dereplication analyses identified 24 species from the positive isolates, which were affiliated to three different phyla, including Proteobacteria, Firmicutes, and Actinobacteria. Thin-layer chromatography separation of extracts revealed diverse AHL profiles and detected at least one active compound in the supernatant of these 24 cultivable AHL-producers. The active extracts from these bacterial isolates were further evaluated by ultra performance liquid chromatography-mass spectrometry, and the carbon side chain length ranged from C4 to C14. This is the first report on the diversity of AI-1 type auto-inducers in the mangrove plant K. obovata, and it is imperative to expand our knowledge of plant-bacteria interactions with respect to the maintenance of wetland ecosystem health. PMID:27994584

  19. Strain identification and quorum sensing inhibition characterization of marine-derived Rhizobium sp. NAO1

    PubMed Central

    Chang, Hong; Zhu, Xiaoshan; Yu, Shenchen; Chen, Lu; Jin, Hui; Cai, Zhonghua

    2017-01-01

    A novel strategy for combating pathogens is through the ongoing development and use of anti-quorum sensing (QS) treatments such as therapeutic bacteria or their anti-QS substances. Relatively little is known about the bacteria that inhabit the open ocean and of their potential anti-pathogenic attributes; thus, in an initiative to identify these types of therapeutic bacteria, planktonic microbes from the North Atlantic Ocean were collected, isolated, cultured and screened for anti-QS activity. Screening analysis identified one such strain, Rhizobium sp. NAO1. Extracts of Rhizobium sp. NAO1 were identified via ultra-performance liquid chromatography (UPLC) analysis. They were shown to contain N-acyl homoserine lactone (AHL)-based QS analogues (in particular, the N-butyryl homoserine lactone (C4-AHL) analogue) and could disrupt biofilm formation by Pseudomonas aeruginosa PAO1. QS inhibition was confirmed using confocal scanning laser microscopy and growth curves, and it was shown to occur in a dose-dependent manner without affecting bacterial growth. Secondary metabolites of Rhizobium sp. NAO1 inhibited PAO1 pathogenicity by downregulating AHL-mediated virulence factors such as elastase activity and siderophore production. Furthermore, as a result of biofilm structure damage, the secondary metabolite products of Rhizobium sp. NAO1 significantly increased the sensitivity of PAO1 to aminoglycoside antibiotics. Our results demonstrated that Rhizobium sp. strain NAO1 has the ability to disrupt P. aeruginosa PAO1 biofilm architecture, in addition to attenuating P. aeruginosa PAO1 virulence factor production and pathogenicity. Therefore, the newly identified ocean-derived Rhizobium sp. NAO1 has the potential to serve as a QS inhibitor and may be a new microbial resource for drug development.

  20. Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1.

    PubMed

    Rajesh, P S; Ravishankar Rai, V

    2014-01-01

    Quorum sensing mechanism allows the microorganisms to resist the antibiotic treatment by forming biofilms. Quorum quenching is one of the mechanisms to control the development of drug resistance in microbes. Endophyte bacteria are beneficial to plant growth as they support the immune system against the pathogen attack. The endophytic bacteria present in Pterocarpus santalinus were screened for the presence of N-acyl homoserine lactones (AHLs) degrading bacteria using biosensor strains and further confirmed by quantifying the violacein production. Cell-free lysate of endophytic bacteria, Bacillus firmus PT18 and Enterobacter asburiae PT39 exhibited potent AHL degrading ability by inhibiting about 80% violacein production in biosensor strain. Furthermore, when the cell-free lysate was applied to Pseudomonas aeruginosa PAO1 and PAO1-JP2 biofilm it resulted in significant (p<0.01) inhibition of biofilm formation. The biofilm inhibition was confirmed by visualization of biofilm slides under fluorescence microscopy, which showed decrease in total biomass formation in treated slides. Isolation and amplification of the gene (aiiA) indicated that the presence of AHL lactonase in cell-free lysate and sequence alignment indicated that AiiA contains a "HXHXDH" zinc-binding motif that is being conserved in several groups of metallohydrolases. Therefore, the study shows the potential of AHLs degradation by AHL lactonase present in cell-free lysate of isolated endophytic bacteria and inhibition of quorum sensing regulated biofilm formation in P. aeruginosa PAO1.

  1. Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria.

    PubMed

    Pérez-Montaño, Francisco; Jiménez-Guerrero, Irene; Contreras Sánchez-Matamoros, Rocío; López-Baena, Francisco Javier; Ollero, Francisco Javier; Rodríguez-Carvajal, Miguel A; Bellogín, Ramón A; Espuny, M Rosario

    2013-09-01

    Many bacteria regulate their gene expression in response to changes in their population density in a process called quorum sensing (QS), which involves communication between cells mediated by small diffusible signal molecules termed autoinducers. n-acyl-homoserine-lactones (AHLs) are the most common autoinducers in proteobacteria. QS-regulated genes are involved in complex interactions between bacteria of the same or different species and even with some eukaryotic organisms. Eukaryotes, including plants, can interfere with bacterial QS systems by synthesizing molecules that interfere with bacterial QS systems. In this work, the presence of AHL-mimic QS molecules in diverse Oryza sativa (rice) and Phaseolus vulgaris (bean) plant-samples were detected employing three biosensor strains. A more intensive analysis using biosensors carrying the lactonase enzyme showed that bean and rice seed-extract contain molecules that lack the typical lactone ring of AHLs. Interestingly, these molecules specifically alter the QS-regulated biofilm formation of two plant-associated bacteria, Sinorhizobium fredii SMH12 and Pantoea ananatis AMG501, suggesting that plants are able to enhance or to inhibit the bacterial QS systems depending on the bacterial strain. Further studies would contribute to a better understanding of plant-bacteria relationships at the molecular level.

  2. Paraoxonase 2 Serves a Proapopotic Function in Mouse and Human Cells in Response to the Pseudomonas aeruginosa Quorum-sensing Molecule N-(3-Oxododecanoyl)-homoserine Lactone*

    PubMed Central

    Schwarzer, Christian; Fu, Zhu; Morita, Takeshi; Whitt, Aaron G.; Neely, Aaron M.; Li, Chi; Machen, Terry E.

    2015-01-01

    Pseudomonas aeruginosa use quorum-sensing molecules, including N-(3-oxododecanoyl)-homoserine lactone (C12), for intercellular communication. C12 activated apoptosis in mouse embryo fibroblasts (MEF) from both wild type (WT) and Bax/Bak double knock-out mice (WT MEF and DKO MEF that were responsive to C12, DKOR MEF): nuclei fragmented; mitochondrial membrane potential (Δψmito) depolarized; Ca2+ was released from the endoplasmic reticulum (ER), increasing cytosolic [Ca2+] (Cacyto); and caspase 3/7 was activated. DKOR MEF had been isolated from a nonclonal pool of DKO MEF that were non-responsive to C12 (DKONR MEF). RNAseq analysis, quantitative PCR, and Western blots showed that WT and DKOR MEF both expressed genes associated with cancer, including paraoxonase 2 (PON2), whereas DKONR MEF expressed little PON2. Adenovirus-mediated expression of human PON2 in DKONR MEF rendered them responsive to C12: Δψmito depolarized, Cacyto increased, and caspase 3/7 activated. Human embryonic kidney 293T (HEK293T) cells expressed low levels of endogenous PON2, and these cells were also less responsive to C12. Overexpression of PON2, but not PON2-H114Q (no lactonase activity) in HEK293T cells caused them to become sensitive to C12. Because [C12] may reach high levels in biofilms in lungs of cystic fibrosis (CF) patients, PON2 lactonase activity may control Δψmito, Ca2+ release from the ER, and apoptosis in CF airway epithelia. Coupled with previous data, these results also indicate that PON2 uses its lactonase activity to prevent Bax- and Bak-dependent apoptosis in response to common proapoptotic drugs like doxorubicin and staurosporine, but activates Bax- and Bak-independent apoptosis in response to C12. PMID:25627690

  3. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    SciTech Connect

    Paes, Camila

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer An evidence of the positive effect of AHL on epithelialization process is provided. Black-Right-Pointing-Pointer AHL enhances keratinocyte's ability to migrate in an in vitro scratch wound model. Black-Right-Pointing-Pointer AHL induces the expression of Mmp13. Black-Right-Pointing-Pointer Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalian cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte's activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte's ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration process.

  4. The Burkholderia pseudomallei BpeAB-OprB Efflux Pump: Expression and Impact on Quorum Sensing and Virulence

    PubMed Central

    Chan, Ying Ying; Chua, Kim Lee

    2005-01-01

    BpeAB-OprB is a multidrug efflux pump of the bacterial pathogen Burkholderia pseudomallei and is responsible for conferring antimicrobial resistance to aminoglycosides and macrolides. Expression of bpeAB-oprB is inducible by its substrate erythromycin and upon entry into stationary phase. BpeR, a member of the TetR family, functions as a repressor of the bpeAB-oprB operon. bpeR expression was similarly induced at stationary phase but lagged behind the induction of bpeAB-oprB expression. The induction of bpeAB-oprB expression could be advanced to the early exponential phase by exogenous addition of the B. pseudomallei autoinducers N-octanoyl-homoserine lactone (C8HSL) and N-decanoyl-homoserine lactone (C10HSL), suggesting that the bpeAB-oprB operon may be quorum regulated. On the other hand, acyl-homoserine lactone (acyl-HSL) production was undetectable in the bpeAB-null mutant and strains which overexpress bpeR. The failure of these strains to produce acyl-HSLs seemed to be at the level of synthesis of acyl-HSLs, as growth-phase-dependent expression of the autoinducer synthase BpsI was abolished in the bpeAB-null mutant. bpsI expression remained growth phase dependent in the bpeR mutant which had functional BpeAB-OprB. BpeAB-OprB function is likewise necessary for optimal production of quorum-sensing-controlled virulence factors such as siderophore and phospholipase C and for biofilm formation. Cell invasion and cytotoxicity towards human lung epithelial (A549) and human macrophage (THP-1) cells were also significantly attenuated in both the bpeAB mutant and bpeR-overexpressing strains, thus suggesting the possibility of attenuating B. pseudomallei virulence using inhibitors of the BpeAB-OprB efflux pump. PMID:15995185

  5. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence.

    PubMed

    Chan, Ying Ying; Chua, Kim Lee

    2005-07-01

    BpeAB-OprB is a multidrug efflux pump of the bacterial pathogen Burkholderia pseudomallei and is responsible for conferring antimicrobial resistance to aminoglycosides and macrolides. Expression of bpeAB-oprB is inducible by its substrate erythromycin and upon entry into stationary phase. BpeR, a member of the TetR family, functions as a repressor of the bpeAB-oprB operon. bpeR expression was similarly induced at stationary phase but lagged behind the induction of bpeAB-oprB expression. The induction of bpeAB-oprB expression could be advanced to the early exponential phase by exogenous addition of the B. pseudomallei autoinducers N-octanoyl-homoserine lactone (C8HSL) and N-decanoyl-homoserine lactone (C10HSL), suggesting that the bpeAB-oprB operon may be quorum regulated. On the other hand, acyl-homoserine lactone (acyl-HSL) production was undetectable in the bpeAB-null mutant and strains which overexpress bpeR. The failure of these strains to produce acyl-HSLs seemed to be at the level of synthesis of acyl-HSLs, as growth-phase-dependent expression of the autoinducer synthase BpsI was abolished in the bpeAB-null mutant. bpsI expression remained growth phase dependent in the bpeR mutant which had functional BpeAB-OprB. BpeAB-OprB function is likewise necessary for optimal production of quorum-sensing-controlled virulence factors such as siderophore and phospholipase C and for biofilm formation. Cell invasion and cytotoxicity towards human lung epithelial (A549) and human macrophage (THP-1) cells were also significantly attenuated in both the bpeAB mutant and bpeR-overexpressing strains, thus suggesting the possibility of attenuating B. pseudomallei virulence using inhibitors of the BpeAB-OprB efflux pump.

  6. Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat.

    PubMed

    Abed, Raeid M M; Dobretsov, Sergey; Al-Fori, Marwan; Gunasekera, Sarath P; Sudesh, Kumar; Paul, Valerie J

    2013-07-01

    In this study, extremely halophilic and moderately thermophilic microorganisms from a hypersaline microbial mat were screened for their ability to produce antibacterial, antidiatom, antialgal, and quorum-sensing (QS) inhibitory compounds. Five bacterial strains belonging to the genera Marinobacter and Halomonas and one archaeal strain belonging to the genus Haloterrigena were isolated from a microbial mat. The strains were able to grow at a maximum salinity of 22-25 % and a maximum temperature of 45-60 °C. Hexanes, dichloromethane, and butanol extracts from the strains inhibited the growth of at least one out of nine human pathogens. Only butanol extracts of supernatants of Halomonas sp. SK-1 inhibited growth of the microalga Dunaliella salina. Most extracts from isolates inhibited QS of the acyl homoserine lactone producer and reporter Chromobacterium violaceum CV017. Purification of QS inhibitory dichloromethane extracts of Marinobacter sp. SK-3 resulted in isolation of four related diketopiperazines (DKPs): cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), cyclo(L-Pro-L-isoLeu), and cyclo(L-Pro-D-Phe). QS inhibitory properties of these DKPs were tested using C. violaceum CV017 and Escherichia coli-based QS reporters (pSB401 and pSB1075) deficient in AHL production. Cyclo(L-Pro-L-Phe) and cyclo(L-Pro-L-isoLeu) inhibited QS-dependent production of violacein by C. violaceum CV017. Cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-isoLeu) reduced QS-dependent luminescence of the reporter E. coli pSB401 induced by 3-oxo-C6-HSL. Our study demonstrated the ability of halophilic and moderately thermophilic strains from a hypersaline microbial mat to produce biotechnologically relevant compounds that could be used as antifouling agents.

  7. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in pressure ulcer infection in rats.

    PubMed

    Nakagami, Gojiro; Morohoshi, Tomohiro; Ikeda, Tsukasa; Ohta, Yasunori; Sagara, Hiroshi; Huang, Lijuan; Nagase, Takashi; Sugama, Junko; Sanada, Hiromi

    2011-01-01

    The impact of quorum sensing (QS) in in vivo models of infection has been widely investigated, but there are no descriptions for ischemic wound infection. To explore the role of QS in Pseudomonas aeruginosa in the establishment of ischemic wound infection, we challenged a pressure ulcer model in rats with the PAO-1, PAO-1 derivatives ΔlasIΔrhlI and ΔlasRΔrhlR strains, which cannot induce the virulence factor under QS control, thus the reduced tissue destruction was expended in these mutant strains. However unexpectedly, on postwounding day 3, the inflammatory responses in the three groups were similarly severe and the numbers of bacteria in tissue samples did not differ among the three strains. Biofilm formation was immature in QS-deficient strains, defined by the absence of dense bacterial aggregates and extracellular polymeric substance, which was confirmed by scanning electron microscopy. The Pseudomonas aeruginosa QS signal, acylated homoserine lactone, was only quantified from wound samples in the PAO-1 group. The swimming and twitching motilities were significantly enhanced in the ΔlasRΔrhlR group compared with the PAO-1 group in vitro. A significantly larger wound area was correlated with the bacterial motility. The inflammation in the early phase of bacterial challenge to wounds with immature biofilm formation in the QS-deficient strains indicated that the role of QS was more crucial for the chronic phase than for the acute phase of infection. The present findings indicate a difference in the importance of QS in ischemic wound infections compared with other infection models.

  8. Arachis hypogaea L. produces mimic and inhibitory quorum sensing like molecules.

    PubMed

    Nievas, F; Vilchez, L; Giordano, W; Bogino, P

    2017-03-29

    A wide variety of plant-associated soil bacteria (rhizobacteria) communicate with each other by quorum sensing (QS). Plants are able to detect and produce mimics and inhibitor molecules of the QS bacterial communicative process. Arachis hypogaea L. (peanut) establishes a nitrogen-fixing symbiosis with rhizobia belonging to the genus Bradyrhizobium. These bacteria use a QS mechanism dependent on the synthesis of N-acyl homoserine lactones (AHLs). Given the relevance that plant-rhizobacteria interactions have at the ecological level, this work addresses the involvement of peanut in taking part in the QS mechanism. By using biosensor bacterial strains capable of detecting AHLs, a series of standard and original bioassays were performed in order to determine both (i) the production of QS-like molecules in vegetal materials and (ii) the expression of the QS mechanism throughout plant-bacteria interaction. Mimic QS-like molecules (mQS) linked to AHLs with long acyl chains (lac-AHL), and inhibitor QS-like molecules (iQS) linked to AHLs with short acyl chains (sac-AHL) were detected in seed and root exudates. The results revealed that synthesis of specific signaling molecules by the plant (such as mQS and iQS) probably modulates the function and composition of the bacterial community established in its rhizosphere. Novel bioassays of QS detection during peanut-Bradyrhizobium interaction showed an intense production of QS signals in the contact zone between root and bacteria. It is demonstrated that root exudates stimulate the root colonization and synthesis of lac-AHL by Bradyrhizobium strains in the plant rhizosphere, which leads to the early stages of the development of beneficial plant-bacteria interactions.

  9. Inhibition of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa by human serum paraoxonase.

    PubMed

    Aybey, Aynur; Demirkan, Elif

    2016-02-01

    The role of quorum sensing (QS) in the regulation of virulence factor production in Pseudomonas aeruginosa is well established. Increased antibiotic resistance in this bacterium has led to the search for new treatment options, and inhibition of the QS system has been explored for potential therapeutic benefits. If the use of QS inhibitory agents were to lead to a reduction in bacterial virulence, new approaches in the treatment of P. aeruginosa infections could be further developed. Accordingly, we examined whether human serum paraoxonase 1 (hPON1), which uses lactonase activity to hydrolyse N-acyl homoserine lactones, could cleave P. aeruginosa-derived signalling molecules. hPON1 was purified using ammonium sulfate precipitation and hydrophobic interaction chromatography (Sepharose 4B-L-tyrosine-1-naphthylamine). Different concentrations of hPON1 were found to reduce various virulence factors including pyocyanin, rhamnolipid, elastase, staphylolytic LasA protease and alkaline protease. Although treatment with 0.1-10 mg hPON1 ml(-1) did not show a highly inhibitory effect on elastase and staphylolytic LasA protease production, it resulted in good inhibitory effects on alkaline protease production at concentrations as low as 0.1 mg ml(-1). hPON1 also reduced the production of pyocyanin and rhamnolipid at a concentration of 1.25 mg ml(-1 )(within a range of 0.312-5 mg ml(-1)). In addition, rhamnolipid, an effective biosurfactant reported to stimulate the biodegradation of hydrocarbons, was able to degrade oil only in the absence of hPON1.

  10. Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria.

    PubMed

    Barriuso, Jorge; Ramos Solano, Beatriz; Fray, Rupert G; Cámara, Miguel; Hartmann, Anton; Gutiérrez Mañero, F Javier

    2008-06-01

    Two Gram-negative, plant growth-promoting rhizobacteria (PGPRs), denominated as M12 and M14, were classified by 16S rDNA sequencing as Burkholderia graminis species. Both strains were shown to produce a variety of N-acyl-homoserine lactone (AHL) quorum sensing (QS) signalling molecules. The involvement of these molecules in plant growth promotion and the induction of protection against salt stress was examined. AHL production was evaluated in vitro by thin-layer chromatography using AHL biosensors, and the identity of the AHLs produced was determined by liquid chromatography-tandem mass spectrometry. The in situ production of AHLs by M12 and M14 in the rhizosphere of Arabidopsis thaliana plants was detected by co-inoculation with green fluorescent protein-based biosensor strains and confocal laser scanning microscopy. To determine whether plant growth promotion and protection against salt stress were mediated by QS, these PGPRs were assayed on wild-type tomato plants, as well as their corresponding transgenics expressing YenI (short-chain AHL producers) and LasI (long-chain AHL producers). In wild-type tomato plants, only M12 promoted plant growth, and this effect disappeared in both transgenic lines. In contrast, M14 did not promote growth in wild-type tomatoes, but did so in the LasI transgenic line. Resistance to salt stress was induced by M14 in wild-type tomato, but this effect disappeared in both transgenic lines. The strain M12, however, did not induce salt resistance in wild-type tomato, but did so in LasI tomato plants. These results reveal that AHL QS signalling molecules mediate the ability of both PGPR strains M12 and M14 to promote plant growth and to induce protection against salt stress.

  11. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN.

    PubMed

    Zúñiga, Ana; Poupin, María Josefina; Donoso, Raúl; Ledger, Thomas; Guiliani, Nicolás; Gutiérrez, Rodrigo A; González, Bernardo

    2013-05-01

    Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant-bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain.

  12. Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria.

    PubMed

    Husain, Fohad M; Ahmad, Iqbal; Khan, Mohammad S; Ahmad, Ejaz; Tahseen, Qudisa; Khan, Mohd Shahnawaz; Alshabib, Nasser A

    2015-01-01

    Bacterial quorum sensing (QS) is a density dependent communication system that regulates the expression of certain genes including production of virulence factors in many pathogens. Bioactive plant extract/compounds inhibiting QS regulated gene expression may be a potential candidate as antipathogenic drug. In this study anti-QS activity of peppermint (Mentha piperita) oil was first tested using the Chromobacterium violaceum CVO26 biosensor. Further, the findings of the present investigation revealed that peppermint oil (PMO) at sub-Minimum Inhibitory Concentrations (sub-MICs) strongly interfered with acyl homoserine lactone (AHL) regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Aeromonas hydrophila. The result of molecular docking analysis attributed the QS inhibitory activity exhibited by PMO to menthol. Assessment of ability of menthol to interfere with QS systems of various Gram-negative pathogens comprising diverse AHL molecules revealed that it reduced the AHL dependent production of violacein, virulence factors, and biofilm formation indicating broad-spectrum anti-QS activity. Using two Escherichia coli biosensors, MG4/pKDT17 and pEAL08-2, we also confirmed that menthol inhibited both the las and pqs QS systems. Further, findings of the in vivo studies with menthol on nematode model Caenorhabditis elegans showed significantly enhanced survival of the nematode. Our data identified menthol as a novel broad spectrum QS inhibitor.

  13. In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems--a potential broad application on bioremediation.

    PubMed

    Huang, Yili; Zeng, Yanhua; Yu, Zhiliang; Zhang, Jing; Feng, Hao; Lin, Xiuchun

    2013-11-01

    Phylogenetic overlaps between aromatics-degrading bacteria and acyl-homoserine-lactone (AHL) or autoinducer (AI) based quorum-sensing (QS) bacteria were evident in literatures; however, the diversity of bacteria with both activities had never been finely described. In-silico searching in NCBI genome database revealed that more than 11% of investigated population harbored both aromatic ring-hydroxylating-dioxygenase (RHD) gene and AHL/AI-synthetase gene. These bacteria were distributed in 10 orders, 15 families, 42 genus and 78 species. Horizontal transfers of both genes were common among them. Using enrichment and culture dependent method, 6 Sphingomonadales and 4 Rhizobiales with phenanthrene- or pyrene-degrading ability and AHL-production were isolated from marine, wetland and soil samples. Thin-layer-chromatography and gas-chromatography-mass-spectrum revealed that these Sphingomonads produced various AHL molecules. This is the first report of highly diverse bacteria that harbored both aromatics-degrading and QS systems. QS regulation may have broad impacts on aromatics biodegradation, and would be a new angle for developing bioremediation technology.

  14. Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria

    PubMed Central

    Husain, Fohad M.; Ahmad, Iqbal; Khan, Mohammad S.; Ahmad, Ejaz; Tahseen, Qudisa; Khan, Mohd Shahnawaz; Alshabib, Nasser A.

    2015-01-01

    Bacterial quorum sensing (QS) is a density dependent communication system that regulates the expression of certain genes including production of virulence factors in many pathogens. Bioactive plant extract/compounds inhibiting QS regulated gene expression may be a potential candidate as antipathogenic drug. In this study anti-QS activity of peppermint (Mentha piperita) oil was first tested using the Chromobacterium violaceum CVO26 biosensor. Further, the findings of the present investigation revealed that peppermint oil (PMO) at sub-Minimum Inhibitory Concentrations (sub-MICs) strongly interfered with acyl homoserine lactone (AHL) regulated virulence factors and biofilm formation in Pseudomonas aeruginosa and Aeromonas hydrophila. The result of molecular docking analysis attributed the QS inhibitory activity exhibited by PMO to menthol. Assessment of ability of menthol to interfere with QS systems of various Gram-negative pathogens comprising diverse AHL molecules revealed that it reduced the AHL dependent production of violacein, virulence factors, and biofilm formation indicating broad-spectrum anti-QS activity. Using two Escherichia coli biosensors, MG4/pKDT17 and pEAL08-2, we also confirmed that menthol inhibited both the las and pqs QS systems. Further, findings of the in vivo studies with menthol on nematode model Caenorhabditis elegans showed significantly enhanced survival of the nematode. Our data identified menthol as a novel broad spectrum QS inhibitor. PMID:26029178

  15. Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9.

    PubMed

    Jatt, Abdul Nabi; Tang, Kaihao; Liu, Jiwen; Zhang, Zenghu; Zhang, Xiao-Hua

    2015-02-01

    Marine snow is a continuous shower of organic and inorganic detritus, and plays a crucial role in transporting materials from the sea surface to the deep ocean. The aims of the current study were to identify N-acyl homoserine lactone (AHL)-based quorum sensing (QS) signaling molecules directly from marine snow particles and to investigate the possible regulatory link between QS signals and extracellular hydrolytic enzymes produced by marine snow bacteria. The marine snow samples were collected from the surface water of China marginal seas. Two AHLs, i.e. 3OC6-HSL and C8-HSL, were identified directly from marine snow particles, while six different AHL signals, i.e. C4-HSL, 3OC6-HSL, C6-HSL, C10-HSL, C12-HSL and C14-HSL were produced by Pantoea ananatis B9 inhabiting natural marine snow particles. Of the extracellular hydrolytic enzymes produced by P. ananatis B9, alkaline phosphatase activity was highly enhanced in growth medium supplemented with exogenous AHL (C10-HSL), while quorum quenching enzyme (AiiA) drastically reduced the enzyme activity. To our knowledge, this is the first report revealing six different AHL signals produced by P. ananatis B9 and AHL-based QS system enhanced the extracellular hydrolytic enzyme in P. ananatis B9. Furthermore, this study first time revealing 3OC6-HSL production by Paracoccus carotinifaciens affiliated with Alphaproteobacteria.

  16. Effect of salinity and incubation time of planktonic cells on biofilm formation, motility, exoprotease production, and quorum sensing of Aeromonas hydrophila.

    PubMed

    Jahid, Iqbal Kabir; Mizan, Md Furkanur Rahaman; Ha, Angela J; Ha, Sang-Do

    2015-08-01

    The aim of this study was to determine the effect of salinity and age of cultures on quorum sensing, exoprotease production, and biofilm formation by Aeromonas hydrophila on stainless steel (SS) and crab shell as substrates. Biofilm formation was assessed at various salinities, from fresh (0%) to saline water (3.0%). For young and old cultures, planktonic cells were grown at 30 °C for 24 h and 96 h, respectively. Biofilm formation was assessed on SS, glass, and crab shell; viable counts were determined in R2A agar for SS and glass, but Aeromonas-selective media was used for crab shell samples to eliminate bacterial contamination. Exoprotease activity was assessed using a Fluoro™ protease assay kit. Quantification of acyl-homoserine lactone (AHL) was performed using the bioreporter strain Chromobacterium violaceum CV026 and the concentration was confirmed using high-performance liquid chromatography (HPLC). The concentration of autoinducer-2 (AI-2) was determined with Vibrio harveyi BB170. The biofilm structure at various salinities (0-3 %) was assessed using field emission electron microscopy (FESEM). Young cultures of A. hydrophila grown at 0-0.25% salinity showed gradual increasing of biofilm formation on SS, glass and crab shell; swarming and swimming motility; exoproteases production, AHL and AI-2 quorum sensing; while all these phenotypic characters reduced from 0.5 to 3.0% salinity. The FESEM images also showed that from 0 to 0.25% salinity stimulated formation of three-dimensional biofilm structures that also broke through the surface by utilizing the chitin surfaces of crab, while 3% salinity stimulated attachment only for young cultures. However, in marked contrast, salinity (0.1-3%) had no effect on the stimulation of biofilm formation or on phenotypic characters for old cultures. However, all concentrations reduced biofilm formation, motility, protease production and quorum sensing for old culture. Overall, 0-0.25% salinity enhanced biofilm formation

  17. Detection and quantification of quinolone signalling molecule: a third quorum sensing molecule of Pseudomonas aeruginosa by high performance-thin layer chromatography.

    PubMed

    Bala, Anju; Gupta, Ravi Kumar; Chhibber, Sanjay; Harjai, Kusum

    2013-07-01

    Sophisticated network of quorum sensing involves the production of chemical signals which regulate the combined expression of virulence genes and biofilm formation in Pseudomonas aeruginosa. Two well-characterized acyl homoserine lactone based las and rhl systems together with alkyl quinolone based Pseudomonas quinolone signalling (PQS) are fundamental components of this network. Third signalling molecule, 2-heptyl-3-hydroxy-4-quinolone (PQS) is of paramount importance because of its interconnecting role in quorum sensing hierarchy in P. aeruginosa. Accurate detection of PQS molecule is very important to understand the involvement of this system in infection process of P. aeruginosa. In this study, high performance-thin layer chromatography (HP-TLC) method was developed for detection as well as quantification of PQS signal molecules in P. aeruginosa, which combines conventional method like TLC with sophisticated instrumentation. This method was validated using parameters like linearity, accuracy, precision, reproducibility and sensitivity. Intra- and inter-day accuracy and precision values were determined which were found to be within acceptable level and hence showed reproducibility. Measurement of PQS in the range of 0.01nmol indicated excellent sensitivity of this approach for quantifying PQS molecule. Automated sampling, rapid and simultaneous analysis of large number of samples and minimal errors make this method more suitable for analysis of PQS signalling molecules. Production of PQS was found to be strain dependent since variation in amount of PQS was observed among different P. aeruginosa isolates. Further, PQS production was also dependent on growth phase of P. aeruginosa with maximum production in late stationary phase.

  18. Functional characterization of the quorum sensing regulator RsaL in the plant-beneficial strain Pseudomonas putida WCS358.

    PubMed

    Rampioni, Giordano; Bertani, Iris; Pillai, Cejoice Ramachandran; Venturi, Vittorio; Zennaro, Elisabetta; Leoni, Livia

    2012-02-01

    In many bacteria, quorum sensing (QS) systems rely on a signal receptor and a synthase producing N-acyl-homoserine lactone(s) as the signal molecule(s). In some species, the rsaL gene, located between the signal receptor and synthase genes, encodes a repressor limiting signal synthase expression and hence signal molecule production. Here we investigate the molecular mechanism of action of the RsaL protein in the plant growth-promoting rhizobacterium Pseudomonas putida WCS358 (RsaL(WCS)). In P. putida WCS358, RsaL(WCS) displayed a strong repressive effect on the promoter of the QS signal synthase gene, ppuI, while it did not repress the same promoter in Pseudomonas aeruginosa. DNase I protection assays showed that purified RsaL(WCS) specifically binds to ppuI on a DNA region overlapping the predicted σ(70)-binding site, but such protection was observed only at high protein concentrations. Accordingly, electrophoretic mobility shift assays showed that the RsaL(WCS) protein was not able to form stable complexes efficiently with a probe encompassing the ppuI promoter, while it formed stable complexes with the promoter of lasI, the gene orthologous to ppuI in P. aeruginosa. This difference seems to be dictated by the lower dyad symmetry of the RsaL(WCS)-binding sequence on the ppuI promoter relative to that on the lasI promoter. Comparison of the results obtained in vivo and in vitro suggests that RsaL(WCS) needs a molecular interactor/cofactor specific for P. putida WCS358 to repress ppuI transcription. We also demonstrate that RsaL(WCS) regulates siderophore-mediated growth limitation of plant pathogens and biofilm formation, two processes relevant for plant growth-promoting activity.

  19. Impairment of Pseudomonas aeruginosa Biofilm Resistance to Antibiotics by Combining the Drugs with a New Quorum-Sensing Inhibitor

    PubMed Central

    Lajoie, Barbora; El Hage, Salome; Baziard, Genevieve; Roques, Christine

    2015-01-01

    Pseudomonas aeruginosa plays an important role in chronic lung infections among patients with cystic fibrosis (CF) through its ability to form antibiotic-resistant biofilms. In P. aeruginosa, biofilm development and the production of several virulence factors are mainly regulated by the rhl and las quorum-sensing (QS) systems, which are controlled by two N-acyl-homoserine lactone signal molecules. In a previous study, we discovered an original QS inhibitor, N-(2-pyrimidyl)butanamide, called C11, based on the structure of C4-homoserine lactone, and found that it is able to significantly inhibit P. aeruginosa biofilm formation. However, recent data indicate that P. aeruginosa grows under anaerobic conditions and forms biofilms in the lungs of CF patients that are denser and more robust than those formed under aerobic conditions. Our confocal microscopy observations of P. aeruginosa biofilms developed under aerobic and anaerobic conditions confirmed that the biofilms formed under these two conditions have radically different architectures. C11 showed significant dose-dependent antibiofilm activity on biofilms grown under both aerobic and anaerobic conditions, with a greater inhibitory effect being seen under conditions of anaerobiosis. Gene expression analyses performed by quantitative reverse transcriptase PCR showed that C11 led to the significant downregulation of rhl QS regulatory genes but also to the downregulation of both las QS regulatory genes and QS system-regulated virulence genes, rhlA and lasB. Furthermore, the activity of C11 in combination with antibiotics against P. aeruginosa biofilms was tested, and synergistic antibiofilm activity between C11 and ciprofloxacin, tobramycin, and colistin was obtained under both aerobic and anaerobic conditions. This study demonstrates that C11 may increase the efficacy of treatments for P. aeruginosa infections by increasing the susceptibility of biofilms to antibiotics and by attenuating the pathogenicity of the

  20. Functional Characterization of the Quorum Sensing Regulator RsaL in the Plant-Beneficial Strain Pseudomonas putida WCS358

    PubMed Central

    Rampioni, Giordano; Bertani, Iris; Pillai, Cejoice Ramachandran; Venturi, Vittorio; Zennaro, Elisabetta

    2012-01-01

    In many bacteria, quorum sensing (QS) systems rely on a signal receptor and a synthase producing N-acyl-homoserine lactone(s) as the signal molecule(s). In some species, the rsaL gene, located between the signal receptor and synthase genes, encodes a repressor limiting signal synthase expression and hence signal molecule production. Here we investigate the molecular mechanism of action of the RsaL protein in the plant growth-promoting rhizobacterium Pseudomonas putida WCS358 (RsaLWCS). In P. putida WCS358, RsaLWCS displayed a strong repressive effect on the promoter of the QS signal synthase gene, ppuI, while it did not repress the same promoter in Pseudomonas aeruginosa. DNase I protection assays showed that purified RsaLWCS specifically binds to ppuI on a DNA region overlapping the predicted σ70-binding site, but such protection was observed only at high protein concentrations. Accordingly, electrophoretic mobility shift assays showed that the RsaLWCS protein was not able to form stable complexes efficiently with a probe encompassing the ppuI promoter, while it formed stable complexes with the promoter of lasI, the gene orthologous to ppuI in P. aeruginosa. This difference seems to be dictated by the lower dyad symmetry of the RsaLWCS-binding sequence on the ppuI promoter relative to that on the lasI promoter. Comparison of the results obtained in vivo and in vitro suggests that RsaLWCS needs a molecular interactor/cofactor specific for P. putida WCS358 to repress ppuI transcription. We also demonstrate that RsaLWCS regulates siderophore-mediated growth limitation of plant pathogens and biofilm formation, two processes relevant for plant growth-promoting activity. PMID:22113916

  1. Proteomic Analysis of the Quorum-Sensing Regulon in Pantoea stewartii and Identification of Direct Targets of EsaR

    PubMed Central

    Ramachandran, Revathy

    2013-01-01

    The proteobacterium Pantoea stewartii subsp. stewartii causes Stewart's wilt disease in maize when it colonizes the xylem and secretes large amounts of stewartan, an exopolysaccharide. The success of disease pathogenesis lies in the timing of bacterial virulence factor expression through the different stages of infection. Regulation is achieved through a quorum-sensing (QS) system consisting of the acyl-homoserine lactone (AHL) synthase, EsaI, and the transcription regulator EsaR. At low cell densities, EsaR represses transcription of itself and of rcsA, an activator of the stewartan biosynthesis operon; it also activates esaS, which encodes a small RNA (sRNA). Repression or activation ceases at high cell densities when EsaI synthesizes sufficient levels of the AHL ligand N-3-oxo-hexanoyl-l-homoserine lactone to bind and inactivate EsaR. This study aims to identify other genes activated or repressed by EsaR during the QS response. Proteomic analysis identified a QS regulon of more than 30 proteins. Electrophoretic mobility shift assays of promoters of genes encoding differentially expressed proteins distinguished direct targets of EsaR from indirect targets. Additional quantitative reverse transcription-PCR (qRT-PCR) and DNA footprinting analysis established that EsaR directly regulates the promoters of dkgA, glpF, and lrhA. The proteins encoded by dkgA, glpF, and lrhA are a 2,5-diketogluconate reductase, glycerol facilitator, and transcriptional regulator of chemotaxis and motility, respectively, indicating a more global QS response in P. stewartii than previously recognized. PMID:23913428

  2. Mutational Analysis and Biochemical Characterization of the Burkholderia thailandensis DW503 Quorum-Sensing Network

    PubMed Central

    Ulrich, Ricky L.; Hines, Harry B.; Parthasarathy, N.; Jeddeloh, Jeffrey A.

    2004-01-01

    Numerous gram-negative bacteria communicate and regulate gene expression through a cell density-responsive mechanism termed quorum sensing (QS), which involves the synthesis and perception of diffusible N-acyl-homoserine lactones (AHL). In this study we genetically and physiologically characterized the Burkholderia thailandensis DW503 QS network. In silico analysis of the B. thailandensis genome revealed the presence of at least three AHL synthases (AHS) and five transcriptional regulators belonging to the LuxIR family of proteins. Mass spectrometry demonstrated that wild-type B. thailandensis synthesizes N-hexanoyl-homoserine lactone (C6-HSL), N-octanoyl-homoserine lactone (C8-HSL), and N-decanoyl-homoserine lactone (C10-HSL). Mutation of the btaI1 (luxI) AHS gene prevented accumulation of C8-HSL in culture supernatants, enhanced beta-hemolysis of sheep erythrocytes, increased lipase production, and altered colony morphology on swarming and twitching motility plates. Disruption of the btaI3 (luxI) AHS prevented biosynthesis of C6-HSL and increased lipase production and beta-hemolysis, whereas mutagenesis of the btaI2 (luxI) allele eliminated C10-HSL accumulation and reduced lipase production. Complementation of the btaI1 and btaI3 mutants fully restored the synthesis of C8-HSL and C6-HSL to parental levels. In contrast, mutagenesis of the btaR1, btaR3, btaR4, and btaR5 (luxR) transcriptional regulators had no effect on AHL accumulation, enhanced lipase production, and resulted in extensive beta-hemolysis on sheep blood agar plates. Furthermore, interruption of the btaI1, btaR1, and btaR3 genes altered colony morphology on twitching and swarming motility plates and induced pigmentation. Additionally, phenotypic microarray analysis indicated that QS in B. thailandensis both positively and negatively affects the metabolism of numerous substrates, including citric acid, formic acid, glucose 6-phosphate, capric acid, γ-hydroxybutyric acid, and d-arabinose. These

  3. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules.

    PubMed Central

    Swift, S; Karlyshev, A V; Fish, L; Durant, E L; Winson, M K; Chhabra, S R; Williams, P; Macintyre, S; Stewart, G S

    1997-01-01

    Spent culture supernatants from both Aeromonas hydrophila and Aeromonas salmonicida activate a range of biosensors responsive to N-acylhomoserine lactones (AHLs). The genes for a quorum sensing signal generator and a response regulator were cloned from each Aeromonas species and termed ahyRI and asaRI, respectively. Protein sequence homology analysis places the gene products within the growing family of LuxRI homologs. ahyR and asaR are transcribed divergently from ahyI and asaI, respectively, and in both Aeromonas species, the genes downstream have been identified by DNA sequence and PCR analysis. Downstream of both ahyI and asaI is a gene with close homology to iciA, an inhibitor of chromosome replication in Escherichia coli, a finding which implies that in Aeromonas, cell division may be linked to quorum sensing. The major signal molecule synthesized via both AhyI and AsaI was purified from spent culture supernatants and identified as N-(butanoyl)-L-homoserine lactone (BHL) by thin-layer chromatography, high-pressure liquid chromatography analysis, and mass spectrometry. In addition, a second, minor AHL, N-hexanoyl-L-homoserine lactone, was identified. Transcriptional reporter studies with ahyI::luxCDABE fusions indicate that AhyR and BHL are both required for ahyI transcription. For A. salmonicida, although the addition of exogenous BHL gives only a small stimulation of the production of serine protease with comparison to the control culture, the incorporation of a longer-chain AHL, N-(3-oxodecanoyl)-L-homoserine lactone, reduced the final level (by approximately 50%) and delayed the appearance (from an A650 of 0.9 in the control to an A650 of 1.2 in the test) of protease in the culture supernatant. These data add A. hydrophila and A. salmonicida to the growing family of gram-negative bacteria now known to control gene expression through quorum sensing. PMID:9286976

  4. Toxicological safety assessment of genetically modified Bacillus thuringiensis with additional N-acyl homoserine lactonase gene.

    PubMed

    Peng, Donghai; Zhou, Chenfei; Chen, Shouwen; Ruan, Lifang; Yu, Ziniu; Sun, Ming

    2008-01-01

    The aim of the present study is to evaluate the toxicology safety to mammals of a genetically modified (GM) Bacillus thuringiensis with an additional N-acyl homoserine lactones gene (aiiA), which possesses insecticidal activity together with restraint of bacterial pathogenicity and is intended for use as a multifunctional biopesticide. Safety assessments included an acute oral toxicity test and 28-d animal feeding study in Wistar rats, primary eye and dermal irritation in Zealand White rabbits, and delayed contact hypersensitivity in guinea pigs. Tests were conducted using spray-dried powder preparation. This GM product showed toxicity neither in oral acute toxicity test nor in 28-d animal feeding test at a dose of 5,000 mg/kg body weight. During the animal feeding test, there were no significant differences in growth, food and water consumption, hematology, blood biochemical indices, organ weights, and histopathology finding between rats in controls and tested groups. Tested animals in primary eye and dermal irritation and delayed contact hypersensitivity test were also devoid of any toxicity compared to controls. All the above results demonstrated that the GM based multifunctional B. thuringiensis has low toxicity and low eye and dermal irritation and would not cause hypersensitivity to laboratory mammals and therefore could be regarded as safe for use as a pesticide.

  5. Quorum Sensing in Rhizobium sp. Strain NGR234 Regulates Conjugal Transfer (tra) Gene Expression and Influences Growth Rate

    PubMed Central

    He, Xuesong; Chang, William; Pierce, Deanne L.; Seib, Laura Ort; Wagner, Jennifer; Fuqua, Clay

    2003-01-01

    Rhizobium sp. strain NGR234 forms symbiotic, nitrogen-fixing nodules on a wide range of legumes via functions largely encoded by the plasmid pNGR234a. The pNGR234a sequence revealed a region encoding plasmid replication (rep) and conjugal transfer (tra) functions similar to those encoded by the rep and tra genes from the tumor-inducing (Ti) plasmids of Agrobacterium tumefaciens, including homologues of the Ti plasmid quorum-sensing regulators TraI, TraR, and TraM. In A. tumefaciens, TraI, a LuxI-type protein, catalyzes synthesis of the acylated homoserine lactone (acyl-HSL) N-3-oxo-octanoyl-l-homoserine lactone (3-oxo-C8-HSL). TraR binds 3-oxo-C8-HSL and activates expression of Ti plasmid tra and rep genes, increasing conjugation and copy number at high population densities. TraM prevents this activation under noninducing conditions. Although the pNGR234a TraR, TraI, and TraM appear to function similarly to their A. tumefaciens counterparts, the TraR and TraM orthologues are not cross-functional, and the quorum-sensing systems have differences. NGR234 TraI synthesizes an acyl-HSL likely to be 3-oxo-C8-HSL, but traI mutants and a pNGR234a-cured derivative produce low levels of a similar acyl-HSL and another, more hydrophobic signal molecule. TraR activates expression of several pNGR234a tra operons in response to 3-oxo-C8-HSL and is inhibited by TraM. However, one of the pNGR234a tra operons is not activated by TraR, and conjugal efficiency is not affected by TraR and 3-oxo-C8-HSL. The growth rate of NGR234 is significantly decreased by TraR and 3-oxo-C8-HSL through functions encoded elsewhere in the NGR234 genome. PMID:12533456

  6. Antisense RNA that Affects Rhodopseudomonas palustris Quorum-Sensing Signal Receptor Expression

    DTIC Science & Technology

    2012-01-01

    these molecules . Because asrpaR expression is quorum sensing dependent, we sought to characterize its production and function. We show that asrpaR is...but little is known about the function of these molecules . Because asrpaR expression is quorum sensing dependent, we sought to character- ize its...detection of N-acylhomoserine lactone-type quorum - sensing molecules : Detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69: 6949

  7. Attenuation of Quorum Sensing Regulated Virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL Lactonase Produced by Lysinibacillus sp. Gs50

    PubMed Central

    Garge, Sneha S.; Nerurkar, Anuradha S.

    2016-01-01

    Quorum sensing (QS) is a mechanism in which Gram negative bacterial pathogens sense their population density through acyl homoserine lactones (AHLs) and regulate the expression of virulence factors. Enzymatic degradation of AHLs by lactonases, known as quorum quenching (QQ), is thus a potential strategy for attenuating QS regulated bacterial infections. We characterised the QQ activity of soil isolate Lysinibacillus sp. Gs50 and explored its potential for controlling bacterial soft rot of crop plants. Lysinibacillus sp. Gs50 inactivated AHL, which could be restored upon acidification, suggested that inactivation was due to the lactone ring hydrolysis of AHL. Heterologous expression of cloned gene for putative hydrolase (792 bp) designated adeH from Lysinibacillus sp. Gs50 produced a ~29 kDa protein which degraded AHLs of varying chain length. Mass spectrometry analysis of AdeH enzymatic reaction product revealed that AdeH hydrolyses the lactone ring of AHL and hence is an AHL lactonase. Multiple sequence alignment of the amino acid sequence of AdeH showed that it belongs to the metallo- β- lactamase superfamily, has a conserved “HXHXDH” motif typical of AHL lactonases. KM for AdeH for C6HSL was found to be 3.089 μM and the specific activity was 0.8 picomol min-1μg-1. AdeH has not so far been reported from any Lysinibacillus sp. and has less than 40% identity with known AHL lactonases. Finally we found that Lysinibacillus sp. Gs50 can degrade AHL produced by Pectobacterium carotovorum subsp. carotovorum (Pcc), a common cause of soft rot. This QQ activity causes a decrease in production of plant cell wall degrading enzymes of Pcc and attenuates symptoms of soft rot in experimental infection of potato, carrot and cucumber. Our results demonstrate the potential of Lysinibacillus sp. Gs50 as a preventive and curative biocontrol agent. PMID:27911925

  8. Quorum Sensing and Phytochemicals

    PubMed Central

    Nazzaro, Filomena; Fratianni, Florinda; Coppola, Raffaele

    2013-01-01

    Most infectious diseases are caused by bacteria, which proliferate within quorum sensing (QS)-mediated biofilms. Efforts to block QS in bacteria and disrupt biofilms have enabled the identification of bioactive molecules that are also produced by plants. This mini review primarily focuses on natural QS inhibitors, which display potential for treating bacterial infections and also enhance the safety of food supply. PMID:23774835

  9. Surface-enhanced Raman spectroscopy for in situ measurements of signaling molecules (autoinducers) relevant to bacteria quorum sensing.

    PubMed

    Pearman, William F; Lawrence-Snyder, Marion; Angel, S Michael; Decho, Alan W

    2007-12-01

    Autoinducer (AI) molecules are used by quorum sensing (QS) bacteria to communicate information about their environment and are critical to their ability to coordinate certain physiological activities. Studying how these organisms react to environmental stresses could provide insight into methods to control these activities. To this end, we are investigating spectroscopic methods of analysis that allow in situ measurements of these AI molecules under different environmental conditions. We found that for one class of AIs, N-acyl-homoserine lactones (AHLs), surface-enhanced Raman spectroscopy (SERS) is a method capable of performing such measurements in situ. SERS spectra of seven different AHLs with acyl chain lengths from 4 to 12 carbons were collected for the first time using Ag colloidal nanoparticles synthesized via both citrate and borohydride reduction methods. Strong SERS spectra were obtained in as little as 10 seconds for 80 microM solutions of AI that exhibited the strongest SERS response, whereas 20 seconds was typical for most AI SERS spectra collected during this study. Although all spectra were similar, significant differences were detected in the SERS spectra of C4-AHL and 3-oxo-C6-AHL and more subtle differences were noted between all AHLs. Initial results indicate a detection limit of approximately 10(-6)M for C6-AHL, which is within the limits of biologically relevant concentrations of AI molecules (nM-microM). Based on these results, the SERS method shows promise for monitoring AI molecule concentrations in situ, within biofilms containing QS bacteria. This new capability offers the possibility to "listen in" on chemical communications between bacteria in their natural environment as that environment is stressed.

  10. Quorum Quenching of Nitrobacter winogradskyi Suggests that Quorum Sensing Regulates Fluxes of Nitrogen Oxide(s) during Nitrification

    PubMed Central

    Giguere, Andrew T.; Bottomley, Peter J.

    2016-01-01

    ABSTRACT Quorum sensing (QS) is a widespread process in bacteria used to coordinate gene expression with cell density, diffusion dynamics, and spatial distribution through the production of diffusible chemical signals. To date, most studies on QS have focused on model bacteria that are amenable to genetic manipulation and capable of high growth rates, but many environmentally important bacteria have been overlooked. For example, representatives of proteobacteria that participate in nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, produce QS signals called acyl-homoserine lactones (AHLs). Nitrification emits nitrogen oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. Despite considerable interest in nitrification, the purpose of QS in the physiology/ecology of nitrifying bacteria is poorly understood. Through a quorum quenching approach, we investigated the role of QS in a well-studied AHL-producing nitrite oxidizer, Nitrobacter winogradskyi. We added a recombinant AiiA lactonase to N. winogradskyi cultures to degrade AHLs to prevent their accumulation and to induce a QS-negative phenotype and then used mRNA sequencing (mRNA-Seq) to identify putative QS-controlled genes. Our transcriptome analysis showed that expression of nirK and nirK cluster genes (ncgABC) increased up to 19.9-fold under QS-proficient conditions (minus active lactonase). These data led to us to query if QS influenced nitrogen oxide gas fluxes in N. winogradskyi. Production and consumption of NOx increased and production of N2O decreased under QS-proficient conditions. Quorum quenching transcriptome approaches have broad potential to identify QS-controlled genes and phenotypes in organisms that are not genetically tractable. PMID:27795404

  11. Quorum Quenching of Nitrobacter winogradskyi Suggests that Quorum Sensing Regulates Fluxes of Nitrogen Oxide(s) during Nitrification.

    PubMed

    Mellbye, Brett L; Giguere, Andrew T; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2016-10-25

    Quorum sensing (QS) is a widespread process in bacteria used to coordinate gene expression with cell density, diffusion dynamics, and spatial distribution through the production of diffusible chemical signals. To date, most studies on QS have focused on model bacteria that are amenable to genetic manipulation and capable of high growth rates, but many environmentally important bacteria have been overlooked. For example, representatives of proteobacteria that participate in nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, produce QS signals called acyl-homoserine lactones (AHLs). Nitrification emits nitrogen oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. Despite considerable interest in nitrification, the purpose of QS in the physiology/ecology of nitrifying bacteria is poorly understood. Through a quorum quenching approach, we investigated the role of QS in a well-studied AHL-producing nitrite oxidizer, Nitrobacter winogradskyi We added a recombinant AiiA lactonase to N. winogradskyi cultures to degrade AHLs to prevent their accumulation and to induce a QS-negative phenotype and then used mRNA sequencing (mRNA-Seq) to identify putative QS-controlled genes. Our transcriptome analysis showed that expression of nirK and nirK cluster genes (ncgABC) increased up to 19.9-fold under QS-proficient conditions (minus active lactonase). These data led to us to query if QS influenced nitrogen oxide gas fluxes in N. winogradskyi Production and consumption of NOx increased and production of N2O decreased under QS-proficient conditions. Quorum quenching transcriptome approaches have broad potential to identify QS-controlled genes and phenotypes in organisms that are not genetically tractable.

  12. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii

    PubMed Central

    Koutsoudis, Maria D.; Tsaltas, Dimitrios; Minogue, Timothy D.; von Bodman, Susanne B.

    2006-01-01

    The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control. PMID:16585516

  13. You are what you talk: quorum sensing induces individual morphologies and cell division modes in Dinoroseobacter shibae.

    PubMed

    Patzelt, Diana; Wang, Hui; Buchholz, Ina; Rohde, Manfred; Gröbe, Lothar; Pradella, Silke; Neumann, Alexander; Schulz, Stefan; Heyber, Steffi; Münch, Karin; Münch, Richard; Jahn, Dieter; Wagner-Döbler, Irene; Tomasch, Jürgen

    2013-12-01

    Dinoroseobacter shibae, a member of the Roseobacter clade abundant in marine environments, is characterized by a pronounced pleomorphism. Cell shapes range from variable-sized ovoid rods to long filaments with a high copy number of chromosomes. Time-lapse microscopy shows cells dividing either by binary fission or by budding from the cell poles. Here we demonstrate that this morphological heterogeneity is induced by quorum sensing (QS). D. shibae utilizes three acylated homoserine lactone (AHL) synthases (luxI1-3) to produce AHLs with unsaturated C18 side chains. A ΔluxI1-knockout strain completely lacking AHL biosynthesis was uniform in morphology and divided by binary fission only. Transcriptome analysis revealed that expression of genes responsible for control of cell division was reduced in this strain, providing the link between QS and the observed phenotype. In addition, flagellar biosynthesis and type IV secretion system (T4SS) were downregulated. The wild-type phenotype and gene expression could be restored through addition of synthetic C18-AHLs. Their effectiveness was dependent on the number of double bonds in the acyl side chain and the regulated trait. The wild-type expression level of T4SS genes was fully restored even by an AHL with a saturated C18 side chain that has not been detected in D. shibae. QS induces phenotypic individualization of D. shibae cells rather than coordinating the population. This strategy might be beneficial in unpredictably changing environments, for example, during algal blooms when resource competition and grazing exert fluctuating selective pressures. A specific response towards non-native AHLs might provide D. shibae with the capacity for complex interspecies communication.

  14. Prevalence of LuxR- and LuxI-type quorum sensing circuits in members of the Populus deltoides microbiome

    SciTech Connect

    Schaefer, Amy L; Lappala, Colin; Morlen, Ryan; Pelletier, Dale A; Lu, Tse-Yuan; Lankford, Patricia K; Harwood, Caroline S; Greenberg, E. Peter

    2013-01-01

    We are interested in the root microbiome of the fast-growing Eastern cottonwood tree, Populus 25 deltoides. There is a large bank of bacterial isolates from P. deltoides and there are 44 draft 26 genomes of bacterial endophyte and rhizosphere isolates. As a first step in efforts to understand 27 the roles of bacterial communication and plant-bacterial signaling in P. deltoides we focused on 28 the prevalence of acyl-homoserine lactone (AHL) quorum sensing signal production and 29 reception in members of the P. deltoides microbiome. We screened 129 bacterial isolates for 30 AHL production using a broad-spectrum bioassay that responds to many but not all AHLs, and 31 we queried the available genome sequences of microbiome isolates for homologs of AHL 32 synthase and receptor genes. AHL signal production was detected in 40% of 129 strains tested. 33 Positive isolates included -, - and -Proteobacteria. Members of the luxI family of AHL 34 synthases were identified in 18 of 39 Proteobacteria genomes including genomes of some 35 isolates that tested negative in the bioassay. Members of the luxR family of transcription factors, 36 that include AHL-responsive factors, were more abundant than luxI homologs. There were 72 in 37 the 39 Proteobacteria genomes. Some of the luxR homologs appear to be members of a 38 subfamily of LuxRs that respond to as yet unknown plant signals rather than bacterial AHLs. 39 Apparently, there is a substantial capacity for AHL cell-to-cell communication in Proteobacteria 40 of the P. deltoides microbiota and there are also Proteobacteria with LuxR homologs of the type 41 hypothesized to respond to plant signals or cues.

  15. Identification and characterization of new LuxR/LuxI-type quorum sensing systems from metagenomic libraries

    PubMed Central

    Hao, Youai; Winans, Stephen C.; Glick, Bernard R.; Charles, Trevor C.

    2010-01-01

    Summary Quorum sensing (QS) cell–cell communication systems are utilized by bacteria to coordinate their behaviour according to cell density. Several different types of QS signal molecules have been identified, among which acyl-homoserine lactones (AHLs) produced by Proteobacteria have been studied to the greatest extent. Although QS has been studied extensively in cultured microorganisms, little is known about the QS systems of uncultured microorganisms and the roles of these systems in microbial communities. To extend our knowledge of QS systems and to better understand the signalling that takes place in the natural environment, metagenomic libraries constructed using DNA from activated sludge and soil were screened, using an Agrobacterium biosensor strain, for novel QS synthase genes. Three cosmids (QS6-1, QS10-1 and QS10-2) that encode the production of QS signals were identified and DNA sequence analysis revealed that all three clones encode a novel luxI family AHL synthase and a luxR family transcriptional regulator. Thin layer chromatography revealed that these LuxI homologue proteins are able to synthesize multiple AHL signals. Tandem mass spectrometry analysis revealed that LuxIQS6-1 directs the synthesis of at least three AHLs, 3-O-C14:1 HSL, 3-O-C16:1 HSL and 3-O-C14 HSL; LuxIQS10-1 directs the synthesis of at least 3-O-C12 HSL and 3-O-C14 HSL; while LuxIQS10-2 directs the synthesis of at least C8 HSL and C10 HSL. Two possible new AHLs, C14:3 HSL and (?)-hydroxymethyl-3-O-C14 HSL, were also found to be synthesized by LuxIQS6-1. PMID:19735279

  16. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections.

    PubMed

    Wilder, Cara N; Allada, Gopal; Schuster, Martin

    2009-12-01

    In the opportunistic pathogen Pseudomonas aeruginosa, acyl-homoserine lactone (acyl-HSL) quorum sensing (QS) regulates biofilm formation and expression of many extracellular virulence factors. Curiously, QS-deficient variants, often carrying mutations in the central QS regulator LasR, are frequently isolated from infections, particularly from cystic fibrosis (CF) lung infections. Very little is known about the proportion and diversity of these QS variants in individual infections. Such information is desirable to better understand the selective forces that drive the evolution of QS phenotypes, including social cheating and innate (nonsocial) benefits. To obtain insight into the instantaneous within-patient diversity of QS, we assayed a panel of 135 concurrent P. aeruginosa isolates from eight different adult CF patients (9 to 20 isolates per patient) for various QS-controlled phenotypes. Most patients contained complex mixtures of QS-proficient and -deficient isolates. Among all patients, deficiency in individual phenotypes ranged from 0 to about 90%. Acyl-HSL, sequencing, and complementation analyses of variants with global loss-of-function phenotypes revealed dependency upon the central QS circuitry genes lasR, lasI, and rhlI. Deficient and proficient isolates were clonally related, implying evolution from a common ancestor in vivo. Our results show that the diversity of QS types is high within and among patients, suggesting diverse selection pressures in the CF lung. A single selective mechanism, be it of a social or nonsocial nature, is unlikely to account for such heterogeneity. The observed diversity also shows that conclusions about the properties of P. aeruginosa QS populations in individual CF infections cannot be drawn from the characterization of one or a few selected isolates.

  17. Modulation of Sinorhizobium meliloti quorum sensing by Hfq-mediated post-transcriptional regulation of ExpR.

    PubMed

    Gao, Mengsheng; Tang, Ming; Guerich, Lois; Salas-Gonzalez, Isai; Teplitski, Max

    2015-02-01

    In Sinorhizobium meliloti, the timing of quorum sensing (QS)-dependent gene expression is controlled at multiple levels. RNA binding protein Hfq contributes to the regulation of QS signal production, and this regulation is exerted both in the manner that involves the acyl homoserine lactone receptor ExpR, and via expR-independent mechanisms. In the expR+ strain of S. meliloti, deletion of hfq resulted in the hyper-accumulation of QS signals at low population densities, increased diversity of the QS signals in mid-to-late exponential phase and then led to a sharp decrease in QS signal accumulation in stationary phase. Quantitative polymerase chain reaction revealed that the accumulation of expR and sinI (but not sinR) mRNA was increased in the late exponential phase in an hfq-dependent manner. A translational, but not transcriptional, expR-uidA reporter was controlled by hfq, while both transcriptional and translational sinI-uidA reporters were regulated in the hfq-dependent manner. In co-immunoprecipation experiments, expR mRNA was bound to and then released from Hfq, similar to the positive controls (small regulatory RNA SmrC9, SmrC15, SmrC16 and SmrC45). Neither sinI nor sinR transcripts were detected in the pool of RNA heat-released from Hfq-RNA complexes. Therefore, post-transcriptional regulator Hfq controls the production and perception of QS signals, and at higher population densities this control is mediated directly via interactions with expR.

  18. ExpR coordinates the expression of symbiotically important, bundle-forming Flp pili with quorum sensing in Sinorhizobium meliloti.

    PubMed

    Zatakia, Hardik M; Nelson, Cassandra E; Syed, Umair J; Scharf, Birgit E

    2014-04-01

    Type IVb pili in enteropathogenic bacteria function as a host colonization factor by mediating tight adherence to host cells, but their role in bacterium-plant symbiosis is currently unknown. The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains two clusters encoding proteins for type IVb pili of the Flp (fimbrial low-molecular-weight protein) subfamily. To establish the role of Flp pili in the symbiotic interaction of S. meliloti and its host, Medicago sativa, we deleted pilA1, which encodes the putative pilin subunit in the chromosomal flp-1 cluster and conducted competitive nodulation assays. The pilA1 deletion strain formed 27% fewer nodules than the wild type. Transmission electron microscopy revealed the presence of bundle-forming pili protruding from the polar and lateral region of S. meliloti wild-type cells. The putative pilus assembly ATPase CpaE1 fused to mCherry showed a predominantly unilateral localization. Transcriptional reporter gene assays demonstrated that expression of pilA1 peaks in early stationary phase and is repressed by the quorum-sensing regulator ExpR, which also controls production of exopolysaccharides and motility. Binding of acyl homoserine lactone-activated ExpR to the pilA1 promoter was confirmed with electrophoretic mobility shift assays. A 17-bp consensus sequence for ExpR binding was identified within the 28-bp protected region by DNase I footprinting analyses. Our results show that Flp pili are important for efficient symbiosis of S. meliloti with its plant host. The temporal inverse regulation of exopolysaccharides and pili by ExpR enables S. meliloti to achieve a coordinated expression of cellular processes during early stages of host interaction.

  19. Anti-quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1.

    PubMed

    Vasavi, Halkare Suryanarayana; Arun, Ananthapadmanabha Bhagwath; Rekha, Punchapady-Devasya

    2014-05-01

    Psidium guajava L., which has been used traditionally as a medicinal plant, was explored for anti-quorum sensing (QS) activity. The anti-QS activity of the flavonoid (FL) fraction of P. guajava leaves was determined using a biosensor bioassay with Chromobacterium violaceum CV026. Detailed investigation of the effects of the FL-fraction on QS-regulated violacein production in C. violaceum ATCC12472 and pyocyanin production, proteolytic, elastolytic activities, swarming motility and biofilm formation in Pseudomonas aeruginosa PAO1 was performed using standard methods. Possible mechanisms of QS-inhibition were studied by assessing violacein production in response to N-acyl homoserine lactone (AHL) synthesis in the presence of the FL-fraction in C. violaceum ATCC31532 and by evaluating the induction of violacein in the mutant C. violaceum CV026 by AHL extracted from the culture supernatants of C. violaceum 31532. Active compounds in the FL-fraction were identified by liquid chromatography-mass spectrometry (LC-MS). Inhibition of violacein production by the FL-fraction in a C. violaceum CV026 biosensor bioassay indicated possible anti-QS activity. The FL-fraction showed concentration-dependent decreases in violacein production in C. violaceum 12472 and inhibited pyocyanin production, proteolytic and elastolytic activities, swarming motility and biofilm formation in P. aeruginosa PAO1. Interestingly, the FL-fraction did not inhibit AHL synthesis; AHL extracted from cultures of C. violaceum 31532 grown in the presence of the FL-fraction induced violacein in the mutant C. violaceum CV026. LC-MS analysis revealed the presence of quercetin and quercetin-3-O-arabinoside in the FL-fraction. Both quercetin and quercetin-3-O-arabinoside inhibited violacein production in C. violaceum 12472, at 50 and 100 μg/mL, respectively. Results of this study provide scope for further research to exploit these active molecules as anti-QS agents.

  20. An evolving perspective on the Pseudomonas aeruginosa orphan quorum sensing regulator QscR

    PubMed Central

    Chugani, Sudha; Greenberg, Everett P.

    2014-01-01

    Many Proteobacteria govern responses to changes in cell density by using acyl-homoserine lactone (AHL) quorum-sensing (QS) signaling. Similar to the LuxI-LuxR system described in Vibrio fischeri, a minimal AHL QS circuit comprises a pair of genes, a luxI-type synthase gene encoding an enzyme that synthesizes an AHL and a luxR-type AHL-responsive transcription regulator gene. In most bacteria that utilize AHL QS, cognate luxI and luxR homologs are found in proximity to each other on the chromosome. However, a number of recent reports have identified luxR homologs that are not linked to luxI homologs; in some cases luxR homologs have been identified in bacteria that have no luxI homologs. A luxR homolog without a linked luxI homologs is termed an orphan or solo. One of the first reports of an orphan was on QscR in Pseudomonas aeruginosa. The qscR gene was revealed by whole genome sequencing and has been studied in some detail. P. aeruginosa encodes two AHL synthases and three AHL responsive receptors, LasI-LasR form a cognate synthase-receptor pair as do RhlI-RhlR. QscR lacks a linked synthase and responds to the LasI-generated AHL. QS regulation of gene expression in P. aeruginosa employs multiple signals and occurs in the context of other interconnected regulatory circuits that control diverse physiological functions. QscR affects virulence of P. aeruginosa, and although it shows sensitivity to the LasI-generated AHL, 3-oxo-dodecanoylhomoserine lactone, it's specificity is relaxed compared to LasR and can respond equally well to several AHLs. QscR controls a set of genes that overlaps the set regulated by LasR. QscR is comparatively easy to purify and study in vitro, and has become a model for understanding the biochemistry of LuxR homologs. In fact there is a crystal structure of QscR bound to the LasI-generated AHL. Here, we review the current state of research concerning QscR and highlight recent advances in our understanding of its structure and biochemistry

  1. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti.

    PubMed

    Gao, Mengsheng; Chen, Hancai; Eberhard, Anatol; Gronquist, Matthew R; Robinson, Jayne B; Rolfe, Barry G; Bauer, Wolfgang D

    2005-12-01

    Quorum sensing (QS) in Sinorhizobium meliloti, the N-fixing bacterial symbiont of Medicago host plants, involves at least half a dozen different N-acyl homoserine lactone (AHL) signals and perhaps an equal number of AHL receptors. The accumulation of 55 proteins was found to be dependent on SinI, the AHL synthase, and/or on ExpR, one of the AHL receptors. Gas chromatography-mass spectrometry and electrospray ionization tandem mass spectrometry identified 3-oxo-C(14)-homoserine lactone (3-oxo-C(14)-HSL), C(16)-HSL, 3-oxo-C(16)-HSL, C(16:1)-HSL, and 3-oxo-C(16:1)-HSL as the sinI-dependent AHL QS signals accumulated by the 8530 expR(+) strain under the conditions used for proteome analysis. The 8530 expR(+) strain secretes additional, unidentified QS-active compounds. Addition of 200 nM C(14)-HSL or C(16:1)-HSL, two of the known SinI AHLs, affected the levels of 75% of the proteins, confirming that their accumulation is QS regulated. A number of the QS-regulated proteins have functions plausibly related to symbiotic interactions with the host, including ExpE6, IdhA, MocB, Gor, PckA, LeuC, and AglE. Seven of 10 single-crossover beta-glucuronidase (GUS) transcriptional reporters in genes corresponding to QS-regulated proteins showed significantly different activities in the sinI and expR mutant backgrounds and in response to added SinI AHLs. The sinI mutant and several of the single-crossover strains were significantly delayed in the ability to initiate nodules on the primary root of the host plant, Medicago truncatula, indicating that sinI-dependent QS regulation and QS-regulated proteins contribute importantly to the rate or efficiency of nodule initiation. The sinI and expR mutants were also defective in surface swarming motility. The sinI mutant was restored to normal swarming by 5 nM C(16:1)-HSL.

  2. Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS.

    PubMed

    Ortori, Catharine A; Dubern, Jean-Frédéric; Chhabra, Siri Ram; Cámara, Miguel; Hardie, Kim; Williams, Paul; Barrett, David A

    2011-01-01

    An LC-MS/MS method, using positive mode electrospray ionization, for the simultaneous, quantitative and targeted profiling of the N-acyl-L-homoserine lactone (AHL) and 2-alkyl 4-(1H)-quinolone (AQ) families of bacterial quorum-sensing signaling molecules (QSSMs) is presented. This LC-MS/MS technique was applied to determine the relative molar ratios of AHLs and AQs produced by Pseudomonas aeruginosa and the consequences of mutating individual or multiple QSSM synthase genes (lasI, rhlI, pqsA) on AHL and AQ profiles and concentrations. The AHL profile of P. aeruginosa was dominated by N-butanoyl-L-homoserine lactone (C4-HSL) with lesser concentrations of N-hexanoyl-L-homoserine lactone (C6-HSL) and 3-oxo-substituted longer chain AHLs including N-(3-oxodecanoyl)-L-homoserine lactone (3-oxo-C10-HSL) and N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL). The AQ profile of P. aeruginosa comprised the C7 and C9 long alkyl chain AQs including 2-heptyl-4-hydroxyquinoline (HHQ), 2-nonyl-4-hydroxyquinoline, the "pseudomonas quinolone signal" (2-heptyl-3-hydroxy-4-quinolone) and the N-oxides, 2-heptyl-4-hydroxyquinoline N-oxide and 2-nonyl-4-hydroxyquinoline N-oxide. Application of the method showed significant effects of growth medium type on the ratio and the nature of the QSSMs synthesized and the dramatic effect of single, double and triple mutations in the P. aeruginosa QS synthase genes. The LC-MS/MS methodology is applicable in organisms where either or both AHL and AQ QSSMs are produced and can provide comprehensive profiles and concentrations from a single sample.

  3. Quorum sensing and microbial biofilms.

    PubMed

    Irie, Y; Parsek, M R

    2008-01-01

    Some bacterial species engage in two well-documented social behaviors: the formation of surface-associated communities known as biofilms, and intercellular signaling, or quorum sensing. Recent studies have begun to reveal how these two social behaviors are related in different species. This chapter will review the role quorum sensing plays in biofilm formation for different species. In addition, different aspects of quorum sensing in the context of multispecies biofilms will be discussed.

  4. Quorum sensing: a quantum perspective.

    PubMed

    Majumdar, Sarangam; Pal, Sukla

    2016-09-01

    Quorum sensing is the efficient mode of communication in the bacterial world. After a lot of advancements in the classical theory of quorum sensing few basic questions of quorum sensing still remain unanswered. The sufficient progresses in quantum biology demands to explain these questions from the quantum perspective as non trivial quantum effects already have manifested in various biological processes like photosynthesis, magneto-reception etc. Therefore, it's the time to review the bacterial communications from the quantum view point. In this article we carefully accumulate the latest results and arguments to strengthen quantum biology through the addition of quorum sensing mechanism in the light of quantum mechanics.

  5. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules.

    PubMed

    Romano, Ariel A; Hahn, Tobias; Davis, Nicole; Lowery, Colin A; Struss, Anjali K; Janda, Kim D; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-02-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C(12)-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding.

  6. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: Novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules

    PubMed Central

    Romano, Ariel A.; Hahn, Tobias; Davis, Nicole; Lowery, Colin A.; Struss, Anjali K.; Janda, Kim D.; Böttger, Lars H.; Matzanke, Berthold F.; Carrano, Carl J.

    2011-01-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671

  7. Immunomodulation and the quorum sensing molecule 3-oxo-C12-homoserine lactone: The importance of chemical scaffolding for probe development†

    PubMed Central

    Garner, Amanda L.; Yu, Jing; Struss, Anjali K.; Kaufmann, Gunnar F.

    2013-01-01

    As a guide for chemical probe design, focused analogue synthetic studies were undertaken upon the lactone ring of 3-oxo-C12-homoserine lactone. We have concluded that hydrolytic instability of the heterocyclic ring is pivotal for its ability to modulate immune signaling and probe preparation was aligned with these findings. PMID:23328974

  8. The influence of quorum sensing in compartment II of the MELiSSA loop

    NASA Astrophysics Data System (ADS)

    Condori, Sandra; Mastroleo, Felice; Wattiez, Ruddy; Leys, Natalie

    MELiSSA (Micro-Ecological Life Support System Alternative) has been conceived as a 5 compartments microorganisms and higher plants recycling system for long haul space flights. Rhodospirillum rubrum S1H colonizes compartment II. Previous work reported that continuous culture of the bacterium in a photobioreactor could lead to thick biofilm formation, leading to bioreactor arrest. Our aim is to investigate the unknown quorum sensing (QS) system of R. rubrum S1H, specifically under MELiSSA relevant culture conditions meaning light anaerobic (LAN) and using acetate as carbon source. In that purpose an autoinducer synthase gene (Rru_A3396) knockout mutant was constructed by allelic exchange generating strain M68. In addition phenotypic comparison between wild type (WT) and M68 was performed. Results of thin layer chromatography assay where Agrobacterium tumefaciens NT1 have been used as reporter strain showed that WT produces acyl-homoserine lactones (AHLs) from C4 to C12 acyl carbon chain length; however, in M68 no AHLs were detected confirming that gene Rru_A3396 (named rruI) encodes an autoinducer synthase. Interestingly under a low shear or static environment M68 showed cell aggregation similar as reported in a closely related bacterium Rhodobacter sphaeroides (cerI mutant). In contrast to WT, M68 did not form biofilm and exhibited a decreased motility and pigment content. M68 vs wild type transcriptomics results showed that 326 genes were statistically significant differentially expressed. Downregulation of genes related to photosynthesis e.g., reaction center subunits, light harvesting complex and photosynthetic assembly proteins was observed. Similar results were obtained for preliminary proteomic analysis. Results obtained showed that in R. rubrum S1H the AHL-based QS system regulates almost 8% of the genome which is linked to biofilm formation among other biological processes described above. Since strain M68 could not be used in compartment II due to its less

  9. Quorum sensing inhibition, relevance to periodontics.

    PubMed

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored.

  10. Modulation of Quorum Sensing in Acylhomoserine Lactone-Producing or -Degrading Tobacco Plants Leads to Alteration of Induced Systemic Resistance Elicited by the Rhizobacterium Serratia marcescens 90-166

    PubMed Central

    Ryu, Choong-Min; Choi, Hye Kyung; Lee, Chi-Ho; Murphy, John F.; Lee, Jung-Kee; Kloepper, Joseph W.

    2013-01-01

    Numerous root-associated bacteria (rhizobacteria) are known to elicit induced systemic resistance (ISR) in plants. Bacterial cell-density-dependent quorum sensing (QS) is thought to be important for ISR. Here, we investigated the role of QS in the ISR elicited by the rhizobacterium, Serratia marcescens strain 90–166, in tobacco. Since S. marcescens 90–166 produces at least three QS signals, QS-mediated ISR in strain 90–166 has been difficult to understand. Therefore, we investigated the ISR capacity of two transgenic tobacco (Nicotiana tabacum) plants that contained either bacterial acylhomoserine lactone-producing (AHL) or -degrading (AiiA) genes in conjunction with S. marcescens 90–166 to induce resistance against bacterial and viral pathogens. Root application of S. marcescens 90–166 increased ISR to the bacterial pathogens, Pectobacterium carotovorum subsp. carotovorum and Pseudomonas syringae pv. tabaci, in AHL plants and decreased ISR in AiiA plants. In contrast, ISR to Cucumber mosaic virus was reduced in AHL plants treated with S. marcescens 90–166 but enhanced in AiiA plants. Taken together, these data indicate that QS-dependent ISR is elicited by S. marcescens 90–166 in a pathogen-dependent manner. This study provides insight into QS-dependent ISR in tobacco elicited by S. marcescens 90–166. PMID:25288945

  11. Modulation of Quorum Sensing in Acylhomoserine Lactone-Producing or -Degrading Tobacco Plants Leads to Alteration of Induced Systemic Resistance Elicited by the Rhizobacterium Serratia marcescens 90-166.

    PubMed

    Ryu, Choong-Min; Choi, Hye Kyung; Lee, Chi-Ho; Murphy, John F; Lee, Jung-Kee; Kloepper, Joseph W

    2013-06-01

    Numerous root-associated bacteria (rhizobacteria) are known to elicit induced systemic resistance (ISR) in plants. Bacterial cell-density-dependent quorum sensing (QS) is thought to be important for ISR. Here, we investigated the role of QS in the ISR elicited by the rhizobacterium, Serratia marcescens strain 90-166, in tobacco. Since S. marcescens 90-166 produces at least three QS signals, QS-mediated ISR in strain 90-166 has been difficult to understand. Therefore, we investigated the ISR capacity of two transgenic tobacco (Nicotiana tabacum) plants that contained either bacterial acylhomoserine lactone-producing (AHL) or -degrading (AiiA) genes in conjunction with S. marcescens 90-166 to induce resistance against bacterial and viral pathogens. Root application of S. marcescens 90-166 increased ISR to the bacterial pathogens, Pectobacterium carotovorum subsp. carotovorum and Pseudomonas syringae pv. tabaci, in AHL plants and decreased ISR in AiiA plants. In contrast, ISR to Cucumber mosaic virus was reduced in AHL plants treated with S. marcescens 90-166 but enhanced in AiiA plants. Taken together, these data indicate that QS-dependent ISR is elicited by S. marcescens 90-166 in a pathogen-dependent manner. This study provides insight into QS-dependent ISR in tobacco elicited by S. marcescens 90-166.

  12. Regulon studies and in planta role of the BraI/R quorum-sensing system in the plant-beneficial Burkholderia cluster.

    PubMed

    Coutinho, Bruna G; Mitter, Birgit; Talbi, Chouhra; Sessitsch, Angela; Bedmar, Eulogio J; Halliday, Nigel; James, Euan K; Cámara, Miguel; Venturi, Vittorio

    2013-07-01

    The genus Burkholderia is composed of functionally diverse species, and it can be divided into several clusters. One of these, designated the plant-beneficial-environmental (PBE) Burkholderia cluster, is formed by nonpathogenic species, which in most cases have been found to be associated with plants. It was previously established that members of the PBE group share an N-acyl-homoserine lactone (AHL) quorum-sensing (QS) system, designated BraI/R, that produces and responds to 3-oxo-C14-HSL (OC14-HSL). Moreover, some of them also possess a second AHL QS system, designated XenI2/R2, producing and responding to 3-hydroxy-C8-HSL (OHC8-HSL). In the present study, we performed liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis to determine which AHL molecules are produced by each QS system of this group of bacteria. The results showed that XenI2/R2 is mainly responsible for the production of OHC8-HSL and that the BraI/R system is involved in the production of several different AHLs. This analysis also revealed that Burkholderia phymatum STM815 produces greater amounts of AHLs than the other species tested. Further studies showed that the BraR protein of B. phymatum is more promiscuous than other BraR proteins, responding equally well to several different AHL molecules, even at low concentrations. Transcriptome studies with Burkholderia xenovorans LB400 and B. phymatum STM815 revealed that the BraI/R regulon is species specific, with exopolysaccharide production being the only common phenotype regulated by this system in the PBE cluster. In addition, BraI/R was shown not to be important for plant nodulation by B. phymatum strains or for endophytic colonization and growth promotion of maize by B. phytofirmans PsJN.

  13. Regulon Studies and In Planta Role of the BraI/R Quorum-Sensing System in the Plant-Beneficial Burkholderia Cluster

    PubMed Central

    Coutinho, Bruna G.; Mitter, Birgit; Talbi, Chouhra; Sessitsch, Angela; Bedmar, Eulogio J.; Halliday, Nigel; James, Euan K.; Cámara, Miguel

    2013-01-01

    The genus Burkholderia is composed of functionally diverse species, and it can be divided into several clusters. One of these, designated the plant-beneficial-environmental (PBE) Burkholderia cluster, is formed by nonpathogenic species, which in most cases have been found to be associated with plants. It was previously established that members of the PBE group share an N-acyl-homoserine lactone (AHL) quorum-sensing (QS) system, designated BraI/R, that produces and responds to 3-oxo-C14-HSL (OC14-HSL). Moreover, some of them also possess a second AHL QS system, designated XenI2/R2, producing and responding to 3-hydroxy-C8-HSL (OHC8-HSL). In the present study, we performed liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis to determine which AHL molecules are produced by each QS system of this group of bacteria. The results showed that XenI2/R2 is mainly responsible for the production of OHC8-HSL and that the BraI/R system is involved in the production of several different AHLs. This analysis also revealed that Burkholderia phymatum STM815 produces greater amounts of AHLs than the other species tested. Further studies showed that the BraR protein of B. phymatum is more promiscuous than other BraR proteins, responding equally well to several different AHL molecules, even at low concentrations. Transcriptome studies with Burkholderia xenovorans LB400 and B. phymatum STM815 revealed that the BraI/R regulon is species specific, with exopolysaccharide production being the only common phenotype regulated by this system in the PBE cluster. In addition, BraI/R was shown not to be important for plant nodulation by B. phymatum strains or for endophytic colonization and growth promotion of maize by B. phytofirmans PsJN. PMID:23686262

  14. The Pseudomonas aeruginosa Global Regulator VqsR Directly Inhibits QscR To Control Quorum-Sensing and Virulence Gene Expression

    PubMed Central

    Deng, Xin; Ji, Quanjiang; Sun, Fei; Shen, Tuo; He, Chuan

    2012-01-01

    The opportunistic pathogen Pseudomonas aeruginosa has at least three quorum-sensing (QS) systems, including the acyl-homoserine lactone (acyl-HSL)-mediated las and rhl systems, as well as the 2-alkyl-4(1H)-quinolone (AHQ) signal-based system. A group of key regulators of these QS systems have been identified, such as qteE, vqsM, vqsR, and vfr. However, the underlying regulatory mechanisms of these QS systems are not yet fully understood. Here, using electrophoretic mobility shift assays, we demonstrated that VqsR indirectly regulates acyl-HSL systems but specifically binds to the qscR promoter region, which indicates that VqsR influences QS-controlled pathways through QscR. Through a dye-based DNase I footprint assay, we showed that VqsR interacts with an inverted repeat (IR) motif (TCGCCN8GGCGA, where N is any nucleotide) in the promoter region of qscR. A genome-wide search identified 50 other promoter regions carrying the same putative IR motif. The recombinant VqsR protein exists as a homodimer in solution. In addition, using a qscR-lux reporter assay and Northern blot hybridization, we found that the transcription level of qscR increased 4-fold in the vqsR deletion strain compared to the wild-type PAO1 strain, indicating vqsR as a negative regulator of qscR. Taken together, these findings provide new insights into the complex regulation network of QS systems in P. aeruginosa. PMID:22505688

  15. Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: Co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia

    PubMed Central

    2011-01-01

    Background Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novel N-acylhomoserine lactone (AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale) growing in the Malaysian rainforest. Results By using a basal growth medium containing N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) as the sole source of carbon and nitrogen, the ginger rhizosphere associated bacteria were enriched for strains with AHL-degrading capabilities. Three isolates belonging to the genera Acinetobacter (GG2), Burkholderia (GG4) and Klebsiella (Se14) were identified and selected for further study. Strains GG2 and Se14 exhibited the broadest spectrum of AHL-degrading activities via lactonolysis while GG4 reduced 3-oxo-AHLs to the corresponding 3-hydroxy compounds. In GG2 and GG4, QQ was found to co-exist with AHL-dependent QS and GG2 was shown to inactivate both self-generated and exogenously supplied AHLs. GG2, GG4 and Se14 were each able to attenuate virulence factor production in both human and plant pathogens. Conclusions Collectively our data show that ginger rhizosphere bacteria which make and degrade a wide range of AHLs are likely to play a collective role in determining the QS-dependent phenotype of a polymicrobial community. PMID:21385437

  16. Role of Specific Quorum-Sensing Signals in the Regulation of Exopolysaccharide II Production within Sinorhizobium meliloti Spreading Colonies

    PubMed Central

    Gao, Mengsheng; Coggin, Andrew; Yagnik, Kruti; Teplitski, Max

    2012-01-01

    Background Quorum sensing (QS) in Sinorhizobium meliloti involves at least half a dozen different N-acyl homoserine lactone (AHL) signals. These signals are produced by SinI, the sole AHL synthase in S. meliloti Rm8530. The sinI gene is regulated by two LuxR-type transcriptional regulators, SinR and ExpR. Mutations in sinI, sinR and expR abolish the production of exopolysaccharide II (EPS II). Methodology/Principal Findings This study investigated a new type of coordinated surface spreading of Rm8530 that can be categorized as swarming. Motility assays on semi-solid surfaces revealed that both flagella and EPS II are required for this type of motility. The production of EPS II depends on AHLs produced by SinI. Of these AHLs, only C16:1- and 3-oxo-C16:1-homoserine lactones (HSLs) stimulated swarming in an ExpR-dependent manner. These two AHLs induced the strongest response in the wggR reporter fusions. WggR is a positive regulator of the EPS II biosynthesis gene expression. The levels of the wggR activation correlated with the extent of swarming. Furthermore, swarming of S. meliloti required the presence of the high molecular weight (HMW) fraction of EPS II. Within swarming colonies, a recombinase-based RIVET reporter in the wggR gene was resolved in 30% of the cells, indicating an enhanced regulation of EPS II production in the subpopulation of cells, which was sufficient to support swarming of the entire colony. Conclusions/Significance Swarming behavior of S. meliloti Rm8530 on semi-solid surfaces is found to be dependent on the functional QS regulatory cascades. Even though multiple AHL signals are produced by the bacterium, only two AHLs species, C16:1- and 3-oxo-C16:1-HSLs, affected swarming by up-regulating the expression of wggR. While EPS II is produced by Rm8530 as high and low molecular weight fractions, only the HMW EPS II facilitated initial stages of swarming, thus, suggesting a function for this polymer. PMID:22912712

  17. Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways.

    PubMed

    Slater, Holly; Crow, Matthew; Everson, Lee; Salmond, George P C

    2003-01-01

    Serratia sp. ATCC 39006 produces two secondary metabolite antibiotics, 1-carbapen-2-em-3-carboxylic acid (Car) and the red pigment, prodigiosin (Pig). We have previously reported that production of Pig and Car is controlled by N-acyl homoserine lactone (N-AHL) quorum sensing, with synthesis of N-AHLs directed by the LuxI homologue SmaI, and is also regulated by Rap, a member of the SlyA family. We now describe further characterization of the SmaI quorum-sensing system and its connection with other regulatory mechanisms. We show that the genes responsible for biosynthesis of Pig, pigA-O, are transcribed as a single polycistronic message in an N-AHL-dependent manner. The smaR gene, transcribed convergently with smaI and predicted to encode the LuxR homologue partner of SmaI, was shown to possess a negative regulatory function, which is uncommon among the LuxR-type transcriptional regulators. SmaR represses transcription of both the pig and car gene clusters in the absence of N-AHLs. Specifically, we show that SmaIR exerts its effect on car gene expression via transcriptional control of carR, encoding a pheromone-independent LuxR homologue. Transcriptional activation of the pig and car gene clusters also requires a functional Rap protein, but Rap dependency can be bypassed by secondary mutations. Transduction of these suppressor mutations into wild-type backgrounds confers a hyper-Pig phenotype. Multiple mutations cluster in a region upstream of the pigA gene, suggesting this region may represent a repressor target site. Two mutations mapped to genes encoding pstS and pstA homologues, which are parts of a high-affinity phosphate transport system (Pst) in Escherichia coli. Disruption of pstS mimicked phosphate limitation and caused concomitant hyper-production of Pig and Car, which was mediated, in part, through increased transcription of the smaI gene. The Pst and SmaIR systems define distinct, yet overlapping, regulatory circuits which form part of a complex

  18. Genome analysis of quorum sensing Cedecea neteri SSMD04 leads to identification of its novel signaling synthase (cneI), cognate receptor (cneR) and an orphan receptor

    PubMed Central

    Tan, Kian-Hin; Tan, Jia-Yi; Yin, Wai-Fong

    2015-01-01

    Cedecea neteri is a very rare human pathogen. We have isolated a strain of C. neteri SSMD04 from pickled mackerel sashimi identified using molecular and phenotypics approaches. Using the biosensor Chromobacterium violaceum CV026, we have demonstrated the presence of short chain N-acyl-homoserine lactone (AHL) type quorum sensing (QS) activity in C. neteri SSMD04. Triple quadrupole LC/MS analysis revealed that C. neteri SSMD04 produced short chain N-butyryl-homoserine lactone (C4-HSL). With the available genome information of C. neteri SSMD04, we went on to analyse and identified a pair of luxI/R homologues in this genome that share the highest similarity with croI/R homologues from Citrobacter rodentium. The AHL synthase, which we named cneI(636 bp), was found in the genome sequences of C. neteri SSMD04. At a distance of 8bp from cneI is a sequence encoding a hypothetical protein, potentially the cognate receptor, a luxR homologue which we named it as cneR. Analysis of this protein amino acid sequence reveals two signature domains, the autoinducer-binding domain and the C-terminal effector which is typical characteristic of luxR. In addition, we found that this genome harboured an orphan luxR that is most closely related to easR in Enterobacter asburiae. To our knowledge, this is the first report on the AHL production activity in C. neteri, and the discovery of its luxI/R homologues, the orphan receptor and its whole genome sequence. PMID:26355540

  19. N-acylated alanine methyl esters (NAMEs) from Roseovarius tolerans, structural analogs of quorum-sensing autoinducers, N-acylhomoserine lactones.

    PubMed

    Bruns, Hilke; Thiel, Verena; Voget, Sonja; Patzelt, Diana; Daniel, Rolf; Wagner-Döbler, Irene; Schulz, Stefan

    2013-09-01

    The Roseobacter clade is one of the most important bacteria group living in the ocean. Liquid cultures of Roseovarius tolerans EL 164 were investigated for the production of autoinducers such as N-acylhomoserine lactones (AHLs) and other secondary metabolites. The XAD extracts were analyzed by GC/MS. Two AHLs, Z7-C14 : 1-homoserine lactone (HSL) and C15 : 1-HSL, were identified. Additionally, the extract contained five compounds with molecular-ion peaks at m/z 104, 145, and 158, thus exhibiting mass spectra similar to those of AHLs with corresponding peaks at m/z 102, 143, and 156. Isolation of the main compound by column chromatography, NMR analysis, dimethyl disulfide derivatization for the determination of the location of the CC bond and finally synthesis of the compound with the proposed structure confirmed the compound to be (Z)-N-(hexadec-9-enoyl)alanine methyl ester. Four additional minor compounds were identified as C14 : 0-, C15 : 0-, C16 : 0-, and C17 : 1-N-acylated alanine methyl esters (NAMEs). All NAMEs have not been described from natural sources before. A BLASTp search showed the presence of AHL-producing luxI genes, but no homologous genes potentially responsible for the structurally closely related NAMEs were found. The involvement of the NAMEs in chemical communication processes of the bacteria is discussed.

  20. Quorum sensing by farnesol revisited.

    PubMed

    Polke, Melanie; Jacobsen, Ilse D

    2017-02-28

    Quorum sensing, a form of molecular communication in microbial communities, is relatively well studied in bacterial species, but poorly understood in fungi. Farnesol, a quorum sensing molecule secreted by the opportunistic human pathogenic fungus Candida albicans, was the first quorum sensing molecule described in a eukaryotic organism. However, despite considerable research efforts and advances in recent years, the mechanisms behind its action remain largely elusive. Only recently, we showed that deletion of the C. albicans gene EED1 (eed1Δ), which is essential for hyphal maintenance, resulted in both increased farnesol production and hypersensitivity to farnesol, providing a link between farnesol signaling and elongated hyphal growth. This finding raised several questions concerning farnesol signaling. In this short review we use the unique phenotype of the eed1Δ mutant to summarize current hypotheses and to speculate on possible mechanisms of quorum sensing in C. albicans and its implication in fungus-host interaction, by drawing comparisons to comparatively well-studied quorum sensing systems in bacteria.

  1. Bacterial quorum sensing and biofilm formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quorum sensing is a cell density-dependent signaling system by which bacteria can regulate gene expression through the production, secretion, and subsequent detection of extracellular signaling molecules called autoinducers. Bacteria use quorum sensing to regulate various physiological activities, ...

  2. Quorum Sensing Inhibition, Relevance to Periodontics

    PubMed Central

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored. PMID:25709373

  3. Optimal census by quorum sensing

    NASA Astrophysics Data System (ADS)

    Taillefumier, Thibaud

    Bacteria regulate their gene expression in response to changes in local cell density in a process called quorum sensing. To synchronize their gene-expression programs, these bacteria need to glean as much information as possible about local density. Our study is the first to physically model the flow of information in a quorum-sensing microbial community, wherein the internal regulator of the individual's response tracks the external cell density via an endogenously generated shared signal. Combining information theory and Lagrangian optimization, we find that quorum-sensing systems can improve their information capabilities by tuning circuit feedbacks. At the population level, external feedback adjusts the dynamic range of the shared input to individuals' detection channels. At the individual level, internal feedback adjusts the regulator's response time to dynamically balance output noise reduction and signal tracking ability. Our analysis suggests that achieving information benefit via feedback requires dedicated systems to control gene expression noise, such as sRNA-based regulation.

  4. Exploring the chemical space of quorum sensing peptides.

    PubMed

    Wynendaele, Evelien; Gevaert, Bert; Stalmans, Sofie; Verbeke, Frederick; De Spiegeleer, Bart

    2015-09-01

    Quorum sensing peptides are signalling molecules that are produced by mainly gram-positive bacteria. These peptides can exert different effects, ranging from intra- and interspecies bacterial virulence to bacterial-host interactions. To better comprehend these functional differences, we explored their chemical space, bacterial species distribution and receptor-binding properties using multivariate data analyses, with information obtained from the Quorumpeps database. The quorum sensing peptides can be categorized into three main clusters, which, in turn, can be divided into several subclusters: the classification is based on characteristic chemical properties, including peptide size/compactness, hydrophilicity/lipophilicity, cyclization and the presence of (unnatural) S-containing and aromatic amino acids. Most of the bacterial species synthesize peptides located into one cluster. However, some Streptococcus, Stapylococcus, Clostridium, Bacillus and Lactobacillus species produce peptides that are distributed over more than one cluster, with the quorum sensing peptides of Bacillus subtilis even occupying the total peptide space. The AgrC, FsrC and LamC receptors are only activated by cyclic (thio)lacton or lactam quorum sensing peptides, while the lipophilic isoprenyl-modified peptides solely bind the ComP receptor in Bacillus species.

  5. The impact of quorum sensing on the virulence of Aeromonas hydrophila and Aeromonas salmonicida towards burbot (Lota lota L.) larvae.

    PubMed

    Natrah, F M I; Alam, Md Iftakharul; Pawar, Sushant; Harzevili, A Shiri; Nevejan, Nancy; Boon, Nico; Sorgeloos, Patrick; Bossier, Peter; Defoirdt, Tom

    2012-09-14

    In this study, the link between quorum sensing in Aeromonas spp. and its virulence towards burbot (Lota lota) was investigated. High mortality occurred in burbot juveniles challenged with Aeromonas salmonicida HN-00, but not in juveniles challenged with Aeromonas hydrophila AH-1N. Meanwhile, both A. hydrophila AH-1N and A. salmonicida HN-00 were virulent towards larvae. The effect of quorum sensing on the virulence of A. hydrophila AH-1N towards burbot larvae was further investigated using quorum sensing mutants (N-(butyryl)-L-homoserine lactone production and receptor mutants). Challenge with these mutants resulted in higher survival of burbot larvae when compared to challenge with the wild type, and the addition of the signal molecule N-butyryl-L-homoserine lactone restored the virulence of the quorum sensing production mutant. Moreover, quorum sensing inhibitors protected the burbot larvae from both Aeromonas strains. Finally, the freshwater micro-algae Chlorella saccharophila and Chlamydomonas reinhardtii, which are able to interfere with quorum sensing, also protected burbot from the pathogens. However, QS interference was unlikely to be the only mechanism. This study revealed that the virulence of Aeromonas spp. towards burbot is regulated by quorum sensing and that quorum sensing inhibitors and micro-algae are promising biocontrol agents.

  6. RNA Sequencing Analysis of the Broad-Host-Range Strain Sinorhizobium fredii NGR234 Identifies a Large Set of Genes Linked to Quorum Sensing-Dependent Regulation in the Background of a traI and ngrI Deletion Mutant

    PubMed Central

    Krysciak, Dagmar; Grote, Jessica; Rodriguez Orbegoso, Mariita; Utpatel, Christian; Förstner, Konrad U.; Li, Lei; Schmeisser, Christel; Krishnan, Hari B.

    2014-01-01

    The alphaproteobacterium Sinorhizobium fredii NGR234 has an exceptionally wide host range, as it forms nitrogen-fixing nodules with more legumes than any other known microsymbiont. Within its 6.9-Mbp genome, it encodes two N-acyl-homoserine-lactone synthase genes (i.e., traI and ngrI) involved in the biosynthesis of two distinct autoinducer I-type molecules. Here, we report on the construction of an NGR234-ΔtraI and an NGR234-ΔngrI mutant and their genome-wide transcriptome analysis. A high-resolution RNA sequencing (RNA-seq) analysis of early-stationary-phase cultures in the NGR234-ΔtraI background suggested that up to 316 genes were differentially expressed in the NGR234-ΔtraI mutant versus the parent strain. Similarly, in the background of NGR234-ΔngrI 466 differentially regulated genes were identified. Accordingly, a common set of 186 genes was regulated by the TraI/R and NgrI/R regulon. Coregulated genes included 42 flagellar biosynthesis genes and 22 genes linked to exopolysaccharide (EPS) biosynthesis. Among the genes and open reading frames (ORFs) that were differentially regulated in NGR234-ΔtraI were those linked to replication of the pNGR234a symbiotic plasmid and cytochrome c oxidases. Biotin and pyrroloquinoline quinone biosynthesis genes were differentially expressed in the NGR234-ΔngrI mutant as well as the entire cluster of 21 genes linked to assembly of the NGR234 type III secretion system (T3SS-II). Further, we also discovered that genes responsible for rhizopine catabolism in NGR234 were strongly repressed in the presence of high levels of N-acyl-homoserine-lactones. Together with nodulation assays, the RNA-seq-based findings suggested that quorum sensing (QS)-dependent gene regulation appears to be of higher relevance during nonsymbiotic growth rather than for life within root nodules. PMID:25002423

  7. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS).

    PubMed

    McGrath, Stephen; Wade, Dana S; Pesci, Everett C

    2004-01-15

    The opportunistic human pathogen Pseudomonas aeruginosa regulates the production of numerous virulence factors via the action of two separate but coordinated quorum sensing systems, las and rhl. These systems control the transcription of genes in response to population density through the intercellular signals N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C(12)-HSL) and N-(butanoyl)-L-homoserine lactone (C(4)-HSL). A third P. aeruginosa signal, 2-heptyl-3-hydroxy-4-quinolone [Pseudomonas quinolone signal (PQS)], also plays a significant role in the transcription of multiple P. aeruginosa virulence genes. PQS is intertwined in the P. aeruginosa quorum sensing hierarchy with its production and bioactivity requiring the las and rhl quorum sensing systems, respectively. This report presents a preliminary transcriptional analysis of pqsA, the first gene of the recently discovered PQS biosynthetic gene cluster. We show that pqsA transcription required pqsR, a transcriptional activator protein encoded within the PQS biosynthetic gene cluster. It was also found that the transcription of pqsA and subsequent production of PQS was induced by the las quorum sensing system and repressed by the rhl quorum sensing system. In addition, PQS production was dependent on the ratio of 3-oxo-C(12)-HSL to C(4)-HSL, suggesting a regulatory balance between quorum sensing systems. These data are an important early step toward understanding the regulation of PQS synthesis and the role of PQS in P. aeruginosa intercellular signaling.

  8. The BpeAB-OprB Efflux Pump of Burkholderia pseudomallei 1026b Does Not Play a Role in Quorum Sensing, Virulence Factor Production, or Extrusion of Aminoglycosides but Is a Broad-Spectrum Drug Efflux System ▿

    PubMed Central

    Mima, Takehiko; Schweizer, Herbert P.

    2010-01-01

    Most Burkholderia pseudomallei strains are intrinsically aminoglycoside resistant, mainly due to AmrAB-OprA-mediated efflux. Rare naturally occurring or genetically engineered mutants lacking this pump are aminoglycoside susceptible despite the fact that they also encode and express BpeAB-OprB, which was reported to mediate efflux of aminoglycosides in the Singapore strain KHW. To reassess the role of BpeAB-OprB in B. pseudomallei aminoglycoside resistance, we used mutants overexpressing or lacking this pump in either AmrAB-OprA-proficient or -deficient strain 1026b backgrounds. Our data show that BpeAB-OprB does not mediate efflux of aminoglycosides but is a multidrug efflux system which extrudes macrolides, fluoroquinolones, tetracyclines, acriflavine, and, to a lesser extent, chloramphenicol. Phylogenetically, BpeAB-OprB is closely related to Pseudomonas aeruginosa MexAB-OprM, which has a similar substrate spectrum. AmrAB-OprA is most closely related to MexXY, the only P. aeruginosa efflux pump known to extrude aminoglycosides. Since BpeAB-OprB in strain KHW was also implicated in playing a major role in export of acylated homoserine lactone (AHL) quorum-sensing molecules and in expression of diverse virulence factors, we explored whether this was also true in the strain 1026b background. The results showed that BpeAB-OprB was not required for AHL export, and mutants lacking this efflux system exhibited normal swimming motility and siderophore production, which were severely impaired in KHW bpeAB-oprB mutants. Biofilm formation was impaired in 1026b Δ(amrRAB-oprA) and Δ(amrRAB-oprA) Δ(bpeAB-oprB) mutants. At present, we do not know why our BpeAB-OprB susceptibility and virulence factor expression results with 1026b and its derivatives are different from those previously published for Singapore strain KHW. PMID:20498323

  9. The BpeAB-OprB efflux pump of Burkholderia pseudomallei 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broad-spectrum drug efflux system.

    PubMed

    Mima, Takehiko; Schweizer, Herbert P

    2010-08-01

    Most Burkholderia pseudomallei strains are intrinsically aminoglycoside resistant, mainly due to AmrAB-OprA-mediated efflux. Rare naturally occurring or genetically engineered mutants lacking this pump are aminoglycoside susceptible despite the fact that they also encode and express BpeAB-OprB, which was reported to mediate efflux of aminoglycosides in the Singapore strain KHW. To reassess the role of BpeAB-OprB in B. pseudomallei aminoglycoside resistance, we used mutants overexpressing or lacking this pump in either AmrAB-OprA-proficient or -deficient strain 1026b backgrounds. Our data show that BpeAB-OprB does not mediate efflux of aminoglycosides but is a multidrug efflux system which extrudes macrolides, fluoroquinolones, tetracyclines, acriflavine, and, to a lesser extent, chloramphenicol. Phylogenetically, BpeAB-OprB is closely related to Pseudomonas aeruginosa MexAB-OprM, which has a similar substrate spectrum. AmrAB-OprA is most closely related to MexXY, the only P. aeruginosa efflux pump known to extrude aminoglycosides. Since BpeAB-OprB in strain KHW was also implicated in playing a major role in export of acylated homoserine lactone (AHL) quorum-sensing molecules and in expression of diverse virulence factors, we explored whether this was also true in the strain 1026b background. The results showed that BpeAB-OprB was not required for AHL export, and mutants lacking this efflux system exhibited normal swimming motility and siderophore production, which were severely impaired in KHW bpeAB-oprB mutants. Biofilm formation was impaired in 1026b Delta(amrRAB-oprA) and Delta(amrRAB-oprA) Delta(bpeAB-oprB) mutants. At present, we do not know why our BpeAB-OprB susceptibility and virulence factor expression results with 1026b and its derivatives are different from those previously published for Singapore strain KHW.

  10. Functional characterization of a soybean growth stimulator Bradyrhizobium sp. strain SR-6 showing acylhomoserine lactone production.

    PubMed

    Ali, Amanat; Ayesha; Hameed, Sohail; Imran, Asma; Iqbal, Mazhar; Iqbal, Javed; Oresnik, Ivan J

    2016-09-01

    A soybean nodule endophytic bacterium Bradyrhizobium sp. strain SR-6 was characterized for production of acyl homoserine lactones (AHLs) as quorum sensing molecules. Mass spectrometry analysis of AHLs revealed the presence of C6-HSL, 3OH-C6-HSL, C8-HSL, C10-HSL, 3oxoC10-HSL, 3oxo-C12-HSL and 3OH-C12-HSL which are significantly different from those reported earlier in soybean symbionts. Purified AHL extracts significantly improved wheat and soybean seedling growth and root hair development along with increased soybean nodulation under axenic conditions. A positive correlation was observed among in vivo nitrogenase and catalase enzyme activities of the strain SR-6. Transmission electron microscopic analysis showed the cytochemical localization of catalase activity within the bacteroids, specifically attached to the peribacteroidal membrane. Root and nodule colonization proved rhizosphere competence of SR-6. The inoculation of SR-6 resulted in increased shoot length (13%), plant dry matter (50%), grain weight (16%), seed yield (20%) and N-uptake (14%) as compared to non-inoculated soybean plants. The symbiotic bacterium SR-6 has potential to improve soybean growth and yield in sub-humid climate of Azad Jammu and Kashmir region of Pakistan. The production and mass spectrometric profiling of AHLs as well as in vivo cytochemical localization of catalase enzyme activity in soybean Bradyrhizobium sp. have never been reported earlier elsewhere before our these investigations.

  11. Quorum sensing inhibitors: an overview.

    PubMed

    Kalia, Vipin Chandra

    2013-01-01

    Excessive and indiscriminate use of antibiotics to treat bacterial infections has lead to the emergence of multiple drug resistant strains. Most infectious diseases are caused by bacteria which proliferate within quorum sensing (QS) mediated biofilms. Efforts to disrupt biofilms have enabled the identification of bioactive molecules produced by prokaryotes and eukaryotes. These molecules act primarily by quenching the QS system. The phenomenon is also termed as quorum quenching (QQ). In addition, synthetic compounds have also been found to be effective in QQ. This review focuses primarily on natural and synthetic quorum sensing inhibitors (QSIs) with the potential for treating bacterial infections. It has been opined that the most versatile prokaryotes to produce QSI are likely to be those, which are generally regarded as safe. Among the eukaryotes, certain legumes and traditional medicinal plants are likely to act as QSIs. Such findings are likely to lead to efficient treatments with much lower doses of drugs especially antibiotics than required at present.

  12. The Addition of N-Hexanoyl-Homoserine Lactone to Improve the Microbial Flocculant Production of Agrobacterium tumefaciens Strain F2, an Exopolysaccharide Bioflocculant-Producing Bacterium.

    PubMed

    Yang, Jixian; Wu, Dan; Li, Ang; Guo, Haijuan; Chen, Han; Pi, Shanshan; Wei, Wei; Ma, Fang

    2016-07-01

    In this study, N-hexanoyl-homoserine lactone (C6-HSL), a member of the N-acyl-homoserine lactone class of microbial quorum sensing (QS) signaling molecules, was used to improve microbial flocculant production. After exogenous C6-HSL was added, exopolysaccharide concentration of microbial flocculants was improved by 1.6-fold and flocculation rate of microbial flocculants was increased by 10 %. Fermentation conditions with added C6-HSL were further optimized through response surface methodology. The obtained optimal fermentation conditions were as follows: added C6-HSL concentration of 0.45 μM, fermentation temperature of 30.4 °C, and initial fermentation pH of 7.25. Under these optimal fermentation conditions, the resulting exopolysaccharide concentration was improved by 1.75-fold and flocculation rate was increased by 10 % compared with that of the control group. The yield of microbial flocculants was also improved by 1.75-fold. Results demonstrated that the existence of QS system in Agrobacterium tumefaciens strain F2 played the important roles in the microbial flocculant production.

  13. Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants.

    PubMed

    Götz, Christine; Fekete, Agnes; Gebefuegi, Istvan; Forczek, Sándor T; Fuksová, Kvetoslava; Li, Xiaojing; Englmann, Matthias; Gryndler, Milan; Hartmann, Anton; Matucha, Miroslav; Schmitt-Kopplin, Philippe; Schröder, Peter

    2007-11-01

    Bacterial intraspecies and interspecies communication in the rhizosphere is mediated by diffusible signal molecules. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as autoinducers in the quorum sensing response. While bacterial signalling is well described, the fate of AHLs in contact with plants is much less known. Thus, adsorption, uptake and translocation of N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL) and N-decanoyl-homoserine lactone (C10-HSL) were studied in axenic systems with barley (Hordeum vulgare L.) and the legume yam bean (Pachyrhizus erosus (L.) Urban) as model plants using ultra-performance liquid chromatography (UPLC), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tritium-labelled AHLs. Decreases in AHL concentration due to abiotic adsorption or degradation were tolerable under the experimental conditions. The presence of plants enhanced AHL decline in media depending on the compounds' lipophilicity, whereby the legume caused stronger AHL decrease than barley. All tested AHLs were traceable in root extracts of both plants. While all AHLs except C10-HSL were detectable in barley shoots, only C6-HSL was found in shoots of yam bean. Furthermore, tritium-labelled AHLs were used to determine short-term uptake kinetics. Chiral separation by GC-MS revealed that both plants discriminated D-AHL stereoisomers to different extents. These results indicate substantial differences in uptake and degradation of different AHLs in the plants tested.

  14. Quorum sensing activity of Mesorhizobium sp. F7 isolated from potable water.

    PubMed

    Yong, Pei-Ling; Chan, Kok-Gan

    2014-01-01

    We isolated a bacterial isolate (F7) from potable water. The strain was identified as Mesorhizobium sp. by 16S rDNA gene phylogenetic analysis and screened for N-acyl homoserine lactone (AHL) production by an AHL biosensor. The AHL profile of the isolate was further analyzed using high resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) which confirmed the production of multiple AHLs, namely, N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL) and N-3-oxo-decanoyl-L-homoserine lactone (3-oxo-C10-HSL). These findings will open the perspective to study the function of these AHLs in plant-microbe interactions.

  15. Application of molecular docking and ONIOM methods for the description of interactions between anti-quorum sensing active (AHL) analogues and the Pseudomonas aeruginosa LasR binding site.

    PubMed

    Ahumedo, Maicol; Drosos, Juan Carlos; Vivas-Reyes, Ricardo

    2014-05-01

    Molecular docking methods were applied to simulate the coupling of a set of nineteen acyl homoserine lactone analogs into the binding site of the transcriptional receptor LasR. The best pose of each ligand was explored and a qualitative analysis of the possible interactions present in the complex was performed. From the results of the protein-ligand complex analysis, it was found that residues Tyr-64 and Tyr-47 are involved in important interactions, which mainly determine the antagonistic activity of the AHL analogues considered for this study. The effect of different substituents on the aromatic ring, the common structure to all ligands, was also evaluated focusing on how the interaction with the two previously mentioned tyrosine residues was affected. Electrostatic potential map calculations based on the electron density and the van der Waals radii were performed on all ligands to graphically aid in the explanation of the variation of charge density on their structures when the substituent on the aromatic ring is changed through the elements of the halogen group series. A quantitative approach was also considered and for that purpose the ONIOM method was performed to estimate the energy change in the different ligand-receptor complex regions. Those energy values were tested for their relationship with the corresponding IC50 in order to establish if there is any correlation between energy changes in the selected regions and the biological activity. The results obtained using the two approaches may contribute to the field of quorum sensing active molecules; the docking analysis revealed the role of some binding site residues involved in the formation of a halogen bridge with ligands. These interactions have been demonstrated to be responsible for the interruption of the signal propagation needed for the quorum sensing circuit. Using the other approach, the structure-activity relationship (SAR) analysis, it was possible to establish which structural characteristics

  16. Identification of potential genetic components involved in the deviant quorum-sensing signaling pathways of Burkholderia glumae through a functional genomics approach

    PubMed Central

    Chen, Ruoxi; Barphagha, Inderjit K.; Ham, Jong Hyun

    2015-01-01

    Burkholderia glumae is the chief causal agent for bacterial panicle blight of rice. The acyl-homoserine lactone (AHL)-mediated quorum-sensing (QS) system dependent on a pair of luxI and luxR homologs, tofI and tofR, is the primary cell-to-cell signaling mechanism determining the virulence of this bacterium. Production of toxoflavin, a major virulence factor of B. glumae, is known to be dependent on the tofI/tofR QS system. In our previous study, however, it was observed that B. glumae mutants defective in tofI or tofR produced toxoflavin if they grew on the surface of a solid medium, suggesting that alternative signaling pathways independent of tofI or tofR are activated in that growth condition for the production of toxoflavin. In this study, potential genetic components involved in the tofI- and tofR-independent signaling pathways for toxoflavin production were sought through screening random mini-Tn5 mutants of B. glumae to better understand the intercellular signaling pathways of this pathogen. Fifteen and three genes were initially identified as the potential genetic elements of the tofI- and tofR-independent pathways, respectively. Especially, the ORF (bglu_2g06320) divergently transcribed from toxJ, which encodes an orphan LuxR protein and controls toxoflavin biosynthesis, was newly identified in this study as a gene required for the tofR-independent toxoflavin production and named as toxK. Among those genes, flhD, dgcB, and wzyB were further studied to validate their functions in the tofI-independent toxoflavin production, and similar studies were also conducted with qsmR and toxK for their functions in the tofR-independent toxoflavin production. This work provides a foundation for future comprehensive studies of the intercellular signaling systems of B. glumae and other related pathogenic bacteria. PMID:25806356

  17. Social cheating in Pseudomonas aeruginosa quorum sensing.

    PubMed

    Sandoz, Kelsi M; Mitzimberg, Shelby M; Schuster, Martin

    2007-10-02

    In a process termed quorum sensing, bacteria use diffusible chemical signals to coordinate cell density-dependent gene expression. In the human pathogen Pseudomonas aeruginosa, quorum sensing controls hundreds of genes, many of which encode extracellular virulence factors. Quorum sensing is required for P. aeruginosa virulence in animal models. Curiously, quorum sensing-deficient variants, most of which carry a mutation in the gene encoding the central quorum sensing regulator lasR, are frequently isolated from acute and chronic infections. The mechanism for their emergence is not known. Here we provide experimental evidence suggesting that these lasR mutants are social cheaters that cease production of quorum-controlled factors and take advantage of their production by the group. We detected an emerging subpopulation of lasR mutants after approximately 100 generations of in vitro evolution of the P. aeruginosa wild-type strain under culture conditions that require quorum sensing for growth. Under such conditions, quorum sensing appears to impose a metabolic burden on the proliferating bacterial cell, because quorum-controlled genes not normally induced until cessation of growth were highly expressed early in growth, and a defined lasR mutant showed a growth advantage when cocultured with the parent strain. The emergence of quorum-sensing-deficient variants in certain environments is therefore an indicator of high quorum sensing activity of the bacterial population as a whole. It does not necessarily indicate that quorum sensing is insignificant, as has previously been suggested. Thus, novel antivirulence strategies aimed at disrupting bacterial communication may be particularly effective in such clinical settings.

  18. Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum

    PubMed Central

    Martinelli, Daniel; Grossmann, Gilles; Séquin, Urs; Brandl, Helmut; Bachofen, Reinhard

    2004-01-01

    Background Cell to cell signaling systems in Gram-negative bacteria rely on small diffusible molecules such as the N-acylhomoserine lactones (AHL). These compounds are involved in the production of antibiotics, exoenzymes, virulence factors and biofilm formation. They belong to the class of furanone derivatives which are frequently found in nature as pheromones, flavor compounds or secondary metabolites. To obtain more information on the relation between molecular structure and quorum sensing, we tested a variety of natural and chemically synthesized furanones for their ability to interfere with the quorum sensing mechanism using a quantitative bioassay with Chromobacterium violaceum CV026 for antagonistic and agonistic action. We were looking at the following questions: 1. Do these compounds affect growth? 2) Do these compounds activate the quorum sensing system of C. violaceum CV026? 3) Do these compounds inhibit violacein formation induced by the addition of the natural inducer N-hexanoylhomoserine lactone (HHL)? 4) Do these compounds enhance violacein formation in presence of HHL? Results The naturally produced N-acylhomoserine lactones showed a strong non-linear concentration dependent influence on violacein production in C. violaceum with a maximum at 3.7*10-8 M with HHL. Apart from the N-acylhomoserine lactones only one furanone (emoxyfurane) was found to simulate N-acylhomoserine lactone activity and induce violacein formation. The most effective substances acting negatively both on growth and quorum sensing were analogs and intermediates in synthesis of the butenolides from Streptomyces antibioticus. Conclusion As the regulation of many bacterial processes is governed by quorum sensing systems, the finding of natural and synthetic furanones acting as agonists or antagonists suggests an interesting tool to control and handle detrimental AHL induced effects. Some effects are due to general toxicity; others are explained by a competitive interaction for Lux

  19. Functional amyloids keep quorum-sensing molecules in check.

    PubMed

    Seviour, Thomas; Hansen, Susan Hove; Yang, Liang; Yau, Yin Hoe; Wang, Victor Bochuan; Stenvang, Marcel R; Christiansen, Gunna; Marsili, Enrico; Givskov, Michael; Chen, Yicai; Otzen, Daniel E; Nielsen, Per Halkjær; Geifman-Shochat, Susana; Kjelleberg, Staffan; Dueholm, Morten S

    2015-03-06

    The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats.

  20. Functional Amyloids Keep Quorum-sensing Molecules in Check*

    PubMed Central

    Seviour, Thomas; Hansen, Susan Hove; Yang, Liang; Yau, Yin Hoe; Wang, Victor Bochuan; Stenvang, Marcel R.; Christiansen, Gunna; Marsili, Enrico; Givskov, Michael; Chen, Yicai; Otzen, Daniel E.; Nielsen, Per Halkjær; Geifman-Shochat, Susana; Kjelleberg, Staffan; Dueholm, Morten S.

    2015-01-01

    The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats. PMID:25586180

  1. Quorum sensing and microbial drug resistance.

    PubMed

    Yufan, Chen; Shiyin, Liu; Zhibin, Liang; Mingfa, Lv; Jianuan, Zhou; Lianhui, Zhang

    2016-10-20

    Microbial drug resistance has become a serious problem of global concern, and the evolution and regulatory mechanisms of microbial drug resistance has become a hotspot of research in recent years. Recent studies showed that certain microbial resistance mechanisms are regulated by quorum sensing system. Quorum sensing is a ubiquitous cell-cell communication system in the microbial world, which associates with cell density. High-density microbial cells produce sufficient amount of small signal molecules, activating a range of downstream cellular processes including virulence and drug resistance mechanisms, which increases bacterial drug tolerance and causes infections on host organisms. In this review, the general mechanisms of microbial drug resistance and quorum-sensing systems are summarized with a focus on the association of quorum sensing and chemical signaling systems with microbial drug resistance mechanisms, including biofilm formation and drug efflux pump. The potential use of quorum quenching as a new strategy to control microbial resistance is also discussed.

  2. Identification of quorum sensing signal molecules and oligolignols associated with watermark disease in willow (Salix sp.).

    PubMed

    Huvenne, Hanneke; Goeminne, Geert; Maes, Martine; Messens, Eric

    2008-09-01

    The bacterium Brenneria salicis is the causal agent of watermark disease in willow. This work shows the importance of in situ studies and high-resolution separation of biological samples with ultrahigh performance liquid chromatography combined with ion trap mass spectrometry to unambiguously identify molecular compounds associated with this disease. Approximately 40 oligolignols accumulated in wood sap of watermark diseased willow, and are indicative for degradation of the xylem cell wall, of which 15 were structurally assigned based on an earlier study. Many bacteria are known to produce and release quorum sensing signal molecules that switch on the expression of specific, sometimes pathogenic functions. Two quorum sensing signal molecules, N-(3-oxohexanoyl)-l-homoserine lactone and N-(hexanoyl)-l-homoserine lactone, were present in 4/1 ratios in diseased wood and in high-density in vitro cultures of B. salicis at 0.13-1.2 microM concentrations, and absent in healthy wood and in low-density in vitro cultures of B. salicis. Although it is not a proof, it can be an indication for involvement of quorum sensing in B. salicis pathogenesis. Cyclic dipeptides were present at high concentrations in high-density in vitro cultures of B. salicis, but not in situ, and were found not to be involved in quorum sensing signaling, therefore, the attribution of quorum signal properties to cyclic dipeptides isolated from in vitro cultures of pathogenic bacteria should be reconsidered.

  3. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex

    PubMed Central

    Suppiger, Angela; Schmid, Nadine; Aguilar, Claudio; Pessi, Gabriella; Eberl, Leo

    2013-01-01

    The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed. PMID:23799665

  4. Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules

    PubMed Central

    Schenk, Sebastian T.; Stein, Elke; Kogel, Karl-Heinz; Schikora, Adam

    2012-01-01

    N-acyl-homoserine lactones (AHLs) play an important role in the communication within the rhizosphere; they serve as a chemical base for interactions within and between different species of Gram-negative bacteria. Not only bacteria, also plants perceive and react to AHLs with diverse responses. Here we describe a negative correlation between the length of AHLs’ lipid chains and the observed growth promotion in Arabidopsis thaliana. Moreover, we speculate on a positive correlation between the reinforcement of defense mechanisms and the length of the lipid moieties. Observation presented here may be of great importance for understanding of the complex interplay between plants and their environment, as well as for agronomic applications. PMID:22307043

  5. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract.

    PubMed

    Krishnan, Thiba; Yin, Wai-Fong; Chan, Kok-Gan

    2012-01-01

    Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum), shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N-hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl)-L-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract), swarming (maximum inhibition by methanol extract), pyocyanin (maximum inhibition by hexane extract). This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs.

  6. Interfering with Bacterial Quorum Sensing

    PubMed Central

    Reuter, Kerstin; Steinbach, Anke; Helms, Volkhard

    2016-01-01

    Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery. PMID:26819549

  7. Societal Interactions in Ovarian Cancer Metastases: A Quorum Sensing Hypothesis

    DTIC Science & Technology

    2007-11-01

    functions. Specific Aim 3. To test known quorum sensing signaling molecules for new functions in the induction of quorum sensing -like behavior...involves the production, release, and detection of chemical signaling molecules called autoinducers. As a population of quorum - sensing bacteria grows...that blocking quorum - sensing signaling molecules in drug resistant bacteria may restore susceptibility to antimicrobial therapy [20, 23, 29, 30]. If

  8. Systemic Responses of Barley to the 3-hydroxy-decanoyl-homoserine Lactone Producing Plant Beneficial Endophyte Acidovorax radicis N35

    PubMed Central

    Han, Shengcai; Li, Dan; Trost, Eva; Mayer, Klaus F.; Vlot, A. Corina; Heller, Werner; Schmid, Michael; Hartmann, Anton; Rothballer, Michael

    2016-01-01

    Quorum sensing auto-inducers of the N-acyl homoserine lactone (AHL) type produced by Gram-negative bacteria have different effects on plants including stimulation on root growth and/or priming or acquirement of systemic resistance in plants. In this communication the influence of AHL production of the plant growth promoting endophytic rhizosphere bacterium Acidovorax radicis N35 on barley seedlings was investigated. A. radicis N35 produces 3-hydroxy-C10-homoserine lactone (3-OH-C10-HSL) as the major AHL compound. To study the influence of this QS autoinducer on the interaction with barley, the araI-biosynthesis gene was deleted. The comparison of inoculation effects of the A. radicis N35 wild type and the araI mutant resulted in remarkable differences. While the N35 wild type colonized plant roots effectively in microcolonies, the araI mutant occurred at the root surface as single cells. Furthermore, in a mixed inoculum the wild type was much more prevalent in colonization than the araI mutant documenting that the araI mutation affected root colonization. Nevertheless, a significant plant growth promoting effect could be shown after inoculation of barley with the wild type and the araI mutant in soil after 2 months cultivation. While A. radicis N35 wild type showed only a very weak induction of early defense responses in plant RNA expression analysis, the araI mutant caused increased expression of flavonoid biosynthesis genes. This was corroborated by the accumulation of several flavonoid compounds such as saponarin and lutonarin in leaves of root inoculated barley seedlings. Thus, although the exact role of the flavonoids in this plant response is not clear yet, it can be concluded, that the synthesis of AHLs by A. radicis has implications on the perception by the host plant barley and thereby contributes to the establishment and function of the bacteria-plant interaction. PMID:28018401

  9. Quorum Sensing in Nitrogen-Fixing Rhizobia

    PubMed Central

    González, Juan E.; Marketon, Melanie M.

    2003-01-01

    Members of the rhizobia are distinguished for their ability to establish a nitrogen-fixing symbiosis with leguminous plants. While many details of this relationship remain a mystery, much effort has gone into elucidating the mechanisms governing bacterium-host recognition and the events leading to symbiosis. Several signal molecules, including plant-produced flavonoids and bacterially produced nodulation factors and exopolysaccharides, are known to function in the molecular conversation between the host and the symbiont. Work by several laboratories has shown that an additional mode of regulation, quorum sensing, intercedes in the signal exchange process and perhaps plays a major role in preparing and coordinating the nitrogen-fixing rhizobia during the establishment of the symbiosis. Rhizobium leguminosarum, for example, carries a multitiered quorum-sensing system that represents one of the most complex regulatory networks identified for this form of gene regulation. This review focuses on the recent stream of information regarding quorum sensing in the nitrogen-fixing rhizobia. Seminal work on the quorum-sensing systems of R. leguminosarum bv. viciae, R. etli, Rhizobium sp. strain NGR234, Sinorhizobium meliloti, and Bradyrhizobium japonicum is presented and discussed. The latest work shows that quorum sensing can be linked to various symbiotic phenomena including nodulation efficiency, symbiosome development, exopolysaccharide production, and nitrogen fixation, all of which are important for the establishment of a successful symbiosis. Many questions remain to be answered, but the knowledge obtained so far provides a firm foundation for future studies on the role of quorum-sensing mediated gene regulation in host-bacterium interactions. PMID:14665677

  10. Quorum sensing and swarming migration in bacteria.

    PubMed

    Daniels, Ruth; Vanderleyden, Jos; Michiels, Jan

    2004-06-01

    Bacterial cells can produce and sense signal molecules, allowing the whole population to initiate a concerted action once a critical concentration (corresponding to a particular population density) of the signal has been reached, a phenomenon known as quorum sensing. One of the possible quorum sensing-regulated phenotypes is swarming, a flagella-driven movement of differentiated swarmer cells (hyperflagellated, elongated, multinucleated) by which bacteria can spread as a biofilm over a surface. The glycolipid or lipopeptide biosurfactants thereby produced function as wetting agent by reducing the surface tension. Quorum sensing systems are almost always integrated into other regulatory circuits. This effectively expands the range of environmental signals that influence target gene expression beyond population density. In this review, we first discuss the regulation of AHL-mediated surface migration and the involvement of other low-molecular-mass signal molecules (such as the furanosyl borate diester AI-2) in biosurfactant production of different bacteria. In addition, population density-dependent regulation of swarmer cell differentiation is reviewed. Also, several examples of interspecies signalling are reported. Different signal molecules either produced by bacteria (such as other AHLs and diketopiperazines) or excreted by plants (such as furanones, plant signal mimics) might influence the quorum sensing-regulated swarming behaviour in bacteria different from the producer. On the other hand, specific bacteria can reduce the local available concentration of signal molecules produced by others. In the last part, the role and regulation of a surface-associated movement in biofilm formation is discussed. Here we also describe how quorum sensing may disperse existing biofilms and control the interaction between bacteria and higher organisms (such as the Rhizobium-bean symbiosis).

  11. Quorum Sensing Determines the Choice of Antiphage Defense Strategy in Vibrio anguillarum

    PubMed Central

    Tan, Demeng; Svenningsen, Sine Lo

    2015-01-01

    ABSTRACT Selection for phage resistance is a key driver of bacterial diversity and evolution, and phage-host interactions may therefore have strong influence on the genetic and functional dynamics of bacterial communities. In this study, we found that an important, but so far largely overlooked, determinant of the outcome of phage-bacterial encounters in the fish pathogen Vibrio anguillarum is bacterial cell-cell communication, known as quorum sensing. Specifically, V. anguillarum PF430-3 cells locked in the low-cell-density state (ΔvanT mutant) express high levels of the phage receptor OmpK, resulting in a high susceptibility to phage KVP40, but achieve protection from infection by enhanced biofilm formation. By contrast, cells locked in the high-cell-density state (ΔvanΟ mutant) are almost completely unsusceptible due to quorum-sensing-mediated downregulation of OmpK expression. The phenotypes of the two quorum-sensing mutant strains are accurately reflected in the behavior of wild-type V. anguillarum, which (i) displays increased OmpK expression in aggregated cells compared to free-living variants in the same culture, (ii) displays a clear inverse correlation between ompK mRNA levels and the concentration of N-acylhomoserine lactone quorum-sensing signals in the culture medium, and (iii) survives mainly by one of these two defense mechanisms, rather than by genetic mutation to phage resistance. Taken together, our results demonstrate that V. anguillarum employs quorum-sensing information to choose between two complementary antiphage defense strategies. Further, the prevalence of nonmutational defense mechanisms in strain PF430-3 suggests highly flexible adaptations to KVP40 phage infection pressure, possibly allowing the long-term coexistence of phage and host. PMID:26081633

  12. Substituted Lactam and Cyclic Azahemiacetals Modulate Pseudomonas aeruginosa Quorum Sensing

    PubMed Central

    Malladi, Venkata L. A.; Sobczak, Adam J.; Maricic, Natalie; Murugapiran, Senthil Kumar; Schneper, Lisa; Makemson, John; Mathee, Kalai; Wnuk, Stanislaw F.

    2011-01-01

    Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence that is critical for establishing infection. The most common QS signaling molecule used by Gram-negative bacteria are acylhomoserine lactones. The development of non-native acylhomoserine lactone (AHL) ligands has emerged as a promising new strategy to inhibit QS in Gram-negative bacteria. In this work, we have synthesized a set of optically pure γ-lactams and their reduced cyclic azahemiacetal analogues, bearing the additional alkylthiomethyl substituent, and evaluated their effect on the AHL-dependent Pseudomonas aeruginosa las and rhl QS pathways. The concentration of these ligands and the simple structural modification such as the length of the alkylthio substituent has notable effect on activity. The γ-lactam derivatives with nonylthio or dodecylthio chains acted as inhibitors of las signaling with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent was found to strongly inhibit both las and rhl signaling at higher concentrations while the propylthio analogue strongly stimulated the las QS system at lower concentrations. PMID:21855349

  13. Exploiting Quorum Sensing To Confuse Bacterial Pathogens

    PubMed Central

    LaSarre, Breah

    2013-01-01

    SUMMARY Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals. PMID:23471618

  14. Quorum sensing: implications on rhamnolipid biosurfactant production.

    PubMed

    Dusane, Devendra H; Zinjarde, Smita S; Venugopalan, Vayalam P; McLean, Robert J C; Weber, Mary M; Rahman, Pattanathu K S M

    2010-01-01

    Quorum sensing (QS) has received significant attention in the past few decades. QS describes population density dependent cell to cell communication in bacteria using diffusible signal molecules. These signal molecules produced by bacterial cells, regulate various physiological processes important for social behavior and pathogenesis. One such process regulated by quorum sensing molecules is the production of a biosurfactant, rhamnolipid. Rhamnolipids are important microbially derived surface active agents produced by Pseudomonas spp. under the control of two interrelated quorum sensing systems; namely las and rhl. Rhamnolipids possess antibacterial, antifungal and antiviral properties. They are important in motility, cell to cell interactions, cellular differentiation and formation of water channels that are characteristics of Pseudomonas biofilms. Rhamnolipids have biotechnological applications in the uptake of hydrophobic substrates, bioremediation of contaminated soils and polluted waters. Rhamnolipid biosurfactants are biodegradable as compared to chemical surfactants and hence are more preferred in environmental applications. In this review, we examine the biochemical and genetic mechanism of rhamnolipid production by P. aeruginosa and propose the application of QS signal molecules in enhancing the rhamnolipid production.

  15. Draft Genome Sequence of Providencia sneebia Strain ST1, a Quorum Sensing Bacterium Associated with Marine Microalgae

    PubMed Central

    Zhou, Jin; Lao, Yong-Min; Cai, Zhong-Hua

    2016-01-01

    Providencia sneebia strain ST1 is a symbiotic bacterium (belonging to phylum gammaproteobacteria) with marine microalgae. This bacterium exhibits the ability to produce N-Acyl homoserine lactone signal molecule. To date, no genome that originates from marine Providencia spp. has been reported. In this study, we present the genome sequence of this strain. It has a genome size of 4.89 M, with 19 contigs and an average G+C of 51.97%. The function of 4,631 proteins was predicted, and 3,652 proteins were assigned to COG functional categories. Among them, 407 genes are involved in carbohydrate metabolism, 306 genes participate in nitrogen utilization and energy conversion, and 185 genes related to signal transduction process. Thus, this strain plays an active role in the biogeochemical cycle in algal life history. The whole-genome of this isolate and annotation will help enhance understanding of bacterial ecological behavior in the phycosphere. PMID:27026792

  16. Quorum sensing activity of Serratia fonticola strain RB-25 isolated from an ex-landfill site.

    PubMed

    Ee, Robson; Lim, Yan-Lue; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-03-12

    Quorum sensing is a unique bacterial communication system which permits bacteria to synchronize their behaviour in accordance with the population density. The operation of this communication network involves the use of diffusible autoinducer molecules, termed N-acylhomoserine lactones (AHLs). Serratia spp. are well known for their use of quorum sensing to regulate the expression of various genes. In this study, we aimed to characterized the AHL production of a bacterium designated as strain RB-25 isolated from a former domestic waste landfill site. It was identified as Serratia fonticola using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis and this was confirmed by 16S ribosomal DNA sequencing. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of S. fonticola strain RB-25 spent culture supernatant indicated the existence of three AHLs namely: N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine-lactone (3-oxo-C6 HSL). This is the first report of the production of these AHLs in S. fonticola.

  17. Chlamydomonas reinhardtii Secretes Compounds That Mimic Bacterial Signals and Interfere with Quorum Sensing Regulation in Bacteria1

    PubMed Central

    Teplitski, Max; Chen, Hancai; Rajamani, Sathish; Gao, Mengsheng; Merighi, Massimo; Sayre, Richard T.; Robinson, Jayne B.; Rolfe, Barry G.; Bauer, Wolfgang D.

    2004-01-01

    The unicellular soil-freshwater alga Chlamydomonas reinhardtii was found to secrete substances that mimic the activity of the N-acyl-l-homoserine lactone (AHL) signal molecules used by many bacteria for quorum sensing regulation of gene expression. More than a dozen chemically separable but unidentified substances capable of specifically stimulating the LasR or CepR but not the LuxR, AhyR, or CviR AHL bacterial quorum sensing reporter strains were detected in ethyl acetate extracts of C. reinhardtii culture filtrates. Colonies of C. reinhardtii and Chlorella spp. stimulated quorum sensing-dependent luminescence in Vibrio harveyi, indicating that these algae may produce compounds that affect the AI-2 furanosyl borate diester-mediated quorum sensing system of Vibrio spp. Treatment of the soil bacterium Sinorhizobium meliloti with a partially purified LasR mimic from C. reinhardtii affected the accumulation of 16 of the 25 proteins that were altered in response to the bacterium's own AHL signals, providing evidence that the algal mimic affected quorum sensing-regulated functions in this wild-type bacterium. Peptide mass fingerprinting identified 32 proteins affected by the bacterium's AHLs or the purified algal mimic, including GroEL chaperonins, the nitrogen regulatory protein PII, and a GTP-binding protein. The algal mimic was able to cancel the stimulatory effects of bacterial AHLs on the accumulation of seven of these proteins, providing evidence that the secretion of AHL mimics by the alga could be effective in disruption of quorum sensing in naturally encountered bacteria. PMID:14671013

  18. Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor.

    PubMed

    Stauff, Devin L; Bassler, Bonnie L

    2011-08-01

    The bacterial pathogen Chromobacterium violaceum uses a LuxIR-type quorum-sensing system to detect and respond to changes in cell population density. CviI synthesizes the autoinducer C(10)-homoserine lactone (C(10)-HSL), and CviR is a cytoplasmic DNA binding transcription factor that activates gene expression following binding to C(10)-HSL. A number of behaviors are controlled by quorum sensing in C. violaceum. However, few genes have been shown to be directly controlled by CviR, in part because the DNA motif bound by CviR is not well characterized. Here, we define the DNA sequence required for promoter recognition by CviR. Using in vivo data generated from a library of point mutations in a CviR-regulated promoter, we find that CviR binds to a palindrome with the ideal sequence CTGNCCNNNNGGNCAG. We constructed a position weight matrix using these in vivo data and scanned the C. violaceum genome to predict CviR binding sites. We measured direct activation of the identified promoters by CviR and found that CviR controls the expression of the promoter for a chitinase, a type VI secretion-related gene, a transcriptional regulator gene, a guanine deaminase gene, and cviI. Indeed, regulation of cviI expression by CviR generates a canonical quorum-sensing positive-feedback loop.

  19. Ambroxol interferes with Pseudomonas aeruginosa quorum sensing.

    PubMed

    Lu, Qi; Yu, Jialin; Yang, Xiqiang; Wang, Jiarong; Wang, Lijia; Lin, Yayin; Lin, Lihua

    2010-09-01

    The mucolytic agent ambroxol has been reported to interfere with the formation of Pseudomonas aeruginosa-derived biofilms in addition to reducing alginate production by undefined mechanisms. Since quorum sensing is a key regulator of virulence and biofilm formation, we examined the effects of ambroxol on P. aeruginosa PAO1 wild-type bacterial clearance rates, adhesion profiles and biofilm formation compared with the quorum sensing-deficient, double-mutant strains DeltalasR DeltarhlR and DeltalasI DeltarhlI. Data presented in this report demonstrated that ambroxol treatment reduced survival rates of the double-mutant strains compared with the wild-type strain in a dose-dependent manner even though the double-mutants had increased adhesion in the presence of ambroxol compared with the wild-type strain. The PAO1 wild-type strain produced a significantly thicker biofilm (21.64+/-0.57 microm) compared with the biofilms produced by the DeltalasR DeltarhlR (7.36+/-0.2 microm) and DeltalasI DeltarhlI (6.62+/-0.31 microm) isolates. Ambroxol treatment reduced biofilm thickness, increased areal porosity, and decreased the average diffusion distance and textual entropy of wild-type and double-mutant strains. However, compared with the double-mutant strains, the changes observed for the wild-type strain were more clearly defined. Finally, ambroxol exhibited significant antagonistic quorum-sensing properties, suggesting that it could be adapted for use clinically in the treatment of cystic fibrosis and to reduce biofilm formation and in the colonisation of indwelling devices.

  20. Global convergence of quorum-sensing networks

    NASA Astrophysics Data System (ADS)

    Russo, Giovanni; Slotine, Jean Jacques E.

    2010-10-01

    In many natural synchronization phenomena, communication between individual elements occurs not directly but rather through the environment. One of these instances is bacterial quorum sensing, where bacteria release signaling molecules in the environment which in turn are sensed and used for population coordination. Extending this motivation to a general nonlinear dynamical system context, this paper analyzes synchronization phenomena in networks where communication and coupling between nodes are mediated by shared dynamical quantities, typically provided by the nodes’ environment. Our model includes the case when the dynamics of the shared variables themselves cannot be neglected or indeed play a central part. Applications to examples from system biology illustrate the approach.

  1. [Quorum sensing in bacteria and yeast].

    PubMed

    March Rosselló, Gabriel Alberto; Eiros Bouza, José María

    2013-10-19

    Bacterial sets are complex dynamic systems, which interact with each other and through the interaction, bacteria coexist, collaborate, compete and share information in a coordinated manner. A way of bacterial communication is quorum sensing. Through this mechanism the bacteria can recognize its concentration in a given environment and they can decide the time at which the expression of a particular set of genes should be started for developing a specific and simultaneous response. The result of these interconnections raises properties that cannot be explained from a single isolated bacterial cell.

  2. Multiplicity of Quorum Quenching Enzymes: A Potential Mechanism to Limit Quorum Sensing Bacterial Population.

    PubMed

    Koul, Shikha; Kalia, Vipin Chandra

    2017-03-01

    Bacteria express certain of their characteristics especially, pathogenicity factors at high cell densities. The process is termed as quorum sensing (QS). QS operates via signal molecules such as acylhomoserine lactones (AHLs). Other bacteria inhibit QS through the inactivation of AHL signals by producing enzymes like AHL-lactonases and -acylases. Comparative genomic analysis has revealed the multiplicity of genes for AHL lactonases (up to 12 copies per genome) among Bacillus spp. and that of AHL-acylases (up to 5 copies per genome) among Pseudomonas spp. This genetic evolution can be envisaged to enable host to withstand the attacks from bacterial population, which regulates its functioning through QS.

  3. Metagenomic approaches to understanding phylogenetic diversity in quorum sensing

    PubMed Central

    Kimura, Nobutada

    2014-01-01

    Quorum sensing, a form of cell–cell communication among bacteria, allows bacteria to synchronize their behaviors at the population level in order to control behaviors such as luminescence, biofilm formation, signal turnover, pigment production, antibiotics production, swarming, and virulence. A better understanding of quorum-sensing systems will provide us with greater insight into the complex interaction mechanisms used widely in the Bacteria and even the Archaea domain in the environment. Metagenomics, the use of culture-independent sequencing to study the genomic material of microorganisms, has the potential to provide direct information about the quorum-sensing systems in uncultured bacteria. This article provides an overview of the current knowledge of quorum sensing focused on phylogenetic diversity, and presents examples of studies that have used metagenomic techniques. Future technologies potentially related to quorum-sensing systems are also discussed. PMID:24429899

  4. Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections.

    PubMed

    Dixon, Emily F; Hall, Rebecca A

    2015-10-01

    Quorum sensing was once considered a way in which a species was able to sense its cell density and regulate gene expression accordingly. However, it is now becoming apparent that multiple microbes can sense particular quorum-sensing molecules, enabling them to sense and respond to other microbes in their neighbourhood. Such interactions are significant within the context of polymicrobial disease, in which the competition or cooperation of microbes can alter disease progression. Fungi comprise a small but important component of the human microbiome and are in constant contact with bacteria and viruses. The discovery of quorum-sensing pathways in fungi has led to the characterization of a number of interkingdom quorum-sensing interactions. Here, we review the recent developments in quorum sensing in medically important fungi, and the implications these interactions have on the host's innate immune response.

  5. Metagenomic approaches to understanding phylogenetic diversity in quorum sensing.

    PubMed

    Kimura, Nobutada

    2014-04-01

    Quorum sensing, a form of cell-cell communication among bacteria, allows bacteria to synchronize their behaviors at the population level in order to control behaviors such as luminescence, biofilm formation, signal turnover, pigment production, antibiotics production, swarming, and virulence. A better understanding of quorum-sensing systems will provide us with greater insight into the complex interaction mechanisms used widely in the Bacteria and even the Archaea domain in the environment. Metagenomics, the use of culture-independent sequencing to study the genomic material of microorganisms, has the potential to provide direct information about the quorum-sensing systems in uncultured bacteria. This article provides an overview of the current knowledge of quorum sensing focused on phylogenetic diversity, and presents examples of studies that have used metagenomic techniques. Future technologies potentially related to quorum-sensing systems are also discussed.

  6. Quorum sensing inhibitors: how strong is the evidence?

    PubMed

    Defoirdt, Tom; Brackman, Gilles; Coenye, Tom

    2013-12-01

    Because of its promising effect as an alternative to antibiotics, quorum sensing disruption is an intensively studied field, and there are many studies that describe the quorum sensing inhibitory activity of natural and synthetic compounds. In this opinion article, we present an overview of recent literature with respect to quorum sensing inhibitors. Most of this research is based on experiments with quorum sensing signal molecule reporter strains. However, these experiments are prone to bias due to other effects compounds may have on reporter strains. We argue that researchers should perform adequate control experiments and should carefully assess toxicity of the compounds in the bacterial species they are working with in order to confirm that what they observe really is quorum sensing inhibition.

  7. Bacterial quorum sensing and metabolic incentives to cooperate.

    PubMed

    Dandekar, Ajai A; Chugani, Sudha; Greenberg, E Peter

    2012-10-12

    The opportunistic pathogen Pseudomonas aeruginosa uses a cell-cell communication system termed "quorum sensing" to control production of public goods, extracellular products that can be used by any community member. Not all individuals respond to quorum-sensing signals and synthesize public goods. Such social cheaters enjoy the benefits of the products secreted by cooperators. There are some P. aeruginosa cellular enzymes controlled by quorum sensing, and we show that quorum sensing-controlled expression of such private goods can put a metabolic constraint on social cheating and prevent a tragedy of the commons. Metabolic constraint of social cheating provides an explanation for private-goods regulation by a cooperative system and has general implications for population biology, infection control, and stabilization of quorum-sensing circuits in synthetic biology.

  8. A genetic circuit system based on quorum sensing signaling for directed evolution of quorum-quenching enzymes.

    PubMed

    Kim, Jin-Hyun; Lee, Sang-Chul; Kyeong, Hyun-Ho; Kim, Hak-Sung

    2010-08-16

    Quorum sensing is a cell-cell communication mechanism that is involved in the regulation of biological functions such as luminescence, virulence, and biofilm formation. Quorum-quenching enzymes, which interrupt quorum-sensing signaling through degradation of quorum-sensing molecules, have emerged as a new approach to controlling and preventing bacterial virulence and pathogenesis. In an effort to develop quorum-quenching enzymes with improved catalytic activities, a genetic circuit system based on acylhomoserine-lactone (AHL)-mediated quorum-sensing signaling was constructed. The genetic circuit system was composed of lux-R, lux-I promoter, beta-lactamase, and beta-lactamase inhibitor, and designed to confer antibiotic resistance on host cells expressing an AHL-degrading enzyme, thereby enabling rapid screening of quorum-quenching enzymes. To demonstrate the utility of the genetic circuit system, we attempted the directed evolution of the AHL hydrolase from Bacillus sp. The genetic circuit system was shown to be effective in screening of quorum-quenching enzymes with high catalytic efficiency. From these results it is expected that the genetic circuit system can be widely used for the isolation and directed evolution of quorum-quenching enzymes with greater potential.

  9. Applications of quorum sensing in biotechnology.

    PubMed

    Choudhary, Swati; Schmidt-Dannert, Claudia

    2010-05-01

    Many unicellular microorganisms use small signaling molecules to determine their local concentration. The processes involved in the production and recognition of these signals are collectively known as quorum sensing (QS). This form of cell-cell communication is used by unicellular microorganisms to co-ordinate their activities, which allows them to function as multi-cellular systems. Recently, several groups have demonstrated artificial intra-species and inter-species communication through synthetic circuits which incorporate components of bacterial QS systems. Engineered QS-based circuits have a wide range of applications such as production of biochemicals, tissue engineering, and mixed-species fermentations. They are also highly useful in designing microbial biosensors to identify bacterial species present in the environment and within living organisms. In this review, we first provide an overview of bacterial QS systems and the mechanisms developed by bacteria and higher organisms to obstruct QS communications. Next, we describe the different ways in which researchers have designed QS-based circuits and their applications in biotechnology. Finally, disruption of quorum sensing is discussed as a viable strategy for preventing the formation of harmful biofilms in membrane bioreactors and marine transportation.

  10. Quorum sensing-disrupting coumarin suppressing virulence phenotypes in Vibrio splendidus.

    PubMed

    Zhang, Shanshan; Liu, Ningning; Liang, Weikang; Han, Qingxi; Zhang, Weiwei; Li, Chenghua

    2016-12-09

    In the present study, the effects of an environmental friendly natural reagent coumarin, on the growth and potential virulence factors, as well as its ability to interfere the infection of Vibrio splendidus (Vs), were determined. Coumarin showed no effects on the maximal growth of Vs, and biofilm formation of Vs, while it significantly decreased protease activity and hemolytic activity by 43 and 80%, respectively. Correspondingly, coumarin exhibited an obviously protective effect, with a relative percent survival of 60% upon Apostichopus japonicus from infection by Vs. To preliminarily investigate the mechanism underlining the inhibitory effects, regulation of genes Vsm and Vsh respectively related to protease activity and hemolytic activity by supernatant and supernatant extract containing acyl-homoserine lactones (AHLs) and coumarin was determined. Cell-free supernatant from higher density and its ethyl acetate extract containing AHL signal molecules could respectively upregulate the mRNA level of Vsm by 17.4- and 2.3-fold and Vsh by 7.2- and 5.0-fold, when Vs was at lower cell density. However, coumarin could reduce the stimulatory effects of both the supernatant and its ethyl acetate extract. Combining all the results in our study, it was suggested that coumarin could be considered as an alternative to be used for controlling infection of Vs, downregulating the expression of potential virulence factors through interfering the AHL-mediated pathways.

  11. Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms

    PubMed Central

    Cárcamo-Oyarce, Gerardo; Lumjiaktase, Putthapoom; Kümmerli, Rolf; Eberl, Leo

    2015-01-01

    The term ‘quorum sensing’ (QS) is generally used to describe the phenomenon that bacteria release and perceive signal molecules to coordinate cooperative behaviour in response to their population size. QS-based communication has therefore been considered a social trait. Here we show that QS signals (N-acyl-homoserine lactones, AHLs) are stochastically produced in young biofilms of Pseudomonas putida and act mainly as self-regulatory signals rather than inducing neighbouring cells. We demonstrate that QS induces the expression of putisolvin biosurfactants that are not public goods, thereby triggering asocial motility of induced cells out of microcolonies. Phenotypic heterogeneity is most prominent in the early stages of biofilm development, whereas at later stages behaviour patterns across cells become more synchronized. Our findings broaden our perspective on QS by showing that AHLs can control the expression of asocial (self-directed) traits, and that heterogeneity in QS can serve as a mechanism to drive phenotypic heterogeneity in self-directed behaviour. PMID:25592773

  12. Inhibition of marine biofouling by bacterial quorum sensing inhibitors

    PubMed Central

    Dobretsov, Sergey; Teplitski, Max; Bayer, Mirko; Gunasekera, Sarath; Proksch, Peter; Paul, Valerie J

    2012-01-01

    Seventy eight natural products from chemical libraries containing compounds from marine organisms (sponges, algae, fungi, tunicates and cyanobacteria) and terrestrial plants, were screened for the inhibition of bacterial quorum sensing (QS) using a reporter strain Chromobacterium violaceum CV017. About half of the natural products did not show any QS inhibition. Twenty four percent of the tested compounds inhibited QS of the reporter without causing toxicity. The QS inhibitory activities of the most potent and abundant compounds were further investigated using the LuxR-based reporter E. coli pSB401 and the LasR-based reporter E. coli pSB1075. Midpacamide and tenuazonic acid were toxic to the tested reporters. QS-dependent luminescence of the LasR-based reporter, which is normally induced by N-3-oxo-dodecanoyl-L-homoserine lactone, was reduced by demethoxy encecalin and hymenialdisin at concentrations 46.6 μM and 15μM, respectively. Hymenialdisin, demethoxy encecalin, microcolins A and B and kojic acid inhibited responses of the LuxR-based reporter induced by N-3-oxo-hexanoyl-L-homoserine lactone at concentrations 40.2 μM, 2.2 μM, 1.5 μM, 15 μM and 36 μM, respectively. The ability to prevent microfouling by one of the compounds screened in this study (kojic acid; final concentrations 330 μM and 1 mM) was tested in a controlled mesocosm experiment. Kojic acid inhibited formation of microbial communities on glass slides, decreasing the densities of bacteria and diatoms in comparison with the control lacking kojic acid. The study suggests that natural products with QS inhibitory properties can be used for controlling biofouling communities. PMID:21882898

  13. The involvement of bacterial quorum sensing in the spoilage of refrigerated Litopenaeus vannamei.

    PubMed

    Zhu, Suqin; Wu, Haohao; Zeng, Mingyong; Liu, Zunying; Wang, Ying

    2015-01-02

    Quorum-sensing signals in refrigerated shrimp (Litopenaeus vannamei) undergoing spoilage were examined using bioreporter assays, thin-layer chromatography and gas chromatography-mass spectrometry, and the results revealed the presence of three types of autoinducers including acetylated homoserine lactones (AHLs) (i.e., N-hexanoyl-homoserine lactone, N-oxohexanoyl-homoserine lactone and N-octanoyl-homoserine lactone), autoinducer-2, and cyclic dipeptides (i.e., cyclo-(L-Pro-L-Leu), cyclo-(L-Leu-L-Leu) and cyclo-(L-Pro-L-Phe)). Autoinducer-2, rather than any AHL, was detected in extracts from pure cultures of the specific spoilage organisms (SSO), i.e., Shewanella putrefaciens (SS01) and Shewanella baltica (SA02). As for the cyclic peptides, only SA02 was determined to produce cyclo-(L-Pro-L-Leu). According to the transcription levels of LuxR (the master quorum-sensing regulator) in the SSO in response to exogenous autoinducers, the SSO could sense AHLs and cyclo-(L-Leu-L-Leu), rather than autoinducer-2, cyclo-(L-Leu-L-Leu) and cyclo-(L-Pro-L-Phe). In accordance with the results of LuxR expression, the production of biofilm matrixes and extracellular proteases in the SSO was regulated by exogenous AHLs and cyclo-(L-Pro-L-Leu), rather than 4,5-dihydroxy-2,3-pentanedione (the autoinducer-2 precursor), cyclo-(L-Leu-L-Leu) and cyclo-(L-Pro-L-Phe). Exogenous N-hexanoyl-homoserine lactone and cyclo-(L-Pro-L-Leu) increased the growth rates and population percentages of the SSO in shrimp samples under refrigerated storage, and interestingly, exogenous 4,5-dihydroxy-2,3-pentanedione also increased the population percentages of the SSO in vivo by inhibiting the growth of the competing bacteria. However, according to the levels of TVB-N and the volatile organic components in the shrimp samples, exogenous 4,5-dihydroxy-2,3-pentanedione did not accelerate the shrimp spoilage process as N-hexanoyl-homoserine lactone and cyclo-(L-Pro-L-Leu) did. In summary, our results suggest that

  14. Molecular Basis for the Recognition of Structurally Distinct Autoinducer Mimics by the Pseudomonas aeruginosa LasR Quorum-Sensing Signaling Receptor

    SciTech Connect

    Zou, Yaozhong; Nair, Satish K.

    2010-01-12

    The human pathogen Pseudomonas aeruginosa coordinates the expression of virulence factors using quorum sensing, a signaling cascade triggered by the activation of signal receptors by small-molecule autoinducers. These homoserine lactone autoinducers stabilize their cognate receptors and activate their functions as transcription factors. Because quorum sensing regulates the progression of infection and host immune resistance, significant efforts have been devoted toward the identification of small molecules that disrupt this process. Screening efforts have identified a class of triphenyl compounds that are structurally distinct from the homoserine lactone autoinducer, yet interact specifically and potently with LasR receptor to modulate quorum sensing (Muh et al., 2006a). Here we present the high-resolution crystal structures of the ligand binding domain of LasR in complex with the autoinducer N-3-oxo-dodecanoyl homoserine lactone (1.4 {angstrom} resolution), and with the triphenyl mimics TP-1, TP-3, and TP-4 (to between 1.8 {angstrom} and 2.3 {angstrom} resolution). These crystal structures provide a molecular rationale for understanding how chemically distinct compounds can be accommodated by a highly selective receptor, and provide the framework for the development of novel quorum-sensing regulators, utilizing the triphenyl scaffold.

  15. Social Evolution Selects for Redundancy in Bacterial Quorum Sensing

    PubMed Central

    Valastyan, Julie; Ke, Xiaobo; Pollak, Shaul; Bareia, Tasneem; Ben-Zion, Ishay; Bassler, Bonnie L.; Eldar, Avigdor

    2016-01-01

    Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population. PMID:26927849

  16. Social Evolution Selects for Redundancy in Bacterial Quorum Sensing.

    PubMed

    Even-Tov, Eran; Bendori, Shira Omer; Valastyan, Julie; Ke, Xiaobo; Pollak, Shaul; Bareia, Tasneem; Ben-Zion, Ishay; Bassler, Bonnie L; Eldar, Avigdor

    2016-02-01

    Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The potential benefits of these redundant network structures are not clear. Here, we combine modeling and experimental analyses of the Bacillus subtilis and Vibrio harveyi quorum-sensing networks to show that accumulation of multiple quorum-sensing systems may be driven by a facultative cheating mechanism. We demonstrate that a strain that has acquired an additional quorum-sensing system can exploit its ancestor that possesses one fewer system, but nonetheless, resume full cooperation with its kin when it is fixed in the population. We identify the molecular network design criteria required for this advantage. Our results suggest that increased complexity in bacterial social signaling circuits can evolve without providing an adaptive advantage in a clonal population.

  17. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters.

    PubMed

    Wang, Meizhen; Schaefer, Amy L; Dandekar, Ajai A; Greenberg, E Peter

    2015-02-17

    The bacterium Pseudomonas aeruginosa is an opportunistic human pathogen that uses a quorum sensing signal cascade to activate expression of dozens of genes when sufficient population densities have been reached. Quorum sensing controls production of several key virulence factors, including secreted proteases such as elastase. Cooperating groups of bacteria growing on protein are susceptible to social cheating by quorum-sensing defective mutants. A possible way to restrict cheater emergence is by policing where cooperators produce costly goods to sanction or punish cheats. The P. aeruginosa LasR-LasI quorum sensing system controls genes including those encoding proteases and also those encoding a second quorum-sensing system, the RhlR-RhlI system, which controls numerous genes including those for cyanide production. By using RhlR quorum sensing mutants and cyanide synthesis mutants, we show that cyanide production is costly and cyanide-producing cooperators use cyanide to punish LasR-null social cheaters. Cooperators are less susceptible to cyanide than are LasR mutants. These experiments demonstrate policing in P. aeruginosa, provide a mechanistic understanding of policing, and show policing involves the cascade organization of the two quorum sensing systems in this bacterium.

  18. Evolution of resistance to quorum sensing inhibitors

    PubMed Central

    Kalia, Vipin C.; Wood, Thomas K.; Kumar, Prasun

    2013-01-01

    The major cause of mortality and morbidity in human beings is bacterial infection. Bacteria have developed resistance to most of the antibiotics primarily due to large scale and “indiscriminate” usage. The need is to develop novel mechanisms to treat bacterial infections. The expression of pathogenicity during bacterial infections is mediated by a cell density dependent phenomenon known as quorum sensing (QS). A wide array of QS systems (QSS) is operative in expressing the virulent behavior of bacterial pathogens. Each QSS may be mediated largely by a few major signals along with others produced in minuscule quantities. Efforts to target signal molecules and their receptors have proved effective in alleviating the virulent behavior of such pathogenic bacteria. These QS inhibitors (QSIs) have been reported to be effective in influencing the pathogenicity without affecting bacterial growth. However, evidence is accumulating that bacteria may develop resistance to QSIs. The big question is whether QSIs will meet the same fate as antibiotics? PMID:24194099

  19. Electronic Implementation of a Repressilator with Quorum Sensing Feedback

    PubMed Central

    Hellen, Edward H.; Dana, Syamal K.; Zhurov, Boris; Volkov, Evgeny

    2013-01-01

    We investigate the dynamics of a synthetic genetic repressilator with quorum sensing feedback. In a basic genetic ring oscillator network in which three genes inhibit each other in unidirectional manner, an additional quorum sensing feedback loop stimulates the activity of a chosen gene providing competition between inhibitory and stimulatory activities localized in that gene. Numerical simulations show several interesting dynamics, multi-stability of limit cycle with stable steady-state, multi-stability of different stable steady-states, limit cycle with period-doubling and reverse period-doubling, and infinite period bifurcation transitions for both increasing and decreasing strength of quorum sensing feedback. We design an electronic analog of the repressilator with quorum sensing feedback and reproduce, in experiment, the numerically predicted dynamical features of the system. Noise amplification near infinite period bifurcation is also observed. An important feature of the electronic design is the accessibility and control of the important system parameters. PMID:23658793

  20. Quorum sensing and Bacterial Pathogenicity: From Molecules to Disease.

    PubMed

    Deep, Antariksh; Chaudhary, Uma; Gupta, Varsha

    2011-01-01

    Quorum sensing in prokaryotic biology refers to the ability of a bacterium to sense information from other cells in the population when they reach a critical concentration (i.e. a Quorum) and communicate with them. The "language" used for this intercellular communication is based on small, self-generated signal molecules called as autoinducers. Quorum sensing is thought to afford pathogenic bacteriaa mechanism to minimize host immune responses by delaying theproduction of tissue-damaging virulence factors until sufficientbacteria have amassed and are prepared to overwhelm host defensemechanisms and establish infection. Quorum sensing systems are studied in a large number of gram-negative bacterial species belonging to α, β, and γ subclasses of proteobacteria. Among the pathogenic bacteria, Pseudomonas aeruginosa is perhaps the best understood in terms of the virulence factors regulated and the role the Quorum sensing plays in pathogenicity. Presently, Quorum sensing is considered as a potential novel target for antimicrobial therapy to control multi/all drug-resistant infections. This paper reviews Quorum sensing in gram positive and gram negative bacteria and its role in biofilm formation.

  1. A Mathematical Model of Quorum Sensing Induced Biofilm Detachment

    PubMed Central

    Emerenini, Blessing O.; Hense, Burkhard A.; Kuttler, Christina; Eberl, Hermann J.

    2015-01-01

    Background Cell dispersal (or detachment) is part of the developmental cycle of microbial biofilms. It can be externally or internally induced, and manifests itself in discrete sloughing events, whereby many cells disperse in an instance, or in continuous slower dispersal of single cells. One suggested trigger of cell dispersal is quorum sensing, a cell-cell communication mechanism used to coordinate gene expression and behavior in groups based on population densities. Method To better understand the interplay of colony growth and cell dispersal, we develop a dynamic, spatially extended mathematical model that includes biofilm growth, production of quorum sensing molecules, cell dispersal triggered by quorum sensing molecules, and re-attachment of cells. This is a highly nonlinear system of diffusion-reaction equations that we study in computer simulations. Results Our results show that quorum sensing induced cell dispersal can be an efficient mechanism for bacteria to control the size of a biofilm colony, and at the same time enhance its downstream colonization potential. In fact we find that over the lifetime of a biofilm colony the majority of cells produced are lost into the aqueous phase, supporting the notion of biofilms as cell nurseries. We find that a single quorum sensing based mechanism can explain both, discrete dispersal events and continuous shedding of cells from a colony. Moreover, quorum sensing induced cell dispersal affects the structure and architecture of the biofilm, for example it might lead to the formation of hollow inner regions in a biofilm colony. PMID:26197231

  2. hexA of Erwinia carotovora ssp. carotovora strain Ecc71 negatively regulates production of RpoS and rsmB RNA, a global regulator of extracellular proteins, plant virulence and the quorum-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone.

    PubMed

    Mukherjee, A; Cui, Y; Ma, W; Liu, Y; Chatterjee, A K

    2000-04-01

    The soft-rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and HarpinEcc responds to plant products and the quorum-sensing signal [N-(3-oxohexanoyl)-L-homoserine lactone; OHL] and is subject to both transcriptional and post-transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA71), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA71 negatively regulates the expression of hrpNEcc, the structural gene for HarpinEcc. Exoenzyme overproduction is abolished by OHL deficiency in a HexA- and Ohll- double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA- mutant than in the HexA+ strain. However, a HexA- and RpoS double mutant produces higher levels of exoenzymes and transcripts of pel-1, peh-1 and celVgenes than the HexA- and RpoS+ parent. Thus, the elevated levels of RpoS protein in the HexA- mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, HarpinEcc, OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB-lacZoperon fusion in E. c. carotovora strain Ecc71 revealed that HexA71 negatively regulates transcription of rsmB. Multiple copies of hexA71+ DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsm

  3. The presence and role of bacterial quorum sensing in activated sludge

    PubMed Central

    Chong, Grace; Kimyon, Onder; Rice, Scott A.; Kjelleberg, Staffan; Manefield, Mike

    2012-01-01

    Summary Activated sludge used for wastewater treatment globally is composed of a high‐density microbial community of great biotechnological significance. In this study the presence and purpose of quorum sensing via N‐acylated‐l‐homoserine lactones (AHLs) in activated sludge was explored. The presence of N‐heptanoyl‐l‐homoserine lactone in organic extracts of sludge was demonstrated along with activation of a LuxR‐based AHL monitor strain deployed in sludge, indicating AHL‐mediated gene expression is active in sludge flocculates but not in the bulk aqueous phase. Bacterial isolates from activated sludge were screened for AHL production and expression of phenotypes commonly but not exclusively regulated by AHL‐mediated gene transcription. N‐acylated‐l‐homoserine lactone and exoenzyme production were frequently observed among the isolates. N‐acylated‐l‐homoserine lactone addition to sludge upregulated chitinase activity and an AHL‐ and chitinase‐producing isolate closely related to Aeromonas hydrophila was shown to respond to AHL addition with upregulation of chitinase activity. N‐acylated‐l‐homoserine lactones produced by this strain were identified and genes ahyI/R and chiA, encoding AHL production and response and chitinase activity respectively, were sequenced. These experiments provide insight into the relationship between AHL‐mediated gene expression and exoenzyme activity in activated sludge and may ultimately create opportunities to improve sludge performance. PMID:22583685

  4. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque.

    PubMed

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-02-10

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.

  5. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque

    PubMed Central

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-01

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium. PMID:26860259

  6. Complete Genome Sequence of Pseudomonas chlororaphis subsp. aurantiaca Reveals a Triplicate Quorum-Sensing Mechanism for Regulation of Phenazine Production

    PubMed Central

    Morohoshi, Tomohiro; Yamaguchi, Takahito; Xie, Xiaonan; Wang, Wen-zhao; Takeuchi, Kasumi; Someya, Nobutaka

    2017-01-01

    Pseudomonas chlororaphis subsp. aurantiaca StFRB508 regulates phenazine production through N-acyl-l-homoserine lactone (AHL)-mediated quorum sensing. Two sets of AHL-synthase and AHL-receptor genes, phzI/phzR and aurI/aurR, have been identified from the incomplete draft genome of StFRB508. In the present study, the complete genome of StFRB508, comprising a single chromosome of 6,997,933 bp, was sequenced. The complete genome sequence revealed the presence of a third quorum-sensing gene set, designated as csaI/csaR. An LC-MS/MS analysis revealed that StFRB508 produced six types of AHLs, with the most important AHL being N-(3-hydroxyhexanoyl)-l-homoserine lactone (3-OH-C6-HSL). PhzI mainly catalyzed the biosynthesis of 3-OH-C6-HSL, while AurI and CsaI catalyzed that of N-hexanoyl-l-homoserine lactone and N-(3-oxohexanoyl)-l-homoserine lactone, respectively. A mutation in phzI decreased phenazine production, whereas that in aurI or csaI did not. A phzI aurI csaI triple mutant (508ΔPACI) did not produce phenazine. Phenazine production by 508ΔPACI was stimulated by exogenous AHLs and 3-OH-C6-HSL exerted the strongest effects on phenazine production at the lowest concentration tested (0.1 μM). The plant protection efficacy of 508ΔPACI against an oomycete pathogen was lower than that of wild-type StFRB508. These results demonstrate that the triplicate quorum-sensing system plays an important role in phenazine production by and the biocontrol activity of StFRB508. PMID:28239068

  7. Complete Genome Sequence of Pseudomonas chlororaphis subsp. aurantiaca Reveals a Triplicate Quorum-Sensing Mechanism for Regulation of Phenazine Production.

    PubMed

    Morohoshi, Tomohiro; Yamaguchi, Takahito; Xie, Xiaonan; Wang, Wen-Zhao; Takeuchi, Kasumi; Someya, Nobutaka

    2017-03-31

    Pseudomonas chlororaphis subsp. aurantiaca StFRB508 regulates phenazine production through N-acyl-l-homoserine lactone (AHL)-mediated quorum sensing. Two sets of AHL-synthase and AHL-receptor genes, phzI/phzR and aurI/aurR, have been identified from the incomplete draft genome of StFRB508. In the present study, the complete genome of StFRB508, comprising a single chromosome of 6,997,933 bp, was sequenced. The complete genome sequence revealed the presence of a third quorum-sensing gene set, designated as csaI/csaR. An LC-MS/MS analysis revealed that StFRB508 produced six types of AHLs, with the most important AHL being N-(3-hydroxyhexanoyl)-l-homoserine lactone (3-OH-C6-HSL). PhzI mainly catalyzed the biosynthesis of 3-OH-C6-HSL, while AurI and CsaI catalyzed that of N-hexanoyl-l-homoserine lactone and N-(3-oxohexanoyl)-l-homoserine lactone, respectively. A mutation in phzI decreased phenazine production, whereas that in aurI or csaI did not. A phzI aurI csaI triple mutant (508ΔPACI) did not produce phenazine. Phenazine production by 508ΔPACI was stimulated by exogenous AHLs and 3-OH-C6-HSL exerted the strongest effects on phenazine production at the lowest concentration tested (0.1 μM). The plant protection efficacy of 508ΔPACI against an oomycete pathogen was lower than that of wild-type StFRB508. These results demonstrate that the triplicate quorum-sensing system plays an important role in phenazine production by and the biocontrol activity of StFRB508.

  8. Airway Epithelial Cell Integrity Protects from Cytotoxicity of Pseudomonas aeruginosa Quorum-Sensing Signals.

    PubMed

    Losa, Davide; Köhler, Thilo; Bacchetta, Marc; Saab, Joanna Bou; Frieden, Maud; van Delden, Christian; Chanson, Marc

    2015-08-01

    Cell-to-cell communication via gap junctions regulates airway epithelial cell homeostasis and maintains the epithelium host defense. Quorum-sensing molecules produced by Pseudomonas aeruginosa coordinate the expression of virulence factors by this respiratory pathogen. These bacterial signals may also incidentally modulate mammalian airway epithelial cell responses to the pathogen, a process called interkingdom signaling. We investigated the interactions between the P. aeruginosa N-3-oxo-dodecanoyl-L-homoserine lactone (C12) quorum-sensing molecule and human airway epithelial cell gap junctional intercellular communication (GJIC). C12 degradation and its effects on cells were monitored in various airway epithelial cell models grown under nonpolarized and polarized conditions. Its concentration was further monitored in daily tracheal aspirates of colonized intubated patients. C12 rapidly altered epithelial integrity and decreased GJIC in nonpolarized airway epithelial cells, whereas other quorum-sensing molecules had no effect. The effects of C12 were dependent on [Ca(2+)]i and could be prevented by inhibitors of Src tyrosine family and Rho-associated protein kinases. In contrast, polarized airway cells grown on Transwell filters were protected from C12 except when undergoing repair after wounding. In vivo during colonization of intubated patients, C12 did not accumulate, but it paralleled bacterial densities. In vitro C12 degradation, a reaction catalyzed by intracellular paraoxonase 2 (PON2), was impaired in nonpolarized cells, whereas PON2 expression was increased during epithelial polarization. The cytotoxicity of C12 on nonpolarized epithelial cells, combined with its impaired degradation allowing its accumulation, provides an additional pathogenic mechanism for P. aeruginosa infections.

  9. Role of quorum sensing in bacterial infections.

    PubMed

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-07-16

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed.

  10. Quorum sensing in group A Streptococcus

    PubMed Central

    Jimenez, Juan Cristobal; Federle, Michael J.

    2014-01-01

    Quorum sensing (QS) is a widespread phenomenon in the microbial world that has important implications in the coordination of population-wide responses in several bacterial pathogens. In Group A Streptococcus (GAS), many questions surrounding QS systems remain to be solved pertaining to their function and their contribution to the GAS lifestyle in the host. The QS systems of GAS described to date can be categorized into four groups: regulator gene of glucosyltransferase (Rgg), Sil, lantibiotic systems, and LuxS/AI-2. The Rgg family of proteins, a conserved group of transcription factors that modify their activity in response to signaling peptides, has been shown to regulate genes involved in virulence, biofilm formation and competence. The sil locus, whose expression is regulated by the activity of signaling peptides and a putative two-component system (TCS), has been implicated on regulating genes involved with invasive disease in GAS isolates. Lantibiotic regulatory systems are involved in the production of bacteriocins and their autoregulation, and some of these genes have been shown to target both bacterial organisms as well as processes of survival inside the infected host. Finally AI-2 (dihydroxy pentanedione, DPD), synthesized by the LuxS enzyme in several bacteria including GAS, has been proposed to be a universal bacterial communication molecule. In this review we discuss the mechanisms of these four systems, the putative functions of their targets, and pose critical questions for future studies. PMID:25309879

  11. Role of quorum sensing in bacterial infections

    PubMed Central

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-01-01

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150

  12. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.

    PubMed

    Kumar, Lokender; Chhibber, Sanjay; Kumar, Rajnish; Kumar, Manoj; Harjai, Kusum

    2015-04-01

    Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections.

  13. Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier.

    PubMed

    Wynendaele, Evelien; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Janssens, Yorick; Van De Wiele, Christophe; Peremans, Kathelijne; Burvenich, Christian; De Spiegeleer, Bart

    2015-01-01

    Bacteria communicate with each other by the use of signaling molecules, a process called 'quorum sensing'. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis.

  14. Detection, purification and characterisation of quorum-sensing signal molecules in plant-associated bacteria.

    PubMed

    Brelles-Mariño, G; Bedmar, E J

    2001-10-04

    Quorum sensing (also called autoinduction) is a term that describes an environmental sensing system that allows bacteria to monitor their own population density. Autoinduction relies upon the interaction of a small diffusible signal molecule (the autoinducer) with a transcriptional activator protein to couple gene expression with cell population density. These signal molecules diffuse from bacterial cells and accumulate in the environment as a function of cell growth. Once a threshold concentration is reached, these signals serve as co-inducers to regulate the transcription of (a) set(s) of target genes. In Gram-negative bacteria, most autoinducers belong to the family of N-acylhomoserine lactones (AHLs). The detection of AHLs (or AHL-like activities) has been greatly facilitated by the development of sensitive bioassays that allow fast screening of microorganisms for diffusible signal molecules. AHL or diketopiperazine-mediated cell-cell signalling play roles in regulating different bacterial functions, such as antibiotic biosynthesis, production of virulence factors, exopolysaccharide biosynthesis, bacterial swarming, plasmid conjugal transfer and transition into the stationary phase. Several bacterial species that interact with plants produce AHL-like compounds. In this review, we will summarise the current knowledge about the detection, characterisation and purification of quorum-sensing molecules from plant-associated bacteria. We will also discuss some of the future prospects and biotechnological applications of autoinducers.

  15. Cyclodepsipeptides produced by actinomycetes inhibit cyclic-peptide-mediated quorum sensing in Gram-positive bacteria.

    PubMed

    Desouky, Said E; Shojima, Akane; Singh, Ravindra Pal; Matsufuji, Takahisa; Igarashi, Yasuhiro; Suzuki, Takashi; Yamagaki, Tohru; Okubo, Ken-Ichi; Ohtani, Kaori; Sonomoto, Kenji; Nakayama, Jiro

    2015-07-01

    Cyclic peptides are commonly used as quorum-sensing autoinducers in Gram-positive Firmicutes bacteria. Well-studied examples of such molecules are thiolactone and lactone, used to regulate the expression of a series of virulence genes in the agr system of Staphylococcus aureus and the fsr system of Enterococcus faecalis, respectively. Three cyclodepsipeptides WS9326A, WS9326B and cochinmicin II/III were identified as a result of screening actinomycetes culture extracts for activity against the agr/fsr system. These molecules are already known as receptor antagonists, the first two for tachykinin and the last one for endothelin. WS9326A also inhibited the transcription of pfoA regulated by the VirSR two-component system in Clostridium perfringens. Receptor-binding assays using a fluorescence-labeled autoinducer (FITC-GBAP) showed that WS9326A and WS9326B act as receptor antagonists in this system. In addition, an ex vivo assay showed that WS9326B substantially attenuated the toxicity of S. aureus for human corneal epithelial cells. These results suggest that these three natural cyclodepsipeptides have therapeutic potential for targeting the cyclic peptide-mediated quorum sensing of Gram-positive pathogens.

  16. Natural Guided Genome Engineering Reveals Transcriptional Regulators Controlling Quorum-Sensing Signal Degradation.

    PubMed

    El Sahili, Abbas; Kwasiborski, Anthony; Mothe, Nicolas; Velours, Christophe; Legrand, Pierre; Moréra, Solange; Faure, Denis

    2015-01-01

    Quorum-quenching (QQ) are natural or engineered processes disrupting the quorum-sensing (QS) signalling which controls virulence and persistence (e.g. biofilm) in numerous bacteria. QQ involves different enzymes including lactonases, amidases, oxidases and reductases which degrade the QS molecules such as N-acylhomoserine lactones (NAHL). Rhodococcus erythropolis known to efficiently degrade NAHL is proposed as a biocontrol agent and a reservoir of QQ-enzymes for biotechnology. In R. erythropolis, regulation of QQ-enzymes remains unclear. In this work, we performed genome engineering on R. erythropolis, which is recalcitrant to reverse genetics, in order to investigate regulation of QQ-enzymes at a molecular and structural level with the aim to improve the QQ activity. Deep-sequencing of the R. erythropolis enhanced variants allowed identification of a punctual mutation in a key-transcriptional factor QsdR (Quorum sensing degradation Regulation) which regulates the sole QQ-lactonase QsdA identified so far. Using biophysical and structural studies on QsdR, we demonstrate that QQ activity can be improved by modifying the regulation of QQ-enzymes degrading QS signal. This modification requiring the change of only one amino-acid in a transcriptional factor leads to an enhanced R. erythropolis in which the QS-signal degradation pathway is strongly activated.

  17. Natural Guided Genome Engineering Reveals Transcriptional Regulators Controlling Quorum-Sensing Signal Degradation

    PubMed Central

    Mothe, Nicolas; Velours, Christophe; Legrand, Pierre; Moréra, Solange; Faure, Denis

    2015-01-01

    Quorum-quenching (QQ) are natural or engineered processes disrupting the quorum-sensing (QS) signalling which controls virulence and persistence (e.g. biofilm) in numerous bacteria. QQ involves different enzymes including lactonases, amidases, oxidases and reductases which degrade the QS molecules such as N-acylhomoserine lactones (NAHL). Rhodococcus erythropolis known to efficiently degrade NAHL is proposed as a biocontrol agent and a reservoir of QQ-enzymes for biotechnology. In R. erythropolis, regulation of QQ-enzymes remains unclear. In this work, we performed genome engineering on R. erythropolis, which is recalcitrant to reverse genetics, in order to investigate regulation of QQ-enzymes at a molecular and structural level with the aim to improve the QQ activity. Deep-sequencing of the R. erythropolis enhanced variants allowed identification of a punctual mutation in a key-transcriptional factor QsdR (Quorum sensing degradation Regulation) which regulates the sole QQ-lactonase QsdA identified so far. Using biophysical and structural studies on QsdR, we demonstrate that QQ activity can be improved by modifying the regulation of QQ-enzymes degrading QS signal. This modification requiring the change of only one amino-acid in a transcriptional factor leads to an enhanced R. erythropolis in which the QS-signal degradation pathway is strongly activated. PMID:26554837

  18. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba

    PubMed Central

    Olivero-Verbel, Jesus; Barreto-Maya, Ana; Bertel-Sevilla, Angela; Stashenko, Elena E.

    2014-01-01

    Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus. PMID:25477905

  19. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba.

    PubMed

    Olivero-Verbel, Jesus; Barreto-Maya, Ana; Bertel-Sevilla, Angela; Stashenko, Elena E

    2014-01-01

    Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus.

  20. Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP

    PubMed Central

    Johnson, Winifred M; Kido Soule, Melissa C; Kujawinski, Elizabeth B

    2016-01-01

    Microbes, the foundation of the marine foodweb, do not function in isolation, but rather rely on molecular level interactions among species to thrive. Although certain types of interactions between autotrophic and heterotrophic microorganisms have been well documented, the role of specific organic molecules in regulating inter-species relationships and supporting growth are only beginning to be understood. Here, we examine one such interaction by characterizing the metabolic response of a heterotrophic marine bacterium, Ruegeria pomeroyi DSS-3, to growth on dimethylsulfoniopropionate (DMSP), an abundant organosulfur metabolite produced by phytoplankton. When cultivated on DMSP, R. pomeroyi synthesized a quorum-sensing molecule, N-(3-oxotetradecanoyl)-l-homoserine lactone, at significantly higher levels than during growth on propionate. Concomitant with the production of a quorum-sensing molecule, we observed differential production of intra- and extracellular metabolites including glutamine, vitamin B2 and biosynthetic intermediates of cyclic amino acids. Our metabolomics data indicate that R. pomeroyi changes regulation of its biochemical pathways in a manner that is adaptive for a cooperative lifestyle in the presence of DMSP, in anticipation of phytoplankton-derived nutrients and higher microbial density. This behavior is likely to occur on sinking marine particles, indicating that this response may impact the fate of organic matter. PMID:26882264

  1. Quorum sensing in the squid-Vibrio symbiosis.

    PubMed

    Verma, Subhash C; Miyashiro, Tim

    2013-08-07

    Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, quorum sensing are important for V. fischeri to form a mutualistic symbiosis with the Hawaiian bobtail squid, Euprymna scolopes. The symbiosis is established when V. fischeri cells migrate via flagella-based motility from the surrounding seawater into a specialized structure injuvenile squid called the light organ. The cells grow to high cell densities within the light organ where the infection persists over the lifetime of the animal. A hallmark of a successful symbiosis is the luminescence produced by V. fischeri that camouflages the squid at night by eliminating its shadow within the water column. While the regulatory networks governing quorum sensing are critical for properly regulating V. fischeri luminescence within the squid light organ, they also regulate luminescence-independent processes during symbiosis. In this review, we discuss the quorum-sensing network of V. fischeri and highlight its impact at various stages during host colonization.

  2. Integrated analysis of bacterial quorum-sensing networks

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rahul

    2005-11-01

    The regulation of gene expression is fundamental to most processes in cellular biology. At the transcriptional level, regulation occurs by the binding of specific proteins called transcription factors to DNA. Post-transcriptional regulation is often carried out by small RNAs which have become the focus of intense research activity recently. The talk will discuss the physics and biology of these two regulatory mechanisms by focusing on a specific biological system: quorum-sensing networks in bacteria. Quorum sensing is the process by which bacteria communicate to regulate gene expression in response to cell population density. Using an integrated approach which combines computational modeling, bioinformatics and experimental molecular biology, we are studying quorum-sensing pathways in bacteria. This approach led to the discovery of multiple regulatory small RNAs which are an integral part of the quorum-sensing pathway in Vibrio cholerae and Vibrio harveyi. Modeling of regulation of and by small RNAs in quorum sensing reveals the circuit characteristics controlling the transition from the low cell-density response to the high cell-density response.

  3. RND efflux pump and its interrelationship with quorum sensing system.

    PubMed

    Zhibin, Liang; Yumei, Chen; Yufan, Chen; Yingying, Cheng; Lianhui, Zhang

    2016-10-20

    Antibiotic resistance has become a serious concern in treatment of bacterial infections. Overexpression of efflux pump is one of the important mechanisms in antibiotic resistance. In Gram negative bacteria, RND (Resistance-nodulation-cell division) superfamily efflux pump plays a vital important role in antibiotics resistance. Recent research progress unveils an intriguing interrelationship between RND efflux pump and the bacterial quorum sensing system, whose regulation is dependent on small signal molecules. This article reviews the latest findings on the structure and transport mechanism of RND efflux pump, as well as the general features and regulatory mechanisms of quorum sensing, with a special focus on the role and mechanism of quorum sensing system in regulation of RND efflux pump, and the influence of efflux pump on quorum sensing signal transportation. Further investigation of the interrelationship between RND efflux pumps and the bacterial quorum sensing systems is critical for elucidation of the regulatory mechanisms that govern the expression of the RND efflux pumps genes, and may also provide useful clues to overcome the efflux pump mediated antibiotic resistance.

  4. Evaluation of the impact of quorum sensing transcriptional regulator SdiA on long-term persistence and fecal shedding of Escherichia coli O157:H7 in weaned calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quorum sensing transcriptional regulator SdiA has been shown to enhance the survival of Escherichia coli O157:H7 (O157) in the acidic compartment of bovine rumen in response to N-acyl-L-homoserine lactones (AHLs) produced by the rumen bacteria. Bacteria that survive the rumen environment subsequentl...

  5. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    PubMed

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems.

  6. Quorum sensing of microalgae associated marine Ponticoccus sp. PD-2 and its algicidal function regulation.

    PubMed

    Chi, Wendan; Zheng, Li; He, Changfei; Han, Bin; Zheng, Minggang; Gao, Wei; Sun, Chengjun; Zhou, Gefei; Gao, Xiangxing

    2017-12-01

    Quorum sensing (QS) systems play important roles in regulating many physiological functions of microorganisms, such as biofilm formation, bioluminescence, and antibiotic production. One marine algicidal bacterium, Ponticoccus sp. PD-2, was isolated from the microalga Prorocentrum donghaiense, and its N-acyl-homoserine lactone (AHL)-mediated QS system was verified. In this study, we analyzed the AHLs profile of strain PD-2. Two AHLs, 3-oxo-C8-HSL and 3-oxo-C10-HSL, were detected using a biosensor overlay assay and GC-MS methods. Two complete AHL-QS systems (designated zlaI/R and zlbI/R) were identified in the genome of strain PD-2. When expressed in Escherichia coli, both zlaI and zlbI genes could each produce 3-oxo-C8-HSL and 3-oxo-C10-HSL. Algicidal activity was investigated by evaluating the inhibitory rate (IR) of microalgae growth by measuring the fluorescence of viable cells. We found that the metabolites of strain PD-2 had algicidal activity against its host P. donghaiense (IR 84.81%) and two other red tide microalgae, Phaeocystis globosa (IR 78.91%) and Alexandrium tamarense (IR 67.14%). β-cyclodextrin which binds to AHLs and inhibits the QS system reduced the algicidal activity more than 50%. This indicates that inhibiting the QS system may affect the algicidal metabolites production of strain PD-2. Our study indicated that a QS-regulated algicidal system may play a potential role in the process of red tides disintegration. QS might be a potential way to control red tides.

  7. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations.

    PubMed

    Burt, Sara A; Ojo-Fakunle, Victoria T A; Woertman, Jenifer; Veldhuizen, Edwin J A

    2014-01-01

    The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms. Assays were carried out in polystyrene microplates to observe (a) the effect of 0-0.8 mM carvacrol on the formation of biofilms by selected bacterial pathogens over 24 h and (b) the effect of 0-8 mM carvacrol on the stability of pre-formed biofilms. Carvacrol was able to inhibit the formation of biofilms of Chromobacterium violaceum ATCC 12472, Salmonella enterica subsp. Typhimurium DT104, and Staphylococcus aureus 0074, while it showed no effect on formation of Pseudomonas aeruginosa (field isolate) biofilms. This inhibitory effect of carvacrol was observed at sub-lethal concentrations (<0.5 mM) where no effect was seen on total bacterial numbers, indicating that carvacrol's bactericidal effect was not causing the observed inhibition of biofilm formation. In contrast, carvacrol had (up to 8 mM) very little or no activity against existing biofilms of the bacteria described, showing that formation of the biofilm also confers protection against this compound. Since quorum sensing is an essential part of biofilm formation, the effect of carvacrol on quorum sensing of C. violaceum was also studied. Sub-MIC concentrations of carvacrol reduced expression of cviI (a gene coding for the N-acyl-L-homoserine lactone synthase), production of violacein (pigmentation) and chitinase activity (both regulated by quorum sensing) at concentrations coinciding with carvacrol's inhibiting effect on biofilm formation. These results indicate that carvacrol's activity in inhibition of biofilm formation may be related to the disruption of quorum sensing.

  8. Recent progresses on AI-2 bacterial quorum sensing inhibitors.

    PubMed

    Zhu, Peng; Li, Minyong

    2012-01-01

    Quorum sensing (QS) is a communication procedure that predominates gene expression in response to cell density and fluctuations in the neighboring environment as a result of discerning molecules termed autoinducers (AIs). It has been embroiled that QS can govern bacterial behaviors such as the secretion of virulence factors, biofilm formation, bioluminescence production, conjugation, sporulation and swarming motility. Autoinducer 2 (AI-2), a QS signaling molecule brought up to be involved in interspecies communication, exists in both gram-negative and -positive bacteria. Therefore, novel approaches to interrupt AI-2 quorum sensing are being recognized as next generation antimicrobials. In the present review article, we summarized recent progresses on AI-2 bacterial quorum sensing inhibitors and discussed their potential as the antibacterial agents.

  9. Modeling of signal transduction in bacterial quorum-sensing

    NASA Astrophysics Data System (ADS)

    Fenley, Andrew; Banik, Suman; Kulkarni, Rahul

    2006-03-01

    Several species of bacteria are able to coordinate gene regulation in response to population density, a process known as ``quorum-sensing''. Quorum-sensing bacteria produce, secrete, and detect signal molecules called autoinducers. For several species of bacteria in the Vibrio genus, recent results have shown that the external autoinducer concentrations control the expression of regulatory small RNA(s) which are critical to the process of quorum-sensing. We present a theoretical analysis of the network which relates the rate of small RNA expression to the external autoinducer concentrations. We relate the results from our modeling to previous experimental observations and suggest new experiments based on testable predictions of the model.

  10. Computational modeling of the quorum-sensing network in bacteria

    NASA Astrophysics Data System (ADS)

    Fenley, Andrew; Banik, Suman; Kulkarni, Rahul

    2007-03-01

    Certain species of bacteria are able produce and sense the concentration of small molecules called autodinducers in order to coordinate gene regulation in response to population density, a process known as ``quorum-sensing''. The resulting regulation of gene expression involves both transcriptional and post-transcriptional regulators. In particular, the species of bacteria in the Vibrio genus use small RNAs to regulate the master protein controlling the quorum-sensing response (luminescence, biofilm formation, virulence...). We model the network of interactions using a modular approach which provides a quantitative understanding of how signal transduction occurs. The parameters of the input-module are fit to current experimental results allowing for testable predictions to be made for future experiments. The results of our analysis offer a revised perspective on quorum-sensing based regulation.

  11. Engineered biological nanofactories trigger quorum sensing response in targeted bacteria

    NASA Astrophysics Data System (ADS)

    Fernandes, Rohan; Roy, Varnika; Wu, Hsuan-Chen; Bentley, William E.

    2010-03-01

    Biological nanofactories, which are engineered to contain modules that can target, sense and synthesize molecules, can trigger communication between different bacterial populations. These communications influence biofilm formation, virulence, bioluminescence and many other bacterial functions in a process called quorum sensing. Here, we show the assembly of a nanofactory that can trigger a bacterial quorum sensing response in the absence of native quorum molecules. The nanofactory comprises an antibody (for targeting) and a fusion protein that produces quorum molecules when bound to the targeted bacterium. Our nanofactory selectively targets the appropriate bacteria and triggers a quorum sensing response when added to two populations of bacteria. The nanofactories also trigger communication between two bacterial populations that are otherwise non-communicating. We envision the use of these nanofactories in generating new antimicrobial treatments that target the communication networks of bacteria rather than their viability.

  12. Identification of Quorum-Sensing Signal Molecules and a Biosynthetic Gene in Alicycliphilus sp. Isolated from Activated Sludge.

    PubMed

    Morohoshi, Tomohiro; Okutsu, Noriya; Xie, Xiaonan; Ikeda, Tsukasa

    2016-08-02

    Activated sludge is a complicated mixture of various microorganisms that is used to treat sewage and industrial wastewater. Many bacteria produce N-acylhomoserine lactone (AHL) as a quorum-sensing signal molecule to regulate the expression of the exoenzymes used for wastewater treatment. Here, we isolated an AHL-producing bacteria from an activated sludge sample collected from an electronic component factory, which we named Alicycliphilus sp. B1. Clone library analysis revealed that Alicycliphilus was a subdominant genus in this sample. When we screened the activated sludge sample for AHL-producing strains, 12 of 14 the AHL-producing isolates were assigned to the genus Alicycliphilus. A putative AHL-synthase gene, ALISP_0667, was cloned from the genome of B1 and transformed into Escherichia coli DH5α. The AHLs were extracted from the culture supernatants of the B1 strain and E. coli DH5α cells harboring the ALISP_0667 gene and were identified by liquid chromatography-mass spectrometry as N-(3-hydroxydecanoyl)-l-homoserine lactone and N-(3-hydroxydodecanoyl)-l-homoserine lactone. The results of comparative genomic analysis suggested that the quorum-sensing genes in the B1 strain might have been acquired by horizontal gene transfer within activated sludge.

  13. Identification of Quorum-Sensing Signal Molecules and a Biosynthetic Gene in Alicycliphilus sp. Isolated from Activated Sludge

    PubMed Central

    Morohoshi, Tomohiro; Okutsu, Noriya; Xie, Xiaonan; Ikeda, Tsukasa

    2016-01-01

    Activated sludge is a complicated mixture of various microorganisms that is used to treat sewage and industrial wastewater. Many bacteria produce N-acylhomoserine lactone (AHL) as a quorum-sensing signal molecule to regulate the expression of the exoenzymes used for wastewater treatment. Here, we isolated an AHL-producing bacteria from an activated sludge sample collected from an electronic component factory, which we named Alicycliphilus sp. B1. Clone library analysis revealed that Alicycliphilus was a subdominant genus in this sample. When we screened the activated sludge sample for AHL-producing strains, 12 of 14 the AHL-producing isolates were assigned to the genus Alicycliphilus. A putative AHL-synthase gene, ALISP_0667, was cloned from the genome of B1 and transformed into Escherichia coli DH5α. The AHLs were extracted from the culture supernatants of the B1 strain and E. coli DH5α cells harboring the ALISP_0667 gene and were identified by liquid chromatography-mass spectrometry as N-(3-hydroxydecanoyl)-l-homoserine lactone and N-(3-hydroxydodecanoyl)-l-homoserine lactone. The results of comparative genomic analysis suggested that the quorum-sensing genes in the B1 strain might have been acquired by horizontal gene transfer within activated sludge. PMID:27490553

  14. The evolution of quorum sensing in bacterial biofilms.

    PubMed

    Nadell, Carey D; Xavier, Joao B; Levin, Simon A; Foster, Kevin R

    2008-01-01

    Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum-sensing systems that detect the density of other bacteria around them. A key example of such group behavior is biofilm formation, in which communities of cells attach to a surface and envelope themselves in secreted polymers. Curiously, after reaching high cell density, some bacterial species activate polymer secretion, whereas others terminate polymer secretion. Here, we investigate this striking variation in the first evolutionary model of quorum sensing in biofilms. We use detailed individual-based simulations to investigate evolutionary competitions between strains that differ in their polymer production and quorum-sensing phenotypes. The benefit of activating polymer secretion at high cell density is relatively straightforward: secretion starts upon biofilm formation, allowing strains to push their lineages into nutrient-rich areas and suffocate neighboring cells. But why use quorum sensing to terminate polymer secretion at high cell density? We find that deactivating polymer production in biofilms can yield an advantage by redirecting resources into growth, but that this advantage occurs only in a limited time window. We predict, therefore, that down-regulation of polymer secretion at high cell density will evolve when it can coincide with dispersal events, but it will be disfavored in long-lived (chronic) biofilms with sustained competition among strains. Our model suggests that the observed variation in quorum-sensing behavior can be linked to the differing requirements of bacteria in chronic versus acute biofilm infections. This is well illustrated by the case of Vibrio cholerae, which competes within biofilms by polymer secretion, terminates polymer secretion at high cell density, and induces an acute disease course that ends with mass dispersal from the host. More generally, this work shows that the balance of competition within and among

  15. Information processing and signal integration in bacterial quorum sensing

    NASA Astrophysics Data System (ADS)

    Mehta, Pankaj

    2009-03-01

    Bacteria communicate with each other using secreted chemical signaling molecules called autoinducers (AIs) in a process known as quorum sensing. Quorum sensing enables bacteria to collectively regulate their behavior depending on the number and/or species of bacteria present. The quorum-sensing network of the marine-bacteria Vibrio harveyi consists of three AIs encoding distinct ecological information, each detected by its own histidine-kinase sensor protein. The sensor proteins all phosphorylate a common response regulator and transmit sensory information through a shared phosphorelay that regulates expression of downstream quorum-sensing genes. Despite detailed knowledge of the Vibrio quorum-sensing circuit, it is still unclear how and why bacteria integrate information from multiple input signals to coordinate collective behaviors. Here we develop a mathematical framework for analyzing signal integration based on Information Theory and use it to show that bacteria must tune the kinase activities of sensor proteins in order to transmit information from multiple inputs. This is demonstrated within a quantitative model that allows us to quantify how much Vibrio's learn about individual inputs and explains experimentally measured input-output relations. Furthermore, we predicted and experimentally verified that bacteria manipulate the production rates of AIs in order to increase information transmission and argue that the quorum-sensing circuit is designed to coordinate a multi-cellular developmental program. Our results show that bacteria can successfully learn about multiple signals even when they are transmitted through a shared pathway and suggest that Information Theory may be a powerful tool for analyzing biological signaling networks.

  16. Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier

    PubMed Central

    Wynendaele, Evelien; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Janssens, Yorick; Van De Wiele, Christophe; Peremans, Kathelijne; Burvenich, Christian; De Spiegeleer, Bart

    2015-01-01

    Bacteria communicate with each other by the use of signaling molecules, a process called ‘quorum sensing’. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis. PMID:26536593

  17. The Evolution of Quorum Sensing as a Mechanism to Infer Kinship

    PubMed Central

    Schluter, Jonas; Schoech, Armin P.; Foster, Kevin R.; Mitri, Sara

    2016-01-01

    Bacteria regulate many phenotypes via quorum sensing systems. Quorum sensing is typically thought to evolve because the regulated cooperative phenotypes are only beneficial at certain cell densities. However, quorum sensing systems are also threatened by non-cooperative “cheaters” that may exploit quorum-sensing regulated cooperation, which begs the question of how quorum sensing systems are maintained in nature. Here we study the evolution of quorum sensing using an individual-based model that captures the natural ecology and population structuring of microbial communities. We first recapitulate the two existing observations on quorum sensing evolution: density-dependent benefits favor quorum sensing but competition and cheating will destabilize it. We then model quorum sensing in a dense community like a biofilm, which reveals a novel benefit to quorum sensing that is intrinsically evolutionarily stable. In these communities, competing microbial genotypes gradually segregate over time leading to positive correlation between density and genetic similarity between neighboring cells (relatedness). This enables quorum sensing to track genetic relatedness and ensures that costly cooperative traits are only activated once a cell is safely surrounded by clonemates. We hypothesize that under similar natural conditions, the benefits of quorum sensing will not result from an assessment of density but from the ability to infer kinship. PMID:27120081

  18. The Evolution of Quorum Sensing as a Mechanism to Infer Kinship.

    PubMed

    Schluter, Jonas; Schoech, Armin P; Foster, Kevin R; Mitri, Sara

    2016-04-01

    Bacteria regulate many phenotypes via quorum sensing systems. Quorum sensing is typically thought to evolve because the regulated cooperative phenotypes are only beneficial at certain cell densities. However, quorum sensing systems are also threatened by non-cooperative "cheaters" that may exploit quorum-sensing regulated cooperation, which begs the question of how quorum sensing systems are maintained in nature. Here we study the evolution of quorum sensing using an individual-based model that captures the natural ecology and population structuring of microbial communities. We first recapitulate the two existing observations on quorum sensing evolution: density-dependent benefits favor quorum sensing but competition and cheating will destabilize it. We then model quorum sensing in a dense community like a biofilm, which reveals a novel benefit to quorum sensing that is intrinsically evolutionarily stable. In these communities, competing microbial genotypes gradually segregate over time leading to positive correlation between density and genetic similarity between neighboring cells (relatedness). This enables quorum sensing to track genetic relatedness and ensures that costly cooperative traits are only activated once a cell is safely surrounded by clonemates. We hypothesize that under similar natural conditions, the benefits of quorum sensing will not result from an assessment of density but from the ability to infer kinship.

  19. [THE ROLE OF SYSTEM QUORUM SENSING UNDER CHRONIC UROGENITAL CHLAMYDIA INFECTION].

    PubMed

    2015-10-01

    It is established that system quorum sensing (QS) assure social behavior of bacteria in regulation of genes of virulence and generalization of inflectional inflammatory process under chronic urogenital chlamydia infection. The techniques of gas chromatography and mass-spectrometry were applied to detect molecular markers of generalization of infectious process under urogenital chlamydiasis--activators of QS microbes (lactones, quinolones, furan ethers). The developed diagnostic gas chromatography and mass-spectrometry criteria of indexation of molecular markers under chronic urogenital chlamydia infection have high level of diagnostic sensitivity, specificity and prognostic value of positive and negative result. The application of techniques of gas chromatography and mass-spectrometry permits enhancing effectiveness of diagnostic of chronic inflectional inflammatory diseases of urogenital system of chlamydia etiology with identification of prognostic criteria of generalization of infectious process and subsequent prescription of timely and appropriate therapy

  20. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens.

    PubMed

    Zhao, J; Chen, M; Quan, C S; Fan, S D

    2015-09-01

    In many countries, infectious diseases are a considerable threat to aquaculture. The pathogenicity of micro-organisms that infect aquaculture systems is closely related to the release of virulence factors and the formation of biofilms, both of which are regulated by quorum sensing (QS). Thus, QS disruption is a potential strategy for preventing disease in aquaculture systems. QS inhibitors (QSIs) not only inhibit the expression of virulence-associated genes but also attenuate the virulence of aquaculture pathogens. In this review, we discuss QS systems in important aquaculture pathogens and focus on the relationship between QS mechanisms and bacterial virulence in aquaculture. We further elucidate QS disruption strategies for targeting aquaculture pathogens. Four main types of QSIs that target aquaculture pathogens are discussed based on their mechanisms of action.

  1. Structure-Based Design and Biological Evaluation of Triphenyl Scaffold-Based Hybrid Compounds as Hydrolytically Stable Modulators of a LuxR-Type Quorum Sensing Receptor.

    PubMed

    O'Reilly, Matthew C; Blackwell, Helen E

    2016-01-08

    Many common bacterial pathogens utilize quorum sensing to coordinate group behaviors and initiate virulence at high cell densities. The use of small molecules to block quorum sensing provides a means of abrogating pathogenic phenotypes, but many known quorum sensing modulators have limitations, including hydrolytic instability and displaying non-monotonic dose curves (indicative of additional targets and/or modes of action). To address these issues, we undertook a structure-based scaffold-hopping approach to develop new chemical modulators of the LasR quorum sensing receptor in Pseudomonas aeruginosa. We combined components from a triphenyl derivative known to strongly agonize LasR with chemical moieties known for LasR antagonism and generated potent LasR antagonists that are hydrolytically stable across a range of pH values. Additionally, many of these antagonists do not exhibit non-monotonic dose effects, delivering probes that inhibit LasR across a wider range of assay conditions relative to known lactone-based ligands.

  2. Differential Immune Modulatory Activity of Pseudomonas aeruginosa Quorum-Sensing Signal Molecules

    PubMed Central

    Hooi, Doreen S. W.; Bycroft, Barrie W.; Chhabra, Siri Ram; Williams, Paul; Pritchard, David I.

    2004-01-01

    Pseudomonas aeruginosa releases a spectrum of well-regulated virulence factors, controlled by intercellular communication (quorum sensing) and mediated through the production of small diffusible quorum-sensing signal molecules (QSSM). We hypothesize that QSSM may in fact serve a dual purpose, also allowing bacterial colonization via their intrinsic immune-modulatory capacity. One class of signal molecule, the N-acylhomoserine lactones, has pleiotropic effects on eukaryotic cells, particularly those involved in host immunity. In the present study, we have determined the comparative effects of two chemically distinct and endobronchially detectable QSSM, N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and 2-heptyl-3-hydroxy-4 (1H)-quinolone or the Pseudomonas quinolone signal (PQS), on human leukocytes exposed to a series of stimuli designed to detect differential immunological activity in vitro. 3-Oxo-C12-HSL and PQS displayed differential effects on the release of interleukin-2 (IL-2) when human T cells were activated via the T-cell receptor and CD28 (a costimulatory molecule). 3-Oxo-C12-HSL inhibited cell proliferation and IL-2 release; PQS inhibited cell proliferation without affecting IL-2 release. Both molecules inhibited cell proliferation and the release of IL-2 following mitogen stimulation. Furthermore, in the presence of Escherichia coli lipopolysaccharide, 3-oxo-C12-HSL inhibited tumor necrosis factor alpha release from human monocytes, as reported previously (K. Tateda et al., Infect. Immun. 64:37-43, 1996), whereas PQS did not inhibit in this assay. These data highlight the presence of two differentially active immune modulatory QSSM from P. aeruginosa, which are detectable endobronchially and may be active at the host/pathogen interface during infection with P. aeruginosa, should the bronchial airway lymphoid tissues prove to be accessible to QSSM. PMID:15501777

  3. Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules.

    PubMed

    Hooi, Doreen S W; Bycroft, Barrie W; Chhabra, Siri Ram; Williams, Paul; Pritchard, David I

    2004-11-01

    Pseudomonas aeruginosa releases a spectrum of well-regulated virulence factors, controlled by intercellular communication (quorum sensing) and mediated through the production of small diffusible quorum-sensing signal molecules (QSSM). We hypothesize that QSSM may in fact serve a dual purpose, also allowing bacterial colonization via their intrinsic immune-modulatory capacity. One class of signal molecule, the N-acylhomoserine lactones, has pleiotropic effects on eukaryotic cells, particularly those involved in host immunity. In the present study, we have determined the comparative effects of two chemically distinct and endobronchially detectable QSSM, N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and 2-heptyl-3-hydroxy-4 (1H)-quinolone or the Pseudomonas quinolone signal (PQS), on human leukocytes exposed to a series of stimuli designed to detect differential immunological activity in vitro. 3-Oxo-C12-HSL and PQS displayed differential effects on the release of interleukin-2 (IL-2) when human T cells were activated via the T-cell receptor and CD28 (a costimulatory molecule). 3-Oxo-C12-HSL inhibited cell proliferation and IL-2 release; PQS inhibited cell proliferation without affecting IL-2 release. Both molecules inhibited cell proliferation and the release of IL-2 following mitogen stimulation. Furthermore, in the presence of Escherichia coli lipopolysaccharide, 3-oxo-C12-HSL inhibited tumor necrosis factor alpha release from human monocytes, as reported previously (K. Tateda et al., Infect. Immun. 64:37-43, 1996), whereas PQS did not inhibit in this assay. These data highlight the presence of two differentially active immune modulatory QSSM from P. aeruginosa, which are detectable endobronchially and may be active at the host/pathogen interface during infection with P. aeruginosa, should the bronchial airway lymphoid tissues prove to be accessible to QSSM.

  4. [Research advance in the function of quorum sensing in the biological aggregates].

    PubMed

    Dai, Xin; Zhou, Jia-Heng; Zhu, Liang; Xu, Xiang-Yang

    2014-04-01

    Quorum sensing is a microbial phenomenon that microorganisms use signal molecules to perceive environmental conditions and regulate specific gene expressions. As the communication function of quorum sensing is increasingly highlighted in the microbial field, researches on quorum sensing in the formation process of biological aggregates (biofilm and granules) attract wide attentions. The paper reviewed autoinducers (AI) classification and the corresponding regulation methods in quorum sensing, and provided an up-to-date account on research progress of AIs regulating biological aggregates formation and structural stability. New territories and future of quorum sensing were also outlined.

  5. Quorum sensing activity of a Kluyvera sp. isolated from a Malaysian waterfall.

    PubMed

    Yunos, Nina Yusrina Muhamad; Tan, Wen-Si; Mohamad, Nur Izzati; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-05-08

    In many species of bacteria, the quorum sensing mechanism is used as a unique communication system which allows them to regulate gene expression and behavior in accordance with their population density. N-Acylhomoserine lactones (AHLs) are known as diffusible autoinducer molecules involved in this communication network. This finding aimed to characterize the production of AHL of a bacterial strain ND04 isolated from a Malaysian waterfall. Strain ND04 was identified as Kluyvera sp. as confirmed by molecular analysis of its 16S ribosomal RNA gene sequence. Kluyvera sp. is closely related to the Enterobacteriaceae family. Chromobacterium violaceum CV026 was used as a biosensor to detect the production of AHL by strain ND04. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of strain ND04 showed our isolate produced two AHLs which are N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6 HSL) and N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8 HSL).

  6. Quorum-sensing in yeast and its potential in wine making.

    PubMed

    Avbelj, Martina; Zupan, Jure; Raspor, Peter

    2016-09-01

    This mini-review synthesises the present knowledge of microbial quorum-sensing, with a specific focus on quorum-sensing in yeast, and especially in wine yeast. In vine and wine ecosystems, yeast co-interact with a large variety of microorganisms, thereby affecting the fermentation process and, consequently, the flavour of the wine. The precise connections between microbial interactions and quorum-sensing remain unclear, but we describe here how and when some species start to produce quorum-sensing molecules to synchronously adapt their collective behaviour to new conditions. In Saccharomyces cerevisiae, the quorum-sensing molecules were identified as 2-phenylethanol and tryptophol. However, it was recently shown that also a quorum-sensing molecule formerly identified only in Candida albicans, tyrosol, appears to be regulated in S. cerevisiae according to cell density. This review describes the methods for detection and quantification of those quorum-sensing molecules, their underlying mechanisms of action, and their genetic background. It also examines the external stimuli that evoke the quorum-sensing mechanism in the wine-processing environment. The review closes with insight into the biotechnological applications that are already making use of the advantages of quorum-sensing systems and indicates the important questions that still need to be addressed in future research into quorum-sensing.

  7. Effect of low Reynolds number flow on the quorum sensing behavior of sessile bacteria

    NASA Astrophysics Data System (ADS)

    Ingremeau, Francois; Minyoung, Kevin Kim; Bassler, Bonnie; Stone, Howard; Mechanical; Aerospace Engineering, Complex fluids Group Team; Molecular Biology Lab Team

    2014-11-01

    Sessile and planktonic bacteria can be sensitive to the bacteria cell density around them through a chemical mediated communication called quorum sensing. When the quorum sensing molecules reach a certain value, the metabolism of the bacteria changes. Quorum sensing is usually studied in static conditions or in well mixed environments. However, bacteria biofilms can form in porous media or in the circulatory system of an infected body: quorum sensing in such flowing environment at low Reynolds number is not well studied. Using microfluidic devices, we observe how the flow of a pure media affects quorum sensing of bacteria attached to the wall. The biofilm formation is quantified by measuring the optical density in brightfield microscopy and the quorum sensing gene expression is observed through the fluorescence of a green fluorescent protein, which is a reporter for one of the quorum sensing genes. We measured without flow the amount of Staphylococcus aureus biofilm when the quorum sensing gene expression starts. In contrast, when the media is flowing in the microchannel, the quorum sensing expression is delayed. This effect can be understood and modelled by considering the diffusion of the quorum sensing molecules in the biofilm and their convection by the flowing media.

  8. Quorum Sensing and Bacterial Social Interactions in Biofilms

    PubMed Central

    Li, Yung-Hua; Tian, Xiaolin

    2012-01-01

    Many bacteria are known to regulate their cooperative activities and physiological processes through a mechanism called quorum sensing (QS), in which bacterial cells communicate with each other by releasing, sensing and responding to small diffusible signal molecules. The ability of bacteria to communicate and behave as a group for social interactions like a multi-cellular organism has provided significant benefits to bacteria in host colonization, formation of biofilms, defense against competitors, and adaptation to changing environments. Importantly, many QS-controlled activities have been involved in the virulence and pathogenic potential of bacteria. Therefore, understanding the molecular details of quorum sensing mechanisms and their controlled social activities may open a new avenue for controlling bacterial infections. PMID:22736963

  9. Noisy neighbourhoods: quorum sensing in fungal–polymicrobial infections

    PubMed Central

    Dixon, Emily F.

    2015-01-01

    Summary Quorum sensing was once considered a way in which a species was able to sense its cell density and regulate gene expression accordingly. However, it is now becoming apparent that multiple microbes can sense particular quorum‐sensing molecules, enabling them to sense and respond to other microbes in their neighbourhood. Such interactions are significant within the context of polymicrobial disease, in which the competition or cooperation of microbes can alter disease progression. Fungi comprise a small but important component of the human microbiome and are in constant contact with bacteria and viruses. The discovery of quorum‐sensing pathways in fungi has led to the characterization of a number of interkingdom quorum‐sensing interactions. Here, we review the recent developments in quorum sensing in medically important fungi, and the implications these interactions have on the host's innate immune response. PMID:26243526

  10. Quorum sensing and bacterial social interactions in biofilms.

    PubMed

    Li, Yung-Hua; Tian, Xiaolin

    2012-01-01

    Many bacteria are known to regulate their cooperative activities and physiological processes through a mechanism called quorum sensing (QS), in which bacterial cells communicate with each other by releasing, sensing and responding to small diffusible signal molecules. The ability of bacteria to communicate and behave as a group for social interactions like a multi-cellular organism has provided significant benefits to bacteria in host colonization, formation of biofilms, defense against competitors, and adaptation to changing environments. Importantly, many QS-controlled activities have been involved in the virulence and pathogenic potential of bacteria. Therefore, understanding the molecular details of quorum sensing mechanisms and their controlled social activities may open a new avenue for controlling bacterial infections.

  11. Sociomicrobiology: the connections between quorum sensing and biofilms.

    PubMed

    Parsek, Matthew R; Greenberg, E P

    2005-01-01

    In the past decade, significant debate has surrounded the relative contributions of genetic determinants versus environmental conditions to certain types of human behavior. While this debate goes on, it is with a certain degree of irony that microbiologists studying aspects of bacterial community behavior face the same questions. Information regarding two social phenomena exhibited by bacteria, quorum sensing and biofilm development, is reviewed here. These two topics have been inextricably linked, possibly because biofilms and quorum sensing represent two areas in which microbiologists focus on social aspects of bacteria. We will examine what is known about this linkage and discuss areas that might be developed. In addition, we believe that these two aspects of bacterial behavior represent a small part of the social repertoire of bacteria. Bacteria exhibit many social activities and they represent a model for dissecting social behavior at the genetic level. Therefore, we introduce the term 'sociomicrobiology'.

  12. Simple models for quorum sensing: Nonlinear dynamical analysis

    NASA Astrophysics Data System (ADS)

    Chiang, Wei-Yin; Li, Yue-Xian; Lai, Pik-Yin

    2011-10-01

    Quorum sensing refers to the change in the cooperative behavior of a collection of elements in response to the change in their population size or density. This behavior can be observed in chemical and biological systems. These elements or cells are coupled via chemicals in the surrounding environment. Here we focus on the change of dynamical behavior, in particular from quiescent to oscillatory, as the cell population changes. For instance, the silent behavior of the elements can become oscillatory as the system concentration or population increases. In this work, two simple models are constructed that can produce the essential representative properties in quorum sensing. The first is an excitable or oscillatory phase model, which is probably the simplest model one can construct to describe quorum sensing. Using the mean-field approximation, the parameter regime for quorum sensing behavior can be identified, and analytical results for the detailed dynamical properties, including the phase diagrams, are obtained and verified numerically. The second model consists of FitzHugh-Nagumo elements coupled to the signaling chemicals in the environment. Nonlinear dynamical analysis of this mean-field model exhibits rich dynamical behaviors, such as infinite period bifurcation, supercritical Hopf, fold bifurcation, and subcritical Hopf bifurcations as the population parameter changes for different coupling strengths. Analytical result is obtained for the Hopf bifurcation phase boundary. Furthermore, two elements coupled via the environment and their synchronization behavior for these two models are also investigated. For both models, it is found that the onset of oscillations is accompanied by the synchronized dynamics of the two elements. Possible applications and extension of these models are also discussed.

  13. Quorum Sensing and Synchronization in Populations of Coupled Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Taylor, Annette F.; Tinsley, Mark R.; Showalter, Kenneth

    2013-12-01

    Experiments and simulations of populations of coupled chemical oscillators, consisting of catalytic particles suspended in solution, provide insights into density-dependent dynamics displayed by many cellular organisms. Gradual synchronization transitions, the "switching on" of activity above a threshold number of oscillators (quorum sensing) and the formation of synchronized groups (clusters) of oscillators have been characterized. Collective behavior is driven by the response of the oscillators to chemicals emitted into the surrounding solution.

  14. Reducing Virulence and Biofilm of Pseudomonas aeruginosa by Potential Quorum Sensing Inhibitor Carotenoid: Zeaxanthin.

    PubMed

    Gökalsın, Barış; Aksoydan, Busecan; Erman, Burak; Sesal, Nüzhet Cenk

    2017-03-02

    Pseudomonas aeruginosa can regulate its virulence gene expressions by using a signal system called quorum sensing. It is known that inhibition of quorum sensing can block biofilm formation and leave the bacteria defenseless. Therefore, it is necessary to determine natural sources to obtain potential quorum sensing inhibitors. This study aims to investigate an alternative treatment approach by utilizing the carotenoid zeaxanthin to reduce the expressions of P. aeruginosa virulence factors through quorum sensing inhibition. The inhibition potential of zeaxanthin was determined by in silico screening from a library of 638 lichen metabolites. Fluorescent monitor strains were utilized for quorum sensing inhibitor screens, and quantitative reverse-transcriptase PCR assay was performed for evaluating gene expression. Results indicate that zeaxanthin is a better inhibitor than the lichen secondary metabolite evernic acid, which was previously shown to be capable of inhibiting P. aeruginosa quorum sensing systems.

  15. Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa

    PubMed Central

    Zaborina, Olga; Lepine, Francois; Xiao, Gaoping; Valuckaite, Vesta; Chen, Yimei; Li, Terry; Ciancio, Mae; Zaborin, Alex; Petroff, Elaine; Turner, Jerrold R; Rahme, Laurence G; Chang, Eugene; Alverdy, John C

    2007-01-01

    There is now substantial evidence that compounds released during host stress directly activate the virulence of certain opportunistic pathogens. Here, we considered that endogenous opioids might function as such compounds, given that they are among the first signals to be released at multiple tissue sites during host stress. We tested the ability of various opioid compounds to enhance the virulence of Pseudomonas aeruginosa using pyocyanin production as a biological readout, and demonstrated enhanced virulence when P. aeruginosa was exposed to synthetic (U-50,488) and endogenous (dynorphin) κ-agonists. Using various mutants and reporter strains of P. aeruginosa, we identified involvement of key elements of the quorum sensing circuitry such as the global transcriptional regulator MvfR and the quorum sensing-related quinolone signaling molecules PQS, HHQ, and HQNO that respond to κ-opioids. The in vivo significance of κ-opioid signaling of P. aeruginosa was demonstrated in mice by showing that dynorphin is released from the intestinal mucosa following ischemia/reperfusion injury, activates quinolone signaling in P. aeruginosa, and enhances the virulence of P. aeruginosa against Lactobacillus spp. and Caenorhabditis elegans. Taken together, these data demonstrate that P. aeruginosa can intercept opioid compounds released during host stress and integrate them into core elements of quorum sensing circuitry leading to enhanced virulence. PMID:17367209

  16. Quorum Sensing Inhibitory Activity of Giganteone A from Myristica cinnamomea King against Escherichia coli Biosensors.

    PubMed

    Sivasothy, Yasodha; Krishnan, Thiba; Chan, Kok-Gan; Abdul Wahab, Siti Mariam; Othman, Muhamad Aqmal; Litaudon, Marc; Awang, Khalijah

    2016-03-21

    Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.

  17. Specific quorum sensing-disrupting activity (A QSI) of thiophenones and their therapeutic potential.

    PubMed

    Yang, Qian; Scheie, Anne Aamdal; Benneche, Tore; Defoirdt, Tom

    2015-12-09

    Disease caused by antibiotic resistant pathogens is becoming a serious problem, both in human and veterinary medicine. The inhibition of quorum sensing, bacterial cell-to-cell communication, is a promising alternative strategy to control disease. In this study, we determined the quorum sensing-disrupting activity of 20 thiophenones towards the quorum sensing model bacterium V. harveyi. In order to exclude false positives, we propose a new parameter (AQSI) to describe specific quorum sensing activity. AQSI is defined as the ratio between inhibition of quorum sensing-regulated activity in a reporter strain and inhibition of the same activity when it is independent of quorum sensing. Calculation of AQSI allowed to exclude five false positives, whereas the six most active thiophenones (TF203, TF307, TF319, TF339, TF342 and TF403) inhibited quorum sensing at 0.25 μM, with AQSI higher than 10. Further, we determined the protective effect and toxicity of the thiophenones in a highly controlled gnotobiotic model system with brine shrimp larvae. There was a strong positive correlation between the specific quorum sensing-disrupting activity of the thiophenones and the protection of brine shrimp larvae against pathogenic V. harveyi. Four of the most active quorum sensing-disrupting thiophenones (TF 203, TF319, TF339 and TF342) were considered to be promising since they have a therapeutic potential of at least 10.

  18. Fusaric acid and analogues as Gram-negative bacterial quorum sensing inhibitors.

    PubMed

    Tung, Truong Thanh; Jakobsen, Tim Holm; Dao, Trong Tuan; Fuglsang, Anja Thoe; Givskov, Michael; Christensen, Søren Brøgger; Nielsen, John

    2017-01-27

    Taking advantage of microwave-assisted synthesis, efficient and expedite procedures for preparation of a library of fusaric acid and 39 analogues are reported. The fusaric acid analogues were tested in cell-based screening assays for inhibition of the las and rhl quorum sensing system in Pseudomonas aeruginosa and the lux quorum sensing system in Vibrio fischeri. Eight of the 40 compounds in the library including fusaric acid inhibited lux quorum sensing and one compound inhibited activity of the las quorum sensing system. To our delight, none of the compounds showed growth inhibitory effects in the tested concentration ranges.

  19. Analysis of Quorum-Sensing-Dependent Control of Rhizosphere-Expressed (rhi) Genes in Rhizobium leguminosarum bv. viciae

    PubMed Central

    Rodelas, Belen; Lithgow, James K.; Wisniewski-Dye, Florence; Hardman, Andrea; Wilkinson, Adam; Economou, Anastassios; Williams, Paul; Downie, J. Allan

    1999-01-01

    The rhi genes of Rhizobium leguminosarum biovar viciae are expressed in the rhizosphere and play a role in the interaction with legumes, such as the pea. Previously (K. M. Gray, J. P. Pearson, J. A. Downie, B. E. A. Boboye, and E. P. Greenberg, J. Bacteriol. 178:372–376, 1996) the rhiABC operon had been shown to be regulated by RhiR and to be induced by added N-(3-hydroxy-7-cis-tetradecenoyl)-l-homoserine lactone (3OH,C14:1-HSL). Mutagenesis of a cosmid carrying the rhiABC and rhiR gene region identified a gene (rhiI) that affects the level of rhiA expression. Mutation of rhiI slightly increased the number of nodules formed on the pea. The rhiI gene is (like rhiA) regulated by rhiR in a cell density-dependent manner. RhiI is similar to LuxI and other proteins involved in the synthesis of N-acyl-homoserine lactones (AHLs). Chemical analyses of spent culture supernatants demonstrated that RhiI produces N-(hexanoyl)-l-homoserine lactone (C6-HSL) and N-(octanoyl)-l-homoserine lactone (C8-HSL). Both of these AHLs induced rhiA-lacZ and rhiI-lacZ expression on plasmids introduced into an Agrobacterium strain that produces no AHLs, showing that rhiI is positively regulated by autoinduction. However, in this system no induction of rhiA or rhiI with 3OH,C14:1-HSL was observed. Analysis of the spent culture supernatant of the wild-type R. leguminosarum bv. viciae revealed that at least seven different AHLs are made. Mutation of rhiI decreased the amounts of C6-HSL and C8-HSL but did not block their formation, and in this background the rhiI mutation did not significantly affect the expression levels of the rhiI gene or rhiABC genes or the accumulation of RhiA protein. These observations suggest that there are additional loci involved in AHL production in R. leguminosarum bv. viciae and that they affect rhiI and rhiABC expression. We postulate that the previously observed induction of rhiA by 3OH,C14:1-HSL may be due to an indirect effect caused by induction of other AHL

  20. N-Acetylglucosamine Inhibits LuxR, LasR and CviR Based Quorum Sensing Regulated Gene Expression Levels

    PubMed Central

    Kimyon, Önder; Ulutürk, Zehra İ.; Nizalapur, Shashidhar; Lee, Matthew; Kutty, Samuel K.; Beckmann, Sabrina; Kumar, Naresh; Manefield, Mike

    2016-01-01

    N-acetyl glucosamine, the monomer of chitin, is an abundant source of carbon and nitrogen in nature as it is the main component and breakdown product of many structural polymers. Some bacteria use N-acyl-L-homoserine lactone (AHL) mediated quorum sensing (QS) to regulate chitinase production in order to catalyze the cleavage of chitin polymers into water soluble N-acetyl-D-glucosamine (NAG) monomers. In this study, the impact of NAG on QS activities of LuxR, LasR, and CviR regulated gene expression was investigated by examining the effect of NAG on QS regulated green fluorescent protein (GFP), violacein and extracellular chitinase expression. It was discovered that NAG inhibits AHL dependent gene transcription in AHL reporter strains within the range of 50–80% reduction at low millimolar concentrations (0.25–5 mM). Evidence is presented supporting a role for both competitive inhibition at the AHL binding site of LuxR type transcriptional regulators and catabolite repression. Further, this study shows that NAG down-regulates CviR induced violacein production while simultaneously up-regulating CviR dependent extracellular enzymes, suggesting that an unknown NAG dependent regulatory component influences phenotype expression. The quorum sensing inhibiting activity of NAG also adds to the list of compounds with known quorum sensing inhibiting activities. PMID:27602027

  1. Restraining Erwinia virulence by expression of N-acyl homoserine lactonase gene pro3A-aiiA in Bacillus thuringiensis subsp leesis.

    PubMed

    Zhu, Chenguang; Yu, Ziniu; Sun, Ming

    2006-10-20

    To widen the biological control function of a genetically modified Bacillus thuringiensis subsp leesis strain BMB-005, an acyl homoserine lactonase (AHL lactonase) gene aiiA transcribed by the promoter of insecticidal crystal protein coding gene cry3A, was transformed into strain BMB-005. The amount of AHL lactonase protein produced by transformant BMB821A was 2.4-fold more than that produced by BMB-005. AHL-degradation assay showed that transformant BMB821A could degrade more AHLs molecules than the original strain BMB-005. The result of Erwinia carotovora pathogenicity test showed that the parental strain BMB-005 had no restraint of Erwinia infection, but the transformants exhibited strong restraint of E. carotovora infection on potato slices and cactus stems. Insecticidal bioassay against lepidopteran Spodoptera exigua showed that both strain BMB-005 and transformant BMB821A were toxic to S. exigua. The toxicity of transformant BMB821A (LC(50) was 3.8) was a little attenuated comparing with the toxicity of the original strain BMB-005 (LC(50) was 2.9). The B. thuringiensis strain BMB-005 has high toxicity against Helicoverpa armigera, Plutella xylostella, and S. exigua. This work provided new strategy for developing genetically engineered multi-functional B. thuringiensis strain that possesses insecticidal activity together with restraint of bacterial pathogenicity.

  2. Subtilosin Prevents Biofilm Formation by Inhibiting Bacterial Quorum Sensing.

    PubMed

    Algburi, Ammar; Zehm, Saskia; Netrebov, Victoria; Bren, Anzhelica B; Chistyakov, Vladimir; Chikindas, Michael L

    2017-03-01

    Subtilosin, the cyclic lantibiotic protein produced by Bacillus subtilis KATMIRA1933, targets the surface receptor and electrostatically binds to the bacterial cell membrane. In this study, subtilosin was purified using ammonium sulfate ((NH4)2SO4) precipitation and purified via column chromatography. Subtilosin's antibacterial minimum and sub-minimum inhibitory concentrations (MIC and sub-MIC) and anti-biofilm activity (biofilm prevention) were established. Subtilosin was evaluated as a quorum sensing (QS) inhibitor in Gram-positive bacteria using Fe(III) reduction assay. In Gram-negative bacteria, subtilosin was evaluated as a QS inhibitor utilizing Chromobacterium voilaceum as a microbial reporter. The results showed that Gardnerella vaginalis was more sensitive to subtilosin with MIC of 6.25 μg/mL when compared to Listeria monocytogenes (125 μg/mL). The lowest concentration of subtilosin, at which more than 90% of G. vaginalis biofilm was inhibited without effecting the growth of planktonic cells, was 0.78 μg/mL. About 80% of L. monocytogenes and more than 60% of Escherichia coli biofilm was inhibited when 15.1 μg/mL of subtilosin was applied. Subtilosin with 7.8-125 μg/mL showed a significant reduction in violacein production without any inhibitory effect on the growth of C. violaceum. Subtilosin at 3 and 4 μg/mL reduced the level of Autoinducer-2 (AI-2) production in G. vaginalis. However, subtilosin did not influence AI-2 production by L. monocytogenes at sub-MICs of 0.95-15.1 μg/mL. To our knowledge, this is the first report exploring the relationship between biofilm prevention and quorum sensing inhibition in G. vaginalis using subtilosin as a quorum sensing inhibitor.

  3. Induction of Plasmid-Carried qnrS1 in Escherichia coli by Naturally Occurring Quinolones and Quorum-Sensing Signal Molecules

    PubMed Central

    Kwak, Yee Gyung; Jacoby, George A.

    2013-01-01

    Naturally occurring quinolone and quinolone-like compounds, such as quinine, 2-hydroxyquinoline, 4-hydroxyquinoline, and 2-heptyl-3-hydroxy-4(1H)-quinolone, increased expression of qnrS1 in Escherichia coli 2.3- to 11.2-fold, similar to the synthetic quinolone ciprofloxacin. In contrast, chromosomal qnrVS1 of Vibrio splendidus was not induced by these compounds. Molecules associated with quorum sensing, such as N-3-hydroxybutyryl-homoserine lactone (HSL), N-hexanoyl-HSL, and N-3-(oxododecanoyl)-HSL, did not show an induction effect on either qnrS1 or qnrVS1 at the tested concentrations. PMID:23689721

  4. Induction of plasmid-carried qnrS1 in Escherichia coli by naturally occurring quinolones and quorum-sensing signal molecules.

    PubMed

    Kwak, Yee Gyung; Jacoby, George A; Hooper, David C

    2013-08-01

    Naturally occurring quinolone and quinolone-like compounds, such as quinine, 2-hydroxyquinoline, 4-hydroxyquinoline, and 2-heptyl-3-hydroxy-4(1H)-quinolone, increased expression of qnrS1 in Escherichia coli 2.3- to 11.2-fold, similar to the synthetic quinolone ciprofloxacin. In contrast, chromosomal qnrVS1 of Vibrio splendidus was not induced by these compounds. Molecules associated with quorum sensing, such as N-3-hydroxybutyryl-homoserine lactone (HSL), N-hexanoyl-HSL, and N-3-(oxododecanoyl)-HSL, did not show an induction effect on either qnrS1 or qnrVS1 at the tested concentrations.

  5. Metabolites with Gram-negative bacteria quorum sensing inhibitory activity from the marine animal endogenic fungus Penicillium sp. SCS-KFD08.

    PubMed

    Kong, Fan Dong; Zhou, Li Man; Ma, Qing Yun; Huang, Sheng Zhuo; Wang, Pei; Dai, Hao Fu; Zhao, You Xing

    2017-01-01

    Three new compounds named penicitor A, aculene E and penicitor B, as well as four known compounds, were isolated from the fermentation broth of Penicillium sp. SCS-KFD08 associated with a marine animal Sipunculus nudus from the Haikou bay of China. Their planar structures and absolute configurations were unambiguously elucidated by spectroscopic data, Mosher's method, CD spectrum analysis along with quantum ECD calculation. Among them, compounds 2-7 showed quorum sensing inhibitory activity against Chromobacterium violaceum CV026, and could significantly reduce violacein production in N-hexanoyl-l-homoserine lactone (C6-HSL) induced C. violaceum CV026 cultures at sub-inhibitory concentrations.

  6. Monitoring of quorum-sensing molecules during minifermentation studies in wine yeast.

    PubMed

    Zupan, Jure; Avbelj, Martina; Butinar, Bojan; Kosel, Janez; Šergan, Matej; Raspor, Peter

    2013-03-13

    At high cell density or under low nutrient conditions, yeasts collectively adapt their metabolism by secreting aromatic alcohols in what is known as quorum sensing. However, the mechanisms and role of quorum sensing in yeast are poorly understood, and the methodology behind this process is not well established. This paper describes an effective approach to study quorum sensing in yeast fermentations. The separation, detection, and quantification of the putative quorum-sensing molecules 2-phenylethanol, tryptophol, and tyrosol have been optimized on a simple HPLC-based system. With the use of a phenyl HPLC column and a fluorescence detector, the sensitivity of the system was significantly increased. This allowed extraction and concentration procedures to be eliminated and the process to be scaled down to 2 mL minifermentations. Additionally, an innovative method for rapid viable-cell counting is presented. This study forms the basis for detailed studies in kinetics and regulation of quorum sensing in yeast fermentation.

  7. Interaction of a P. aeruginosa Quorum Sensing Signal with Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Morrison, Rebecca; Hall, Amelia; Hutchison, Ellen; Nguyen, Thuc; Cooley, Benjamin; Gordon, Vernita

    2011-03-01

    Bacteria use a signaling and regulatory system called ``quorum sensing'' to alter their gene expressions in response to the concentration of neighboring bacteria and to environmental conditions that make collective activity favorable for bacteria. P. aeruginosa is an opportunistic human pathogen that uses quorum sensing to govern processes such as virulence and biofilm formation. This organism's two main quorum sensing circuits use two different signaling molecules that are amphiphilic and differ primarily in the length of their hydrocarbon side chain and thus in their hydrophobic physical chemistry. How these physical chemistries govern the propagation and spatial localization of signals and thus of quorum sensing is not known. We present preliminary results showing that signals preferentially sequester to amphiphilic lipid membranes, which can act as reservoirs for signal. This is promising for future characterization of how the quorum sensing signals of many bacteria and yeast partition to spatially-differentiated amphiphilic environments, in a host or biofilm.

  8. Can the natural diversity of quorum-sensing advance synthetic biology?

    PubMed

    Davis, René Michele; Muller, Ryan Yue; Haynes, Karmella Ann

    2015-01-01

    Quorum-sensing networks enable bacteria to sense and respond to chemical signals produced by neighboring bacteria. They are widespread: over 100 morphologically and genetically distinct species of eubacteria are known to use quorum sensing to control gene expression. This diversity suggests the potential to use natural protein variants to engineer parallel, input-specific, cell-cell communication pathways. However, only three distinct signaling pathways, Lux, Las, and Rhl, have been adapted for and broadly used in engineered systems. The paucity of unique quorum-sensing systems and their propensity for crosstalk limits the usefulness of our current quorum-sensing toolkit. This review discusses the need for more signaling pathways, roadblocks to using multiple pathways in parallel, and strategies for expanding the quorum-sensing toolbox for synthetic biology.

  9. Screening of traditional Chinese medicinal plants for quorum-sensing inhibitors activity.

    PubMed

    Koh, Khee Hoon; Tham, Foong-Yee

    2011-04-01

    The misuse of antibiotics has contributed to widespread development of antimicrobial resistance among clinically significant bacterial species. Alternative approaches other than those using antibiotics are needed in the fight against infectious diseases. Quorum sensing (QS) is an intercellular signaling and gene regulatory mechanism, which is used by a number of opportunistic pathogenic bacteria in determining virulence gene expression. The study of QS may yield another strategy for disease control by interference with QS signals. Scientific research on complementary therapies such as traditional Chinese medicine (TCM) has focused mainly on its antibacterial properties. To test for anti-QS activity, 10 TCM herbs were screened using two biomonitor strains, Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PA01. Interference with violacein (purple pigment) production in CV026 (exogenously supplied with homoserine lactone signals), and swarming in PA01, both QS-regulated phenomena, was used as indication of anti-QS activity. Eight of the selected TCM (80%) yielded QS inhibitors: Prunus armeniaca, Prunella vulgaris, Nelumbo nucifera, Panax notoginseng (root and flower), Punica granatum, Areca catechu, and Imperata cylindrica. Compounds that interfere with QS are present in TCM herbs and these medicines may be a rich source of compounds to combat pathogenic bacteria and reduce the development of antibiotic resistance.

  10. Synthesis, quorum sensing inhibition and docking studies of 1,5-dihydropyrrol-2-ones.

    PubMed

    Goh, Wai-Kean; Gardner, Christopher R; Chandra Sekhar, Kondapalli V G; Biswas, Nripendra N; Nizalapur, Shashidhar; Rice, Scott A; Willcox, Mark; Black, David StC; Kumar, Naresh

    2015-12-01

    Gram-negative bacteria such as Pseudomonas aeruginosa and Escherichia coli use N-acylated l-homoserine lactones (AHLs) as autoinducers (AIs) for quorum sensing (QS), a chief regulatory and cell-to-cell communication system. QS is responsible for social adaptation, virulence factor production, biofilm production and antibiotic resistance in bacteria. Fimbrolides, a class of halogenated furanones isolated from the red marine alga Delisea pulchra, have been shown to exhibit promising QS inhibitory activity against various Gram-negative and Gram-positive bacterial strains. In this work, various lactam analogues of fimbrolides viz., 1,5-dihydropyrrol-2-ones, were designed and synthesized via an efficient lactamization protocol. All the synthesized analogues were tested for QS inhibition against the E. coli AHL-monitor strain JB357 gfp (ASV). Compound 17a emerged as the most potent compound, followed by 9c, with AIC40 values (the ratio of synthetic inhibitor to natural AHL signaling molecule that is required to lower GFP expression to 40%) of 1.95 and 19.00, respectively. Finally, the potential binding interactions between the synthesized molecules and the LasR QS receptor were studied by molecular docking. Our results indicate that 1,5-dihydropyrrol-2-ones have the ability to serve as potential leads for the further development of novel QS inhibitors as antimicrobial therapeutics.

  11. A metabolic regulator modulates virulence and quorum sensing signal production in Pectobacterium atrosepticum.

    PubMed

    Cubitt, Marion F; Hedley, Peter E; Williamson, Neil R; Morris, Jenny A; Campbell, Emma; Toth, Ian K; Salmond, George P C

    2013-03-01

    Plant cell wall-degrading enzymes (PCWDE) are key virulence determinants in the pathogenesis of the potato pathogen Pectobacterium atrosepticum. In this study, we report the impact on virulence of a transposon insertion mutation in the metJ gene that codes for the repressor of the methionine biosynthesis regulon. In a mutant strain defective for the small regulatory RNA rsmB, PCWDE are not produced and virulence in potato tubers is almost totally abolished. However, when the metJ gene is disrupted in this background, the rsmB(-) phenotype is suppressed and virulence and PCWDE production are restored. Additionally, when metJ is disrupted, production of the quorum-sensing signal, N-(3-oxohexanoyl)-homoserine lactone, is increased. The metJ mutant strains showed pleiotropic transcriptional impacts affecting approximately a quarter of the genome. Genes involved in methionine biosynthesis were most highly upregulated but many virulence-associated transcripts were also upregulated. This is the first report of the impact of the MetJ repressor on virulence in bacteria.

  12. Bacterial Secretant from Pseudomonas aeruginosa Dampens Inflammasome Activation in a Quorum Sensing-Dependent Manner

    PubMed Central

    Yang, Jungmin; Lee, Kang-Mu; Park, Sangjun; Cho, Yoeseph; Lee, Eunju; Park, Jong-Hwan; Shin, Ok Sarah; Son, Junghyun; Yoon, Sang Sun; Yu, Je-Wook

    2017-01-01

    Inflammasome signaling can contribute to host innate immune defense against bacterial pathogens such as Pseudomonas aeruginosa. However, bacterial evasion of host inflammasome activation is still poorly elucidated. Quorum sensing (QS) is a bacterial communication mechanism that promotes coordinated adaptation by triggering expression of a wide range of genes. QS is thought to strongly contribute to the virulence of P. aeruginosa, but the molecular impact of bacterial QS on host inflammasome defense is completely unknown. Here, we present evidence that QS-related factors of the bacterial secretant (BS) from P. aeruginosa can dampen host inflammasome signaling in mouse bone marrow-derived macrophages. We found that BS from QS-defective ΔlasR/rhlR mutant, but not from wild-type (WT) P. aeruginosa, induces robust activation of the NLRC4 inflammasome. P. aeruginosa-released flagellin mediates this inflammasome activation by ΔlasR/rhlR secretant, but QS-regulated bacterial proteases in the WT BS impair extracellular flagellin to attenuate NLRC4 inflammasome activation. P. aeruginosa-secreted proteases also degrade inflammasome components in the extracellular space to inhibit the propagation of inflammasome-mediated responses. Furthermore, QS-regulated virulence factor pyocyanin and QS autoinducer 3-oxo-C12-homoserine lactone directly suppressed NLRC4- and even NLRP3-mediated inflammasome assembly and activation. Taken together, our data indicate that QS system of P. aeruginosa facilitates bacteria to evade host inflammasome-dependent sensing machinery.

  13. Inhibition of quorum sensing, biofilm, and spoilage potential in Shewanella baltica by green tea polyphenols.

    PubMed

    Zhu, Junli; Huang, Xuzheng; Zhang, Fang; Feng, Lifang; Li, Jianrong

    2015-12-01

    We investigated the quorum sensing (QS) system of Shewanella baltica and the anti-QS related activities of green tea polyphenols (TP) against spoilage bacteria in refrigerated large yellow croaker. Autoinducer-2 (AI-2) and the diketopiperazines (DKPs) cyclo-(L-Pro-L-Leu) and cyclo-(L-Pro-L-Phe) were detected in the culture extract of S. baltica XH2, however, no N-acylhomoserine lactones (AHLs) activity was observed. Green TP at sub-inhibitory concentrations interfered with AI-2 and DKPs activities of S. baltica without inhibiting cell growth and promoted degradation of AI-2. The green TP treatment inhibited biofilm development, exopolysaccharide production and swimming motility of S. baltica in a concentration- dependent manner. In addition, green TP decreased extracellular protease activities and trimethylamine production in S. baltica. A transcriptional analysis showed that green TP repressed the luxS and torA genes in S. baltica, which agreed with the observed reductions in QS activity and the spoilage phenotype. Epigallocatechin gallate (EGCG)-enriched in green TP significantly inhibited AI-2 activity of S. baltica. These findings strongly suggest that green TP could be developed as a new QS inhibitor for seafood preservation to enhance shelf life.

  14. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions

    NASA Astrophysics Data System (ADS)

    Meyer, Andrea; Megerle, Judith A.; Kuttler, Christina; Müller, Johannes; Aguilar, Claudio; Eberl, Leo; Hense, Burkhard A.; Rädler, Joachim O.

    2012-04-01

    Quorum sensing (QS) describes the capability of microbes to communicate with each other by the aid of small molecules. Here we investigate the dynamics of QS-regulated gene expression induced by acylhomoserine lactones (AHLs) in Pseudomonas putida IsoF containing a green fluorescent protein-based AHL reporter. The fluorescence time course of individual colonies is monitored following the external addition of a defined AHL concentration to cells which had previously reached the QS-inactive state in AHL-free medium. Using a microfluidic setup the experiment is performed both under flow and non-flow conditions. We find that without supplying external AHL gene expression is induced without flow while flow suppresses the induction. Both without and with flow, at a low AHL concentration the fluorescence onset is significantly delayed while fluorescence starts to increase directly upon the addition of AHL at a high concentration. The differences between no flow and flow can be accounted for using a two-compartment model. This indicates AHL accumulation in a volume which is not affected by the flow. The experiments furthermore show significant cell-to-cell and colony-to-colony variability which is discussed in the context of a compartmentalized QS mechanism.

  15. Relationships between the Regulatory Systems of Quorum Sensing and Multidrug Resistance

    PubMed Central

    Xu, Gang-Ming

    2016-01-01

    Cell–cell communications, known as quorum sensing (QS) in bacteria, involve the signal molecules as chemical languages and the corresponding receptors as transcriptional regulators. In Gram-negative bacteria, orphan LuxR receptors recognize signals more than just acylhomoserine lactones, and modulate interspecies and interkingdom communications. Whereas, in the Gram-positive Streptomyces, pseudo gamma-butyrolactones (GBLs) receptors bind antibiotics other than GBL signals, and coordinate antibiotics biosynthesis. By interacting with structurally diverse molecules like antibiotics, the TetR family receptors regulate multidrug resistance (MDR) by controlling efflux pumps. Antibiotics at subinhibitory concentration may act as signal molecules; while QS signals also have antimicrobial activity at high concentration. Moreover, the QS and MDR systems may share the same exporters to transport molecules. Among these orphan LuxR, pseudo GBL receptors, and MDR regulators, although only with low sequence homology, they have some structure similarity and function correlation. Therefore, perhaps there might be evolutionary relationship and biological relevance between the regulatory systems of QS and MDR. Since the QS systems become new targets for antimicrobial strategy, it would expand our understanding about the evolutionary history of these regulatory systems. PMID:27379084

  16. Quorum sensing-controlled buoyancy through gas vesicles: Intracellular bacterial microcompartments for environmental adaptation.

    PubMed

    Ramsay, Joshua P; Salmond, George P C

    2012-01-01

    Gas vesicles are gas-filled microcompartments produced by many cyanobacteria and haloarchaea to regulate buoyancy and control positioning in the water column. Recently we identified the first case of gas vesicle production by a member of the Enterobacteriaceae, Serratia sp ATCC39006. Gas vesicle production enabled colonisation of the air-liquid interface and was positively regulated in low-oxygen conditions, suggesting development of these intracellular organelles is an adpative mechanism facilitating migration to the water surface. Vesicle production was also regulated by the intercellular communication molecule N‑butanoyl-L‑homoserine lactone (BHL) showing that gas vesicle production is controlled at the population level, through quorum sensing, with BHL acting as a morphogen. Gas vesicle production was also reciprocally regulated with flagella-driven swarming motility by the global regulatory protein RsmA, suggesting a fork in the regulatory pathway that controls induction of these distinct modes of mobility. Here we discuss these findings in the context of the interesting physiology of Serratia 39006 and highlight future prospects for gas vesicle research in this highly tractable strain.

  17. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa

    PubMed Central

    Maisuria, Vimal B.; Los Santos, Yossef Lopez-de; Tufenkji, Nathalie; Déziel, Eric

    2016-01-01

    Bacteria have evolved multiple strategies for causing infections that include producing virulence factors, undertaking motility, developing biofilms, and invading host cells. N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) tightly regulates the expression of multiple virulence factors in the opportunistic pathogenic bacterium Pseudomonas aeruginosa. Thus, inhibiting QS could lead to health benefits. In this study, we demonstrate an anti-virulence activity of a cranberry extract rich in proanthocyanidins (cerPAC) against P. aeruginosa in the model host Drosophila melanogaster and show this is mediated by QS interference. cerPAC reduced the production of QS-regulated virulence determinants and protected D. melanogaster from fatal infection by P. aeruginosa PA14. Quantification of AHL production using liquid chromatography-mass spectrometry confirmed that cerPAC effectively reduced the level of AHLs produced by the bacteria. Furthermore, monitoring QS signaling gene expression revealed that AHL synthases LasI/RhlI and QS transcriptional regulators LasR/RhlR genes were inhibited and antagonized, respectively, by cerPAC. Molecular docking studies suggest that cranberry-derived proanthocyanidin binds to QS transcriptional regulators, mainly interacting with their ligand binding sites. These findings provide insights into the underlying mechanisms of action of a cerPAC to restrict the virulence of P. aeruginosa and can have implications in the development of alternative approaches to control infections. PMID:27503003

  18. Antibiotics at subinhibitory concentrations improve the quorum sensing behavior of Chromobacterium violaceum.

    PubMed

    Liu, Zhanjun; Wang, Weishan; Zhu, Ying; Gong, Qianhong; Yu, Wengong; Lu, Xinzhi

    2013-04-01

    Increasing evidence has shown that antibiotics function as intermicrobial signaling molecules instead of killing weapons. However, mechanisms and key factors that are involved in such functions remain poorly understood. Earlier findings have associated antibiotic signaling with quorum sensing (QS); however, results varied among experiments, antibiotics, and bacterial strains. In this study, we found that antibiotics at subinhibitory concentrations improved the violacein-producing ability of Chromobacterium violaceum ATCC 12472. Quantitative real-time polymerase chain reaction of QS-associated gene transcripts and bioassay of violacein production in a QS mutant strain demonstrated that antibiotics enhanced the production of N-acyl-L-homoserine lactones (AHLs; QS signaling molecules) and increased AHL-inducing QS-mediated virulence, including chitinase production and biofilm formation. Moreover, a positive flagellar activity and an increased bacterial clustering ability were found, which are related to the antibiotic-induced biofilm formation. Our findings suggested that antibiotic-mediated interspecific signaling also occurs in C. violaceum, thereby expanding the knowledge and language of cell-to-cell communication.

  19. Influence of quorum sensing in multiple phenotypes of the bacterial pathogen Chromobacterium violaceum.

    PubMed

    de Oca-Mejía, Marielba Montes; Castillo-Juárez, Israel; Martínez-Vázquez, Mariano; Soto-Hernandez, Marcos; García-Contreras, Rodolfo

    2015-03-01

    Chromobacterium violaceum is a bacterial pathogen that communicates through quorum sensing (QS), via the C6-homoserine lactone signal (C6-HSL). It is well known that the production of the pigment violacein is controlled by QS in this microorganism, in fact QS-dependent violacein production is widely used as a marker to evaluate the efficiency of potential anti-QS molecules, such as those extracted from plants. In addition to violacein, the production of chitinase is also known to be controlled by QS, but besides those two phenotypes there is a lack of experimental studies aimed to discover additional process controlled by QS in this organism; therefore, in this work the production of exoprotease, aggregation, biofilm formation, swarming motility, H2O2 resistance as well as carbon and nitrogen utilization was determined in the wild-type strain and the QS negative mutant CVO26. Our results indicate that alkaline exoprotease activity is QS controlled in this organism, that QS increases aggregation, biofilm formation, swarming, that may increase H2O2 stress tolerance, and that it may influence the utilization of several carbon and nitrogen sources.

  20. Chania multitudinisentens gen. nov., sp. nov., an N-acyl-homoserine-lactone-producing bacterium in the family Enterobacteriaceae isolated from landfill site soil.

    PubMed

    Ee, Robson; Madhaiyan, Munusamy; Ji, Lianghui; Lim, Yan-Lue; Nor, Nuruddin Muhammad; Tee, Kok-Keng; Chen, Jian-Woon; Yin, Wai-Fong

    2016-06-01

    Phylogenetic and taxonomic characterization was performed for bacterium RB-25T, which was isolated from a soil sample collected in a former municipal landfill site in Puchong, Malaysia. Growth occurred at 20-37 °C at pH 5-8 but not in the presence of 9 % (w/v) NaCl or higher. The principal fatty acids were C16:0, C18:1ω7c and summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH). Ubiquinone-8 was the only isoprenoid quinone detected. Polar lipid analysis revealed the presence of phospholipid, phosphoaminolipid, phosphatidylethanolamine, phosphatidylglycerol and one unidentified aminolipid. DNA G+C content was 50.9 mol% phylogenetic analysis based on 16S rRNA gene sequence showed that strain RB-25T formed a distinct lineage within the family Enterobacteriaceae of the class Gammaproteobacteria. It exhibited a low level of 16S rRNA gene sequence similarity with its phylogenetic neighbours Pantoea rwandensis LMG 26275T (96.6 %), Rahnella aquatilis CIP 78.65T (96.5 %), Pectobacterium betavasculorum ATCC 43762T (96.4 %), Pantoea rodasii LMG 26273T (96.3 %), Gibbsiella dentisursi NUM 1720T (96.3 %) and Serratia glossinae C1T (96.2 %). Multilocus sequence analyses based on fusA, pyrG, rplB, rpoB and sucA sequences showed a clear distinction of strain RB-25T from the most closely related genera. Isolate RB-25T could also be distinguished from members of these genera by a combination of the DNA G+C content, respiratory quinone system, fatty acid profile, polar lipid composition and other phenotypic features. Strain RB-25T represents a novel species of a new genus, for which the name Chaniamultitudinisentens gen. nov., sp. nov. is proposed. The type strain is RB-25T (=DSM 28811T=LMG 28304T).

  1. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones).

    PubMed

    Jiang, Hui; Jiang, Donglei; Shao, Jingdong; Sun, Xiulan

    2016-01-15

    We have developed a novel and economical electrochemical sensor to measure Gram-negative bacterial quorum signaling molecules (AHLs) using magnetic nanoparticles and molecularly imprinted polymer (MIP) technology. Magnetic molecularly imprinted polymers (MMIPs) capable of selectively absorbing AHLs were successfully synthesized by surface polymerization. The particles were deposited onto a magnetic carbon paste electrode (MGCE) surface, and characterized by electrochemical measurements. Differential Pulse Voltammetry (DPV) was utilized to record the oxidative current signal that is characteristic of AHL. The detection limit of this assay was determined to be 8×10(-10)molL(-1) with a linear detection range of 2.5×10(-9)molL(-1) to 1.0×10(-7)molL(-1). This Fe3O4@SiO2-MIP-based electrochemical sensor is a valuable new tool that allows quantitative measurement of Gram-negative bacterial quorum signaling molecules. It has potential applications in the fields of clinical diagnosis or food analysis with real-time detection capability, high specificity, excellent reproducibility, and good stability.

  2. The absence of the N-acyl-homoserine-lactone autoinducer synthase genes tral and ngrl increases the copy number of the symbiotic plasmid in sinorhizobium fredii NGR234

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be...

  3. Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi.

    PubMed

    Yang, Qian; Defoirdt, Tom

    2015-04-01

    Vibrios belonging to the Harveyi clade are among the major pathogens of aquatic organisms. Quorum sensing (QS) is essential for virulence of V. harveyi towards different hosts. However, most virulence factors reported to be controlled by QS to date are negatively regulated by QS, therefore suggesting that their impact on virulence is limited. In this study, we report that QS positively regulates flagellar motility. We found that autoinducer synthase mutants showed significantly lower swimming motility than the wild type, and the swimming motility could be restored by adding synthetic signal molecules. Further, motility of a luxO mutant with inactive QS (LuxO D47E) was significantly lower than that of the wild type and of a luxO mutant with constitutively maximal QS activity (LuxO D47A). Furthermore, we found that the expression of flagellar genes (both early, middle and late genes) was significantly lower in the luxO mutant with inactive QS when compared with wild type and the luxO mutant with maximal QS activity. Motility assays and gene expression also revealed the involvement of the quorum-sensing master regulator LuxR in the QS regulation of motility. Finally, the motility inhibitor phenamil significantly decreased the virulence of V. harveyi towards gnotobiotic brine shrimp larvae.

  4. Quorum sensing via static coupling demonstrated by Chua's circuits.

    PubMed

    Singh, Harpartap; Parmananda, P

    2013-10-01

    Dynamical quorum sensing, the population based phenomenon, is believed to occur when the elements of a system interact via dynamic coupling. In the present work, we demonstrate an alternate scenario, involving static coupling, that could also lead to quorum sensing behavior. These static and dynamic coupling terms have already been employed by Konishi [Int. J. Bifurcation Chaos Appl. Sci. Eng. 17, 2781 (2007)]. In our context, the coupling is defined as static or dynamic, on the basis of the relative time scales at which the surrounding dynamics and the elements' dynamics evolve. According to this, if the variation in the surrounding dynamics happens on a much larger (fast) time scale than that at which the elements' dynamics are varying (such as seconds and μs), then the coupling is considered to be static, otherwise it is considered to be dynamic. A series of experiments have been performed starting from a system of three Chua's circuits to a system of 20 Chua's circuits to study two types of quorum transitions: the emergence and the extinction of global oscillations (period-1). The numerics involving up to 100 Chua's circuits validate the experimental observations.

  5. Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing.

    SciTech Connect

    Gutierrez, J.; Crowder, T; Rinaldo-Matthis, A; Ho, M; Almo, S; Schramm, V

    2009-01-01

    5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a bacterial enzyme involved in S-adenosylmethionine-related quorum sensing pathways that induce bacterial pathogenesis factors. Transition state analogs MT-DADMe-Immucillin-A, EtT-DADMe-Immucillin-A and BuT-DADMe-Immucillin-A are slow-onset, tight-binding inhibitors of Vibrio cholerae MTAN (VcMTAN), with equilibrium dissociation constants of 73, 70 and 208 pM, respectively. Structural analysis of VcMTAN with BuT-DADMe-Immucillin-A revealed interactions contributing to the high affinity. We found that in V. cholerae cells, these compounds are potent MTAN inhibitors with IC50 values of 27, 31 and 6 nM for MT-, EtT- and BuT-DADMe-Immucillin-A, respectively; the compounds disrupt autoinducer production in a dose-dependent manner without affecting growth. MT- and BuT-DADMe-Immucillin-A also inhibited autoinducer-2 production in enterohemorrhagic Escherichia coli O157:H7 with IC{sub 50} values of 600 and 125 nM, respectively. BuT-DADMe-Immucillin-A inhibition of autoinducer-2 production in both strains persisted for several generations and caused reduction in biofilm formation. These results support MTAN's role in quorum sensing and its potential as a target for bacterial anti-infective drug design.

  6. Quorum sensing via static coupling demonstrated by Chua's circuits

    NASA Astrophysics Data System (ADS)

    Singh, Harpartap; Parmananda, P.

    2013-10-01

    Dynamical quorum sensing, the population based phenomenon, is believed to occur when the elements of a system interact via dynamic coupling. In the present work, we demonstrate an alternate scenario, involving static coupling, that could also lead to quorum sensing behavior. These static and dynamic coupling terms have already been employed by Konishi [Int. J. Bifurcation Chaos Appl. Sci. Eng.IJBEE40218-127410.1142/S0218127407018750 17, 2781 (2007)]. In our context, the coupling is defined as static or dynamic, on the basis of the relative time scales at which the surrounding dynamics and the elements' dynamics evolve. According to this, if the variation in the surrounding dynamics happens on a much larger (fast) time scale than that at which the elements' dynamics are varying (such as seconds and μs), then the coupling is considered to be static, otherwise it is considered to be dynamic. A series of experiments have been performed starting from a system of three Chua's circuits to a system of 20 Chua's circuits to study two types of quorum transitions: the emergence and the extinction of global oscillations (period-1). The numerics involving up to 100 Chua's circuits validate the experimental observations.

  7. [Screening and identification of marine fungi against bacterial quorum sensing].

    PubMed

    Yin, Shouliang; Chang, Yajing; Deng, Suping; Wang, Qingchi; Yu, Wengong; Gong, Qianhong

    2011-09-01

    The discovery of quorum sensing (QS) system and its critical role in bacterial virulence have revealed a new way to attack pathogenic bacterium. The pathogenecity of QS deletion mutants decreases significantly. Targeting bacterial QS system is a promising therapeutic approach to control infections and anti-microbial resistance. To obtain natural QS inhibitors from marine organisms, marine fungi (69 strains) were isolated from marine mollusca, and their extracts were screened using improved QSIS2 (Quorum Sensing Inhibitor Selector 2) assay and Chromobacterium violaceum CV026. To improve the efficiency of QSIS2 screening, 2,3,5-triphenyltetrazolium chloride (TTC) staining method was used. Extract from strain QY013 was found to have QS inhibitory activity. Further experiment indicated that pyocyanin in Pseudomonas aeruginosa PAOI and violacein in C. violaceum CV026 were reduced by QY013 extract, without affecting bacterial growth. Morphological and 18S rDNA sequence analysis revealed that strain QY013 was most closely related to Penicillium species. The above results suggest that active constituents from QY013 may be used as novel antimicrobial agents against bacterial infection.

  8. Phylogenetically Novel LuxI/LuxR-Type Quorum Sensing Systems Isolated Using a Metagenomic Approach

    PubMed Central

    Nasuno, Eri; Fujita, Masaki J.; Nakatsu, Cindy H.; Kamagata, Yoichi; Hanada, Satoshi

    2012-01-01

    A great deal of research has been done to understand bacterial cell-to-cell signaling systems, but there is still a large gap in our current knowledge because the majority of microorganisms in natural environments do not have cultivated representatives. Metagenomics is one approach to identify novel quorum sensing (QS) systems from uncultured bacteria in environmental samples. In this study, fosmid metagenomic libraries were constructed from a forest soil and an activated sludge from a coke plant, and the target genes were detected using a green fluorescent protein (GFP)-based Escherichia coli biosensor strain whose fluorescence was screened by spectrophotometry. DNA sequence analysis revealed two pairs of new LuxI family N-acyl-l-homoserine lactone (AHL) synthases and LuxR family transcriptional regulators (clones N16 and N52, designated AubI/AubR and AusI/AusR, respectively). AubI and AusI each produced an identical AHL, N-dodecanoyl-l-homoserine lactone (C12-HSL), as determined by nuclear magnetic resonance (NMR) and mass spectrometry. Phylogenetic analysis based on amino acid sequences suggested that AusI/AusR was from an uncultured member of the Betaproteobacteria and AubI/AubR was very deeply branched from previously described LuxI/LuxR homologues in isolates of the Proteobacteria. The phylogenetic position of AubI/AubR indicates that they represent a QS system not acquired recently from the Proteobacteria by horizontal gene transfer but share a more ancient ancestry. We demonstrated that metagenomic screening is useful to provide further insight into the phylogenetic diversity of bacterial QS systems by describing two new LuxI/LuxR-type QS systems from uncultured bacteria. PMID:22983963

  9. Quorum Sensing: a Transcriptional Regulatory System Involved in the Pathogenicity of Burkholderia mallei

    PubMed Central

    Ulrich, Ricky L.; DeShazer, David; Hines, Harry B.; Jeddeloh, Jeffrey A.

    2004-01-01

    Numerous gram-negative bacterial pathogens regulate virulence factor expression by using a cell density mechanism termed quorum sensing (QS). An in silico analysis of the Burkholderia mallei ATCC 23344 genome revealed that it encodes at least two luxI and four luxR homologues. Using mass spectrometry, we showed that wild-type B. mallei produces the signaling molecules N-octanoyl-homoserine lactone and N-decanoyl-homoserine lactone. To determine if QS is involved in the virulence of B. mallei, we generated mutations in each putative luxIR homologue and tested the pathogenicities of the derivative strains in aerosol BALB/c mouse and intraperitoneal hamster models. Disruption of the B. mallei QS alleles, especially in RJ16 (bmaII) and RJ17 (bmaI3), which are luxI mutants, significantly reduced virulence, as indicated by the survival of mice who were aerosolized with 104 CFU (10 50% lethal doses [LD50s]). For the B. mallei transcriptional regulator mutants (luxR homologues), mutation of the bmaR5 allele resulted in the most pronounced decrease in virulence, with 100% of the challenged animals surviving a dose of 10 LD50s. Using a Syrian hamster intraperitoneal model of infection, we determined the LD50s for wild-type B. mallei and each QS mutant. An increase in the relative LD50 was found for RJ16 (bmaI1) (>967 CFU), RJ17 (bmaI3) (115 CFU), and RJ20 (bmaR5) (151 CFU) compared to wild-type B. mallei (<13 CFU). These findings demonstrate that B. mallei carries multiple luxIR homologues that either directly or indirectly regulate the biosynthesis of an essential virulence factor(s) that contributes to the pathogenicity of B. mallei in vivo. PMID:15501791

  10. Quorum-Sensing-Negative (lasR) Mutants of Pseudomonas aeruginosa Avoid Cell Lysis and Death

    PubMed Central

    Heurlier, Karin; Dénervaud, Valérie; Haenni, Marisa; Guy, Lionel; Krishnapillai, Viji; Haas, Dieter

    2005-01-01

    In Pseudomonas aeruginosa, N-acylhomoserine lactone signals regulate the expression of several hundreds of genes, via the transcriptional regulator LasR and, in part, also via the subordinate regulator RhlR. This regulatory network termed quorum sensing contributes to the virulence of P. aeruginosa as a pathogen. The fact that two supposed PAO1 wild-type strains from strain collections were found to be defective for LasR function because of independent point mutations in the lasR gene led to the hypothesis that loss of quorum sensing might confer a selective advantage on P. aeruginosa under certain environmental conditions. A convenient plate assay for LasR function was devised, based on the observation that lasR mutants did not grow on adenosine as the sole carbon source because a key degradative enzyme, nucleoside hydrolase (Nuh), is positively controlled by LasR. The wild-type PAO1 and lasR mutants showed similar growth rates when incubated in nutrient yeast broth at pH 6.8 and 37°C with good aeration. However, after termination of growth during 30 to 54 h of incubation, when the pH rose to ≥ 9, the lasR mutants were significantly more resistant to cell lysis and death than was the wild type. As a consequence, the lasR mutant-to-wild-type ratio increased about 10-fold in mixed cultures incubated for 54 h. In a PAO1 culture, five consecutive cycles of 48 h of incubation sufficed to enrich for about 10% of spontaneous mutants with a Nuh− phenotype, and five of these mutants, which were functionally complemented by lasR+, had mutations in lasR. The observation that, in buffered nutrient yeast broth, the wild type and lasR mutants exhibited similar low tendencies to undergo cell lysis and death suggests that alkaline stress may be a critical factor providing a selective survival advantage to lasR mutants. PMID:15995202

  11. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors.

    PubMed

    Yang, Liang; Rybtke, Morten Theil; Jakobsen, Tim Holm; Hentzer, Morten; Bjarnsholt, Thomas; Givskov, Michael; Tolker-Nielsen, Tim

    2009-06-01

    Attenuation of Pseudomonas aeruginosa virulence by the use of small-molecule quorum-sensing inhibitors (referred to as the antipathogenic drug principle) is likely to play a role in future treatment strategies for chronic infections. In this study, structure-based virtual screening was used in a search for putative quorum-sensing inhibitors from a database comprising approved drugs and natural compounds. The database was built from compounds which showed structural similarities to previously reported quorum-sensing inhibitors, the ligand of the P. aeruginosa quorum-sensing receptor LasR, and a quorum-sensing receptor agonist. Six top-ranking compounds, all recognized drugs, were identified and tested for quorum-sensing-inhibitory activity. Three compounds, salicylic acid, nifuroxazide, and chlorzoxazone, showed significant inhibition of quorum-sensing-regulated gene expression and related phenotypes in a dose-dependent manner. These results suggest that the identified compounds have the potential to be used as antipathogenic drugs. Furthermore, the results indicate that structure-based virtual screening is an efficient tool in the search for novel compounds to combat bacterial infections.

  12. A quorum sensing-disrupting brominated thiophenone with a promising therapeutic potential to treat luminescent vibriosis.

    PubMed

    Defoirdt, Tom; Benneche, Tore; Brackman, Gilles; Coenye, Tom; Sorgeloos, Patrick; Scheie, Anne Aamdal

    2012-01-01

    Vibrio harveyi is amongst the most important bacterial pathogens in aquaculture. Novel methods to control this pathogen are needed since many strains have acquired resistance to antibiotics. We previously showed that quorum sensing-disrupting furanones are able to protect brine shrimp larvae against vibriosis. However, a major problem of these compounds is that they are toxic toward higher organisms and therefore, they are not safe to be used in aquaculture. The synthesis of brominated thiophenones, sulphur analogues of the quorum sensing-disrupting furanones, has recently been reported. In the present study, we report that these compounds block quorum sensing in V. harveyi at concentrations in the low micromolar range. Bioluminescence experiments with V. harveyi quorum sensing mutants and a fluorescence anisotropy assay indicated that the compounds disrupt quorum sensing in this bacterium by decreasing the ability of the quorum sensing master regulator LuxR to bind to its target promoter DNA. In vivo challenge tests with gnotobiotic brine shrimp larvae showed that thiophenone compound TF310, (Z)-4-((5-(bromomethylene)-2-oxo-2,5-dihydrothiophen-3-yl)methoxy)-4-oxobutanoic acid, completely protected the larvae from V. harveyi BB120 when dosed to the culture water at 2.5 µM or more, whereas severe toxicity was only observed at 250 µM. This makes TF310 showing the highest therapeutic index of all quorum sensing-disrupting compounds tested thus far in our brine shrimp model system.

  13. Monitoring of Vibrio harveyi quorum sensing activity in real time during infection of brine shrimp larvae.

    PubMed

    Defoirdt, Tom; Sorgeloos, Patrick

    2012-12-01

    Quorum sensing, bacterial cell-to-cell communication, has been linked to the virulence of pathogenic bacteria. Indeed, in vitro experiments have shown that many bacterial pathogens regulate the expression of virulence genes by this cell-to-cell communication process. Moreover, signal molecules have been detected in samples retrieved from infected hosts and quorum sensing disruption has been reported to result in reduced virulence in different host-pathogen systems. However, data on in vivo quorum sensing activity of pathogens during infection of a host are currently lacking. We previously reported that quorum sensing regulates the virulence of Vibrio harveyi in a standardised model system with gnotobiotic brine shrimp (Artemia franciscana) larvae. Here, we monitored quorum sensing activity in Vibrio harveyi during infection of the shrimp, using bioluminescence as a read-out. We found that wild-type Vibrio harveyi shows a strong increase in quorum sensing activity early during infection. In this respect, the bacteria behave remarkably similar in different larvae, despite the fact that only half of them survive the infection. Interestingly, when expressed per bacterial cell, Vibrio harveyi showed around 200-fold higher maximal quorum sensing-regulated bioluminescence when associated with larvae than in the culture water. Finally, the in vivo quorum sensing activity of mutants defective in the production of one of the three signal molecules is consistent with their virulence, with no detectable in vivo quorum sensing activity in AI-2- and CAI-1-deficient mutants. These results indicate that AI-2 and CAI-1 are the dominant signals during infection of brine shrimp.

  14. Bacterial quorum sensing: functional features and potential applications in biotechnology.

    PubMed

    Mangwani, Neelam; Dash, Hirak Ranjan; Chauhan, Ashvini; Das, Surajit

    2012-01-01

    Quorum sensing (QS) represents an exceptional pattern of cell-to-cell communication in bacteria using self-synthesized signalling molecules known as autoinducers. Various features regulated by QS in bacteria include virulence, biofilm formation, sporulation, genetic competence and bioluminescence, among others. Other than the diverse signalling properties of autoinducers, there are non-signalling properties also associated with these signalling molecules which make them potential antimicrobial agents and metal chelators. Additionally, QS signal antagonism has also been shown to be a promising alternative for blocking pathogenic diseases. Besides, QS has impressive design features useful in tissue engineering and biosensor technology. Although many aspects of QS are well understood, several other features remain largely unknown, especially in biotechnology applications. This review focuses on the functional features and potential applications of QS signalling molecules in biotechnology.

  15. Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity.

    PubMed

    Wongsuk, Thanwa; Pumeesat, Potjaman; Luplertlop, Natthanej

    2016-05-01

    When microorganisms live together in high numbers, they need to communicate with each other. To achieve cell-cell communication, microorganisms secrete molecules called quorum-sensing molecules (QSMs) that control their biological activities and behaviors. Fungi secrete QSMs such as farnesol, tyrosol, phenylethanol, and tryptophol. The role of QSMs in fungi has been widely studied in both yeasts and filamentous fungi, for example in Candida albicans, C. dubliniensis, Aspergillus niger, A. nidulans, and Fusarium graminearum. QSMs impact fungal morphogenesis (yeast-to-hypha formation) and also play a role in the germination of macroconidia. QSMs cause fungal cells to initiate programmed cell death, or apoptosis, and play a role in fungal pathogenicity. Several types of QSMs are produced during stages of biofilm development to control cell population or morphology in biofilm communities. This review article emphasizes the role of fungal QSMs, especially in fungal morphogenesis, biofilm formation, and pathogenicity. Information about QSMs may lead to improved measures for controlling fungal infection.

  16. Studying bacterial quorum-sensing at the single cell level

    NASA Astrophysics Data System (ADS)

    Delfino Perez, Pablo; Pelakh, Leslie; Young, Jonathan; Johnson, Elaine; Hagen, Stephen

    2010-03-01

    Like many bacterial species, Vibrio fischeri can detect its own population density through a quorum sensing (QS) mechanism. The bacterium releases a signal molecule (AI, autoinducer), which accumulates at high population density and triggers a genetic switch. In V.fischeri this leads to bioluminescence. Little is known about how stochastic gene expression affects QS at the level of single cells. We are imaging the luminescence of individual V.fischeri cells in a flow chamber and directly measuring the intercell variability in AI activation of the QS circuit. Our single-cell luminescence experiments allow us to track cells over time and characterize variations in their response to AI levels. We find heterogeneous response to the external signal: at a given AI concentration some cells may be strongly luminescent while others are virtually dark. The analysis of noise in the individual cell response can eventually lead to a better understanding of how cells use QS to gather information about their environment.

  17. Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing

    PubMed Central

    Garcia-Ojalvo, Jordi; Elowitz, Michael B.; Strogatz, Steven H.

    2004-01-01

    Diverse biochemical rhythms are generated by thousands of cellular oscillators that somehow manage to operate synchronously. In fields ranging from circadian biology to endocrinology, it remains an exciting challenge to understand how collective rhythms emerge in multicellular structures. Using mathematical and computational modeling, we study the effect of coupling through intercell signaling in a population of Escherichia coli cells expressing a synthetic biological clock. Our results predict that a diverse and noisy community of such genetic oscillators interacting through a quorum-sensing mechanism should self-synchronize in a robust way, leading to a substantially improved global rhythmicity in the system. As such, the particular system of coupled genetic oscillators considered here might be a good candidate to provide the first quantitative example of a synchronization transition in a population of biological oscillators. PMID:15256602

  18. BACTERIAL ATTRACTION AND QUORUM SENSING INHIBITION IN CAENORHABDITIS ELEGANS EXUDATES

    PubMed Central

    KAPLAN, FATMA; BADRI, DAYAKAR V.; ZACHARIAH, CHERIAN; AJREDINI, RAMADAN; SANDOVAL, FRANCISCO J; ROJE, SANJA; LEVINE, LANFANG H.; ZHANG, FENGLI; ROBINETTE, STEVEN L.; ALBORN, HANS T.; ZHAO, WEI; STADLER, MICHAEL; NIMALENDRAN, RATHIKA; DOSSEY, AARON T.; BRÜSCHWEILER, RAFAEL; VIVANCO, JORGE M.; EDISON, ARTHUR S.

    2014-01-01

    Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to chemically interact with its environment or as defense. C. elegans exudates were analyzed using several analytical methods and found to contain 36 common metabolites including organic acids, amino acids and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and E. coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Psuedomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems. PMID:19649780

  19. How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis

    PubMed Central

    Poncet, Sandrine; Lazar, Noureddine; Li de la Sierra-Gallay, Inès; Gohar, Michel; Lereclus, Didier; Nessler, Sylvie

    2016-01-01

    Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection. PMID:27483473

  20. Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms.

    PubMed

    Kirisits, Mary Jo; Margolis, Jeffrey J; Purevdorj-Gage, Boloroo L; Vaughan, Benjamin; Chopp, David L; Stoodley, Paul; Parsek, Matthew R

    2007-11-01

    We provide experimental and modeling evidence that the hydrodynamic environment can impact quorum sensing (QS) in a Pseudomonas aeruginosa biofilm. The amount of biofilm biomass required for full QS induction of the population increased as the flow rate increased.

  1. Antimicrobial and antibiofilm activity of quorum sensing peptides and Peptide analogues against oral biofilm bacteria.

    PubMed

    LoVetri, Karen; Madhyastha, Srinivasa

    2010-01-01

    Widespread antibiotic resistance is a major incentive for the investigation of novel ways to treat or prevent infections. Much effort has been put into the discovery of peptides in nature accompanied by manipulation of natural peptides to improve activity and decrease toxicity. The ever increasing knowledge about bacteria and the discovery of quorum sensing have presented itself as another mechanism to disrupt the infection process. We have shown that the natural quorum sensing (QS) peptide, competence-stimulating peptide (CSP), used by the caries causing bacteria Streptococcus mutans when used in higher than normally present concentrations can actually contribute to cell death in S. mutans. Using an analogue of this quorum sensing peptide (KBI-3221), we have shown it to be beneficial at decreasing biofilm of various Streptococcus species. This chapter looks at a number of assay methods to test the inhibitory effects of quorum sensing peptides and their analogues on the growth and biofilm formation of oral bacteria.

  2. More than a signal: non-signaling properties of quorum sensing molecules.

    PubMed

    Schertzer, Jeffrey W; Boulette, Megan L; Whiteley, Marvin

    2009-05-01

    Quorum sensing in bacteria serves as an example of the adaptation of single-celled organisms to engage in cooperative group behaviors. This phenomenon is much more widespread than originally thought, with many different species 'speaking' through various secreted small molecules. Despite some variation in signaling molecules, the principles of quorum sensing are conserved across a wide range of organisms. Small molecules, secreted into the environment, are detected by neighbors who respond by altering gene expression and, as a consequence, behavior. However, it is not known whether these systems evolved specifically for this purpose, or even if their role is exclusive to information trafficking. Rather, clues exist that many quorum sensing molecules function as more than just signals. Here, we discuss non-signaling roles for quorum sensing molecules in such important processes as nutrient scavenging, ultrastructure modification and competition.

  3. Bacteria clustering by polymers induces the expression of quorum sense controlled phenotypes

    PubMed Central

    Lui, Leong T.; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I.; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M.; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

    2014-01-01

    Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one mean by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum