Science.gov

Sample records for acylpeptide hydrolase aph

  1. Molecular cloning, expression and characterization of acylpeptide hydrolase in the silkworm, Bombyx mori.

    PubMed

    Fu, Ping; Sun, Wei; Zhang, Ze

    2016-04-10

    Acylpeptide hydrolase (APH) can catalyze the release of the N-terminal amino acid from acetylated peptides. There were many documented examples of this enzyme in various prokaryotic and eukaryotic organisms. However, knowledge about APH in insects still remains unknown. In this study, we cloned and sequenced a putative silkworm Bombyx mori APH (BmAPH) gene. The BmAPH gene encodes a protein of 710 amino acids with a predicted molecular mass of 78.5kDa. The putative BmAPH and mammal APHs share about 36% amino acid sequence identity, yet key catalytic residues are conserved (Ser566, Asp654, and His686). Expression and purification of the recombinant BmAPH in Escherichia coli showed that it has acylpeptide hydrolase activity toward the traditional substrate, Ac-Ala-pNA. Furthermore, organophosphorus (OP) insecticides, chlorpyrifos, phoxim, and malathion, significantly inhibited the activity of the APH both in vitro and in vivo. In addition, BmAPH was expressed in all tested tissues and developmental stages of the silkworm. Finally, immunohistochemistry analysis showed that BmAPH protein was localized in the basement membranes. These results suggested that BmAPH may be involved in enhancing silkworm tolerance to the OP insecticides. In a word, our results provide evidence for understanding of the biological function of APH in insects.

  2. Effect of short-term exposure to dichlorvos on synaptic plasticity of rat hippocampal slices: Involvement of acylpeptide hydrolase and {alpha}{sub 7} nicotinic receptors

    SciTech Connect

    Olmos, Cristina; Sandoval, Rodrigo; Rozas, Carlos; Navarro, Sebastian; Wyneken, Ursula; Zeise, Marc; Morales, Bernardo; Pancetti, Floria

    2009-07-01

    Dichlorvos is the active molecule of the pro-drug metrifonate used to revert the cognitive deficits associated with Alzheimer's disease. A few years ago it was reported that dichlorvos inhibits the enzyme acylpeptide hydrolase at lower doses than those necessary to inhibit acetylcholinesterase to the same extent. Therefore, the aim of our investigation was to test the hypothesis that dichlorvos can enhance synaptic efficacy through a mechanism that involves acylpeptide hydrolase instead of acetylcholinesterase inhibition. We used long-term potentiation induced in rat hippocampal slices as a model of synaptic plasticity. Our results indicate that short-term exposures (20 min) to 50 {mu}M dichlorvos enhance long-term potentiation in about 200% compared to the control condition. This effect is correlated with approximately 60% inhibition of acylpeptide hydrolase activity, whereas acetylcholinesterase activity remains unaffected. Paired-pulse facilitation and inhibition experiments indicate that dichlorvos does not have any presynaptic effect in the CA3 {yields} CA1 pathway nor affect gabaergic interneurons. Interestingly, the application of 100 nM methyllicaconitine, an {alpha}{sub 7} nicotinic receptor antagonist, blocked the enhancing effect of dichlorvos on long-term potentiation. These results indicate that under the exposure conditions described above, dichlorvos enhances long-term potentiation through a postsynaptic mechanism that involves (a) the inhibition of the enzyme acylpeptide hydrolase and (b) the modulation of {alpha}{sub 7} nicotinic receptors.

  3. In vivo inhibition of acylpeptide hydrolase by carbapenem antibiotics causes the decrease of plasma concentration of valproic acid in dogs.

    PubMed

    Suzuki, Eiko; Nakai, Daisuke; Ikenaga, Hidenori; Fusegawa, Keiichi; Goda, Ryoya; Kobayashi, Nobuhiro; Kuga, Hiroshi; Izumi, Takashi

    2016-01-01

    1. Our previous in vitro studies suggest that inhibition of the acylpeptide hydrolase (APEH) activity as valproic acid glucuronide (VPA-G) hydrolase by carbapenems in human liver cytosol is a key process for clinical drug-drug interaction (DDI) of valproic acid (VPA) with carbapenems. Here, we investigated whether in vivo DDI of VPA with meropenem (MEPM) was caused via inhibition of APEH in dogs. 2. More rapid decrease of plasma VPA levels and increased urinary excretion of VPA-G were observed after co-administration with MEPM compared with those after without co-administration, whereas the plasma level and bile excretion of VPA-G showed no change. 3. Dog VPA-G hydrolase activity, inhibited by carbapenems, was mainly located in cytosol from both the liver and kidney. APEH-immunodepleted cytosols lacked VPA-G hydrolase activity. Hepatic and renal APEH activity was negligible even at 24 h after dosing of MEPM to a dog. 4. In conclusion, DDI of VPA with carbapenems in dogs is caused by long-lasting inhibition of APEH-mediated VPA-G hydrolysis by carbapenems, which could explain the delayed recovery of plasma VPA levels to the therapeutic window even after discontinuation of carbapenems in humans.

  4. A novel class of bifunctional acylpeptide hydrolases--potential role in the antioxidant defense systems of the Antarctic fish Trematomus bernacchii.

    PubMed

    Gogliettino, Marta; Riccio, Alessia; Balestrieri, Marco; Cocca, Ennio; Facchiano, Angelo; D'Arco, Teresa M; Tesoro, Clara; Rossi, Mosè; Palmieri, Gianna

    2014-01-01

    Oxidative challenge is an important factor affecting the adaptive strategies of Antarctic fish, but data on antioxidant defenses in these organisms remain scarce. In this context, a key role could be played by acylpeptide hydrolase (APEH), which was recently hypothesized to participate in the degradation of oxidized and cytotoxic proteins, although its physiological function is still not fully clarified. This study represents the first report on piscine members of this enzyme family, specifically from the Antarctic teleost Trematomus bernacchii. The cDNAs corresponding to two apeh genes were isolated, and the respective proteins were functionally and structurally characterized with the aim of understanding the biological significance of these proteases in Antarctic fish. Both APEH isoforms (APEH-1Tb and APEH-2Tb ) showed distinct temperature-kinetic behavior, with significant differences in the Km values. Moreover, beside the typical acylpeptide hydrolase activity, APEH-2Tb showed remarkable oxidized protein endohydrolase activity towards oxidized BSA, suggesting that this isoform could play a homeostatic role in removing oxidatively damaged proteins, sustaining the antioxidant defense systems. The 3D structures of both APEHs were predicted, and a possible relationship was found between the substrate specificity/affinity and the marked changes in the number of charged residues and hydrophobicity properties surrounding their catalytic sites. Our results demonstrated the occurrence of two APEH isoforms in T. bernacchii, belonging to different phylogenetic clusters, identified for the first time, and showing distinct molecular and temperature-kinetic behaviors. In addition, we suggest that the members of the new cluster 'APEH-2' could participate in reactive oxygen species detoxification as phase 3 antioxidant enzymes, enhancing the protein degradation machinery.

  5. Advanced Plant Habitat (APH)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.

    2016-01-01

    The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.

  6. Identification of Aph1, a Phosphate-Regulated, Secreted, and Vacuolar Acid Phosphatase in Cryptococcus neoformans

    PubMed Central

    Lev, Sophie; Crossett, Ben; Cha, So Young; Desmarini, Desmarini; Li, Cecilia; Chayakulkeeree, Methee; Wilson, Christabel F.; Williamson, P. R.; Sorrell, Tania C.

    2014-01-01

    ABSTRACT Cryptococcus neoformans strains isolated from patients with AIDS secrete acid phosphatase, but the identity and role of the enzyme(s) responsible have not been elucidated. By combining a one-dimensional electrophoresis step with mass spectrometry, a canonically secreted acid phosphatase, CNAG_02944 (Aph1), was identified in the secretome of the highly virulent serotype A strain H99. We created an APH1 deletion mutant (Δaph1) and showed that Δaph1-infected Galleria mellonella and mice survived longer than those infected with the wild type (WT), demonstrating that Aph1 contributes to cryptococcal virulence. Phosphate starvation induced APH1 expression and secretion of catalytically active acid phosphatase in the WT, but not in the Δaph1 mutant, indicating that Aph1 is the major extracellular acid phosphatase in C. neoformans and that it is phosphate repressible. DsRed-tagged Aph1 was transported to the fungal cell periphery and vacuoles via endosome-like structures and was enriched in bud necks. A similar pattern of Aph1 localization was observed in cryptococci cocultured with THP-1 monocytes, suggesting that Aph1 is produced during host infection. In contrast to Aph1, but consistent with our previous biochemical data, green fluorescent protein (GFP)-tagged phospholipase B1 (Plb1) was predominantly localized at the cell periphery, with no evidence of endosome-mediated export. Despite use of different intracellular transport routes by Plb1 and Aph1, secretion of both proteins was compromised in a Δsec14-1 mutant. Secretions from the WT, but not from Δaph1, hydrolyzed a range of physiological substrates, including phosphotyrosine, glucose-1-phosphate, β-glycerol phosphate, AMP, and mannose-6-phosphate, suggesting that the role of Aph1 is to recycle phosphate from macromolecules in cryptococcal vacuoles and to scavenge phosphate from the extracellular environment. PMID:25227465

  7. Structure and Function of APH(4)-Ia, a Hygromycin B Resistance Enzyme

    SciTech Connect

    Stogios, Peter J.; Shakya, Tushar; Evdokimova, Elena; Savchenko, Alexei; Wright, Gerard D.

    2011-11-18

    The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 {angstrom} resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity, indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2{double_prime}) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme.

  8. Structure and Function of APH(4)-Ia, a Hygromycin B Resistance Enzyme*♦

    PubMed Central

    Stogios, Peter J.; Shakya, Tushar; Evdokimova, Elena; Savchenko, Alexei; Wright, Gerard D.

    2011-01-01

    The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 Å resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity, indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2″) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme. PMID:21084294

  9. Mutations in the aph(2")-Ic Gene Are Responsible for Increased Levels of Aminoglycoside Resistance

    PubMed Central

    Lee, Hae Kyung; Vakulenko, Sergei B.; Clewell, Don B.; Lerner, Stephen A.; Chow, Joseph W.

    2002-01-01

    Random PCR mutagenesis of the enterococcal aph(2")-Ic gene followed by selection for mutant enzymes that confer enhanced levels of aminoglycoside resistance resulted in mutants of APH(2")-Ic with His-258-Leu and Phe-108-Leu substitutions, all of which conferred rises in the MICs of several aminoglycosides. The mutated residues are located outside conserved regions of aminoglycoside phosphotransferases. PMID:12234853

  10. Aph(3′)-IIc, an Aminoglycoside Resistance Determinant from Stenotrophomonas maltophilia▿

    PubMed Central

    Okazaki, Aki; Avison, Matthew B.

    2007-01-01

    We report the characterization of an intrinsic, chromosomally carried aph(3′)-IIc gene from Stenotrophomonas maltophilia clinical isolate K279a, encoding an aminoglycoside phosphotransferase enzyme that significantly increases MICs of kanamycin, neomycin, butirosin, and paromomycin when expressed in Escherichia coli. Disruption of aph(3′)-IIc in K279a results in decreased MICs of these drugs. PMID:17088477

  11. A New High-Level Gentamicin Resistance Gene, aph(2")-Id, in Enterococcus spp.

    PubMed Central

    Tsai, Shane F.; Zervos, Marcus J.; Clewell, Don B.; Donabedian, Susan M.; Sahm, Daniel F.; Chow, Joseph W.

    1998-01-01

    Enterococcus casseliflavus UC73 is a clinical blood isolate with high-level resistance to gentamicin. DNA preparations from UC73 failed to hybridize with intragenic probes for aac(6′)-Ie-aph(2")-Ia and aph(2")-Ic. A 4-kb fragment from UC73 was cloned and found to confer resistance to gentamicin in Escherichia coli DH5α transformants. Nucleotide sequence analysis revealed the presence of a 906-bp open reading frame whose deduced amino acid sequence had a region with homology to the aminoglycoside-modifying enzyme APH(2")-Ic and to the C-terminal domain of the bifunctional enzyme AAC(6′)-APH(2"). The gene is designated aph(2")-Id, and its observed phosphotransferase activity is designated APH(2")-Id. A PCR-generated intragenic probe hybridized to the genomic DNA from 17 of 118 enterococcal clinical isolates (108 with high-level gentamicin resistance) from five hospitals. All 17 were vancomycin-resistant Enterococcus faecium isolates, and pulsed-field typing revealed three distinct clones. The combination of ampicillin plus either amikacin or neomycin exhibited synergistic killing against E. casseliflavus UC73. Screening and interpretation of high-level aminoglycoside resistance in enterococci may need to be modified to include detection of APH(2")-Id. PMID:9593155

  12. Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection.

    PubMed

    Huang, F-C; Klaus, S M J; Herz, S; Zou, Z; Koop, H-U; Golds, T J

    2002-09-01

    Here we report on the development of a new dominant selection marker for plastid transformation in higher plants using the aminoglycoside phosphotransferase gene aphA-6 from Acinetobacter baumannii. Vectors containing chimeric aphA-6 gene constructs were introduced into the tobacco chloroplast using particle bombardment of alginate-embedded protoplast-derived micro colonies or polyethylene glycol (PEG)-mediated DNA uptake. Targeted insertion into the plastome was achieved via homologous recombination, and plastid transformants were recovered on the basis of their resistance to kanamycin. Variations in kanamycin resistance in transplastomic lines were observed depending on the 5' and 3' regulatory elements associated with the aphA-6 coding region. Transplastomic plants were fertile and showed maternal inheritance of the transplastome in the progeny.

  13. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2013-02-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  14. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  15. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. 174.526 Section 174.526... phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. Residues...

  16. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. 174.526 Section 174.526... phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. Residues...

  17. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. 174.526 Section 174.526... phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. Residues...

  18. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. 174.526 Section 174.526... phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. Residues...

  19. 40 CFR 174.526 - Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Hygromycin B phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. 174.526 Section 174.526... phosphotransferase (APH4) marker protein in all plants; exemption from the requirement of a tolerance. Residues...

  20. Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3')-VI.

    PubMed

    Yoon, Eun-Jeong; Goussard, Sylvie; Touchon, Marie; Krizova, Lenka; Cerqueira, Gustavo; Murphy, Cheryl; Lambert, Thierry; Grillot-Courvalin, Catherine; Nemec, Alexandr; Courvalin, Patrice

    2014-10-21

    The amikacin resistance gene aphA6 was first detected in the nosocomial pathogen Acinetobacter baumannii and subsequently in other genera. Analysis of 133 whole-genome sequences covering the taxonomic diversity of Acinetobacter spp. detected aphA6 in the chromosome of 2 isolates of A. guillouiae, which is an environmental species, 1 of 8 A. parvus isolates, and 5 of 34 A. baumannii isolates. The gene was also present in 29 out of 36 A. guillouiae isolates screened by PCR, indicating that it is ancestral to this species. The Pnative promoter for aphA6 in A. guillouiae and A. parvus was replaced in A. baumannii by PaphA6, which was generated by use of the insertion sequence ISAba125, which brought a -35 sequence. Study of promoter strength in Escherichia coli and A. baumannii indicated that PaphA6 was four times more potent than Pnative. There was a good correlation between aminoglycoside MICs and aphA6 transcription in A. guillouiae isolates that remained susceptible to amikacin. The marked topology differences of the phylogenetic trees of aphA6 and of the hosts strongly support its recent direct transfer within Acinetobacter spp. and also to evolutionarily remote bacterial genera. Concomitant expression of aphA6 must have occurred because, contrary to the donors, it can confer resistance to the new hosts. Mobilization and expression of aphA6 via composite transposons and the upstream IS-generating hybrid PaphA6, followed by conjugation, seems the most plausible mechanism. This is in agreement with the observation that, in the recipients, aphA6 is carried by conjugative plasmids and flanked by IS that are common in Acinetobacter spp. Our data indicate that resistance genes can also be found in susceptible environmental bacteria. Importance: We speculated that the aphA6 gene for an enzyme that confers resistance to amikacin, the most active aminoglycoside for the treatment of nosocomial infections due to Acinetobacter spp., originated in this genus before

  1. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.

    PubMed

    Smith, Clyde A; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B

    2014-06-01

    The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.

  2. Purification and characterization of aminoglycoside phosphotransferase APH(6)-Id, a streptomycin-inactivating enzyme.

    PubMed

    Ashenafi, Meseret; Ammosova, Tatiana; Nekhai, Sergei; Byrnes, W Malcolm

    2014-02-01

    As part of an overall project to characterize the streptomycin phosphotransferase enzyme APH(6)-Id, which confers bacterial resistance to streptomycin, we cloned, expressed, purified, and characterized the enzyme. When expressed in Escherichia coli, the recombinant enzyme increased by up to 70-fold the minimum inhibitory concentration needed to inhibit cell growth. Size-exclusion chromatography gave a molecular mass of 31.4 ± 1.3 kDa for the enzyme, showing that it functions as a monomer. Activity was assayed using three methods: (1) an HPLC-based method that measures the consumption of streptomycin over time; (2) a spectrophotometric method that utilizes a coupled assay; and (3) a radioenzymatic method that detects production of (32)P-labeled streptomycin phosphate. Altogether, the three methods demonstrated that streptomycin was consumed in the APH(6)-Id-catalyzed reaction, ATP was hydrolyzed, and streptomycin phosphate was produced in a substrate-dependent manner, demonstrating that APH(6)-Id is a streptomycin phosphotransferase. Steady-state kinetic analysis gave the following results: K(m)(streptomycin) of 0.38 ± 0.13 mM, K(m)(ATP) of 1.03 ± 0.1 mM, V(max) of 3.2 ± 1.1 μmol/min/mg, and k(cat) of 1.7 ± 0.6 s(-1). Our study demonstrates that APH(6)-Id is a bona fide streptomycin phosphotransferase, functions as a monomer, and confers resistance to streptomycin.

  3. The bacterial paromomycin resistance gene, aphH, as a dominant selectable marker in Volvox carteri.

    PubMed

    Jakobiak, Thomas; Mages, Wolfgang; Scharf, Birgit; Babinger, Patrick; Stark, Klaus; Schmitt, Rüdiger

    2004-12-01

    The aminoglycoside antibiotic paromomycin that is highly toxic to the green alga Volvox carteri is efficiently inactivated by aminoglycoside 3'-phosphotransferase from Streptomyces rimosus. Therefore, we made constructs in which the bacterial aphH gene encoding this enzyme was combined with Volvox cis-regulatory elements in an attempt to develop a new dominant selectable marker--paromomycin resistance (PmR)--for use in Volvox nuclear transformation. The construct that provided the most efficient transformation was one in which aphH was placed between a chimeric promoter that was generated by fusing the Volvox hsp70 and rbcS3 promoters and the 3' UTR of the Volvox rbcS3 gene. When this plasmid was used in combination with a high-impact biolistic device, the frequency of stable PmR transformants ranged about 15 per 106 target cells. Due to rapid and sharp selection, PmR transformants were readily isolated after six days, which is half the time required for previously used markers. Co-transformation of an unselected marker ranged about 30%. The chimeric aphH gene was stably integrated into the Volvox genome, frequently as tandem multiple copies, and was expressed at a level that made selection of PmR transformants simple and unambiguous. This makes the engineered bacterial aphH gene an efficient dominant selection marker for the transformation and co-transformation of a broad range of V. carteri strains without the recurring need for using auxotrophic recipient strains.

  4. National Plant Diagnostic Network, Taxonomic training videos: Introduction to AphID

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides visual instruction on the use of the expert system, AphID, for aphid examination and identification. The video demonstrates the use of different training modules that allow the user to gain familiarity wi...

  5. Purification and Characterization of Aminoglycoside Phosphotransferase APH(6)-Id, a Streptomycin Inactivating Enzyme

    PubMed Central

    Ashenafi, Meseret; Ammosova, Tatiana; Nekhai, Sergei; Byrnes, W. Malcolm

    2014-01-01

    As part of an overall project to characterize the streptomycin phosphotransferase enzyme APH(6)-Id, which confers bacterial resistance to streptomycin, we cloned, expressed, purified and characterized the enzyme. When expressed in E. coli, the recombinant enzyme increased by up to 70-fold the minimum inhibitory concentration (MIC) needed to inhibit cell growth. Size exclusion chromatography gave a molecular mass of 31.4 ± 1.3 kDa for the enzyme, showing that it functions as a monomer. Activity was assayed using three methods: (1) an HPLC-based method that measures the consumption of streptomycin over time; (2) a spectrophotometric method that utilizes a coupled assay; and (3) a radioenzymatic method that detects production of 32P-labeled streptomycin phosphate. Altogether, the three methods demonstrated that streptomycin was consumed in the APH(6)-Id-catalyzed reaction, ATP was hydrolyzed, and streptomycin phosphate was produced in a substrate-dependent manner, demonstrating that APH(6)-Id is a streptomycin phosphotransferase. Steady state kinetic analysis gave the following results: Km(streptomycin) of 0.38 ± 0.13 mM, Km(ATP) of 1.03 ± 0.1 mM, Vmax of 3.2 ± 1.1 μmol/min/mg and kcat of 1.7 ± 0.6 s−1. Our study demonstrates that APH(6)-Id is a bona fide streptomycin phosphotransferase, functions as a monomer, and confers resistance to streptomycin. PMID:24248535

  6. Sequence analysis of a group of low molecular-weight plasmids carrying multiple IS903 elements flanking a kanamycin resistance aph gene in Salmonella enterica serovars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A group of low molecular-weight ColE1-like plasmids carrying the aph sequence type aph(ii), from three different Salmonella serovars were sequenced. These plasmids carry 2 or more copies of IS903 elements, with up to 21 bp sequence differences to one another, two of which flank the aph gene. This g...

  7. Characterization of plasmid-mediated aphA-3 kanamycin resistance in Campylobacter jejuni.

    PubMed

    Gibreel, Amera; Sköld, Ola; Taylor, Diane E

    2004-01-01

    A total of 254 isolates of Campylobacter jejuni and three isolates of Campylobacter coli, isolated from Sweden, Canada, and Egypt, were screened for kanamycin resistance. Eight strains of C. jejuni contained large plasmids that carried the aphA-3 kanamycin-resistance marker. In six plasmids, the aphA-3 gene was located downstream of an apparent insertion sequence, designated IS607*, which showed a considerable similarity to IS607, characterized on the chromosome of some Helicobacter pylori strains. In contrast, the other plasmids carried the aphA-3 gene as a part of a resistance cluster. This included three resistance markers encoding 6'-adenylyltransferase (aadE), streptothricin acetyltransferase (sat), and 3'-aminoglycoside phosphotransferase type III (aphA-3). The genetic organization of this resistance cluster suggests that it has been acquired by C. jejuni from a Gram-positive organism. The IS607* element was also observed in kanamycin-susceptible strains of C. jejuni on plasmids mediating tetracycline resistance. The kanamycin-resistance phenotype transferred along with tetracycline resistance by conjugation from four representative C. jejuni strains to a recipient strain of C. jejuni. The kanamycin-resistance determinant (aphA-3) was stably transferred from one of the four C. jejuni strains to a recipient strain of Escherichia coli. However, the C. jejuni plasmid, which also carries the tetO gene, was not maintained in E. coli. Pulsed-field gel electrophoresis revealed the integration of approximately 50 kb of the plasmid into the chromosome of the E. coli recipient.

  8. Structural Basis of APH(3)-IIIa-Mediated Resistance to N1-Substituted Aminoglycoside Antibiotics

    SciTech Connect

    Fong, D.; Berghuis, A

    2009-01-01

    Butirosin is unique among the naturally occurring aminoglycosides, having a substituted amino group at position 1 (N1) of the 2-deoxystreptamine ring with an (S)-4-amino-2-hydroxybutyrate (AHB) group. While bacterial resistance to aminoglycosides can be ascribed chiefly to drug inactivation by plasmid-encoded aminoglycoside-modifying enzymes, the presence of an AHB group protects the aminoglycoside from binding to many resistance enzymes, and hence, the antibiotic retains its bactericidal properties. Consequently, several semisynthetic N1-substituted aminoglycosides, such as amikacin, isepamicin, and netilmicin, were developed. Unfortunately, butirosin, amikacin, and isepamicin are not resistant to inactivation by 3'-aminoglycoside O-phosphotransferase type IIIa [APH(3')-IIIa]. We report here the crystal structure of APH(3')-IIIa in complex with an ATP analog, AMPPNP [adenosine 5'-(?,{gamma}-imido)triphosphate], and butirosin A to 2.4-A resolution. The structure shows that butirosin A binds to the enzyme in a manner analogous to other 4,5-disubstituted aminoglycosides, and the flexible antibiotic-binding loop is key to the accommodation of structurally diverse substrates. Based on the crystal structure, we have also constructed a model of APH(3')-IIIa in complex with amikacin, a commonly used semisynthetic N1-substituted 4,6-disubstituted aminoglycoside. Together, these results suggest a strategy to further derivatize the AHB group in order to generate new aminoglycoside derivatives that can elude inactivation by resistance enzymes while maintaining their ability to bind to the ribosomal A site.

  9. The Crystal Structures of Substrate and Nucleotide Complexes of Enterococcus faecium Aminoglycoside-2′′-Phosphotransferase-IIa [APH(2′′)-IIa] Provide Insights into Substrate Selectivity in the APH(2′′) Subfamily▿ ‡

    PubMed Central

    Young, Paul G.; Walanj, Rupa; Lakshmi, Vendula; Byrnes, Laura J.; Metcalf, Peter; Baker, Edward N.; Vakulenko, Sergei B.; Smith, Clyde A.

    2009-01-01

    Aminoglycoside-2′′-phosphotransferase-IIa [APH(2′′)-IIa] is one of a number of homologous bacterial enzymes responsible for the deactivation of the aminoglycoside family of antibiotics and is thus a major component in bacterial resistance to these compounds. APH(2′′)-IIa produces resistance to several clinically important aminoglycosides (including kanamycin and gentamicin) in both gram-positive and gram-negative bacteria, most notably in Enterococcus species. We have determined the structures of two complexes of APH(2′′)-IIa, the binary gentamicin complex and a ternary complex containing adenosine-5′-(β,γ-methylene)triphosphate (AMPPCP) and streptomycin. This is the first crystal structure of a member of the APH(2′′) family of aminoglycoside phosphotransferases. The structure of the gentamicin-APH(2′′)-IIa complex was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and was refined to a crystallographic R factor of 0.210 (Rfree, 0.271) at a resolution of 2.5 Å. The structure of the AMPPCP-streptomycin complex was solved by molecular replacement using the gentamicin-APH(2′′)-IIa complex as the starting model. The enzyme has a two-domain structure with the substrate binding site located in a cleft in the C-terminal domain. Gentamicin binding is facilitated by a number of conserved acidic residues lining the binding cleft, with the A and B rings of the substrate forming the majority of the interactions. The inhibitor streptomycin, although binding in the same pocket as gentamicin, is orientated such that no potential phosphorylation sites are adjacent to the catalytic aspartate residue. The binding of gentamicin and streptomycin provides structural insights into the substrate selectivity of the APH(2′′) subfamily of aminoglycoside phosphotransferases, specifically, the selectivity between the 4,6-disubstituted and the 4,5-disubstituted aminoglycosides. PMID:19429619

  10. Aph-1 associates directly with full-length and C-terminal fragments of gamma-secretase substrates.

    PubMed

    Chen, Allen C; Guo, Lucie Y; Ostaszewski, Beth L; Selkoe, Dennis J; LaVoie, Matthew J

    2010-04-09

    Gamma-secretase is a ubiquitous, multiprotein enzyme composed of presenilin, nicastrin, Aph-1, and Pen-2. It mediates the intramembrane proteolysis of many type 1 proteins, plays an essential role in numerous signaling pathways, and helps drive the pathogenesis of Alzheimer disease by excising the hydrophobic, aggregation-prone amyloid beta-peptide from the beta-amyloid precursor protein. A central unresolved question is how its many substrates bind and enter the gamma-secretase complex. Here, we provide evidence that both the beta-amyloid precursor protein holoprotein and its C-terminal fragments, the immediate substrates of gamma-secretase, can associate with Aph-1 at overexpressed as well as endogenous protein levels. This association was observed using bi-directional co-immunoprecipitation in multiple systems and detergent conditions, and an beta-amyloid precursor protein-Aph-1 complex was specifically isolated following in situ cross-linking in living cells. In addition, another endogenous canonical gamma-substrate, Jagged, showed association of both its full-length and C-terminal fragment forms with Aph-1. We were also able to demonstrate that this interaction with substrates was conserved across the multiple isoforms of Aph-1 (beta, alphaS, and alphaL), as they were all able to bind beta-amyloid precursor protein with similar affinity. Finally, two highly conserved intramembrane histidines (His-171 and His-197) within Aph-1, which were recently shown to be important for gamma-secretase activity, are required for efficient binding of substrates. Taken together, our data suggest a dominant role for Aph-1 in interacting with gamma-secretase substrates prior to their processing by the proteolytic complex.

  11. Polyglycine hydrolases secreted by pathogenic fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogens are known to produce proteases that target host defense proteins. Here we describe polyglycine hydrolases, fungal proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine interdomain linker of targeted plant defense chitinases. Polyglycine hydrolases were puri...

  12. IS26-Mediated Precise Excision of the IS26-aphA1a Translocatable Unit

    PubMed Central

    Harmer, Christopher J.

    2015-01-01

    ABSTRACT We recently showed that, in the absence of RecA-dependent homologous recombination, the Tnp26 transposase catalyzes cointegrate formation via a conservative reaction between two preexisting IS26, and this is strongly preferred over replicative transposition to a new site. Here, the reverse reaction was investigated by assaying for precise excision of the central region together with a single IS26 from a compound transposon bounded by IS26. In a recA mutant strain, Tn4352, a kanamycin resistance transposon carrying the aphA1a gene, was stable. However, loss of kanamycin resistance due to precise excision of the translocatable unit (TU) from the closely related Tn4352B, leaving behind the second IS26, occurred at high frequency. Excision occurred when Tn4352B was in either a high- or low-copy-number plasmid. The excised circular segment, known as a TU, was detected by PCR. Excision required the IS26 transposase Tnp26. However, the Tnp26 of only one IS26 in Tn4352B was required, specifically the IS26 downstream of the aphA1a gene, and the excised TU included the active IS26. The frequency of Tn4352B TU loss was influenced by the context of the transposon, but the critical determinant of high-frequency excision was the presence of three G residues in Tn4352B replacing a single G in Tn4352. These G residues are located immediately adjacent to the two G residues at the left end of the IS26 that is upstream of the aphA1a gene. Transcription of tnp26 was not affected by the additional G residues, which appear to enhance Tnp26 cleavage at this end. PMID:26646012

  13. Similarities between catalase and cytosolic epoxide hydrolase.

    PubMed

    Guenthner, T M; Qato, M; Whalen, R; Glomb, S

    1989-01-01

    Cytosolic epoxide hydrolase, measured as trans-stilbene oxide hydrolase activity, was isolated and purified from human and guinea pig liver cytosol. Antiserum to the guinea pig liver preparation reacted strongly with bovine liver catalase. We determined that this lack of selectivity of the antiserum was due to catalase contamination of the epoxide hydrolase preparation. We also determined that several commercial catalase preparations are contaminated with cytosolic epoxide hydrolase. Our human epoxide hydrolase preparation contained no detectable catalase contamination, yet antiserum to this protein also cross-reacted slightly with catalase, indicating some intrinsic similarity between the two enzymes. We conclude that catalase and cytosolic epoxide hydrolase contain some similar immunogenic epitopes, and we surmise that similarities between the subunits of these two enzymes may lead to their partial copurification. Functional similarities between the two enzymes are also demonstrated, as several compounds that inhibit catalase are also shown to inhibit cytosolic epoxide hydrolase activity in the same concentration range and rank order.

  14. Susceptibility to Aminoglycosides and Distribution of aph and aac(3)-XI Genes among Corynebacterium striatum Clinical Isolates

    PubMed Central

    Navas, Jesús; Fernández-Martínez, Marta; Salas, Carlos; Cano, María Eliecer; Martínez-Martínez, Luis

    2016-01-01

    Corynebacterium striatum is an opportunistic pathogen, often multidrug-resistant, which has been associated with serious infections in humans. Aminoglycosides are second-line or complementary antibiotics used for the treatment of Corynebacterium infections. We investigated the susceptibility to six aminoglycosides and the molecular mechanisms involved in aminoglycoside resistance in a collection of 64 Corynebacterium striatum isolated in our laboratory during the period 2005–2009. Antimicrobial susceptibility was determined using E-test. The mechanisms of aminoglycoside resistance were investigated by PCR and sequencing. The 64 C. striatum were assessed for the possibility of clonal spreading by Pulsed-field Gel Electrophoresis (PFGE). Netilmicin and amikacin were active against the 64 C. striatum isolates (MICs90 = 0.38 and 0.5 mg/L, respectively). Twenty-seven of the 64 C. striatum strains showed a MIC90 for kanamycin > 256 mg/L, and 26 out the 27 were positive for the aph(3’)-Ic gene. Thirty-six out of our 64 C. striatum were streptomycin resistant, and 23 out of the 36 carried both the aph(3”)-Ib and aph(6)-Id genes. The gene aac(3)-XI encoding a new aminoglycoside 3-N acetyl transferase from C. striatum was present in 44 out of the 64 isolates, all of them showing MICs of gentamicin and tobramycin > 1 mg/L. CS4933, a C. striatum showing very low susceptibility to kanamycin and streptomycin, contains an aminoglycoside resistance region that includes the aph(3’)-Ic gene, and the tandem of genes aph(3”)-Ib and aph(6)-Id. Forty-six major PFGE types were identified among the 64 C. striatum isolates, indicating that they were mainly not clonal. Our results showed that the 64 clinical C. striatum were highly resistant to aminoglycosides and mostly unrelated. PMID:27936101

  15. Interactive tool for visualization of adiabatic adjustment in APH coordinates for computational studies of vibrational motion and chemical reactions

    NASA Astrophysics Data System (ADS)

    Teplukhin, Alexander; Babikov, Dmitri

    2014-10-01

    The adiabatically-adjusting principal-axes hyperspherical (APH) coordinates reviewed in this letter are one of the best coordinate sets developed for computational treatment of spectroscopy and dynamics of triatomic molecules. Unfortunately, it is not so easy to understand and interpret them, compared to other simpler coordinates, like valence coordinates or Jacobi coordinates. To address this issue, we developed a desktop application called APHDemo. This tool visualizes the process of adjustment of the APH coordinates to the shape of a triatomic molecule during molecular vibrations or chemical reaction, and helps to understand their physical meaning without going into complicated math.

  16. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6′)-Ie-APH(2′′)-Ia

    PubMed Central

    Smith, Clyde A.; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B.

    2014-01-01

    The bifunctional acetyltransferase(6′)-Ie-phosphotransfer­ase(2′′)-Ia [AAC(6′)-Ie-APH(2′′)-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6′)-Ie-APH(2′′)-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2′′)-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2′′)-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2′′)-IIa and APH(2′′)-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2′′)-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2′′)-IIIa enzyme. In APH(2′′)-Ia this GTP selectivity is governed by the presence of a ‘gatekeeper’ residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2′′)-Ia into a dual-specificity enzyme. PMID:24914967

  17. Assimilation of nicotinamide mononucleotide requires periplasmic AphA phosphatase in Salmonella enterica.

    PubMed

    Grose, Julianne H; Bergthorsson, Ulfar; Xu, Yaping; Sterneckert, Jared; Khodaverdian, Behzad; Roth, John R

    2005-07-01

    Salmonella enterica can obtain pyridine from exogenous nicotinamide mononucleotide (NMN) by three routes. In route 1, nicotinamide is removed from NMN in the periplasm and enters the cell as the free base. In route 2, described here, phosphate is removed from NMN in the periplasm by acid phosphatase (AphA), and the produced nicotinamide ribonucleoside (NmR) enters the cell via the PnuC transporter. Internal NmR is then converted back to NMN by the NmR kinase activity of NadR. Route 3 is seen only in pnuC* transporter mutants, which import NMN intact and can therefore grow on lower levels of NMN. Internal NMN produced by either route 2 or route 3 is deamidated to nicotinic acid mononucleotide and converted to NAD by the biosynthetic enzymes NadD and NadE.

  18. Involvement of aph(3′)-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments

    PubMed Central

    Woegerbauer, Markus; Kuffner, Melanie; Domingues, Sara; Nielsen, Kaare M.

    2015-01-01

    Intragenic recombination leading to mosaic gene formation is known to alter resistance profiles for particular genes and bacterial species. Few studies have examined to what extent aminoglycoside resistance genes undergo intragenic recombination. We screened the GenBank database for mosaic gene formation in homologs of the aph(3′)-IIa (nptII) gene. APH(3′)-IIa inactivates important aminoglycoside antibiotics. The gene is widely used as a selectable marker in biotechnology and enters the environment via laboratory discharges and the release of transgenic organisms. Such releases may provide opportunities for recombination in competent environmental bacteria. The retrieved GenBank sequences were grouped in three datasets comprising river water samples, duck pathogens and full-length variants from various bacterial genomes and plasmids. Analysis for recombination in these datasets was performed with the Recombination Detection Program (RDP4), and the Genetic Algorithm for Recombination Detection (GARD). From a total of 89 homologous sequences, 83% showed 99–100% sequence identity with aph(3′)-IIa originally described as part of transposon Tn5. Fifty one were unique sequence variants eligible for recombination analysis. Only a single recombination event was identified with high confidence and indicated the involvement of aph(3′)-IIa in the formation of a mosaic gene located on a plasmid of environmental origin in the multi-resistant isolate Pseudomonas aeruginosa PA96. The available data suggest that aph(3′)-IIa is not an archetypical mosaic gene as the divergence between the described sequence variants and the number of detectable recombination events is low. This is in contrast to the numerous mosaic alleles reported for certain penicillin or tetracycline resistance determinants. PMID:26042098

  19. Synthesis and biodistribution of novel magnetic-poly(HEMA-APH) nanopolymer radiolabeled with iodine-131 and investigation its fate in vivo for cancer therapy

    NASA Astrophysics Data System (ADS)

    Avcıbaşı, Uğur; Avcıbaşı, Nesibe; Akalın, Hilmi Arkut; Ediz, Melis; Demiroğlu, Hasan; Gümüşer, Fikriye Gül; Özçalışkan, Emir; Türkcan, Ceren; Uygun, Deniz Aktaş; Akgöl, Sinan

    2013-10-01

    Herein, we investigated the biological uptake, distribution, and radiopharmaceutical potential of a novel molecule based on 2-hydroxyethyl methacrylate (HEMA) and anilinephtalein (APH) in the metabolism of Albino Wistar rats. In order to achieve this, we synthesized APH using organic synthesis methods and copolymerized APH with HEMA using a common polymerization method, surfactant-free emulsion polymerization. In the presence of Fe3O4 particles, we obtained a new generation magnetic-nano-scale polymer, magnetic-poly(HEMA-APH). This new molecule was chemically identified and approved by several characterization methods using Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-ray spectroscopy, electron spin resonance, atomic force microscope, and Zeta particle-size analysis. To evaluate the biological activity in live metabolism and anti-cancer potential of mag-poly(HEMA-APH), molecule was radioiodinated by a widely used labeling technique, iodogen method, with a gamma diffuser radionuclide, 131I. Thin-layer radiochromatography experiments demonstrated that 131I binded to nanopolymer with the labeling yield of 90 %. Lipophilicity and stability experiments were conducted to determine the condition of cold and labeled mag-poly(HEMA-APH) in rat blood and lipid medium. Results demonstrated that radioiodinated molecule stayed as an intact complex in rat metabolism for 24 h and experimental lipophilicity was determined as 0.12 ± 0.02. In vivo results obtained by imaging and biological distribution experiments indicated that mag-poly(HEMA-APH) labeled with 131I [131I-mag-poly(HEMA-APH)] highly incorporated into tissues of the uterus, the ovarian, the prostate, and the lungs in rat metabolism. Based on these results, it may be evaluated that novel mag-poly(HEMA-APH) molecule labeled with 131I is a compound which has a significant potential for being used as an anti-cancer agent. Certain results can only be obtained whether this

  20. A structure-based proposal for the catalytic mechanism of the bacterial acid phosphatase AphA belonging to the DDDD superfamily of phosphohydrolases.

    PubMed

    Calderone, Vito; Forleo, Costantino; Benvenuti, Manuela; Thaller, Maria Cristina; Rossolini, Gian Maria; Mangani, Stefano

    2006-01-27

    The Escherichia coli gene aphA codes for a periplasmic acid phosphatase called AphA, belonging to class B bacterial phosphatases, which is part of the DDDD superfamily of phosphohydrolases. After our first report about its crystal structure, we have started a series of crystallographic studies aimed at understanding of the catalytic mechanism of the enzyme. Here, we report three crystal structures of the AphA enzyme in complex with the hydrolysis products of nucleoside monophosphate substrates and a fourth with a proposed intermediate analogue that appears to be covalently bound to the enzyme. Comparison with the native enzyme structure and with the available X-ray structures of different phosphatases provides clues about the enzyme chemistry and allows us to propose a catalytic mechanism for AphA, and to discuss it with respect to the mechanism of other bacterial and human phosphatases.

  1. Aminoglycoside-Streptothricin Resistance Gene Cluster aadE–sat4–aphA-3 Disseminated among Multiresistant Isolates of Enterococcus faecium

    PubMed Central

    Werner, Guido; Hildebrandt, Bianca; Witte, Wolfgang

    2001-01-01

    Seventy-two Enterococcus faecium isolates of different origins highly resistant to nourseothricin and streptomycin were studied. Sequencing of a genomic fragment from two isolates identified a gene cluster, aadE–sat4–aphA-3, which has been isolated recently in staphylococci and Campylobacter coli. Patterns of digested PCR products of aadE–sat4–aphA-3 were identical for all isolates. PMID:11600397

  2. Overexpression and Initial Characterization of the Chromosomal Aminoglycoside 3′-O-Phosphotransferase APH(3′)-IIb from Pseudomonas aeruginosa▿†

    PubMed Central

    Hainrichson, Mariana; Yaniv, Orit; Cherniavsky, Marina; Nudelman, Igor; Shallom-Shezifi, Dalia; Yaron, Sima; Baasov, Timor

    2007-01-01

    The chromosomal gene aph(3′)-IIb, encoding an aminoglycoside 3′-phosphotransferase in Pseudomonas aeruginosa, was cloned and overexpressed in Escherichia coli. The APH(3′)-IIb enzyme was purified as a monomer in a two-step procedure and was shown to phosphorylate its substrates at the C-3′-OH position, with kcat/Km values of 0.4 × 104 to 36 × 104 M−1 s−1. PMID:17088479

  3. Anaplasma phagocytophilum APH0032 Is Exposed on the Cytosolic Face of the Pathogen-Occupied Vacuole and Co-opts Host Cell SUMOylation

    PubMed Central

    Oki, Aminat T.; Huang, Bernice; Beyer, Andrea R.; May, Levi J.; Truchan, Hilary K.; Walker, Naomi J.; Galloway, Nathan L.; Borjesson, Dori L.; Carlyon, Jason A.

    2016-01-01

    Anaplasma phagocytophilum, a member of the family Anaplasmataceae and the obligate intracellular bacterium that causes granulocytic anaplasmosis, resides in a host cell-derived vacuole. Bacterial proteins that localize to the A. phagocytophilum-occupied vacuole membrane (AVM) are critical host-pathogen interfaces. Of the few bacterial AVM proteins that have been identified, the domains responsible for AVM localization and the host cell pathways that they co-opt are poorly defined. APH0032 is an effector that is expressed and localizes to the AVM late during the infection cycle. Herein, the APH0032 domain that is essential for associating with host cell membranes was mapped. Immunofluorescent labeling of infected cells that had been differentially permeabilized confirmed that APH0032 is exposed on the AVM's cytosolic face, signifying its potential to interface with host cell processes. SUMOylation is the covalent attachment of a member of the small ubiquitin-like modifier (SUMO) family of proteins to lysines in target substrates. Previous work from our laboratory determined that SUMOylation is important for A. phagocytophilum survival and that SUMOylated proteins decorate the AVM. Algorithmic prediction analyses identified APH0032 as a candidate for SUMOylation. Endogenous APH0032 was precipitated from infected cells using a SUMO affinity matrix, confirming that the effector co-opts SUMOylation during infection. APH0032 pronouncedly colocalized with SUMO1, but not SUMO2/3 moieties on the AVM. Ectopic expression of APH0032 in A. phagocytophilum infected host cells significantly boosted the bacterial load. This study delineates the first domain of any Anaplasmataceae protein that is essential for associating with the pathogen-occupied vacuole membrane, demonstrates the importance of APH0032 to infection, and identifies it as the second A. phagocytophilum effector that co-opts SUMOylation, thus underscoring the relevance of this post-translational modification to

  4. Purification, Crystallization And Preliminary X-Ray Analysis of Aminoglycoside-2 ''-Phosphotransferase-Ic [APH(2 '')-Ic] From Enterococcus Gallinarum

    SciTech Connect

    Byrnes, L.J.; Badarau, A.; Vakulenko, S.B.; Smith, C.A.; /SLAC, SSRL

    2009-04-30

    Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2{double_prime}-phosphotransferase-Ic [APH(2{double_prime})-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2{double_prime})-Ic variants were crystallized in the presence of 14-20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris-HCl pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 {angstrom}, {beta} = 108.8{sup o}. X-ray diffraction data were collected to approximately 2.15 {angstrom} resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.

  5. Increasing Prevalence of Aminoglycoside-Resistant Enterococcus faecalis Isolates Due to the aac(6’)-aph(2”) Gene: A Therapeutic Problem in Kermanshah, Iran

    PubMed Central

    Khani, Mitra; Fatollahzade, Mahdie; Pajavand, Hamid; Bakhtiari, Somaye; Abiri, Ramin

    2016-01-01

    Background: Enterococci are important pathogens in nosocomial infections. Various types of antibiotics, such as aminoglycosides, are used for treatment of these infections. Enterococci can acquire resistant traits, which can lead to therapeutic problems with aminoglycosides. Objectives: This study was designed to identify the prevalence of, and to compare, the aac(6’)-aph(2”) and aph(3)-IIIa genes and their antimicrobial resistance patterns among Enterococcus faecalis and E. faecium isolates from patients at Imam Reza hospital in Kermanshah in 2011 - 2012. Patients and Methods: One hundred thirty-eight clinical specimens collected from different wards of Imam Reza hospital were identified to the species level by biochemical tests. Antimicrobial susceptibility tests against kanamycin, teicoplanin, streptomycin, imipenem, ciprofloxacin, and ampicillin were performed by the disk diffusion method. The minimum inhibitory concentrations of gentamicin, streptomycin, kanamycin, and amikacin were evaluated with the microbroth dilution method. The aminoglycoside resistance genes aac(6’)-aph(2”) and aph(3”)-IIIa were analyzed with multiplex PCR. Results: The prevalence of isolates was 33 (24.1%) for E. faecium and 63 (46%) for E. faecalis. Eighty-nine percent of the isolates were high-level gentamicin resistant (HLGR), and 32.8% of E. faecium isolates and 67.2% of E. faecalis isolates carried aac(6’)-aph(2”). The prevalence of aph(3”)-IIIa among the E. faecalis and E. faecium isolates was 22.7% and 77.3%, respectively. Conclusions: Remarkably increased incidence of aac(6’)-aph(2”) among HLGR isolates explains the relationship between this gene and the high level of resistance to aminoglycosides. As the resistant gene among enterococci can be transferred, the use of new-generation antibiotics is necessary. PMID:27217920

  6. Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia revealed by crystallographic and small-angle X-ray scattering analysis.

    PubMed

    Smith, Clyde A; Toth, Marta; Weiss, Thomas M; Frase, Hilary; Vakulenko, Sergei B

    2014-10-01

    Broad-spectrum resistance to aminoglycoside antibiotics in clinically important Gram-positive staphylococcal and enterococcal pathogens is primarily conferred by the bifunctional enzyme AAC(6')-Ie-APH(2'')-Ia. This enzyme possesses an N-terminal coenzyme A-dependent acetyltransferase domain [AAC(6')-Ie] and a C-terminal GTP-dependent phosphotransferase domain [APH(2'')-Ia], and together they produce resistance to almost all known aminoglycosides in clinical use. Despite considerable effort over the last two or more decades, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. In a recent breakthrough, the structure of the isolated C-terminal APH(2'')-Ia enzyme was determined as the binary Mg2GDP complex. Here, the high-resolution structure of the N-terminal AAC(6')-Ie enzyme is reported as a ternary kanamycin/coenzyme A abortive complex. The structure of the full-length bifunctional enzyme has subsequently been elucidated based upon small-angle X-ray scattering data using the two crystallographic models. The AAC(6')-Ie enzyme is joined to APH(2'')-Ia by a short, predominantly rigid linker at the N-terminal end of a long α-helix. This α-helix is in turn intrinsically associated with the N-terminus of APH(2'')-Ia. This structural arrangement supports earlier observations that the presence of the intact α-helix is essential to the activity of both functionalities of the full-length AAC(6')-Ie-APH(2'')-Ia enzyme.

  7. Heterogeneous gene expression changes in colorectal cancer cells share the WNT pathway in response to growth suppression by APHS-mediated COX-2 inhibition

    PubMed Central

    Humar, Bostjan; McNoe, Les; Dunbier, Anita; Heathcott, Rosemary; Braithwaite, Antony W; Reeve, Anthony E

    2008-01-01

    Cyclooxygenase-2 (COX-2), the prostaglandin (PG)-synthesizing enzyme overexpressed in colorectal cancer (CRC), has pleiotropic, cancer-promoting effects. COX-2 inhibitors (CIBs) interfere with many cancer-associated processes and show promising antineoplastic activity, however, a common mechanism of CIB action has not yet been established. We therefore investigated by microarray the global response towards the CIB APHS at a dose significantly inhibiting the growth of three COX-2-positive CRC but not of two COX-2-negative cell lines. None of the genes significantly (p = 0.005) affected by APHS were common to all three cell lines and 83% of the altered pathways were cell line-specific. Quantitative polymerase chain reaction (QPCR) on selected pathways confirmed cell line-specific expression alterations induced by APHS. A low stringency data analysis approach using BRB array tools coupled with QPCR, however, identified small expression changes shared by all COX-2-positive cell lines in genes related to the WNT pathway, the key driver of colonic carcinogenesis. Our data indicates a substantial cell line-specificity of APHS-induced expression alterations in CRC cells and helps to explain the divergent effects reported for CIBs. Further, the shared inhibition of the WNT pathway by APHS suggests one potential common mechanism behind the antineoplastic effects of COX-2 inhibition. PMID:19707365

  8. Deficiency of Aph1B/C-γ-secretase disturbs Nrg1 cleavage and sensorimotor gating that can be reversed with antipsychotic treatment

    PubMed Central

    Dejaegere, T.; Serneels, L.; Schäfer, M. K.; Van Biervliet, J.; Horré, K.; Depboylu, C.; Alvarez-Fischer, D.; Herreman, A.; Willem, M.; Haass, C.; Höglinger, G. U.; D'Hooge, R.; De Strooper, B.

    2008-01-01

    Regulated intramembrane proteolysis by γ-secretase cleaves proteins in their transmembrane domain and is involved in important signaling pathways. At least four different γ-secretase complexes have been identified, but little is known about their biological role and specificity. Previous work has demonstrated the involvement of the Aph1A-γ-secretase complex in Notch signaling, but no specific function could be assigned to Aph1B/C-γ-secretase. We demonstrate here that the Aph1B/C-γ-secretase complex is expressed in brain areas relevant to schizophrenia pathogenesis and that Aph1B/C deficiency causes pharmacological and behavioral abnormalities that can be reversed by antipsychotic drugs. At the molecular level we find accumulation of Nrg1 fragments in the brain of Aph1BC−/− mice. Our observations gain clinical relevance by the demonstration that a Val-to-Leu mutation in the Nrg1 transmembrane domain, associated with increased risk for schizophrenia, affects γ-secretase cleavage of Nrg1. This finding suggests that dysregulation of intramembrane proteolysis of Nrg1 could increase risk for schizophrenia and related disorders. PMID:18626010

  9. Deficiency of Aph1B/C-gamma-secretase disturbs Nrg1 cleavage and sensorimotor gating that can be reversed with antipsychotic treatment.

    PubMed

    Dejaegere, T; Serneels, L; Schäfer, M K; Van Biervliet, J; Horré, K; Depboylu, C; Alvarez-Fischer, D; Herreman, A; Willem, M; Haass, C; Höglinger, G U; D'Hooge, R; De Strooper, B

    2008-07-15

    Regulated intramembrane proteolysis by gamma-secretase cleaves proteins in their transmembrane domain and is involved in important signaling pathways. At least four different gamma-secretase complexes have been identified, but little is known about their biological role and specificity. Previous work has demonstrated the involvement of the Aph1A-gamma-secretase complex in Notch signaling, but no specific function could be assigned to Aph1B/C-gamma-secretase. We demonstrate here that the Aph1B/C-gamma-secretase complex is expressed in brain areas relevant to schizophrenia pathogenesis and that Aph1B/C deficiency causes pharmacological and behavioral abnormalities that can be reversed by antipsychotic drugs. At the molecular level we find accumulation of Nrg1 fragments in the brain of Aph1BC(-/-) mice. Our observations gain clinical relevance by the demonstration that a Val-to-Leu mutation in the Nrg1 transmembrane domain, associated with increased risk for schizophrenia, affects gamma-secretase cleavage of Nrg1. This finding suggests that dysregulation of intramembrane proteolysis of Nrg1 could increase risk for schizophrenia and related disorders.

  10. Selective inhibition and selective induction of multiple microsomal epoxide hydrolases.

    PubMed

    Guenthner, T M

    1986-03-01

    The inhibition in vitro and induction in vivo of microsomal trans-stilbene oxide hydrolase have been studied. This microsomal epoxide hydrolase activity is distinguishable from the previously well-defined microsomal arene oxide hydrolase by a number of catalytic criteria. Two substituted chalcone oxides, 4-phenylchalcone oxide and 4'-phenylchalcone oxide, are potent inhibitors of microsomal trans-stilbene oxide hydrolase, but have no apparent activity against benzo[a]pyrene 4,5-oxide hydrolase. Conversely, compounds that are potent inhibitors of benzo[a]pyrene 4,5-oxide hydrolase, including styrene oxide, cyclohexene oxide, and trichloropropene oxide, inhibit microsomal trans-stilbene oxide hydrolase only at very high (millimolar) concentrations. The chalcone oxides inhibit microsomal trans-stilbene oxide hydrolase noncompetitively, and have micromolar or nanomolar affinity constants for the enzyme. Attempts were made to induce microsomal trans-stilbene oxide hydrolase in vivo. Compounds that induced microsomal benzo[a]pyrene 4,5-oxide hydrolase levels in mice did not simultaneously induce trans-stilbene oxide hydrolase levels. Clofibrate was an exception; it induced levels of both enzymes to a small but statistically significant degree. The two microsomal hydrolase activities have, therefore, very different catalytic sites and appear to be under separate genetic control. 4-Phenylchalcone oxide and 4'-phenylchalcone oxide are selective inhibitors of microsomal trans-stilbene oxide hydrolase and may prove to be very useful in assessing the involvement of this enzyme in the metabolism of endogenous or xenobiotic epoxides.

  11. Hydrolase-like properties of a cofactor-independent dioxygenase.

    PubMed

    Thierbach, Sven; Büldt-Karentzopoulos, Klaudia; Dreiling, Alena; Hennecke, Ulrich; König, Simone; Fetzner, Susanne

    2012-05-29

    Mechanistic promiscuity: The (2-alkyl)-3-hydroxy-4(1H)-quinolone-cleaving dioxygenase Hod has an α/β-hydrolase fold and a Ser/His/Asp triad in its active site. Isatoic anhydride, a suicide substrate of serine hydrolases, inactivates Hod by covalent modification of the active-site serine, thus indicating that the α/β-hydrolase fold can accommodate dioxygenase chemistry without completely abandoning hydrolase-like properties.

  12. Aminoglycoside 2′′-Phosphotransferase IIIa (APH(2′′)-IIIa) Prefers GTP over ATP

    PubMed Central

    Smith, Clyde A.; Toth, Marta; Frase, Hilary; Byrnes, Laura J.; Vakulenko, Sergei B.

    2012-01-01

    Contrary to the accepted dogma that ATP is the canonical phosphate donor in aminoglycoside kinases and protein kinases, it was recently demonstrated that all members of the bacterial aminoglycoside 2′′-phosphotransferase IIIa (APH(2′′)) aminoglycoside kinase family are unique in their ability to utilize GTP as a cofactor for antibiotic modification. Here we describe the structural determinants for GTP recognition in these enzymes. The crystal structure of the GTP-dependent APH(2′′)-IIIa shows that although this enzyme has templates for both ATP and GTP binding superimposed on a single nucleotide specificity motif, access to the ATP-binding template is blocked by a bulky tyrosine residue. Substitution of this tyrosine by a smaller amino acid opens access to the ATP template. Similar GTP binding templates are conserved in other bacterial aminoglycoside kinases, whereas in the structurally related eukaryotic protein kinases this template is less conserved. The aminoglycoside kinases are important antibiotic resistance enzymes in bacteria, whose wide dissemination severely limits available therapeutic options, and the GTP binding templates could be exploited as new, previously unexplored targets for inhibitors of these clinically important enzymes. PMID:22367198

  13. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles

    SciTech Connect

    Murphy, Jane; Hall, William W.; Ratner, Lee; Sheehy, Noreen

    2016-07-15

    The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells. - Highlights: • This study demonstrates for the first time interactions between NF90/110 and the HTLV antisense proteins HBZ and APH-2. • We show that NF90/110 significantly enhance LTR activation by the HTLV Tax protein, an effect that is abolished by HBZ but enhanced by APH-2. • The study shows that even though the HTLV antisense proteins activate survivin expression they antagonize the ability of NF90/110 to do so. • Overall we found that NF90/110 positively regulate HTLV infection and as such might represent a therapeutic target in infected cells.

  14. γ-secretase composed of PS1/Pen2/Aph1a can cleave Notch and APP in the absence of Nicastrin

    PubMed Central

    Zhao, Guojun; Liu, Zhenyi; Ilagan, Ma. Xenia G.; Kopan, Raphael

    2010-01-01

    γ-secretase is a multiprotein intramembrane-cleaving protease with a growing list of protein substrates including the Notch receptors and the amyloid precursor protein. The four components of γ-secretase complex - presenilin (PS), nicastrin (NCT), Pen2, and Aph1 - are all thought to be essential for activity. The catalytic domain resides within PS proteins; NCT has been suggested to be critical for substrate recognition; the contributions of Pen2 and Aph1 remain unclear. The role of NCT has been challenged recently by the observation that a critical residue (E332) in NCT, thought to be essential for γ-secretase activity, is instead involved in complex maturation. Here we report that NCT is dispensable for γ-secretase activity. NCT-independent γ-secretase activity can be detected in two independent NCT-deficient MEF lines, and blocked by the γ-secretase inhibitors DAPT and L-685,458. This catalytic activity requires prior ectodomain shedding of the substrate, and can cleave ligand-activated endogenous Notch receptors, indicating presence at the plasma membrane. siRNA knockdown experiments demonstrated that NCT-independent γ-secretase activity requires the presence of PS1, Pen2 and Aph1a but can tolerate knockdown of PS2 or Aph1b. We conclude that a PS1/Pen2/Aph1a trimeric complex is an active enzyme, displaying similar biochemical properties to those of γ-secretase and roughly 50% of its activity when normalized to PS1 NTF levels. This PS1/Pen2/Aph1a complex, however, is highly unstable. Thus, NCT acts to stabilize γ-secretase, but is not required for substrate recognition. PMID:20130175

  15. Twisting of glycosidic bonds by hydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of scissile bond twisting have been found in crystal structures of glycoside hydrolases (GHs) that are complexed with substrates and inhibitors. To estimate the increased potential energy in the substrates that results from this twisting, we have plotted torsion angles for the scissile bond...

  16. Structure and function of polyglycine hydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave polyglycine linkers of targeted plant defense chitinases. Unlike typical endoproteases that cleave a specific peptide bond, these 640 amino acid glycoproteins selectively cleave one of multiple peptide bonds within polyglyci...

  17. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles.

    PubMed

    Murphy, Jane; Hall, William W; Ratner, Lee; Sheehy, Noreen

    2016-07-01

    The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells.

  18. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles

    PubMed Central

    Murphy, Jane; Hall, William W.; Ratner, Lee; Sheehy, Noreen

    2016-01-01

    The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells. PMID:27110706

  19. The effect of APH treatment on surface bonding and osseointegration of Ti-6Al-7Nb implants: an in vitro and in vivo study.

    PubMed

    Nguyen, Thuy-Duong Thi; Moon, So-Hee; Oh, Tae-Ju; Park, Il-Song; Lee, Min-Ho; Bae, Tae-Sung

    2015-04-01

    This study investigated the effects of anodization-cyclic precalcification-heat (APH) treatment on the bonding ability of Ca-P coating to the parent metal and osseointegration of Ti-6Al-7Nb implants. Eighteen Ti-6Al-7Nb discs, 9 untreated and 9 APH-treated, were cultured with osteoblast cells in vitro, and the cellular differentiation ability was assayed at 1, 2, and 3 weeks. For in vivo testing, 28 Ti-6Al-7Nb implants (14 implants of each group) were inserted to rat tibias, and after each 4 and 6 weeks of implantation, bone bonding, and osseointegration were evaluated through removal torque and histological analysis. Osteoblast-culturing showed twice as much of the alkaline phosphatase activity on the treated surface at 3 weeks than on the untreated surface (p < 0.05). The treated implants exhibited higher removal torque values than the untreated ones (15.5 vs. 1.8 Ncm at 4 weeks and 19.7 vs. 2.6 Ncm at 6 weeks, p < 0.05). Moreover, the excellent bonding quality of coats was confirmed by the existence of cohesive fractures on the surface of removed APH implants (field emission scanning electron microscopy and histological observation). Within the limits of this study, it can be concluded that the APH treatment significantly enhanced osseointegration of the Ti-6Al-7Nb implant, with the stable bonding between the coating and the implant surface.

  20. Purification, crystallization and preliminary X-ray analysis of Enterococcus faecium aminoglycoside-2′′-phosphotransferase-Ib [APH(2′′)-Ib

    SciTech Connect

    Walanj, Rupa; Young, Paul; Baker, Heather M.; Baker, Edward N.; Metcalf, Peter; Chow, Joseph W.; Lerner, Stephen; Vakulenko, Sergei; Smith, Clyde A.

    2005-04-01

    APH(2′′)-Ib is an enzyme responsible for high-level gentamicin resistance in E. faecium isolates. Native crystals of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, APH(2′′)-Ib, has been cloned and the protein (comprising 299 amino-acid residues) expressed in Escherichia coli, purified and crystallized in the presence of 16%(w/v) PEG 3350 and gentamicin. The crystals belong to the monoclinic space group P2{sub 1}, with approximate unit-cell parameters a = 79.7, b = 58.8, c = 81.4 Å, β = 98.4°, and preliminary X-ray diffraction analysis is consistent with the presence of two molecules in the asymmetric unit. Synchrotron diffraction data to approximately 2.65 Å resolution were collected from a native APH(2′′)-Ib crystal at beamline BL9-2 at SSRL (Stanford, CA, USA). Selenium-substituted crystals have also been produced and structure determination is proceeding.

  1. Nicastrin is required for APP but not Notch processing, while Aph-1 is dispensable for processing of both APP and Notch.

    PubMed

    Hu, Chen; Zeng, Linlin; Li, Ting; Meyer, Michael A; Cui, Mei-Zhen; Xu, Xuemin

    2015-12-30

    The γ-secretase complex is composed of at least four components: presenilin (PS1 or PS2), nicastrin (NCT), anterior pharynx-defective 1 (Aph-1), and presenilin enhancer 2 (pen-2). In this study, using knockout cell lines, our data demonstrated that knockout of NCT, as well as knockout of Pen-2, completely blocked γ-secretase-catalyzed processing of CTFα and CTFβ, the C-terminal fragments of β-amyloid precursor protein (APP) produced by α-secretase and β-secretase cleavages, respectively. Interestingly, in Aph-1-knockout cells CTFα and CTFβ were still processed by γ-secretase, indicating Aph-1 is dispensable for APP processing. Furthermore, our results indicate that Aph-1 as well as NCT is not absolutely required for Notch processing, suggesting that NCT is differentially required for APP and Notch processing. In addition, our data revealed that components of the γ-secretase complex are also important for proteasome- and lysosome-dependent degradation of APP and that endogenous APP is mostly degraded by lysosome while exogenous APP is mainly degraded by proteasome. This article is protected by copyright. All rights reserved.

  2. Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB

    PubMed Central

    Liu, Zhi; Yang, Menghua; Peterfreund, Gregory L.; Tsou, Amy M.; Selamoglu, Nur; Daldal, Fevzi; Zhong, Zengtao; Kan, Biao; Zhu, Jun

    2011-01-01

    Bacterial pathogens have evolved sophisticated signal transduction systems to coordinately control the expression of virulence determinants. For example, the human pathogen Vibrio cholerae is able to respond to host environmental signals by activating transcriptional regulatory cascades. The host signals that stimulate V. cholerae virulence gene expression, however, are still poorly understood. Previous proteomic studies indicated that the ambient oxygen concentration plays a role in V. cholerae virulence gene expression. In this study, we found that under oxygen-limiting conditions, an environment similar to the intestines, V. cholerae virulence genes are highly expressed. We show that anaerobiosis enhances dimerization and activity of AphB, a transcriptional activator that is required for the expression of the key virulence regulator TcpP, which leads to the activation of virulence factor production. We further show that one of the three cysteine residues in AphB, C235, is critical for oxygen responsiveness, as the AphBC235S mutant can activate virulence genes under aerobic conditions in vivo and can bind to tcpP promoters in the absence of reducing agents in vitro. Mass spectrometry analysis suggests that under aerobic conditions, AphB is modified at the C235 residue. This modification is reversible between oxygen-rich aquatic environments and oxygen-limited human hosts, suggesting that V. cholerae may use a thiol-based switch mechanism to sense intestinal signals and activate virulence. PMID:21187377

  3. Catabolism of endogenous and overexpressed APH1a and PEN2: evidence for artifactual involvement of the proteasome in the degradation of overexpressed proteins

    PubMed Central

    Dunys, Julie; Kawarai, Toshitaka; Wilk, Sherwin; St. George-Hyslop, Peter; Alves Da Costa, Cristine; Checler, Frédéric

    2005-01-01

    PS (presenilin)-dependent γ-secretase occurs as a high-molecular-mass complex composed of either PS1 or PS2 associated with Nct (nicastrin), PEN2 (presenilin enhancer 2 homologue) and APH1 (anterior pharynx defective 1 homologue). Numerous reports have documented the very complicated physical and functional cross-talk between these proteins that ultimately governs the biological activity of the γ-secretase, but very few studies examined the fate of the components of the complex. We show that, in both HEK-293 cells and the TSM1 neuronal cell line, the immunoreactivities of overexpressed myc-tagged-APH1a and -PEN2 were enhanced by the proteasome inhibitors ZIE and lactacystin, whereas a broad range of protease inhibitors had no effect. By contrast, proteasome inhibitors were totally unable to affect the cellular expression of endogenous APH1aL and PEN2 in HEK-293 cells, TSM1 and primary cultured cortical neurons. To explain this apparent discrepancy, we examined the degradation of myc-tagged-APH1a and -PEN2, in vitro, by cell extracts containing endogenous proteasome and by purified 20S proteasome. Strikingly, myc-tagged-APH1a and -PEN2 resist proteolysis by endogenous proteasome and purified 20S proteasome. We also show that endogenous PEN2 expression was drastically higher in wild-type than in PS- and Nct-deficient fibroblasts and was enhanced by proteasome inhibitors only in the two deficient cell systems. However, here again, purified 20S proteasome appeared unable to cleave endogenous PEN2 present in PS-deficient fibroblasts. The levels of endogenous APH1aL-like immunoreactivity were not modified by proteasome inhibitors and were unaffected by PS deficiency. Altogether, our results indicate that endogenous PEN2 and APH1aL do not undergo proteasomal degradation under physiological conditions in HEK-293 cells, TSM1 cells and fibroblasts and that the clearance of PEN2 in PS- and Nct-deficient fibroblasts is not mediated by 20S proteasome. Whether the 26S

  4. Targeting aphA : a new high-throughput screening assay identifies compounds that reduce prime virulence factors of Vibrio cholerae.

    PubMed

    Bolger, Galina; Roy, Sambit; Zapol'skii, Viktor A; Kaufmann, Dieter E; Schnürch, Michael; Mihovilovic, Marko D; Nandy, Ranjan K; Tegge, Werner

    2016-07-01

    A high-throughput screening (HTS) assay was developed for identifying compounds with inhibitory effect on aphA, one of the key regulators positively controlling Vibrio cholerae pathogenesis. An inhibitory effect on aphA was expected to lead to attenuation in the secretion of the major pathogenicity factors of V. cholerae, cholera toxin and toxin co-regulated pilus. The plasmid construct pAKSB was developed with a kanamycin resistance (KmR) gene under the control of the aphA -like promoter for conferring a KmR phenotype under aphA -expressing conditions. The HTS assay was performed to identify compounds with inhibitory effect on the growth of O139 V. cholerae MO10 carrying the construct pAKSB in growth medium containing Km (30 g ml-1), but not in its absence. Of 20 338 compounds screened, six compounds were identified to inhibit the pAKSB-induced KmR phenotype and these compounds caused transcriptional inhibition of aphA in V. cholerae O139 strain MO10 as well as variant V. cholerae O1 El Tor strain NM06-058. Of the three most active substances, compound 53760866 showed lowest half-maximal cytotoxicity in a eukaryotic cell viability assay and was characterized further. Compound 53760866 caused reduction in cholera toxin secretion and expression of TcpA in vitro. The in vitro virulence attenuation corroborated well in a suckling mouse model in vivo, which showed reduction of colonization by V. cholerae NM06-058 when co-administered with 53760866. The screening method and the compounds may lead to new preventive strategies for cholera by reducing the pathogenicity of V. cholerae .

  5. Dienelactone hydrolase from Pseudomonas sp. strain B13.

    PubMed Central

    Ngai, K L; Schlömann, M; Knackmuss, H J; Ornston, L N

    1987-01-01

    Dienelactone hydrolase (EC 3.1.1.45) catalyzes the conversion of cis- or trans-4-carboxymethylenebut-2-en-4-olide (dienelactone) to maleylacetate. An approximately 24-fold purification from extracts of 3-chlorobenzoate-grown Pseudomonas sp. strain B13 yielded a homogeneous preparation of the enzyme. The purified enzyme crystallized readily and proved to be a monomer with a molecular weight of about 30,000. Each dienelactone hydrolase molecule contains two cysteinyl side chains. One of these was readily titrated by stoichiometric amounts of p-chloromercuribenzoate, resulting in inactivation of the enzyme; the inactivation could be reversed by the addition of dithiothreitol. The other cysteinyl side chain appeared to be protected in the native protein against chemical reaction with p-chloromercuribenzoate. The properties of sulfhydryl side chains in dienelactone hydrolase resembled those that have been characterized for bacterial 4-carboxymethylbut-3-en-4-olide (enol-lactone) hydrolases (EC 3.1.1.24), which also are monomers with molecular weights of about 30,000. The amino acid composition of the dienelactone hydrolase resembled the amino acid composition of enol-lactone hydrolase from Pseudomonas putida, and alignment of the NH2-terminal amino acid sequence of the dienelactone hydrolase with the corresponding sequence of an Acinetobacter calcoaceticus enol-lactone hydrolase revealed sequence identity at 8 of the 28 positions. These observations foster the hypothesis that the lactone hydrolases share a common ancestor. The lactone hydrolases differed in one significant property: the kcat of dienelactone hydrolase was 1,800 min-1, an order of magnitude below the kcat observed with enol-lactone hydrolases. The relatively low catalytic activity of dienelactone hydrolase may demand its production at the high levels observed for induced cultures of Pseudomonas sp. strain B13. PMID:3804973

  6. Bacterial Cyanuric Acid Hydrolase for Water Treatment

    PubMed Central

    Yeom, Sujin; Mutlu, Baris R.; Aksan, Alptekin

    2015-01-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  7. Purification, crystallization and preliminary X-ray analysis of aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum

    SciTech Connect

    Byrnes, Laura J.; Badarau, Adriana; Vakulenko, Sergei B.; Smith, Clyde A.

    2008-02-01

    APH(2′′)-Ic is an enzyme that is responsible for high-level gentamicin resistance in E. gallinarum isolates. Crystals of the wild-type enzyme and three mutants have been prepared and a complete X-ray diffraction data set was collected to 2.15 Å resolution from an F108L crystal. Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2′′)-Ic variants were crystallized in the presence of 14–20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris–HCl pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 Å, β = 108.8°. X-ray diffraction data were collected to approximately 2.15 Å resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.

  8. Integration of Cyclic di-GMP and Quorum Sensing in the Control of vpsT and aphA in Vibrio cholerae ▿ †

    PubMed Central

    Srivastava, Disha; Harris, Rebecca C.; Waters, Christopher M.

    2011-01-01

    Vibrio cholerae transitions between aquatic environmental reservoirs and infection in the gastrointestinal tracts of human hosts. The second-messenger molecule cyclic di-GMP (c-di-GMP) and quorum sensing (QS) are important signaling systems that enable V. cholerae to alternate between these distinct environments by controlling biofilm formation and virulence factor expression. Here we identify a conserved regulatory mechanism in V. cholerae that integrates c-di-GMP and QS to control the expression of two transcriptional regulators: aphA, an activator of virulence gene expression and an important regulator of the quorum-sensing pathway, and vpsT, a transcriptional activator that induces biofilm formation. Surprisingly, aphA expression was induced by c-di-GMP. Activation of both aphA and vpsT by c-di-GMP requires the transcriptional activator VpsR, which binds to c-di-GMP. The VpsR binding site at each of these promoters overlaps with the binding site of HapR, the master QS regulator at high cell densities. Our results suggest that V. cholerae combines information conveyed by QS and c-di-GMP to appropriately respond and adapt to divergent environments by modulating the expression of key transcriptional regulators. PMID:21926235

  9. Purification, crystallization and preliminary X-ray analysis of Enterococcus faecium aminoglycoside-2′′-phosphotransferase-Ib [APH(2′′)-Ib

    PubMed Central

    Walanj, Rupa; Young, Paul; Baker, Heather M.; Baker, Edward N.; Metcalf, Peter; Chow, Joseph W.; Lerner, Stephen; Vakulenko, Sergei; Smith, Clyde A.

    2005-01-01

    Bacterial resistance to the aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, APH(2′′)-Ib, has been cloned and the protein (comprising 299 amino-acid residues) expressed in Escherichia coli, purified and crystallized in the presence of 16%(w/v) PEG 3350 and gentamicin. The crystals belong to the monoclinic space group P21, with approximate unit-cell parameters a = 79.7, b = 58.8, c = 81.4 Å, β = 98.4°, and preliminary X-ray diffraction analysis is consistent with the presence of two molecules in the asymmetric unit. Synchrotron diffraction data to approximately 2.65 Å resolution were collected from a native APH(2′′)-Ib crystal at beamline BL9-2 at SSRL (Stanford, CA, USA). Selenium-substituted crystals have also been produced and structure determination is proceeding. PMID:16511055

  10. Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6′)-Ie-APH(2′′)-Ia revealed by crystallographic and small-angle X-ray scattering analysis

    PubMed Central

    Smith, Clyde A.; Toth, Marta; Weiss, Thomas M.; Frase, Hilary; Vakulenko, Sergei B.

    2014-01-01

    Broad-spectrum resistance to aminoglycoside antibiotics in clinically important Gram-positive staphylococcal and entero­coccal pathogens is primarily conferred by the bifunctional enzyme AAC(6′)-Ie-APH(2′′)-Ia. This enzyme possesses an N-terminal coenzyme A-dependent acetyltransferase domain [AAC(6′)-Ie] and a C-terminal GTP-dependent phosphotransferase domain [APH(2′′)-Ia], and together they produce resistance to almost all known aminoglycosides in clinical use. Despite considerable effort over the last two or more decades, structural details of AAC(6′)-Ie-APH(2′′)-Ia have remained elusive. In a recent breakthrough, the structure of the isolated C-terminal APH(2′′)-Ia enzyme was determined as the binary Mg2GDP complex. Here, the high-resolution structure of the N-terminal AAC(6′)-Ie enzyme is reported as a ternary kanamycin/coenzyme A abortive complex. The structure of the full-length bifunctional enzyme has subsequently been elucidated based upon small-angle X-ray scattering data using the two crystallographic models. The AAC(6′)-Ie enzyme is joined to APH(2′′)-Ia by a short, predominantly rigid linker at the N-terminal end of a long α-helix. This α-helix is in turn intrinsically associated with the N-terminus of APH(2′′)-Ia. This structural arrangement supports earlier observations that the presence of the intact α-helix is essential to the activity of both functionalities of the full-length AAC(6′)-Ie-APH(2′′)-Ia enzyme. PMID:25286858

  11. Glycoside Hydrolases across Environmental Microbial Communities

    PubMed Central

    Berlemont, Renaud

    2016-01-01

    Across many environments microbial glycoside hydrolases support the enzymatic processing of carbohydrates, a critical function in many ecosystems. Little is known about how the microbial composition of a community and the potential for carbohydrate processing relate to each other. Here, using 1,934 metagenomic datasets, we linked changes in community composition to variation of potential for carbohydrate processing across environments. We were able to show that each ecosystem-type displays a specific potential for carbohydrate utilization. Most of this potential was associated with just 77 bacterial genera. The GH content in bacterial genera is best described by their taxonomic affiliation. Across metagenomes, fluctuations of the microbial community structure and GH potential for carbohydrate utilization were correlated. Our analysis reveals that both deterministic and stochastic processes contribute to the assembly of complex microbial communities. PMID:27992426

  12. A simplified electrostatic model for hydrolase catalysis.

    PubMed

    Pessoa Filho, Pedro de Alcantara; Prausnitz, John M

    2015-07-01

    Toward the development of an electrostatic model for enzyme catalysis, the active site of the enzyme is represented by a cavity whose surface (and beyond) is populated by electric charges as determined by pH and the enzyme's structure. The electric field in the cavity is obtained from electrostatics and a suitable computer program. The key chemical bond in the substrate, at its ends, has partial charges with opposite signs determined from published force-field parameters. The electric field attracts one end of the bond and repels the other, causing bond tension. If that tension exceeds the attractive force between the atoms, the bond breaks; the enzyme is then a successful catalyst. To illustrate this very simple model, based on numerous assumptions, some results are presented for three hydrolases: hen-egg white lysozyme, bovine trypsin and bovine ribonuclease. Attention is given to the effect of pH.

  13. Activity of murein hydrolases in synchronized cultures of Escherichia coli.

    PubMed Central

    Hakenbeck, R; Messer, W

    1977-01-01

    Murein hydrolase activities were analyzed in synchronized cultures of Escherichia coli B/r. Cell wall-bound murein hydrolase activities, including the penicillin-sensitive endopeptidase, increased discontinuously during the cell cycle and showed maximum activity at a cell age of 30 to 35 min (generation time, 43 min). Maximum activity was observed at the same time that the rate of cell wall synthesis reached its maximum. These oscillations depended on the termination of replication: no increase in hydrolase activity was found if deoxyribonucleic acid synthesis was inhibited at an early time in the life cycle. In contrast, the activity of another murein hydrolase that was not tightly bound to the membrane (transglycosylase) increased exponentially with time, even when deoxyribonucleic acid synthesis was inhibited. PMID:321419

  14. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase

    PubMed Central

    Sharma, Arvind; Yogavel, Manickam; Sharma, Amit

    2016-01-01

    Malaria symptoms are driven by periodic multiplication cycles of Plasmodium parasites in human red blood corpuscles (RBCs). Malaria infection still accounts for ~600,000 annual deaths, and hence discovery of both new drug targets and drugs remains vital. In the present study, we have investigated the malaria parasite enzyme diadenosine tetraphosphate (Ap4A) hydrolase that regulates levels of signalling molecules like Ap4A by hydrolyzing them to ATP and AMP. We have tracked the spatial distribution of parasitic Ap4A hydrolase in infected RBCs, and reveal its unusual localization on the infected RBC membrane in subpopulation of infected cells. Interestingly, enzyme activity assays reveal an interaction between Ap4A hydrolase and the parasite growth inhibitor suramin. We also present a high resolution crystal structure of Ap4A hydrolase in apo- and sulphate- bound state, where the sulphate resides in the enzyme active site by mimicking the phosphate of substrates like Ap4A. The unexpected infected erythrocyte localization of the parasitic Ap4A hydrolase hints at a possible role of this enzyme in purinerigic signaling. In addition, atomic structure of Ap4A hydrolase provides insights for selective drug targeting. PMID:26829485

  15. Investigation of the mechanism of phosphonoacetaldehyde hydrolase

    SciTech Connect

    Hepburn, T.W.; Olsen, D.B.; Dunaway-Mariano, D.; Mariano, P.S.

    1986-05-01

    The authors are presently studying enzymes which catalyze the formation and cleavage of carbon phosphorous bonds. In 1970 LaNauze et. al. reported the isolation of one enzyme of interest - phosphonoacetaldehyde hydrolase from a mutant of Bacillus cereus. This enzyme catalyzes the hydrolysis of phosphonoaldehyde to acetaldehyde and inorganic phosphate. They have isolated phosphonatase from wild type B. cereus (grown on 2-aminoethylphosphonate as the P/sub i/ source) and have used /sup 1/H-NMR and /sup 31/P-NMR techniques to determine the products of the enzyme reaction as phosphate and acetaldehyde. The mechanism of the enzyme could involve the formation of a Schiff base between phosphonoacetaldehyde and lysine or it might only require Mg/sup + +/, an essential cofactor for activity. To distinguish between these possibilities they have begun to look at the Schiff base formation in more detail. NaBH/sub 4/ was found to inactivate the enzyme in the presence of substrate but not in its absence. This is consistent with results obtained for the enzyme isolated from the mutant bacteria. In addition treatment of the wild type enzyme with tritiated NaBH/sub 4/ resulted in significant incorporation of radiolabel into the protein as compared to the control. These results tentatively suggest that hydrolysis proceeds via a covalent imine intermediate.

  16. Human Valacyclovir Hydrolase/Biphenyl Hydrolase-Like Protein Is a Highly Efficient Homocysteine Thiolactonase

    PubMed Central

    McDonald, Matthew G.; Rademacher, Peter M.; MacCoss, Michael J.; Hsieh, Edward J.; Rettie, Allan E.; Furlong, Clement E.

    2014-01-01

    Homocysteinylation of lysine residues by homocysteine thiolactone (HCTL), a reactive homocysteine metabolite, results in protein aggregation and malfunction, and is a well-known risk factor for cardiovascular, autoimmune and neurological diseases. Human plasma paraoxonase-1 (PON1) and bleomycin hydrolase (Blmh) have been reported as the physiological HCTL detoxifying enzymes. However, the catalytic efficiency of HCTL hydrolysis by Blmh is low and not saturated at 20 mM HCTL. The catalytic efficiency of PON1 for HCTL hydrolysis is 100-fold lower than that of Blmh. A homocysteine thiolactonase (HCTLase) was purified from human liver and identified by mass spectrometry (MS) as the previously described human biphenyl hydrolase-like protein (BPHL). To further characterize this newly described HCTLase activity, BPHL was expressed in Escherichia coli and purified. The sequence of the recombinant BPHL (rBPHL) and hydrolytic products of the substrates HCTL and valacyclovir were verified by MS. We found that the catalytic efficiency (kcat/Km) of rBPHL for HCTL hydrolysis was 7.7 × 104 M−1s−1, orders of magnitude higher than that of PON1 or Blmh, indicating a more significant physiological role for BPHL in detoxifying HCTL. PMID:25333274

  17. Discovery libraries targeting the major enzyme classes: the serine hydrolases.

    PubMed

    Otrubova, Katerina; Srinivasan, Venkat; Boger, Dale L

    2014-08-15

    Two libraries of modestly reactive ureas containing either electron-deficient acyl anilines or acyl pyrazoles were prepared and are reported as screening libraries for candidate serine hydrolase inhibitors. Within each library is a small but powerful subset of compounds that serve as a chemotype fragment screening library capable of subsequent structural diversification. Elaboration of the pyrazole-based ureas provided remarkably potent irreversible inhibitors of fatty acid amide hydrolase (FAAH, apparent Ki=100-200 pM) complementary to those previously disclosed enlisting electron-deficient aniline-based ureas.

  18. Discovery libraries targeting the major enzyme classes: the serine hydrolases

    PubMed Central

    Otrubova, Katerina; Srinivasan, Venkat; Boger, Dale L.

    2014-01-01

    Two libraries of modestly reactive ureas containing either electron-deficient acyl anilines or acyl pyrazoles were prepared and are reported as screening libraries for candidate serine hydrolase inhibitors. Within each library is a small but powerful subset of compounds that serve as a chemotype fragment screening library capable of subsequent diversification. Elaboration of the pyrazole-based ureas provided remarkably potent irreversible structural inhibitors of fatty acid amide hydrolase (FAAH, apparent Ki = 100-200 pM) complementary to those previously disclosed enlisting electron-deficient aniline-based ureas. PMID:25037918

  19. Expression of key hydrolases for soy sauce fermentation in Zygosaccharomyces rouxii.

    PubMed

    Yuzuki, Masanobu; Matsushima, Kenichiro; Koyama, Yasuji

    2015-01-01

    Several key hydrolases in soy sauce fermentation such as proteases, peptidases, and glutaminases are supplied by Aspergillus sojae or Aspergillus oryzae. The genes encoding these hydrolases were successfully expressed in salt-tolerant yeast Zygosaccharomyces rouxii. These transformants are expected to supply extra hydrolases during soy sauce fermentation process.

  20. Deletion of the γ-secretase subunits Aph1B/C impairs memory and worsens the deficits of knock-in mice modeling the Alzheimer-like familial Danish dementia

    PubMed Central

    Biundo, Fabrizio; Ishiwari, Keita; Del Prete, Dolores; D'Adamio, Luciano

    2016-01-01

    Mutations in BRI2/ITM2b genes cause Familial British and Danish Dementias (FBD and FDD), which are pathogenically similar to Familial Alzheimer Disease (FAD). BRI2 inhibits processing of Amyloid precursor protein (APP), a protein involved in FAD pathogenesis. Accumulation of a carboxyl-terminal APP metabolite –β-CTF- causes memory deficits in a knock-in mouse model of FDD, called FDDKI. We have investigated further the pathogenic function of β-CTF studying the effect of Aph1B/C deletion on FDDKI mice. This strategy is based on the evidence that deletion of Aph1B/C proteins, which are components of the γ-secretase that cleaves β-CTF, results in stabilization of β-CTF and a reduction of Aβ. We found that both the FDD mutation and the Aph1B/C deficiency mildly interfered with spatial long term memory, spatial working/short-term memory and long-term contextual fear memory. In addition, the Aph1BC deficiency induced deficits in long-term cued fear memory. Moreover, the two mutations have additive adverse effects as they compromise the accuracy of spatial long-term memory and induce spatial memory retention deficits in young mice. Overall, the data are consistent with a role for β-CTF in the genesis of memory deficits. PMID:26942869

  1. ENGINEERING OF PEPTIDOGLYCAN HYDROLASES FOR CONTROL OF PATHOGENIC BACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophages are viruses exclusively infecting bacteria and therefore offer suitable tools for their detection and control. At the end of their multiplication cycle, most phages lyse their hosts from within by means of an endolysin (peptidoglycan hydrolase), thereby enabling release of the phage p...

  2. Curation of characterized glycoside hydrolases of Fungal origin

    PubMed Central

    Murphy, Caitlin; Powlowski, Justin; Wu, Min; Butler, Greg; Tsang, Adrian

    2011-01-01

    Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes. Database URL: http://mycoCLAP.fungalgenomics.ca/ PMID:21622642

  3. Recognition of corn defense chitinases by fungal polyglycine hydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave peptide bonds in the polyglycine interdomain linker of ChitA chitinase, an antifungal protein from domesticated corn (Zea mays ssp. mays). These target-specific endoproteases are unusual because they do not cut a defined pep...

  4. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virion-associated peptidoglycan hydrolases (VAPGH) are phage-encoded lytic enzymes that locally degrade the peptidoglycan (PG) of the bacterial cell wall during infection. Their action usually generates a small hole through which the phage tail crosses the cell envelope to inject the phage genetic m...

  5. ORGANOPHOSPHORUS HYDROLASE-BASED ASSAY FOR ORGANOPHOSPHATE PESTICIDES

    EPA Science Inventory

    We report a rapid and versatile Organophosphorus hydrolase (OPH)-based method for measurement of organophosphates. This assay is based on a substrate-dependent change in pH at the local vicinity of the enzyme. The pH change is monitored using fluorescein isothiocyanate (FITC), ...

  6. Novel microbial epoxide hydrolases for biohydrolysis of glycidyl derivatives.

    PubMed

    Kotik, Michael; Brichac, Jiri; Kyslík, Pavel

    2005-12-06

    Microbial isolates from biofilters and petroleum-polluted bioremediation sites were screened for the presence of enantioselective epoxide hydrolases active towards tert-butyl glycidyl ether, benzyl glycidyl ether, and allyl glycidyl ether. Out of 270 isolated strains, which comprised bacteria, yeasts, and filamentous fungi, four were selected based on the enantioselectivities of their epoxide hydrolases determined in biotransformation reactions. The enzyme of Aspergillus niger M200 preferentially hydrolyses (S)-tert-butyl glycidyl ether to (S)-3-tert-butoxy-1,2-propanediol with a relatively high enantioselectivity (the enantiomeric ratio E is about 30 at a reaction temperature of 28 degrees C). Epoxide hydrolases of Rhodotorula mucilaginosa M002 and Rhodococcus fascians M022 hydrolyse benzyl glycidyl ether with relatively low enantioselectivities, the former reacting predominantly with the (S)-enantiomer, the latter preferring the (R)-enantiomer. Enzymatic hydrolysis of allyl glycidyl ether by Cryptococcus laurentii M001 proceeds with low enantioselectivity (E=3). (R)-tert-Butyl glycidyl ether with an enantiomeric excess (ee) of over 99%, and (S)-3-tert-butoxy-1,2-propanediol with an ee-value of 86% have been prepared on a gram-scale using whole cells of A. niger M200. An enantiomeric ratio of approximately 100 has been determined under optimised biotransformation conditions with the partially purified epoxide hydrolase from A. niger M200. The regioselectivity of this enzyme was determined to be total for both (S)-tert-butyl glycidyl ether and (R)-tert-butyl glycidyl ether.

  7. DEVELOPMENT OF METABOLICALLY STABLE INHIBITORS OF MAMMALIAN MICROSOMAL EPOXIDE HYDROLASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microsomal epoxide hydrolase (mEH) plays a significant role in the metabolism of xenobiotics such as polyaromatic toxicants. Additionally, polymorphism studies have underlined a potential role of this enzyme in relation to a number of diseases, such as emphysema, spontaneous abortion, eclampsia ...

  8. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    SciTech Connect

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  9. Effect of alpha lipoic acid on leukotriene A4 hydrolase.

    PubMed

    Torres, María José; Fierro, Angélica; Pessoa-Mahana, C David; Romero-Parra, Javier; Cabrera, Gonzalo; Faúndez, Mario

    2017-03-15

    Leukotriene A4 hydrolase is a soluble enzyme with epoxide hydrolase and aminopeptidase activities catalysing the conversion of leukotriene A4 to leukotriene B4 and the hydrolysis of the peptide proline-glycine-proline. Imbalances in leukotriene B4 synthesis are related to several pathologic conditions. Currently there are no available drugs capable to modulate the synthesis of leukotriene B4 or to block its receptors. Here we show the inhibitory profile of alpha lipoic acid on the activity of leukotriene A4 Hydrolase. Alpha lipoic acid inhibited both activities of the enzyme at concentrations lower than 10μM. The 5-lipoxygenase inhibitor zileuton, or the 5-lipoxygenase activating protein inhibitor MK-886, were unable to inhibit the activity of the enzyme. Acute promyelocytic leukaemia HL-60 cells were differentiated to leukotriene A4 hydrolase expressing neutrophil-like cells. Alpha lipoic acid inhibited the aminopeptidase activity of the cytosolic fraction from neutrophil-like cells but had no effect on the cytosolic fraction from undifferentiated cells. Docking and molecular dynamic approximations revealed that alpha lipoic acid participates in electrostatic interactions with K-565 and R-563, which are key residues for the carboxylate group recognition of endogenous substrates by the enzyme. Alpha lipoic acid is a compound widely used in clinical practice, most of its therapeutic effects are associated with its antioxidants properties, however, antioxidant effect alone is unable to explain all clinical effects observed with alpha lipoic acid. Our results invite to evaluate the significance of the inhibitory effect of alpha lipoic acid on the catalytic activity of leukotriene A4 hydrolase using in vivo models.

  10. Cytosolic and microsomal epoxide hydrolases are immunologically distinguishable from each other in the rat and mouse.

    PubMed

    Guenthner, T M; Hammock, B D; Vogel, U; Oesch, F

    1981-04-10

    Antibodies raised to homogeneous rat liver microsomal epoxide hydrolase were used to distinguish microsomal epoxide hydrolase from epoxide hydrolase of cytosolic origin in mice and rats. Using double diffusion analysis in agarose gels, we show that anti-rat liver microsomal epoxide hydrolase forms a single precipitin line with solubilized microsomes from rat and mouse liver, but no reaction is seen with the corresponding cytosolic fractions. Rat or mouse microsomal epoxide hydrolase activity (using benzo[a]pyrene 4,5-oxide as substrate) can be completely precipitated out of solubilized preparations by the antibody, which is equipotent against rat and mouse microsomal epoxide hydrolase. No precipitation of cytosolic hydrolase activity (using trans-beta-ethyl styrene oxide as substrate) is seen with any concentration of the antibody tested. Thus, in the case of microsomal epoxide hydrolase, extensive immunological cross-reactivity exists between the two species, rat and mouse. In contrast, no cross-reactivity is detectable between cytosolic and microsomal epoxide hydrolase, even when enzymes from the same species are compared. We conclude that microsomal and cytosolic epoxide hydrolase activities represent distinct and immunologically non-cross-reactive protein species.

  11. Diversity and Biocatalytic Potential of Epoxide Hydrolases Identified by Genome Analysis†

    PubMed Central

    van Loo, Bert; Kingma, Jaap; Arand, Michael; Wubbolts, Marcel G.; Janssen, Dick B.

    2006-01-01

    Epoxide hydrolases play an important role in the biodegradation of organic compounds and are potentially useful in enantioselective biocatalysis. An analysis of various genomic databases revealed that about 20% of sequenced organisms contain one or more putative epoxide hydrolase genes. They were found in all domains of life, and many fungi and actinobacteria contain several putative epoxide hydrolase-encoding genes. Multiple sequence alignments of epoxide hydrolases with other known and putative α/β-hydrolase fold enzymes that possess a nucleophilic aspartate revealed that these enzymes can be classified into eight phylogenetic groups that all contain putative epoxide hydrolases. To determine their catalytic activities, 10 putative bacterial epoxide hydrolase genes and 2 known bacterial epoxide hydrolase genes were cloned and overexpressed in Escherichia coli. The production of active enzyme was strongly improved by fusion to the maltose binding protein (MalE), which prevented inclusion body formation and facilitated protein purification. Eight of the 12 fusion proteins were active toward one or more of the 21 epoxides that were tested, and they converted both terminal and nonterminal epoxides. Four of the new epoxide hydrolases showed an uncommon enantiopreference for meso-epoxides and/or terminal aromatic epoxides, which made them suitable for the production of enantiopure (S,S)-diols and (R)-epoxides. The results show that the expression of epoxide hydrolase genes that are detected by analyses of genomic databases is a useful strategy for obtaining new biocatalysts. PMID:16597997

  12. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.

    PubMed

    Hiraishi, Tomohiro

    2016-02-01

    Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2.

  13. pHluorin-based in vivo assay for hydrolase screening.

    PubMed

    Schuster, Sascha; Enzelberger, Markus; Trauthwein, Harald; Schmid, Rolf D; Urlacher, Vlada B

    2005-05-01

    pHluorin, a pH-sensitive mutant of green fluorescent protein (GFP), acts as a sensor for intracellular pH shifts, triggered by hydrolytic enzymes. This principle was used to develop a pHluorin-based in vivo assay for hydrolase screening. The presented assay was evaluated for Escherichia coli (E. coli) cells, producing heterologous pHluorin and an esterase from Geobacillus stearothermophilus which is considered as a model hydrolase. Subsequently, the utility of this detection system was also demonstrated with recombinantly expressed hydantoinase and amidase in E. coli. This in vivo assay also shows capability for readout with flow cytometric devices. Population shifts of pHluorin-expressing E. coli cells were easily recognized due to pH changes caused by substrate hydrolysis.

  14. Potent Urea and Carbamate Inhibitors of Soluble Epoxide Hydrolases

    NASA Astrophysics Data System (ADS)

    Morisseau, Christophe; Goodrow, Marvin H.; Dowdy, Deanna; Zheng, Jiang; Greene, Jessica F.; Sanborn, James R.; Hammock, Bruce D.

    1999-08-01

    The soluble epoxide hydrolase (sEH) plays a significant role in the biosynthesis of inflammation mediators as well as xenobiotic transformations. Herein, we report the discovery of substituted ureas and carbamates as potent inhibitors of sEH. Some of these selective, competitive tightbinding inhibitors with nanomolar Ki values interacted stoichiometrically with the homogenous recombinant murine and human sEHs. These inhibitors enhance cytotoxicity of trans-stilbene oxide, which is active as the epoxide, but reduce cytotoxicity of leukotoxin, which is activated by epoxide hydrolase to its toxic diol. They also reduce toxicity of leukotoxin in vivo in mice and prevent symptoms suggestive of acute respiratory distress syndrome. These potent inhibitors may be valuable tools for testing hypotheses of involvement of diol and epoxide lipids in chemical mediation in vitro or in vivo systems.

  15. Isolation and characterization of Xenopus soluble epoxide hydrolase.

    PubMed

    Purba, Endang R; Oguro, Ami; Imaoka, Susumu

    2014-07-01

    Soluble epoxide hydrolase (sEH) contributes to cell growth, but the contribution of sEH to embryonic development is not well understood. In this study, Xenopus sEH cDNA was isolated from embryos of Xenopus laevis. The Xenopus sEH was expressed in Escherichia coli and was purified. The epoxide hydrolase and phosphatase activities of purified sEH were investigated. The Xenopus sEH did not show phosphatase activity toward 4-methylumbelliferyl phosphate or several lysophosphatidic acids although it had EH activity. The amino acid sequence of Xenopus sEH was compared with that reported previously. We found amino acid substitutions of the 29th Thr to Asn and the 146th Arg to His and prepared a sEH mutant (N29T/H146R), designed as mutant 1. Neither wild-type sEH nor mutant 1 had phosphatase activity. Additional substitution of the 11th Gly with Asp was found by comparison with human sEH which has phosphatase activity, but the Xenopus sEH mutant G11D prepared as mutant 2 did not have phosphatase activity. The epoxide hydrolase activity of sEH seemed to be similar to that of human sEH, while Xenopus sEH did not have phosphatase activity toward several substrates that human sEH metabolizes.

  16. Human lung hydrolases delineate Mycobacterium tuberculosis-macrophage interactions and the capacity to control infection.

    PubMed

    Arcos, Jesús; Sasindran, Smitha J; Fujiwara, Nagatoshi; Turner, Joanne; Schlesinger, Larry S; Torrelles, Jordi B

    2011-07-01

    Pulmonary surfactant contains homeostatic and antimicrobial hydrolases. When Mycobacterium tuberculosis is initially deposited in the terminal bronchioles and alveoli, as well as following release from lysed macrophages, bacilli are in intimate contact with these lung surfactant hydrolases. We identified and measured several hydrolases in human alveolar lining fluid and lung tissue that, at their physiological concentrations, dramatically modified the M. tuberculosis cell envelope. Independent of their action time (15 min to 12 h), the effects of the hydrolases on the M. tuberculosis cell envelope resulted in a significant decrease (60-80%) in M. tuberculosis association with, and intracellular growth of the bacteria within, human macrophages. The cell envelope-modifying effects of the hydrolases also led to altered M. tuberculosis intracellular trafficking and induced a protective proinflammatory response to infection. These findings add a new concept to our understanding of M. tuberculosis-macrophage interactions (i.e., the impact of lung surfactant hydrolases on M. tuberculosis infection).

  17. Swapped green algal promoters: aphVIII-based gene constructs with Chlamydomonas flanking sequences work as dominant selectable markers in Volvox and vice versa.

    PubMed

    Hallmann, A; Wodniok, S

    2006-06-01

    Production of transgenic organisms is a well-established, versatile course of action in molecular biology. Genetic engineering often requires heterologous, dominant antibiotic resistance genes that have been used as selectable markers in many species. However, as heterologous 5' and 3' flanking sequences often result in very low expression rates, endogenous flanking sequences, especially promoters, are mostly required and are easily obtained in model organisms, but it is much more complicated and time-consuming to get appropriate sequences from less common organisms. In this paper, we show that aminoglycoside 3'-phosphotransferase gene (aphVIII) based constructs with 3' and 5' untranslated flanking sequences (including promoters) from the multicellular green alga Volvox work in the unicellular green alga Chlamydomonas and flanking sequences from Chlamydomonas work in Volvox, at least if a low expression rate is compensated by an enforced high gene dosage. This strategy might be useful for all investigators that intend to transform species in which genomic sequences are not available, but sequences from related organisms exist.

  18. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    SciTech Connect

    Tyler, Ludmila; Bragg, Jennifer; Wu, Jiajie; Yang, Xiaohan; Tuskan, Gerald A; Vogel, John

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta. Insights

  19. Contribution of hydrolase and phosphatase domains in soluble epoxide hydrolase to vascular endothelial growth factor expression and cell growth.

    PubMed

    Oguro, Ami; Sakamoto, Koichi; Suzuki, Sachiko; Imaoka, Susumu

    2009-12-01

    Soluble epoxide hydrolase (sEH) is an important pharmacological target because it metabolizes potent bioactive substrates, epoxyeicosatrienoinc acids (EETs) and other lipid epoxide. EETs have a variety of biological functions including angiogenesis and cancer metastasis. However, the regulation and physiological function of sEH is not well understood. In this study, we found that hypoxia significantly suppressed the expression of sEH in mouse liver and a human hepatoma cell line, Hep3B. Hypoxia promotes the proliferation of vascular endothelial cells or carcinoma cells. Knockdown of sEH in Hep3B cells induced vascular endothelial growth factor (VEGF) mRNA and cell growth, both of which were suppressed by overexpression of sEH. sEH has phosphatase activity as well as epoxide hydrolase (EH) activity. We prepared mutant clones which lacking EH or phosphatase activity using the amino acid change Asp335Ser or Asp9Ala, respectively. The effects of WT sEH on cell growth were lost by mutation of either the EH domain or phosphatase domain. However, mutation of the phosphatase domain but not EH domain did not influence the expression of VEGF. These results suggest that sEH plays an important role in the physiology of cells including proliferation and that the epoxide hydrolase and phosphatase domains of sEH have different biological functions.

  20. Immunohistochemical study of epoxide hydrolase induced by trichloroethylene in rat liver

    SciTech Connect

    Kawamoto, T.; Hobara, T.; Ogino, K.; Takemoto, T.; Nakamura, K.; Imamura, A.; Koshiro, A.; Kobayashi, H.; Iwamoto, S.; Sakai, T.

    1987-10-01

    Epoxide hydrolase catalyzes the hydrolation of potentially toxic, electrophilic epoxides that are often generated during cytochrome P-450 catalyzed monooxigenation, forming the corresponding transdihydrodiols. It is well-known that trichloroethylene is metabolized by cytochrome P-450 containing mixed-function oxidase systems to trichloroethylene oxide, which decomposes to other metabolites. As trichloroethylene is an epoxide, epoxide hydrolase is suspected to catalyze the hydrolation of trichloroethylene oxide. No reports have appeared about the relationship between trichloroethylene and epoxide hydrolase. In this report, the authors studied the effect of trichloroethylene on epoxide hydrolase immunohistochemically.

  1. The Responses of Rat Intestinal Brush Border and Cytosol Peptide Hydrolase Activities to Variation in Dietary Protein Content DIETARY REGULATION OF INTESTINAL PEPTIDE HYDROLASES

    PubMed Central

    Nicholson, J. Alex; McCarthy, Denis M.; Kim, Young S.

    1974-01-01

    The effects of variation in dietary protein content on small intestinal brush border and cytosol peptide hydrolase activities have been investigated. One group of rats was fed a high protein diet (55% casein) and another group was fed a low protein diet (10% casein). After 1 wk, brush border peptide hydrolase activity (L-leucyl-β-naphthylamide as substrate) and cytosol peptide hydrolase activity (L-prolyl-L-leucine as substrate) were determined in mucosae taken from the proximal, middle, and distal small intestine. As judged by several parameters, brush border peptide hydrolase activity was significantly greater in rats fed the high protein diet when data for corresponding segments were compared. In contrast, no significant difference was seen in cytosol peptide hydrolase activity. In a second study, brush border and cytosol peptide hydrolase activities were determined in the proximal intestine by utilizing an additional three peptide substrates: L-leucyl-L-alanine, L-phenylalanylglycine, and glycyl-L-phenylalanine. Sucrase, maltase, and alkaline phosphatase activities were also determined. As before, brush border peptide hydrolase activities were significantly greater in rats fed the high protein diet. However, activities of the nonproteolytic brush border enzymes did not vary significantly with diet. In contrast to the results obtained with L-prolyl-L-leucine as substrate for the cytosol enzymes, cytosol activity against the three additional peptide substrates was greater in rats fed the high protein diet. It is suggested that the brush border peptide hydrolase response to variation in dietary protein content represents a functional adaptation analogous to the regulation of intestinal disaccharidases by dietary carbohydrates. The implication of the differential responses of the cytosol peptide hydrolases is uncertain, since little is known of the functional role of these nonorgan-specific enzymes. PMID:4430719

  2. Enzymatic degradation of monocrotophos by extracellular fungal OP hydrolases.

    PubMed

    Jain, Rachna; Garg, Veena

    2013-11-01

    The present study explores the potential of extracellular fungal organophosphate (OP) hydrolase for the degradation of monocrotophos. Extracellular OP hydrolases were isolated and purified from five different fungal isolates viz. Aspergillus niger (M1), Aspergillus flavus (M2), Penicillium aculeatum (M3), Fusarium pallidoroseum (M4), and Macrophomina sp. (M5) by AmSO4 precipitation, dialysis, and G-100 chromatography. M3 showed highest percentage yield of 68.81 followed by 55.41 % for M1. Each of the purified enzyme fraction constituted of two different subunits of 33- and 67-kDa molecular weight. Optimum enzyme fraction (150 μg ml(-1)) rapidly degraded monocrotophos within 120 h in phosphorus-free liquid culture medium (CZM) with K deg of 0.0368, 0.0138, 0.048, 0.016, 0.0138, and 0.048 day(-1) and half-life of 0.79, 2.11, 0.6, 1.8, and 2.11 days for M1, M2, M3, M4, and M5, respectively. The results were further confirmed by high performance thin layer chromatography and Fourier transform infrared which indicate the disappearance of monocrotophos by hydrolytic cleavage of vinyl phosphate bond. The overall order of enzymatic degradation was found to be P. aculeatum > A. niger > F. pallidoroseum > A. flavus = Macrophomina sp. Hence, the study concludes that extracellular OP hydrolases efficiently degraded monocrotophos and could be used as a potential candidate for the detoxification of this neurotoxin pesticide.

  3. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  4. Inverting hydrolases and their use in enantioconvergent biotransformations

    PubMed Central

    Schober, Markus; Faber, Kurt

    2013-01-01

    Owing to the more abundant occurrence of racemic compounds compared to prochiral or meso forms, most enantiomerically pure products are obtained via racemate resolution. This review summarizes (chemo)enzymatic enantioconvergent processes based on the use of hydrolytic enzymes, which are able to invert a stereocenter during catalysis that can overcome the 50%-yield limitation of kinetic resolution. Recent developments are presented in the fields of inverting or retaining sulfatases, epoxide hydrolases and dehalogenases, which allow the production of secondary alcohols or vicinal diols at a 100% theoretical yield from a racemate via enantioconvergent processes. PMID:23809848

  5. Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein.

    PubMed Central

    Mulbry, W W; Karns, J S

    1989-01-01

    The sequence of a 1,693-base-pair plasmid DNA fragment from Flavobacterium sp. strain ATCC 27551 containing the parathion hydrolase gene (opd) was determined. Within this sequence, there is only one open reading frame large enough to encode the 35,000-dalton membrane-associated hydrolase protein purified from Flavobacterium extracts. Amino-terminal sequence analysis of the purified Flavobacterium hydrolase demonstrated that serine is the amino-terminal residue of the hydrolase protein. The amino-terminal serine corresponds to a TCG codon located 87 base pairs downstream of the presumptive ATG initiation codon in the nucleotide sequence. The amino acid composition of the purified protein agrees well with that predicted from the nucleotide sequence, using serine as the amino-terminal residue. These data suggest that the parathion hydrolase protein is processed at its amino terminus in Flavobacterium sp. Construction in Escherichia coli of a lacZ-opd gene fusion in which the first 33 amino-terminal residues of opd were replaced by the first 5 residues of lacZ resulted in the production of an active hydrolase identical in molecular mass to the hydrolase isolated from Flavobacterium sp. E. coli cells containing the lacZ-opd fusion showed higher levels of hydrolase activity than did cells containing the parent plasmid. Images PMID:2556372

  6. Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein.

    PubMed

    Mulbry, W W; Karns, J S

    1989-12-01

    The sequence of a 1,693-base-pair plasmid DNA fragment from Flavobacterium sp. strain ATCC 27551 containing the parathion hydrolase gene (opd) was determined. Within this sequence, there is only one open reading frame large enough to encode the 35,000-dalton membrane-associated hydrolase protein purified from Flavobacterium extracts. Amino-terminal sequence analysis of the purified Flavobacterium hydrolase demonstrated that serine is the amino-terminal residue of the hydrolase protein. The amino-terminal serine corresponds to a TCG codon located 87 base pairs downstream of the presumptive ATG initiation codon in the nucleotide sequence. The amino acid composition of the purified protein agrees well with that predicted from the nucleotide sequence, using serine as the amino-terminal residue. These data suggest that the parathion hydrolase protein is processed at its amino terminus in Flavobacterium sp. Construction in Escherichia coli of a lacZ-opd gene fusion in which the first 33 amino-terminal residues of opd were replaced by the first 5 residues of lacZ resulted in the production of an active hydrolase identical in molecular mass to the hydrolase isolated from Flavobacterium sp. E. coli cells containing the lacZ-opd fusion showed higher levels of hydrolase activity than did cells containing the parent plasmid.

  7. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we ann...

  8. Hydration of vinyl ether groups by unsaturated glycoside hydrolases and their role in bacterial pathogenesis.

    PubMed

    Hashimoto, Wataru; Itoh, Takafumi; Maruyama, Yukie; Mikami, Bunzo; Murata, Kousaku

    2007-12-01

    Many pathogenic microorganisms invade mammalian and/or plant cells by producing polysaccharide-degrading enzymes (lyases and hydrolases). Mammalian glycosaminoglycans and plant pectins that form part of the cell surface matrix are typical targets for these microbial enzymes. Unsaturated glycoside hydrolase catalyzes the hydrolytic release of an unsaturated uronic acid from oligosaccharides, which are produced through the reaction of matrix-degrading polysaccharide lyase. This enzymatic ability suggests that unsaturated glycoside hydrolases function as virulence factors in microbial infection. This review focuses on the molecular identification, bacterial distribution, and structure/function relationships of these enzymes. In contrast to general glycoside hydrolases, in which the catalytic mechanism involves the retention or inversion of an anomeric configuration, unsaturated glycoside hydrolases uniquely trigger the hydrolysis of vinyl ether groups in unsaturated saccharides but not of their glycosidic bonds.

  9. Marine extremophiles: a source of hydrolases for biotechnological applications.

    PubMed

    Dalmaso, Gabriel Zamith Leal; Ferreira, Davis; Vermelho, Alane Beatriz

    2015-04-03

    The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.

  10. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    PubMed Central

    Dalmaso, Gabriel Zamith Leal; Ferreira, Davis; Vermelho, Alane Beatriz

    2015-01-01

    The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications. PMID:25854643

  11. Acetylcarnitine hydrolase activity in bovine caudal epididymal spermatozoa

    SciTech Connect

    Bruns, K.; Foster, R.A.; Casillas, E.R.

    1986-05-01

    Recently, the authors identified mM concentrations of acetylcarnitine in epidiymal fluids and have investigated the metabolism of acetylcarnitine by bovine and hamster caudal epididymal spermatozoa. (1-/sup 14/C)acetyl-L-carnitine is oxidized to /sup 14/CO/sub 2/ by washed, intact hamster and bovine sperm at maximal rates of 8.4 and 15.2 nmol/hr/10/sup 7/ cells respectively. Conversely, the carnitine moiety of acetyl-L-(/sup 3/H-methyl)carnitine is not accumulated by sperm under similar conditions. Hydrolysis of (/sup 3/H)acetyl-L-carnitine and competition of uptake of (/sup 3/H)acetate by unlabeled acetate was demonstrated in incubations of intact cells of both species. The amount of (/sup 3/H)acetate accumulated in the incubation medium is time-dependent and also depends on the concentration of unlabeled acetate. A partial solubilization of acetylcarnitine hydrolase activity from washed, intact bovine caudal epididymal spermatozoa in buffer or 0.01% Triton X-100 is observed. There is an enrichment of acetylcarnitine hydrolase activity in purified plasma membranes from bovine caudal epididymal spermatozoa when compared to the activity present in broken cell preparations or other cellular fractions. The results suggest that acetylcarnitine is a substrate for spermatozoa as they traverse the epididymis.

  12. Recovering glycoside hydrolase genes from active tundra cellulolytic bacteria.

    PubMed

    Pinnell, Lee J; Dunford, Eric; Ronan, Patrick; Hausner, Martina; Neufeld, Josh D

    2014-07-01

    Bacteria responsible for cellulose hydrolysis in situ are poorly understood, largely because of the relatively recent development of cultivation-independent methods for their detection and characterization. This study combined DNA stable-isotope probing (DNA-SIP) and metagenomics for identifying active bacterial communities that assimilated carbon from glucose and cellulose in Arctic tundra microcosms. Following DNA-SIP, bacterial fingerprint analysis of gradient fractions confirmed isotopic enrichment. Sequenced fingerprint bands and clone library analysis of 16S rRNA genes identified active bacterial taxa associated with cellulose-associated labelled DNA, including Bacteroidetes (Sphingobacteriales), Betaproteobacteria (Burkholderiales), Alphaproteobacteria (Caulobacteraceae), and Chloroflexi (Anaerolineaceae). We also compared glycoside hydrolase metagenomic profiles from bulk soil and heavy DNA recovered from DNA-SIP incubations. Active populations consuming [(13)C]glucose and [(13)C]cellulose were distinct, based on ordinations of light and heavy DNA. Metagenomic analysis demonstrated a ∼3-fold increase in the relative abundance of glycoside hydrolases in DNA-SIP libraries over bulk-soil libraries. The data also indicate that multiple displacement amplification introduced bias into the resulting metagenomic analysis. This research identified DNA-SIP incubation conditions for glucose and cellulose that were suitable for Arctic tundra soil and confirmed that DNA-SIP enrichment can increase target gene frequencies in metagenomic libraries.

  13. Peripheral FAAH and soluble epoxide hydrolase inhibitors are synergistically antinociceptive.

    PubMed

    Sasso, Oscar; Wagner, Karen; Morisseau, Christophe; Inceoglu, Bora; Hammock, Bruce D; Piomelli, Daniele

    2015-07-01

    We need better medicines to control acute and chronic pain. Fatty acid amide hydrolase (FAAH) and soluble epoxide hydrolase (sEH) catalyze the deactivating hydrolysis of two classes of bioactive lipid mediators--fatty acid ethanolamides (FAEs) and epoxidized fatty acids (EpFAs), respectively--which are biogenetically distinct but share the ability to attenuate pain responses and inflammation. In these experiments, we evaluated the antihyperalgesic activity of small-molecule inhibitors of FAAH and sEH, administered alone or in combination, in two pain models: carrageenan-induced hyperalgesia in mice and streptozocin-induced allodynia in rats. When administered separately, the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl)urea (TPPU) and the peripherally restricted FAAH inhibitor URB937 were highly active in the two models. The combination TPPU plus URB937 was markedly synergistic, as assessed using isobolographic analyses. The results of these experiments reveal the existence of a possible functional crosstalk between FAEs and EpFAs in regulating pain responses. Additionally, the results suggest that combinations of sEH and FAAH inhibitors might be exploited therapeutically to achieve greater analgesic efficacy.

  14. Mechanistic Investigations of Unsaturated Glucuronyl Hydrolase from Clostridium perfringens*

    PubMed Central

    Jongkees, Seino A. K.; Yoo, Hayoung; Withers, Stephen G.

    2014-01-01

    Experiments were carried out to probe the details of the hydration-initiated hydrolysis catalyzed by the Clostridium perfringens unsaturated glucuronyl hydrolase of glycoside hydrolase family 88 in the CAZy classification system. Direct 1H NMR monitoring of the enzymatic reaction detected no accumulated reaction intermediates in solution, suggesting that rearrangement of the initial hydration product occurs on-enzyme. An attempt at mechanism-based trapping of on-enzyme intermediates using a 1,1-difluoro-substrate was unsuccessful because the probe was too deactivated to be turned over by the enzyme. Kinetic isotope effects arising from deuterium-for-hydrogen substitution at carbons 1 and 4 provide evidence for separate first-irreversible and overall rate-determining steps in the hydration reaction, with two potential mechanisms proposed to explain these results. Based on the positioning of catalytic residues in the enzyme active site, the lack of efficient turnover of a 2-deoxy-2-fluoro-substrate, and several unsuccessful attempts at confirmation of a simpler mechanism involving a covalent glycosyl-enzyme intermediate, the most plausible mechanism is one involving an intermediate bearing an epoxide on carbons 1 and 2. PMID:24573682

  15. Structure of unsaturated rhamnogalacturonyl hydrolase complexed with substrate

    SciTech Connect

    Itoh, Takafumi; Ochiai, Akihito; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku . E-mail: kmurata@kais.kyoto-u.ac.jp

    2006-09-08

    Bacillus subtilis strain 168 YteR has been identified as a novel enzyme 'unsaturated rhamnogalacturonyl hydrolase' classified in glycoside hydrolase family 105. This enzyme acts specifically on unsaturated rhamnogalacturonan (RG) produced from plant cell wall RG type-I treated with RG lyases, releasing unsaturated galacturonic acid ({delta}GalA) from the substrate. The most likely candidate catalytic residue is Asp-143. Here, we show the structure of D143N in complex with unsaturated RG disaccharide (substrate) determined at 1.9 A resolution by X-ray crystallography. This structural feature directly contributes to the postulation of the enzyme reaction mechanism. YteR triggers the hydration of vinyl ether group in {delta}GalA, but not of glycoside bond, by using Asp-143 as a general acid and base catalyst. Asp-143 donates proton to the double bond of {delta}GalA as an acid catalyst and also deprotonates a water molecule as a base catalyst. Deprotonated water molecule attacks the C5 atom of {delta}GalA.

  16. A Proton Wire and Water Channel Revealed in the Crystal Structure of Isatin Hydrolase

    PubMed Central

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan K.; Jochimsen, Bjarne; Etzerodt, Michael; Morth, J. Preben

    2014-01-01

    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to a novel family of metalloenzymes that include the bacterial kynurenine formamidase. The product state, mimicked by bound thioisatinate, reveals a water molecule that bridges the thioisatinate to a proton wire in an adjacent water channel and thus allows the proton released by the reaction to escape only when the product is formed. The functional proton wire present in isatin hydrolase isoform b represents a unique catalytic feature common to all hydrolases is here trapped and visualized for the first time. The local molecular environment required to coordinate thioisatinate allows stronger and more confident identification of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora. PMID:24917679

  17. A molecular model for the active site of S-adenosyl- l-homocysteine hydrolase

    NASA Astrophysics Data System (ADS)

    Yeh, Jerry C.; Borchardt, Ronald T.; Vedani, Angelo

    1991-06-01

    S-adenosyl- l-homocysteine hydrolase (AdoHcy hydrolase, EC 3.3.1.1.), a specific target for antiviral drug design, catalyzes the hydrolysis of AdoHcy to adenosine (Ado) and homocysteine (Hcy) as well as the synthesis of AdoHcy from Ado and Hcy. The enzyme isolated from different sources has been shown to contain tightly bound NAD+. Based on the 2.0 Å-resolution X-ray crystal structure of dogfish lactate dehydrogenase (LDH), which is functionally homologous to AdoHcy hydrolase, and the primary sequence of rat liver AdoHcy hydrolase, we have derived a molecular model of an extended active site for AdoHcy hydrolase. The computational mutation was performed using the software MUTAR (Yeh et al., University of Kansas, Lawrence), followed by molecular mechanics optimizations using the programs AMBER (Singh et al., University of California, San Francisco) and YETI (Vedani, University of Kansas). Solvation of the model structure was achieved by use of the program SOLVGEN (Jacober, University of Kansas); 56 water molecules were explicitly included in all refinements. Some of these may be involved in the catalytic reaction. We also studied a model of the complex of AdoHcy hydrolase with NAD+, as well as the ternary complexes of the redox reaction catalyzed by AdoHcy hydrolase and has been used to differentiate the relative binding strength of inhibitors.

  18. Expanding the Cyanuric Acid Hydrolase Protein Family to the Fungal Kingdom

    PubMed Central

    Dodge, Anthony G.; Preiner, Chelsea S.

    2013-01-01

    The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the present study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of nitrogen. A reverse-genetic approach identified a fungal cyanuric acid hydrolase gene composed of two exons and one intron. The translated spliced sequence was 39 to 53% identical to previously characterized bacterial cyanuric acid hydrolases. The sequence was used to generate a gene optimized for expression in Escherichia coli and encoding an N-terminally histidine-tagged protein. The protein was purified by nickel affinity and anion-exchange chromatography. The purified protein was shown by 13C nuclear magnetic resonance (13C-NMR) to produce carboxybiuret as the product, which spontaneously decarboxylated to yield biuret and carbon dioxide. The protein was very narrow in substrate specificity, showing activity only with cyanuric acid and N-methyl cyanuric acid. Barbituric acid was an inhibitor of enzyme activity. Sequence analysis identified genes with introns in other fungi from the Ascomycota that, if spliced, are predicted to encode proteins with cyanuric acid hydrolase activity. The Ascomycota cyanuric acid hydrolase homologs are most closely related to cyanuric acid hydrolases from Actinobacteria. PMID:24039269

  19. Identification and characterization of a new epoxide hydrolase from mouse liver microsomes.

    PubMed

    Guenthner, T M; Oesch, F

    1983-12-25

    A new microsomal epoxide hydrolase (mEH2) has been identified and characterized. This enzyme has properties which distinguish it from previously described cytosolic (cEH) or membrane-bound (mEH1) epoxide hydrolases. The enzyme is an integral microsomal protein which is not dissociated from the membrane by repeated washing, high ionic strength salt, or chaotropic agent solutions, or by sonication. It is very different from the normally described microsomal epoxide hydrolase (mEH1) as shown by its different substrate specificity and kinetic properties and by immunological criteria. In contrast to the hitherto described microsomal epoxide hydrolase, mEH1, the new enzyme effectively catalyzes the hydration of transdisubstituted oxiranes such as trans-stilbene oxide and trans-beta-ethyl styrene oxide and has no appreciable activity toward benzo(a)pyrene 4,5-oxide. It is also structurally distinct, in that it does not cross-react with antibodies raised against the normally described microsomal epoxide hydrolase mEH1. This newly described microsomal epoxide hydrolase probably represents an important factor in the control of reactive epoxides; its location in the membrane ensures access to lipophilic epoxides generated by membrane-bound monooxygenases, and its substrate specificity is such that it can hydrolyze epoxides poorly metabolized by the previously described microsomal epoxide hydrolase.

  20. Characterization of multiple epoxide hydrolase activities in mouse liver nuclear envelope.

    PubMed

    Guenthner, T M

    1986-10-01

    A nuclear envelope-associated epoxide hydrolase in mouse liver that hydrates trans-stilbene oxide has been identified and characterized. This epoxide hydrolase is distinct from the enzyme in nuclear envelopes that hydrates benzo[a]pyrene 4,5-oxide and other arene oxides. This distinction was demonstrated by the criteria of pH optima, response to specific inhibitors in vitro, and precipitation by specific antibodies. The new epoxide hydrolase had a pH optimum of 6.8, was poorly inhibited by trichloropropene oxide, was potently inhibited by 4-phenylchalcone oxide, and did not bind to antiserum against benzo[a]pyrene 4,5-oxide hydrolase. This nuclear enzyme is similar in many of its properties to cytosolic and microsomal trans-stilbene oxide hydrolases and may be nuclear envelope-bound form of these other epoxide hydrolases. It differed from these other trans-stilbene oxide hydrolases in that its affinities for both trans-stilbene oxide (measured as apparent Km) and 4-phenylchalcone oxide (measured as I50) were 4- to 20-fold lower than those of either the cytosolic or microsomal forms.

  1. Sulfonyl Fluoride Inhibitors of Fatty Acid Amide Hydrolase

    PubMed Central

    Alapafuja, Shakiru O.; Nikas, Spyros P.; Bharatan, Indu; Shukla, Vidyanand G.; Nasr, Mahmoud L.; Bowman, Anna L.; Zvonok, Nikolai; Li, Jing; Shi, Xiaomeng; Engen, John R.; Makriyannis, Alexandros

    2013-01-01

    Sulfonyl fluorides are known to inhibit esterases. Early work from our laboratory has identified hexadecyl sulfonylfluoride (AM374) as a potent in vitro and in vivo inhibitor of fatty acid amide hydrolase (FAAH). We now report on later generation sulfonyl fluoride analogs that exhibit potent and selective inhibition of FAAH. Using recombinant rat and human FAAH we show that 5-(4-hydroxyphenyl)pentanesulfonyl fluoride (AM3506) has similar inhibitory activity for both the rat and the human enzyme, while rapid dilution assays and mass spectrometry analysis suggest that the compound is a covalent modifier for FAAH and inhibits its action in an irreversible manner. Our SAR results are highlighted by molecular docking of key analogs. PMID:23083016

  2. Soluble epoxide hydrolase: Gene structure, expression and deletion

    PubMed Central

    Harris, Todd R.; Hammock, Bruce D.

    2013-01-01

    Mammalian soluble epoxide hydrolase (sEH) converts epoxides to their corresponding diols through the addition of a water molecule. sEH readily hydrolyzes lipid signaling molecules, including the epoxyeicosatrienoic acids (EETs), epoxidized lipids produced from arachidonic acid by the action of cytochrome p450s. Through its metabolism of the EETs and other lipid mediators, sEH contributes to the regulation of vascular tone, nociception, angiogenesis and the inflammatory response. Because of its central physiological role in disease states such as cardiac hypertrophy, diabetes, hypertension, and pain sEH is being investigated as a therapeutic target. This review begins with a brief introduction to sEH protein structure and function. sEH evolution and gene structure are then discussed before human small nucleotide polymorphisms and mammalian gene expression are described in the context of several disease models. The review ends with an overview of studies that have employed the sEH knockout mouse model. PMID:23701967

  3. Ubiquitin carboxyl hydrolase L1 significance for human diseases.

    PubMed

    Suong, Dang Ngoc Anh; Thao, Dang Thi Phuong; Masamitsu, Yamaguchi; Thuoc, Tran Linh

    2014-07-01

    Ubiquitin carboxyl hydrolase L1 (UCH-L1) is an abundant multifunctional neuron protein. It plays an important role in maintaining the ubiquitin proteasome system (UPS), vital for recognizing and degrading dysfunctional proteins in organisms. In recent decades, UCH-L1 has been implicated in the pathogenesis of many diseases, including neurodegenerative disorders, cancer and diabetes. However, the mechanisms of UCH-L1 involvement have yet to be revealed in detail. Since UCH-L1 contributes many different functions to cell metabolism, its role and regulation might be more complex than previously thought and it has become a research target in many laboratories. In this review, we summarize recent findings related to the actions of UCH-L1 in several human diseases.

  4. Retinyl ester hydrolases and their roles in vitamin A homeostasis.

    PubMed

    Schreiber, Renate; Taschler, Ulrike; Preiss-Landl, Karina; Wongsiriroj, Nuttaporn; Zimmermann, Robert; Lass, Achim

    2012-01-01

    In mammals, dietary vitamin A intake is essential for the maintenance of adequate retinoid (vitamin A and metabolites) supply of tissues and organs. Retinoids are taken up from animal or plant sources and subsequently stored in form of hydrophobic, biologically inactive retinyl esters (REs). Accessibility of these REs in the intestine, the circulation, and their mobilization from intracellular lipid droplets depends on the hydrolytic action of RE hydrolases (REHs). In particular, the mobilization of hepatic RE stores requires REHs to maintain steady plasma retinol levels thereby assuring constant vitamin A supply in times of food deprivation or inadequate vitamin A intake. In this review, we focus on the roles of extracellular and intracellular REHs in vitamin A metabolism. Furthermore, we will discuss the tissue-specific function of REHs and highlight major gaps in the understanding of RE catabolism. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.

  5. Thermodynamics of Enzyme-Catalyzed Reactions. Part 3. Hydrolases

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.

    1994-11-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the hydrolase class of enzymes have been compiled. For each reaction the following information is given: The reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 145 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  6. Characterization of intracellular pteroylpolyglutamate hydrolase (PPH) from human intestinal mucosa

    SciTech Connect

    Wang, T.T.Y.; Chandler, C.J.; Halsted, C.H.

    1986-03-01

    There are two forms of pteroylpolyglutamate hydrolase (PPH) in the human intestinal mucosa, one in the brush border membrane and the other intracellular; brush border PPH is an exopeptidase with optimal activity at pH 6.5 and a requirement for zinc. The presence study characterized human intracellular PPH and compared its properties to those of brush border PPH. Intracellular PPH was purified 30-fold. The enzyme had a MW of 75,000 by gel filtration, was optimally active at pH 4.5, and had an isoelectric point at pH 8.0. In contrast to brush border PPH, intracellular PPH was unstable at increasing temperatures, was unaffected by dialysis against chelating agents and showed no requirement for Zn/sup 2 +/. Using PteGlu/sub 2/(/sup 14/C)Glu as substrate, they demonstrated a K/sub m/ of 1.2 ..mu..M and increasing affinity for folates with longer glutamate chains. Intracellular PPH required the complete folic acid (PteGlu) moiety and a ..gamma..-glutamyl linkage for activity. Using ion exchange chromatography and an HPLC method to determine the hydrolytic products of the reaction, they found intracellular PPH could cleave both internal and terminal ..gamma..-glutamyl linkages, with PteGlu as an end product. After subcellular fractionation of the mucosa, PPH was found in the lysosomes. In summary, the distinct characteristics of brush border and intracellular PPH suggest that the two hydrolases serve different roles in folate metabolism.

  7. Chlorpyrifos-, Diisopropylphosphorofluoridate-, and Parathion-Induced Behavioral and Oxidative Stress Effects: Are They Mediated by Analogous Mechanisms of Action?

    PubMed Central

    Sánchez-Santed, Fernando

    2013-01-01

    Exposure to organophosphates (OPs) can lead to cognitive deficits and oxidative damage. Little is known about the relationship between behavioral deficits and oxidative stress within the context of such exposures. Accordingly, the first experiment was carried out to address this issue. Male Wistar rats were administered 250mg/kg of chlorpyrifos (CPF), 1.5mg/kg of diisopropylphosphorofluoridate (DFP), or 15mg/kg of parathion (PTN). Spatial learning in the water maze task was evaluated, and F2-isoprostanes (F2-IsoPs) and prostaglandin (PGE2) were analyzed in the hippocampus. A second experiment was designed to determine the degree of inhibition of brain acetylcholinesterase (AChE) activity, both the soluble and particulate forms of the enzyme, and to assess changes in AChE gene expression given evidence on alternative splicing of the gene in response to OP exposures. In addition, brain acylpeptide hydrolase (APH) activity was evaluated as a second target for OP-mediated effects. In both experiments, rats were sacrificed at various points to determine the time course of OPs toxicity in relation to their mechanism of action. Results from the first experiment suggest cognitive and emotional deficits after OPs exposure, which could be due to, at least in part, increased F2-IsoPs levels. Results from the second experiment revealed inhibition of brain AChE and APH activity at various time points post OP exposure. In addition, we observed increased brain read-through splice variant AChE (AChE-R) mRNA levels after 48h PTN exposure. In conclusion, this study provides novel data on the relationship between cognitive alterations and oxidative stress, and the diverse mechanisms of action along a temporal axis in response to OP exposures in the rat. PMID:22986948

  8. High-throughput cloning, expression and purification of glycoside hydrolases using Ligation-Independent Cloning (LIC).

    PubMed

    Camilo, Cesar M; Polikarpov, Igor

    2014-07-01

    Recent advances in DNA sequencing techniques have led to an explosion in the amount of available genome sequencing data and this provided an inexhaustible source of uncharacterized glycoside hydrolases (GH) to be studied both structurally and enzymatically. Ligation-Independent Cloning (LIC), an interesting alternative to traditional, restriction enzyme-based cloning, and commercial recombinatorial cloning, was adopted and optimized successfully for a high throughput cloning, expression and purification pipeline. Using this platform, 130 genes encoding mainly uncharacterized glycoside hydrolases from 13 different organisms were cloned and submitted to a semi-automated protein expression and solubility screening in Escherichia coli, resulting in 73 soluble targets. The high throughput approach proved to be a powerful tool for production of recombinant glycoside hydrolases for further structural and biochemical characterization and confirmed that thioredoxin fusion tag (TRX) is a better choice to increase solubility of recombinant glycoside hydrolases expressed in E. coli, when compared to His-tag alone.

  9. DETOXIFICATION OF ORGANOPHOSPHATE PESTICIDES BY IMMOBILIZED ESCHERICHIA COLI EXPRESSING ORGANOPHOSPHORUS HYDROLASE ON CELL SURFACE. (R823663)

    EPA Science Inventory

    An improved whole-cell technology for detoxifying organophosphate nerve agents was recently developed based on genetically engineered Escherichia coli with organophosphorus hydrolase anchored on the surface. This article reports the immobilization of these novel biocatalys...

  10. Compositional profile of α/β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites

    PubMed Central

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-01-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. PMID:25171437

  11. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites.

    PubMed

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-05-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes.

  12. Human Lung Hydrolases Delineate Mycobacterium tuberculosis–Macrophage Interactions and the Capacity To Control Infection

    PubMed Central

    Arcos, Jesus; Sasindran, Smitha J.; Fujiwara, Nagatoshi; Turner, Joanne; Schlesinger, Larry S.; Torrelles, Jordi B.

    2014-01-01

    Pulmonary surfactant contains homeostatic and antimicrobial hydrolases. When Mycobacterium tuberculosis is initially deposited in the terminal bronchioles and alveoli, as well as following release from lysed macrophages, bacilli are in intimate contact with these lung surfactant hydrolases. We identified and measured several hydrolases in human alveolar lining fluid and lung tissue that, at their physiological concentrations, dramatically modified the M. tuberculosis cell envelope. Independent of their action time (15 min to 12 h), the effects of the hydrolases on the M. tuberculosis cell envelope resulted in a significant decrease (60–80%) in M. tuberculosis association with, and intracellular growth of the bacteria within, human macrophages. The cell envelope-modifying effects of the hydrolases also led to altered M. tuberculosis intracellular trafficking and induced a protective proin-flammatory response to infection. These findings add a new concept to our understanding of M. tuberculosis–macrophage inter-actions (i.e., the impact of lung surfactant hydrolases on M. tuberculosis infection). PMID:21602490

  13. A Phylogenetically Informed Comparison of GH1 Hydrolases between Arabidopsis and Rice Response to Stressors

    PubMed Central

    Cao, Yun-Ying; Yang, Jing-Fang; Liu, Tie-Yuan; Su, Zhen-Feng; Zhu, Fu-Yuan; Chen, Mo-Xian; Fan, Tao; Ye, Neng-Hui; Feng, Zhen; Wang, Ling-Juan; Hao, Ge-Fei; Zhang, Jianhua; Liu, Ying-Gao

    2017-01-01

    Glycoside hydrolases Family 1 (GH1) comprises enzymes that can hydrolyze β-O-glycosidic bond from a carbohydrate moiety. The plant GH1 hydrolases participate in a number of developmental processes and stress responses, including cell wall modification, plant hormone activation or deactivation and herbivore resistance. A large number of members has been observed in this family, suggesting their potential redundant functions in various biological processes. In this study, we have used 304 sequences of plant GH1 hydrolases to study the evolution of this gene family in plant lineage. Gene duplication was found to be a common phenomenon in this gene family. Although many members of GH1 hydrolases showed a high degree of similarity in Arabidopsis and rice, they showed substantial tissue specificity and differential responses to various stress treatments. This differential regulation implies each enzyme may play a distinct role in plants. Furthermore, some of salt-responsive Arabidopsis GH1 hydrolases were selected to test their genetic involvement in salt responses. The knockout mutants of AtBGLU1 and AtBGLU19 were observed to be less-sensitive during NaCl treatment in comparison to the wild type seedlings, indicating their participation in salt stress response. In summary, Arabidopsis and rice GH1 glycoside hydrolases showed distinct features in their evolutionary path, transcriptional regulation and genetic functions. PMID:28392792

  14. Purification and characterization of three parathion hydrolases from gram-negative bacterial strains.

    PubMed

    Mulbry, W W; Karns, J S

    1989-02-01

    Three unique parathion hydrolases were purified from gram-negative bacterial isolates and characterized. All three purified enzymes had roughly comparable affinities for ethyl parathion and had broad temperature optima at ca. 40 degrees C. The membrane-bound hydrolase of Flavobacterium sp. strain ATCC 27551 was composed of a single subunit of approximately 35,000 daltons (Da) and was inhibited by sulfhydryl reagents such as dithiothreitol (DTT) and by metal salts such as CuCl2. The cytosolic hydrolase of strain B-1 was composed of a single subunit of approximately 43,000 Da and was stimulated by DTT and inhibited by CuCl2. The membrane-bound hydrolase of strain SC was composed of four identical subunits of 67,000 Da and was inhibited by DTT and stimulated by CuCl2. The substrate ranges of the three enzymes also differed, as evidenced by their relative affinities for parathion and the related organophosphate insecticide O-ethyl-O-4-nitrophenyl phenylphosphonothioate (EPN). The B-1 hydrolase displayed equal affinity for both compounds, the Flavobacterium enzyme showed twofold-lower affinity for EPN than for parathion, and the SC hydrolase displayed no activity toward EPN. The range in characteristics of these three enzymes can be exploited in different waste disposal strategies.

  15. Purification and characterization of three parathion hydrolases from gram-negative bacterial strains.

    PubMed Central

    Mulbry, W W; Karns, J S

    1989-01-01

    Three unique parathion hydrolases were purified from gram-negative bacterial isolates and characterized. All three purified enzymes had roughly comparable affinities for ethyl parathion and had broad temperature optima at ca. 40 degrees C. The membrane-bound hydrolase of Flavobacterium sp. strain ATCC 27551 was composed of a single subunit of approximately 35,000 daltons (Da) and was inhibited by sulfhydryl reagents such as dithiothreitol (DTT) and by metal salts such as CuCl2. The cytosolic hydrolase of strain B-1 was composed of a single subunit of approximately 43,000 Da and was stimulated by DTT and inhibited by CuCl2. The membrane-bound hydrolase of strain SC was composed of four identical subunits of 67,000 Da and was inhibited by DTT and stimulated by CuCl2. The substrate ranges of the three enzymes also differed, as evidenced by their relative affinities for parathion and the related organophosphate insecticide O-ethyl-O-4-nitrophenyl phenylphosphonothioate (EPN). The B-1 hydrolase displayed equal affinity for both compounds, the Flavobacterium enzyme showed twofold-lower affinity for EPN than for parathion, and the SC hydrolase displayed no activity toward EPN. The range in characteristics of these three enzymes can be exploited in different waste disposal strategies. Images PMID:2541658

  16. A New Family of Biuret Hydrolases Involved in S-Triazine Ring Metabolism

    PubMed Central

    Cameron, Stephan M.; Durchschein, Katharina; Richman, Jack E.; Sadowsky, Michael J.; Wackett, Lawrence P.

    2011-01-01

    Biuret is an intermediate in the bacterial metabolism of s-triazine ring compounds and is occasionally used as a ruminant feed supplement. We used bioinformatics to identify a biuret hydrolase, an enzyme that has previously resisted efforts to stabilize, purify and characterize. This newly discovered enzyme is a member of the cysteine hydrolase superfamily, a family of enzymes previously not found to be involved in s-triazine metabolism. The gene from Rhizobium leguminosarum bv. viciae strain 3841 encoding biuret hydrolase was synthesized, transformed into Escherichia coli, and expressed. The enzyme was purified and found to be stable. Biuret hydrolase catalyzed the hydrolysis of biuret to allophanate and ammonia. The kcat/KM of 1.7 × 105 M−1s−1 and the relatively low KM of 23 ± 4 μM together suggested that this enzyme acts uniquely on biuret physiologically. This is supported by the fact that of the 34 substrate analogs of biuret tested, only two demonstrated reactivity, both at less than 5% of the rate determined for biuret. Biuret hydrolase does not react with carboxybiuret, the product of the enzyme immediately preceding biuret hydrolase in the metabolic pathway for cyanuric acid. This suggests an unusual metabolic strategy of an enzymatically-produced intermediate undergoing non-enzymatic decarboxylation to produce the substrate for the next enzyme in the pathway. PMID:21897878

  17. Expression of Nudix hydrolase genes in barley under UV irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  18. Cyanuric acid hydrolase: evolutionary innovation by structural concatenation

    PubMed Central

    Peat, Thomas S; Balotra, Sahil; Wilding, Matthew; French, Nigel G; Briggs, Lyndall J; Panjikar, Santosh; Cowieson, Nathan; Newman, Janet; Scott, Colin

    2013-01-01

    The cyanuric acid hydrolase, AtzD, is the founding member of a newly identified family of ring-opening amidases. We report the first X-ray structure for this family, which is a novel fold (termed the ‘Toblerone’ fold) that likely evolved via the concatenation of monomers of the trimeric YjgF superfamily and the acquisition of a metal binding site. Structures of AtzD with bound substrate (cyanuric acid) and inhibitors (phosphate, barbituric acid and melamine), along with mutagenesis studies, allowed the identification of the active site. The AtzD monomer, active site and substrate all possess threefold rotational symmetry, to the extent that the active site possesses three potential Ser–Lys catalytic dyads. A single catalytic dyad (Ser85–Lys42) is hypothesized, based on biochemical evidence and crystallographic data. A plausible catalytic mechanism based on these observations is also presented. A comparison with a homology model of the related barbiturase, Bar, was used to infer the active-site residues responsible for substrate specificity, and the phylogeny of the 68 AtzD-like enzymes in the database were analysed in light of this structure–function relationship. PMID:23651355

  19. Reaction Pathway for Cocaine Hydrolase-Catalyzed Hydrolysis of (+)-Cocaine

    PubMed Central

    Yao, Yuan; Liu, Junjun; Zheng, Fang; Zhan, Chang-Guo

    2017-01-01

    A recently designed and discovered cocaine hydrolase (CocH), engineered from human butyrylcholinesterase (BChE), has been proven promising as a novel enzyme therapy for treatment of cocaine overdose and addiction because it is highly efficient in catalyzing hydrolysis of naturally occurring (−)-cocaine. It has been known that the CocH also has a high catalytic efficiency against (+)-cocaine, a synthetic enantiomer of cocaine. Reaction pathway and the corresponding free energy profile for the CocH-catalyzed hydrolysis of (+)-cocaine have been determined, in the present study, by performing first-principles pseudobond quantum mechanical/molecular mechanical (QM/MM)-free energy (FE) calculations. Acordingt to the QM/MM-FE results, the catalytic hydrolysis process is initiated by the nucleophilic attack on carbonyl carbon of (−)-cocaine benzoyl ester via hydroxyl oxygen of S198 side chain, and the second reaction step (i.e. dissociation of benzoyl ester) is rate-determining. This finding for CocH-catalyzed hydrolysis of (+)-cocaine is remarkably different from that for the (+)-cocaine hydrolysis catalyzed by bacterial cocaine esterase in which the first reaction step of the deacylation is associated with the highest free energy barrier (~17.9 kcal/mol). The overall free energy barrier (~16.0 kcal/mol) calculated for the acylation stage of CocH-catalyzed hydrolysis of (+)-cocaine is in good agreement with the experimental free energy barrier of ~14.5 kcal/mol derivated from the experimental kinetic data.

  20. Genetic regulation of expression of leukotriene A4 hydrolase

    PubMed Central

    Castaldi, Peter; Cho, Michael H.; Blalock, J. Edwin; Gaggar, Amit

    2016-01-01

    In chronic inflammatory lung disorders such as chronic obstructive pulmonary disease (COPD), the concurrent organ-specific and systemic inflammatory responses lead to airway remodelling and vascular dysfunction. Although a major common risk factor for COPD, cigarette smoke alone cannot explain the progression of this disease; there is increasing evidence that genetic predisposition also plays a role in COPD susceptibility and progression. A key enzyme in chronic lung inflammation is leukotriene A4 hydrolase (LTA4H). With its aminopeptidase activity, LTA4H degrades the neutrophil chemoattractant tripeptide PGP. In this study, we used the luciferase reporter gene analysis system and quantitative trait locus analysis to explore the impact of single-nucleotide polymorphisms (SNPs) in the putative promoter region of LTA4H on LTA4H expression. We show that not only is the putative promoter of LTA4H larger than previously reported but also that SNPs in the expanded promoter region regulate expression of LTA4H both in cell-based systems and in peripheral blood samples from human subjects. These findings provide significant evidence for an active region upstream of the previously reported LTA4H promoter, which may have implications related to ongoing inflammatory processes in chronic lung disease. PMID:27730172

  1. Regulation of S-Adenosylhomocysteine Hydrolase by Lysine Acetylation*

    PubMed Central

    Wang, Yun; Kavran, Jennifer M.; Chen, Zan; Karukurichi, Kannan R.; Leahy, Daniel J.; Cole, Philip A.

    2014-01-01

    S-Adenosylhomocysteine hydrolase (SAHH) is an NAD+-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys401 and Lys408 but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys401 and Lys408 and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD+ binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns. PMID:25248746

  2. Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization.

    PubMed

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-08-01

    Epoxide hydrolases (EHs) are enzymes that are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EHs have biotechnological potential in chiral chemistry. We report the cloning, purification, enzymatic activity, and conformational analysis of the TrEH gene from Trichoderma reesei strain QM9414 using circular dichroism spectroscopy. The EH gene has an open reading frame encoding a protein of 343 amino acid residues, resulting in a molecular mass of 38.2kDa. The enzyme presents an optimum pH of 7.2, and it is highly active at temperatures ranging from 23 to 50°C and thermally inactivated at 70°C (t1/2=7.4min). The Michaelis constants (Km) were 4.6mM for racemic substrate, 21.7mM for (R)-(+)-styrene oxide and 3.0mM for (S)-(-)-styrene oxide. The kcat/Km analysis indicated that TrEH is enantioselective and preferentially hydrolyzes (S)-(-)-styrene oxide. The conformational stability studies suggested that, despite the extreme conditions (high temperatures and extremely acid and basic pHs), TrEH is able to maintain a considerable part of its regular structures, including the preservation of the native cores in some cases. The recombinant protein showed enantioselectivity that was distinct from other fungus EHs, making this protein a potential biotechnological tool.

  3. Molecular Basis of Arabinobio-hydrolase Activity in Phytopathogenic Fungi

    PubMed Central

    Carapito, Raphaël; Imberty, Anne; Jeltsch, Jean-Marc; Byrns, Simon C.; Tam, Pui-Hang; Lowary, Todd L.; Varrot, Annabelle; Phalip, Vincent

    2009-01-01

    The phytopathogenic fungus Fusarium graminearum secretes a very diverse pool of glycoside hydrolases (GHs) aimed at degrading plant cell walls. α-l-Arabinanases are essential GHs participating in the complete hydrolysis of hemicellulose, a natural resource for various industrial processes, such as bioethanol or pharmaceuticals production. Arb93A, the exo-1,5-α-l-arabinanase of F. graminearum encoded by the gene fg03054.1, belongs to the GH93 family, for which no structural data exists. The enzyme is highly active (1065 units/mg) and displays a strict substrate specificity for linear α-1,5-l-arabinan. Biochemical assays and NMR experiments demonstrated that the enzyme releases α-1,5-l-arabinobiose from the nonreducing end of the polysaccharide. We determined the crystal structure of the native enzyme and its complex with α-1,5-l-arabinobiose, a degradation product of α-Me-1,5-l-arabinotetraose, at 1.85 and 2.05Å resolution, respectively. Arb93A is a monomeric enzyme, which presents the six-bladed β-propeller fold characteristic of sialidases of clan GHE. The configuration of the bound arabinobiose is consistent with the retaining mechanism proposed for the GH93 family. Catalytic residues were proposed from the structural analysis, and site-directed mutagenesis was used to validate their role. They are significantly different from those observed for GHE sialidases. PMID:19269961

  4. Expression of organophosphate hydrolase in the filamentous fungus Gliocladium virens.

    PubMed

    Dave, K I; Lauriano, C; Xu, B; Wild, J R; Kenerley, C M

    1994-05-01

    The broad-spectrum organophosphate hydrolase (OPH; EC 3.1.8.1) encoded by the organophosphate-degrading gene (opd) from Pseudomonas diminuta MG and Flavobacterium sp. ATCC 27551 possesses capabilities of both P-O bond hydrolysis (e.g. paraoxon) and P-F bond hydrolysis [e.g. sarin and diisopropylfluorophosphate (DFP)]. In the present study a 9.4-kb plasmid, pCL1, was used to transform the saprophytic fungus Gliocladium virens. pCL1 was derived from pJS294 by placing the fungal promoter (prom1) from Cochliobolus heterostrophus upstream and the trpC terminator from Aspergillus nidulans down-stream of the opd gene. Southern analysis of restricted genomic DNA from various transformants indicated that integration occurred non-specifically at multiple sites. Western blot analysis of mycelial extracts from transformants confirmed the production of a processed form of the enzyme in the fungus. Maximal levels of OPH activity (rate of p-nitrophenol production from paraoxon) were observed after 168 h of culture and activity levels correlated with biomass production in mature vegetative growth.

  5. Investigation of the Bacillus cereus phosphonoacetaldehyde hydrolase catalytic mechanism

    SciTech Connect

    Hepburn, T.W.

    1988-01-01

    The enzyme phosphonoacetaldehyde hydrolase (phosphonatase) from Bacillus cereus catalyzes the conversion of phosphonoacetaldehyde and phosphate. We have demonstrated that phosphonatase is inactivated when incubated with either acetaldehyde or phosphonoacetaldehyde for short time periods at low temperature in the presence of NaBH{sup 4}. This result suggests that the Schiff base mechanism is operative since such treatment might be expected to inactivate the enzyme by reducing an iminium cation mechanistic intermediate. The inactivation process was shown to be highly specific for a single lysine residue. Incubation of phosphonatase with ({sup 3}H)-NaBH{sub 4} and phosphonacetaldehyde ({sup 14}C)-acetaldehyde and NaBH{sub 4} or (C{sub 2}-{sup 3}H)- phosphonoacetaldehyde and NaBH{sup 4} resulted in radiolabeled inactivated enzyme. Tryptic hydrolysis and reverse phase HPLC chromatography of the resulting digests demonstrated that the (C{sub 2} - {sup 3}H)- phosphonoacetaldehyde/NaBH{sub 4} methodology afforded the most specifically tritium labeled, inactivated phosphonatase. The radiolabeled, active site peptide was purified to homogeneity and its amino acid sequence was determined.

  6. Discovery of enantioselectivity of urea inhibitors of soluble epoxide hydrolase.

    PubMed

    Manickam, Manoj; Pillaiyar, Thanigaimalai; Boggu, PullaReddy; Venkateswararao, Eeda; Jalani, Hitesh B; Kim, Nam-Doo; Lee, Seul Ki; Jeon, Jang Su; Kim, Sang Kyum; Jung, Sang-Hun

    2016-07-19

    Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) in the metabolic pathway of arachidonic acid and has been considered as an important therapeutic target for chronic diseases such as hypertension, diabetes and inflammation. Although many urea derivatives are known as sEH inhibitors, the enantioselectivity of the inhibitors is not highlighted in spite of the stereoselective hydrolysis of EETs by sEH. In an effort to explore the importance of enantioselectivity in the urea scaffold, a series of enantiomers with the stereocenter adjacent to the urea nitrogen atom were prepared. The selectivity of enantiomers of 1-(α-alkyl-α-phenylmethyl)-3-(3-phenylpropyl)ureas showed wide range differences up to 125 fold with the low IC50 value up to 13 nM. The S-configuration with planar phenyl and small alkyl groups at α-position is crucial for the activity and selectivity. However, restriction of the free rotation of two α-groups with indan-1-yl or 1,2,3,4-tetrahydronaphthalen-1-yl moiety abolishes the selectivity between the enantiomers, despite the increase in activity up to 13 nM. The hydrophilic group like sulfonamido group at para position of 3-phenylpropyl motif of 1-(α-alkyl-α-phenylmethyl-3-(3-phenylpropyl)urea improves the activity as well as enantiomeric selectivity. All these ureas are proved to be specific inhibitor of sEH without inhibition against mEH.

  7. Soluble epoxide hydrolase inhibitory activity of anthraquinone components from Aloe.

    PubMed

    Sun, Ya Nan; Kim, Jang Hoon; Li, Wei; Jo, A Reum; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2015-10-15

    Aloe is a short-stemmed succulent herb widely used in traditional medicine to treat various diseases and as raw material in cosmetics and heath foods. In this study, we isolated and identified two new anthraquinone derivatives, aloinoside C (6) and aloinoside D (7), together with six known compounds from an aqueous dissolved Aloe exudate. Their structures were identified by spectroscopic analysis. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were evaluated. Compounds 1-8 inhibited sEH activity potently, with IC50 values ranging from 4.1±0.6 to 41.1±4.2 μM. A kinetic analysis of compounds 1-8 revealed that the inhibitory actions of compounds 1, 6 and 8 were non-competitive, whereas those of compounds 2-5 and 7 were the mixed-type. Molecular docking increases our understanding of receptor-ligand binding of all compounds. These results demonstrate that compounds 1-8 from Aloe are potential sEH inhibitors.

  8. Mapping human brain fatty acid amide hydrolase activity with PET

    PubMed Central

    Rusjan, Pablo M; Wilson, Alan A; Mizrahi, Romina; Boileau, Isabelle; Chavez, Sofia E; Lobaugh, Nancy J; Kish, Stephen J; Houle, Sylvain; Tong, Junchao

    2013-01-01

    Endocannabinoid tone has recently been implicated in a number of prevalent neuropsychiatric conditions. [11C]CURB is the first available positron emission tomography (PET) radiotracer for imaging fatty acid amide hydrolase (FAAH), the enzyme which metabolizes the prominent endocannabinoid anandamide. Here, we sought to determine the most suitable kinetic modeling approach for quantifying [11C]CURB that binds selectively to FAAH. Six healthy volunteers were scanned with arterial blood sampling for 90 minutes. Kinetic parameters were estimated regionally using a one-tissue compartment model (TCM), a 2-TCM with and without irreversible trapping, and an irreversible 3-TCM. The 2-TCM with irreversible trapping provided the best identifiability of PET outcome measures among the approaches studied (coefficient of variation (COV) of the net influx constant Ki and the composite parameter λk3 (λ=K1/k2) <5%, and COV(k3)<10%). Reducing scan time to 60 minutes did not compromise the identifiability of rate constants. Arterial spin labeling measures of regional cerebral blood flow were only slightly correlated with Ki, but not with k3 or λk3. Our data suggest that λk3 is sensitive to changes in FAAH activity, therefore, optimal for PET quantification of FAAH activities with [11C]CURB. Simulations showed that [11C]CURB binding in healthy subjects is far from a flow-limited uptake. PMID:23211960

  9. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    PubMed Central

    Hurst-Kennedy, Jennifer; Chin, Lih-Shen; Li, Lian

    2012-01-01

    Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5) is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis. PMID:22811913

  10. Thermus thermophilus Glycoside Hydrolase Family 57 Branching Enzyme

    PubMed Central

    Palomo, Marta; Pijning, Tjaard; Booiman, Thijs; Dobruchowska, Justyna M.; van der Vlist, Jeroen; Kralj, Slavko; Planas, Antoni; Loos, Katja; Kamerling, Johannis P.; Dijkstra, Bauke W.; van der Maarel, Marc J. E. C.; Dijkhuizen, Lubbert; Leemhuis, Hans

    2011-01-01

    Branching enzyme (EC 2.4.1.18; glycogen branching enzyme; GBE) catalyzes the formation of α1,6-branching points in glycogen. Until recently it was believed that all GBEs belong to glycoside hydrolase family 13 (GH13). Here we describe the cloning and expression of the Thermus thermophilus family GH57-type GBE and report its biochemical properties and crystal structure at 1.35-Å resolution. The enzyme has a central (β/α)7-fold catalytic domain A with an inserted domain B between β2 and α5 and an α-helix-rich C-terminal domain, which is shown to be essential for substrate binding and catalysis. A maltotriose was modeled in the active site of the enzyme which suggests that there is insufficient space for simultaneously binding of donor and acceptor substrates, and that the donor substrate must be cleaved before acceptor substrate can bind. The biochemical assessment showed that the GH57 GBE possesses about 4% hydrolytic activity with amylose and in vitro forms a glucan product with a novel fine structure, demonstrating that the GH57 GBE is clearly different from the GH13 GBEs characterized to date. PMID:21097495

  11. Recognition of Corn Defense Chitinases by Fungal Polyglycine Hydrolases.

    PubMed

    Naumann, Todd A; Bakota, Erica L; Price, Neil P J

    2017-04-06

    Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave peptide bonds in the polyglycine interdomain linker of ChitA chitinase, an antifungal protein from domesticated corn (Zea mays ssp. mays). These target-specific endoproteases are unusual because they do not cut a specific peptide bond but select one of many Gly-Gly bonds within the polyglycine region. Some Gly-Gly bonds are cleaved frequently while others are never cleaved. Moreover, we have previously shown that PGHs from different fungal pathogens prefer to cleave different Gly-Gly peptide bonds. It is not understood how PGHs selectively cleave the ChitA linker, especially because its polyglycine structure lacks peptide sidechains. To gain insights into this process we synthesized several peptide analogs of ChitA to evaluate them as potential substrates and inhibitors of Es-cmp, a PGH from the plant pathogenic fungus Epicoccum sorghi. Our results showed that part of the PGH recognition site for substrate chitinases is adjacent to the polyglycine linker on the carboxy side. More specifically, four amino acid residues were implicated, each spaced four residues apart on an alpha helix. Moreover, analogous peptides with selective Gly->sarcosine (N-methylglycine) mutations or a specific Ser->Thr mutation retained inhibitor activity but were no longer cleaved by PGH. Additonally, our findings suggest that peptide analogs of ChitA that inhibit PGH activity could be used to strengthen plant defenses. This article is protected by copyright. All rights reserved.

  12. Discovery of Triterpenoids as Reversible Inhibitors of α/β-hydrolase Domain Containing 12 (ABHD12)

    PubMed Central

    Parkkari, Teija; Haavikko, Raisa; Laitinen, Tuomo; Navia-Paldanius, Dina; Rytilahti, Roosa; Vaara, Miia; Lehtonen, Marko; Alakurtti, Sami; Yli-Kauhaluoma, Jari; Nevalainen, Tapio; Savinainen, Juha R.; Laitinen, Jarmo T.

    2014-01-01

    Background α/β-hydrolase domain containing (ABHD)12 is a recently discovered serine hydrolase that acts in vivo as a lysophospholipase for lysophosphatidylserine. Dysfunctional ABHD12 has been linked to the rare neurodegenerative disorder called PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, cataract). In vitro, ABHD12 has been implicated in the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG). Further studies on ABHD12 function are hampered as no selective inhibitor have been identified to date. In contrast to the situation with the other endocannabinoid hydrolases, ABHD12 has remained a challenging target for inhibitor development as no crystal structures are available to facilitate drug design. Methodology/Principal Findings Here we report the unexpected discovery that certain triterpene-based structures inhibit human ABHD12 hydrolase activity in a reversible manner, the best compounds showing submicromolar potency. Based on structure activity relationship (SAR) data collected for 68 natural and synthetic triterpenoid structures, a pharmacophore model has been constructed. A pentacyclic triterpene backbone with carboxyl group at position 17, small hydrophobic substituent at the position 4, hydrogen bond donor or acceptor at position 3 accompanied with four axial methyl substituents was found crucial for ABHD12 inhibitor activity. Although the triterpenoids typically may have multiple protein targets, we witnessed unprecedented selectivity for ABHD12 among the metabolic serine hydrolases, as activity-based protein profiling of mouse brain membrane proteome indicated that the representative ABHD12 inhibitors did not inhibit other serine hydrolases, nor did they target cannabinoid receptors. Conclusions/Significance We have identified reversibly-acting triterpene-based inhibitors that show remarkable selectivity for ABHD12 over other metabolic serine hydrolases. Based on SAR data, we have constructed the first pharmacophore

  13. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp.

    PubMed Central

    Dashkevicz, M P; Feighner, S D

    1989-01-01

    An agar plate assay was developed to detect bile salt hydrolase activity in lactobacilli. On Lactobacillus-selective MRS or Rogosa SL medium supplemented with taurodeoxycholic, taurocholic, or taurochenodeoxycholic acids, bile salt hydrolysis was manifested at two intensities: (i) the formation of precipitate halos around colonies or (ii) the formation of opaque granular white colonies. Sixty-six lactobacilli were tested for bile salt hydrolase activity by both the plate assay and a sensitive radiochemical assay. No false-positive or false-negative results were detected by the plate assay. Based on results of experiments with Eubacterium lentum and Bacteroides species, the plate assay was dependent on two factors: (i) the presence of bile salt hydrolytic activity and (ii) the ability of the organism to sufficiently acidify the medium to protonate free bile acids. The availability of a differential medium for determination of bile salt hydrolase activity will provide a rapid method for determining shifts in a specific functional activity of intestinal Lactobacillus species and provide a rapid screening capability for identifying bile salt hydrolase-deficient mutants. The latter application should allow bile salt hydrolase activity to be used as a marker enzyme in genetic experiments. Images PMID:2705765

  14. Prunasin hydrolases during fruit development in sweet and bitter almonds.

    PubMed

    Sánchez-Pérez, Raquel; Belmonte, Fara Sáez; Borch, Jonas; Dicenta, Federico; Møller, Birger Lindberg; Jørgensen, Kirsten

    2012-04-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet.

  15. Long-acting cocaine hydrolase for addiction therapy

    PubMed Central

    Chen, Xiabin; Xue, Liu; Hou, Shurong; Jin, Zhenyu; Zhang, Ting; Zheng, Fang; Zhan, Chang-Guo

    2016-01-01

    Cocaine abuse is a world-wide public health and social problem without a US Food and Drug Administration-approved medication. An ideal anticocaine medication would accelerate cocaine metabolism, producing biologically inactive metabolites by administration of an efficient cocaine-specific exogenous enzyme. Our recent studies have led to the discovery of the desirable, highly efficient cocaine hydrolases (CocHs) that can efficiently detoxify and inactivate cocaine without affecting normal functions of the CNS. Preclinical and clinical data have demonstrated that these CocHs are safe for use in humans and are effective for accelerating cocaine metabolism. However, the actual therapeutic use of a CocH in cocaine addiction treatment is limited by its short biological half-life (e.g., 8 h or shorter in rats). Here we demonstrate a novel CocH form, a catalytic antibody analog, which is a fragment crystallizable (Fc)-fused CocH dimer (CocH-Fc) constructed by using CocH to replace the Fab region of human IgG1. The CocH-Fc not only has a high catalytic efficiency against cocaine but also, like an antibody, has a considerably longer biological half-life (e.g., ∼107 h in rats). A single dose of CocH-Fc was able to accelerate cocaine metabolism in rats even after 20 d and thus block cocaine-induced hyperactivity and toxicity for a long period. Given the general observation that the biological half-life of a protein drug is significantly longer in humans than in rodents, the CocH-Fc reported in this study could allow dosing once every 2–4 wk, or longer, for treatment of cocaine addiction in humans. PMID:26712009

  16. Soluble epoxide hydrolase limits mechanical hyperalgesia during inflammation

    PubMed Central

    2011-01-01

    Background Cytochrome-P450 (CYP450) epoxygenases metabolise arachidonic acid (AA) into four different biologically active epoxyeicosatrienoic acid (EET) regioisomers. Three of the EETs (i.e., 8,9-, 11,12- and 14,15-EET) are rapidly hydrolysed by the enzyme soluble epoxide hydrolase (sEH). Here, we investigated the role of sEH in nociceptive processing during peripheral inflammation. Results In dorsal root ganglia (DRG), we found that sEH is expressed in medium and large diameter neurofilament 200-positive neurons. Isolated DRG-neurons from sEH-/- mice showed higher EET and lower DHET levels. Upon AA stimulation, the largest changes in EET levels occurred in culture media, indicating both that cell associated EET concentrations quickly reach saturation and EET-hydrolyzing activity mostly effects extracellular EET signaling. In vivo, DRGs from sEH-deficient mice exhibited elevated 8,9-, 11,12- and 14,15-EET-levels. Interestingly, EET levels did not increase at the site of zymosan-induced inflammation. Cellular imaging experiments revealed direct calcium flux responses to 8,9-EET in a subpopulation of nociceptors. In addition, 8,9-EET sensitized AITC-induced calcium increases in DRG neurons and AITC-induced calcitonin gene related peptide (CGRP) release from sciatic nerve axons, indicating that 8,9-EET sensitizes TRPA1-expressing neurons, which are known to contribute to mechanical hyperalgesia. Supporting this, sEH-/- mice showed increased nociceptive responses to mechanical stimulation during zymosan-induced inflammation and 8,9-EET injection reduced mechanical thresholds in naive mice. Conclusion Our results show that the sEH can regulate mechanical hyperalgesia during inflammation by inactivating 8,9-EET, which sensitizes TRPA1-expressing nociceptors. Therefore we suggest that influencing the CYP450 pathway, which is actually highly considered to treat cardiovascular diseases, may cause pain side effects. PMID:21970373

  17. Soluble epoxide hydrolase: a novel therapeutic target in stroke

    PubMed Central

    Zhang, Wenri; Koerner, Ines P; Noppens, Ruediger; Grafe, Marjorie; Tsai, Hsing-Ju; Morisseau, Christophe; Luria, Ayala; Hammock, Bruce D; Falck, John R; Alkayed, Nabil J

    2009-01-01

    The P450 eicosanoids epoxyeicosatrienoic acids (EETs) are produced in brain and perform important biological functions, including protection from ischemic injury. The beneficial effect of EETs, however, is limited by their metabolism via soluble epoxide hydrolase (sEH). We tested the hypothesis that sEH inhibition is protective against ischemic brain damage in vivo by a mechanism linked to enhanced cerebral blood flow (CBF). We determined expression and distribution of sEH immunoreactivity (IR) in brain, and examined the effect of sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE) on CBF and infarct size after experimental stroke in mice. Mice were administered a single intraperitoneal injection of AUDA-BE (10 mg/kg) or vehicle at 30 mins before 2-h middle cerebral artery occlusion (MCAO) or at reperfusion, in the presence and absence of P450 epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH). Immunoreactivity for sEH was detected in vascular and non-vascular brain compartments, with predominant expression in neuronal cell bodies and processes. 12-(3-Adamantan-1-yl-ureido)-dodecanoic acid butyl ester was detected in plasma and brain for up to 24 h after intraperitoneal injection, which was associated with inhibition of sEH activity in brain tissue. Finally, AUDA-BE significantly reduced infarct size at 24 h after MCAO, which was prevented by MS-PPOH. However, regional CBF rates measured by iodoantipyrine (IAP) autoradiography at end ischemia revealed no differences between AUDA-BE- and vehicle-treated mice. The findings suggest that sEH inhibition is protective against ischemic injury by non-vascular mechanisms, and that sEH may serve as a therapeutic target in stroke. PMID:17440491

  18. Mechanistic studies of ubiquitin C-terminal hydrolase L1.

    PubMed

    Case, April; Stein, Ross L

    2006-02-21

    Ubiquitin C-terminal hydrolases (UCHs) cleave Ub-X bonds (Ub is ubiquitin and X an alcohol, an amine, or a protein) through a thioester intermediate that is produced by nucleophilic attack of the Cys residue of a Cys-SH/His-Im catalytic diad. We are studying the mechanism of UCH-L1, a UCH that is implicated in Parkinson's disease, and now wish to report our initial findings. (i) Pre-steady-state kinetic studies for UCH-L1-catalyzed hydrolysis of Ub-AMC (AMC, 7-amido-4-methylcoumarin) indicate that k(cat) is rate-limited by acyl-enzyme formation. Thus, K(m) = K(s), the dissociation constant for the Michaelis complex, and k(cat) = k(2), the rate constant for acyl-enzyme formation. (ii) For K(assoc) (=K(s)(-)(1)), DeltaC(p) = -0.8 kcal mol(-)(1) deg(-)(1) and is consistent with coupling between substrate association and a conformational change of the enzyme. For k(2), DeltaS(++) = 0 and suggests that in the E-S, substrate and active site residues are precisely aligned for reaction. (iii) Solvent isotope effects are (D)K(assoc) = 0.5 and (D)k(2) = 0.9, suggesting that the substrate binds to a form of free enzyme in which the active site Cys exists as the thiol. In the resultant Michaelis complex, the diad has tautomerized to ion pair Cys-S(-)/His-ImH(+). Subsequent attack of thiolate produces the acyl-enzyme species. In contrast, isotope effects for association of UCH-L1 with transition-state analogue ubiquitin aldehyde suggest that an alternative mechanistic pathway can sometimes be available to UCH-L1 involving general base-catalyzed attack of Cys-SH by His-Im.

  19. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    SciTech Connect

    Li L. L.; van der Lelie D.; Taghavi, S.; McCorkle, S. M.; Zhang, Y.-B.; Blewitt, M. G.; Brunecky, R.; Adney, W. S.; Himmel, M. E.; Brumm, P.; Drinkwater, C.; Mead, D. A.; Tringe, S. G.

    2011-08-01

    To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases) from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms. From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in Escherichia coli. Further characterization showed that two enzymes showed significant activity on p-nitrophenyl-{alpha}-L-arabinofuranoside, one enzyme had significant activity against p-nitrophenyl-{beta}-D-glucopyranoside, and one enzyme showed significant activity against p-nitrophenyl-{beta}-D-xylopyranoside. Enzymes were also tested in the presence of ionic liquids. Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate). Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.

  20. Strategies to reduce end-product inhibition in family 48 glycoside hydrolases.

    PubMed

    Chen, Mo; Bu, Lintao; Alahuhta, Markus; Brunecky, Roman; Xu, Qi; Lunin, Vladimir V; Brady, John W; Crowley, Michael F; Himmel, Michael E; Bomble, Yannick J

    2016-03-01

    Family 48 cellobiohydrolases are some of the most abundant glycoside hydrolases in nature. They are able to degrade cellulosic biomass and therefore serve as good enzyme candidates for biofuel production. Family 48 cellulases hydrolyze cellulose chains via a processive mechanism, and produce end products composed primarily of cellobiose as well as other cellooligomers (dp ≤ 4). The challenge of utilizing cellulases in biofuel production lies in their extremely slow turnover rate. A factor contributing to the low enzyme activity is suggested to be product binding to enzyme and the resulting performance inhibition. In this study, we quantitatively evaluated the product inhibitory effect of four family 48 glycoside hydrolases using molecular dynamics simulations and product expulsion free-energy calculations. We also suggested a series of single mutants of the four family 48 glycoside hydrolases with theoretically reduced level of product inhibition. The theoretical calculations provide a guide for future experimental studies designed to produce mutant cellulases with enhanced activity.

  1. Structure-Guided Engineering of Molinate Hydrolase for the Degradation of Thiocarbamate Pesticides

    PubMed Central

    Paiva, Ana M.; Ferreira-da-Silva, Frederico; Matias, Pedro M.; Nunes, Olga C.; Gales, Luís

    2015-01-01

    Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala) that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system. PMID:25905461

  2. Evaluation of NHS Carbamates as a Potent and Selective Class of Endocannabinoid Hydrolase Inhibitors

    PubMed Central

    2013-01-01

    Monoacylglycerol lipase (MAGL) is a principal metabolic enzyme responsible for hydrolyzing the endogenous cannabinoid (endocannabinoid) 2-arachidonoylglycerol (2-AG). Selective inhibitors of MAGL offer valuable probes to further understand the enzyme’s function in biological systems and may lead to drugs for treating a variety of diseases, including psychiatric disorders, neuroinflammation, and pain. N-Hydroxysuccinimidyl (NHS) carbamates have recently been identified as a promising class of serine hydrolase inhibitors that shows minimal cross-reactivity with other proteins in the proteome. Here, we explore NHS carbamates more broadly and demonstrate their potential as inhibitors of endocannabinoid hydrolases and additional enzymes from the serine hydrolase class. We extensively characterize an NHS carbamate 1a (MJN110) as a potent, selective, and in-vivo-active MAGL inhibitor. Finally, we demonstrate that MJN110 alleviates mechanical allodynia in a rat model of diabetic neuropathy, marking NHS carbamates as a promising class of MAGL inhibitors. PMID:23731016

  3. Murein hydrolase activity of surface layer proteins from Lactobacillus acidophilus against Escherichia coli.

    PubMed

    Meng, Jun; Gao, Shu-Ming; Zhang, Qiu-Xiang; Lu, Rong-Rong

    2015-08-01

    The aim of this study was to investigate the murein hydrolase activities of the surface layer proteins (SLPs) from two strains of Lactobacillus acidophilus using zymography. The influence of these hydrolase activities on Escherichia coli ATCC 43893 was also evaluated by analysing their growth curve, cell morphology and physiological state. After the incubation of E. coli with SLPs, growth was inhibited, the number of viable cells was significantly reduced, examination by transmission electron microscopy showed that the cell wall was damaged and flow cytometry results indicated that the majority of the cells were sublethally injured. All of these results suggested that the SLPs of both L. acidophilus strains possessed murein hydrolase activities that were sublethal to E. coli cells.

  4. Strategies to reduce end-product inhibition in family 48 glycoside hydrolases

    SciTech Connect

    Chen, Mo; Bu, Lintao; Alahuhta, Markus; Brunecky, Roman; Xu, Qi; Lunin, Vladimir V.; Brady, John W.; Crowley, Michael F.; Himmel, Michael E.; Bomble, Yannick J.

    2016-02-01

    Family 48 cellobiohydrolases are some of the most abundant glycoside hydrolases in nature. They are able to degrade cellulosic biomass and therefore serve as good enzyme candidates for biofuel production. Family 48 cellulases hydrolyze cellulose chains via a processive mechanism, and produce end products composed primarily of cellobiose as well as other cellooligomers (dp ≤ 4). The challenge of utilizing cellulases in biofuel production lies in their extremely slow turnover rate. A factor contributing to the low enzyme activity is suggested to be product binding to enzyme and the resulting performance inhibition. In this study, we quantitatively evaluated the product inhibitory effect of four family 48 glycoside hydrolases using molecular dynamics simulations and product expulsion free-energy calculations. We also suggested a series of single mutants of the four family 48 glycoside hydrolases with theoretically reduced level of product inhibition. As a result, the theoretical calculations provide a guide for future experimental studies designed to produce mutant cellulases with enhanced activity.

  5. Structure-guided engineering of molinate hydrolase for the degradation of thiocarbamate pesticides.

    PubMed

    Leite, José P; Duarte, Márcia; Paiva, Ana M; Ferreira-da-Silva, Frederico; Matias, Pedro M; Nunes, Olga C; Gales, Luís

    2015-01-01

    Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala) that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system.

  6. Phosphonoacetic acid utilization by fungal isolates: occurrence and properties of a phosphonoacetate hydrolase in some penicillia.

    PubMed

    Forlani, Giuseppe; Klimek-Ochab, Magdalena; Jaworski, Jakub; Lejczak, Barbara; Picco, Anna M

    2006-12-01

    Among a collection of 18 fungal strains representing eight genera, only two strains (Penicillium oxalicum and P. minioluteum) were capable of growth on phosphonoacetic acid as sole phosphorous source. Enrichment liquid cultures in minimal medium with the compound as the only P-source selected four isolates, that were also identified as Penicillium spp. Phosphonoacetate metabolism did not lead to extracellular release of inorganic phosphate. In all cases phosphonoacetate hydrolase activity was detected in partially purified extracts, and a protein of the expected molecular mass reacted with polyclonal antibodies raised against the enzyme from P. oxalicum. There was no relation between phosphonoacetate hydrolase specific activity and growth rate or yield. Phosphonoacetic acid was the inducer of the hydrolase, independently of the concurrent availability of inorganic phosphate. Notwithstanding this, the utilization of the phosphonate was significantly inhibited in the presence of phosphate, suggesting an interference of the latter with phosphonoacetic acid uptake.

  7. Polyglycine hydrolases: fungal b-lactamase-like endoproteases that cleave polyglycine regions within plant class IV chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyglycine hydrolases are secreted fungal proteases that cleave glycine-glycine peptide bonds in the inter-domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es-cmp) and Cochli...

  8. Cloning and expression of diadenosine 5',5'''-P1,P4-tetraphosphate hydrolase from Lupinus angustifolius L.

    PubMed Central

    Maksel, D; Guranowski, A; Ilgoutz, S C; Moir, A; Blackburn, M G; Gayler, K R

    1998-01-01

    The first isolation, cloning and expression of cDNA encoding an asymmetric diadenosine 5',5'''P1,P4-tetraphosphate pyrophosphohydrolase (Ap4A hydrolase) from a higher plant is described. Ap4A hydrolase protein was purified from seeds of both Lupinus luteus and Lupinus angustifolius and partially sequenced. The Ap4A hydrolase cDNA was cloned from L. angustifolius cotyledonary polyadenylated RNA using reverse transcription and PCR with primers based on the amino acid sequence. The cDNA encoded a protein of 199 amino acids, molecular mass 22982Da. When expressed in Escherichia coli fused to a maltose-binding protein, the enzyme catalysed asymmetric cleavage of Ap4A to AMP and ATP which was inhibited at concentrations of F- as low as 3 microM. These are properties characteristic of Ap4A hydrolase (asymmetrical) (EC 3.6.1. 17). Comparison of the Ap4A hydrolase sequences derived from the four known cDNAs from pig, human, lupin and fission yeast showed that, like the mammalian hydrolase, the lupin enzyme possesses a Mut T motif but no other significant similarities. No sequence similarity to the human fragile histidine triad protein, as found in the Ap4A hydrolase from Schizosaccharomyces pombe, was detected in the Ap4A hydrolase from lupin. PMID:9425114

  9. Congenital hypothyroidism mutations affect common folding and trafficking in the α/β-hydrolase fold proteins.

    PubMed

    De Jaco, Antonella; Dubi, Noga; Camp, Shelley; Taylor, Palmer

    2012-12-01

    The α/β-hydrolase fold superfamily of proteins is composed of structurally related members that, despite great diversity in their catalytic, recognition, adhesion and chaperone functions, share a common fold governed by homologous residues and conserved disulfide bridges. Non-synonymous single nucleotide polymorphisms within the α/β-hydrolase fold domain in various family members have been found for congenital endocrine, metabolic and nervous system disorders. By examining the amino acid sequence from the various proteins, mutations were found to be prevalent in conserved residues within the α/β-hydrolase fold of the homologous proteins. This is the case for the thyroglobulin mutations linked to congenital hypothyroidism. To address whether correct folding of the common domain is required for protein export, we inserted the thyroglobulin mutations at homologous positions in two correlated but simpler α/β-hydrolase fold proteins known to be exported to the cell surface: neuroligin3 and acetylcholinesterase. Here we show that these mutations in the cholinesterase homologous region alter the folding properties of the α/β-hydrolase fold domain, which are reflected in defects in protein trafficking, folding and function, and ultimately result in retention of the partially processed proteins in the endoplasmic reticulum. Accordingly, mutations at conserved residues may be transferred amongst homologous proteins to produce common processing defects despite disparate functions, protein complexity and tissue-specific expression of the homologous proteins. More importantly, a similar assembly of the α/β-hydrolase fold domain tertiary structure among homologous members of the superfamily is required for correct trafficking of the proteins to their final destination.

  10. Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry.

    PubMed

    Sathya, T A; Khan, Mahejibin

    2014-11-01

    Traditional use of enzymes for food processing and production of food ingredients resulted in fast-growing enzyme industries world over. The advances in technologies gave rise to exploring newer enzymes and/or modified enzymes for specific application. Search for novel enzymes that can augment catalytic efficiency and advances in molecular biology techniques including sequencing has targeted microbial diversity through metagenomic approaches for sourcing enzymes from difficult to culture organisms. Such mining studies have received more attention in characterizing hydrolases, their prevalence, broad substrate specificities, stability, and independence of cofactors. The focus on glycosyl hydrolases from metagenome for their application in food sector is reviewed.

  11. Data set of optimal parameters for colorimetric red assay of epoxide hydrolase activity.

    PubMed

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-09-01

    The data presented in this article are related to the research article entitled "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization" [1]. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. This article describes the optimal parameters for the colorimetric red assay to determine the enzymatic activity, with an emphasis on the characterization of the kinetic parameters, pH optimum and thermal stability of this enzyme. The effects of reagents that are not resistant to oxidation by sodium periodate on the reactions can generate false positives and interfere with the final results of the red assay.

  12. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei

    PubMed Central

    Najjari, Afef; Amairi, Houda; Chaillou, Stéphane; Mora, Diego; Boudabous, Abdellatif; Zagorec, Monique; Ouzari, Hadda

    2015-01-01

    Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species. PMID:26843981

  13. Conformational Variability of Organophosphorus Hydrolase upon Soman and Paraoxon Binding

    SciTech Connect

    Gomes, Diego Eb; Lins, Roberto D.; Pascutti, Pedro G.; Lei, Chenghong; Soares, Thereza A.

    2011-12-31

    The bacterial enzyme organophosphorus hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pK{sub a} calculations and multiple explicit-solvent molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of OPH bound to two substrates hydrolyzed with very distinct catalytic efficiencies: the nerve agent soman (O-pinacolyl-methyl-phosphonofluoridate) and the pesticide paraoxon (diethyl p-nitrophenyl phosphate). pK{sub a} calculations for the substrate-bound and unbound enzyme showed a significant pK{sub a} shift from standard values ({Delta}pK{sub a} = {+-} 3 units) for residues 254His and 275Arg. MD simulations of the doubly protonated 254His revealed a dynamic hydrogen bond network connecting the catalytic residue 301Asp via 254His to 232Asp, 233Asp, 275Arg and 235Asp, and is consistent with a previously postulated proton relay mechanism to ferry protons away from the active site with substrates that do not require activation of the leaving group. Hydrogen bonds between 301Asp and 254His were persistent in the OPH-paraoxon complex but not in the OPH-soman one, suggesting a potential role for such interaction in the more efficient hydrolysis of paraoxon over soman by OPH. These results are in line with previous mutational studies of residue 254His, which led to an increase of the catalytic efficiency of OPH over soman yet decreased its efficiency for paraoxon. In addition, comparative analysis of the molecular trajectories for OPH bound to soman and paraoxon suggests that binding of the latter facilitates the conformational transition of OPH from the

  14. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei.

    PubMed

    Najjari, Afef; Amairi, Houda; Chaillou, Stéphane; Mora, Diego; Boudabous, Abdellatif; Zagorec, Monique; Ouzari, Hadda

    2016-01-01

    Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species.

  15. Discovery of novel leukotriene A4 hydrolase inhibitors based on piperidine and piperazine scaffolds.

    PubMed

    Sandanayaka, Vincent; Mamat, Bjorn; Bhagat, Nikhil; Bedell, Louis; Halldorsdottir, Gudrun; Sigthorsdottir, Heida; Andrésson, Thorkell; Kiselyov, Alex; Gurney, Mark; Singh, Jasbir

    2010-05-01

    Novel piperidine and piperazine derivatives have been designed and tested as inhibitors of LTA(4) hydrolase (LTA(4)H). Most potent compounds showed good potency in both enzymatic and functional human whole blood assay. Crystallography studies further confirmed observed structure-activity relationship and LTA(4)H binding mode for analogs from the piperidine series.

  16. Rehabilitation of faulty kinetic determinations and misassigned glycoside hydrolase family of retaining mechanism ß-xylosidases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We obtained Cx1 from a commercial supplier, whose catalog listed it as a ß-xylosidase of glycoside hydrolase family 43. NMR experiments indicate retention of anomeric configuration in its reaction stereochemistry, opposing the assignment of GH43, which follows an inverting mechanism. Partial protein...

  17. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata

    PubMed Central

    2014-01-01

    Thermomonospora curvata is a thermophilic actinomycete phylogenetically related to Thermobifida fusca that produces extracellular hydrolases capable of degrading synthetic polyesters. Analysis of the genome of T. curvata DSM43183 revealed two genes coding for putative polyester hydrolases Tcur1278 and Tcur0390 sharing 61% sequence identity with the T. fusca enzymes. Mature proteins of Tcur1278 and Tcur0390 were cloned and expressed in Escherichia coli TOP10. Tcur1278 and Tcur0390 exhibited an optimal reaction temperature against p-nitrophenyl butyrate at 60°C and 55°C, respectively. The optimal pH for both enzymes was determined at pH 8.5. Tcur1278 retained more than 80% and Tcur0390 less than 10% of their initial activity following incubation for 60 min at 55°C. Tcur0390 showed a higher hydrolytic activity against poly(ε-caprolactone) and polyethylene terephthalate (PET) nanoparticles compared to Tcur1278 at reaction temperatures up to 50°C. At 55°C and 60°C, hydrolytic activity against PET nanoparticles was only detected with Tcur1278. In silico modeling of the polyester hydrolases and docking with a model substrate composed of two repeating units of PET revealed the typical fold of α/β serine hydrolases with an exposed catalytic triad. Molecular dynamics simulations confirmed the superior thermal stability of Tcur1278 considered as the main reason for its higher hydrolytic activity on PET. PMID:25405080

  18. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component

    PubMed Central

    Yuan, Yihui; Gao, Meiying

    2016-01-01

    Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall. PMID:27242758

  19. Epoxide hydrolase activities and epoxy fatty acids in the mosquito Culex quinquefasciatus

    PubMed Central

    Xu, Jiawen; Morisseau, Christophe; Yang, Jun; Mamatha, Dadala M.

    2015-01-01

    Culex mosquitoes have emerged as important model organisms for mosquito biology, and are disease vectors for multiple mosquito-borne pathogens, including West Nile virus. We characterized epoxide hydrolase activities in the mosquito Culex quinquefasciatus, which suggested multiple forms of epoxide hydrolases were present. We found EH activities on epoxy eicosatrienoic acids (EETs). EETs and other eicosanoids are well-established lipid signaling molecules in vertebrates. We showed EETs can be synthesized in vitro from arachidonic acids by mosquito lysate, and EETs were also detected in vivo both in larvae and adult mosquitoes by LC-MS/MS. The EH activities on EETs can be induced by blood feeding, and the highest activity was observed in the midgut of female mosquitoes. The enzyme activities on EETs can be inhibited by urea-based inhibitors designed for mammalian soluble epoxide hydrolases (sEH). The sEH inhibitors have been shown to play diverse biological roles in mammalian systems, and they can be useful tools to study the function of EETs in mosquitoes. Besides juvenile hormone metabolism and detoxification, insect epoxide hydrolases may also play a role in regulating lipid signaling molecules, such as EETs and other epoxy fatty acids, synthesized in vivo or obtained from blood feeding by female mosquitoes. PMID:25686802

  20. Expression of recombinant organophosphorus hydrolase in the original producer of the enzyme, Sphingobium fuliginis ATCC 27551.

    PubMed

    Nakayama, Kosuke; Ohmori, Takeshi; Ishikawa, Satoshi; Iwata, Natsumi; Seto, Yasuo; Kawahara, Kazuyoshi

    2016-05-01

    The plasmid encoding His-tagged organophosphorus hydrolase (OPH) cloned from Sphingobium fuliginis was modified to be transferred back to this bacterium. The replication function of S. amiense plasmid was inserted at downstream of OPH gene, and S. fuliginis was transformed with this plasmid. The transformant produced larger amount of active OPH with His-tag than E. coli.

  1. ORGANOPHOSPHORUS HYDROLASE-BASED AMPEROMETRIC SENSOR: MODULATION OF SENSITIVITY AND SUBSTRATE SELECTIVITY

    EPA Science Inventory

    The detection of organophosphate (OP) insecticides with nitrophenyl substituents is reported using an enzyme electrode composed of Organophosphorus Hydrolase (OPH) and albumin co-immobilized to a nylon net and attached to a carbon paste electrode. The mechanism for this biosen...

  2. BIODEGRADATION OF ORGANOPHOSPHORUS PESTICIDES BY SURFACE-EXPRESSED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    EPA Science Inventory

    Organophosphorus hydrolase (OPH) was displayed and anchored onto the surface of
    Escherichia coli using an Lpp-OmpA fusion system. Production of the fusion proteins in membrane
    fractions was verified by immunoblotting with OmpA antisera. inclusion of the organophosphorus
    ...

  3. Assessment of rat liver microsomal epoxide hydrolase as a marker of hepatocarcinogenesis.

    PubMed

    Kizer, D E; Clouse, J A; Ringer, D P; Hanson-Painton, O; Vaz, A D; Palakodety, R B; Griffin, M J

    1985-05-15

    The influence of eleven xenobiotics on the activity and amount of hepatic microsomal epoxide hydrolase was determined. Activity was assayed using three different substrates after rats were fed, throughout 3 weeks, diets containing one of six hepatocarcinogens, viz. 2-acetylaminofluorene, 3'-methyl-4-dimethylaminoazobenzene, 4'-fluoro-4-dimethylaminoazobenzene, thioacetamide, aflatoxin B1 and ethionine. Five hepatocarcinogens induced activity 4- to 10-fold; ethionine was relatively ineffective as an inducer. Two non-carcinogenic analogues of hepatocarcinogens, viz. fluorene and p-aminoazobenzene, caused no appreciable increase in enzyme activity, but phenobarbital, barbital and 1-naphthylisothiocyanate induced activity 2- to 3-fold. All eleven xenobiotics increased the amount of microsomal epoxide hydrolase 2- to 9-fold when examined immunochemically using either a radial diffusion assay or an enzyme-linked immunosorbent assay (ELISA). Serum glutamic oxaloacetic acid transaminase activity was not appreciably elevated by feeding ten of the xenobiotics, suggesting that inductions were not owing to toxicity. Using ELISA, microsomal epoxide hydrolase was detected in post-microsomal (PM) supernatant fractions from control rat liver, thus confirming an earlier report by Gill et al. [Carcinogenesis 3, 1307 (1982)]. The eleven xenobiotics induced the amount of ELISA-detectable antigen in PM supernatant fractions by 3- to 34-fold. Longer centrifugation of PM supernatant fractions yielded a pellet fraction that contained 92 +/- 1.2% of the ELISA-detectable antigen irrespective of the xenobiotic regimen. Relationships between xenobiotic induction of microsomal epoxide hydrolase activity and amount and hepatocarcinogenesis are discussed.

  4. A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551

    SciTech Connect

    Khajamohiddin, Syed; Babu, Pakala Suresh; Chakka, Deviprasanna; Merrick, Mike; Bhaduri, Anirban; Sowdhamini, Ramanathan; Siddavattam, Dayananda . E-mail: sdsl@uohyd.ernet.in

    2006-12-22

    The organophosphate degrading (opd) gene cluster of plasmid pPDL2 of Flavobacterium sp. ATCC27551 contains a novel open-reading frame, orf243. This was predicted to encode an {alpha}/{beta} hydrolase distantly related to the meta-fission product (MFP) hydrolases such as XylF, PhnD, and CumD. By homology modeling Orf243 has most of the structural features of MFP hydrolases including the characteristic active site catalytic triad. The purified protein (designated MfhA) is a homotetramer and shows similar affinity for 2-hydroxy-6-oxohepta-2,4-dienoate (HOHD), 2-hydroxymuconic semialdehyde (HMSA), and 2-hydroxy-5-methylmuconic semialdehyde (HMMSA), the meta-fission products of 3-methyl catechol, catechol, and 4-methyl catechol. The unique catalytic properties of MfhA and the presence near its structural gene of cis-elements required for transposition suggest that mfhA has evolved towards encoding a common hydrolase that can act on meta-fission products containing either aldehyde or ketone groups.

  5. High-Throughput In Vitro Glycoside Hydrolase (HIGH) Screening for Enzyme Discovery

    SciTech Connect

    Kim, Tae-Wan; Chokhawala, Harshal A.; Hess, Matthias; Dana, Craig M.; Baer, Zachary; Sczyrba, Alexander; Rubin, Edward M.; Blanch, Harvey W.; Clark, Douglas S.

    2011-09-16

    A high-throughput protein-expression and screening method (HIGH method, see picture) provides a rapid approach to the discovery of active glycoside hydrolases in environmental samples. Finally, HIGH screening combines cloning, protein expression, and enzyme hydrolysis in one pot; thus, the entire process from gene expression to activity detection requires only three hours.

  6. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases.

    PubMed

    Nisha, M; Satyanarayana, T

    2016-07-01

    Pullulan hydrolyzing enzymes are endoacting, classified based on the substrate specificity and hydrolysis products as pullulanases (type I and II) and pullulan hydrolases (type I, II and III). Pullulanases and pullulan hydrolase type I are produced by bacteria and archaea. Among bacteria, many mesophilic, thermophilic and hyperthermophilic bacteria produce pullulanases and neopullulanases. While pullulan hydrolase type II and type III are produced by fungi and archaea, respectively. These are multi-domain proteins with three conserved catalytic acidic residues of the glycosyl hydrolases. The recent advances in molecular biology and protein engineering via mutagenesis and truncation led to improvement in thermostability, catalytic activity and substrate specificity. Pullulanases are debranching enzymes, which are widely employed in starch saccharification that minimizes the use of glucoamylase (approx. 50 %) and reduces the total reaction time of the industrial starch conversion process. The thermostable amylopullulanases are useful in one-step starch liquefaction and saccharification, which replaces amylolytic enzymes like α-amylase and glucoamylase, thus resulting in the reduction in the cost of sugar production. The enzymes also find application in making resistant starches and as an antistale in bread making. Panose and isopanose containing syrups are useful as prebiotics, while panose has also been reported to display anticarcinogenic activity. This review focuses on the distinguishing features of these enzymes based on the analysis of amino acid sequences and domain structure, besides highlighting recent advances in the molecular biology and protein engineering for enhancing their thermostability, catalytic activity and substrate specificity. This review also briefly summarizes the potential applications of pullulanases and pullulan hydrolases.

  7. γ-PGA Hydrolases of Phage Origin in Bacillus subtilis and Other Microbial Genomes

    PubMed Central

    Mamberti, Stefania; Prati, Paola; Cremaschi, Paolo; Seppi, Claudio; Morelli, Carlo F.; Galizzi, Alessandro; Fabbi, Massimo; Calvio, Cinzia

    2015-01-01

    Poly-γ-glutamate (γ-PGA) is an industrially interesting polymer secreted mainly by members of the class Bacilli which forms a shield able to protect bacteria from phagocytosis and phages. Few enzymes are known to degrade γ-PGA; among them is a phage-encoded γ-PGA hydrolase, PghP. The supposed role of PghP in phages is to ensure access to the surface of bacterial cells by dismantling the γ-PGA barrier. We identified four unannotated B. subtilis genes through similarity of their encoded products to PghP; in fact these genes reside in prophage elements of B. subtilis genome. The recombinant products of two of them demonstrate efficient polymer degradation, confirming that sequence similarity reflects functional homology. Genes encoding similar γ-PGA hydrolases were identified in phages specific for the order Bacillales and in numerous microbial genomes, not only belonging to that order. The distribution of the γ-PGA biosynthesis operon was also investigated with a bioinformatics approach; it was found that the list of organisms endowed with γ-PGA biosynthetic functions is larger than expected and includes several pathogenic species. Moreover in non-Bacillales bacteria the predicted γ-PGA hydrolase genes are preferentially found in species that do not have the genetic asset for polymer production. Our findings suggest that γ-PGA hydrolase genes might have spread across microbial genomes via horizontal exchanges rather than via phage infection. We hypothesize that, in natural habitats rich in γ-PGA supplied by producer organisms, the availability of hydrolases that release glutamate oligomers from γ-PGA might be a beneficial trait under positive selection. PMID:26158264

  8. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria.

    PubMed Central

    Schlömann, M; Schmidt, E; Knackmuss, H J

    1990-01-01

    Of various benzoate-utilizing bacteria tested, Alcaligenes eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, A. eutrophus JMP134, Alcaligenes strain A7, and Pseudomonas cepacia were able to grow with 4-fluorobenzoate as the sole source of carbon and energy. P. cepacia also utilizes 3-fluorobenzoate. Except for A. eutrophus JMP134, which is known to grow with 2,4-dichlorophenoxyacetate and 3-chlorobenzoate (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981), the strains were unable to grow at the expense of these compounds or 4-chlorobenzoate. Assays of cell extracts revealed that all strains express dienelactone hydrolase and maleylacetate reductase activities in addition to enzymes of the catechol branch of the 3-oxoadipate pathway when growing with 4-fluorobenzoate. Induction of dienelactone hydrolase and maleylacetate reductase apparently is not necessarily connected to synthesis of catechol 1,2-dioxygenase type II and chloromuconate cycloisomerase activities, which are indispensable for the degradation of chlorocatechols. Substrate specificities of the dienelactone hydrolases provisionally differentiate among three types of this activity. (i) Extracts of A. eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, and Alcaligenes strain A7 convert trans-4-carboxymethylenebut-2-en-4-olide (trans-dienelactone) much faster than the cis-isomer (type I). (ii) The enzyme present in P. cepacia shows the opposite preference for the isomeric substrates (type II). (iii) Cell extracts of A. eutrophus JMP134, as well as purified dienelactone hydrolase from Pseudomonas strain B13 (E. Schmidt and H.-J. Knackmuss, Biochem. J. 192:339-347, 1980), hydrolyze both dienelactones at rates that are of the same order of magnitude (type III). This classification implies that A. eutrophus JMP134 possesses at least two different dienelactone hydrolases, one of type III encoded by the plasmid pJP4 and one of type I, which is also present in the cured strain JMP222. PMID

  9. Post-synthetic modification of plant cell walls by expression of microbial hydrolases in the apoplast.

    PubMed

    Pogorelko, Gennady; Fursova, Oksana; Lin, Ming; Pyle, Eric; Jass, Johanna; Zabotina, Olga A

    2011-11-01

    The systematic creation of defined cell wall modifications in the model plant Arabidopsis thaliana by expression of microbial hydrolases with known specific activities is a promising approach to examine the impacts of cell wall composition and structure on both plant fitness and cell wall recalcitrance. Moreover, this approach allows the direct evaluation in living plants of hydrolase specificity, which can differ from in vitro specificity. To express genes encoding microbial hydrolases in A. thaliana, and target the hydrolases to the apoplast compartment, we constructed an expression cassette composed of the Cauliflower Mosaic Virus 35S RNA promoter, the A. thaliana β-expansin signal peptide, and the fluorescent marker protein YFP. Using this construct we successfully introduced into Colombia-0 plants three Aspergillus nidulans hydrolases, β-xylosidase/α-arabinosidase, feruloyl esterase, acetylxylan esterase, and a Xanthomonas oryzae putative a-L: -arabinofuranosidase. Fusion with YFP permitted quick and easy screening of transformants, detection of apoplastic localization, and protein size confirmation. Compared to wild-type Col-0, all transgenic lines showed a significant increase in the corresponding hydrolytic activity in the apoplast and changes in cell wall composition. Examination of hydrolytic activity in the transgenic plants also showed, for the first time, that the X. oryzae gene indeed encoded an enzyme with α-L: -arabinofuranosidase activity. None of the transgenic plants showed a visible phenotype; however, the induced compositional changes increased the degradability of biomass from plants expressing feruloyl esterase and β-xylosidase/α-arabinosidase. Our results demonstrate the viability of creating a set of transgenic A. thaliana plants with modified cell walls to use as a toolset for investigation of how cell wall composition contributes to recalcitrance and affects plant fitness.

  10. Supplementing with Non-Glycoside Hydrolase Proteins Enhances Enzymatic Deconstruction of Plant Biomass

    PubMed Central

    Su, Xiaoyun; Zhang, Jing; Mackie, Roderick I.; Cann, Isaac K. O.

    2012-01-01

    The glycoside hydrolases (GH) of Caldicellulosiruptor bescii are thermophilic enzymes, and therefore they can hydrolyze plant cell wall polysaccharides at high temperatures. Analyses of two C. bescii glycoside hydrolases, CbCelA-TM1 and CbXyn10A with cellulase and endoxylanase activity, respectively, demonstrated that each enzyme is highly thermostable under static incubation at 70°C. Both enzymes, however, rapidly lost their enzymatic activities when incubated at 70°C with end-over-end shaking. Since crowding conditions, even at low protein concentrations, seem to influence enzymatic properties, three non-glycoside hydrolase proteins were tested for their capacity to stabilize the thermophilic proteins at high temperatures. The three proteins investigated were a small heat shock protein CbHsp18 from C. bescii, a histone MkHistone1 from Methanopyrus kandleri, and bovine RNase A, from a commercial source. Fascinatingly, each of these proteins increased the thermostability of the glycoside hydrolases at 70°C during end-over-end shaking incubation, and this property translated into increases in hydrolysis of several substrates including the bioenergy feedstock Miscanthus. Furthermore, MkHistone1 and RNase A also altered the initial products released from the cello-oligosaccharide cellopentaose during hydrolysis with the cellodextrinase CbCdx1A, which further demonstrated the capacity of the three non-GH proteins to influence hydrolysis of substrates by the thermophilic glycoside hydrolases. The non-GH proteins used in the present report were small proteins derived from each of the three lineages of life, and therefore expand the space from which different polypeptides can be tested for their influence on plant cell wall hydrolysis, a critical step in the emerging biofuel industry. PMID:22952777

  11. Cell- and ligand-specific dephosphorylation of acid hydrolases: Evidence that the mannose 6-phosphatase is controlled by compartmentalization

    SciTech Connect

    Einstein, R.; Gabel, C.A. )

    1991-01-01

    Mouse L cells that possess the cation-independent mannose 6-phosphate (Man 6-P)/insulin-like growth factor (IGF) II receptor change the extent to which they dephosphorylate endocytosed acid hydrolases in response to serum. To investigate the mechanism by which dephosphorylation competence is regulated, the dephosphorylation of individual acid hydrolases was studied in Man 6-P/IGF II receptor-positive and -deficient cell lines. 125I-labeled Man 6-P-containing acid hydrolases were proteolytically processed but remained phosphorylated when endocytosed by receptor-positive L cells maintained in the absence of serum; after the addition of serum, however, the cell-associated hydrolases were dephosphorylated. Individual hydrolases were dephosphorylated at distinct rates and to different extents. In contrast, the same hydrolases were dephosphorylated equally and completely after entry into Man 6-P/IGF II receptor-positive Chinese hamster ovary (CHO) cells. The dephosphorylation competence of Man 6-P/IGF II receptor-deficient mouse J774 cells was more limited. beta-Glucuronidase produced by these cells underwent a limited dephosphorylation in transit to lysosomes such that diphosphorylated oligosaccharides were converted to monophosphorylated species. The overall quantity of phosphorylated oligosaccharides associated with the enzyme, however, did not decrease within the lysosomal compartment. Likewise, beta-glucuronidase was not dephosphorylated when introduced into J774 cells via Fc receptor-mediated endocytosis. The CHO and J774 cell lysosomes, therefore, display opposite extremes with respect to their capacity to dephosphorylate acid hydrolases; within CHO cell lysosomes acid hydrolases are rapidly and efficiently dephosphorylated, but within J774 cell lysosomes the same acid hydrolases remain phosphorylated.

  12. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    SciTech Connect

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  13. The putative α/β-hydrolases of Dietzia cinnamea P4 strain as potential enzymes for biocatalytic applications.

    PubMed

    Procópio, Luciano; Macrae, Andrew; van Elsas, Jan Dirk; Seldin, Lucy

    2013-03-01

    The draft genome of the soil actinomycete Dietzia cinnamea P4 reveals a versatile group of α/β-hydrolase fold enzymes. Phylogenetic and comparative sequence analyses were used to classify the α/β-hydrolases of strain P4 into six different groups: (i) lipases, (ii) esterases, (iii) epoxide hydrolases, (iv) haloacid dehalogenases, (v) C-C breaking enzymes and (vi) serine peptidases. The high number of lipases/esterases (41) and epoxide hydrolase enzymes (14) present in the relatively small (3.6 Mb) P4 genome is unusual; it is likely to be linked to the survival of strain P4 in its natural environment. Strain P4 is thus equipped with a large number of genes which would appear to confer survivability in harsh hot tropical soil. As such, this highly resilient soil bacterial strain provides an interesting genome for enzyme mining for applications in the field of biotransformations of polymeric compounds.

  14. Structure Determination and Characterization of the Vitamin B[superscript 6] Degradative Enzyme (E)-2-(Acetamidomethylene)succinate Hydrolase

    SciTech Connect

    McCulloch, Kathryn M.; Mukherjee, Tathagata; Begley, Tadhg P.; Ealick, Steven E.

    2010-06-22

    The gene identification and kinetic characterization of (E)-2-(acetamidomethylene)succinate (E-2AMS) hydrolase has recently been described. This enzyme catalyzes the final reaction in the degradation of vitamin B{sub 6} and produces succinic semialdehyde, acetate, ammonia, and carbon dioxide from E-2AMS. The structure of E-2AMS hydrolase was determined to 2.3 {angstrom} using SAD phasing. E-2AMS hydrolase is a member of the {alpha}/{beta} hydrolase superfamily and utilizes a serine/histidine/aspartic acid catalytic triad. Mutation of either the nucleophilic serine or the aspartate resulted in inactive enzyme. Mutation of an additional serine residue in the active site causes the enzyme to be unstable and is likely structurally important. The structure also provides insight into the mechanism of hydrolysis of E-2AMS and identifies several potential catalytically important residues.

  15. Proteins with an alpha/beta hydrolase fold: Relationships between subfamilies in an ever-growing superfamily.

    PubMed

    Lenfant, Nicolas; Hotelier, Thierry; Bourne, Yves; Marchot, Pascale; Chatonnet, Arnaud

    2013-03-25

    Alpha/beta hydrolases function as hydrolases, lyases, transferases, hormone precursors or transporters, chaperones or routers of other proteins. The amount of structural and functional available data related to this protein superfamily expands exponentially, as does the number of proteins classified as alpha/beta hydrolases despite poor sequence similarity and lack of experimental data. However the superfamily can be rationally divided according to sequence or structural homologies, leading to subfamilies of proteins with potentially similar functions. Since the discovery of proteins homologous to cholinesterases but devoid of enzymatic activity (e.g., the neuroligins), divergent functions have been ascribed to members of other subfamilies (e.g., lipases, dipeptidylaminopeptidase IV, etc.). To study the potentially moonlighting properties of alpha/beta hydrolases, the ESTHER database (for ESTerase and alpha/beta Hydrolase Enzymes and Relatives; http://bioweb.ensam.inra.fr/esther), which collects, organizes and disseminates structural and functional information related to alpha/beta hydrolases, has been updated with new tools and the web server interface has been upgraded. A new Overall Table along with a new Tree based on HMM models has been included to tentatively group subfamilies. These tools provide starting points for phylogenetic studies aimed at pinpointing the origin of duplications leading to paralogous genes (e.g., acetylcholinesterase versus butyrylcholinesterase, or neuroligin versus carboxylesterase). Another of our goals is to implement new tools to distinguish catalytically active enzymes from non-catalytic proteins in poorly studied or annotated subfamilies.

  16. A New Insight into the Physiological Role of Bile Salt Hydrolase among Intestinal Bacteria from the Genus Bifidobacterium

    PubMed Central

    Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław

    2014-01-01

    This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche. PMID:25470405

  17. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids.

    PubMed Central

    Stahl, U.; Banas, A.; Stymne, S.

    1995-01-01

    Developing endosperms and embryos accumulating triacylglycerols rich in caproyl (decanoyl) groups (i.e. developing embryos of Cuphea procumbens and Ulmus glabra) had microsomal acyl hydrolases with high selectivities toward phosphatidylcholine with this acyl group. Similarly, membranes from Euphorbia lagascae and Ricinus communis endosperms, which accumulate triacylglycerols with vernoleate (12-epoxy-octadeca-9-enoate) and ricinoleate (12-hydroxy-octadeca-9-enoate), respectively, had acyl hydrolases that selectively removed their respective oxygenated acyl group from the phospholipids. The activities toward phospholipid substrates with epoxy, hydroxy, and medium-chain acyl groups varied greatly between microsomal preparations from different plant species. Epoxidated and hydroxylated acyl groups in sn-1 and sn-2 positions of phosphatidylcholine and in sn-1-lysophosphatidylcholine were hydrolyzed to a similar extent, whereas the hydrolysis of caproyl groups was highly dependent on the positional localization. PMID:12228415

  18. Production of monospecific antiserum to a cytosolic epoxide hydrolase from human liver.

    PubMed

    Qato, M K; Reinmund, S G; Guenthner, T M

    1990-01-15

    A method for the purification to apparent homogeneity of cytosolic trans-stilbene oxide hydrolase from human liver is presented. The method employed ion exchange and gel filtration chromatography. From 50 g of human liver, 4.9 mg of homogenous enzyme protein was obtained. Although the enzyme had lost much of its catalytic activity during purification, it was nevertheless suitable for the preparation of antibodies to the enzyme. Only one immunogenic species was present in the antigen preparation, but some antibodies that were cross-reactive to sites on catalase were present in the antiserum. These catalase-specific antibodies were removed by immunoaffinity chromatography, and an IgG fraction that is monospecific to the cytosolic epoxide hydrolase was obtained. The usefulness of antibodies to this enzyme in immunoblotting experiments, following either sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focussing, as well as in enzyme-linked immunosorbent assays, is demonstrated.

  19. Tolerance of β-diketone hydrolases as representatives of the crotonase superfamily towards organic solvents.

    PubMed

    Siirola, Elina; Grischek, Barbara; Clay, Dorina; Frank, Annika; Grogan, Gideon; Kroutil, Wolfgang

    2011-12-01

    Crotonase superfamily enzymes catalyze a wide variety of reactions, including hydrolytic C-C bond cleavage in symmetrical β-diketones by 6-oxo camphor hydrolase (OCH) from Rhodococcus sp. The organic solvent tolerance and temperature stability of OCH and its structurally related ortholog Anabaena β-diketone hydrolase have been investigated. Both enzymes showed excellent tolerance toward organic solvents; for instance, even in the presence of 80% (v/v) THF or dioxane, OCH was still active. In most solvent mixtures, except methanol, the stereospecificity was conserved (>99% e.e. of product), hence neither the type of solvent nor its concentration appeared to have an effect on the stereoselectivity of the enzyme. Attempts to correlate the observed activities with log P, functional solvent group or denaturing capacity (DC) of the solvent were only successful in the case of DC for water miscible solvents. This study represents the first investigation of organic solvent stability for members of the crotonase superfamily.

  20. Crystallization and preliminary X-ray analysis of neoagarobiose hydrolase from Saccharophagus degradans 2-40

    PubMed Central

    Lee, Saeyoung; Lee, Jonas Yun; Ha, Sung Chul; Jung, Jina; Shin, Dong Hae; Kim, Kyoung Heon; Choi, In-Geol

    2009-01-01

    Many agarolytic bacteria degrade agar polysaccharide into the disaccharide unit neoagarobiose [O-3,6-anhydro-α-l-galactopyranosyl-(1→3)-d-galactose] using various β-agarases. Neoagarobiose hydrolase is an enzyme that acts on the α-­1,3 linkage in neoagarobiose to yield d-galactose and 3,6-anhydro-l-galactose. This activity is essential in both the metabolism of agar by agarolytic bacteria and the production of fermentable sugars from agar biomass for bioenergy production. Neoagarobiose hydrolase from the marine bacterium Saccharophagus degradans 2-40 was overexpressed in Escherichia coli and crystallized in the monoclinic space group C2, with unit-cell parameters a = 129.83, b = 76.81, c = 90.11 Å, β = 101.86°. The crystals diffracted to 1.98 Å resolution and possibly contains two molecules in the asymmetric unit. PMID:20054134

  1. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation.

    PubMed

    Viader, Andreu; Ogasawara, Daisuke; Joslyn, Christopher M; Sanchez-Alavez, Manuel; Mori, Simone; Nguyen, William; Conti, Bruno; Cravatt, Benjamin F

    2016-01-18

    Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and -beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function.

  2. Effects of proteins and polynucleotides on the activity of various hydrolases

    PubMed Central

    Palmieri, M. J.; Koldovský, O.

    1972-01-01

    The effect of various macromolecules on the activity of several hydrolases was studied. Dilution of partially purified acid β-galactosidase from ileal mucosa of suckling rats resulted in a decrease of specific activity. The relationship between specific activity and dilution of the enzyme suggests a dissociation of the enzyme. This could be prevented by addition of several proteins tested. However, addition of DNA to the assay mixture for acid β-galactosidase caused an inhibition. This inhibition could be prevented by addition of proteins. Other polynucleotides and tRNA also exert an inhibitory effect that is prevented by albumin, but nucleotides have no effect. This inhibition occurs maximally at a low pH (3.0–4.0); no inhibition is observed at pH5.5. A similar pH-dependent inhibition by DNA was also found with various other acid hydrolases. PMID:5076227

  3. Physical comparison of parathion hydrolase plasmids from Pseudomonas diminuta and Flavobacterium sp.

    PubMed

    Mulbry, W W; Kearney, P C; Nelson, J O; Karns, J S

    1987-09-01

    Restriction maps of two plasmids encoding parathion hydrolase have been determined. pPDL2 is a 39-kb plasmid harbored by Flavobacterium sp. (ATCC 27551), while pCMS1 is a 70-kb plasmid found in Pseudomonas diminuta (strain MG). Both plasmids previously have been shown to share homologous parathion hydrolase genes (termed opd for organophosphate degradation) as judged by DNA-DNA hybridization and restriction mapping. In the present study, we conducted DNA hybridization experiments using each of nine PstI restriction fragments from pCMS1 as probes against Flavobacterium plasmid DNA. The opd genes of both plasmids are located within a highly conserved region of approximately 5.1 kb. This region of homology extends approximately 2.6 kb upstream and 1.7 kb downstream from the opd genes. No homology between the two plasmids is evident outside of this region.

  4. Dual roles of brain serine hydrolase KIAA1363 in ether lipid metabolism and organophosphate detoxification

    SciTech Connect

    Nomura, Daniel K.; Fujioka, Kazutoshi; Issa, Roger S.; Ward, Anna M.; Cravatt, Benjamin F.; Casida, John E.

    2008-04-01

    Serine hydrolase KIAA1363 is an acetyl monoalkylglycerol ether (AcMAGE) hydrolase involved in tumor cell invasiveness. It is also an organophosphate (OP) insecticide-detoxifying enzyme. The key to understanding these dual properties was the use of KIAA1363 +/+ (wildtype) and -/- (gene deficient) mice to define the role of this enzyme in brain and other tissues and its effectiveness in vivo in reducing OP toxicity. KIAA1363 was the primary AcMAGE hydrolase in brain, lung, heart and kidney and was highly sensitive to inactivation by chlorpyrifos oxon (CPO) (IC{sub 50} 2 nM) [the bioactivated metabolite of the major insecticide chlorpyrifos (CPF)]. Although there was no difference in hydrolysis product monoalkylglycerol ether (MAGE) levels in +/+ and -/- mouse brains in vivo, isopropyl dodecylfluorophosphonate (30 mg/kg) and CPF (100 mg/kg) resulted in 23-51% decrease in brain MAGE levels consistent with inhibition of AcMAGE hydrolase activity. On incubating +/+ and -/- brain membranes with AcMAGE and cytidine-5'-diphosphocholine, the absence of KIAA1363 activity dramatically increased de novo formation of platelet-activating factor (PAF) and lyso-PAF, signifying that metabolically-stabilized AcMAGE can be converted to this bioactive lipid in brain. On considering detoxification, KIAA1363 -/- mice were significantly more sensitive than +/+ mice to ip-administered CPF (100 mg/kg) and parathion (10 mg/kg) with increased tremoring and mortality that correlated for CPF with greater brain acetylcholinesterase inhibition. Docking AcMAGE and CPO in a KIAA1363 active site model showed similar positioning of their acetyl and trichloropyridinyl moieties, respectively. This study establishes the relevance of KIAA1363 in ether lipid metabolism and OP detoxification.

  5. Trigger factor assisted folding of the recombinant epoxide hydrolases identified from C. pelagibacter and S. nassauensis.

    PubMed

    Saini, Priya; Wani, Shadil Ibrahim; Kumar, Ranjai; Chhabra, Ravneet; Chimni, Swapandeep Singh; Sareen, Dipti

    2014-12-01

    Epoxide hydrolases (EHs), are enantioselective enzymes as they catalyze the kinetic resolution of racemic epoxides into the corresponding enantiopure vicinal diols, which are useful precursors in the synthesis of chiral pharmaceutical compounds. Here, we have identified and cloned two putative epoxide hydrolase genes (cpeh and sneh) from marine bacteria, Candidatus pelagibacter ubique and terrestrial bacteria, Stackebrandtia nassauensis, respectively and overexpressed them in pET28a vector in Escherichia coli BL21(DE3). The CPEH protein (42kDa) was found to be overexpressed as inactive inclusion bodies while SNEH protein (40kDa) was found to form soluble aggregates. In this study, the recombinant CPEH was successfully transformed from insoluble aggregates to the soluble and functionally active form, using pCold TF vector, though with low EH activity. To prevent the soluble aggregate formation of SNEH, it was co-expressed with GroEL/ES chaperone and was also fused with trigger factor (TF) chaperone at its N-terminus. The TF chaperone-assisted correct folding of SNEH led to a purified active EH with a specific activity of 3.85μmol/min/mg. The pure enzyme was further used to biocatalyze the hydrolysis of 10mM benzyl glycidyl ether (BGE) and α-methyl styrene oxide (MSO) with an enantiomeric excess of the product (eep) of 86% and 73% in 30 and 15min, respectively. In conclusion, this is the first report about the heterologous expression of epoxide hydrolases using TF as a molecular chaperone in pCold TF expression vector, resulting in remarkable increase in the solubility and activity of the otherwise improperly folded recombinant epoxide hydrolases.

  6. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    PubMed Central

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-01-01

    Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA_C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry 1nc5) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA_C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR. PMID:26249707

  7. A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad

    PubMed Central

    Sarian, Fean D.; Janeček, Štefan; Pijning, Tjaard; Ihsanawati; Nurachman, Zeily; Radjasa, Ocky K.; Dijkhuizen, Lubbert; Natalia, Dessy; van der Maarel, Marc J. E. C.

    2017-01-01

    α-Amylases are glycoside hydrolase enzymes that act on the α(1→4) glycosidic linkages in glycogen, starch, and related α-glucans, and are ubiquitously present in Nature. Most α-amylases have been classified in glycoside hydrolase family 13 with a typical (β/α)8-barrel containing two aspartic acid and one glutamic acid residue that play an essential role in catalysis. An atypical α-amylase (BmaN1) with only two of the three invariant catalytic residues present was isolated from Bacillus megaterium strain NL3, a bacterial isolate from a sea anemone of Kakaban landlocked marine lake, Derawan Island, Indonesia. In BmaN1 the third residue, the aspartic acid that acts as the transition state stabilizer, was replaced by a histidine. Three-dimensional structure modeling of the BmaN1 amino acid sequence confirmed the aberrant catalytic triad. Glucose and maltose were found as products of the action of the novel α-amylase on soluble starch, demonstrating that it is active in spite of the peculiar catalytic triad. This novel BmaN1 α-amylase is part of a group of α-amylases that all have this atypical catalytic triad, consisting of aspartic acid, glutamic acid and histidine. Phylogenetic analysis showed that this group of α-amylases comprises a new subfamily of the glycoside hydrolase family 13. PMID:28287181

  8. Sph3 Is a Glycoside Hydrolase Required for the Biosynthesis of Galactosaminogalactan in Aspergillus fumigatus.

    PubMed

    Bamford, Natalie C; Snarr, Brendan D; Gravelat, Fabrice N; Little, Dustin J; Lee, Mark J; Zacharias, Caitlin A; Chabot, Josée C; Geller, Alexander M; Baptista, Stefanie D; Baker, Perrin; Robinson, Howard; Howell, P Lynne; Sheppard, Donald C

    2015-11-13

    Aspergillus fumigatus is the most virulent species within the Aspergillus genus and causes invasive infections with high mortality rates. The exopolysaccharide galactosaminogalactan (GAG) contributes to the virulence of A. fumigatus. A co-regulated five-gene cluster has been identified and proposed to encode the proteins required for GAG biosynthesis. One of these genes, sph3, is predicted to encode a protein belonging to the spherulin 4 family, a protein family with no known function. Construction of an sph3-deficient mutant demonstrated that the gene is necessary for GAG production. To determine the role of Sph3 in GAG biosynthesis, we determined the structure of Aspergillus clavatus Sph3 to 1.25 Å. The structure revealed a (β/α)8 fold, with similarities to glycoside hydrolase families 18, 27, and 84. Recombinant Sph3 displayed hydrolytic activity against both purified and cell wall-associated GAG. Structural and sequence alignments identified three conserved acidic residues, Asp-166, Glu-167, and Glu-222, that are located within the putative active site groove. In vitro and in vivo mutagenesis analysis demonstrated that all three residues are important for activity. Variants of Asp-166 yielded the greatest decrease in activity suggesting a role in catalysis. This work shows that Sph3 is a glycoside hydrolase essential for GAG production and defines a new glycoside hydrolase family, GH135.

  9. Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during Plasmodium falciparum Infection

    PubMed Central

    Dalmia, Varun K.

    2016-01-01

    ABSTRACT Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs). EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids) by epoxide hydrolases (EHs). The malaria parasite Plasmodium falciparum infects host red blood cells (RBCs) and exports hundreds of proteins into the RBC compartment. In this study, we show that two parasite epoxide hydrolases, P. falciparum epoxide hydrolases 1 (PfEH1) and 2 (PfEH2), both with noncanonical serine nucleophiles, are exported to the periphery of infected RBCs. PfEH1 and PfEH2 were successfully expressed in Escherichia coli, and they hydrolyzed physiologically relevant erythrocyte EETs. Mutations in active site residues of PfEH1 ablated the ability of the enzyme to hydrolyze an epoxide substrate. Overexpression of PfEH1 or PfEH2 in parasite-infected RBCs resulted in a significant alteration in the epoxide fatty acids stored in RBC phospholipids. We hypothesize that the parasite disruption of epoxide-containing signaling lipids leads to perturbed vascular function, creating favorable conditions for binding and sequestration of infected RBCs to the microvascular endothelium. PMID:27795395

  10. Diadenosine tetraphosphate hydrolase is part of the transcriptional regulation network in immunologically activated mast cells.

    PubMed

    Carmi-Levy, Irit; Yannay-Cohen, Nurit; Kay, Gillian; Razin, Ehud; Nechushtan, Hovav

    2008-09-01

    We previously discovered that microphthalmia transcription factor (MITF) and upstream stimulatory factor 2 (USF2) each forms a complex with its inhibitor histidine triad nucleotide-binding 1 (Hint-1) and with lysyl-tRNA synthetase (LysRS). Moreover, we showed that the dinucleotide diadenosine tetraphosphate (Ap(4)A), previously shown to be synthesized by LysRS, binds to Hint-1, and as a result the transcription factors are released from their suppression. Thus, transcriptional activity is regulated by Ap(4)A, suggesting that Ap(4)A is a second messenger in this context. For Ap(4)A to be unambiguously established as a second messenger, several criteria have to be fulfilled, including the presence of a metabolizing enzyme. Since several enzymes are able to hydrolyze Ap(4)A, we provided here evidence that the "Nudix" type 2 gene product, Ap(4)A hydrolase, is responsible for Ap(4)A degradation following the immunological activation of mast cells. The knockdown of Ap(4)A hydrolase modulated Ap(4)A accumulation, resulting in changes in the expression of MITF and USF2 target genes. Moreover, our observations demonstrated that the involvement of Ap(4)A hydrolase in gene regulation is not a phenomenon exclusive to mast cells but can also be found in cardiac cells activated with the beta-agonist isoproterenol. Thus, we have provided concrete evidence establishing Ap(4)A as a second messenger in the regulation of gene expression.

  11. LytF, a Novel Competence-Regulated Murein Hydrolase in the Genus Streptococcus

    PubMed Central

    Berg, Kari Helene; Ohnstad, Hilde Solheim

    2012-01-01

    Streptococcus pneumoniae and probably most other members of the genus Streptococcus are competent for natural genetic transformation. During the competent state, S. pneumoniae produces a murein hydrolase, CbpD, that kills and lyses noncompetent pneumococci and closely related species. Previous studies have shown that CbpD is essential for efficient transfer of genomic DNA from noncompetent to competent cells in vitro. Consequently, it has been proposed that CbpD together with the cognate immunity protein ComM constitutes a DNA acquisition mechanism that enables competent pneumococci to capture homologous DNA from closely related streptococci sharing the same habitat. Although genes encoding CbpD homologs or CbpD-related proteins are present in many different streptococcal species, the genomes of a number of streptococci do not encode CbpD-type proteins. In the present study we show that the genomes of nearly all species lacking CbpD encode an unrelated competence-regulated murein hydrolase termed LytF. Using Streptococcus gordonii as a model system, we obtained evidence indicating that LytF is a functional analogue of CbpD. In sum, our results show that a murein hydrolase gene is part of the competence regulon of most or all streptococcal species, demonstrating that these muralytic enzymes constitute an essential part of the streptococcal natural transformation system. PMID:22123253

  12. A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad.

    PubMed

    Sarian, Fean D; Janeček, Štefan; Pijning, Tjaard; Ihsanawati; Nurachman, Zeily; Radjasa, Ocky K; Dijkhuizen, Lubbert; Natalia, Dessy; van der Maarel, Marc J E C

    2017-03-13

    α-Amylases are glycoside hydrolase enzymes that act on the α(1→4) glycosidic linkages in glycogen, starch, and related α-glucans, and are ubiquitously present in Nature. Most α-amylases have been classified in glycoside hydrolase family 13 with a typical (β/α)8-barrel containing two aspartic acid and one glutamic acid residue that play an essential role in catalysis. An atypical α-amylase (BmaN1) with only two of the three invariant catalytic residues present was isolated from Bacillus megaterium strain NL3, a bacterial isolate from a sea anemone of Kakaban landlocked marine lake, Derawan Island, Indonesia. In BmaN1 the third residue, the aspartic acid that acts as the transition state stabilizer, was replaced by a histidine. Three-dimensional structure modeling of the BmaN1 amino acid sequence confirmed the aberrant catalytic triad. Glucose and maltose were found as products of the action of the novel α-amylase on soluble starch, demonstrating that it is active in spite of the peculiar catalytic triad. This novel BmaN1 α-amylase is part of a group of α-amylases that all have this atypical catalytic triad, consisting of aspartic acid, glutamic acid and histidine. Phylogenetic analysis showed that this group of α-amylases comprises a new subfamily of the glycoside hydrolase family 13.

  13. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  14. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    PubMed

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  15. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel

    PubMed Central

    Bera, Asim K; Aukema, Kelly G.; Elias, Mikael; Wackett, Lawrence P.

    2017-01-01

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas the two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel. PMID:28345631

  16. Hydrolase activity in the venom of the pupal endoparasitic wasp, Pimpla hypochondriaca.

    PubMed

    Dani, M P; Edwards, J P; Richards, E H

    2005-07-01

    Venom from the pupal endoparasitoid, Pimpla hypochondriaca has previously been shown to contain a mixture of biologically active molecules. Currently, P. hypochondriaca venom was examined for the presence of hydrolase activity. Six hydrolases were consistently detected using the API ZYM semiquantitative colourimetric kit. The main hydrolases detected were; acid phosphatase, beta-glucosidase, esterase, beta-galactosidase, esterase lipase, and lipase. The most rapid and intense colour reaction was detected for acid phosphatase. The pH optimum and the specific activity of venom acid phosphatase was determined using p-nitrophenol phosphate as a substrate and were 4.8 and 0.47 nmol p-nitrophenol/min/microg of venom protein, respectively. The acid phosphatase activity was inhibited in a dose dependent manner by sodium fluoride (IC(50) 4.2 x 10(-4) M), and by cocktail inhibitor 2 (CI 2). P. hypochondriaca venom has previously been shown to display potent cytotoxic activity towards Lacanobia oleracea haemocytes maintained in vitro. The contribution of acid phosphatase in venom to this cytotoxic activity was investigated by titrating venom against CI 2 prior to the addition of L. oleracea haemocytes. The results suggest that, despite the relatively high levels of acid phosphatase activity in venom, venom acid phosphatase plays no role in the antihaemocytic activity of P. hypochondriaca venom in vitro.

  17. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    SciTech Connect

    Brzezinski, Krzysztof; Bujacz, Grzegorz; Jaskolski, Mariusz

    2008-07-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4{sub 3}2{sub 1}2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation.

  18. Thermal unfolding of nucleoside hydrolases from the hyperthermophilic archaeon Sulfolobus solfataricus: role of disulfide bonds.

    PubMed

    Porcelli, Marina; De Leo, Ester; Del Vecchio, Pompea; Fuccio, Francesca; Cacciapuoti, Giovanna

    2012-03-01

    Nucleoside hydrolases are metalloproteins that hydrolyze the N-glycosidic bond of β-ribonucleosides, forming the free purine/pyrimidine base and ribose. We report the stability of the two hyperthermophilic enzymes Sulfolobus solfataricus pyrimidine-specific nucleoside hydrolase (SsCU-NH) and Sulfolobus solfataricus purine-specific inosineadenosine- guanosine nucleoside hydrolase (SsIAG-NH) against the denaturing action of temperature and guanidine hydrochloride by means of circular dichroism and fluorescence spectroscopy. The guanidine hydrochloride-induced unfolding is reversible for both enzymes as demonstrated by the analysis of the refolding process by activity assays and fluorescence measurements. The evidence that the denaturation of SsIAG-NH carried out in the presence of reducing agents proved to be reversible indicates that the presence of disulfide bonds interferes with the refolding process of this enzyme. Both enzymes are highly thermostable and no thermal unfolding transition can be obtained up to 108°C. SsIAG-NH is thermally denatured under reducing conditions (T(m)=93°C) demonstrating the contribution of disulfide bridges to enzyme thermostability.

  19. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases

    PubMed Central

    Wheeler, Richard; Turner, Robert D.; Bailey, Richard G.; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A. S.; Hayhurst, Emma J.; Horsburgh, Malcolm; Hobbs, Jamie K.

    2015-01-01

    ABSTRACT Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. PMID:26220963

  20. Ubiquitin dimers control the hydrolase activity of UCH-L3.

    PubMed

    Setsuie, Rieko; Sakurai, Mikako; Sakaguchi, Yuriko; Wada, Keiji

    2009-01-01

    Ubiquitin (Ub) carboxy terminal hydrolase (UCH)-L1 and UCH-L3 are two of the deubiquitinating enzymes expressed in the brain. Both gad mice, which lack UCH-L1 expression and Uchl3 knockout mice exhibit neurodegeneration, although at distinct areas. These phenotypes indicate the importance of UCH-L1 and UCH-L3 in the regulation of the central nervous system. However, molecular substrates and the molecular regulators of UCH-L1 and UCH-L3 remain poorly identified. Here we show that Ub dimers interact non-covalently with UCH-L3 in vitro and in cells. These interactions were not observed with UCH-L1 in cells. In vitro, K48-linked Ub dimers pronouncedly inhibited the hydrolase activity of UCH-L3, while mono-Ub, a previously identified interacting protein, inhibited the hydrolase activity of UCH-L1. These results indicate that mono-Ub and Ub dimers may regulate the enzymatic functions of UCH-L1 and UCH-L3, respectively, in vivo.

  1. Production of polyclonal anti-dUCH (Drosophila ubiquitin carboxyl-terminal hydrolase) antibodies.

    PubMed

    Tram, Nguyen Thi Quynh; Trang, Nguyen Thi Thu; Thao, Dang Thi Phuong; Thuoc, Tran Linh

    2013-04-01

    Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), which is a member of the ubiquitin carboxyl-terminal hydrolase (UCH) family, is highly expressed in neurons. In vitro, UCH- L1 exhibits both ubiquitin hydrolase and ligase activity. Many studies have suggested that UCH-L1 is involved in the pathogenesis of Parkinson's disease and some different human cancer diseases, but its role in a living system is still unclear. Recently, Drosophila melanogaster has been shown to be a compatible model for studying human diseases. To investigate the role of UCH-L1 in a living system, the UCH-L1 homologous protein in Drosophila melanogaster (dUCH) is used for analyzing the role of the protein's function in transgenic Drosophila. Here, we used DNA molecular techniques to clone, express, and purify dUCH protein from Escherichia coli. The purified dUCH protein was injected into a rabbit to produce an anti-dUCH antibody, which was shown to have high specificity and sensitivity to the dUCH protein. The affinity of the antibody is 1:320,000 at 7.81 ng/μL antigen concentration. The 1:40,000 dilution-produced antibodies can detect antigen at a low concentration of 0.98 ng/μL. Success in producing this antibody provides good material for further experiments in the study of the role of UCH-L1 by a Drosophila model.

  2. Strategies to reduce end-product inhibition in family 48 glycoside hydrolases

    DOE PAGES

    Chen, Mo; Bu, Lintao; Alahuhta, Markus; ...

    2016-02-01

    Family 48 cellobiohydrolases are some of the most abundant glycoside hydrolases in nature. They are able to degrade cellulosic biomass and therefore serve as good enzyme candidates for biofuel production. Family 48 cellulases hydrolyze cellulose chains via a processive mechanism, and produce end products composed primarily of cellobiose as well as other cellooligomers (dp ≤ 4). The challenge of utilizing cellulases in biofuel production lies in their extremely slow turnover rate. A factor contributing to the low enzyme activity is suggested to be product binding to enzyme and the resulting performance inhibition. In this study, we quantitatively evaluated the productmore » inhibitory effect of four family 48 glycoside hydrolases using molecular dynamics simulations and product expulsion free-energy calculations. We also suggested a series of single mutants of the four family 48 glycoside hydrolases with theoretically reduced level of product inhibition. As a result, the theoretical calculations provide a guide for future experimental studies designed to produce mutant cellulases with enhanced activity.« less

  3. Prediction of drug-drug interactions with carbamazepine-10,11-epoxide using a new in vitro assay for epoxide hydrolase inhibition.

    PubMed

    Rosa, Maria; Bonnaillie, Pierre; Chanteux, Hugues

    2016-12-01

    1. Carbamazepine is an antiepileptic drug which is metabolized by CYP3A4 into carbamazepine-10,11-epoxide. This metabolite is then detoxified by epoxide hydrolase. As carbamazepine-10,11-epoxide has been associated with neurotoxicity, it is critical to identify whether a new antiepileptic drug has the potential to inhibit epoxide hydrolase and therefore increase carbamazepine-10,11-epoxide plasma levels. 2. In this study, an in vitro assay was developed to evaluate epoxide hydrolase activity by using carbamazepine-10,11-epoxide as probe substrate. The ability of this assay to predict drug-drug interactions (DDI) at the epoxide hydrolase level was also investigated. 3. To this aim, known inhibitors of epoxide hydrolase for which in vivo data are available were used. Firstly, carbamazepine-10,11-epoxide hydrolase activity was determined in liver microsomes, cytosol and hepatocytes. Thereafter, the IC50 of epoxide hydrolase inhibitors (progabide, valproic acid, valpromide and valnoctamide) was determined in liver microsomes and hepatocytes. Finally, prediction of AUC increase was performed using the in vitro data generated. 4. Interestingly, epoxide hydrolase activity was found to be much higher in human hepatocytes compared to liver microsomes/cytosol. Even though assessed on a limited number of compounds, this study demonstrated that the use of hepatocytes seems to be a more relevant model to assess and predict DDI at the epoxide hydrolase level.

  4. Enzymic hydrolysis of barley and other β-glucans by a β-(1→4)-glucan hydrolase

    PubMed Central

    Clarke, A. E.; Stone, B. A.

    1966-01-01

    1. A barley glucan with 68% of β-(1→4)-linkages and 32% of β-(1→3)-linkages was exhaustively hydrolysed with an Aspergillus niger β-(1→4)-glucan 4-glucanohydrolase (EC 3.2.1.4) (Clarke & Stone, 1965b). The hydrolysis products were separated and estimated. 2. The lower-molecular-weight products were identified as: glucose, 1·4%; cellobiose, 11·9%; 32-O-β-glucosylcellobiose, 45·0%; a tetrasaccharide(s), which was a substituted cellobiose, 16·4%. A series of unidentified higher-molecular-weight products (26·5%) were also found. 3. The identity of the products suggests that the A. niger β-(1→4)-glucan hydrolase hydrolyses β-glucosidic linkages joining 4-O-substituted glucose residues. 4. When an enzyme fraction containing the β-(1→4)-glucan hydrolase and an exo-β-(1→3)-glucan hydrolase was used, the same products were found, but the higher-molecular-weight products were observed to have only a transient existence in the hydrolysate and were virtually absent after prolonged incubation. It is suggested that these oligosaccharides are resistant to attack by β-(1→4)-glucan hydrolase but are partially hydrolysed by the exo-β-(1→3)-glucan hydrolase and therefore possess one or more (1→3)-linked glucose residues at their non-reducing end. PMID:4290404

  5. Defining sequence space and reaction products within the cyanuric acid hydrolase (AtzD)/barbiturase protein family.

    PubMed

    Seffernick, Jennifer L; Erickson, Jasmine S; Cameron, Stephan M; Cho, Seunghee; Dodge, Anthony G; Richman, Jack E; Sadowsky, Michael J; Wackett, Lawrence P

    2012-09-01

    Cyanuric acid hydrolases (AtzD) and barbiturases are homologous, found almost exclusively in bacteria, and comprise a rare protein family with no discernible linkage to other protein families or an X-ray structural class. There has been confusion in the literature and in genome projects regarding the reaction products, the assignment of individual sequences as either cyanuric acid hydrolases or barbiturases, and spurious connection of this family to another protein family. The present study has addressed those issues. First, the published enzyme reaction products of cyanuric acid hydrolase are incorrectly identified as biuret and carbon dioxide. The current study employed (13)C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to show that cyanuric acid hydrolase releases carboxybiuret, which spontaneously decarboxylates to biuret. This is significant because it revealed that homologous cyanuric acid hydrolases and barbiturases catalyze completely analogous reactions. Second, enzymes that had been annotated incorrectly in genome projects have been reassigned here by bioinformatics, gene cloning, and protein characterization studies. Third, the AtzD/barbiturase family has previously been suggested to consist of members of the amidohydrolase superfamily, a large class of metallohydrolases. Bioinformatics and the lack of bound metals both argue against a connection to the amidohydrolase superfamily. Lastly, steady-state kinetic measurements and observations of protein stability suggested that the AtzD/barbiturase family might be an undistinguished protein family that has undergone some resurgence with the recent introduction of industrial s-triazine compounds such as atrazine and melamine into the environment.

  6. Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both?

    PubMed

    McLennan, Alexander G

    2013-02-01

    Many members of the nudix hydrolase family exhibit considerable substrate multispecificity and ambiguity, which raises significant issues when assessing their functions in vivo and gives rise to errors in database annotation. Several display low antimutator activity when expressed in bacterial tester strains as well as some degree of activity in vitro towards mutagenic, oxidized nucleotides such as 8-oxo-dGTP. However, many of these show greater activity towards other nucleotides such as ADP-ribose or diadenosine tetraphosphate (Ap(4)A). The antimutator activities have tended to gain prominence in the literature, whereas they may in fact represent the residual activity of an ancestral antimutator enzyme that has become secondary to the more recently evolved major activity after gene duplication. Whether any meaningful antimutagenic function has also been retained in vivo requires very careful assessment. Then again, other examples of substrate ambiguity may indicate as yet unexplored regulatory systems. For example, bacterial Ap(4)A hydrolases also efficiently remove pyrophosphate from the 5' termini of mRNAs, suggesting a potential role for Ap(4)A in the control of bacterial mRNA turnover, while the ability of some eukaryotic mRNA decapping enzymes to degrade IDP and dIDP or diphosphoinositol polyphosphates (DIPs) may also be indicative of new regulatory networks in RNA metabolism. DIP phosphohydrolases also degrade diadenosine polyphosphates and inorganic polyphosphates, suggesting further avenues for investigation. This article uses these and other examples to highlight the need for a greater awareness of the possible significance of substrate ambiguity among the nudix hydrolases as well as the need to exert caution when interpreting incomplete analyses.

  7. A real-time fluorogenic assay for the visualization of glycoside hydrolase activity in planta.

    PubMed

    Ibatullin, Farid M; Banasiak, Alicja; Baumann, Martin J; Greffe, Lionel; Takahashi, Junko; Mellerowicz, Ewa J; Brumer, Harry

    2009-12-01

    There currently exists a diverse array of molecular probes for the in situ localization of polysaccharides, nucleic acids, and proteins in plant cells, including reporter enzyme strategies (e.g. protein-glucuronidase fusions). In contrast, however, there is a paucity of methods for the direct analysis of endogenous glycoside hydrolases and transglycosidases responsible for cell wall remodeling. To exemplify the potential of fluorogenic resorufin glycosides to address this issue, a resorufin beta-glycoside of a xylogluco-oligosaccharide (XXXG-beta-Res) was synthesized as a specific substrate for in planta analysis of XEH activity. The resorufin aglycone is particularly distinguished for high sensitivity in muro assays due to a low pK(a) (5.8) and large extinction coefficient (epsilon 62,000 M(-1) cm(-1)), long-wavelength fluorescence (excitation 571 nm/emission 585 nm), and high quantum yield (0.74) of the corresponding anion. In vitro analyses demonstrated that XXXG-beta-Res is hydrolyzed by the archetypal plant XEH, nasturtium (Tropaeolum majus) NXG1, with classical Michaelis-Menten substrate saturation kinetics and a linear dependence on both enzyme concentration and incubation time. Further, XEH activity could be visualized in real time by observing the localized increase in fluorescence in germinating nasturtium seeds and Arabidopsis (Arabidopsis thaliana) inflorescent stems by confocal microscopy. Importantly, this new in situ XEH assay provides an essential complement to the in situ xyloglucan endotransglycosylase assay, thus allowing delineation of the disparate activities encoded by xyloglucan endotransglycosylase/hydrolase genes directly in plant tissues. The observation that XXXG-beta-Res is also hydrolyzed by diverse microbial XEHs indicates that this substrate, and resorufin glycosides in general, may find broad applicability for the analysis of wall restructuring by polysaccharide hydrolases during morphogenesis and plant-microbe interactions.

  8. A novel and enantioselective epoxide hydrolase from Aspergillus brasiliensis CCT 1435: purification and characterization.

    PubMed

    Beloti, Lilian L; Costa, Bruna Z; Toledo, Marcelo A S; Santos, Clelton A; Crucello, Aline; Fávaro, Marianna T P; Santiago, André S; Mendes, Juliano S; Marsaioli, Anita J; Souza, Anete P

    2013-10-01

    A novel epoxide hydrolase from Aspergillus brasiliensis CCT1435 (AbEH) was cloned and overexpressed in Escherichia coli cells with a 6xHis-tag and purified by nickel affinity chromatography. Gel filtration analysis and circular dichroism measurements indicated that this novel AbEH is a homodimer in aqueous solution and contains the typical secondary structure of an α/β hydrolase fold. The activity of AbEH was initially assessed using the fluorogenic probe O-(3,4-epoxybutyl) umbelliferone and was active in a broad range of pH (6-9) and temperature (25-45°C); showing optimum performance at pH 6.0 and 30°C. The Michaelis constant (KM) and maximum rate (Vmax) values were 495μM and 0.24μM/s, respectively. Racemic styrene oxide (SO) was used as a substrate to assess the AbEH activity and enantioselectivity, and 66% of the SO was hydrolyzed after only 5min of reaction, with the remaining (S)-SO ee exceeding 99% in a typical kinetic resolution behavior. The AbEH-catalyzed hydrolysis of SO was also evaluated in a biphasic system of water:isooctane; (R)-diol in 84% ee and unreacted (S)-SO in 36% ee were produced, with 43% conversion in 24h, indicating a discrete enantioconvergent behavior for AbEH. This novel epoxide hydrolase has biotechnological potential for the preparation of enantiopure epoxides or vicinal diols.

  9. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms

    PubMed Central

    Baker, Perrin; Hill, Preston J.; Snarr, Brendan D.; Alnabelseya, Noor; Pestrak, Matthew J.; Lee, Mark J.; Jennings, Laura K.; Tam, John; Melnyk, Roman A.; Parsek, Matthew R.; Sheppard, Donald C.; Wozniak, Daniel J.; Howell, P. Lynne

    2016-01-01

    Bacterial biofilms present a significant medical challenge because they are recalcitrant to current therapeutic regimes. A key component of biofilm formation in the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharides Pel and Psl, which are involved in the formation and maintenance of the structural biofilm scaffold and protection against antimicrobials and host defenses. Given that the glycoside hydrolases PelAh and PslGh encoded in the pel and psl biosynthetic operons, respectively, are utilized for in vivo exopolysaccharide processing, we reasoned that these would provide specificity to target P. aeruginosa biofilms. Evaluating these enzymes as potential therapeutics, we demonstrate that these glycoside hydrolases selectively target and degrade the exopolysaccharide component of the biofilm matrix. PelAh and PslGh inhibit biofilm formation over a 24-hour period with a half maximal effective concentration (EC50) of 69.3 ± 1.2 and 4.1 ± 1.1 nM, respectively, and are capable of disrupting preexisting biofilms in 1 hour with EC50 of 35.7 ± 1.1 and 12.9 ± 1.1 nM, respectively. This treatment was effective against clinical and environmental P. aeruginosa isolates and reduced biofilm biomass by 58 to 94%. These noncytotoxic enzymes potentiated antibiotics because the addition of either enzyme to a sublethal concentration of colistin reduced viable bacterial counts by 2.5 orders of magnitude when used either prophylactically or on established 24-hour biofilms. In addition, PelAh was able to increase neutrophil killing by ~50%. This work illustrates the feasibility and benefits of using bacterial exopolysaccharide biosynthetic glycoside hydrolases to develop novel antibiofilm therapeutics. PMID:27386527

  10. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    NASA Astrophysics Data System (ADS)

    Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles

    2014-07-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  11. Polyglycine hydrolases secreted by Pleosporineae fungi that target the linker region of plant class IV chitinases.

    PubMed

    Naumann, Todd A; Wicklow, Donald T; Price, Neil P J

    2014-06-01

    Cmps (chitinase-modifying proteins) are fungal proteases that truncate plant class IV chitinases by cleaving near their N-termini. We previously described Fv-cmp, a fungalysin protease that cleaves a conserved glycine-cysteine bond within the hevein domain. In the present paper we describe a new type of cmp, polyglycine hydrolases, as proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine linker of plant class IV chitinases. Polyglycine hydrolases were purified from Cochliobolus carbonum (syn. Bipolaris zeicola; Bz-cmp) and Epicoccum sorghi (syn. Phoma sorghina; Es-cmp) and were shown to cleave three different maize class IV chitinase substrates. The proteolytic cleavage sites were assessed by SDS/PAGE and MALDI-TOF-MS and indicated the cleavage of multiple peptide bonds within the polyglycine linker regions. Site-directed mutagenesis was used to produce mutants of maize ChitB chitinase in which two serine residues in its linker were systematically modified to glycine. Serine to glycine changes in the ChitB linker resulted in higher susceptibility to truncation by Bz-cmp and altered substrate specificity for Bz-cmp and Es-cmp, such that different glycine-glycine peptide bonds were cleaved. Removal of the hevein domain led to loss of Es-cmp activity, indicating that interactions outside of the active site are important for recognition. Our findings demonstrate that plant class IV chitinases with polyglycine linkers are targeted for truncation by selective polyglycine hydrolases that are secreted by plant pathogenic fungi. This novel proteolysis of polyglycine motifs is previously unreported, but the specificity is similar to that of bacterial lysostaphin proteases, which cleave pentaglycine cross-links from peptidoglycan.

  12. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms.

    PubMed

    Baker, Perrin; Hill, Preston J; Snarr, Brendan D; Alnabelseya, Noor; Pestrak, Matthew J; Lee, Mark J; Jennings, Laura K; Tam, John; Melnyk, Roman A; Parsek, Matthew R; Sheppard, Donald C; Wozniak, Daniel J; Howell, P Lynne

    2016-05-01

    Bacterial biofilms present a significant medical challenge because they are recalcitrant to current therapeutic regimes. A key component of biofilm formation in the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharides Pel and Psl, which are involved in the formation and maintenance of the structural biofilm scaffold and protection against antimicrobials and host defenses. Given that the glycoside hydrolases PelAh and PslGh encoded in the pel and psl biosynthetic operons, respectively, are utilized for in vivo exopolysaccharide processing, we reasoned that these would provide specificity to target P. aeruginosa biofilms. Evaluating these enzymes as potential therapeutics, we demonstrate that these glycoside hydrolases selectively target and degrade the exopolysaccharide component of the biofilm matrix. PelAh and PslGh inhibit biofilm formation over a 24-hour period with a half maximal effective concentration (EC50) of 69.3 ± 1.2 and 4.1 ± 1.1 nM, respectively, and are capable of disrupting preexisting biofilms in 1 hour with EC50 of 35.7 ± 1.1 and 12.9 ± 1.1 nM, respectively. This treatment was effective against clinical and environmental P. aeruginosa isolates and reduced biofilm biomass by 58 to 94%. These noncytotoxic enzymes potentiated antibiotics because the addition of either enzyme to a sublethal concentration of colistin reduced viable bacterial counts by 2.5 orders of magnitude when used either prophylactically or on established 24-hour biofilms. In addition, PelAh was able to increase neutrophil killing by ~50%. This work illustrates the feasibility and benefits of using bacterial exopolysaccharide biosynthetic glycoside hydrolases to develop novel antibiofilm therapeutics.

  13. Gene expression of 5-lipoxygenase and LTA4 hydrolase in renal tissue of nephrotic syndrome patients

    PubMed Central

    Menegatti, E; Roccatello, D; Fadden, K; Piccoli, G; De Rosa, G; Sena, L M; Rifai, A

    1999-01-01

    Leukotrienes (LT) of the 5-lipoxygenase pathway constitute a class of potent biological lipid mediators of inflammation implicated in the pathogenesis of different models of experimental glomerulonephritis. The key enzyme, 5-lipoxygenase (5-LO), catalyses oxygenation of arachidonic acid to generate the primary leukotriene LTA4. This LT, in turn, serves as a substrate for either LTA4 hydrolase, to form the potent chemoattractant LTB4, or LTC4 synthase, to produce the powerful vasoconstrictor LTC4. To investigate the potential role of LT in the pathogenesis of human glomerulonephritis with nephrotic syndrome, we examined the gene expression of 5-LO and LTA4 hydrolase in renal tissue of 21 adult patients with nephrotic syndrome and 11 controls. The patients consisted of 11 cases of membranous nephropathy (MN), seven focal and segmental glomerulosclerosis (FSGS), two non-IgA mesangial glomerulonephritis and one minimal change disease. Total RNA purified from renal tissue was reverse transcribed into cDNA and amplified with specific primers in a polymerase chain reaction (RT-PCR). Eight patients' renal tissue, four MN and four FSGS, co-expressed 5-LO and LTA4 hydrolase. In situ hybridization analysis revealed 5-LO expression and distribution limited to the interstitial cells surrounding the peritubular capillaries. Comparative clinical and immunohistological data showed that these eight patients had impaired renal function and interstitial changes that significantly correlated with 5-LO expression. These findings suggest that leukotrienes may play an important role in the pathogenesis of MN and FSGS. These results are also relevant to elucidating the pathophysiologic mechanisms which underlie progression to renal failure in these diseases. PMID:10337029

  14. Expression and purification of an engineered, yeast-expressed Leishmania donovani nucleoside hydrolase with immunogenic properties

    PubMed Central

    Hudspeth, Elissa M.; Wang, Qian; Seid, Christopher A.; Hammond, Molly; Wei, Junfei; Liu, Zhuyun; Zhan, Bin; Pollet, Jeroen; Heffernan, Michael J.; McAtee, C. Patrick; Engler, David A.; Matsunami, Risë K.; Strych, Ulrich; Asojo, Oluwatoyin A.; Hotez, Peter J.; Bottazzi, Maria Elena

    2016-01-01

    ABSTRACT Leishmania donovani is the major cause of visceral leishmaniasis (kala-azar), now recognized as the parasitic disease with the highest level of mortality second only to malaria. No human vaccine is currently available. A 36 kDa L. donovani nucleoside hydrolase (LdNH36) surface protein has been previously identified as a potential vaccine candidate antigen. Here we present data on the expression of LdNH36 in Pichia pastoris and its purification at the 20 L scale to establish suitability for future pilot scale manufacturing. To improve efficiency of process development and ensure reproducibility, 4 N-linked glycosylation sites shown to contribute to heterogeneous high-mannose glycosylation were mutated to glutamine residues. The mutant LdNH36 (LdNH36-dg2) was expressed and purified to homogeneity. Size exclusion chromatography and light scattering demonstrated that LdNH36-dg2 existed as a tetramer in solution, similar to the wild-type recombinant L. major nucleoside hydrolase. The amino acid mutations do not affect the tetrameric interface as confirmed by theoretical modeling, and the mutated amino acids are located outside the major immunogenic domain. Immunogenic properties of the LdNH36-dg2 recombinant protein were evaluated in BALB/c mice using formulations that included a synthetic CpG oligodeoxynucleotide, together with a microparticle delivery platform (poly(lactic-co-glycolic acid)). Mice exhibited high levels of IgG1, IgG2a, and IgG2b antibodies that were reactive to both LdNH36-dg2 and LdNH36 wild-type. While the point mutations did affect the hydrolase activity of the enzyme, the IgG antibodies elicited by LdNH36-dg2 were shown to inhibit the hydrolase activity of the wild-type LdNH36. The results indicate that LdNH36-dg2 as expressed in and purified from P. pastoris is suitable for further scale-up, manufacturing, and testing in support of future first-in-humans phase 1 clinical trials. PMID:26839079

  15. Biosensing Paraoxon in Simulated Environmental Samples by Immobilized Organophosphorus Hydrolase in Functionalized Mesoporous Silica

    SciTech Connect

    Lei, Chenghong; Valenta, Michelle M.; Saripalli, Prasad; Ackerman, Eric J.

    2007-01-01

    There is a critical need for highly sensitive, cost-effective sensors to conduct ecological analyses for environmental and homeland security related applications. We report here on a method which significantly overcomes this difficulty, and demonstrate its application in a biosensor for aquatic environmental applications. A fast-responding and stable biosensor was developed via immobilization of organophosphorus hydrolase (OPH) in functionalized mesoporous silica (FMS) with pore sizes in tens of nanometers. The sensor was tested for detection of paraoxon in simulated environmental samples, under wide ranging physico-chemical conditions.

  16. Neutron diffraction analysis of Pseudomonas aeruginosa peptidyl-tRNA hydrolase 1.

    PubMed

    McFeeters, Hana; Vandavasi, Venu Gopal; Weiss, Kevin L; Coates, Leighton; McFeeters, Robert L

    2016-03-01

    Perdeuterated peptidyl-tRNA hydrolase 1 from Pseudomonas aeruginosa was crystallized for structural analysis using neutron diffraction. Crystals of perdeuterated protein were grown to 0.15 mm(3) in size using batch crystallization in 22.5% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol with a 20-molar excess of trilysine as an additive. Neutron diffraction data were collected from a crystal at room temperature using the MaNDi single-crystal diffractometer at Oak Ridge National Laboratory.

  17. Enantioselective hydrolysis of racemic epichlorohydrin using an epoxide hydrolase from Novosphingobium aromaticivorans.

    PubMed

    Woo, Jung-Hee; Hwang, Young-Ok; Kang, Ji-Hyun; Lee, Hyun Sook; Kim, Sang-Jin; Kang, Sung Gyun

    2010-09-01

    Previously we reported that an epoxide hydrolase (EHase) from Novosphingobium aromaticivorans could preferentially hydrolyze (R)-styrene oxide. In this study, we demonstrate that the purified NEH could be also effective in chiral resolution of racemic epichlorohydrin (ECH). Particularly, the purified NEH showed excellent hydrolyzing activity toward ECH to complete the reaction at a short period of incubation time. Enantiopure (S)-ECH could be obtained with a high enantiopurity of more than 99.99% enantiomeric excess (ee) and yield of 20.7% (theoretical, 50%). The chiral resolution of the purified NEH toward ECH was not susceptible to substrate inhibition by 500 mM racemic ECH.

  18. Some hydrolase activities from the tick Hyalomma lusitanicum koch, 1844 (Ixodoidea: Ixodida).

    PubMed

    Giménez-Pardo, C; Martínez-Grueiro, M M

    2008-12-01

    In this work has been made a detection and preliminary characterization of some hydrolases in whole extracts from unfed adult males and females of Hyalomma lusitanicum, one of the vectors for Theileria annulata that causes Mediterranean theileriosis in cattle. We have elected as targets, proteases as enzymes implicated in the nutritional processes of ticks, esterases that are usually implicated in resistance to organophosphates and phosphatises often implicated in protein phosphorilation and control of ticks salivary gland. The biological role and physiological significance are discussed in terms of the possibility of use these enzymes as possible in future anti-tick vaccination or acaricide resistance.

  19. Characterization of organophosphorus hydrolases and the genetic manipulation of the phosphotriesterase from pseudomonas diminuta

    SciTech Connect

    Dave, K.I.; Miller, C.E.; Wild, J.R.

    1993-12-31

    There are a variety of enzymes which are specifically capable of hydrolyzing organophosphorus esters with different phosphoryl bonds from the typical phosphotriester bonds of common insecticidal neurotoxins (e.g. paraoxon or coumaphos) to the phosphonate-fluoride bonds of chemical warfare agents (e.g. soman or sarin). These enzymes comprise a diverse set of enzymes whose basic architecture and substrate specificities vary dramatically, yet they appear to be ubiquitous throughout nature. The most thoroughly studied of these enzymes is the organophosphate hydrolase (opd gene product) of Pseudomonas diminuta and Ftavobacterium sp. ATCC 27551, and the heterologous expression, post-translational modification, and genetic engineering studies undertaken with this enzyme are described.

  20. Characterization of organophosphorus hydrolases and the genetic manipulation of the phosphotriesterase from Pseudomonas diminuta.

    PubMed

    Dave, K I; Miller, C E; Wild, J R

    1993-06-01

    There are a variety of enzymes which are specifically capable of hydrolyzing organophosphorus esters with different phosphoryl bonds from the typical phosphotriester bonds of common insecticidal neurotoxins (e.g. paraoxon or coumaphos) to the phosphonate-fluoride bonds of chemical warfare agents (e.g. soman or sarin). These enzymes comprise a diverse set of enzymes whose basic architecture and substrate specificities vary dramatically, yet they appear to be ubiquitous throughout nature. The most thoroughly studied of these enzymes is the organophosphate hydrolase (opd gene product) of Pseudomonas diminuta and Flavobacterium sp. ATCC 27551, and the heterologous expression, post-translational modification, and genetic engineering studies undertaken with this enzyme are described.

  1. N-aryl 2-aryloxyacetamides as a new class of fatty acid amide hydrolase (FAAH) inhibitors.

    PubMed

    Sunduru, Naresh; Svensson, Mona; Cipriano, Mariateresa; Marwaha, Sania; Andersson, C David; Svensson, Richard; Fowler, Christopher J; Elofsson, Mikael

    2017-12-01

    Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat neurological diseases. In search of new FAAH inhibitors, we identified 2-(4-cyclohexylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4g, with an IC50 of 2.6 µM as a chemical starting point for the development of potent FAAH inhibitors. Preliminary hit-to-lead optimisation resulted in 2-(4-phenylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4i, with an IC50 of 0.35 µM.

  2. Aryl Piperazinyl Ureas as Inhibitors of Fatty Acid Amide Hydrolase (FAAH) in Rat, Dog, and Primate.

    PubMed

    Keith, John M; Apodaca, Rich; Tichenor, Mark; Xiao, Wei; Jones, William; Pierce, Joan; Seierstad, Mark; Palmer, James; Webb, Michael; Karbarz, Mark; Scott, Brian; Wilson, Sandy; Luo, Lin; Wennerholm, Michelle; Chang, Leon; Brown, Sean; Rizzolio, Michele; Rynberg, Raymond; Chaplan, Sandra; Breitenbucher, J Guy

    2012-10-11

    A series of aryl piperazinyl ureas that act as covalent inhibitors of fatty acid amide hydrolase (FAAH) is described. A potent and selective (does not inhibit FAAH-2) member of this class, JNJ-40355003, was found to elevate the plasma levels of three fatty acid amides: anandamide, oleoyl ethanolamide, and palmitoyl ethanolamide, in the rat, dog, and cynomolgous monkey. The elevation of the levels of these lipids in the plasma of monkeys suggests that FAAH-2 may not play a significant role in regulating plasma levels of fatty acid ethanolamides in primates.

  3. Acyl hydrolases from trans-AT polyketide synthases target acetyl units on acyl carrier proteins.

    PubMed

    Jenner, Matthew; Afonso, Jose P; Kohlhaas, Christoph; Karbaum, Petra; Frank, Sarah; Piel, Jörn; Oldham, Neil J

    2016-04-18

    Acyl hydrolase (AH) domains are a common feature of trans-AT PKSs. They have been hypothesised to perform a proofreading function by removing acyl chains from stalled sites. This study determines the substrate tolerance of the AH PedC for a range of acyl-ACPs. Clear preference towards short, linear acyl-ACPs is shown, with acetyl-ACP the best substrate. These results imply a more targeted housekeeping role for PedC: namely the removal of unwanted acetyl groups from ACP domains caused by erroneous transfer of acetyl-CoA, or possibly by decarboxylation of malonyl-ACP.

  4. [Research advances on ubiquitin C-terminal hydrolase in oncogenesis and progression].

    PubMed

    Yu, Juan; Chen, Wei-lin

    2015-03-01

    By regulating the ubiquitination and deubiquitination of key proteins, ubiquitin-proteasome system mediates a variety of cellular activities. Ubiquitin C-terminal hydrolase (UCH) is a deubiquitinating enzyme which can remove ubiquitin chains at the end of ubiquited proteins. The abnormal expression of UCH has been found in a variety of tumor tissues, indicating that it participates in the process of tumor development. Here we review the characteristics of UCH members and current understanding about the role of UCH in tumor development, and the potential target for cancer treatment.

  5. Remodeling Natural Products: Chemistry and Serine Hydrolase Activity of a Rocaglate-Derived β-Lactone

    PubMed Central

    2015-01-01

    Flavaglines are a class of natural products with potent insecticidal and anticancer activities. β-Lactones are a privileged structural motif found in both therapeutic agents and chemical probes. Herein, we report the synthesis, unexpected light-driven di-epimerization, and activity-based protein profiling of a novel rocaglate-derived β-lactone. In addition to in vitro inhibition of the serine hydrolases ABHD10 and ACOT1/2, the most potent β-lactone enantiomer was also found to inhibit these enzymes, as well as the serine peptidases CTSA and SCPEP1, in PC3 cells. PMID:24447064

  6. Pyrazole phenylcyclohexylcarbamates as inhibitors of human fatty acid amide hydrolases (FAAH).

    PubMed

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Ruggiero, Emanuela; Saponaro, Giulia; Baraldi, Stefania; Romagnoli, Romeo; Martinelli, Adriano; Tuccinardi, Tiziano

    2015-06-05

    Fatty acid amide hydrolase (FAAH) inhibitors have gained attention as potential therapeutic targets in the management of neuropathic pain. Here, we report a series of pyrazole phenylcyclohexylcarbamate derivatives standing on the known carbamoyl FAAH inhibitor URB597. Structural modifications led to the recognition of compound 22 that inhibited human recombinant FAAH (hrFAAH) in the low nanomolar range (IC50 = 11 nM). The most active compounds of this series showed significant selectivity toward monoacylglycerol lipase (MAGL) enzyme. In addition, molecular modeling and reversibility behavior of the new class of FAAH inhibitors are presented in this article.

  7. New perspective on glycoside hydrolase binding to lignin from pretreated corn stover

    DOE PAGES

    Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth; ...

    2015-12-18

    In this study, non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall.

  8. Effect of aloe vera leaf gel extract on membrane bound phosphatases and lysosomal hydrolases in rats with streptozotocin diabetes.

    PubMed

    Rajasekaran, S; Sriram, N; Arulselvan, P; Subramanian, S

    2007-03-01

    Diabetes mellitus is known to promote deterioration of membrane function and impair intra cellular metabolism in the organism. The aim of the present study was to examine the effect of the ethanolic extract from Aloe vera leaf gel on membrane bound phosphatases and lysosomal hydrolases in the liver and kidney of streptozotocin (STZ)-induced diabetic rats. The rats treated with STZ showed significant alterations in the activities of membrane bound phosphatases and lysosomal hydrolases in the liver and kidney. Oral administration of Aloe vera gel extract at a dose of 300 mg/kg body weight/day to STZ-induced diabetic rats for a period of 21 days significantly restored the alterations in enzymes activity to near normalcy. These results were compared with glibenclamide, a reference drug. Thus, the present study confirms that Aloe vera gel extract possesses a significant beneficial effect on membrane bound phosphatases and lysosomal hydrolases.

  9. Co-purification of microsomal epoxide hydrolase with the warfarin-sensitive vitamin K1 oxide reductase of the vitamin K cycle.

    PubMed

    Guenthner, T M; Cai, D; Wallin, R

    1998-01-15

    Vitamin K1 oxide reductase activity has been partially purified from rat liver microsomes. A three-step procedure produced a preparation in which warfarin-sensitive vitamin K1 oxide reductase activity was 118-fold enriched over the activity in intact rat liver microsomes. A major component of the multi-protein mixture was identified as a 50 kDa protein that strongly cross-reacts with antiserum prepared against homogeneous rat liver microsomal epoxide hydrolase. The reductase preparation also had a high level or epoxide hydrolase activity against two xenobiotic epoxide substrates. The K(m) values for hydrolysis by the reductase preparation were similar to those for homogeneous microsomal epoxide hydrolase itself, and the specific hydrolase activities of the reductase preparation were 25-35% of the specific activities measured for the homogeneous hydrolase preparation. Antibodies prepared against homogeneous microsomal epoxide hydrolase inhibited up to 80% of reductase activity of the reductase preparation. Homogeneous microsomal epoxide hydrolase had no vitamin K1 oxide reductase activity. This evidence suggests that microsomal epoxide hydrolase, or a protein that is very similar to it, is a major functional component of a multi-protein complex that is responsible for vitamin K1 oxide reduction in rat liver microsomes.

  10. Distinct rat hepatic microsomal epoxide hydrolases catalyze the hydration of cholesterol 5,6 alpha-oxide and certain xenobiotic alkene and arene oxides.

    PubMed

    Levin, W; Michaud, D P; Thomas, P E; Jerina, D M

    1983-02-01

    Metabolism of cholesterol 5,6 alpha-oxide to the 5,6-glycol is catalyzed by a rat liver microsomal epoxide hydrolase that is distinct from the microsomal epoxide hydrolase that metabolizes a wide range of xenobiotic alkene and arene oxides. The two enzymes are antigenically distinct, and the purified microsomal epoxide hydrolase that metabolizes xenobiotic oxides does not catalyze the hydration of cholesterol 5,6 alpha-oxide. In vivo treatment of rats with inducers of microsomal epoxide hydrolase does not enhance the activity of cholesterol 5,6 alpha-oxide hydrolase and, in some cases, actually depresses enzyme activity in the resultant microsomal preparations. Octene 1,2-oxide and benz[a]anthracene 5,6-oxide, both good substrates for xenobiotic epoxide hydrolase, are not competitive inhibitors of cholesterol oxide hydration by rat liver microsomes. The above results establish the existence of a liver microsomal epoxide hydrolase that is under different regulatory control and that appears to have a different substrate specificity than the well-characterized microsomal epoxide hydrolase involved in the metabolism of a widely diverse group of alkene and arene oxides.

  11. Expression and characterization of an epoxide hydrolase from Anopheles gambiae with high activity on epoxy fatty acids

    PubMed Central

    Xu, Jiawen; Morisseau, Christophe; Hammock, Bruce D.

    2014-01-01

    In insects, epoxide hydrolases (EHs) play critical roles in the metabolism of xenobiotic epoxides from the food resources and in the regulation of endogenous chemical mediators, such as juvenile hormones. Using the baculovirus expression system, we expressed and characterized an epoxide hydrolase from Anopheles gambiae (AgEH) that is distinct in evolutionary history from insect juvenile hormone epoxide hydrolases (JHEHs). We partially purified the enzyme by ion exchange chromatography and isoelectric focusing. The experimentally determined molecular weight and pI were estimated to be 35kD and 6.3 respectively, different than the theoretical ones. The AgEH had the greatest activity on long chain epoxy fatty acids such as 14,15-epoxyeicosatrienoic acids (14,15-EET) and 9,10-epoxy-12Z-octadecenoic acids (9,10-EpOME or leukotoxin) among the substrates evaluated. Juvenile hormone III, a terpenoid insect growth regulator, was the next best substrate tested. The AgEH showed kinetics comparable to the mammalian soluble epoxide hydrolases, and the activity could be inhibited by AUDA [12-(3-adamantan-1-yl-ureido) dodecanoic acid], a urea-based inhibitor designed to inhibit the mammalian soluble epoxide hydrolases. The rabbit serum generated against the soluble epoxide hydrolase of Mus musculus can both cross-react with natural and denatured forms of the AgEH, suggesting immunologically they are similar. The study suggests there are mammalian sEH homologs in insects, and epoxy fatty acids may be important chemical mediators in insects. PMID:25173592

  12. Cloning and expression of a phloretin hydrolase gene from Eubacterium ramulus and characterization of the recombinant enzyme.

    PubMed

    Schoefer, Lilian; Braune, Annett; Blaut, Michael

    2004-10-01

    Phloretin hydrolase catalyzes the hydrolytic C-C cleavage of phloretin to phloroglucinol and 3-(4-hydroxyphenyl)propionic acid during flavonoid degradation in Eubacterium ramulus. The gene encoding the enzyme was cloned by screening a gene library for hydrolase activity. The insert of a clone conferring phloretin hydrolase activity was sequenced. Sequence analysis revealed an open reading frame of 822 bp (phy), a putative promoter region, and a terminating stem-loop structure. The deduced amino acid sequence of phy showed similarities to a putative protein of the 2,4-diacetylphloroglucinol biosynthetic operon from Pseudomonas fluorescens. The phloretin hydrolase was heterologously expressed in Escherichia coli and purified. The molecular mass of the native enzyme was approximately 55 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of phy indicated molecular masses of 30 and 30.8 kDa, respectively, suggesting that the enzyme is a homodimer. The recombinant phloretin hydrolase catalyzed the hydrolysis of phloretin to equimolar amounts of phloroglucinol and 3-(4-hydroxyphenyl)propionic acid. The optimal temperature and pH of the catalyzed reaction mixture were 37 degrees C and 7.0, respectively. The K(m) for phloretin was 13 +/- 3 microM and the k(cat) was 10 +/- 2 s(-1). The enzyme did not transform phloretin-2'-glucoside (phloridzin), neohesperidin dihydrochalcone, 1,3-diphenyl-1,3-propandione, or trans-1,3-diphenyl-2,3-epoxy-propan-1-one. The catalytic activity of the phloretin hydrolase was reduced by N-bromosuccinimide, o-phenanthroline, N-ethylmaleimide, and CuCl(2) to 3, 20, 35, and 85%, respectively. Phloroglucinol and 3-(4-hydroxyphenyl)propionic acid reduced the activity to 54 and 70%, respectively.

  13. Genetic surface-display of methyl parathion hydrolase on Yarrowia lipolytica for removal of methyl parathion in water.

    PubMed

    Wang, Xing-Xing; Chi, Zhe; Ru, Shao-Guo; Chi, Zhen-Ming

    2012-09-01

    In this study, the mph gene encoding methyl parathion hydrolase from Pseudomonas sp. WBC-3 was expressed in Yarrowia lipolytica and the expressed methyl parathion hydrolase was displayed on cell surface of Y. lipolytica. The activity of methyl parathion hydrolase displayed on the yeast cells of the transformant Z51 was 59.5 U mg⁻¹ of cell dry cells (450.6 U per mL of the culture) in the presence of 5.0 mM of Co²⁺. The displayed methyl parathion hydrolase had the optimal pH of 9.5 and the optimal temperature of 40 °C, respectively and was stable in the pH range of 4.5-11 and up to 40 °C. The displayed methyl parathion hydrolase was also stimulated by Co²⁺, Cu²⁺, Ni²⁺ and Mn²⁺, and was not affected by Fe²⁺, Fe³⁺, Na⁺, K⁺, Ca²⁺ and Zn²⁺, but was inhibited by other cations tested. Under the optimal conditions (OD(600 nm) = 2.6, the substrate concentration = 100 mg L⁻¹ and 40 °C), 90.8 % of methyl parathion was hydrolyzed within 30 min. Under the similar conditions, 98.7, 97.0, 96.5 and 94.4 % of methyl parathion in tap water (pH 9.5), tap water (pH 6.8), seawater (pH 9.5) and natural seawater (pH 8.2) were hydrolyzed, respectively, suggesting that the methyl parathion hydrolase displayed on the yeast cells can effectively remove methyl parathion in water.

  14. Hydrolysis of the 2',3'-allylic epoxides of allylbenzene, estragole, eugenol, and safrole by both microsomal and cytosolic epoxide hydrolases.

    PubMed

    Luo, G; Qato, M K; Guenthner, T M

    1992-01-01

    2',3'-Allylic epoxide derivatives of allylbenzene and its analogs estragole, eugenol, and safrole were synthesized, and their enzymatic conversion to dihydrodiols by cytosolic and microsomal epoxide hydrolases was examined. All four epoxides were good substrates for both epoxide hydrolases, with Michaelis constants in the low micromolar range. Two putatively selective inhibitors of cytosolic and microsomal epoxide hydrolases, trichloropropylene oxide and nordihydroguaiaretic acid, were used to inhibit the hydrolysis of these allylic epoxides. Minimal selectivity toward either hydrolase was seen with either inhibitor, suggesting that the "selectivity" of these inhibitors is highly substrate-dependent. The susceptibilities of these epoxides to rapid hydrolysis by both epoxide hydrolases may explain their low genotoxic potencies in vivo.

  15. Comparative study on short- and long-term behavioral consequences of organophosphate exposure: relationship to AChE mRNA expression.

    PubMed

    López-Granero, Caridad; Cardona, Diana; Giménez, Estela; Lozano, Rafael; Barril, José; Aschner, Michael; Sánchez-Santed, Fernando; Cañadas, Fernando

    2014-01-01

    Organophosphates (OPs) affect behavior by inhibiting acetylcholinesterase (AChE). While the cognitive short-term effects may be directly attributed to this inhibition, the mechanisms that underlie OP's long-term cognitive effects remain controversial and poorly understood. Accordingly, two experiments were designed to assess the effects of OPs on cognition, and to ascertain whether both the short- and long-term effects of are AChE-dependent. A single subcutaneous dose of 250 mg/kg chlorpyrifos (CPF), 1.5mg/kg diisopropylphosphorofluoridate (DFP) or 15 mg/kg parathion (PTN) was administered to male Wistar rats. Spatial learning was evaluated 72 h or 23 weeks after exposure, and impulsive choice was tested at 10 and 30 weeks following OPs administration (experiment 1 and 2, respectively). Brain soluble and membrane-bound AChE activity, synaptic AChE-S mRNA, read-through AChE-R mRNA and brain acylpeptide hydrolase (APH) activity (as alternative non-cholinergic target) were analyzed upon completion of the behavioral testing (17 and 37 weeks after OPs exposure). Both short- and long-term CPF treatment caused statistically significant effects on spatial learning, while PTN treatment led only to statistically significant short-term effects. Neither CPF, DFP nor PTN affected the long-term impulsivity response. Long-term exposure to CPF and DFP significantly decreased AChE-S and AChE-R mRNA, while in the PTN treated group only AChE-S mRNA levels were decreased. However, after long-term OP exposure, soluble and membrane-bound AChE activity was indistinguishable from controls. Finally, no changes were noted in brain APH activity in response to OP treatment. Taken together, this study demonstrates long-term effects of OPs on AChE-S and AChE-R mRNA in the absence of changes in AChE soluble and membrane-bound activity. Thus, changes in AChE mRNA expression imply non-catalytic properties of the AChE enzyme.

  16. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A.

    PubMed

    Pereg, Yaron; Liu, Bob Y; O'Rourke, Karen M; Sagolla, Meredith; Dey, Anwesha; Komuves, Laszlo; French, Dorothy M; Dixit, Vishva M

    2010-04-01

    The dual specificity (Tyr/Thr) phosphatase Cdc25A activates cyclin-dependent kinases (Cdks) to promote cell-cycle progression and has significant oncogenic potential. Cdc25A protein levels are regulated tightly in normal tissues, but many human cancers overexpress Cdc25A. The underlying mechanism for overexpression has been enigmatic. Here we show that Cdc25A is stabilized by the ubiquitin hydrolase Dub3. Upon binding Cdc25A, Dub3 removes the polyubiquitin modifications that mark Cdc25A for proteasomal degradation. Dub3 knockdown in cells increased Cdc25A ubiquitylation and degradation, resulting in reduced Cdk/Cyclin activity and arrest at G1/S and G2/M phases of the cell cycle. In contrast, acute Dub3 overexpression produced a signature response to oncogene induction: cells accumulated in S and G2 because of replication stress, and activated a DNA damage response. Dub3 also transformed NIH-3T3 cells and cooperated with activated H-Ras to promote growth in soft agar. Importantly, we show that Dub3 overexpression is responsible for an abnormally high level of Cdc25A in a subset of human breast cancers. Moreover, Dub3 knockdown significantly retarded the growth of breast tumour xenografts in nude mice. As a major regulator of Cdc25A, Dub3 is an example of a transforming ubiquitin hydrolase that subverts a key component of the cell cycle machinery.

  17. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2011-08-01

    The crystal structure of 5-hydroxyisourate hydrolase from K. pneumoniae and the steady-state kinetic parameters of the native enzyme as well as several mutants provide insights into the catalytic mechanism of this enzyme and the possible roles of the active-site residues. The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.

  18. Purification and characterisation of a novel enantioselective epoxide hydrolase from Aspergillus niger M200.

    PubMed

    Kotik, Michael; Kyslík, Pavel

    2006-02-01

    Purification of a novel enantioselective epoxide hydrolase from Aspergillus niger M200 has been achieved using ammonium sulphate precipitation, ionic exchange, hydrophobic interaction, and size-exclusion chromatography, in conjunction with two additional chromatographic steps employing hydroxylapatite, and Mimetic Green. The enzyme was purified 186-fold with a yield of 15%. The apparent molecular mass of the enzyme was determined to be 77 kDa under native conditions and 40 kDa under denaturing conditions, implying a dimeric structure of the native enzyme. The isoelectric point of the enzyme was estimated to be 4.0 by isoelectric focusing electrophoresis. The enzyme has a broad substrate specificity with highest specificities towards tert-butyl glycidyl ether, para-nitrostyrene oxide, benzyl glycidyl ether, and styrene oxide. Enantiomeric ratios of 30 to more than 100 were determined for the hydrolysis reactions of 4 epoxidic substrates using the purified enzyme at a reaction temperature of 10 degrees C. Product inhibition studies suggest that the enzyme is able to differentiate to a high degree between the (R)-diol and (S)-diol product of the hydrolysis reaction with tert-butyl glycidyl ether as the substrate. The highest activity of the enzyme was at 42 degrees C and a pH of 6.8. Six peptide sequences, which were obtained by cleavage of the purified enzyme with trypsin and mass spectrometry analysis of the tryptic peptides, show high similarity with corresponding sequences originated from the epoxide hydrolase from Aspergillus niger LCP 521.

  19. Bacillus licheniformis trehalose-6-phosphate hydrolase structures suggest keys to substrate specificity.

    PubMed

    Lin, Min Guan; Chi, Meng Chun; Naveen, Vankadari; Li, Yi Ching; Lin, Long Liu; Hsiao, Chwan Deng

    2016-01-01

    Trehalose-6-phosphate hydrolase (TreA) belongs to glycoside hydrolase family 13 (GH13) and catalyzes the hydrolysis of trehalose 6-phosphate (T6P) to yield glucose and glucose 6-phosphate. The products of this reaction can be further metabolized by the energy-generating glycolytic pathway. Here, crystal structures of Bacillus licheniformis TreA (BlTreA) and its R201Q mutant complexed with p-nitrophenyl-α-D-glucopyranoside (R201Q-pPNG) are presented at 2.0 and 2.05 Å resolution, respectively. The overall structure of BlTreA is similar to those of other GH13 family enzymes. However, detailed structural comparisons revealed that the catalytic site of BlTreA contains a long loop that adopts a different conformation from those of other GH13 family members. Unlike the homologous regions of Bacillus cereus oligo-1,6-glucosidase (BcOgl) and Erwinia rhapontici isomaltulose synthase (NX-5), the surface potential of the BlTreA active site exhibits a largely positive charge contributed by the four basic residues His281, His282, Lys284 and Lys292. Mutation of these residues resulted in significant decreases in the enzymatic activity of BlTreA. Strikingly, the (281)HHLK(284) motif and Lys292 play critical roles in substrate discrimination by BlTreA.

  20. Nostoc commune UTEX 584 gene expressing indole phosphate hydrolase activity in Escherichia coli.

    PubMed Central

    Xie, W Q; Whitton, B A; Simon, J W; Jäger, K; Reed, D; Potts, M

    1989-01-01

    A gene encoding an enzyme capable of hydrolyzing indole phosphate was isolated from a recombinant gene library of Nostoc commune UTEX 584 DNA in lambda gt10. The gene (designated iph) is located on a 2.9-kilobase EcoRI restriction fragment and is present in a single copy in the genome of N. commune UTEX 584. The iph gene was expressed when the purified 2.9-kilobase DNA fragment, free of any vector sequences, was added to a cell-free coupled transcription-translation system. A polypeptide with an Mr of 74,000 was synthesized when the iph gene or different iph-vector DNA templates were expressed in vitro. When carried by different multicopy plasmids and phagemids (pMP005, pBH6, pB8) the cyanobacterial iph gene conferred an Iph+ phenotype upon various strains of Escherichia coli, including a phoA mutant. Hydrolysis of 5-bromo-4-chloro-3-indolyl phosphate was detected in recombinant E. coli strains grown in phosphate-rich medium, and the activity persisted in assay buffers that contained phosphate. In contrast, indole phosphate hydrolase activity only developed in cells of N. commune UTEX 584, when they were partially depleted of phosphorus, and the activity associated with these cells was suppressed partially by the addition of phosphate to assay buffers. Indole phosphate hydrolase activity was detected in periplasmic extracts from E. coli (Iph+) transformants. Images PMID:2536677

  1. Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis.

    PubMed

    Lack, Nathan; Lowe, Edward D; Liu, Jie; Eltis, Lindsay D; Noble, Martin E M; Sim, Edith; Westwood, Isaac M

    2008-01-01

    Tuberculosis is a major cause of death worldwide. Understanding of the pathogenicity of Mycobacterium tuberculosis has been advanced by gene analysis and has led to the identification of genes that are important for intracellular survival in macrophages. One of these genes encodes HsaD, a meta-cleavage product (MCP) hydrolase that catalyzes the hydrolytic cleavage of a carbon-carbon bond in cholesterol metabolism. This paper describes the production of HsaD as a recombinant protein and, following crystallization, the determination of its three-dimensional structure to 2.35 A resolution by X-ray crystallography at the Diamond Light Source in Oxfordshire, England. To the authors' knowledge, this study constitutes the first report of a structure determined at the new synchrotron facility. The volume of the active-site cleft of the HsaD enzyme is more than double the corresponding active-site volumes of related MCP hydrolases involved in the catabolism of aromatic compounds, consistent with the specificity of HsaD for steroids such as cholesterol. Knowledge of the structure of the enzyme facilitates the design of inhibitors.

  2. Mycobacterium tuberculosis FtsX extracellular domain activates the peptidoglycan hydrolase, RipC

    PubMed Central

    Mavrici, Daniela; Marakalala, Mohlopheni J.; Holton, James M.; Prigozhin, Daniil M.; Gee, Christine L.; Zhang, Yanjia J.; Rubin, Eric J.; Alber, Tom

    2014-01-01

    Bacterial growth and cell division are coordinated with hydrolysis of the peptidoglycan (PG) layer of the cell wall, but the mechanisms of regulation of extracellular PG hydrolases are not well understood. Here we report the biochemical, structural, and genetic analysis of the Mycobacterium tuberculosis homolog of the transmembrane PG-hydrolase regulator, FtsX. The purified FtsX extracellular domain binds the PG peptidase Rv2190c/RipC N-terminal segment, causing a conformational change that activates the enzyme. Deletion of ftsEX and ripC caused similar phenotypes in Mycobacterium smegmatis, as expected for genes in a single pathway. The crystal structure of the FtsX extracellular domain reveals an unprecedented fold containing two lobes connected by a flexible hinge. Mutations in the hydrophobic cleft between the lobes reduce RipC binding in vitro and inhibit FtsX function in M. smegmatis. These studies suggest how FtsX recognizes RipC and support a model in which a conformational change in FtsX links the cell division apparatus with PG hydrolysis. PMID:24843173

  3. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics.

    PubMed Central

    Seidegård, J; Ekström, G

    1997-01-01

    Human glutathione transferases (GSTs) are a multigene family of enzymes that are involved in the metabolism of a wide range of electrophilic compounds of both exogenous and endogenous origin. GSTs are generally recognized as detoxifying enzymes by catalyzing the conjugation of these compounds with glutathione, but they may also be involved in activation of some carcinogens. The memmalian GSTs can be differentiated into four classes of cytosolic enzymes and two membrane bound enzymes. Human epoxide hydrolases (EHs) catalyze the addition of water to epoxides to form the corresponding dihydrodiol. The enzymatic hydration is essentially irreversible and produces mainly metabolites of lower reactivity that can be conjugated and excreted. The reaction of EHs is therefore generally regarded as detoxifying. The mammalian EHs can be distinguished by their physical and enzymatic properties. Microsomal EH (mEH) exhibits a broad substrate specificity, while the soluble EH (sEH) is an enzyme with a "complementary" substrate specificity to mEH. Cholesterol EH and leukotriene A4 hydrolase are two EHs with very limited substrate specificity. The activities of either GSTs or EHs expressed in vivo exhibit a relatively large interindividual variation, which might be explained by induction, inhibition, or genetic factors. These variations in levels or activities of individual isoenzymes are of importance with respect to an individual's susceptibility to genotoxic effects. This article gives a general overview of GSTs and EHs, discussing the modulation of activities, determination of these enzymes ex vivo, and the polymorphic expression of some isoenzymes. PMID:9255563

  4. Molecular and functional characterization of a unique sucrose hydrolase from Xanthomonas axonopodis pv. glycines.

    PubMed

    Kim, Hong-Suk; Park, Hyoung-Joon; Heu, Sunggi; Jung, Jin

    2004-01-01

    A novel sucrose hydrolase (SUH) from Xanthomonas axonopodis pv. glycines, a causative agent of bacterial pustule disease on soybeans, was studied at the functional and molecular levels. SUH was shown to act rather specifically on sucrose (K(m) = 2.5 mM) but not on sucrose-6-phosphate. Protein analysis of purified SUH revealed that, in this monomeric enzyme with an estimated molecular mass of 70,223 +/- 12 Da, amino acid sequences determined for several segments have corresponding nucleotide sequences in XAC3490, a protein-coding gene found in the genome of X. axonopodis pv. citri. Based on this information, the SUH gene, consisting of an open reading frame of 1,935 bp, was cloned by screening a genomic library of X. axonopodis pv. glycines 8ra. Database searches and sequence comparison revealed that SUH has significant homology to some family 13 enzymes, with all of the crucial invariant residues involved in the catalytic mechanism conserved, but it shows no similarity to known invertases belonging to family 32. suh expression in X. axonopodis pv. glycines requires sucrose induction, and insertional mutagenesis resulted in an absence of sucrose-inducible sucrose hydrolase activity in crude protein extracts and a sucrose-negative phenotype. Recombinant SUH, overproduced in Escherichia coli and purified, was shown to have the same enzymatic characteristics in terms of kinetic parameters.

  5. The role of a purine-specific nucleoside hydrolase in spore germination of Bacillus thuringiensis.

    PubMed

    Liang, Liang; He, Xihong; Liu, Gang; Tan, Huarong

    2008-05-01

    A homologous gene (iunH) of a putative nucleoside hydrolase (NH), which had been identified from the exosporia of Bacillus cereus and Bacillus anthracis spores, was cloned from Bacillus thuringiensis subsp. kurstaki. Disruption of iunH did not affect the vegetative growth and sporulation of Bacillus thuringiensis, but promoted both inosine- and adenosine-induced spore germination. The inosine- or adenosine-induced germination rate decreased when the wild-type iunH gene was overexpressed in Bacillus thuringiensis. The iunH gene product was characterized as a purine-specific NH. The kinetic parameters of IunH with inosine as substrate were K(m)=399+/-115 microM, k(cat)=48.9+/-8.5 s(-1) and k(cat)/K(m)=1.23 x 10(5) M(-1) s(-1). The optimal pH and temperature for IunH were found to be pH 6 and 80 degrees C. Meanwhile, the specific activity of inosine hydrolase in intact spores of the wild-type strain with inosine as substrate was 2.89+/-0.23x10(-2) micromol min(-1) (mg dry wt)(-1). These results indicate that IunH is important in moderating inosine- or adenosine-induced germination of Bacillus thuringiensis spores.

  6. Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence

    SciTech Connect

    Ortega, Corrie; Anderson, Lindsey N.; Frando, Andrew; Sadler, Natalie C.; Brown, Robert W.; Smith, Richard D.; Wright, Aaron T.; Grundner, Christoph

    2016-02-01

    The transition between replication and non-replication underlies much of Mycobacterium tuberculosis (Mtb) pathogenicity, as non- or slowly replicating Mtb are responsible for persistence and poor treatment outcomes. Therapeutic targeting of non-replicating, persistent populations is a priority for tuberculosis treatment, but only few drug targets in non-replicating Mtb are currently known. Here, we directly measure the activity of the highly diverse and druggable serine hydrolases (SHs) during active replication and non-replication by activity-based proteomics. We predict serine hydrolase activity for 78 proteins, including 27 proteins with previously unknown function, and identify 37 SHs that remain active even in the absence of replication, providing a set of candidate persistence targets. Non-replication was associated with large shifts in the activity of the majority of SHs. These activity changes were largely independent of SH abundance, indicating extensive post-translational regulation. By probing a large cross-section of druggable Mtb enzyme space during replication and non-replication, we identify new SHs and suggest new persistence targets.

  7. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    SciTech Connect

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.; Ivanoval, Natalia; Dhaeseleer, Patrik; Lowry, Steve; Sapra, Rajat; Hazen, Terry C.; Simmons, Blake A.; VanderGheynst, Jean S.; Hugenholtz, Philip

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  8. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    SciTech Connect

    Allgaier, M.; Reddy, A.; Park, J. I.; Ivanova, N.; D'haeseleer, P.; Lowry, S.; Sapra, R.; Hazen, T.C.; Simmons, B.A.; VanderGheynst, J. S.; Hugenholtz, P.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  9. Partial purification and substrate specificity of a ubiquitin hydrolase from Saccharomyces cerevisiae.

    PubMed Central

    Agell, N; Ryan, C; Schlesinger, M J

    1991-01-01

    A ubiquitin hydrolase that removes ubiquitin from a multi-ubiquitinated protein has been purified 600-fold from Saccharomyces cerevisiae. Four different ubiquitin-protein conjugates were assayed as substrates during the purification procedure. Enzymic activities that removed ubiquitin from ubiquitinated histone H2A, a ubiquitin-ubiquitin dimer and a ubiquitin-ribosomal fusion protein were separated during the purification from an activity that removed a single ubiquitin molecule linked by an isopeptide bond to a ubiquitinated protein. The size of the native enzyme was 160 kDa, based on its sedimentation in a sucrose gradient, and the subunit molecular mass was estimated to be 160 kDa, based on a profile of proteins eluted in different fractions by thiol-affinity chromatography. The partially purified hydrolase was not inhibited by a variety of protease inhibitors, except for thiol-blocking reagents. The natural substrate for this enzyme may be the polyubiquitin chain containing ubiquitin molecules bound to each other in isopeptide bonds, with one of them linked to a lysine residue of a protein targeted for intracellular proteolysis. Images Fig. 1. Fig. 3. PMID:1847617

  10. Hepatic Retinyl Ester Hydrolases and the Mobilization of Retinyl Ester Stores

    PubMed Central

    Grumet, Lukas; Taschler, Ulrike; Lass, Achim

    2016-01-01

    For mammals, vitamin A (retinol and metabolites) is an essential micronutrient that is required for the maintenance of life. Mammals cannot synthesize vitamin A but have to obtain it from their diet. Resorbed dietary vitamin A is stored in large quantities in the form of retinyl esters (REs) in cytosolic lipid droplets of cells to ensure a constant supply of the body. The largest quantities of REs are stored in the liver, comprising around 80% of the body’s total vitamin A content. These hepatic vitamin A stores are known to be mobilized under times of insufficient dietary vitamin A intake but also under pathological conditions such as chronic alcohol consumption and different forms of liver diseases. The mobilization of REs requires the activity of RE hydrolases. It is astounding that despite their physiological significance little is known about their identities as well as about factors or stimuli which lead to their activation and consequently to the mobilization of hepatic RE stores. In this review, we focus on the recent advances for the understanding of hepatic RE hydrolases and discuss pathological conditions which lead to the mobilization of hepatic RE stores. PMID:28035980

  11. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates

    PubMed Central

    Kong, Xu-Dong; Yuan, Shuguang; Li, Lin; Chen, She; Xu, Jian-He; Zhou, Jiahai

    2014-01-01

    Optically pure epoxides are essential chiral precursors for the production of (S)-propranolol, (S)-alprenolol, and other β-adrenergic receptor blocking drugs. Although the enzymatic production of these bulky epoxides has proven difficult, here we report a method to effectively improve the activity of BmEH, an epoxide hydrolase from Bacillus megaterium ECU1001 toward α-naphthyl glycidyl ether, the precursor of (S)-propranolol, by eliminating the steric hindrance near the potential product-release site. Using X-ray crystallography, mass spectrum, and molecular dynamics calculations, we have identified an active tunnel for substrate access and product release of this enzyme. The crystal structures revealed that there is an independent product-release site in BmEH that was not included in other reported epoxide hydrolase structures. By alanine scanning, two mutants, F128A and M145A, targeted to expand the potential product-release site displayed 42 and 25 times higher activities toward α-naphthyl glycidyl ether than the wild-type enzyme, respectively. These results show great promise for structure-based rational design in improving the catalytic efficiency of industrial enzymes for bulky substrates. PMID:25331869

  12. Identification of a novel peptidoglycan hydrolase CwlM in Mycobacterium tuberculosis.

    PubMed

    Deng, Lingyi Lynn; Humphries, Donald E; Arbeit, Robert D; Carlton, Laura E; Smole, Sandra C; Carroll, J David

    2005-02-14

    Mycobacterium tuberculosis is a major global pathogen whose threat has increased with the emergence of multidrug-resistant strains. The cell wall of M. tuberculosis is thick, rigid, and hydrophobic, which serves to protect the organism from the environment and makes it highly impermeable to conventional antimicrobial agents. There is little known about cell wall autolysins (also referred to as peptidoglycan hydrolases) of mycobacteria. We identified an open reading frame (Rv3915) in the M. tuberculosis genome designated cwlM that appeared consistent with a peptidoglycan hydrolase. The 1218-bp gene was amplified by PCR, cloned and expressed in E. coli strain HMS174(DE-3), and its gene product, a 47-kDa recombinant protein, was purified and partially characterized. Purified CwlM was able to lyse whole mycobacteria, release peptidoglycan from the cell wall of Micrococcus luteus and Mycobacterium smegmatis, and cleave N-acetylmuramoyl-L-alanyl-D-isoglutamine, releasing free N-acetylmuramic acid. These results indicate that CwlM is a novel autolysin and identify cwlM as the first, to our knowledge, autolysin gene identified and cloned from M. tuberculosis. CwlM offers a new target for a unique class of drugs that could alter the permeability of the mycobacterial cell wall and enhance the effectiveness of treatments for tuberculosis.

  13. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation

    PubMed Central

    Viader, Andreu; Ogasawara, Daisuke; Joslyn, Christopher M; Sanchez-Alavez, Manuel; Mori, Simone; Nguyen, William; Conti, Bruno; Cravatt, Benjamin F

    2016-01-01

    Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 PMID:26779719

  14. Signature motifs identify an Acinetobacter Cif virulence factor with epoxide hydrolase activity.

    PubMed

    Bahl, Christopher D; Hvorecny, Kelli L; Bridges, Andrew A; Ballok, Alicia E; Bomberger, Jennifer M; Cady, Kyle C; O'Toole, George A; Madden, Dean R

    2014-03-14

    Endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR) is blocked by the CFTR inhibitory factor (Cif). Originally discovered in Pseudomonas aeruginosa, Cif is a secreted epoxide hydrolase that is transcriptionally regulated by CifR, an epoxide-sensitive repressor. In this report, we investigate a homologous protein found in strains of the emerging nosocomial pathogens Acinetobacter nosocomialis and Acinetobacter baumannii ("aCif"). Like Cif, aCif is an epoxide hydrolase that carries an N-terminal secretion signal and can be purified from culture supernatants. When applied directly to polarized airway epithelial cells, mature aCif triggers a reduction in CFTR abundance at the apical membrane. Biochemical and crystallographic studies reveal a dimeric assembly with a stereochemically conserved active site, confirming our motif-based identification of candidate Cif-like pathogenic EH sequences. Furthermore, cif expression is transcriptionally repressed by a CifR homolog ("aCifR") and is induced in the presence of epoxides. Overall, this Acinetobacter protein recapitulates the essential attributes of the Pseudomonas Cif system and thus may facilitate airway colonization in nosocomial lung infections.

  15. Lethal Effect of a Heterologous Murein Hydrolase on Penicillin-Treated Streptococcus sanguis

    PubMed Central

    Horne, Diane; Tomasz, Alexander

    1980-01-01

    Nine strains of Streptococcus sanguis exhibited tolerance to benzylpenicillin: the growth of each strain was susceptible to penicillin with minimal inhibitory concentrations of 0.1 μg/ml or lower, but the bacteriolytic and bactericidal effects were limited in each case. The tolerance of these bacteria was also reflected in the large discrepancies between the minimal inhibitory and minimal bactericidal concentrations for benzylpenicillin. The hypothesis that a natural deficiency of endogenous murein hydrolase (autolysin) in this species accounts for the penicillin tolerance was tested by using a heterologous murein hydrolase, the C-phage-associated lysin. In seven of the strains, addition of the lysin to the culture together with penicillin or other cell wall inhibitors resulted in lysis and rapid loss of viability. The enzyme alone did not appreciably affect normally growing cultures. The irreversible effects of penicillin plus lysin were drastically reduced in the presence of the bacteriostatic agents chloramphenicol and cerulenin. Speculations based on experiments are presented for the mechanisms by which penicillin treatment sensitizes these bacteria to an exogenous lytic enzyme. Similar phenomena requiring cooperation of host factors and penicillin may occur during infection, since somewhat similar although less pronounced results were obtained by addition of human lysozyme to penicillin-treated S. sanguis. PMID:6104471

  16. Organophosphate and Pyrethroid Hydrolase Activities of Mutant Esterases from the Cotton Bollworm Helicoverpa armigera

    PubMed Central

    Li, Yongqiang; Farnsworth, Claire A.; Coppin, Chris W.; Teese, Mark G.; Liu, Jian-Wei; Scott, Colin; Zhang, Xing; Russell, Robyn J.; Oakeshott, John G.

    2013-01-01

    Two mutations have been found in five closely related insect esterases (from four higher Diptera and a hymenopteran) which each confer organophosphate (OP) hydrolase activity on the enzyme and OP resistance on the insect. One mutation converts a Glycine to an Aspartate, and the other converts a Tryptophan to a Leucine in the enzymes’ active site. One of the dipteran enzymes with the Leucine mutation also shows enhanced activity against pyrethroids. Introduction of the two mutations in vitro into eight esterases from six other widely separated insect groups has also been reported to increase substantially the OP hydrolase activity of most of them. These data suggest that the two mutations could contribute to OP, and possibly pyrethroid, resistance in a variety of insects. We therefore introduced them in vitro into eight Helicoverpa armigera esterases from a clade that has already been implicated in OP and pyrethroid resistance. We found that they do not generally enhance either OP or pyrethroid hydrolysis in these esterases but the Aspartate mutation did increase OP hydrolysis in one enzyme by about 14 fold and the Leucine mutation caused a 4–6 fold increase in activity (more in one case) of another three against some of the most insecticidal isomers of fenvalerate and cypermethrin. The Aspartate enzyme and one of the Leucine enzymes occur in regions of the H. armigera esterase isozyme profile that have been previously implicated in OP and pyrethroid resistance, respectively. PMID:24204917

  17. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    PubMed Central

    Rodríguez-Durán, Luis V.; Valdivia-Urdiales, Blanca; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N.

    2011-01-01

    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme. PMID:21941633

  18. Mutational and nucleotide sequence analysis of S-adenosyl-L-homocysteine hydrolase from Rhodobacter capsulatus.

    PubMed Central

    Sganga, M W; Aksamit, R R; Cantoni, G L; Bauer, C E

    1992-01-01

    The genetic locus ahcY, encoding the enzyme S-adenosyl-L-homocysteine hydrolase (EC 3.3.1.1) from the bacterium Rhodobacter capsulatus, has been mapped by mutational analysis to within a cluster of genes involved in regulating the induction and maintenance of the bacterial photosynthetic apparatus. Sequence analysis demonstrates that ahcY encodes a 51-kDa polypeptide that displays 64% sequence identity to its human homolog. Insertion mutants in ahcY lack detectable S-adenosyl-L-homocysteine hydrolase activity and, as a consequence, S-adenosyl-L-homocysteine accumulates in the cells, resulting in a 16-fold decrease in the intracellular ratio of S-adenosyl-L-methionine to S-adenosyl-L-homocysteine as compared to wild-type cells. The ahcY disrupted strain fails to grow in minimal medium; however, growth is restored in minimal medium supplemented with methionine or homocysteine or in a complex medium, thereby indicating that the hydrolysis of S-adenosyl-L-homocysteine plays a key role in the metabolism of sulfur-containing amino acids. The ahcY mutant, when grown in supplemented medium, synthesizes significantly reduced levels of bacteriochlorophyll, indicating that modulation of the intracellular ratio of S-adenosyl-L-methionine to S-adenosyl-L-homocysteine may be an important factor in regulating bacteriochlorophyll biosynthesis. PMID:1631127

  19. Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase

    PubMed Central

    Purg, Miha; Pabis, Anna; Baier, Florian; Tokuriki, Nobuhiko; Jackson, Colin

    2016-01-01

    Diverse organophosphate hydrolases have convergently evolved the ability to hydrolyse man-made organophosphates. Thus, these enzymes are attractive model systems for studying the factors shaping enzyme functional evolution. Methyl parathion hydrolase (MPH) is an enzyme from the metallo-β-lactamase superfamily, which hydrolyses a wide range of organophosphate, aryl ester and lactone substrates. In addition, MPH demonstrates metal-ion-dependent selectivity patterns. The origins of this remain unclear, but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. Here, we present detailed mechanistic studies of the paraoxonase and arylesterase activities of MPH complexed with five different transition metal ions, and demonstrate that the hydrolysis reactions proceed via similar pathways and transition states. However, while it is possible to discern a clear structural origin for the selectivity between different substrates, the selectivity between different metal ions appears to lie instead in the distinct electrostatic properties of the metal ions themselves, which causes subtle changes in transition state geometries and metal–metal distances at the transition state rather than significant structural changes in the active site. While subtle, these differences can be significant for shaping the metal-ion-dependent activity patterns observed for this enzyme. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698033

  20. Cold-active hydrolases producing bacteria from two different sub-glacial Himalayan lakes.

    PubMed

    Sahay, Harmesh; Babu, Bandamaravuri Kishore; Singh, Surendra; Kaushik, Rajeev; Saxena, Anil K; Arora, Dilip K

    2013-08-01

    Microorganisms, native to the cold environments have successfully acclimatized their physiological, metabolic, and biological features, exhibiting uniqueness in their enzymes, proteins, and membrane structures. These cold-active enzymes have immense biotechnological potential. The diversity of culturable bacteria in two different water lakes (the sub-glacial freshwater and the brackish) of Himalayas was analyzed using SYBR green staining and cultural methods. A total of 140 bacteria were isolated and were grouped as psychrophiles, psychrotrophs, and psychrotolerant organisms, based on their optimal temperature for growth. The amplified ribosomal DNA restriction analysis using three restriction enzymes facilitated the grouping of these isolates into 96 genotypes at ≥85% polymorphism. Phylogenetic analysis using 16S rRNA gene sequences revealed that the bacterial strains from both lakes belonged to Firmicutes, Proteobacteria (α, β, and γ) or Actinobacteria. Screening of the germplasm for the activity of different cold-active hydrolases such as protease, amylase, xylanase, and cellulase, revealed that about 16 isolates were positive, and exhibiting a wide range of stability at various temperature and pH. Our results suggest that the distinctly different ecosystems of sub-glacial freshwater and brackish water lakes have diverse groups of bacteria, which can be an excellent source of extracellular hydrolases with a wide range of thermal stability.

  1. Heavy Chain Single Domain Antibodies to Detect Native Human Soluble Epoxide Hydrolase

    PubMed Central

    Cui, Yongliang; Li, Dongyang; Morisseau, Christophe; Yang, Jun; Wan, Debin; Rossotti, Martín A.; Gee, Shirley J.; González-Sapienza, Gualberto G.; Hammock, Bruce D.

    2015-01-01

    The soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, pain, cancer and other diseases. However, there is not a simple, inexpensive and reliable method to estimate levels of active sEH in tissues. Toward developing such an assay, a polyclonal-variable domain of heavy chain antibody (VHH) sandwich immunoassay was developed. Ten VHHs, which are highly selective for native human sEH, were isolated from a phage displayed library. The ten VHHs have no significant cross-reactivity with human microsomal epoxide hydrolase, rat and mouse sEH, and denatured human sEH. There is a high correlation between protein levels of the sEH determined by the ELISA and the catalytic activity of the enzyme in S9 fractions of human tissues (liver, kidney and lung). The VHH based ELISA appears to be a new reliable method for monitoring the sEH, and may be useful as a diagnostic tool for diseases influenced by sEH. This study also demonstrates the broad utility of VHH in biochemical and pharmacological research. PMID:26229025

  2. Crystallization and preliminary X-ray diffraction studies of cyanuric acid hydrolase from Azorhizobium caulinodans.

    PubMed

    Cho, Seunghee; Shi, Ke; Wackett, Lawrence P; Aihara, Hideki

    2013-08-01

    Cyanuric acid is synthesized industrially and forms during the microbial metabolism of s-triazine herbicides. Cyanuric acid is metabolized by some microorganisms via cyanuric acid hydrolase (CAH), which opens the s-triazine ring as a prelude to further metabolism. CAH is a member of the rare cyanuric acid hydrolase/barbiturase family. Here, the crystallization and preliminary X-ray diffraction analysis of CAH from Azorhizobium caulinodans are reported. CAH was cocrystallized with barbituric acid, a close analog of cyanuric acid that is a tight-binding competitive inhibitor. Crystals suitable for X-ray diffraction experiments were grown in conditions containing PEG 8K or magnesium sulfate as precipitants. An X-ray diffraction data set was collected from CAH-barbituric acid crystals to 2.7 Å resolution. The crystals were found to belong to space group I4₁22, with unit-cell parameters a = b = 237.9, c = 105.3 Å, α = β = γ = 90°.

  3. Improving the thermostability of a methyl parathion hydrolase by adding the ionic bond on protein surface.

    PubMed

    Su, Yidan; Tian, Jian; Wang, Ping; Chu, Xiaoyu; Liu, Guoan; Wu, Ningfeng; Fan, Yunliu

    2011-10-01

    The thermostability of the methyl parathion hydrolase (MPH_OCH) from Ochrobactrum sp. M231 was improved using site-directed mutagenesis. Two prolines (Pro76 and Pro78) located on the protein surface were selected for mutations after inspection of the sequence alignment of MPH_OCH and OPHC2, a thermostable organophosphorus hydrolase from Pseudomonas pseudoalcaligenes C2-1. The temperature of the double-point mutant (P76D/P78K) at which the mutant lost 50% of its activity (T50) was approximately 68 °C, which is higher than that of WT enzyme (64 °C), P76D (67 °C), and P78K (59 °C). Structural analysis of P76D/P78K indicated that the substituted residues (Asp76 and Lys78) could generate an ionic bond and increase the structural electrostatic energy, which could then increase the stability of the protein. These results also suggest that the thermal stability of proteins could be improved by adding the ionic bond on protein surface.

  4. Hepatic Retinyl Ester Hydrolases and the Mobilization of Retinyl Ester Stores.

    PubMed

    Grumet, Lukas; Taschler, Ulrike; Lass, Achim

    2016-12-27

    For mammals, vitamin A (retinol and metabolites) is an essential micronutrient that is required for the maintenance of life. Mammals cannot synthesize vitamin A but have to obtain it from their diet. Resorbed dietary vitamin A is stored in large quantities in the form of retinyl esters (REs) in cytosolic lipid droplets of cells to ensure a constant supply of the body. The largest quantities of REs are stored in the liver, comprising around 80% of the body's total vitamin A content. These hepatic vitamin A stores are known to be mobilized under times of insufficient dietary vitamin A intake but also under pathological conditions such as chronic alcohol consumption and different forms of liver diseases. The mobilization of REs requires the activity of RE hydrolases. It is astounding that despite their physiological significance little is known about their identities as well as about factors or stimuli which lead to their activation and consequently to the mobilization of hepatic RE stores. In this review, we focus on the recent advances for the understanding of hepatic RE hydrolases and discuss pathological conditions which lead to the mobilization of hepatic RE stores.

  5. Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence

    PubMed Central

    Rico-Lastres, Palma; Díez-Martínez, Roberto; Iglesias-Bexiga, Manuel; Bustamante, Noemí; Aldridge, Christine; Hesek, Dusan; Lee, Mijoon; Mobashery, Shahriar; Gray, Joe; Vollmer, Waldemar; García, Pedro; Menéndez, Margarita

    2015-01-01

    Streptococcus pneumoniae is a major cause of life-threatening diseases worldwide. Here we provide an in-depth functional characterization of LytB, the peptidoglycan hydrolase responsible for physical separation of daughter cells. Identified herein as an N-acetylglucosaminidase, LytB is involved also in colonization and invasion of the nasopharynx, biofilm formation and evasion of host immunity as previously demonstrated. We have shown that LytB cleaves the GlcNAc-β-(1,4)-MurNAc glycosidic bond of peptidoglycan building units. The hydrolysis occurs at sites with fully acetylated GlcNAc moieties, with preference for uncross-linked muropeptides. The necessity of GlcN acetylation and the presence of a single acidic moiety (Glu585) essential for catalysis strongly suggest a substrate-assisted mechanism with anchimeric assistance of the acetamido group of GlcNAc moieties. Additionally, modelling of the catalytic region bound to a hexasaccharide tripentapeptide provided insights into substrate-binding subsites and peptidoglycan recognition. Besides, cell-wall digestion products and solubilisation rates might indicate a tight control of LytB activity to prevent unrestrained breakdown of the cell wall. Choline-independent localization at the poles of the cell, mediated by the choline-binding domain, peptidoglycan modification, and choline-mediated (lipo)teichoic-acid attachment contribute to the high selectivity of LytB. Moreover, so far unknown chitin hydrolase and glycosyltransferase activities were detected using GlcNAc oligomers as substrate. PMID:26537571

  6. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases

    SciTech Connect

    Higgins, M.; Whitworth, G; El Warry, N; Randriantsoa, M; Samain, E; Burke, R; Vocadlo, D; Boraston, A

    2009-01-01

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.

  7. Alteration of the mutagenicity 3,3'-dichlorobenzidine by modifiers of rat hepatic epoxide hydrolase activity

    SciTech Connect

    Iba, M.M.

    1986-03-05

    The involvement of arene oxides in the activation of benzidines was assessed by examining the effect of (I) the epoxide hydrolase inhibitor trichloropropylene oxide (TCPO), (II) purified rat liver microsomal (P) epoxide hydrolase (EH), and (III) pretreatment of rats with phenobarbital (PB) on hepatic Sg- or P-catalyzed mutagenicity of benzidine (BZ) and 3,3'-dichlorobenzidine (DCB) to Salmonella TA 98. When catalyzed by Sg from untreated rats, the mutagenicity of DCB and BZ was 601 +/- 101 and 79 +/- 25 (His/sup +/ revertants/plate) respectively, but was 345 +/- 55 and 226 +/- 30 respectively, when catalyzed by microsomes (P) from untreated rats. PB-pretreatment enhanced the Sg-catalyzed mutagenicity of DCB and BZ (2.3-fold and 1.7-fold, respectively) and the P-catalyzed mutagenicity of DCB (1.7-fold), but totally inhibited the P-catalyzed mutagenicity of BZ. In TCPO-supplemented activating systems from PB-pretreated rats, the mutagenicity of DCB was enhanced in both Sg and P (1.9-fold and 1.6-fold, respectively), whereas that of BZ was unchanged. Added EH enhanced the P-catalyzed mutagenicity of DCB (1.4-fold) but had no effect on that of BZ, suggesting that the activity of the enzyme on DCB metabolites may not be entirely detoxifying. The data suggest that epoxidation may contribute to the activation of DCB but not BZ.

  8. Beta-glucuronidase of family-2 glycosyl hydrolase: a missing member in plants.

    PubMed

    Arul, Loganathan; Benita, George; Sudhakar, Duraialagaraja; Thayumanavan, Balsamy; Balasubramanian, Ponnusamy

    2008-01-01

    Glycosyl hydrolases hydrolyze the glycosidic bond in carbohydrates or between a carbohydrate and a non-carbohydrate moiety. beta-glucuronidase (GUS) is classified under two glycosyl hydrolase families (2 and 79) and the family-2 beta-glucuronidase is reported in a wide range of organisms, but not in plants. The family-79 endo-beta-glucuronidase (heparanase) is reported in microorganisms, vertebrates and plants. The E. coli family-2 beta-glucuronidase (uidA) had been successfully devised as a reporter gene in plant transformation on the basis that plants do not have homologous GUS activity. On the contrary, histochemical staining with X-Gluc was reported in wild type (non-transgenic) plants. Data shows that, family-2 beta-glucuronidase homologous sequence is not found in plants. Further, beta-glucuronidases of family-2 and 79 lack appreciable sequence similarity. However, the catalytic site residues, glutamic acid and tyrosine of the family-2 beta-glucuronidase are found to be conserved in family-79 beta-glucuronidase of plants. This led to propose that the GUS staining reported in wild type plants is largely because of the broad substrate specificity of family-79 beta-glucuronidase on X-Gluc and not due to the family-2 beta-glucuronidase, as the latter has been found to be missing in plants.

  9. Structural insights into the reaction mechanism of S-adenosyl-L-homocysteine hydrolase

    PubMed Central

    Kusakabe, Yoshio; Ishihara, Masaaki; Umeda, Tomonobu; Kuroda, Daisuke; Nakanishi, Masayuki; Kitade, Yukio; Gouda, Hiroaki; Nakamura, Kazuo T.; Tanaka, Nobutada

    2015-01-01

    S-adenosyl-L-homocysteine hydrolase (SAH hydrolase or SAHH) is a highly conserved enzyme that catalyses the reversible hydrolysis of SAH to L-homocysteine (HCY) and adenosine (ADO). High-resolution crystal structures have been reported for bacterial and plant SAHHs, but not mammalian SAHHs. Here, we report the first high-resolution crystal structure of mammalian SAHH (mouse SAHH) in complex with a reaction product (ADO) and with two reaction intermediate analogues—3’-keto-aristeromycin (3KA) and noraristeromycin (NRN)—at resolutions of 1.55, 1.55, and 1.65 Å. Each of the three structures constitutes a structural snapshot of one of the last three steps of the five-step process of SAH hydrolysis by SAHH. In the NRN complex, a water molecule, which is an essential substrate for ADO formation, is structurally identified for the first time as the candidate donor in a Michael addition by SAHH to the 3’-keto-4’,5’-didehydroadenosine reaction intermediate. The presence of the water molecule is consistent with the reaction mechanism proposed by Palmer & Abeles in 1979. These results provide insights into the reaction mechanism of the SAHH enzyme. PMID:26573329

  10. The serine hydrolase ABHD6 Is a critical regulator of the metabolic syndrome.

    PubMed

    Thomas, Gwynneth; Betters, Jenna L; Lord, Caleb C; Brown, Amanda L; Marshall, Stephanie; Ferguson, Daniel; Sawyer, Janet; Davis, Matthew A; Melchior, John T; Blume, Lawrence C; Howlett, Allyn C; Ivanova, Pavlina T; Milne, Stephen B; Myers, David S; Mrak, Irina; Leber, Vera; Heier, Christoph; Taschler, Ulrike; Blankman, Jacqueline L; Cravatt, Benjamin F; Lee, Richard G; Crooke, Rosanne M; Graham, Mark J; Zimmermann, Robert; Brown, H Alex; Brown, J Mark

    2013-10-31

    The serine hydrolase α/β hydrolase domain 6 (ABHD6) has recently been implicated as a key lipase for the endocannabinoid 2-arachidonylglycerol (2-AG) in the brain. However, the biochemical and physiological function for ABHD6 outside of the central nervous system has not been established. To address this, we utilized targeted antisense oligonucleotides (ASOs) to selectively knock down ABHD6 in peripheral tissues in order to identify in vivo substrates and understand ABHD6's role in energy metabolism. Here, we show that selective knockdown of ABHD6 in metabolic tissues protects mice from high-fat-diet-induced obesity, hepatic steatosis, and systemic insulin resistance. Using combined in vivo lipidomic identification and in vitro enzymology approaches, we show that ABHD6 can hydrolyze several lipid substrates, positioning ABHD6 at the interface of glycerophospholipid metabolism and lipid signal transduction. Collectively, these data suggest that ABHD6 inhibitors may serve as therapeutics for obesity, nonalcoholic fatty liver disease, and type II diabetes.

  11. Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase.

    PubMed

    Purg, Miha; Pabis, Anna; Baier, Florian; Tokuriki, Nobuhiko; Jackson, Colin; Kamerlin, Shina Caroline Lynn

    2016-11-13

    Diverse organophosphate hydrolases have convergently evolved the ability to hydrolyse man-made organophosphates. Thus, these enzymes are attractive model systems for studying the factors shaping enzyme functional evolution. Methyl parathion hydrolase (MPH) is an enzyme from the metallo-β-lactamase superfamily, which hydrolyses a wide range of organophosphate, aryl ester and lactone substrates. In addition, MPH demonstrates metal-ion-dependent selectivity patterns. The origins of this remain unclear, but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. Here, we present detailed mechanistic studies of the paraoxonase and arylesterase activities of MPH complexed with five different transition metal ions, and demonstrate that the hydrolysis reactions proceed via similar pathways and transition states. However, while it is possible to discern a clear structural origin for the selectivity between different substrates, the selectivity between different metal ions appears to lie instead in the distinct electrostatic properties of the metal ions themselves, which causes subtle changes in transition state geometries and metal-metal distances at the transition state rather than significant structural changes in the active site. While subtle, these differences can be significant for shaping the metal-ion-dependent activity patterns observed for this enzyme.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  12. Mfge8 regulates enterocyte lipid storage by promoting enterocyte triglyceride hydrolase activity

    PubMed Central

    Khalifeh-Soltani, Amin; Gupta, Deepti; Ha, Arnold; Iqbal, Jahangir; Hussain, Mahmood; Podolsky, Michael J.

    2016-01-01

    The small intestine has an underappreciated role as a lipid storage organ. Under conditions of high dietary fat intake, enterocytes can minimize the extent of postprandial lipemia by storing newly absorbed dietary fat in cytoplasmic lipid droplets. Lipid droplets can be subsequently mobilized for the production of chylomicrons. The mechanisms that regulate this process are poorly understood. We report here that the milk protein Mfge8 regulates hydrolysis of cytoplasmic lipid droplets in enterocytes after interacting with the αvβ3 and αvβ5 integrins. Mice deficient in Mfge8 or the αvβ3 and αvβ5 integrins accumulate excess cytoplasmic lipid droplets after a fat challenge. Mechanistically, interruption of the Mfge8-integrin axis leads to impaired enterocyte intracellular triglyceride hydrolase activity in vitro and in vivo. Furthermore, Mfge8 increases triglyceride hydrolase activity through a PI3 kinase/mTORC2–dependent signaling pathway. These data identify a key role for Mfge8 and the αvβ3 and αvβ5 integrins in regulating enterocyte lipid processing. PMID:27812539

  13. Cotranslocation of Methyl Parathion Hydrolase to the Periplasm and of Organophosphorus Hydrolase to the Cell Surface of Escherichia coli by the Tat Pathway and Ice Nucleation Protein Display System ▿

    PubMed Central

    Yang, Chao; Freudl, Roland; Qiao, Chuanling; Mulchandani, Ashok

    2010-01-01

    A genetically engineered Escherichia coli strain coexpressing organophosphorus hydrolase (OPH) and methyl parathion hydrolase (MPH) was constructed for the first time by cotransforming two compatible plasmids. Since these two enzymes have different substrate specificities, the coexpression strain showed a broader substrate range than strains expressing either one of the hydrolases. To reduce the mass transport limitation of organophosphates (OPs) across the cell membrane, MPH and OPH were simultaneously translocated to the periplasm and cell surface of E. coli, respectively, by employing the twin-arginine translocation (Tat) pathway and ice nucleation protein (INP) display system. The resulting recombinant strain showed sixfold-higher whole-cell activity than the control strain expressing cytosolic OP hydrolases. The correct localization of MPH and OPH was demonstrated by cell fractionation, immunoblotting, and enzyme activity assays. No growth inhibition was observed for the recombinant E. coli strain, and suspended cultures retained almost 100% of the activity over a period of 2 weeks. Owing to its high level of activity and superior stability, the recombinant E. coli strain could be employed as a whole-cell biocatalyst for detoxification of OPs. This strategy of utilizing dual translocation pathways should open up new avenues for cotranslocating multiple functional moieties to different extracytosolic compartments of a bacterial cell. PMID:19933341

  14. AMPEROMETRIC THICK-FILM STRIP ELECTRODES FOR MONITORING ORGANOPHOSPHATE NERVE AGENTS BASED ON IMMOBILIZED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    EPA Science Inventory

    An amperometric biosensor based on the immobilization of organophosphorus hydrolase
    (OPH) onto screen-printed carbon electrodes is shown useful for the rapid, sensitive, and low-cost
    detection of organophosphate (OP) nerve agents. The sensor relies upon the sensitive and ra...

  15. Structural analysis of a glycosides hydrolase family 42 cold-adapted ß-galactosidase from Rahnella sp. R3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ß-galactosidase isolated from a psychrotrophic bacterium, Rahnella sp. R3 (R-ß-Gal), exhibits high activity at low temperature. R-ß-Gal is a member of the glycoside hydrolases family 42 (GH42), and forms a 225 kDa trimeric structure in solution. The X-ray crystal structure of R-ß-Gal was determi...

  16. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  17. Hydrolysis of filter-paper cellulose to glucose by two recombinant endogenous glycosyl hydrolases of Coptotermes formosanus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes encoding for glycosyl hydrolases in multiple families were recovered from an EST library of Coptotermes formosanus, a wood-eating insect. Functional analyses of these genes not only shed light on the mechanisms the insect employs to successfully use cellulosic materials as energy sources, whic...

  18. 3-D QSAR ANALYSIS OF INHIBITION OF MURINE SOLUBLE EPOXIDE HYDROLASE (MSEH) BY BENZOYLUREAS, ARYLUREAS, AND THEIR ANALOGUES. (R825433)

    EPA Science Inventory

    Two hundred and seventy-one compounds including benzoylureas, arylureas and related compounds were assayed using recombinant murine soluble epoxide hydrolase (MsEH) produced from a baculovirus expression system. Among all the insect growth regulators assayed, 18 benzoylphenylu...

  19. Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367.

    PubMed

    Tolonen, Andrew C; Chilaka, Amanda C; Church, George M

    2009-12-01

    Summary Microbial cellulose degradation is a central part of the global carbon cycle and has great potential for the development of inexpensive, carbon-neutral biofuels from non-food crops. Clostridium phytofermentans has a repertoire of 108 putative glycoside hydrolases to break down cellulose and hemicellulose into sugars, which this organism then ferments primarily to ethanol. An understanding of cellulose degradation at the molecular level requires learning the different roles of these hydrolases. In this study, we show that interspecific conjugation with Escherichia coli can be used to transfer a plasmid into C. phytofermentans that has a resistance marker, an origin of replication that can be selectively lost, and a designed group II intron for efficient, targeted chromosomal insertions without selection. We applied these methods to disrupt the cphy3367 gene, which encodes the sole family 9 glycoside hydrolase (GH9) in the C. phytofermentans genome. The GH9-deficient strain grew normally on some carbon sources such as glucose, but had lost the ability to degrade cellulose. Although C. phytofermentans upregulates the expression of numerous enzymes to break down cellulose, this process thus relies upon a single, key hydrolase, Cphy3367.

  20. A modified expression of the major hydrolase activator in Hypocrea jecorina (Trichoderma reesei) changes enzymatic catalysis of biopolymer degradation.

    PubMed

    Pucher, Marion E; Steiger, Matthias G; Mach, Robert L; Mach-Aigner, Astrid R

    2011-06-10

    Hypocrea jecorina (anamorph Trichoderma reesei) is a saprophytic fungus that produces hydrolases, which are applied in different types of industries and used for the production of biofuel. A recombinant Hypocrea strain, which constantly expresses the main transcription activator of hydrolases (Xylanase regulator 1), was found to grow faster on xylan and its monomeric backbone molecule d-xylose. This strain also showed improved ability of clearing xylan medium on plates. Furthermore, this strain has a changed transcription profile concerning genes encoding for hydrolases and enzymes associated with degradation of (hemi)celluloses. We demonstrated that enzymes of this strain from a xylan cultivation favoured break down of hemicelluloses to the monomer d-xylose compared to the parental strain, while the enzymes of the latter one formed more xylobiose. Applying supernatants from cultivation on carboxymethylcellulose in enzymatic conversion of hemicelluloses, the enzymes of the recombinant strain were clearly producing more of both, d-xylose and xylobiose, compared to the parental strain. Altogether, these results point to a changed hydrolase expression profile, an enhanced capability to form the xylan-monomer d-xylose and the assumption that there is a disordered induction pattern if the Xylanase regulator 1 is de-regulated in Hypocrea.

  1. Potential of the virion-associated peptidoglycan hydrolase HydH5 and its derivative fusion proteins in milk biopreservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophage lytic enzymes have recently attracted considerable interest as novel antimicrobials against Gram-positive bacteria. In this work, antimicrobial activity in milk of HydH5 [(a virion-associated peptidoglycan hydrolase (VAPGH) encoded by the Staphylococcus aureus bacteriophage vB_SauS-ph...

  2. Isolation of Methyl Parathion-Degrading Strain M6 and Cloning of the Methyl Parathion Hydrolase Gene

    PubMed Central

    Zhongli, Cui; Shunpeng, Li; Guoping, Fu

    2001-01-01

    A degradative bacterium, M6, was isolated and presumptively identified as Plesiomonas sp. strain M6 was able to hydrolyze methyl parathion to p-nitrophenol. A novel organophosphate hydrolase gene designated mpd was selected from its genomic library prepared by shotgun cloning. The nucleotide sequence of the mpd gene was determined. The gene could be effectively expressed in Esherichia coli. PMID:11571204

  3. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films.

    PubMed

    Barth, Markus; Honak, Annett; Oeser, Thorsten; Wei, Ren; Belisário-Ferrari, Matheus R; Then, Johannes; Schmidt, Juliane; Zimmermann, Wolfgang

    2016-08-01

    TfCut2 from Thermobifida fusca KW3 and the metagenome-derived LC-cutinase are bacterial polyester hydrolases capable of efficiently degrading polyethylene terephthalate (PET) films. Since the enzymatic PET hydrolysis is inhibited by the degradation intermediate mono-(2-hydroxyethyl) terephthalate (MHET), a dual enzyme system consisting of a polyester hydrolase and the immobilized carboxylesterase TfCa from Thermobifida fusca KW3 was employed for the hydrolysis of PET films at 60°C. HPLC analysis of the reaction products obtained after 24 h of hydrolysis showed an increased amount of soluble products with a lower proportion of MHET in the presence of the immobilized TfCa. The results indicated a continuous hydrolysis of the inhibitory MHET by the immobilized TfCa and demonstrated its advantage as a second biocatalyst in combination with a polyester hydrolase for an efficient degradation oft PET films. The dual enzyme system with LC-cutinase produced a 2.4-fold higher amount of degradation products compared to TfCut2 after a reaction time of 24 h confirming the superior activity of his polyester hydrolase against PET films.

  4. Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367

    PubMed Central

    Tolonen, Andrew C; Chilaka, Amanda C; Church, George M

    2009-01-01

    Microbial cellulose degradation is a central part of the global carbon cycle and has great potential for the development of inexpensive, carbon-neutral biofuels from non-food crops. Clostridium phytofermentans has a repertoire of 108 putative glycoside hydrolases to break down cellulose and hemicellulose into sugars, which this organism then ferments primarily to ethanol. An understanding of cellulose degradation at the molecular level requires learning the different roles of these hydrolases. In this study, we show that interspecific conjugation with Escherichia coli can be used to transfer a plasmid into C. phytofermentans that has a resistance marker, an origin of replication that can be selectively lost, and a designed group II intron for efficient, targeted chromosomal insertions without selection. We applied these methods to disrupt the cphy3367 gene, which encodes the sole family 9 glycoside hydrolase (GH9) in the C. phytofermentans genome. The GH9-deficient strain grew normally on some carbon sources such as glucose, but had lost the ability to degrade cellulose. Although C. phytofermentans upregulates the expression of numerous enzymes to break down cellulose, this process thus relies upon a single, key hydrolase, Cphy3367. PMID:19775243

  5. Cloning, crystallization and preliminary X-ray study of XC1258, a CN-hydrolase superfamily protein from Xanthomonas campestris

    SciTech Connect

    Tsai, Ying-Der; Chin, Ko-Hsin; Shr, Hui-Lin; Gao, Fei Philip; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2006-10-01

    A CN-hydrolase superfamily protein from the plant pathogen X. campestris has been overexpressed in E. coli, purified and crystallized. CN-hydrolase superfamily proteins are involved in a wide variety of non-peptide carbon–nitrogen hydrolysis reactions, producing some important natural products such as auxin, biotin, precursors of antibiotics etc. These reactions all involve attack on a cyano or carbonyl carbon by a conserved novel catalytic triad Glu-Lys-Cys through a thiol acylenzyme intermediate. However, classification into the CN-hydrolase superfamily based on sequence similarity alone is not straightforward and further structural data are necessary to improve this categorization. Here, the cloning, expression, crystallization and preliminary X-ray analysis of XC1258, a CN-hydrolase superfamily protein from the plant pathogen Xanthomonas campestris (Xcc), are reported. The SeMet-substituted XC1258 crystals diffracted to a resolution of 1.73 Å. They are orthorhombic and belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 143.8, b = 154.63, c = 51.3 Å, respectively.

  6. Purification and characterization of pranlukast hydrolase from rat liver microsomes: the hydrolase is identical to carboxylesterase pI 6.2.

    PubMed

    Luan, L; Sugiyama, T; Takai, S; Usami, Y; Adachi, T; Katagiri, Y; Hirano, K

    1997-01-01

    Two carboxylesterases with pI 6.0 and 6.2 derived from rat liver microsomes were purified. The two isozymes were remarkably different in substrate specificity, but they had equal enzymatic activity for alpha-naphthyl acetate and were inhibited equally by phenylmethylsulfonyl fluoride (PMSF) and bis-(4-nitrophenyl) phosphate (BNPP). Carboxylesterases pI 6.0 and 6.2 are identical to the enzymes referred to as hydrolase A and B, respectively, from the results of amino acid sequence analyses. Pranlukast was effectively hydrolyzed by carboxylesterase pI 6.2 but not by the pI 6.0 enzyme, and the difference in the pranlukast metabolism between the human and the rat could be explained by the substrate specificity of carboxylesterase. Furthermore, prodrugs of angiotensin converting enzyme inhibitors were found to be converted to the active drugs after hydrolysis by the carboxylesterases pI 6.0 and 6.2. Carboxylesterases generally catalyze the hydrolysis of ester-type drugs preferentially rather than amide-type drugs.

  7. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    PubMed Central

    Legler, Patricia M.; Boisvert, Susanne M.; Compton, Jaimee R.; Millard, Charles B.

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine Oγ. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1 (hCE1). We discuss the use of pNBE as a surrogate scaffold for the mammalian esterases, and the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases. PMID:25077141

  8. Purification and Characterization of a Novel Chlorpyrifos Hydrolase from Cladosporium cladosporioides Hu-01

    PubMed Central

    Chen, Shaohua; Hu, Meiying; Luo, Jianjun; Li, Yanan

    2012-01-01

    Chlorpyrifos is of great environmental concern due to its widespread use in the past several decades and its potential toxic effects on human health. Thus, the degradation study of chlorpyrifos has become increasing important in recent years. A fungus capable of using chlorpyrifos as the sole carbon source was isolated from organophosphate-contaminated soil and characterized as Cladosporium cladosporioides Hu-01 (collection number: CCTCC M 20711). A novel chlorpyrifos hydrolase from cell extract was purified 35.6-fold to apparent homogeneity with 38.5% overall recovery by ammoniumsulfate precipitation, gel filtration chromatography and anion-exchange chromatography. It is a monomeric structure with a molecular mass of 38.3 kDa. The pI value was estimated to be 5.2. The optimal pH and temperature of the purified enzyme were 6.5 and 40°C, respectively. No cofactors were required for the chlorpyrifos-hydrolysis activity. The enzyme was strongly inhibited by Hg2+, Fe3+, DTT, β-mercaptoethanol and SDS, whereas slight inhibitory effects (5–10% inhibition) were observed in the presence of Mn2+, Zn2+, Cu2+, Mg2+, and EDTA. The purified enzyme hydrolyzed various organophosphorus insecticides with P-O and P-S bond. Chlorpyrifos was the preferred substrate. The Km and Vmax values of the enzyme for chlorpyrifos were 6.7974 μM and 2.6473 μmol·min−1, respectively. Both NH2-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometer (MALDI-TOF-MS) identified an amino acid sequence MEPDGELSALTQGANS, which shared no similarity with any reported organophosphate-hydrolyzing enzymes. These results suggested that the purified enzyme was a novel hydrolase and might conceivably be developed to fulfill the practical requirements to enable its use in situ for detoxification of chlorpyrifos. Finally, this is the first described chlorpyrifos hydrolase from fungus. PMID:22693630

  9. Three-dimensional Structure of Nylon Hydrolase and Mechanism of Nylon-6 Hydrolysis*

    PubMed Central

    Negoro, Seiji; Shibata, Naoki; Tanaka, Yusuke; Yasuhira, Kengo; Shibata, Hiroshi; Hashimoto, Haruka; Lee, Young-Ho; Oshima, Shohei; Santa, Ryuji; Oshima, Shohei; Mochiji, Kozo; Goto, Yuji; Ikegami, Takahisa; Nagai, Keisuke; Kato, Dai-ichiro; Takeo, Masahiro; Higuchi, Yoshiki

    2012-01-01

    We performed x-ray crystallographic analyses of the 6-aminohexanoate oligomer hydrolase (NylC) from Agromyces sp. at 2.0 Å-resolution. This enzyme is a member of the N-terminal nucleophile hydrolase superfamily that is responsible for the degradation of the nylon-6 industry byproduct. We observed four identical heterodimers (27 kDa + 9 kDa), which resulted from the autoprocessing of the precursor protein (36 kDa) and which constitute the doughnut-shaped quaternary structure. The catalytic residue of NylC was identified as the N-terminal Thr-267 of the 9-kDa subunit. Furthermore, each heterodimer is folded into a single domain, generating a stacked αββα core structure. Amino acid mutations at subunit interfaces of the tetramer were observed to drastically alter the thermostability of the protein. In particular, four mutations (D122G/H130Y/D36A/E263Q) of wild-type NylC from Arthrobacter sp. (plasmid pOAD2-encoding enzyme), with a heat denaturation temperature of Tm = 52 °C, enhanced the protein thermostability by 36 °C (Tm = 88 °C), whereas a single mutation (G111S or L137A) decreased the stability by ∼10 °C. We examined the enzymatic hydrolysis of nylon-6 by the thermostable NylC mutant. Argon cluster secondary ion mass spectrometry analyses of the reaction products revealed that the major peak of nylon-6 (m/z 10,000–25,000) shifted to a smaller range, producing a new peak corresponding to m/z 1500–3000 after the enzyme treatment at 60 °C. In addition, smaller fragments in the soluble fraction were successively hydrolyzed to dimers and monomers. Based on these data, we propose that NylC should be designated as nylon hydrolase (or nylonase). Three potential uses of NylC for industrial and environmental applications are also discussed. PMID:22187439

  10. Isolation and characterization of an extracellular glycosylated protein complex from Clostridium thermosaccharolyticum with pectin methylesterase and polygalacturonate hydrolase activity.

    PubMed Central

    Van Rijssel, M; Gerwig, G J; Hansen, T A

    1993-01-01

    An extracellular protein complex was isolated from the supernatant of a pectin-limited continuous culture of Clostridium thermosaccharolyticum Haren. The complex possessed both pectin methylesterase (EC 3.1.1.11) and exo-poly-alpha-galacturonate hydrolase (EC 3.2.1.82) activity and produced digalacturonate from the nonreducing end of the pectin chain. The protein consisted of 230- and 25-kDa subunits. The large subunit contained 10% (wt/wt) sugars (N-acetylgalactosamine and galactose). Under physiological conditions both activities acted in a coordinated manner: the ratio between methanol and digalacturonate released during degradation was constant and equal to the degree of esterification of the pectin used. Prolonged incubation of the enzyme with pectin led to a nondialyzable fraction that was enriched in neutral sugars, such as arabinose, rhamnose, and galactose; the high rhamnose/galacturonic acid ratio was indicative of hairy region-like structures. The smallest substrate utilized by the hydrolase was a tetragalacturonate. Vmax with oligogalacturonates increased with increasing chain length. The Km and Vmax for the polygalacturonate hydrolase with citrus pectate as a substrate were 0.8 g liter-1 and 180 mumol min-1 mg of protein-1, respectively. The Km and Vmax for the esterase with citrus pectin as a substrate were 1.2 g liter-1 and 440 mumol min-1 mg of protein-1, respectively. The temperature optima for the hydrolase and esterase were 70 and 60 degrees C, respectively. Both enzyme activities were stable for more than 1 h at 70 degrees C. The exo-polygalacturonate hydrolase of Clostridium thermosulfurogenes was partially purified while the methylesterase was also copurified. Images PMID:8481009

  11. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2011-07-19

    The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.

  12. Soluble Epoxide Hydrolase Inhibitory Activity of Selaginellin Derivatives from Selaginella tamariscina.

    PubMed

    Kim, Jang Hoon; Cho, Chong Woon; Tai, Bui Huu; Yang, Seo Young; Choi, Gug-Seoun; Kang, Jong Seong; Kim, Young Ho

    2015-12-02

    Selaginellin derivatives 1-3 isolated from Selaginella tamariscina were evaluated for their inhibition of soluble epoxide hydrolase (sEH) to demonstrate their potential for the treatment of cardiovascular disease. All selaginellin derivatives (1-3) inhibited sEH enzymatic activity and PHOME hydrolysis, in a dose-dependent manner, with IC50 values of 3.1 ± 0.1, 8.2 ± 2.2, and 4.2 ± 0.2 μM, respectively. We further determined that the derivatives function as non-competitive inhibitors. Moreover, the predicted that binding sites and interaction between 1-3 and sEH were solved by docking simulations. According to quantitative analysis, 1-3 were confirmed to have high content in the roots of S. tamariscina; among them, selaginellin 3 exhibited the highest content of 189.3 ± 0.0 μg/g.

  13. Structural Snapshots for Mechanism‐Based Inactivation of a Glycoside Hydrolase by Cyclopropyl Carbasugars

    PubMed Central

    Adamson, Christopher; Pengelly, Robert J.; Shamsi Kazem Abadi, Saeideh; Chakladar, Saswati; Draper, Jason

    2016-01-01

    Abstract Glycoside hydrolases (GHs) have attracted considerable attention as targets for therapeutic agents, and thus mechanism‐based inhibitors are of great interest. We report the first structural analysis of a carbocyclic mechanism‐based GH inactivator, the results of which show that the two Michaelis complexes are in 2H3 conformations. We also report the synthesis and reactivity of a fluorinated analogue and the structure of its covalently linked intermediate (flattened 2H3 half‐chair). We conclude that these inactivator reactions mainly involve motion of the pseudo‐anomeric carbon atom, knowledge that should stimulate the design of new transition‐state analogues for use as chemical biology tools. PMID:27783466

  14. Structural and Mechanistic Insights into C-P Bond Hydrolysis by Phosphonoacetate Hydrolase

    SciTech Connect

    Agarwal, Vinayak; Borisova, Svetlana A.; Metcalf, William W.; van der Donk, Wilfred A.; Nair, Satish K.

    2011-12-22

    Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35 {angstrom} resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases but with notable differences, such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional cocrystal structures with phosphonoacetate substrate, acetate, phosphonoformate inhibitor, and a covalently bound transition state mimic provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily.

  15. Cytochemical localization of some hydrolases in the pollen and pollen tubes of Amaryllis vittata Ait.

    PubMed

    Sharma, D

    1982-01-01

    Some hydrolases are localized cytochemically in the pollen and pollen tubes of Amaryllis vittata Ait. The function of different enzymes is discussed in relation to pollen tubes morphogenesis. Activity of most of the enzymes was confined to colpus region, pollen wall and general cytoplasm of pollen and pollen tube. The activity of hydrolytic enzymes like acid monophosphoesterase and lipase and was nil in the exine of both germinated and ungerminated pollen, whereas intense reaction for esterase was observed in exine. Enzyme activity increased after germination which suggest the hydrolysis of stored metabolites and synthesis of proteins and other metabolites for the active growth of pollen tube. Intense reaction for enzymes like alkaline phosphomonoesterase, ATP-ase, 5-nucleotidase etc. at the tip region of pollen tube suggest their role in physiological processes associated with exchange of materials through intercellular transport during tube wall polysaccharide biogenesis.

  16. Mutagenesis of organophosphorus hydrolase to enhance hydrolysis of the nerve agent VX.

    PubMed

    Gopal, S; Rastogi, V; Ashman, W; Mulbry, W

    2000-12-20

    Organophosphorus hydrolase (OPH) is capable of hydrolyzing a wide variety of organophosphorus pesticides and chemical warfare agents. However, the hydrolytic activity of OPH against the warfare agent VX is less than 0.1% relative to its activity against parathion and paraoxon. Based on the crystal structure of OPH and the similarities it shares with acetylcholinesterase, eight OPH mutants were constructed with the goal of increasing OPH activity toward VX. The activities of crude extracts from these mutants were measured using VX, demeton-S methyl, diisopropylfluoro-phosphate, ethyl parathion, paraoxon, and EPN as substrates. One mutant (L136Y) displayed a 33% increase in the relative VX hydrolysis rate compared to wild type enzyme. The other seven mutations resulted in 55-76% decreases in the relative rates of VX hydrolysis. There was no apparent relationship between the hydrolysis rates of VX and the rates of the other organophosphorus compounds tested.

  17. α-Ketoheterocycle-Based Inhibitors of Fatty Acid Amide Hydrolase (FAAH)

    PubMed Central

    2011-01-01

    A summary of the initial discovery and characterization of the enzyme fatty acid amide hydrolase (FAAH), and the subsequent advancement of an important class of competitive, reversible, potent, and selective inhibitors is presented. Initially explored using substrate-inspired inhibitors bearing electrophilic carbonyls, the examination of α-ketoheterocyle-based inhibitors of FAAH with the benefit of a unique activity-based protein-profiling (ABPP)-based proteome-wide selectivity assay, a powerful in vivo biomarker-based in vivo screen, and subsequent retrospective X-ray cocrystal structures with the enzyme, is summarized. These efforts defined the impact of the central activating heterocycle and its key substituents, provided key simplifications in the C2 acyl side chain and clear interpretations for the unique role and subsequent optimization of the central activating heterocycle, and established the basis for the recent further conformational constraints in the C2 acyl side chain, providing potent, long-acting, orally active FAAH inhibitors. PMID:22639704

  18. Detoxication strategy of epoxide hydrolase-the basis for a novel threshold for definable genotoxic carcinogens.

    PubMed

    Oesch, Franz; Hengstler, Jan Georg; Arand, Michael

    2004-01-01

    From our recent work on the three-dimensional structure of epoxide hydrolases we theoretically deduced the likelihood of a two-step catalytic mechanism that we and others have subsequently experimentally confirmed. Analysis of the rate of the two steps by us and by others show that the first step-responsible for removal of the reactive epoxide from the system-works extraordinarily fast (typically three orders of magnitude faster than the second step), sucking up the epoxide like a sponge. Regeneration of the free enzyme (the second step of the catalytic mechanism) is slow. This becomes a toxicological problem only at doses of the epoxide that titrate the enzyme out. Our genotoxicity work shows that indeed this generates a practical threshold below which no genotoxicity is observed. This shows that-contrary to old dogma-practical thresholds exist for definable genotoxic carcinogens.

  19. Chitosanases from Family 46 of Glycoside Hydrolases: From Proteins to Phenotypes.

    PubMed

    Viens, Pascal; Lacombe-Harvey, Marie-Ève; Brzezinski, Ryszard

    2015-10-28

    Chitosanases, enzymes that catalyze the endo-hydrolysis of glycolytic links in chitosan, are the subject of numerous studies as biotechnological tools to generate low molecular weight chitosan (LMWC) or chitosan oligosaccharides (CHOS) from native, high molecular weight chitosan. Glycoside hydrolases belonging to family GH46 are among the best-studied chitosanases, with four crystallography-derived structures available and more than forty enzymes studied at the biochemical level. They were also subjected to numerous site-directed mutagenesis studies, unraveling the molecular mechanisms of hydrolysis. This review is focused on the taxonomic distribution of GH46 proteins, their multi-modular character, the structure-function relationships and their biological functions in the host organisms.

  20. A classification of glycosyl hydrolases based on amino acid sequence similarities.

    PubMed Central

    Henrissat, B

    1991-01-01

    The amino acid sequences of 301 glycosyl hydrolases and related enzymes have been compared. A total of 291 sequences corresponding to 39 EC entries could be classified into 35 families. Only ten sequences (less than 5% of the sample) could not be assigned to any family. With the sequences available for this analysis, 18 families were found to be monospecific (containing only one EC number) and 17 were found to be polyspecific (containing at least two EC numbers). Implications on the folding characteristics and mechanism of action of these enzymes and on the evolution of carbohydrate metabolism are discussed. With the steady increase in sequence and structural data, it is suggested that the enzyme classification system should perhaps be revised. PMID:1747104

  1. Potential anti-obesity effects of a long-acting cocaine hydrolase.

    PubMed

    Zheng, Xirong; Deng, Jing; Zhang, Ting; Yao, Jianzhuang; Zheng, Fang; Zhan, Chang-Guo

    2016-11-25

    A long-acting cocaine hydrolase, known as CocH3-Fc(M3), engineered from human butyrylcholinesterase (BChE) was tested, in this study, for its potential anti-obesity effects. Mice on a high-fat diet gained significantly less body weight when treated weekly with 1 mg/kg CocH3-Fc(M3) compared to control mice, though their food intake was similar. There is no correlation between the average body weight and the average food intake, which is consistent with the previously reported observation in BChE knockout mice. In addition, molecular modeling was carried out to understand how ghrelin binds with CocH3, showing that ghrelin binds with CocH3 in a similar mode as ghrelin binding with wild-type human BChE. The similar binding structures explains why CocH3 and BChE have similar catalytic activity against ghrelin.

  2. Catalytic scope of the thiamine-dependent multifunctional enzyme cyclohexane-1,2-dione hydrolase.

    PubMed

    Loschonsky, Sabrina; Waltzer, Simon; Fraas, Sonja; Wacker, Tobias; Andrade, Susana L A; Kroneck, Peter M H; Müller, Michael

    2014-02-10

    The thiamine diphosphate (ThDP)-dependent enzyme cyclohexane-1,2-dione hydrolase (CDH) was expressed in Escherichia coli and purified by affinity chromatography (Ni-NTA). Recombinant CDH showed the same C-C bond-cleavage and C-C bond-formation activities as the native enzyme. Furthermore, we have shown that CDH catalyzes the asymmetric cross-benzoin reaction of aromatic aldehydes and (decarboxylated) pyruvate (up to quantitative conversion, 92-99 % ee). CDH accepts also hydroxybenzaldehydes and nitrobenzaldehydes; these previously have not (or only in rare cases) been known as substrates of other ThDP-dependent enzymes. On a semipreparative scale, sterically demanding 4-(tert-butyl)benzaldehyde and 2-naphthaldehyde were transformed into the corresponding 2-hydroxy ketone products in high yields. Additionally, certain benzaldehydes with electron withdrawing substituents were identified as potential inhibitors of the ligase activity of CDH.

  3. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast

    PubMed Central

    Dudin, Omaya; Bendezú, Felipe O.; Groux, Raphael; Laroche, Thierry; Seitz, Arne

    2015-01-01

    Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion. PMID:25825517

  4. Secretory expression of organophosphorus hydrolase OPHC2 in Yarrowia lipolytica Polg.

    PubMed

    Li, Meng; Yu, Xiaolan; Wang, Fei; Zhai, Chao; Shen, Wei; Yu, Xianhong; Wang, Xiaojuan; Ma, Lixin

    2015-01-01

    In the present study, recombinant organophosphorus hydrolase OPHC2 was successfully produced by Yarrowia lipolytica and purified. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analyses showed a major polypeptide band of 36 kDa. The purified enzyme was optimally active at 65°C and pH 8.5 and also displayed good thermal and pH stability using methyl parathion (O,O-dimethyl-O-4-p-nitrophenyl phosphorothioate) as a substrate. Moreover, as Y. lipolytica is a non-pathogenic, generally regarded as safe (GRAS) yeast, the cell culture supernatant can be used directly on vegetables and fruits that are contaminated by organophosphorus pesticides.

  5. Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus hydrolase.

    PubMed

    Lyagin, Ilya V; Andrianova, Mariia S; Efremenko, Elena N

    2016-07-01

    The catalytic activity of hexahistidine-tagged organophosphorus hydrolase (His6-OPH) in hydrolytic reactions of methylphosphonic acid (MPA) and its monoesters and diesters being decomposition products of R-VX was demonstrated for the first time. The catalytic constants of enzyme in such reactions were determined. The mechanism of C-P bond cleavage in the MPA by His6-OPH was proposed. Such reaction was estimated to be carried out with the soluble and nanocapsulated forms of His6-OPH. His6-OPH was demonstrated to be capable of degrading the key organophosphorus components of reaction masses (RMs) that are produced by the chemical detoxification of R-VX and RMs are multi-substrate mixtures for this enzyme. The kinetic model describing the behaviour of His6-OPH in RMs was proposed and was shown to adequately fit experimental points during degradation of the real samples of RMs.

  6. Gene duplication event in family 12 glycosyl hydrolase from Phytophthora spp.

    PubMed

    Costanzo, Stefano; Ospina-Giraldo, M D; Deahl, K L; Baker, C J; Jones, Richard W

    2006-10-01

    A total of 18 paralogs of xyloglucan-specific endoglucanases (EGLs) from the glycosyl hydrolase family 12 were identified and characterized in Phytophthora sojae and Phytophthora ramorum. These genes encode predicted extracellular enzymes, with sizes ranging from 189 to 435 amino acid residues, that would be capable of hydrolyzing the xyloglucan component of the host cell wall. In two cases, four and six functional copies of these genes were found in tight succession within a region of 5 and 18 kb, respectively. The overall gene copy number and relative organization appeared well conserved between P. sojae and P. ramorum, with apparent synteny in this region of their respective genomes. Phylogenetic analyses of Phytophthora endoglucanases of family 12 and other known members of EGL 12, revealed a close relatedness with a fairly conserved gene sub-family containing, among others, sequences from the fungi Emericella desertorum and Aspergillus aculeatus. This is the first report of family 12 EGLs present in plant pathogenic eukaryotes.

  7. Recombinant S-adenosylhomocysteine hydrolase from Thermotoga maritima: cloning, overexpression, characterization, and thermal purification studies.

    PubMed

    Lozada-Ramírez, J D; Sánchez-Ferrer, A; García-Carmona, F

    2013-06-01

    S-Adenosylhomocysteine hydrolase (SAHase) encoded by sahase gene is a determinant when catalyzing the reversible conversion of adenosine and homocysteine to S-adenosylhomocysteine in most living organisms. The sahase gene was isolated from the genome of the highly thermostable anaerobic bacteria Thermotoga maritima, and then it was cloned, characterized, overexpressed using Escherichia coli, and partially purified by thermal precipitation. The thermal purification of the recombinant SAHase resulted in changes in the circular dichroism spectra. As a result of this analysis, it was possible to determine the structural changes in the composition of the α-helix and β-sheet content of the recombinant enzyme after purification. Moreover, a predicted secondary structure and 3D structural model was rendered by comparative molecular modeling to further understand the molecular function of this protein including its attractive biotechnological use.

  8. Discovery of Leukotriene A4 Hydrolase Inhibitors Using Metabolomics Biased Fragment Crystallography

    SciTech Connect

    Davies, D.; Mamat, B; Magnusson, O; Christensen, J; Haraldsson, M; Mishra, R; Pease, B; Hansen, E; Singh, J; et. al.

    2009-01-01

    We describe a novel fragment library termed fragments of life (FOL) for structure-based drug discovery. The FOL library includes natural small molecules of life, derivatives thereof, and biaryl protein architecture mimetics. The choice of fragments facilitates the interrogation of protein active sites, allosteric binding sites, and protein-protein interaction surfaces for fragment binding. We screened the FOL library against leukotriene A4 hydrolase (LTA4H) by X-ray crystallography. A diverse set of fragments including derivatives of resveratrol, nicotinamide, and indole were identified as efficient ligands for LTA4H. These fragments were elaborated in a small number of synthetic cycles into potent inhibitors of LTA4H representing multiple novel chemotypes for modulating leukotriene biosynthesis. Analysis of the fragment-bound structures also showed that the fragments comprehensively recapitulated key chemical features and binding modes of several reported LTA4H inhibitors.

  9. A Systems Pharmacology Perspective on the Clinical Development of Fatty Acid Amide Hydrolase Inhibitors for Pain

    PubMed Central

    Benson, N; Metelkin, E; Demin, O; Li, G L; Nichols, D; van der Graaf, P H

    2014-01-01

    The level of the endocannabinoid anandamide is controlled by fatty acid amide hydrolase (FAAH). In 2011, PF-04457845, an irreversible inhibitor of FAAH, was progressed to phase II clinical trials for osteoarthritic pain. This article discusses a prospective, integrated systems pharmacology model evaluation of FAAH as a target for pain in humans, using physiologically based pharmacokinetic and systems biology approaches. The model integrated physiological compartments; endocannabinoid production, degradation, and disposition data; PF-04457845 pharmacokinetics and pharmacodynamics, and cannabinoid receptor CB1-binding kinetics. The modeling identified clear gaps in our understanding and highlighted key risks going forward, in particular relating to whether methods are in place to demonstrate target engagement and pharmacological effect. The value of this modeling exercise will be discussed in detail and in the context of the clinical phase II data, together with recommendations to enable optimal future evaluation of FAAH inhibitors. PMID:24429592

  10. Improvement of corn stover bioconversion efficiency by using plant glycoside hydrolase.

    PubMed

    Han, Yejun; Chen, Hongzhang

    2011-04-01

    Plant cell wall is the most abundant substrate for bioethanol production, and plants also represent a key resource for glycoside hydrolase (GH). To exploit efficient way for bioethanol production with lower cellulase loading, the potential of plant GH for lignocellulose bioconversion was evaluated. The GH activity for cell wall proteins (CWPs) was detected from fresh corn stover (FCS), and the synergism of which with Trichoderma reesei cellulase was also observed. The properties for the GH of FCS make it a promising enzyme additive for lignocellulose biodegradation. To make use of the plant GH, novel technology for hydrolysis and ethanol fermentation was developed with corn stover as substrate. Taking steam-exploded corn stover as substrate for hydrolysis and ethanol fermentation, compared with T. reesei cellulase loaded alone, the final glucose and ethanol accumulation increased by 60% and 63% respectively with GH of FCS as an addition.

  11. Structural and Mechanistic Insights into C-P Bond Hydrolysis by Phosphonoacetate Hydrolase

    PubMed Central

    Agarwal, Vinayak; Borisova, Svetlana A.; Metcalf, William W.; van der Donk, Wilfred A.; Nair, Satish K.

    2015-01-01

    SUMMARY Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35 Å resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases, but with notable differences such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional co-crystal structures with phosphonoacetate substrate, acetate, phosphonoformate inhibitor, and a covalently-bound transition state mimic, provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily. PMID:22035792

  12. Ubiquitin C-terminal hydrolase L1 deficiency decreases bone mineralization.

    PubMed

    Shim, Sehwan; Kwon, Young-Bae; Yoshikawa, Yasuhiro; Kwon, Jungkee

    2008-06-01

    Ubiquitin C-terminal hydrolase L1 is a component of the ubiquitin proteasome system, which evidences unique biological activities. In this study, we report the pattern of UCH-L1 expression, and show that it regulates bone mineralization in osteogenesis. UCH-L1 was expressed in osteoblasts, osteoclasts, and hematopoietic precursor cells of bone marrow in the metaphysis and diaphysis of the femora. To further assess the involvement of UCH-L1 in the regulation of bone mineralization, we evaluated the bone mineral density (BMD) rate of gad mice, using the Latheta computed tomography system. Male gad mice evidenced a significantly decreased BMD rate in the metaphysis and diaphysis of the femora. These findings of decreased BMD rate in the bones of gad mice may suggest that UCH-L1 function regulates bone mineralization during osteogenesis.

  13. Inhibiting an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa Protects CFTR.

    PubMed

    Bahl, Christopher D; Hvorecny, Kelli L; Bomberger, Jennifer M; Stanton, Bruce A; Hammock, Bruce D; Morisseau, Christophe; Madden, Dean R

    2015-08-17

    Opportunistic pathogens exploit diverse strategies to sabotage host defenses. Pseudomonas aeruginosa secretes the CFTR inhibitory factor Cif and thus triggers loss of CFTR, an ion channel required for airway mucociliary defense. However, the mechanism of action of Cif has remained unclear. It catalyzes epoxide hydrolysis, but there is no known role for natural epoxides in CFTR regulation. It was demonstrated that the hydrolase activity of Cif is strictly required for its effects on CFTR. A small-molecule inhibitor that protects this key component of the mucociliary defense system was also uncovered. These results provide a basis for targeting the distinctive virulence chemistry of Cif and suggest an unanticipated role of physiological epoxides in intracellular protein trafficking.

  14. The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases.

    PubMed

    Bateman, Alex; Rawlings, Neil D

    2003-05-01

    Cleavage of peptidoglycan plays an important role in bacterial cell division, cell growth and cell lysis. Here, we reveal that several known peptidoglycan amidases fall into a family, which includes many proteins of previously unknown function. The family includes two different peptidoglycan cleavage activities: L-muramoyl-L-alanine amidase and D-alanyl-glycyl endopeptidase activity. The family includes the amidase portion of the bifunctional glutathionylspermidine synthase/amidase enzyme from bacteria and pathogenic trypanosomes. The glutathionylspermidine synthase is thought to be a key component of the alternative pathway in trypanosomes for protection from oxygen-radical damage and has been proposed as a potential drug target. The CHAP (cysteine, histidine-dependent amidohydrolases/peptidases) domain is often found in association with other domains that cleave peptidoglycan. The large number of multifunctional hydrolases suggests that they might act in a cooperative manner to cleave specialized substrates.

  15. Membrane lipids are key modulators of the endocannabinoid-hydrolase FAAH.

    PubMed

    Dainese, Enrico; De Fabritiis, Gianni; Sabatucci, Annalaura; Oddi, Sergio; Angelucci, Clotilde Beatrice; Di Pancrazio, Chiara; Giorgino, Toni; Stanley, Nathaniel; Del Carlo, Michele; Cravatt, Benjamin F; Maccarrone, Mauro

    2014-02-01

    Lipid composition is expected to play an important role in modulating membrane enzyme activity, in particular if the substrates are themselves lipid molecules. A paradigmatic case is FAAH (fatty acid amide hydrolase), an enzyme critical in terminating endocannabinoid signalling and an important therapeutic target. In the present study, using a combined experimental and computational approach, we show that membrane lipids modulate the structure, subcellular localization and activity of FAAH. We report that the FAAH dimer is stabilized by the lipid bilayer and shows a higher membrane-binding affinity and enzymatic activity within membranes containing both cholesterol and the natural FAAH substrate AEA (anandamide). Additionally, co-localization of cholesterol, AEA and FAAH in mouse neuroblastoma cells suggests a mechanism through which cholesterol increases the substrate accessibility of FAAH.

  16. Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases

    PubMed Central

    Deng, Kai; Takasuka, Taichi E.; Bianchetti, Christopher M.; Bergeman, Lai F.; Adams, Paul D.; Northen, Trent R.; Fox, Brian G.

    2015-01-01

    Chemically synthesized nanostructure-initiator mass spectrometry (NIMS) probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases, and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements. PMID:26579511

  17. Excess α-synuclein worsens disease in mice lacking ubiquitin carboxy-terminal hydrolase L1.

    PubMed

    Shimshek, Derya R; Schweizer, Tatjana; Schmid, Peter; van der Putten, P Herman

    2012-01-01

    Mutations in α-synuclein (αSN) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) have been linked to familial Parkinson's disease (PD). Physical and functional interactions between these two proteins have been described. Whether they act additively in vivo to influence disease has remained controversial. αSN is a presynaptic protein and the major constituent of Lewy inclusions, histopathological hallmarks of PD. UCH-L1 regulates ubiquitin stability in the nervous system and its loss results in neurodegeneration in peripheral and central neurons. Here, we used genetics to show that UCH-L1-deficiency together with excess αSN worsen disease. Double mutant mice show earlier-onset motor deficits, a shorter lifespan and forebrain astrogliosis but the additive disease-worsening effects of UCH-L1-deficiency and excess αSN are not accompanied by microgliosis, ubiquitin pathology or changes in pathological αSN protein levels and species.

  18. Determination of Organophosphate Pesticides at a Carbon Nanotube/Organophosphorus Hydrolase Electrochemical Biosensor

    SciTech Connect

    Deo, R P.; Wang, Joseph; Block, I; Mulchandani, Ashok; Joshi, K; Trojanowicz, M; Scholz, F; Chen, Wilfred; Lin, Yuehe

    2005-02-08

    An amperometric biosensor for organophosphorus (OP) pesticides based on a carbon-nanotube (CNT) modified transducer and an organophosphorus hydrolase (OPH) biocatalyst is described. A bilayer approach with the OPH layer atop of the CNT film was used for preparing the CNT/OPH biosensor. The CNT layer leads to a greatly improved anodic detection of the enzymatically-generated p-nitrophenol product, including higher sensitivity and stability. The sensor performance was optimized with respect to the surface modification and operating conditions. Under the optimal conditions the biosensor was used to measure as low as 0.15 {micro}M paraoxon and 0.8 {micro}M methyl parathion with sensitivities of 25 and 6 nA/{micro}M, respectively.

  19. Development of a versatile organophosphorous-hydrolase-based assay for organophosphate pesticides

    NASA Astrophysics Data System (ADS)

    Rogers, Kim R.; Wang, Yi; Mulchandani, Ashok; Mulchandani, P.; Chen, Wilfred

    1999-02-01

    We report a rapid and versatile organophosphorus hydrolase (OPH)-based method for measurement of organophosphate pesticides. This assay is based on a substrate-dependant change in pH near the active site of the enzyme. The pH change is monitored using fluorescein isothiocyanate (FITC) which is covalently immobilized to the enzyme. This method employs FITC-labeled enzyme adsorbed to polymethylmethacrylate beads. Analytes were measured using a microbead fluorescence analyzer. The dynamic concentration range for the assay extends from 25 (mu) M to 400 (mu) M for paraoxon with a detection limit of 8 (mu) M. This assay compared favorably to an HPLC method for monitoring the concentration of coumaphos in bioremediation filtrate samples.

  20. Improving the acidic stability of a methyl parathion hydrolase by changing basic residues to acidic residues.

    PubMed

    Huang, Lu; Wang, Ping; Tian, Jian; Jiang, Huachen; Wu, Ningfeng; Yang, Peilong; Yao, Bin; Fan, Yunliu

    2012-06-01

    The acidic stability of a methyl parathion hydrolase (Ochr-MPH) was improved by selectively changing basic amino acids to acidic ones. Mutation sites were selected based on the position-specific amino acid replacement probabilities (more than or equal to 0.2) and the entropy of each site (more than or equal to 0.8). Three mutants (K208E, K277D, and K208E/K277D) were more stable than the wild-type (WT). Their half-lives at pH 5.0 were 64, 68, 65 min, respectively, whereas that of WT was 39 min. The acidic stability of proteins may therefore be improved by changing selected basic amino acid residues to acidic ones.

  1. A colorimetric assay for determination of methyl parathion using recombinant methyl parathion hydrolase.

    PubMed

    Anh, Dau Hung; Cheunrungsikul, Kritsananporn; Wichitwechkarn, Jesdawan; Surareungchai, Werasak

    2011-05-01

    A simple, rapid and sensitive colorimetric dipstick assay for the detection of the organophosphorous insecticide methyl parathion (MPT) residue in vegetables was developed. The assay was based on the hydrolysis of MPT by a recombinant methyl parathion hydrolase (recMPH), the encoding gene of which was isolated from Burkholderia cepacia, a soil bacterium indigenous to Thailand. This reaction generates protons leading to a change in pH that correlates with the amount of MPH present. Hence, the pH indicator bromothymol blue was used to monitor the MPH hydrolysis as the associated color changes can be observed by the naked eye. The recMPH was immobilized on a PVDF membrane to establish a dipstick assay format. The assays could detect MPT residues in spiked vegetable samples at the concentration of 1 mg/L without using analytical instrumentation. The test is reusable and stable for up to 3 months in the absence of any preservatives.

  2. An efficient thermostable organophosphate hydrolase and its application in pesticide decontamination.

    PubMed

    Del Giudice, Immacolata; Coppolecchia, Rossella; Merone, Luigia; Porzio, Elena; Carusone, Teresa Maria; Mandrich, Luigi; Worek, Franz; Manco, Giuseppe

    2016-04-01

    In vitro evolution of enzymes represents a powerful device to evolve new or to improve weak enzymatic functions. In the present work a semi-rational engineering approach has been used to design an efficient and thermostable organophosphate hydrolase, starting from a lactonase scaffold (SsoPox from Sulfolobus solfataricus). In particular, by in vitro evolution of the SsoPox ancillary promiscuous activity, the triple mutant C258L/I261F/W263A has been obtained which, retaining its inherent stability, showed an enhancement of its hydrolytic activity on paraoxon up to 300-fold, achieving absolute values of catalytic efficiency up to 10(5) M(-1) s(-1). The kinetics and structural determinants of this enhanced activity were thoroughly investigated and, in order to evaluate its potential biotechnological applications, the mutant was tested in formulations of different solvents (methanol or ethanol) or detergents (SDS or a commercial soap) for the cleaning of pesticide-contaminated surfaces.

  3. Effect of Bleomycin Hydrolase Gene Polymorphism on Late Pulmonary Complications of Treatment for Hodgkin Lymphoma

    PubMed Central

    Miltényi, Zsófia; Póliska, Szilárd; Bálint, Bálint László; Illés, Árpád

    2016-01-01

    Background Bleomycin hydrolase (BLMH), an enzyme that inactivates bleomycin, may be a potential candidate that could influence pulmonary function in ABVD (doxorubicin, bleomycin, vinblastin, dacarbasine)–treated Hodgkin lymphoma (HL) patients. Patients and Methods We hypothesized that the BLMH gene SNP A1450G (rs1050565) influences BLMH activity and late pulmonary toxicity. St. George Respiratory Questionnaire, lung scintigraphy and spirometry were used to determine lung function. TaqMan genotyping assay was used to determine genotype distribution of 131 previously treated HL patients. Results Significantly more favorable results were seen in the wild-type A/A genotype group than those in the group containing the mutated allele: A/G+G/G in retrospective pulmonary tests of ABVD treated patients. Conclusion Besides limitations of the current study, bleomycin pharmacokinetics should be further evaluated in patients with BLMH variations, hence identify those cases even in the frontline setting, where bleomycin should be omitted and replaced with targeted therapy. PMID:27327270

  4. A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae.

    PubMed

    Gozu, Yoshifumi; Ishizaki, Yuichi; Hosoyama, Yuhei; Miyazaki, Takatsugu; Nishikawa, Atsushi; Tonozuka, Takashi

    2016-08-01

    Glycoside hydrolase family (GH) 31 enzymes exhibit various substrate specificities, although the majority of members are α-glucosidases. Here, we constructed a heterologous expression system of a GH31 enzyme, Fjoh_4430, from Flavobacterium johnsoniae NBRC 14942, using Escherichia coli, and characterized its enzymatic properties. The enzyme hydrolyzed dextran and pullulan to produce isomaltooligosaccharides and isopanose, respectively. When isomaltose was used as a substrate, the enzyme catalyzed disproportionation to form isomaltooligosaccharides. The enzyme also acted, albeit inefficiently, on p-nitrophenyl α-D-glucopyranoside, and p-nitrophenyl α-isomaltoside was the main product of the reaction. In contrast, Fjoh_4430 did not act on trehalose, kojibiose, nigerose, maltose, maltotriose, or soluble starch. The optimal pH and temperature were pH 6.0 and 60 °C, respectively. Our results indicate that Fjoh_4430 is a novel GH31 dextranase with high transglucosylation activity.

  5. Identification of benzofuran central cores for the inhibition of leukotriene A(4) hydrolase.

    PubMed

    Eccles, Wendy; Blevitt, Jonathan M; Booker, Jamila N; Chrovian, Christa C; Crawford, Shelby; de Leon, Aimee Rose; Deng, Xiaohu; Fourie, Anne M; Grice, Cheryl A; Herman, Krystal; Karlsson, Lars; Kearney, Aaron M; Lee-Dutra, Alice; Liang, Jimmy; Luna, Rosa; Pippel, Dan; Rao, Navin; Riley, Jason P; Santillán, Alejandro; Savall, Brad; Tanis, Virginia M; Xue, Xiaohua; Young, Arlene L

    2013-02-01

    Leukotrienes (LT's) are known to play a physiological role in inflammatory immune response. Leukotriene A(4) hydrolase (LTA(4)H) is a cystolic enzyme that stereospecifically catalyzes the transformation of LTA(4) to LTB(4). LTB(4) is a known pro-inflammatory mediator. This paper describes the identification and synthesis of substituted benzofurans as LTH(4)H inhibitors. The benzofuran series demonstrated reduced mouse and human whole blood LTB(4) levels in vitro and led to the identification one analog for advanced profiling. Benzofuran 28 showed dose responsive target engagement and provides a useful tool to explore a LTA(4)H inhibitor for the treatment of inflammatory diseases, such as asthma and inflammatory bowel disease (IBD).

  6. Dysregulation of Soluble Epoxide Hydrolase and Lipidomic Profiles in Anorexia Nervosa

    PubMed Central

    Shih, Pei-an Betty; Yang, Jun; Morisseau, Christophe; German, J. Bruce; Van Zeeland, Ashley; Armando, Aaron M.; Quehenberger, Oswald; Bergen, Andrew W.; Magistretti, Pierre; Berrettini, Wade; Halmi, Katherine Ann; Schork, Nicholas; Hammock, Bruce D.; Kaye, Walter

    2015-01-01

    Individuals with anorexia nervosa (AN) restrict eating and become emaciated. AN tend to have an aversion to foods rich in fat. Because Epoxide Hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN, and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid, and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol:epoxide ratios suggest the sEH activity is higher in AN compared to controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment. PMID:25824304

  7. Structural Relationships in the Lysozyme Superfamily: Significant Evidence for Glycoside Hydrolase Signature Motifs

    PubMed Central

    Wohlkönig, Alexandre; Huet, Joëlle; Looze, Yvan; Wintjens, René

    2010-01-01

    Background Chitin is a polysaccharide that forms the hard, outer shell of arthropods and the cell walls of fungi and some algae. Peptidoglycan is a polymer of sugars and amino acids constituting the cell walls of most bacteria. Enzymes that are able to hydrolyze these cell membrane polymers generally play important roles for protecting plants and animals against infection with insects and pathogens. A particular group of such glycoside hydrolase enzymes share some common features in their three-dimensional structure and in their molecular mechanism, forming the lysozyme superfamily. Results Besides having a similar fold, all known catalytic domains of glycoside hydrolase proteins of lysozyme superfamily (families and subfamilies GH19, GH22, GH23, GH24 and GH46) share in common two structural elements: the central helix of the all-α domain, which invariably contains the catalytic glutamate residue acting as general-acid catalyst, and a β-hairpin pointed towards the substrate binding cleft. The invariant β-hairpin structure is interestingly found to display the highest amino acid conservation in aligned sequences of a given family, thereby allowing to define signature motifs for each GH family. Most of such signature motifs are found to have promising performances for searching sequence databases. Our structural analysis further indicates that the GH motifs participate in enzymatic catalysis essentially by containing the catalytic water positioning residue of inverting mechanism. Conclusions The seven families and subfamilies of the lysozyme superfamily all have in common a β-hairpin structure which displays a family-specific sequence motif. These GH β-hairpin motifs contain potentially important residues for the catalytic activity, thereby suggesting the participation of the GH motif to catalysis and also revealing a common catalytic scheme utilized by enzymes of the lysozyme superfamily. PMID:21085702

  8. Deletion of the murein hydrolase CbpD reduces transformation efficiency in Streptococcus thermophilus.

    PubMed

    Biørnstad, Truls Johan; Ohnstad, Hilde Solheim; Håvarstein, Leiv Sigve

    2012-04-01

    Recently it has been shown that Streptococcus thermophilus is competent for natural genetic transformation. This property is widespread among streptococci and may include all members of the genus. Upon entering the competent state, streptococci start transcribing a number of competence-specific genes whose products are required for binding, uptake and processing of transforming DNA. In addition to the core competence genes, competent streptococci express a number of accessory genes that are dispensable for transformation in the laboratory, but presumably play an important role under natural conditions. In Streptococcus pneumoniae, one of these accessory genes encodes a competence-specific murein hydrolase termed CbpD. Experimental evidence indicates that pneumococcal CbpD is part of a predatory mechanism that lyses noncompetent sister cells or members of closely related species in order to release homologous DNA that can be taken up by the competent attacker cells. Competent S. thermophilus LMG18311 cells produce a CbpD-like protein, Stu0039, which might have the same or a similar function. In the present study we have characterized this protein and shown that it is a murein hydrolase with a novel type of cell surface-binding domain. Furthermore, we show that Stu0039 is rapidly inactivated by H(2)O(2) produced during aerobic growth of S. thermophilus. We propose that this inactivation mechanism has evolved for self-protection purposes to prevent extensive autolysis in a competent population. Interestingly, in contrast to pneumococcal CbpD, which does not affect the transformation properties of the producer strain, deletion of Stu0039 reduces the transformability of S. thermophilus.

  9. Molecular Dynamics of Organophosphorous Hydrolases Bound to the Nerve Agent Soman

    SciTech Connect

    Soares, Thereza A.; Osman, Mohamed A.; Straatsma, TP

    2007-07-01

    The organophosphorous hydrolase (OPH) from Pseudomonas diminuta is capable of degrading extremely toxic organophosphorous compounds with a high catalytic turnover and broad substrate specificity. The potential use of this enzyme for the detection and detoxification of warfare nerve agents has spurred efforts to engineer mutants of enhanced catalytic activity and modified stereospecificity towards the most toxic forms of organophosphate nerve agents. Molecular dynamics simulations of the wild-type OPH and the complexes between the wild-type and the triple-mutant H254G/H257W/L303R forms and the substrate SpSc-soman have been carried out to enhance our molecular level understanding of its reaction mechanism. Comparison of the three simulations indicate that substrate binding induces conformational changes of the loops near the active site, suggesting an induced-fit mechanism. Likewise, the coordination of the zinc cations in the active site of the enzyme differs between the free enzyme and the complexes. In the absence of the substrate, the more exposed b-zinc is hexa-coordinated and the less exposed a-zinc is penta-coordinated. In the presence of the substrate, the b- zinc atom can be both penta- or hexa-coordinated while the a-zinc atom is tetra-coordinated. In addition, binding energies were calculated from electrostatic properties obtained by solution of the Poisson-Boltzmann equation combined with a surface area-dependent apolar contribution. The calculations indicate that the binding of SpSc-soman to OPH is driven by nonpolar interactions while electrostatic interactions determine binding specificity. These results provide a qualitative, molecular-level explanation for 2 the three-fold increase in catalytic efficiency of the triple-mutant towards SpSc-soman. Keywords: organophosphorous hydrolase, phosphotriesterase, nerve agents, soman, molecular dynamics, Poisson-Boltzmann equation, continuum electrostatics, metalloprotein.

  10. Product formation controlled by substrate dynamics in leukotriene A4 hydrolase.

    PubMed

    Stsiapanava, Alena; Tholander, Fredrik; Kumar, Ramakrishnan B; Qureshi, Abdul Aziz; Niegowski, Damian; Hasan, Mahmudul; Thunnissen, Marjolein; Haeggström, Jesper Z; Rinaldo-Matthis, Agnes

    2014-02-01

    Leukotriene A4 hydrolase/aminopeptidase (LTA4H) (EC 3.3.2.6) is a bifunctional zinc metalloenzyme with both an epoxide hydrolase and an aminopeptidase activity. LTA4H from the African claw toad, Xenopus laevis (xlLTA4H) has been shown to, unlike the human enzyme, convert LTA4 to two enzymatic metabolites, LTB4 and another biologically active product Δ(6)-trans-Δ(8)-cis-LTB4 (5(S),12R-dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid). In order to study the molecular aspect of the formation of this product we have characterized the structure and function of xlLTA4H. We solved the structure of xlLTA4H to a resolution of 2.3Å. It is a dimeric structure where each monomer has three domains with the active site in between the domains, similar as to the human structure. An important difference between the human and amphibian enzyme is the phenylalanine to tyrosine exchange at position 375. Our studies show that mutating F375 in xlLTA4H to tyrosine abolishes the formation of the LTB4 isomeric product Δ(6)-trans-Δ(8)-cis-LTB4. In an attempt to understand how one amino acid exchange leads to a new product profile as seen in the xlLTA4H, we performed a conformer analysis of the triene part of the substrate LTA4. Our results show that the Boltzmann distribution of substrate conformers correlates with the observed distribution of products. We suggest that the observed difference in product profile between the human and the xlLTA4H arises from different level of discrimination between substrate LTA4 conformers.

  11. Long-term consequences of perinatal fatty acid amino hydrolase inhibition

    PubMed Central

    Wu, Chia-Shan; Morgan, Daniel; Jew, Chris P; Haskins, Chris; Andrews, Mary-Jeanette; Leishman, Emma; Spencer, Corinne M; Czyzyk, Traci; Bradshaw, Heather; Mackie, Ken; Lu, Hui-Chen

    2014-01-01

    Background and PurposeFatty acid amide hydrolase inhibitors show promise as a treatment for anxiety, depression and pain. Here we investigated whether perinatal exposure to URB597, a fatty acid amide hydrolase inhibitor, alters brain development and affects behaviour in adult mice. Experimental ApproachMouse dams were treated daily from gestational day 10.5 to 16.5 with 1, 3 or 10 mg kg−1 URB597. MS was used to measure a panel of endocannabinoids and related lipid compounds and brain development was assessed at embryonic day 16.5. Separate cohorts of mouse dams were treated with 10 mg kg−1 URB597, from gestational day 10.5 to postnatal day 7, and the adult offspring were assessed with a battery of behavioural tests. Key ResultsPerinatal URB597 exposure elevated anandamide and related N-acyl amides. URB597 did not induce signs of toxicity or affect dam weight gain, neurogenesis or axonal development at embryonic day 16.5. It did lead to subtle behavioural deficits in adult offspring, manifested by reduced cocaine-conditioned preference, increased depressive behaviours and impaired working memory. Anxiety levels, motor function and sensory-motor gating were not significantly altered. Conclusions and ImplicationsTaken together, the present results highlight how exposure to elevated levels of anandamide and related N-acyl amides during brain development can lead to subtle alterations in behaviour in adulthood. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24730060

  12. Alteration in plasma testosterone levels in male mice lacking soluble epoxide hydrolase.

    PubMed

    Luria, Ayala; Morisseau, Christophe; Tsai, Hsing-Ju; Yang, Jun; Inceoglu, Bora; De Taeye, Bart; Watkins, Steven M; Wiest, Michelle M; German, J Bruce; Hammock, Bruce D

    2009-08-01

    Soluble epoxide hydrolase (Ephx2, sEH) is a bifunctional enzyme with COOH-terminal hydrolase and NH(2)-terminal phosphatase activities. sEH converts epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs), and the phosphatase activity is suggested to be involved in cholesterol metabolism. EETs participate in a wide range of biological functions, including regulation of vascular tone, renal tubular transport, cardiac contractility, and inflammation. Inhibition of sEH is a potential approach for enhancing the biological activity of EETs. Therefore, disruption of sEH activity is becoming an attractive therapeutic target for both cardiovascular and inflammatory diseases. To define the physiological role of sEH, we characterized a knockout mouse colony lacking expression of the Ephx2 gene. Lack of sEH enzyme is characterized by elevation of EET to DHET ratios in both the linoleate and arachidonate series in plasma and tissues of both female and male mice. In male mice, this lack of expression was also associated with decreased plasma testosterone levels, sperm count, and testicular size. However, this genotype was still able to sire litters. Plasma cholesterol levels also declined in this genotype. Behavior tests such as anxiety-like behavior and hedonic response were also examined in Ephx2-null and WT mice, as all can be related to hormonal changes. Null mice showed a level of anxiety with a decreased hedonic response. In conclusion, this study provides a broad biochemical, physiological, and behavioral characterization of the Ephx2-null mouse colony and suggests a mechanism by which sEH and its substrates may regulate circulating levels of testosterone through cholesterol biosynthesis and metabolism.

  13. Pharmacokinetics of OpdA, an organophosphorus hydrolase, in the African Green Monkey

    PubMed Central

    Jackson, Colin J; Scott, Colin; Carville, Angela; Mansfield, Keith; Ollis, David L.

    2010-01-01

    Organophosphorus (OP) pesticides are a broad class of acetylcholinesterase inhibitors that are responsible for tremendous morbidity and mortality worldwide, contributing to an estimated 300,000 deaths annually. Current pharmacotherapy for acute OP poisoning includes the use of atropine, an oxime, and benzodiazepines. However, even with such therapy, the mortality from these agents are as high as 40%. Enzymatic hydrolysis of OPs is an attractive new potential therapy for acute OP poisoning. A number of bacterial OP hydrolases have been isolated. A promising OP hydrolase is an enzyme isolated from Agrobacterium radiobacter, named OpdA. OpdA has been shown to decrease lethality in rodent models of parathion and dichlorvos poisoning. However, pharmacokinetic data have not been obtained. In this study, we examined the pharmacokinetics of OpdA in an African Green Monkey model. At a dose of 1.2 mg/kg the half-life of OpdA was approximately 40 minutes, with a mean residence time of 57 minutes. As expected, the half-life did not change with the dose of OpdA given: at doses of 0.15 and 0.45 mg/kg, the half-life of OpdA was 43.1 and 38.9 minutes, respectively. In animals subjected to 5 daily doses of OpdA, the residual activity that was measured 24 hours after each OpdA dose increased 5-fold for the 0.45 mg/kg dose and 11-fold for the 1.2 mg/kg dose. OpdA exhibits pharmacokinetics favorable for the further development as a therapy for acute OP poisoning, particularly for hydrophilic OP pesticides. Future work to increase the half-life of OpdA may be beneficial. PMID:20599794

  14. Human Intestinal Raf Kinase Inhibitor Protein (RKIP) Catalyzes Prasugrel as a Bioactivation Hydrolase.

    PubMed

    Kazui, Miho; Ogura, Yuji; Hagihara, Katsunobu; Kubota, Kazuishi; Kurihara, Atsushi

    2016-01-01

    Prasugrel is a thienopyridine antiplatelet prodrug that undergoes rapid hydrolysis in vivo to a thiolactone metabolite by human carboxylesterase-2 (hCE2) during gastrointestinal absorption. The thiolactone metabolite is further converted to a pharmacologically active metabolite by cytochrome P450 isoforms. The aim of the current study was to elucidate hydrolases other than hCE2 involved in the bioactivation step of prasugrel in human intestine. Using size-exclusion column chromatography of a human small intestinal S9 fraction, another peak besides the hCE2 peak was observed to have prasugrel hydrolyzing activity, and this protein was found to have a molecular weight of about 20 kDa. This prasugrel hydrolyzing protein was successfully purified from a monkey small intestinal cytosolic fraction by successive four-step column chromatography and identified as Raf-1 kinase inhibitor protein (RKIP) by liquid chromatography-tandem mass spectrometry. Second, we evaluated the enzymatic kinetic parameters for prasugrel hydrolysis using recombinant human RKIP and hCE2 and estimated the contributions of these two hydrolyzing enzymes to the prasugrel hydrolysis reaction in human intestine, which were approximately 40% for hRKIP and 60% for hCE2. Moreover, prasugrel hydrolysis was inhibited by anti-hRKIP antibody and carboxylesterase-specific chemical inhibitor (bis p-nitrophenyl phosphate) by 30% and 60%, respectively. In conclusion, another protein capable of hydrolyzing prasugrel to its thiolactone metabolite was identified as RKIP, and this protein may play a significant role with hCE2 in prasugrel bioactivation in human intestine. RKIP is known to have diverse functions in many intracellular signaling cascades, but this is the first report describing RKIP as a hydrolase involved in drug metabolism.

  15. Aminoalcohol-Induced Activation of Organophosphorus Hydrolase (OPH) towards Diisopropylfluorophosphate (DFP)

    PubMed Central

    Li, Dandan; Zhang, Yunze; Song, Haitao; Lu, Liangqiu; Liu, Deli; Yuan, Yongze

    2017-01-01

    Aminoalcohols have been addressed as activating buffers for alkaline phosphatase. However, there is no record on the buffer activation regarding organophosphorus hydrolase (OPH). Here we reported the activating effects of aminoalcohols on OPH-catalyzed hydrolysis of diisopropylfluorophosphate (DFP), an analog molecule of G-type warfare agents. The kinetic parametors kcat, Vmax and kcat/Km in the OPH reaction were remarkably increased in the buffers (pH 8.0, 25°C) containing aminoalcohols with C2 between nitrogen (N) and oxygen (O) in their structures, including triethanolamine (TEA), diethanolamine, monoethanolamine, 1-amino-2-propanol, 2-amino-2-methyl-1-propanol, and triisopropanolamine. In contrast, much lower or no rate-enhancing effects were observed in the adding of amines, alcohols, amine/alcohol mixtures, or 3-amino-1-propanol (C3 between N and O). The 300 mM TEA further increased DFP-degrading activities of OPH mutants F132Y and L140Y, the previously reported OPH mutants with desirable activities towards DFP. However, the treatment of ethylenediaminetetraacetate (EDTA) markedly abolished the TEA-induced activation of OPH. The product fluoride effectively inhibited OPH-catalyzed hydrolysis of DFP by a linear mixed inhibition (inhibition constant Ki ~ 3.21 mM), which was partially released by TEA adding at initial or later reaction stage. The obtained results indicate the activation of OPH by aminoalcohol buffers could be attributed to the reduction of fluoride inhibition, which would be beneficial to the hydrolase-based detoxification of organophosphofluoridate. PMID:28085964

  16. The potential role of ubiquitin c-terminal hydrolases in oncogenesis.

    PubMed

    Fang, Ying; Fu, Da; Shen, Xi-Zhong

    2010-08-01

    Deubiquitinating enzymes (DUBs), capable of removing ubiquitin (Ub) from protein substrates, are involved in numerous biological processes. The ubiquitin C-terminal hydrolases (UCHs) subfamily of DUBs consists of four members: UCH-L1, UCH-L3, UCH37 and BRCA1-associated protein-1 (BAP1). UCH-L1 possesses deubiquitinating activity and dimerization-dependent ubiquitin ligase activity, and functions as a mono-ubiquitin stabilizer; UCH-L3 does both deubiquitinating and deneddylating activity, except dimerization or ligase activity, and unlike UCH-L1, can interact with Lys48-linked Ub dimers to protect it from degradation and in the meanwhile to inhibit its hydrolase activity; UCH37 is responsible for the deubiquitinating activity in the 19S proteasome regulatory complex, and as indicated by the recent study, UCH37 is also associated with the human Ino80 chromatin-remodeling complex (hINO80) in the nucleus and can be activated via transient association of 19S regulatory particle- or proteasome-bound hRpn13 with hINO80; BAP1, binding to the wild-type BRCA1 RING finger domain, is regarded as a tumor suppressor, but for such suppressing activity, as demonstrated otherwise, both deubiquitinating activity and nucleus localization are required. There is growing evidence that UCH enzymes and human malignancies are closely correlated. Previous studies have shown that UCH enzymes play a crucial role in some signalings and cell-cycle regulation. In this review, we provided an insight into the relation between UCH enzymes and oncogenesis.

  17. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases.

    PubMed

    Janeček, Štefan; Svensson, Birte; MacGregor, E Ann

    2014-04-01

    α-Amylase (EC 3.2.1.1) represents the best known amylolytic enzyme. It catalyzes the hydrolysis of α-1,4-glucosidic bonds in starch and related α-glucans. In general, the α-amylase is an enzyme with a broad substrate preference and product specificity. In the sequence-based classification system of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α-amylase family, forms clan GH-H together with families GH70 and GH77 that, however, contain no α-amylase. Within the family GH13, the α-amylase specificity is currently present in several subfamilies, such as GH13_1, 5, 6, 7, 15, 24, 27, 28, 36, 37, and, possibly in a few more that are not yet defined. The α-amylases classified in family GH13 employ a reaction mechanism giving retention of configuration, share 4-7 conserved sequence regions (CSRs) and catalytic machinery, and adopt the (β/α)8-barrel catalytic domain. Although the family GH57 α-amylases also employ the retaining reaction mechanism, they possess their own five CSRs and catalytic machinery, and adopt a (β/α)7-barrel fold. These family GH57 attributes are likely to be characteristic of α-amylases from the family GH119, too. With regard to family GH126, confirmation of the unambiguous presence of the α-amylase specificity may need more biochemical investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases.

  18. Novel β-1,4-Mannanase Belonging to a New Glycoside Hydrolase Family in Aspergillus nidulans*

    PubMed Central

    Shimizu, Motoyuki; Kaneko, Yuhei; Ishihara, Saaya; Mochizuki, Mai; Sakai, Kiyota; Yamada, Miyuki; Murata, Shunsuke; Itoh, Eriko; Yamamoto, Tatsuya; Sugimura, Yu; Hirano, Tatsuya; Takaya, Naoki; Kobayashi, Tetsuo; Kato, Masashi

    2015-01-01

    Many filamentous fungi produce β-mannan-degrading β-1,4-mannanases that belong to the glycoside hydrolase 5 (GH5) and GH26 families. Here we identified a novel β-1,4-mannanase (Man134A) that belongs to a new glycoside hydrolase (GH) family (GH134) in Aspergillus nidulans. Blast analysis of the amino acid sequence using the NCBI protein database revealed that this enzyme had no similarity to any sequences and no putative conserved domains. Protein homologs of the enzyme were distributed to limited fungal and bacterial species. Man134A released mannobiose (M2), mannotriose (M3), and mannotetraose (M4) but not mannopentaose (M5) or higher manno-oligosaccharides when galactose-free β-mannan was the substrate from the initial stage of the reaction, suggesting that Man134A preferentially reacts with β-mannan via a unique catalytic mode. Man134A had high catalytic efficiency (kcat/Km) toward mannohexaose (M6) compared with the endo-β-1,4-mannanase Man5C and notably converted M6 to M2, M3, and M4, with M3 being the predominant reaction product. The action of Man5C toward β-mannans was synergistic. The growth phenotype of a Man134A disruptant was poor when β-mannans were the sole carbon source, indicating that Man134A is involved in β-mannan degradation in vivo. These findings indicate a hitherto undiscovered mechanism of β-mannan degradation that is enhanced by the novel β-1,4-mannanase, Man134A, when combined with other mannanolytic enzymes including various endo-β-1,4-mannanases. PMID:26385921

  19. Characterization of a Serine Hydrolase Targeted by Acyl-protein Thioesterase Inhibitors in Toxoplasma gondii

    PubMed Central

    Kemp, Louise E.; Rusch, Marion; Adibekian, Alexander; Bullen, Hayley E.; Graindorge, Arnault; Freymond, Céline; Rottmann, Matthias; Braun-Breton, Catherine; Baumeister, Stefan; Porfetye, Arthur T.; Vetter, Ingrid R.; Hedberg, Christian; Soldati-Favre, Dominique

    2013-01-01

    In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of β-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the β-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein. PMID:23913689

  20. Gene Overexpression and Biochemical Characterization of the Biotechnologically Relevant Chlorogenic Acid Hydrolase from Aspergillus niger▿

    PubMed Central

    Benoit, Isabelle; Asther, Michèle; Bourne, Yves; Navarro, David; Canaan, Stéphane; Lesage-Meessen, Laurence; Herweijer, Marga; Coutinho, Pedro M.; Asther, Marcel; Record, Eric

    2007-01-01

    The full-length gene that encodes the chlorogenic acid hydrolase from Aspergillus niger CIRM BRFM 131 was cloned by PCR based on the genome of the strain A. niger CBS 513.88. The complete gene consists of 1,715 bp and codes for a deduced protein of 512 amino acids with a molecular mass of 55,264 Da and an acidic pI of 4.6. The gene was successfully cloned and overexpressed in A. niger to yield 1.25 g liter−1, i.e., 330-fold higher than the production of wild-type strain A. niger CIRM BRFM131. The histidine-tagged recombinant ChlE protein was purified to homogeneity via a single chromatography step, and its main biochemical properties were characterized. The molecular size of the protein checked by mass spectroscopy was 74,553 Da, suggesting the presence of glycosylation. ChlE is assembled in a tetrameric form with several acidic isoforms with pIs of around 4.55 and 5.2. Other characteristics, such as optimal pH and temperature, were found to be similar to those determined for the previously characterized chlorogenic acid hydrolase of A. niger CIRM BRFM 131. However, there was a significant temperature stability difference in favor of the recombinant protein. ChlE exhibits a catalytic efficiency of 12.5 × 106 M−1 s−1 toward chlorogenic acid (CGA), and its ability to release caffeic acid from CGA present in agricultural by-products such as apple marc and coffee pulp was clearly demonstrated, confirming the high potential of this enzyme. PMID:17630312

  1. Combined cocaine hydrolase gene transfer and anti-cocaine vaccine synergistically block cocaine-induced locomotion.

    PubMed

    Carroll, Marilyn E; Zlebnik, Natalie E; Anker, Justin J; Kosten, Thomas R; Orson, Frank M; Shen, Xiaoyun; Kinsey, Berma; Parks, Robin J; Gao, Yang; Brimijoin, Stephen

    2012-01-01

    Mice and rats were tested for reduced sensitivity to cocaine-induced hyper-locomotion after pretreatment with anti-cocaine antibody or cocaine hydrolase (CocH) derived from human butyrylcholinesterase (BChE). In Balb/c mice, direct i.p. injection of CocH protein (1 mg/kg) had no effect on spontaneous locomotion, but it suppressed responses to i.p. cocaine up to 80 mg/kg. When CocH was injected i.p. along with a murine cocaine antiserum that also did not affect spontaneous locomotion, there was no response to any cocaine dose. This suppression of locomotor activity required active enzyme, as it was lost after pretreatment with iso-OMPA, a selective BChE inhibitor. Comparable results were obtained in rats that developed high levels of CocH by gene transfer with helper-dependent adenoviral vector, and/or high levels of anti-cocaine antibody by vaccination with norcocaine hapten conjugated to keyhole limpet hemocyanin (KLH). After these treatments, rats were subjected to a locomotor sensitization paradigm involving a "training phase" with an initial i.p. saline injection on day 1 followed by 8 days of repeated cocaine injections (10 mg/kg, i.p.). A 15-day rest period then ensued, followed by a final "challenge" cocaine injection. As in mice, the individual treatment interventions reduced cocaine-stimulated hyperactivity to a modest extent, while combined treatment produced a greater reduction during all phases of testing compared to control rats (with only saline pretreatment). Overall, the present results strongly support the view that anti-cocaine vaccine and cocaine hydrolase vector treatments together provide enhanced protection against the stimulatory actions of cocaine in rodents. A similar combination therapy in human cocaine users might provide a robust therapy to help maintain abstinence.

  2. Detection of aacA-aphD, qacEδ1, marA, floR, and tetA genes from multidrug-resistant bacteria: Comparative analysis of real-time multiplex PCR assays using EvaGreen(®) and SYBR(®) Green I dyes.

    PubMed

    Khan, Saeed A; Sung, Kidon; Nawaz, Mohamed S

    2011-01-01

    We have developed multiplex real-time PCR assays that utilize DNA-intercalating dyes, SYBR Green I (SG) and EvaGreen (EG), with two primer sets (set 1=qacEδ1, tetA and aacA-aphD; set 2=tetA, marA, and floR) to simultaneously amplify the qacEδ1, tetA, aacA-aphD, marA, and floR genes. Validity of the multiplex PCR assays was confirmed by testing 83 bacterial isolates, including Staphylococcus aureus (28 isolates), Enterococcus spp. (17 isolates), Salmonella enterica serovar Typhimurium (8 isolates), Citrobacter spp. (9 isolates), Escherichia coli (14 isolates) and Aeromonas veronii (7 isolates), and performing sequence analysis of representative PCR products. Agarose gel analysis revealed the presence of correct size PCR products, and the differences in their thermal melting (T(m)) curves were used to distinguish various PCR products. Although T(m) peaks of different amplicons after EG-based singleplex and multiplex PCR assays were resolved nicely, only one or two peaks were seen for SG-bound amplicons. EG-based multiplex real-time PCR assays provided better peak resolution. There was a good correlation with a better linear relationship between the C(t) and log input DNA concentration for the set 1 and set 2 genes in EG-based assays (R(EG)(2)=0.9813and0.9803) than in SG-based assays (R(SG)(2)=0.5276and0.6255). The sensitivities of detection were 2.5-25fg and 25-250fg of template DNA in EG and SG-based singleplex and multiplex PCR assays, respectively. The assays, which could be completed in less than 45min, offer sensitive and rapid detection of qacEδ1, aacA-aphD, marA, floR, and tetA genes from a diverse group of multiple antibiotic-resistant bacterial strains.

  3. Neuronal transport of acid hydrolases and peroxidase within the lysosomal system or organelles: involvement of agranular reticulum-like cisterns.

    PubMed

    Broadwell, R D; Oliver, C; Brightman, M W

    1980-04-01

    Neurosecretory neurons of the hyperosmotically stressed hypothalamo-neurohypophysial system have been a useful model with which to demonstrate interrelationships among perikaryal lysosomes, agranular reticulum-like cisterns, endocytotic vacuoles, and the axoplasmic transport of acid hydrolases and horseradish peroxidase. Supraoptic neurons from normal mice and mice given 2% salt water to drink for 5--8 days have been studied using enzyme cytochemical techniques for peroxidase and lysosomal acid hydrolases. Peroxidase-labeling of these neurons was accomplished by intravenous injection or cerebral ventriculocisternal perfusion of the protein as previously reported (Broadwell and Brightman, '79). Compared to normal controls, supraoptic cell bodies from hyperosmotically stimulated mice contained elevated concentrations of peroxidase-labeled dense bodies demonstrated to be secondary lysosomes and acid hydrolase-positive and peroxidase-positive cisterns either attached or unattached to secondary lysosomes. These cisterns were smooth-surfaced and 400--1,000 A wide. Their morphology was similar to that of the agranular reticulum. Some of the cisterns contained both peroxidase and acid hydrolase activities. The cisterns probably represent an elongated form of lysosome and, therefore, are not elements of the agranular reticulum per se. By virtue of their direct connections with perikaryal secondary lysosomes, these cisterns may provide the route by which acid hydrolases and exogenous macromolecules can leave perikaryal secondary lysosomes for anterograde flow down the axon. Very few smooth-surfaced cisterns were involved in the retrograde transport of peroxidase within pituitary stalk axons from normal and salt-treated mice injected intravenously with peroxidase. Peroxidase undergoing retrograde transport was predominantly in endocytotic structures such as vacuoles and cup-shaped organelles, which deliver this exogenous macromolecule directly to secondary lysosomes for

  4. Erythrocyte L-aspartyl-L-phenylalanine hydrolase activity and plasma phenylalanine and aspartate concentrations in children consuming diets high in aspartame.

    PubMed

    Stegink, L D; Lindgren, S D; Brummel, M C; Stumbo, P J; Wolraich, M L

    1995-12-01

    A deficit of alpha-aspartyl-phenylalanine (alpha-Asp-Phe) hydrolase activity has been suggested as a cause of possible adverse effects of aspartame ingestion. Twenty-five normal preschool children and 23 school-age children described by their parents as sensitive to sugar were fed diets high in sucrose, aspartame, or saccharin for three successive 3-wk periods. Blood samples were obtained at baseline (fasting) and within the last 3 d of each dietary period (postprandial). alpha-Asp-Phe concentrations were below detection limits (0.5 mumol/L) in all plasma samples and Phe and Asp concentrations remained within normal limits, alpha-Asp-Phe hydrolase activities in baseline hemolysate samples did not differ between groups. One subject had a plasma alpha-Asp-Phe hydrolase activity > 2 SD below the mean. Despite this low activity, this subject did not show consistent cognitive or behavioral anomalies that could be linked to low hydrolase activity.

  5. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding an alpha-amino acid ester hydrolase from Acetobacter turbidans.

    PubMed

    Polderman-Tijmes, Jolanda J; Jekel, Peter A; de Vries, Erik J; van Merode, Annet E J; Floris, René; van der Laan, Jan-Metske; Sonke, Theo; Janssen, Dick B

    2002-01-01

    The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing beta-lactam antibiotics, such as cephalexin and ampicillin. N-terminal amino acid sequencing of the purified alpha-amino acid ester hydrolase allowed cloning and genetic characterization of the corresponding gene from an A. turbidans genomic library. The gene, designated aehA, encodes a polypeptide with a molecular weight of 72,000. Comparison of the determined N-terminal sequence and the deduced amino acid sequence indicated the presence of an N-terminal leader sequence of 40 amino acids. The aehA gene was subcloned in the pET9 expression plasmid and expressed in Escherichia coli. The recombinant protein was purified and found to be dimeric with subunits of 70 kDa. A sequence similarity search revealed 26% identity with a glutaryl 7-ACA acylase precursor from Bacillus laterosporus, but no homology was found with other known penicillin or cephalosporin acylases. There was some similarity to serine proteases, including the conservation of the active site motif, GXSYXG. Together with database searches, this suggested that the alpha-amino acid ester hydrolase is a beta-lactam antibiotic acylase that belongs to a class of hydrolases that is different from the Ntn hydrolase superfamily to which the well-characterized penicillin acylase from E. coli belongs. The alpha-amino acid ester hydrolase of A. turbidans represents a subclass of this new class of beta-lactam antibiotic acylases.

  6. The effects of modulation of microsomal epoxide hydrolase activity on microsome-catalyzed activation of benzo[alpha]pyrene and its covalent binding to DNA.

    PubMed

    Guenthner, T M; Oesch, F

    1981-01-01

    The effects of modulation of microsomal epoxide hydrolase activity on the binding of calf thymus DNA of benzo[alpha]pyrene metabolically activated by rat liver microsomes were investigated. In systems where microsomal epoxide hydrolase levels were not manipulated, 2 major bound species, one derived from 9-hydroxybenzo[alpha]pyrene and the other derived from benzo[alpha]pyrene 7,8-dihydrodiol, were found in approximately equivalent amounts. When epoxide hydrolase levels were increased, either by addition in vitro of purified enzyme or by induction in vivo by trans-stilbene oxide, the binding of the benzo[alpha]pyrene 7,8-dihydrodiol product was increased, while the binding of the 9-hydroxybenzo[alpha]pyrene product was practically eliminated. When microsomal epoxide hydrolase activity was decreased by selective inhibition with low concentrations of 1,1,1-trichloropropene 2,3-oxide, the binding of the species derived from 9-hydroxybenzo[alpha]pyrene was increased several-fold, while that of the species derived from benzo[alpha]pyrene 7,8-dihydrodiol was greatly decreased. The results indicate that the binding species derived from 9-hydroxybenzo[alpha]pyrene is formed through a metabolic pathway leading to an epoxide which is a substrate of microsomal epoxide hydrolase and that microsomal epoxide hydrolase is important in regulating the pattern of binding of individual microsomally-formed benzo[alpha]pyrene metabolites to DNA.

  7. AphID (Lucid key) http://AphID.AphidNet.org

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This peer-reviewed web site concentrates on the 66 adult alate and apterous aphids that are the world's most cosmopolitan and polyphagous species. The site includes fact sheets about the various aphids species, a glossary of terms helpful to the student, hundreds of photographs and illustrations, a...

  8. Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from kimchi is able to degrade organophosphorus pesticides.

    PubMed

    Islam, Shah Md Asraful; Math, Renukaradhya K; Cho, Kye Man; Lim, Woo Jin; Hong, Su Young; Kim, Jong Min; Yun, Myoung Geun; Cho, Ji Joong; Yun, Han Dae

    2010-05-12

    Lactobacillus brevis WCP902 that is capable of biodegrading chlorpyrifos was isolated from kimchi. The opdB gene cloned from this strain revealed 825 bp, encoding 274 aa, and an enzyme molecular weight of about 27 kDa. OpdB contains the same Gly-X-Ser-X-Gly motif found in most bacterial and eukaryotic esterase, lipase, and serine hydrolases, yet it is a novel member of the GDSVG family of esterolytic enzymes. Its conserved serine residue, Ser82, is significantly involved with enzyme activity that may have application for removing some pesticides. Optimum organophosphorus hydrolase (OpdB) activity appeared at pH 6.0 and 35 degrees C and during degradation of chlorpyrifos, coumaphos, diazinon, methylparathion, and parathion.

  9. Cloning, expression, purification, crystallization and preliminary X-ray studies of epoxide hydrolases A and B from Mycobacterium tuberculosis

    SciTech Connect

    Biswal, Bichitra K.; Garen, Grace; Cherney, Maia M.; Garen, Craig; James, Michael N. G.

    2006-02-01

    Epoxide hydrolases A (Rv3617) and B (Rv1938), detoxification enzymes from M. tuberculosis, have been cloned, expressed, purified and crystallized. Crystals of Rv3617 and Rv1938 diffracted to 3.0 and 2.1 Å resolution, respectively. Mycobacterium tuberculosis epoxide hydrolases A and B, corresponding to open reading frames Rv3617 and Rv1938, are detoxification enzymes against epoxides. The recombinant forms of these enzymes have been expressed in Escherichia coli and purified to homogeneity. Diffraction-quality crystals of Rv3617 and Rv1938 were obtained by the hanging-drop vapour-diffusion technique. Crystals of Rv3617 and Rv1938 diffracted to 3.0 and 2.1 Å resolution, respectively, at the ALS synchrotron at Berkeley, CA, USA.

  10. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    SciTech Connect

    Reindl, W.; Deng, K.; Gladden, J.M.; Cheng, G.; Wong, A.; Singer, S.W.; Singh, S.; Lee, J.-C.; Yao, J.-S.; Hazen, T.C.; Singh, A.K; Simmons, B.A.; Adams, P.D.; Northen, T.R.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation of the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.

  11. Purification and characterization of porcine skeletal muscle aminopeptidase T, a novel metallopeptidase homologous to leukotriene A4 hydrolase.

    PubMed

    Sarker, Mohammed Alamgir; Matsuda, Shinji; Mizutani, Osamu; Rao, Shengbin; Migita, Koshiro; Goto-Yamamoto, Nami; Iefuji, Haruyuki; Nishimura, Toshihide

    2011-01-01

    A novel aminopeptidase, Aminopeptidase T (APase T), was purified from porcine skeletal muscle following successive column chromatography: twice on DEAE-cellulose, hydroxyapatite, and Sephacryl S-200 HR using Leu-β-naphthylamide (LeuNap) as a substrate. The molecular mass of the enzyme was 69 kDa on SDS-PAGE. The optimum pH towards LeuNap of the enzyme was about 7. The enzyme activity was strongly inhibited by bestatin and was negatively affected by ethylenediaminetetraacetic acid (EDTA). Chlorine-activated APase T liberated Leu, Ala, Met, Pro, and Arg from Nap derivatives. The APase T gene consisted of an ORF of 1,836 bp encoding a protein of 611 amino acid residues. The APase T was highly homologous to bovine, human, and mouse Leukotriene A(4) hydrolase (LTA(4)H), a bifunctional enzyme which exhibits APase and epoxide hydrolase activity.

  12. Cloning and expression of 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase from oyster hepatopancreas†.

    PubMed

    Nakagawa, Tetsuto; Shimada, Yoshimi; Pavlova, Nadejda V; Li, Su-Chen; Li, Yu-Teh

    2015-12-01

    We have previously reported that oyster hepatopancreas contained three unusual α-ketoside hydrolases: (i) a 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase (α-Kdo-ase), (ii) a 3-deoxy-D-glycero-D-galacto-non-2-ulosonic acid α-ketoside hydrolase and (iii) a bifunctional ketoside hydrolase capable of cleaving both the α-ketosides of Kdn and Neu5Ac (Kdn-sialidase). After completing the purification of Kdn-sialidase, we proceeded to clone the gene encoding this enzyme. Unexpectedly, we found that instead of expressing Kdn-sialidase, our cloned gene expressed α-Kdo-ase activity. The full-length gene, consisting of 1176-bp (392 amino acids, Mr 44,604), expressed an active recombinant α-Kdo-ase (R-α-Kdo-ase) in yeast and CHO-S cells, but not in various Escherichia coli strains. The deduced amino acid sequence contains two Asp boxes (S(277)PDDGKTW and S(328)TDQGKTW) commonly found in sialidases, but is devoid of the signature FRIP-motif of sialidase. The R-α-Kdo-ase effectively hydrolyzed the Kdo in the core-oligosaccharide of the structurally defined lipopolysaccharide (LPS), Re-LPS (Kdo(2)-Lipid A) from Salmonella minnesota R595 and E. coli D31m4. However, Rd-LPS from S. minnesota R7 that contained an extra outer core phosphorylated heptose was only slowly hydrolyzed. The complex type LPS from Neisseria meningitides A1 and M992 that contained extra 5-6 sugar units at the outer core were refractory to R-α-Kdo-ase. This R-α-Kdo-ase should become useful for studying the structure and function of Kdo-containing glycans.

  13. The lid domain of the MCP hydrolase DxnB2 contributes to the reactivity towards recalcitrant PCB metabolites

    PubMed Central

    Yam, Katherine C.; Ghosh, Subhangi; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2013-01-01

    DxnB2 and BphD are meta-cleavage product (MCP) hydrolases that catalyze C-C bond hydrolysis of the biphenyl metabolite 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA). BphD is a bottleneck in the bacterial degradation of polychlorinated biphenyls (PCBs) by the Bph catabolic pathway due in part to inhibition by 3-Cl HOPDAs. By contrast, DxnB2 from Sphingomonas wittichii RW1 catalyzes the hydrolysis of 3-Cl HOPDAs more efficiently. X-ray crystallographic studies of the catalytically inactive S105A variant of DxnB2 complexed with 3-Cl HOPDA revealed a binding mode in which C1 through C6 of the dienoate are coplanar. The chlorine substituent is accommodated by a hydrophobic pocket that is larger than the homologous site in BphDLB400 from Burkholderia xenovorans LB400. The planar binding mode observed in the crystalline complex was consistent with the hyper- and hypsochromically-shifted absorption spectra of 3-Cl and 3,9,11-triCl HOPDA, respectively, bound to S105A in solution. Moreover, ESred, an intermediate possessing a bathochromically-shifted spectrum observed in the turnover of HOPDA, was not detected, suggesting that substrate destabilization was rate-limiting in the turnover of these PCB metabolites. Interestingly, electron density for the first α-helix of the lid domain was poorly defined in the dimeric DxnB2 structures, unlike in the tetrameric BphDLB400. Structural comparison of MCP hydrolases identified the NC-loop, connecting the lid to the α/β-hydrolase core domain, as a determinant in oligomeric state and suggests its involvement in catalysis. Finally, an increased mobility of the DxnB2 lid may contribute to the enzyme’s ability to hydrolyze PCB metabolites, highlighting how lid architecture contributes to substrate specificity in α/β-hydrolases. PMID:23879719

  14. The Peptidoglycan Hydrolase of Staphylococcus aureus Bacteriophage ϕ11 Plays a Structural Role in the Viral Particle

    PubMed Central

    Rodríguez-Rubio, Lorena; Quiles-Puchalt, Nuria; Martínez, Beatriz; Rodríguez, Ana; Penadés, José R.

    2013-01-01

    The role of virion-associated peptidoglycan hydrolases (VAPGHs) in the phage infection cycle is not clear. gp49, the VAPGH from Staphylococcus aureus phage ϕ11, is not essential for phage growth but stabilizes the viral particles. ϕ11Δ49 phages showed a reduced burst size and delayed host lysis. Complementation of gp49 with HydH5 from bacteriophage vB_SauS-phiIPLA88 restored the wild-type phenotype. PMID:23892745

  15. The fatty-acid amide hydrolase inhibitor URB597 does not affect triacylglycerol hydrolysis in rat tissues.

    PubMed

    Clapper, Jason R; Duranti, Andrea; Tontini, Andrea; Mor, Marco; Tarzia, Giorgio; Piomelli, Daniele

    2006-11-01

    The O-arylcarbamate URB597 (cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester; also referred to as KDS-4103) is a potent inhibitor of fatty-acid amide hydrolase (FAAH), an intracellular serine hydrolase responsible for the inactivation of the endogenous cannabinoid anandamide. URB597 demonstrates a remarkable degree of selectivity for FAAH over other serine hydrolases (e.g. cholinesterases) or other components of the endocannabinoid system (e.g. cannabinoid receptors). However, in a proteomic-based selectivity screen based on the displacement of fluorophosphonate-rhodamine (FPR) from mouse brain proteins, it was recently shown that URB597 prevents FPR binding to triacylglycerol hydrolase (TGH) with a median inhibitory concentration of 192nM. To determine whether this effect correlates with inhibition of TGH activity, we investigated the ability of URB597 to inhibit triolein hydrolysis in rat liver and heart tissues, which are rich in TGH, as well as white adipose tissue (WAT), which is rich in adipose triacylglycerol lipase (TGL) and hormone-sensitive lipase. The results show that URB597 does not affect triolein hydrolysis in any of these tissues at concentrations as high as 10microM, whereas it inhibits FAAH activity at low nanomolar concentrations. Moreover, intraperitoneal (i.p.) administration of URB597 at doses that maximally inhibit FAAH in vivo (0.3-3mgkg(-1)) exerts no effect on triolein hydrolysis and tissue triacylglycerol (TAG) levels in rat liver, heart or WAT. The results indicate that URB597, while potent at inhibiting FAAH, does not affect TGH and TGL activities in rat tissues.

  16. How Does (E)-2-(Acetamidomethylene)succinate Bind to Its Hydrolase? From the Binding Process to the Final Result

    PubMed Central

    Zhang, Ji-Long; Zheng, Qing-Chuan; Li, Zheng-Qiang; Zhang, Hong-Xing

    2013-01-01

    The binding of (E)-2-(acetamidomethylene)succinate (E-2AMS) to E-2AMS hydrolase is crucial for biological function of the enzyme and the last step reaction of vitamin B6 biological degradation. In the present study, several molecular simulation methods, including molecular docking, conventional molecular dynamics (MD), steered MD (SMD), and free energy calculation methods, were properly integrated to investigate the detailed binding process of E-2AMS to its hydrolase and to assign the optimal enzyme-substrate complex conformation. It was demonstrated that the substrate binding conformation with trans-form amide bond is energetically preferred conformation, in which E-2AMS's pose not only ensures hydrogen bond formation of its amide oxygen atom with the vicinal oxyanion hole but also provides probability of the hydrophobic interaction between its methyl moiety and the related enzyme's hydrophobic cavity. Several key residues, Arg146, Arg167, Tyr168, Arg179, and Tyr259, orientate the E-2AMS's pose and stabilize its conformation in the active site via the hydrogen bond interaction with E-2AMS. Sequentially, the binding process of E-2AMS to E-2AMS hydrolase was studied by SMD simulation, which shows the surprising conformational reversal of E-2AMS. Several important intermediate structures and some significant residues were identified in the simulation. It is stressed that Arg146 and Arg167 are two pivotal residues responsible for the conformational reversal of E-2AMS in the binding or unbinding. Our research has shed light onto the full binding process of the substrate to E-2AMS hydrolase, which could provide more penetrating insight into the interaction of E-2AMS with the enzyme and would help in the further exploration on the catalysis mechanism. PMID:23308285

  17. Cloning and expression of 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase from oyster hepatopancreas†

    PubMed Central

    Nakagawa, Tetsuto; Shimada, Yoshimi; Pavlova, Nadejda V; Li, Su-Chen; Li, Yu-Teh

    2015-01-01

    We have previously reported that oyster hepatopancreas contained three unusual α-ketoside hydrolases: (i) a 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase (α-Kdo-ase), (ii) a 3-deoxy-d-glycero-d-galacto-non-2-ulosonic acid α-ketoside hydrolase and (iii) a bifunctional ketoside hydrolase capable of cleaving both the α-ketosides of Kdn and Neu5Ac (Kdn-sialidase). After completing the purification of Kdn-sialidase, we proceeded to clone the gene encoding this enzyme. Unexpectedly, we found that instead of expressing Kdn-sialidase, our cloned gene expressed α-Kdo-ase activity. The full-length gene, consisting of 1176-bp (392 amino acids, Mr 44,604), expressed an active recombinant α-Kdo-ase (R-α-Kdo-ase) in yeast and CHO-S cells, but not in various Escherichia coli strains. The deduced amino acid sequence contains two Asp boxes (S277PDDGKTW and S328TDQGKTW) commonly found in sialidases, but is devoid of the signature FRIP-motif of sialidase. The R-α-Kdo-ase effectively hydrolyzed the Kdo in the core-oligosaccharide of the structurally defined lipopolysaccharide (LPS), Re-LPS (Kdo2-Lipid A) from Salmonella minnesota R595 and E. coli D31m4. However, Rd-LPS from S. minnesota R7 that contained an extra outer core phosphorylated heptose was only slowly hydrolyzed. The complex type LPS from Neisseria meningitides A1 and M992 that contained extra 5–6 sugar units at the outer core were refractory to R-α-Kdo-ase. This R-α-Kdo-ase should become useful for studying the structure and function of Kdo-containing glycans. PMID:26362869

  18. A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser-His-Asp Containing C-C Bond Hydrolase

    SciTech Connect

    Ruzzini, Antonio C.; Bhowmik, Shiva; Ghosh, Subhangi; Yam, Katherine C.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2013-11-12

    The meta-cleavage product (MCP) hydrolases utilize a Ser–His–Asp triad to hydrolyze a carbon–carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ESred, which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ESred decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2nuc ~ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His–Asp pair does not play an essential role. The data further suggest that ESred represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.

  19. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: Sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants

    SciTech Connect

    Vose, Sarah C.; Holland, Nina T.; Eskenazi, Brenda; Casida, John E.

    2007-10-01

    Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC{sub 50} values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined.

  20. N-terminal domain of soluble epoxide hydrolase negatively regulates the VEGF-mediated activation of endothelial nitric oxide synthase

    PubMed Central

    Hou, Hsin-Han; Hammock, Bruce D.; Su, Kou-Hui; Morisseau, Christophe; Kou, Yu Ru; Imaoka, Susumu; Oguro, Ami; Shyue, Song-Kun; Zhao, Jin-Feng; Lee, Tzong-Shyuan

    2012-01-01

    Aims The mammalian soluble epoxide hydrolase (sEH) has both an epoxide hydrolase and a phosphatase domain. The role of sEH hydrolase activity in the metabolism of epoxyeicosatrienoic acids (EETs) and the activation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) has been well defined. However, far less is known about the role of sEH phosphatase activity in eNOS activation. In the present study, we investigated whether the phosphatase domain of sEH was involved in the eNOS activation in ECs. Methods and results The level of eNOS phosphorylation in aortas is higher in the sEH knockout (sEH−/−) mice than in wild-type mice. In ECs, pharmacological inhibition of sEH phosphatase or overexpressing sEH with an inactive phosphatase domain enhanced vascular endothelial growth factor (VEGF)-induced NO production and eNOS phosphorylation. In contrast, overexpressing the phosphatase domain of sEH prevented the VEGF-mediated NO production and eNOS phosphorylation at Ser617, Ser635, and Ser1179. Additionally, treatment with VEGF induced a c-Src kinase-dependent increase in transient tyrosine phosphorylation of sEH and the formation of a sEH–eNOS complex, which was abolished by treatment with a c-Src kinase inhibitor, PP1, or the c-Src dominant-negative mutant K298M. We also demonstrated that the phosphatase domain of sEH played a key role in VEGF-induced angiogenesis by detecting the tube formation in ECs and neovascularization in Matrigel plugs in mice. Conclusion In addition to epoxide hydrolase activity, phosphatase activity of sEH plays a pivotal role in the regulation of eNOS activity and NO-mediated EC functions. PMID:22072631

  1. The lid domain of the MCP hydrolase DxnB2 contributes to the reactivity toward recalcitrant PCB metabolites.

    PubMed

    Ruzzini, Antonio C; Bhowmik, Shiva; Yam, Katherine C; Ghosh, Subhangi; Bolin, Jeffrey T; Eltis, Lindsay D

    2013-08-20

    DxnB2 and BphD are meta-cleavage product (MCP) hydrolases that catalyze C-C bond hydrolysis of the biphenyl metabolite 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA). BphD is a bottleneck in the bacterial degradation of polychlorinated biphenyls (PCBs) by the Bph catabolic pathway due in part to inhibition by 3-Cl HOPDAs. By contrast, DxnB2 from Sphingomonas wittichii RW1 catalyzes the hydrolysis of 3-Cl HOPDAs more efficiently. X-ray crystallographic studies of the catalytically inactive S105A variant of DxnB2 complexed with 3-Cl HOPDA revealed a binding mode in which C1 through C6 of the dienoate are coplanar. The chlorine substituent is accommodated by a hydrophobic pocket that is larger than the homologous site in BphDLB400 from Burkholderia xenovorans LB400. The planar binding mode observed in the crystalline complex was consistent with the hyper- and hypsochromically shifted absorption spectra of 3-Cl and 3,9,11-triCl HOPDA, respectively, bound to S105A in solution. Moreover, ES(red), an intermediate possessing a bathochromically shifted spectrum observed in the turnover of HOPDA, was not detected, suggesting that substrate destabilization was rate-limiting in the turnover of these PCB metabolites. Interestingly, electron density for the first α-helix of the lid domain was poorly defined in the dimeric DxnB2 structures, unlike in the tetrameric BphDLB400. Structural comparison of MCP hydrolases identified the NC-loop, connecting the lid to the α/β-hydrolase core domain, as a determinant in the oligomeric state and suggests its involvement in catalysis. Finally, an increased mobility of the DxnB2 lid may contribute to the enzyme's ability to hydrolyze PCB metabolites, highlighting how lid architecture contributes to substrate specificity in α/β-hydrolases.

  2. Production of Self-Purifying Proteins in a Variety of Expression Hosts with Focus on Organophosphorus Hydrolase

    DTIC Science & Technology

    2012-08-17

    REPORT Final Report: Production of Self-Purifying Proteins in a Variety of Expression Hosts with Focus on Organophosphorus Hydrolase 14. ABSTRACT 16...Prescribed by ANSI Std. Z39.18 - 31-Mar-2012 Final Report: Production of Self-Purifying Proteins in a Variety of Expression Hosts with Focus on...highly effective methods for protein purification. We have applied these methods to the production of several proteins, including

  3. Structure of XC6422 from Xanthomonas campestris at 1.6 Å resolution: a small serine α/β-hydrolase

    SciTech Connect

    Yang, Chao-Yu; Chin, Ko-Hsin; Chou, Chia-Cheng; Wang, Andrew H.-J.; Chou, Shan-Ho

    2006-06-01

    The crystal structure of a conserved hypothetical protein from X. campestris has been determined to a resolution of 1.6 Å. The determined X. campestris structure shows that it belongs to the superfamily of serine α/β hydrolase, with an extra strand preceding the first β-strand to lead to extensive subunit interactions in the crystal. XC6422 is a conserved hypothetical protein from Xanthomonas campestris pathovar campestris (Xcc), a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. The protein consists of 220 amino acids and its structure has been determined to 1.6 Å resolution using the multi-wavelength anomalous dispersion (MAD) method. Although it has very low sequence identity to protein sequences in the PDB (less than 20%), the determined structure nevertheless shows that it belongs to the superfamily of serine α/β-hydrolases, with an active site that is fully accessible to solvent owing to the absence of a lid domain. Modelling studies with the serine esterase inhibitor E600 indicate that XC6422 adopts a conserved Ser-His-Asp catalytic triad common to this superfamily and has a preformed oxyanion hole for catalytic activation. These structural features suggest that XC6422 is most likely to be a hydrolase active on a soluble ester or a small lipid. An extra strand preceding the first β-strand in the canonical α/β-hydrolase fold leads to extensive subunit interactions between XC6422 monomers, which may explain why XC6422 crystals of good diffraction quality can grow to dimensions of up to 1.5 mm in a few days.

  4. Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor

    PubMed Central

    Shao, Xiaohu; Jiang, Mengtian; Yu, Ziniu; Cai, Hao; Li, Lin

    2009-01-01

    Background Previous studies have revealed that the lysin motif (LysM) domains of bacterial cell wall-degrading enzymes are able to bind to peptidoglycan moieties of the cell wall. This suggests an approach for a cell surface display system in Gram-positive bacteria using a LysM-containing protein as the anchoring motif. In this study, we developed a new surface display system in B. thuringiensis using a LysM-containing peptidoglycan hydrolase, endo-β-N-acetylglucosaminidase (Mbg), as the anchor protein. Results Homology searching in the B. thuringiensis YBT-1520 genome revealed a putative peptidoglycan hydrolase gene. The encoded protein, Mbg, exhibited substantial cell-wall binding capacity. The deduced amino acid sequence of Mbg was structurally distinguished as an N-terminal domain with two tandemly aligned LysMs and a C-terminal catalytic domain. A GFP-fusion protein was expressed and used to verify the surface localization by Western blot, flow cytometry, protease accessibility, SDS sensitivity, immunofluorescence, and electron microscopy assays. Low-level constitutive expression of Mbg was elevated by introducing a sporulation-independent promoter of cry3Aa. Truncated Mbg domains with separate N-terminus (Mbgn), C-terminus (Mbgc), LysM1, or LysM2 were further compared for their cell-wall displaying efficiencies. The Mbgn moiety contributed to cell-wall anchoring, while LysM1 was the active domain. Two tandemly repeated Mbgns exhibited the highest display activity, while the activity of three repeated Mbgns was decreased. A heterologous bacterial multicopper oxidase (WlacD) was successfully displayed onto the surface of B. thuringiensis target cells using the optimum (Mbgn)2 anchor, without radically altering its catalytic activity. Conclusion Mbg can be a functional anchor protein to target different heterologous proteins onto the surface of B. thuringiensis cells. Since the LysM domain appears to be universal in Gram-positive bacteria, the strategy

  5. Leishmania donovani Nucleoside Hydrolase Terminal Domains in Cross-Protective Immunotherapy Against Leishmania amazonensis Murine Infection

    PubMed Central

    Nico, Dirlei; Gomes, Daniele Crespo; Palatnik-de-Sousa, Iam; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa Beatriz

    2014-01-01

    Nucleoside hydrolases of the Leishmania genus are vital enzymes for the replication of the DNA and conserved phylogenetic markers of the parasites. Leishmania donovani nucleoside hydrolase (NH36) induced a main CD4+ T cell driven protective response against L. chagasi infection in mice which is directed against its C-terminal domain. In this study, we used the three recombinant domains of NH36: N-terminal domain (F1, amino acids 1–103), central domain (F2 aminoacids 104–198), and C-terminal domain (F3 amino acids 199–314) in combination with saponin and assayed their immunotherapeutic effect on Balb/c mice previously infected with L. amazonensis. We identified that the F1 and F3 peptides determined strong cross-immunotherapeutic effects, reducing the size of footpad lesions to 48 and 64%, and the parasite load in footpads to 82.6 and 81%, respectively. The F3 peptide induced the strongest anti-NH36 antibody response and intradermal response (IDR) against L. amazonenis and a high secretion of IFN-γ and TNF-α with reduced levels of IL-10. The F1 vaccine, induced similar increases of IgG2b antibodies and IFN-γ and TNF-α levels, but no IDR and no reduction of IL-10. The multiparameter flow cytometry analysis was used to assess the immune response after immunotherapy and disclosed that the degree of the immunotherapeutic effect is predicted by the frequencies of the CD4+ and CD8+ T cells producing IL-2 or TNF-α or both. Total frequencies and frequencies of double-cytokine CD4 T cell producers were enhanced by F1 and F3 vaccines. Collectively, our multifunctional analysis disclosed that immunotherapeutic protection improved as the CD4 responses progressed from 1+ to 2+, in the case of the F1 and F3 vaccines, and as the CD8 responses changed qualitatively from 1+ to 3+, mainly in the case of the F1 vaccine, providing new correlates of immunotherapeutic protection against cutaneous leishmaniasis in mice based on T-helper TH1 and CD8+ mediated immune responses

  6. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.

    PubMed

    Parasuram, Ramya; Mills, Caitlyn L; Wang, Zhouxi; Somasundaram, Saroja; Beuning, Penny J; Ondrechen, Mary Jo

    2016-01-15

    Thousands of protein structures of unknown or uncertain function have been reported as a result of high-throughput structure determination techniques developed by Structural Genomics (SG) projects. However, many of the putative functional assignments of these SG proteins in the Protein Data Bank (PDB) are incorrect. While high-throughput biochemical screening techniques have provided valuable functional information for limited sets of SG proteins, the biochemical functions for most SG proteins are still unknown or uncertain. Therefore, computational methods for the reliable prediction of protein function from structure can add tremendous value to the existing SG data. In this article, we show how computational methods may be used to predict the function of SG proteins, using examples from the six-hairpin glycosidase (6-HG) and the concanavalin A-like lectin/glucanase (CAL/G) superfamilies. Using a set of predicted functional residues, obtained from computed electrostatic and chemical properties for each protein structure, it is shown that these superfamilies may be sorted into functional families according to biochemical function. Within these superfamilies, a total of 18 SG proteins were analyzed according to their predicted, local functional sites: 13 from the 6-HG superfamily, five from the CAL/G superfamily. Within the 6-HG superfamily, an uncharacterized protein BACOVA_03626 from Bacteroides ovatus (PDB 3ON6) and a hypothetical protein BT3781 from Bacteroides thetaiotaomicron (PDB 2P0V) are shown to have very strong active site matches with exo-α-1,6-mannosidases, thus likely possessing this function. Also in this superfamily, it is shown that protein BH0842, a putative glycoside hydrolase from Bacillus halodurans (PDB 2RDY), has a predicted active site that matches well with a known α-L-galactosidase. In the CAL/G superfamily, an uncharacterized glycosyl hydrolase family 16 protein from Mycobacterium smegmatis (PDB 3RQ0) is shown to have local structural

  7. Cell Surface Glycoside Hydrolases of Streptococcus gordonii Promote Growth in Saliva

    PubMed Central

    Zhou, Yuan; Zhang, Luxia; Shah, Nehal; Palmer, Robert J.; Cisar, John O.

    2016-01-01

    ABSTRACT The growth of the oral commensal Streptococcus gordonii in saliva may depend on a number of glycoside hydrolases (GHs), including three cell wall-anchored proteins that are homologs of pneumococcal β-galactosidase (BgaA), β-N-acetylglucosaminidase (StrH), and endo-β-N-acetylglucosaminidase D (EndoD). In the present study, we introduced unmarked in-frame deletions into the corresponding genes of S. gordonii DL1, verified the presence (or absence) of the encoded proteins on the resulting mutant strains, and compared these strains with wild-type strain DL1 for growth and glycan foraging in saliva. The overnight growth of wild-type DL1 was reduced 3- to 10-fold by the deletion of any one or two genes and approximately 20-fold by the deletion of all three genes. The only notable change in the salivary proteome associated with this reduction of growth was a downward shift in the apparent molecular masses of basic proline-rich glycoproteins (PRG), which was accompanied by the loss of lectin binding sites for galactose-specific Erythrina cristagalli agglutinin (ECA) and mannose-specific Galanthus nivalis agglutinin (GNA). The binding of ECA to PRG was also abolished in saliva cultures of mutants that expressed cell surface BgaA alone or together with either StrH or EndoD. However, the subsequent loss of GNA binding was seen only in saliva cocultures of different mutants that together expressed all three cell surface GHs. The findings indicate that the growth of S. gordonii DL1 in saliva depends to a significant extent on the sequential actions of first BgaA and then StrH and EndoD on N-linked glycans of PRG. IMPORTANCE The ability of oral bacteria to grow on salivary glycoproteins is critical for dental plaque biofilm development. Little is known, however, about how specific salivary components are attacked and utilized by different members of the biofilm community, such as Streptococcus gordonii. Streptococcus gordonii DL1 has three cell wall

  8. Sph3 Is a Glycoside Hydrolase Required for the Biosynthesis of Galactosaminogalactan in Aspergillus fumigatus*♦

    PubMed Central

    Bamford, Natalie C.; Snarr, Brendan D.; Gravelat, Fabrice N.; Little, Dustin J.; Lee, Mark J.; Zacharias, Caitlin A.; Chabot, Josée C.; Geller, Alexander M.; Baptista, Stefanie D.; Baker, Perrin; Robinson, Howard; Howell, P. Lynne; Sheppard, Donald C.

    2015-01-01

    Aspergillus fumigatus is the most virulent species within the Aspergillus genus and causes invasive infections with high mortality rates. The exopolysaccharide galactosaminogalactan (GAG) contributes to the virulence of A. fumigatus. A co-regulated five-gene cluster has been identified and proposed to encode the proteins required for GAG biosynthesis. One of these genes, sph3, is predicted to encode a protein belonging to the spherulin 4 family, a protein family with no known function. Construction of an sph3-deficient mutant demonstrated that the gene is necessary for GAG production. To determine the role of Sph3 in GAG biosynthesis, we determined the structure of Aspergillus clavatus Sph3 to 1.25 Å. The structure revealed a (β/α)8 fold, with similarities to glycoside hydrolase families 18, 27, and 84. Recombinant Sph3 displayed hydrolytic activity against both purified and cell wall-associated GAG. Structural and sequence alignments identified three conserved acidic residues, Asp-166, Glu-167, and Glu-222, that are located within the putative active site groove. In vitro and in vivo mutagenesis analysis demonstrated that all three residues are important for activity. Variants of Asp-166 yielded the greatest decrease in activity suggesting a role in catalysis. This work shows that Sph3 is a glycoside hydrolase essential for GAG production and defines a new glycoside hydrolase family, GH135. PMID:26342082

  9. Investigation of the Germination of Barley and Wheat Grains with a Design of Experiments for the Production of Hydrolases.

    PubMed

    Kranz, Bertolt; Koch, Milena; Schapfl, Matthias; Fischer, Lutz

    2015-06-01

    The production of hydrolases from cereals has been examined in order to investigate food-derived enzymes as an alternative source to microbial enzymes for the use in food processes. For that, the influence of temperature on the pretreatment, imbibition and germination of barley and wheat grains was determined by measuring the β-glucosidase, β-galactosidase and lipase activities using a design of experiments. The evaluation of the statistical model showed an increase of the β-glucosidase activity with low imbibition and low germination temperature for barley grains and low imbibition and high germination temperature for wheat grains. The maximum β-glucosidase activity in wheat extracts was (585±151) nkat per g of dry mass (dm), while in barley extracts it was (109±15) nkat per g of dm. The maximum β-galactosidase activities in barley and wheat extracts were (34±12) and (63±23) nkat per g of dm, respectively. The maximum lipase activities of (6.7±0.1) and (4.6±4.4) nkat per g of dm in barley and wheat extracts, respectively, were rather low compared to the glycosidase activities. The extracts were also tested for other hydrolase activities (e.g. peptidase and α-amylase activities). The insights obtained enable the basis for the potential use of cereal hydrolases in food processing, which might be attractive to consumers.

  10. First Glycoside Hydrolase Family 2 Enzymes from Thermus antranikianii and Thermus brockianus with β-Glucosidase Activity

    PubMed Central

    Schröder, Carola; Blank, Saskia; Antranikian, Garabed

    2015-01-01

    Two glycoside hydrolase encoding genes (tagh2 and tbgh2) were identified from different Thermus species using functional screening. Based on amino acid similarities, the enzymes were predicted to belong to glycoside hydrolase (GH) family 2. Surprisingly, both enzymes (TaGH2 and TbGH2) showed twofold higher activities for the hydrolysis of nitrophenol-linked β-D-glucopyranoside than of -galactopyranoside. Specific activities of 3,966 U/mg for TaGH2 and 660 U/mg for TbGH2 were observed. In accordance, Km values for both enzymes were significantly lower when β-D-glucopyranoside was used as substrate. Furthermore, TaGH2 was able to hydrolyze cellobiose. TaGH2 and TbGH2 exhibited highest activity at 95 and 90°C at pH 6.5. Both enzymes were extremely thermostable and showed thermal activation up to 250% relative activity at temperatures of 50 and 60°C. Especially, TaGH2 displayed high tolerance toward numerous metal ions (Cu2+, Co2+, Zn2+), which are known as glycoside hydrolase inhibitors. In this study, the first thermoactive GH family 2 enzymes with β-glucosidase activity have been identified and characterized. The hydrolysis of cellobiose is a unique property of TaGH2 when compared to other enzymes of GH family 2. Our work contributes to a broader knowledge of substrate specificities in GH family 2. PMID:26090361

  11. Investigation of the Germination of Barley and Wheat Grains with a Design of Experiments for the Production of Hydrolases

    PubMed Central

    Kranz, Bertolt; Koch, Milena; Schapfl, Matthias

    2015-01-01

    Summary The production of hydrolases from cereals has been examined in order to investigate food-derived enzymes as an alternative source to microbial enzymes for the use in food processes. For that, the influence of temperature on the pretreatment, imbibition and germination of barley and wheat grains was determined by measuring the β-glucosidase, β-galactosidase and lipase activities using a design of experiments. The evaluation of the statistical model showed an increase of the β-glucosidase activity with low imbibition and low germination temperature for barley grains and low imbibition and high germination temperature for wheat grains. The maximum β-glucosidase activity in wheat extracts was (585±151) nkat per g of dry mass (dm), while in barley extracts it was (109±15) nkat per g of dm. The maximum β-galactosidase activities in barley and wheat extracts were (34±12) and (63±23) nkat per g of dm, respectively. The maximum lipase activities of (6.7±0.1) and (4.6±4.4) nkat per g of dm in barley and wheat extracts, respectively, were rather low compared to the glycosidase activities. The extracts were also tested for other hydrolase activities (e.g. peptidase and α-amylase activities). The insights obtained enable the basis for the potential use of cereal hydrolases in food processing, which might be attractive to consumers. PMID:27904341

  12. Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester

    PubMed Central

    Wang, Meng; Lai, Guo-Li; Nie, Yong; Geng, Shuang; Liu, Liming; Zhu, Baoli; Shi, Zhongping; Wu, Xiao-Lei

    2015-01-01

    In biofuel production from lignocellulose, low thermostability and product inhibition strongly restrict the enzyme activities and production process. Application of multiple thermostable glycoside hydrolases, forming an enzyme “cocktail”, can result in a synergistic action and therefore improve production efficiency and reduce operational costs. Therefore, increasing enzyme thermostabilities and compatibility are important for the biofuel industry. In this study, we reported the screening, cloning and biochemical characterization of four novel thermostable lignocellulose hydrolases from a metagenomic library of a long-term dry thermophilic methanogenic digester community, which were highly compatible with optimal conditions and specific activities. The optimal temperatures of the four enzymes, β-xylosidase, xylanase, β-glucosidase, and cellulase ranged from 60 to 75°C, and over 80% residual activities were observed after 2 h incubation at 50°C. Mixtures of these hydrolases retained high residual synergistic activities after incubation with cellulose, xylan, and steam-exploded corncob at 50°C for 72 h. In addition, about 55% dry weight of steam-exploded corncob was hydrolyzed to glucose and xylose by the synergistic action of the four enzymes at 50°C for 48 h. This work suggested that since different enzymes from a same ecosystem could be more compatible, screening enzymes from a long-term enriching community could be a favorable strategy. PMID:26052323

  13. Application of cyanide hydrolase from Klebsiella sp. in a biosensor system for the detection of low-level cyanide.

    PubMed

    Mak, Karen K W; Law, Alex W C; Tokuda, Shinsuke; Yanase, Hideshi; Renneberg, Reinhard

    2005-06-01

    A partially purified preparation of cyanide hydrolase (cyanidase) from a bacterium, Klebsiella sp., was applied as a biocatalyst in a biosensor system for low-level cyanide detection. In the biosensor system cyanide hydrolase converts cyanide into formate and ammonia. The formate produced in the cyanide degradation was detected with a formate biosensor, in which formate dehydrogenase (FDH; E.C. 1.2.1.2) was co-immobilized with salicylate hydroxylase (SHL; E.C. 1.14.13.1) on a Clark electrode. The principle of the formate sensor is that FDH converts formate into carbon dioxide using beta-nicotinamide adenine dinucleotide hydrate (NAD(+)). The corresponding NADH produced is then oxidized to NAD(+) by SHL using salicylate and oxygen. The oxygen consumption is monitored with the Clark electrode. The optimum buffer pH and temperature for the enzymatic hydrolysis of potassium cyanide were studied. The preliminary experiments including the pretreatment of cyanide with cyanide hydrolase and then detection by the formate sensor gave a detection limit at 7.3 micromol l(-1) cyanide. The linear range of the calibration curve was between 30 micromol l(-1) and 300 micromol l(-1) cyanide.

  14. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration.

    PubMed

    Bilguvar, Kaya; Tyagi, Navneet K; Ozkara, Cigdem; Tuysuz, Beyhan; Bakircioglu, Mehmet; Choi, Murim; Delil, Sakir; Caglayan, Ahmet O; Baranoski, Jacob F; Erturk, Ozdem; Yalcinkaya, Cengiz; Karacorlu, Murat; Dincer, Alp; Johnson, Michele H; Mane, Shrikant; Chandra, Sreeganga S; Louvi, Angeliki; Boggon, Titus J; Lifton, Richard P; Horwich, Arthur L; Gunel, Murat

    2013-02-26

    Ubiquitin C-terminal hydrolase-L1 (UCHL1), a neuron-specific de-ubiquitinating enzyme, is one of the most abundant proteins in the brain. We describe three siblings from a consanguineous union with a previously unreported early-onset progressive neurodegenerative syndrome featuring childhood onset blindness, cerebellar ataxia, nystagmus, dorsal column dysfuction, and spasticity with upper motor neuron dysfunction. Through homozygosity mapping of the affected individuals followed by whole-exome sequencing of the index case, we identified a previously undescribed homozygous missense mutation within the ubiquitin binding domain of UCHL1 (UCHL1(GLU7ALA)), shared by all affected subjects. As demonstrated by isothermal titration calorimetry, purified UCHL1(GLU7ALA), compared with WT, exhibited at least sevenfold reduced affinity for ubiquitin. In vitro, the mutation led to a near complete loss of UCHL1 hydrolase activity. The GLU7ALA variant is predicted to interfere with the substrate binding by restricting the proper positioning of the substrate for tunneling underneath the cross-over loop spanning the catalytic cleft of UCHL1. This interference with substrate binding, combined with near complete loss of hydrolase activity, resulted in a >100-fold reduction in the efficiency of UCHL1(GLU7ALA) relative to WT. These findings demonstrate a broad requirement of UCHL1 in the maintenance of the nervous system.

  15. Inhibition of xenobiotic-degrading hydrolases by organophosphinates. Annual progress report No. 1 Jul 82-1 Jul 83

    SciTech Connect

    Brown, T.M.; Zimmerman, J.K.; Bryson, P.K.; Grothusen, J.R.

    1983-07-01

    Organophosphinate pretreatment agents for chemical warfare defense inhibited carboxylester hydrolase from porcine liver and from rabbit liver. Recovery of rabbit liver monomeric carboxylester hydrolase to at least 30% of its initial activity was observed 48 hr. after inhibition by certain 4-nitrophenyl alkyl(phenyl)phosphinates and analogues. When ranked according to the initial rates at which their phosphinylated enzymes recovered, they were methyl(phenyl)>methyl(2-thienyl)>methyl(2-furyl)>ethyl(phenyl)>di-2-thienyl>diphenyl. Recovery was less than 20% in 96 hr. following inhibition by methyl(naphthyl),di-2-furyl, isopropyl(phenyl), dichloromethyl(phenyl), and bis chloromethyl substituted analogues. High performance liquid chromatography on silica using 10% to 20% 2-propanol in hexane as mobile phase resulted in satisfactory chromatograms for all except the most polar phosphinates. This method was useful in determining purity and decomposition of the compounds. Arylester hydrolase was purified 30-fold from rabbit serum by a sequence of polyethylene glycol fractionation, ion exchange chromatography, ammonium sulfate fractionation, molecular exclusion chromatography and pseudo-affinity chromatography. The partially purified enzyme was activated by 2.5 mM divalent calcium.

  16. Ingestion of the epoxide hydrolase inhibitor AUDA modulates immune responses of the mosquito, Culex quinquefasciatus during blood feeding.

    PubMed

    Xu, Jiawen; Morisseau, Christophe; Yang, Jun; Lee, Kin Sing Stephen; Kamita, Shizuo G; Hammock, Bruce D

    2016-09-01

    Epoxide hydrolases (EHs) are enzymes that play roles in metabolizing xenobiotic epoxides from the environment, and in regulating lipid signaling molecules, such as juvenile hormones in insects and epoxy fatty acids in mammals. In this study we fed mosquitoes with an epoxide hydrolase inhibitor AUDA during artificial blood feeding, and we found the inhibitor increased the concentration of epoxy fatty acids in the midgut of female mosquitoes. We also observed ingestion of AUDA triggered early expression of defensin A, cecropin A and cecropin B2 at 6 h after blood feeding. The expression of cecropin B1 and gambicin were not changed more than two fold compared to controls. The changes in gene expression were transient possibly because more than 99% of the inhibitor was metabolized or excreted at 42 h after being ingested. The ingestion of AUDA also affected the growth of bacteria colonizing in the midgut, but did not affect mosquito longevity, fecundity and fertility in our laboratory conditions. When spiked into the blood, EpOMEs and DiHOMEs were as effective as the inhibitor AUDA in reducing the bacterial load in the midgut, while EETs rescued the effects of AUDA. Our data suggest that epoxy fatty acids from host blood are immune response regulators metabolized by epoxide hydrolases in the midgut of female mosquitoes, inhibition of which causes transient changes in immune responses, and affects growth of microbes in the midgut.

  17. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    SciTech Connect

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    ABSTRACT

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  18. A quantitation of the factors which affect the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) on lactose.

    PubMed

    Huber, R E; Kurz, G; Wallenfels, K

    1976-05-04

    A study was implemented to quantitate the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) with lactose as the substrate and to investigate various factors which affect these activities. At low lactose concentrations the rate of galactose production was equal to the rate of glucose production. The rate of galactose production relative to glucose, however, dropped dramatically at lactose concentrations higher than 0.05 M and production of trisaccharides and tetrasaccharides began (galactose/glucose ratios of about 2:1 and 3:1, respectively, were found for these two types of oligosaccharides). At least five different trissacharides were formed and their patterns of formation showed that they probably utilized both lactose and allolactose as galactosyl acceptors. Allolactose was produced in amounts proportional to glucose at all lactose concentrations (ratios of allolactose/glucose were about 0.88). Analyses of various data, including a reaction analyzed at very early times, showed that the major means of production of allolactose (and the only means initially) was the direct enzymatic transfer of galactose from the 4 position to the 6 position of the glucose moiety of lactose without prior release of glucose from the enzyme. It was shown, however, that allolactose could also be formed in significant quantities by the transfer of galactose to the 6 position of free glucose, and also by hydrolysis of preformed trisaccharide. A mechanism which fits the initial velocity data was proposed in which the steps involving the formation of an enzyme-gallactose-glucose complex, the formation and breakage of allolactose on the enzyme, and the release of glucose all seem to be of roughly equal magnitude and rate determining. Various factors affected the amounts of transgalactosylase and hydrolase activities occurring. At high pH values (greater than 7.8) the transgalactosylase/hydrolyase activity ratio increased dramatically while it decreased at low p

  19. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    DOE PAGES

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; ...

    2015-09-15

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting ofmore » two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show

  20. Insights into substrate specificity of NlpC/P60 cell wall hydrolases containing bacterial SH3 domains

    SciTech Connect

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu -Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc -André; Deacon, Ashley M.; Wilson, Ian A.

    2015-09-15

    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60

  1. Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin

    NASA Astrophysics Data System (ADS)

    Igarashi, Kiyohiko; Uchihashi, Takayuki; Uchiyama, Taku; Sugimoto, Hayuki; Wada, Masahisa; Suzuki, Kazushi; Sakuda, Shohei; Ando, Toshio; Watanabe, Takeshi; Samejima, Masahiro

    2014-06-01

    Processivity refers to the ability of synthesizing, modifying and degrading enzymes to catalyse multiple successive cycles of reaction with polymeric substrates without disengaging from the substrates. Since biomass polysaccharides, such as chitin and cellulose, often form recalcitrant crystalline regions, their degradation is highly dependent on the processivity of degrading enzymes. Here we employ high-speed atomic force microscopy to directly visualize the movement of two processive glycoside hydrolase family 18 chitinases (ChiA and ChiB) from the chitinolytic bacterium Serratia marcescens on crystalline β-chitin. The half-life of processive movement and the velocity of ChiA are larger than those of ChiB, suggesting that asymmetric subsite architecture determines both the direction and the magnitude of processive degradation of crystalline polysaccharides. The directions of processive movements of ChiA and ChiB are observed to be opposite. The molecular mechanism of the two-way traffic is discussed, including a comparison with the processive cellobiohydrolases of the cellulolytic system.

  2. Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536

    PubMed Central

    Grill, J.; Schneider, F.; Crociani, J.; Ballongue, J.

    1995-01-01

    Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis was ca. 40,000 Da. The intact enzyme had a relative molecular weight of ca. 250,000 as determined by gel filtration chromatography, suggesting that the native BSH of B. longum is probably a hexamer. The purified enzyme is active towards both glycine and taurine conjugates of cholate, deoxycholate, and chenodeoxycholate. The pH optimum is in the range of 5.5 to 6.5. A loss of BSH activity is observed after incubation at temperatures higher than 42(deg)C; at 60(deg)C, 50% of the BSH activity is lost. The importance of free sulfhydryl groups at the enzyme active center is suggested. For B. longum BB536, no significant difference in the initial rate of deconjugation and enzymatic efficiency appears between bile salts. The enzymatic efficiency is higher for B. longum BB536 than for other genera. In this paper, a new method which permits a display of BSH activity directly on polyacrylamide gels is described; this method confirms the molecular weight obtained for B. longum BB536 BSH. PMID:16535071

  3. Development of fluorescent substrates for microsomal epoxide hydrolase and application to inhibition studies

    PubMed Central

    Morisseau, Christophe; Bernay, Maud; Escaich, Aurélie; Sanborn, James R.; Lango, Jozsef; Hammock, Bruce D.

    2011-01-01

    The microsomal epoxide hydrolase (mEH) plays a significant role in the metabolism of numerous xenobiotics. Additionally, it has a potential role in sexual development and bile acid transport, and it is associated with a number of diseases, such as emphysema, spontaneous abortion, eclampsia and several forms of cancer. Toward developing chemical tools to study mEH biological role, we designed and synthesized a series of absorbent and fluorescent substrates. The highest activity for both rat and human mEH was obtained with the fluorescent substrate cyano(6-methoxy-naphthalen-2-yl)methyl glycidyl carbonate (11). An in vitro inhibition assay using this substrate ranked a series of known inhibitors similarly to the assay that used radioactive cis-stilbene oxide, but with a greater discrimination between inhibitors. These results demonstrate that the new fluorescence-based assay is a useful tool for the discovery of structure-activity relationships among mEH inhibitors. Further, this substrate could also be used for the screening chemical library with high accuracy and with a Z' value about 0.7. This new assay permits a significant decrease in labor and cost as well as offering the advantage of a continuous readout. However, it should not be used with crude enzyme preparations due to interfering reactions. PMID:21371418

  4. Destructuring plant biomass: Focus on fungal and extremophilic cell wall hydrolases

    PubMed Central

    Guerriero, Gea; Hausman, Jean-Francois; Strauss, Joseph; Ertan, Haluk; Siddiqui, Khawar Sohail

    2016-01-01

    The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocalli-mastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification. PMID:25804821

  5. Molecular modeling studies on nucleoside hydrolase from the biological warfare agent Brucella suis.

    PubMed

    Mancini, Daiana T; Matos, Karina S; da Cunha, Elaine F F; Assis, Tamiris M; Guimarães, Ana P; França, Tanos C C; Ramalho, Teodorico C

    2012-01-01

    Brucella suis is a dangerous biological warfare agent already used for military purposes. This bacteria cause brucellosis, a zoonosis highly infective and difficult to fight. An important selective target for chemotherapy against this disease is nucleoside hydrolase (NH), an enzyme still not found in mammals. We present here the first three-dimensional structure of B. suis NH (BsNH) and propose this enzyme as a molecular target to the drug design in the fight against brucellosis. In addition, we performed molecular docking studies, aiming to analyze the three-dimensional positioning of nine known inhibitors of Chritidia fasciculata NH (CfNH) in the active sites of BsNH and CfNH. We also analyzed the main interactions of some of these compounds inside the active site of BsNH and the relevant factors to biological activity. These results, together with further molecular dynamics (MD) simulations, pointed out to the most promising compound as lead for the design of potential inhibitors of BsNH. Most of the docking and MD results corroborated to each other and the docking results also suggested a good correlation with experimental data.

  6. Abnormal Hypermethylation at Imprinting Control Regions in Patients with S-Adenosylhomocysteine Hydrolase (AHCY) Deficiency

    PubMed Central

    Motzek, Antje; Knežević, Jelena; Switzeny, Olivier J.; Cooper, Alexis; Barić, Ivo; Beluzić, Robert; Strauss, Kevin A.; Puffenberger, Erik G.; Vugrek, Oliver; Zechner, Ulrich

    2016-01-01

    S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status. PMID:26974671

  7. Balancing the stability and the catalytic specificities of OP hydrolases with enhanced V-agent activities.

    PubMed

    Reeves, T E; Wales, M E; Grimsley, J K; Li, P; Cerasoli, D M; Wild, J R

    2008-06-01

    Rational site-directed mutagenesis and biophysical analyses have been used to explore the thermodynamic stability and catalytic capabilities of organophosphorus hydrolase (OPH) and its genetically modified variants. There are clear trade-offs in the stability of modifications that enhance catalytic activities. For example, the H254R/H257L variant has higher turnover numbers for the chemical warfare agents VX (144 versus 14 s(-1) for the native enzyme (wild type) and VR (Russian VX, 465 versus 12 s(-1) for wild type). These increases are accompanied by a loss in stability in which the total Gibb's free energy for unfolding is 19.6 kcal/mol, which is 5.7 kcal/mol less than that of the wild-type enzyme. X-ray crystallographic studies support biophysical data that suggest amino acid residues near the active site contribute to the chemical and thermal stability through hydrophobic and cation-pi interactions. The cation-pi interactions appear to contribute an additional 7 kcal/mol to the overall global stability of the enzyme. Using rational design, it has been possible to make amino acid changes in this region that restored the stability, yet maintained effective V-agent activities, with turnover numbers of 68 and 36 s(-1) for VX and VR, respectively. This study describes the first rationally designed, stability/activity balance for an OPH enzyme with a legitimate V-agent activity, and its crystal structure.

  8. Molecular characterization of a family 5 glycoside hydrolase suggests an induced-fit enzymatic mechanism

    NASA Astrophysics Data System (ADS)

    Liberato, Marcelo V.; Silveira, Rodrigo L.; Prates, Érica T.; de Araujo, Evandro A.; Pellegrini, Vanessa O. A.; Camilo, Cesar M.; Kadowaki, Marco A.; Neto, Mario De O.; Popov, Alexander; Skaf, Munir S.; Polikarpov, Igor

    2016-04-01

    Glycoside hydrolases (GHs) play fundamental roles in the decomposition of lignocellulosic biomaterials. Here, we report the full-length structure of a cellulase from Bacillus licheniformis (BlCel5B), a member of the GH5 subfamily 4 that is entirely dependent on its two ancillary modules (Ig-like module and CBM46) for catalytic activity. Using X-ray crystallography, small-angle X-ray scattering and molecular dynamics simulations, we propose that the C-terminal CBM46 caps the distal N-terminal catalytic domain (CD) to establish a fully functional active site via a combination of large-scale multidomain conformational selection and induced-fit mechanisms. The Ig-like module is pivoting the packing and unpacking motions of CBM46 relative to CD in the assembly of the binding subsite. This is the first example of a multidomain GH relying on large amplitude motions of the CBM46 for assembly of the catalytically competent form of the enzyme.

  9. Abnormal Hypermethylation at Imprinting Control Regions in Patients with S-Adenosylhomocysteine Hydrolase (AHCY) Deficiency.

    PubMed

    Motzek, Antje; Knežević, Jelena; Switzeny, Olivier J; Cooper, Alexis; Barić, Ivo; Beluzić, Robert; Strauss, Kevin A; Puffenberger, Erik G; Mudd, S Harvey; Vugrek, Oliver; Zechner, Ulrich

    2016-01-01

    S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status.

  10. Cloning and characterization of three epoxide hydrolases from a marine bacterium, Erythrobacter litoralis HTCC2594.

    PubMed

    Woo, Jung-Hee; Hwang, Young-Ok; Kang, Sung Gyun; Lee, Hyun Sook; Cho, Jang-Cheon; Kim, Sang-Jin

    2007-08-01

    Previously, we reported that ten strains belonging to Erythrobacter showed epoxide hydrolase (EHase) activities toward various epoxide substrates. Three genes encoding putative EHases were identified by analyzing open reading frames of Erythrobacter litoralis HTCC2594. Despite low similarities to reported EHases, the phylogenetic analysis of the three genes showed that eeh1 was similar to microsomal EHase, while eeh2 and eeh3 could be grouped with soluble EHases. The three EHase genes were cloned, and the recombinant proteins (rEEH1, rEEH2, and rEEH3) were purified. The functionality of purified proteins was proved by hydrolytic activities toward styrene oxide. EEH1 preferentially hydrolyzed (R)-styrene oxide, whereas EEH3 preferred to hydrolyze (S)-styrene oxide, representing enantioselective hydrolysis of styrene oxide. On the other hand, EEH2 could hydrolyze (R)- and (S)-styrene oxide at an equal rate. The optimal pH and temperature for the EHases occurred largely at neutral pHs and 40-55 degrees C. The substrate selectivity of rEEH1, rEEH2, and rEEH3 toward various epoxide substrates were also investigated. This is the first representation that a strict marine microorganism possessed three EHases with different enantioselectivity toward styrene oxide.

  11. Molecular cloning of glycoside hydrolase family 45 cellulase genes from brackish water clam Corbicula japonica.

    PubMed

    Sakamoto, Kentaro; Toyohara, Haruhiko

    2009-04-01

    We previously reported endogenous Glycoside Hydrolase Family (GHF) 9 beta-1,4-glucanase gene, CjCel9A, from common Japanese freshwater clam Corbicula japonica. Here we identified another endogenous beta-1,4-glucanase genes which belong to GHF45 (CjCel45A, CjCel45B). Both genes encode ORF of 627 bp corresponding to 208 amino acids. CjCel45A and CjCel45B are different in 5' and 3'-untranslated regions and six nucleotides in the ORF. CjCEL45 has only one GHF45 catalytic domain without any carbohydrate binding modules as is the case with other molluskan GHF45 enzymes. Phylogenetic analysis and genomic structure of CjCel45 gene implies that this gene is likely to be acquired from fungi by common ancestor of mollusks. Reverse transcription (RT)-PCR analysis and in situ hybridization revealed that CjCel45A is likely to be expressed in the secretory cells in the digestive gland, suggesting that this cellulase is produced in the same site as CjCEL9A. CjCEL45A was successfully expressed in E. coli cells and zymographic analysis of the recombinant CjCEL45A showed that CjCEL45A is a functional beta-1,4-glucanase. The finding of multiple cellulase genes in C. japonica strongly supports our hypothesis that this species function as a cellulose decomposer in estuarine environments.

  12. Synthesis of Phenoxyacyl-Ethanolamides and Their Effects on Fatty Acid Amide Hydrolase Activity*

    PubMed Central

    Faure, Lionel; Nagarajan, Subbiah; Hwang, Hyeondo; Montgomery, Christa L.; Khan, Bibi Rafeiza; John, George; Koulen, Peter; Blancaflor, Elison B.; Chapman, Kent D.

    2014-01-01

    N-Acylethanolamines (NAEs) are involved in numerous biological activities in plant and animal systems. The metabolism of these lipids by fatty acid amide hydrolase (FAAH) is a key regulatory point in NAE signaling activity. Several active site-directed inhibitors of FAAH have been identified, but few compounds have been described that enhance FAAH activity. Here we synthesized two sets of phenoxyacyl-ethanolamides from natural products, 3-n-pentadecylphenolethanolamide and cardanolethanolamide, with structural similarity to NAEs and characterized their effects on the hydrolytic activity of FAAH. Both compounds increased the apparent Vmax of recombinant FAAH proteins from both plant (Arabidopsis) and mammalian (Rattus) sources. These NAE-like compounds appeared to act by reducing the negative feedback regulation of FAAH activity by free ethanolamine. Both compounds added to seedlings relieved, in part, the negative growth effects of exogenous NAE12:0. Cardanolethanolamide reduced neuronal viability and exacerbated oxidative stress-mediated cell death in primary cultured neurons at nanomolar concentrations. This was reversed by FAAH inhibitors or exogenous NAE substrate. Collectively, our data suggest that these phenoxyacyl-ethanolamides act to enhance the activity of FAAH and may stimulate the turnover of NAEs in vivo. Hence, these compounds might be useful pharmacological tools for manipulating FAAH-mediated regulation of NAE signaling in plants or animals. PMID:24558037

  13. Analysis of Domain Architecture and Phylogenetics of Family 2 Glycoside Hydrolases (GH2).

    PubMed

    Talens-Perales, David; Górska, Anna; Huson, Daniel H; Polaina, Julio; Marín-Navarro, Julia

    2016-01-01

    In this work we report a detailed analysis of the topology and phylogenetics of family 2 glycoside hydrolases (GH2). We distinguish five topologies or domain architectures based on the presence and distribution of protein domains defined in Pfam and Interpro databases. All of them share a central TIM barrel (catalytic module) with two β-sandwich domains (non-catalytic) at the N-terminal end, but differ in the occurrence and nature of additional non-catalytic modules at the C-terminal region. Phylogenetic analysis was based on the sequence of the Pfam Glyco_hydro_2_C catalytic module present in most GH2 proteins. Our results led us to propose a model in which evolutionary diversity of GH2 enzymes is driven by the addition of different non-catalytic domains at the C-terminal region. This model accounts for the divergence of β-galactosidases from β-glucuronidases, the diversification of β-galactosidases with different transglycosylation specificities, and the emergence of bicistronic β-galactosidases. This study also allows the identification of groups of functionally uncharacterized protein sequences with potential biotechnological interest.

  14. Multiple forms of bile salt hydrolase from Lactobacillus sp. strain 100-100.

    PubMed Central

    Lundeen, S G; Savage, D C

    1992-01-01

    Four isozymes of bile salt hydrolase (BSH) have been purified from the cytosol of cells of Lactobacillus sp. strain 100-100. The four proteins were designated BSH A, B, C, and D. They eluted from anion-exchange high-pressure liquid chromatography columns at 0.15, 0.18, 0.21, and 0.25 M NaCl, respectively. They are catalytically similar, except that the Vmax of BSH D is about 10-fold lower than those of the other three isozymes. All four proteins consist of one or two polypeptides. The peptides have molecular weights of 42,000 and 38,000 and are designated alpha and beta, respectively. The approximate native molecular weights of BSH A, B, C, and D are 115,000, 105,000, 95,000, and 80,000, respectively. The native proteins are probably trimers; the four isozymes are the array of possible subunit combinations alpha 3, alpha 2 beta 1, alpha 1 beta 2, and beta 3 for A, B, C, and D, respectively. The two subunits are antigenically distinct. Polyclonal antibodies raised against BSH A (all alpha peptide) react in Western blots (immunoblots) only with proteins containing the alpha peptide; such antibodies raised against BSH D (all beta peptide) react only with proteins containing the beta peptide. The amino acid compositions of the two peptides differ. This is the first report of a bacterium that makes four BSH isozymes. Images PMID:1429446

  15. In vitro metabolism of the mammalian soluble epoxide hydrolase inhibitor, 1-cyclohexyl-3-dodecyl-urea.

    PubMed

    Watanabe, Takaho; Morisseau, Christophe; Newman, John W; Hammock, Bruce D

    2003-07-01

    The metabolism of the soluble epoxide hydrolase (sEH) inhibitor, 1-cyclohexyl-3-dodecyl-urea (CDU), was studied in rat and human hepatic microsomes. The microsomal metabolism of CDU enhanced sEH inhibition potency of the reaction mixture and resulted in the formation of several metabolites. During the course of this study, a sensitive and specific high-performance liquid chromatography with tandem mass spectrometry analytical method was developed to investigate simultaneously the production of these metabolites. In both rat and human hepatic microsomes, CDU was ultimately transformed into the corresponding omega-carboxylate; however, the rodent tissue appeared to perform this transformation more rapidly. After a 60-min incubation in rat hepatic microsomes, the percentage of residual CDU, the omega-carboxylate, and the intermediary omega-hydroxyl were about 20%, 20%, and 50%, respectively. Carbon monoxide inhibited the metabolism of CDU by rat hepatic microsomes, suggesting that the initial step is catalyzed by cytochrome P450. Further metabolism was enhanced by the addition of NAD, suggesting that dehydrogenases are associated with intermediate metabolic steps. Regardless, the ultimate product of microsomal metabolism, 12-(3-cyclohexyl-ureido)-dodecanoic acid, is also an excellent sEH inhibitor with several hundred-fold higher solubility, supporting the hypothesis that CDU has prodrug characteristics. These findings will facilitate the rational design and optimization of sEH inhibitors with better physical properties and improved metabolic stability.

  16. The soluble epoxide hydrolase determines cholesterol homeostasis by regulating AMPK and SREBP activity.

    PubMed

    Mangels, Nicole; Awwad, Khader; Wettenmann, Annika; Dos Santos, Laila Romagueira Bichara; Frömel, Timo; Fleming, Ingrid

    2016-09-01

    Inhibition or deletion of the soluble epoxide hydrolase (sEH) has been linked to reduced cholesterol and protection against atherosclerosis. This study set out to identify sEH substrate(s) or product(s), altered in livers from sEH(-/-) mice that contribute to these beneficial effects. In livers and isolated hepatocytes, deletion of sEH decreased expression of HMG CoA reductase, fatty acid synthase and low density lipoprotein receptor. Sterol regulatory element binding proteins (SREBPs) regulate the expression of all three enzymes and SREBP activation was attenuated in the absence of sEH. The effect was attributed to the AMPK-activated protein kinase (AMPK) which was activated in the absence of sEH. Livers from wild-type versus sEH(-/-) littermates contained significantly higher levels of the sEH substrate 12,13-epoxyoctadecenoic acid, which elicited AMPK activation, while the corresponding sEH product was inactive. Thus, AMPK activation and subsequent inhibition of SREBP can account for the altered expression of lipid metabolizing enzymes in sEH(-/-) mice.

  17. Inhibition of fatty acid amide hydrolase by kaempferol and related naturally occurring flavonoids

    PubMed Central

    Thors, L; Belghiti, M; Fowler, C J

    2008-01-01

    Background and purpose: Recent studies have demonstrated that the naturally occurring isoflavone compounds genistein and daidzein inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) in the low micromolar concentration range. The purpose of the present study was to determine whether this property is shared by flavonoids. Experimental approach: The hydrolysis of anandamide in homogenates and intact cells was measured using the substrate labelled in the ethanolamine part of the molecule. Key results: Twenty compounds were tested. Among the commonly occurring flavonoids, kaempferol was the most potent, inhibiting FAAH in a competitive manner with a Ki value of 5 μM. Among flavonoids with a more restricted distribution in nature, the two most active toward FAAH were 7-hydroxyflavone (IC50 value of 0.5–1 μM depending on the solvent used) and 3,7-dihydroxyflavone (IC50 value 2.2 μM). All three compounds reduced the FAAH-dependent uptake of anandamide and its metabolism by intact RBL2H3 basophilic leukaemia cells. Conclusions and implications: Inhibition of FAAH is an additional in vitro biochemical property of flavonoids. Kaempferol, 7-hydroxyflavone and 3,7-dihydroxyflavone may be useful as templates for the synthesis of novel compounds, which target several systems that are involved in the control of inflammation and cancer. PMID:18552875

  18. The crystal structure of the endoglucanase Cel10, a family 8 glycosyl hydrolase from Klebsiella pneumoniae

    PubMed Central

    Attigani, Ayman; Sun, Lifang; Wang, Qing; Liu, Yadan; Bai, Dingping; Li, Shengping; Huang, Xiaohong

    2016-01-01

    Cellulases are produced by microorganisms that grow on cellulose biomass. Here, a cellulase, Cel10, was identified in a strain of Klebsiella pneumoniae isolated from Chinese bamboo rat gut. Analysis of substrate specificity showed that Cel10 is able to hydrolyze amorphous carboxymethyl cellulose (CMC) and crystalline forms of cellulose (Avicel and xylan) but is unable to hydrolyze p-nitrophenol β-d-glucopyranoside (p-NPG), proving that Cel10 is an endo­glucanase. A phylogenetic tree analysis indicates that Cel10 belongs to the glycoside hydrolase 8 (GH8) subfamily. In order to further understanding of its substrate specificity, the structure of Cel10 was solved by molecular replacement and refined to 1.76 Å resolution. The overall fold is distinct from those of most other enzymes belonging to the GH8 subfamily. Although it forms the typical (α/α)6-barrel motif fold, like Acetobacterxylinum CMCax, one helix is missing. Structural comparisons with Clostridium thermocellum CelA (CtCelA), the best characterized GH8 endoglucanase, revealed that sugar-recognition subsite −3 is completely missing in Cel10. The absence of this subsite correlates to a more open substrate-binding cleft on the cellooligosaccharide reducing-end side. PMID:27917834

  19. Crystallization and preliminary X-ray diffraction analysis of recombinant hydrolase domain of 10-formyltetrahydrofolate dehydrogenase.

    PubMed

    Chumanevich, Alexander A; Davies, Christopher; Krupenko, Sergey A

    2002-10-01

    10-Formyltetrahydrofolate dehydrogenase (FDH) is an abundant enzyme in liver cytosol. It is important for the regulation of 10-formyltetrahydrofolate/tetrahydrofolate pools, for de novo purine biosynthesis and for the removal of formate in the form of CO(2). The enzyme is a natural fusion of two unrelated genes and consists of two functional catalytic domains. Here, the crystallization of the N-terminal domain of FDH is reported. This domain binds folate and functions as a 10-formyltetrahydrofolate hydrolase. The crystals grow as either spear-shaped needles or large plates, with the largest crystals reaching dimensions of 1.2 x 0.2 x 0.05 mm. Diffraction analysis revealed the space group to be P2(1)2(1)2, with unit-cell parameters a = 100.00, b = 64.63, c = 64.59 A. Based on the estimated solvent content, there is one 34 kDa molecule in the asymmetric unit. A native data set extending to 2.3 A resolution has been collected with good merging statistics.

  20. Fumarylacetoacetate hydrolase deficient pigs are a novel large animal model of metabolic liver disease.

    PubMed

    Hickey, Raymond D; Mao, Shennen A; Glorioso, Jaime; Lillegard, Joseph B; Fisher, James E; Amiot, Bruce; Rinaldo, Piero; Harding, Cary O; Marler, Ronald; Finegold, Milton J; Grompe, Markus; Nyberg, Scott L

    2014-07-01

    Hereditary tyrosinemia type I (HT1) is caused by deficiency in fumarylacetoacetate hydrolase (FAH), an enzyme that catalyzes the last step of tyrosine metabolism. The most severe form of the disease presents acutely during infancy, and is characterized by severe liver involvement, most commonly resulting in death if untreated. Generation of FAH(+/-) pigs was previously accomplished by adeno-associated virus-mediated gene knockout in fibroblasts and somatic cell nuclear transfer. Subsequently, these animals were outbred and crossed to produce the first FAH(-/-) pigs. FAH-deficiency produced a lethal defect in utero that was corrected by administration of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3 cyclohexanedione (NTBC) throughout pregnancy. Animals on NTBC were phenotypically normal at birth; however, the animals were euthanized approximately four weeks after withdrawal of NTBC due to clinical decline and physical examination findings of severe liver injury and encephalopathy consistent with acute liver failure. Biochemical and histological analyses, characterized by diffuse and severe hepatocellular damage, confirmed the diagnosis of severe liver injury. FAH(-/-) pigs provide the first genetically engineered large animal model of a metabolic liver disorder. Future applications of FAH(-/-) pigs include discovery research as a large animal model of HT1 and spontaneous acute liver failure, and preclinical testing of the efficacy of liver cell therapies, including transplantation of hepatocytes, liver stem cells, and pluripotent stem cell-derived hepatocytes.

  1. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis.

    PubMed

    Schelbert, Silvia; Aubry, Sylvain; Burla, Bo; Agne, Birgit; Kessler, Felix; Krupinska, Karin; Hörtensteiner, Stefan

    2009-03-01

    During leaf senescence, chlorophyll is removed from thylakoid membranes and converted in a multistep pathway to colorless breakdown products that are stored in vacuoles. Dephytylation, an early step of this pathway, increases water solubility of the breakdown products. It is widely accepted that chlorophyll is converted into pheophorbide via chlorophyllide. However, chlorophyllase, which converts chlorophyll to chlorophyllide, was found not to be essential for dephytylation in Arabidopsis thaliana. Here, we identify pheophytinase (PPH), a chloroplast-located and senescence-induced hydrolase widely distributed in algae and land plants. In vitro, Arabidopsis PPH specifically dephytylates the Mg-free chlorophyll pigment, pheophytin (phein), yielding pheophorbide. An Arabidopsis mutant deficient in PPH (pph-1) is unable to degrade chlorophyll during senescence and therefore exhibits a stay-green phenotype. Furthermore, pph-1 accumulates phein during senescence. Therefore, PPH is an important component of the chlorophyll breakdown machinery of senescent leaves, and we propose that the sequence of early chlorophyll catabolic reactions be revised. Removal of Mg most likely precedes dephytylation, resulting in the following order of early breakdown intermediates: chlorophyll --> pheophytin --> pheophorbide. Chlorophyllide, the last precursor of chlorophyll biosynthesis, is most likely not an intermediate of breakdown. Thus, chlorophyll anabolic and catabolic reactions are metabolically separated.

  2. The Structural Basis of Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase

    SciTech Connect

    Abbott,D.; Boraston, A.

    2007-01-01

    Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 {angstrom} resolution) and a digalacturonic acid product complex (solved to 2.10 {angstrom} resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.

  3. ASTROGLIOSIS AND BEHAVIORAL CHANGES IN MICE LACKING THE NEUTRAL CYSTEINE PROTEASE BLEOMYCIN HYDROLASE

    PubMed Central

    Montoya, S.E.; Thiels, E.; Card, J.P.; Lazo, J.S.

    2007-01-01

    Bleomycin hydrolase is a multifaceted neutral cysteine protease with a suggested role in antigen presentation, homocysteine-thiolactone metabolism, and Alzheimer’s disease pathogenesis. Deletion of the protease in mice results in increased neonatal mortality and dermatopathology. Immunohistochemical and behavioral studies of BLMH knockout mice were undertaken to further evaluate the role of the protease in the brain. No gross abnormalities in the central nervous system were observed upon preliminary histological examination of B6.129Blmhtm1Geh/J null animals. However, glial fibrillary acid protein immunohistochemistry revealed a global reactive astrogliosis in the aged null animals, indicative of undefined brain pathology. The role of BLMH in the brain was further explored by characterizing the behavioral phenotype of hybrid [129S6-Blmhtm1Geh/J X B6.129 Blmhtm1Geh/J]F1 null and littermate controls using multiple behavioral paradigms. In the water maze, deletion of BLMH resulted in poorer performance during water maze probe trials without detectable effect of the mutation on sensorimotor function. In addition, no age-dependent decline in discriminative performance on probe trials was observed in null animals. These data suggest a physiological non-redundant function for BLMH in the central nervous system. PMID:17391860

  4. A conserved hydrolase responsible for the cleavage of aminoacylphosphatidylglycerol in the membrane of Enterococcus faecium.

    PubMed

    Smith, Angela M; Harrison, Jesse S; Sprague, Kevin M; Roy, Hervé

    2013-08-02

    Aminoacylphosphatidylglycerol synthases (aaPGSs) are enzymes that transfer amino acids from aminoacyl-tRNAs (aa-tRNAs) to phosphatidylglycerol (PG) to form aa-PG in the cytoplasmic membrane of bacteria. aa-PGs provide bacteria with resistance to a range of antimicrobial compounds and stress conditions. Enterococcus faecium encodes a triple-specific aaPGS (RakPGS) that utilizes arginine, alanine, and lysine as substrates. Here we identify a novel hydrolase (AhyD), encoded immediately adjacent to rakPGS in E. faecium, which is responsible for the hydrolysis of aa-PG. The genetic synteny of aaPGS and ahyD is conserved in >60 different bacterial species. Deletion of ahyD in E. faecium resulted in increased formation of Ala-PG and Lys-PG and increased sensitivity to bacitracin. Our results suggest that AhyD and RakPGS act together to maintain optimal levels of aa-PG in the bacterial membrane to confer resistance to certain antimicrobial compounds and stress conditions.

  5. Molecular characterization of a family 5 glycoside hydrolase suggests an induced-fit enzymatic mechanism.

    PubMed

    Liberato, Marcelo V; Silveira, Rodrigo L; Prates, Érica T; de Araujo, Evandro A; Pellegrini, Vanessa O A; Camilo, Cesar M; Kadowaki, Marco A; Neto, Mario de O; Popov, Alexander; Skaf, Munir S; Polikarpov, Igor

    2016-04-01

    Glycoside hydrolases (GHs) play fundamental roles in the decomposition of lignocellulosic biomaterials. Here, we report the full-length structure of a cellulase from Bacillus licheniformis (BlCel5B), a member of the GH5 subfamily 4 that is entirely dependent on its two ancillary modules (Ig-like module and CBM46) for catalytic activity. Using X-ray crystallography, small-angle X-ray scattering and molecular dynamics simulations, we propose that the C-terminal CBM46 caps the distal N-terminal catalytic domain (CD) to establish a fully functional active site via a combination of large-scale multidomain conformational selection and induced-fit mechanisms. The Ig-like module is pivoting the packing and unpacking motions of CBM46 relative to CD in the assembly of the binding subsite. This is the first example of a multidomain GH relying on large amplitude motions of the CBM46 for assembly of the catalytically competent form of the enzyme.

  6. Mode of action of xylogalacturonan hydrolase towards xylogalacturonan and xylogalacturonan oligosaccharides

    PubMed Central

    2004-01-01

    XGH (xylogalacturonan hydrolase; GH 28) is an enzyme that is capable of degrading XGA (xylogalacturonan), which is a polymer of α-D-galacturonic acid, highly substituted with β-D-xylose. XGA is present in cell walls of various plants and exudates, such as gum tragacanth. XGA oligosaccharides were derived from an XGH digestion of gum tragacanth, then fractionated, and analysed for their sugar composition and structure by matrix-assisted laser-desorption ionization–time-of-flight MS and nanospray MS. Several oligosaccharides from XGA were identified with different galacturonic acid/xylose ratios including five oligosaccharide isomers. Although XGH can act as an endo-enzyme, product-progression profiling showed that the disaccharide GalAXyl was predominantly produced from XGA by XGH, which indicated also an exolytic action. The latter was further supported by degradation studies of purified oligosaccharide GalA4Xyl3. It was shown that XGH acted from the non-reducing end towards the reducing end of this oligosaccharide, and showed the processive character of XGH. The results from this study further show that although XGH prefers to act between two xylosidated GalA units, it tolerates unsubstituted GalA units in its −1 and +1 subsites. PMID:15560751

  7. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species.

    PubMed

    Allen, Brett L; Johnson, Jermaine D; Walker, Jeremy P

    2012-07-27

    In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase's stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme's exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a 'sacrificial barrier' by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase-PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO(2) (100 ppm).

  8. Analysis of Domain Architecture and Phylogenetics of Family 2 Glycoside Hydrolases (GH2)

    PubMed Central

    Talens-Perales, David; Górska, Anna; Huson, Daniel H.; Polaina, Julio

    2016-01-01

    In this work we report a detailed analysis of the topology and phylogenetics of family 2 glycoside hydrolases (GH2). We distinguish five topologies or domain architectures based on the presence and distribution of protein domains defined in Pfam and Interpro databases. All of them share a central TIM barrel (catalytic module) with two β-sandwich domains (non-catalytic) at the N-terminal end, but differ in the occurrence and nature of additional non-catalytic modules at the C-terminal region. Phylogenetic analysis was based on the sequence of the Pfam Glyco_hydro_2_C catalytic module present in most GH2 proteins. Our results led us to propose a model in which evolutionary diversity of GH2 enzymes is driven by the addition of different non-catalytic domains at the C-terminal region. This model accounts for the divergence of β-galactosidases from β-glucuronidases, the diversification of β-galactosidases with different transglycosylation specificities, and the emergence of bicistronic β-galactosidases. This study also allows the identification of groups of functionally uncharacterized protein sequences with potential biotechnological interest. PMID:27930742

  9. A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato.

    PubMed

    Liu, Degao; Wang, Lianjun; Zhai, Hong; Song, Xuejin; He, Shaozhen; Liu, Qingchang

    2014-01-01

    Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbMas contains maspardin domain and belongs to α/β-hydrolase superfamily. Expression of IbMas was up-regulated in sweetpotato under salt stress and ABA treatment. The IbMas-overexpressing sweetpotato (cv. Shangshu 19) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbMas up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes, under salt stress. These findings suggest that overexpression of IbMas enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity.

  10. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts

    PubMed Central

    Oliveira, Lilian C.G.; Ramos, Patricia Locosque; Marem, Alyne; Kondo, Marcia Y.; Rocha, Rafael C.S.; Bertolini, Thiago; Silveira, Marghuel A.V.; da Cruz, João Batista; de Vasconcellos, Suzan Pantaroto; Juliano, Luiz; Okamoto, Debora N.

    2015-01-01

    Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications. PMID:26273248

  11. Ubiquitin Carboxy-Terminal HydrolaseL3 Correlates with Human Sperm Count, Motility and Fertilization

    PubMed Central

    Wang, Meijiao; Yu, Tinghe; Hu, Lina; Cheng, Zhi; Li, Min

    2016-01-01

    Ubiquitin C-terminal hydrolase L3 (UCHL3) belongs to the group of deubiquitinating enzymes and plays a part in apoptosis of germ cells and the differentiation of spermatocytes into spermatids. However, the exact role of UCHL3 in human spermatogenesis and sperm function remains unknown. Here we examined the level and activity of UCHL3 in spermatozoa from men with asthenozoospermia (A), oligoasthenozoospermia (OA) or normozoospermia (N). Immunofluorescence indicated that UCHL3 was mainly localized in the acrosome and throughout the flagella, and western blotting revealed a lower level in A or OA compared with N (p < 0.05). The catalytic activity of UCHL3 was decreased in spermatozoa from A or OA (p < 0.05, p < 0.001, respectively). The level and activity of UCHL3 were positively correlated with sperm count, concentration and motility. The UCHL3 level was positively correlated with the normal fertilization rate (FR) and percentage of embryos suitable for transfer/cryopreservation of in vitro fertilization (IVF). The UCHL3 activity was also positively correlated with FR, the percentage of embryos suitable for transfer/cryopreservation and high-quality embryos rate of IVF. Aforementioned correlations were not manifested in intra-cytoplasmic sperm injection (ICSI). These findings suggest that UCHL3 may play a role in male infertility. PMID:27780264

  12. A novel member of glycoside hydrolase family 30 subfamily 8 with altered substrate specificity

    PubMed Central

    St John, Franz J.; Dietrich, Diane; Crooks, Casey; Pozharski, Edwin; González, Javier M.; Bales, Elizabeth; Smith, Kennon; Hurlbert, Jason C.

    2014-01-01

    Endoxylanases classified into glycoside hydrolase family 30 subfamily 8 (GH30-8) are known to hydrolyze the hemicellulosic polysaccharide glucuronoxylan (GX) but not arabinoxylan or neutral xylooligosaccharides. This is owing to the specificity of these enzymes for the α-1,2-linked glucuronate (GA) appendage of GX. Limit hydrolysis of this substrate produces a series of aldouronates each containing a single GA substituted on the xylose penultimate to the reducing terminus. In this work, the structural and biochemical characterization of xylanase 30A from Clostridium papyro­solvens (CpXyn30A) is presented. This xylanase possesses a high degree of amino-acid identity to the canonical GH30-8 enzymes, but lacks the hallmark β8–α8 loop region which in part defines the function of this GH30 subfamily and its role in GA recognition. CpXyn30A is shown to have a similarly low activity on all xylan substrates, while hydrolysis of xylohexaose revealed a competing transglycosylation reaction. These findings are directly compared with the model GH30-8 enzyme from Bacillus subtilis, XynC. Despite its high sequence identity to the GH30-8 enzymes, CpXyn30A does not have any apparent specificity for the GA appendage. These findings confirm that the typically conserved β8–α8 loop region of these enzymes influences xylan substrate specificity but not necessarily β-1,4-xylanase function. PMID:25372685

  13. Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation.

    PubMed

    Deng, Yangmei; Theken, Katherine N; Lee, Craig R

    2010-02-01

    The cytochrome P450 (CYP) epoxygenase enzymes CYP2J and CYP2C catalyze the epoxidation of arachidonic acid to epoxyeicosatrienoic acids (EETs), which are rapidly hydrolyzed to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). It is well-established that CYP epoxygenase-derived EETs possess potent vasodilatory effects; however, the cellular effects of EETs and their regulation of various inflammatory processes have become increasingly appreciated in recent years, suggesting that the role of this pathway in the cardiovascular system extends beyond the maintenance of vascular tone. In particular, CYP epoxygenase-derived EETs inhibit endothelial activation and leukocyte adhesion via attenuation of nuclear factor-kappaB activation, inhibit hemostasis, protect against myocardial ischemia-reperfusion injury, and promote endothelial cell survival via modulation of multiple cell signaling pathways. Thus, the CYP epoxygenase pathway is an emerging target for pharmacological manipulation to enhance the cardiovascular protective effects of EETs. This review will focus on the role of the CYP epoxygenase pathway in the regulation of cardiovascular inflammation and (1) describe the functional impact of CYP epoxygenase-derived EET biosynthesis and sEH-mediated EET hydrolysis on key inflammatory process in the cardiovascular system, (2) discuss the potential relevance of this pathway to pathogenesis and treatment of cardiovascular disease, and (3) identify areas for future research.

  14. Regulation of yeast ESCRT-III membrane scission activity by the Doa4 ubiquitin hydrolase.

    PubMed

    Johnson, Natalie; West, Matt; Odorizzi, Greg

    2017-03-01

    ESCRT-III executes membrane scission during the budding of intralumenal vesicles (ILVs) at endosomes. The scission mechanism is unknown but appears to be linked to the cycle of assembly and disassembly of ESCRT-III complexes at membranes. Regulating this cycle is therefore expected to be important for determining the timing of ESCRT-III-mediated membrane scission. We show that in Saccharomyces cerevisiae, ESCRT-III complexes are stabilized and ILV membrane scission is delayed by Doa4, which is the ubiquitin hydrolase that deubiquitinates transmembrane proteins sorted as cargoes into ILVs. These results suggest a mechanism to delay ILV budding while cargoes undergo deubiquitination. We further show that deubiquitination of ILV cargoes is inhibited via Doa4 binding to Vps20, which is the subunit of ESCRT-III that initiates assembly of the complex. Current models suggest that ESCRT-III complexes surround ubiquitinated cargoes to trap them at the site of ILV budding while the cargoes undergo deubiquitination. Thus our results also propose a mechanism to prevent the onset of ILV cargo deubiquitination at the initiation of ESCRT-III complex assembly.

  15. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Allen, Brett L.; Johnson, Jermaine D.; Walker, Jeremy P.

    2012-07-01

    In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase’s stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme’s exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a ‘sacrificial barrier’ by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase-PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO2 (100 ppm).

  16. Improvement of the quality of wheat bread by addition of glycoside hydrolase family 10 xylanases.

    PubMed

    Zheng, Han; Guo, Bing; Chen, Xiu-Lan; Fan, Sou-Jin; Zhang, Yu-Zhong

    2011-04-01

    Although many xylanases are widely used in the baking industry, only one glycoside hydrolase family 10 (GH 10) xylanase has previously been reported to be effective in baking. In this study, we compared the effectiveness of two GH 10 xylanases, psychrophilic XynA from Glaciecola mesophila and mesophilic EX1 from Trichoderma pseudokoningii, in bread making. The optimal dosages needed to improve wheat flour dough and bread quality were 270-U/kg flour for EX1 and 0.9-U/kg flour for XynA. At their optimal dosage, both XynA and EX1 had significant dough-softening ability, resulting in a 50% reduction in Brabender units. XynA was more effective than EX1 in reducing the time to reach maximum consistency. XynA and EX1 showed similar effects in improving the bread volume (~30% increase). EX1 was more effective in reducing the initial crumb firmness. Although both enzymes exhibited similar anti-staling effects on the bread, based on a decrease in the bread firmness, XynA had a greater effect on reducing the firming rate, and EX1 showed an enhanced reduction in the initial firmness. These results show that these two GH 10 xylanases have unique advantages in improving dough and bread quality and indicate their potential in bread making.

  17. Inhibitors of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase: New Targets for Future Antidepressants

    PubMed Central

    Ogawa, Shintaro; Kunugi, Hiroshi

    2015-01-01

    Cannabis and analogs of Δ9-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors’ therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic–pituitary–adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted. PMID:26630956

  18. Optimization of Amide-Based Inhibitors of Soluble Epoxide Hydrolase with Improved Water Solubility

    PubMed Central

    Kim, In-Hae; Heirtzler, Fenton R.; Morisseau, Christophe; Nishi, Kosuke; Tsai, Hsing-Ju; Hammock, Bruce D.

    2006-01-01

    Soluble epoxide hydrolase (sEH) plays an important role in the metabolism of endogenous chemical mediators involved in the regulation of blood pressure and inflammation. 1,3-Disubstituted ureas with a polar group located on the fifth atom from the carbonyl group of urea function are active inhibitors of sEH both in vitro and in vivo. However, their limited solubility in water and relatively high melting point lead to difficulties in formulating the compounds and poor in vivo efficacy. To improve these physical properties, the effect of structural modification of the urea pharmacophore on the inhibition potencies, water solubilities, octanol/water partition coefficients (log P), and melting points of a series of compounds was evaluated. For murine sEH, no loss of inhibition potency was observed when the urea pharmacophore was modified to an amide function, while for human sEH 2.5-fold decreased inhibition was obtained in the amide compounds. In addition, a NH group on the right side of carbonyl group of the amide pharmacophore substituted with an adamantyl group (such as compound 14) and a methylene carbon present between the adamantyl and amide groups were essential to produce potent inhibition of sEH. The resulting amide inhibitors have 10–30-fold better solubility and lower melting point than the corresponding urea compounds. These findings will facilitate synthesis of sEH inhibitors that are easier to formulate and more bioavailable. PMID:15887969

  19. New insights into plant glycoside hydrolase family 32 in Agave species

    PubMed Central

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D.; Damián Santos, Maura L.; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana. PMID:26300895

  20. New insights into plant glycoside hydrolase family 32 in Agave species.

    PubMed

    Avila de Dios, Emmanuel; Gomez Vargas, Alan D; Damián Santos, Maura L; Simpson, June

    2015-01-01

    In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana.

  1. Bioprospecting metagenomics of a microbial community on cotton degradation: Mining for new glycoside hydrolases.

    PubMed

    Zhang, Guoxiu; Liu, Pei; Zhang, Lei; Wei, Wei; Wang, Xuedong; Wei, Dongzhi; Wang, Wei

    2016-09-20

    Glycoside hydrolases (GHases) of higher performance are immediately needed for efficient degradation of plant biomass into fermentable sugars in industrial processes. The current study represents functional characterization of the enzymatic repertoire involved in crude cotton biomass degradation. Physical contact between cells and substrate is necessary for efficient hydrolysis of cellulose. Cytophagales, which plays a major role in cotton biomass decomposition, was identified as a prevalent community member by 16S rRNA analysis. From the metagenome data, 2058 GHase homologs were identified, of which sixteen were successfully expressed in E. coli. Four enzymes showed activities on p-nitrophenyl-β-d-xylopyranoside, four showed activities on p-nitrophenyl-β-d-glucopyranoside, two had activities against p-nitrophenyl-β-d-glucuronide, one showed activity on laminarin, three had activities against p-nitrophenyl-N-acetyl-β-d-glucosaminide, one had activity towards carboxymethyl cellulose, and one towards p-nitrophenyl-β-d-mannopyranoside. Metagenomics provides a good resource for mining novel biomass degrading enzymes. The sixteen GHases that were cloned may have potential application for biomass conversion and bioproduct production. Functional characterization of the enzymatic repertoire in cotton biomass degradation and analysis of the GHases provide insight into the composition and interaction of enzymes and pathways of plant biomass degradation.

  2. Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction

    PubMed Central

    Jadczyk, Tomasz; Roterman, Irena

    2010-01-01

    The comparison of eight tools applicable to ligand-binding site prediction is presented. The methods examined cover three types of approaches: the geometrical (CASTp, PASS, Pocket-Finder), the physicochemical (Q-SiteFinder, FOD) and the knowledge-based (ConSurf, SuMo, WebFEATURE). The accuracy of predictions was measured in reference to the catalytic residues documented in the Catalytic Site Atlas. The test was performed on a set comprising selected chains of hydrolases. The results were analysed with regard to size, polarity, secondary structure, accessible solvent area of predicted sites as well as parameters commonly used in machine learning (F-measure, MCC). The relative accuracies of predictions are presented in the ROC space, allowing determination of the optimal methods by means of the ROC convex hull. Additionally the minimum expected cost analysis was performed. Both advantages and disadvantages of the eight methods are presented. Characterization of protein chains in respect to the level of difficulty in the active site prediction is introduced. The main reasons for failures are discussed. Overall, the best performance offers SuMo followed by FOD, while Pocket-Finder is the best method among the geometrical approaches. Electronic supplementary material The online version of this article (doi:10.1007/s10822-010-9402-0) contains supplementary material, which is available to authorized users. PMID:21104192

  3. Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction

    NASA Astrophysics Data System (ADS)

    Prymula, Katarzyna; Jadczyk, Tomasz; Roterman, Irena

    2011-02-01

    The comparison of eight tools applicable to ligand-binding site prediction is presented. The methods examined cover three types of approaches: the geometrical (CASTp, PASS, Pocket-Finder), the physicochemical (Q-SiteFinder, FOD) and the knowledge-based (ConSurf, SuMo, WebFEATURE). The accuracy of predictions was measured in reference to the catalytic residues documented in the Catalytic Site Atlas. The test was performed on a set comprising selected chains of hydrolases. The results were analysed with regard to size, polarity, secondary structure, accessible solvent area of predicted sites as well as parameters commonly used in machine learning (F-measure, MCC). The relative accuracies of predictions are presented in the ROC space, allowing determination of the optimal methods by means of the ROC convex hull. Additionally the minimum expected cost analysis was performed. Both advantages and disadvantages of the eight methods are presented. Characterization of protein chains in respect to the level of difficulty in the active site prediction is introduced. The main reasons for failures are discussed. Overall, the best performance offers SuMo followed by FOD, while Pocket-Finder is the best method among the geometrical approaches.

  4. Structure-Based Optimization of Arylamides as Inhibitors of Soluble Epoxide Hydrolase

    SciTech Connect

    Eldrup, Anne B.; Soleymanzadeh, Fariba; Taylor, Steven J.; Muegge, Ingo; Farrow, Neil A.; Joseph, David; McKellop, Keith; Man, Chuk C.; Kukulka, Alison; De Lombaert, Stephane

    2009-11-04

    Inhibition of soluble epoxide hydrolase (sEH) is hypothesized to lead to an increase in circulating levels of epoxyeicosatrienoic acids, resulting in the potentiation of their in vivo pharmacological properties. As part of an effort to identify inhibitors of sEH with high and sustained plasma exposure, we recently performed a high throughput screen of our compound collection. The screen identified N-(3,3-diphenyl-propyl)-nicotinamide as a potent inhibitor of sEH. Further profiling of this lead revealed short metabolic half-lives in microsomes and rapid clearance in the rat. Consistent with these observations, the determination of the in vitro metabolic profile of N-(3,3-diphenyl-propyl)-nicotinamide in rat liver microsomes revealed extensive oxidative metabolism and a propensity for metabolite switching. Lead optimization, guided by the analysis of the solid-state costructure of N-(3,3-diphenyl-propyl)-nicotinamide bound to human sEH, led to the identification of a class of potent and selective inhibitors. An inhibitor from this class displayed an attractive in vitro metabolic profile and high and sustained plasma exposure in the rat after oral administration.

  5. Development of a High Throughput Platform for Screening Glycoside Hydrolases Based on Oxime-NIMS

    PubMed Central

    Deng, Kai; Guenther, Joel M.; Gao, Jian; Bowen, Benjamin P.; Tran, Huu; Reyes-Ortiz, Vimalier; Cheng, Xiaoliang; Sathitsuksanoh, Noppadon; Heins, Richard; Takasuka, Taichi E.; Bergeman, Lai F.; Geertz-Hansen, Henrik; Deutsch, Samuel; Loqué, Dominique; Sale, Kenneth L.; Simmons, Blake A.; Adams, Paul D.; Singh, Anup K.; Fox, Brian G.; Northen, Trent R.

    2015-01-01

    Cost-effective hydrolysis of biomass into sugars for biofuel production requires high-performance low-cost glycoside hydrolase (GH) cocktails that are active under demanding process conditions. Improving the performance of GH cocktails depends on knowledge of many critical parameters, including individual enzyme stabilities, optimal reaction conditions, kinetics, and specificity of reaction. With this information, rate- and/or yield-limiting reactions can be potentially improved through substitution, synergistic complementation, or protein engineering. Given the wide range of substrates and methods used for GH characterization, it is difficult to compare results across a myriad of approaches to identify high performance and synergistic combinations of enzymes. Here, we describe a platform for systematic screening of GH activities using automatic biomass handling, bioconjugate chemistry, robotic liquid handling, and nanostructure-initiator mass spectrometry (NIMS). Twelve well-characterized substrates spanning the types of glycosidic linkages found in plant cell walls are included in the experimental workflow. To test the application of this platform and substrate panel, we studied the reactivity of three engineered cellulases and their synergy of combination across a range of reaction conditions and enzyme concentrations. We anticipate that large-scale screening using the standardized platform and substrates will generate critical datasets to enable direct comparison of enzyme activities for cocktail design. PMID:26528471

  6. Fatty-acid amide hydrolase polymorphisms and post-traumatic stress disorder after penetrating brain injury

    PubMed Central

    Pardini, M; Krueger, F; Koenigs, M; Raymont, V; Hodgkinson, C; Zoubak, S; Goldman, D; Grafman, J

    2012-01-01

    The past few years have seen an increase in the clinical awareness of post-traumatic stress disorder (PTSD), one of the most disabling and least understood behavioral disorders. Although the biological bases of PTSD are poorly understood, fatty-acid amide hydrolase (FAAH) activity has been linked with arousability and aversive-memories extinction, that is, two key features of PTSD. In this study, we investigated the association between the FAAH genetic polymorphisms and PTSD development and maintenance. We assessed PTSD frequency in a group of male Vietnam war veterans who suffered combat-related penetrating traumatic brain injury, that is, a relatively homogeneous population regarding the nature of the events that led to PTSD. We showed that rs2295633, a single-nucleotide polymorphism of FAAH, was significantly associated with PTSD diagnosis in subjects without lesions in the ventromedial prefrontal cortex. Moreover, the presence of the C allele was associated with more severe re-experiencing of trauma and more negative reported childhood experiences. In conclusion, our data suggest that FAAH has an important role in PTSD through modulation of aversive memories and point to both a novel therapeutic target and a possible risk marker for this condition. PMID:22832737

  7. The role of fatty acid amide hydrolase inhibition in nicotine reward and dependence

    PubMed Central

    Muldoon, Pretal P.; Lichtman, Aron H.; Parsons, Loren H.; Damaj, M. Imad

    2012-01-01

    The endogenous cannabinoid anandamide (AEA) exerts the majority of its effects at CB1 and CB2 receptors and is degraded by fatty acid amide hydrolase (FAAH). FAAH KO mice and animals treated with FAAH inhibitors are impaired in their ability to hydrolyze AEA and other non-cannabinoid lipid signaling molecules, such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). AEA and these other substrates activate non- cannabinoid receptor systems, including TRPV1 and PPAR-α receptors. In this mini review, we describe the functional consequences of FAAH inhibition on nicotine reward and dependence as well as the underlying endocannabinoid and non-cannabinoid receptor systems mediating these effects. Interestingly, FAAH inhibition seems to mediate nicotine dependence differently in mice and rats. Indeed, pharmacological and genetic FAAH disruption in mice enhances nicotine reward and withdrawal. However, in rats, pharmacological blockade of FAAH significantly inhibits nicotine reward and has no effect in nicotine withdrawal. Studies suggest that non-cannabinoid mechanisms may play a role in these species differences. PMID:22705310

  8. Expression and fermentation optimization of oxidized polyvinyl alcohol hydrolase in E. coli.

    PubMed

    Yang, Yu; Zhang, Dongxu; Liu, Song; Jia, Dongxu; Du, Guocheng; Chen, Jian

    2012-01-01

    Oxidized polyvinyl alcohol (PVA) hydrolase (OPH) is a key enzyme in the degradation of PVA, suggesting that OPH has a great potential for application in textile desizing processes. In this study, the OPH gene from Sphingopyxis sp. 113P3 was modified, by artificial synthesis, for overexpression in Escherichia coli. The OPH gene, lacking the sequence encoding the original signal peptide, was inserted into pET-20b (+) expression vector, which was then used to transform E. coli BL21 (DE3). OPH expression was detected in culture medium in which the transformed E. coli BL21 (DE3) was grown. Nutritional and environmental conditions were investigated for improved production of OPH protein by the recombinant strain. The highest OPH activity measured was 47.54 U/mL and was reached after 84 h under optimal fermentation conditions; this level is 2.64-fold higher that obtained under sub-optimal conditions. The productivity of recombinant OPH reached 565.95 U/L/h. The effect of glycine on the secretion of recombinant OPH was examined by adding glycine to the culture medium to a final concentration of 200 mM. This concentration of glycine reduced the fermentation time by 24 h and increased the productivity of recombinant OPH to 733.17 U/L/h. Our results suggest that the recombinant strain reported here has great potential for use in industrial applications.

  9. Molecular and cellular aspects and regulation of intestinal lactase-phlorizin hydrolase.

    PubMed

    Naim, H Y

    2001-04-01

    Carbohydrates are hydrolyzed in the intestinal lumen by specific enzymes to monosaccharides before transport across the brush border membrane of epithelial cells into the cell interior. The enzymes implicated in the digestion of carbohydrates in the intestinal lumen are membrane-bound glycoproteins that are expressed at the apical domain of the enterocytes. Absent or reduced activity of one of these enzymes is the cause of disaccharide intolerance and malabsorption, the symptoms of which are abdominal pain, cramps or distention, flatulence, nausea and osmotic diarrhea. Lactose intolerance is the most common intestinal disorder that is associated with an absence or drastically reduced levels of an intestinal enzyme, in this case lactase-phlorizin hydrolase (LPH). The pattern of reduction of activity has been termed late onset of lactase deficiency or adult type hypolactasia. It was thought that the regulation of LPH was post-translational and was associated with altered structural features of the enzyme. Recent studies, however, suggest that the major mechanism of regulation of LPH is transcriptional. Other forms of lactose intolerance include the rare congenital lactase deficiency and secondary forms, such as those caused by mucosal injury, due to infectious gastroenteritis, celiac disease, parasitic infection, drug-induced enteritis and Crohn's disease. This review will shed light on important strucural and biosynthetic aspects of LPH, the role played by particular regions of the LPH protein in its transport, polarized sorting, and function, as well as on the gene expession and regulation of the activity of the enzyme.

  10. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.

    PubMed

    Mashimo, Masato; Kato, Jiro; Moss, Joel

    2014-11-01

    ADP-ribosylation is a post-translational protein modification, in which ADP-ribose is transferred from nicotinamide adenine dinucleotide (NAD(+)) to specific acceptors, thereby altering their activities. The ADP-ribose transfer reactions are divided into mono- and poly-(ADP-ribosyl)ation. Cellular ADP-ribosylation levels are tightly regulated by enzymes that transfer ADP-ribose to acceptor proteins (e.g., ADP-ribosyltransferases, poly-(ADP-ribose) polymerases (PARP)) and those that cleave the linkage between ADP-ribose and acceptor (e.g., ADP-ribosyl-acceptor hydrolases (ARH), poly-(ADP-ribose) glycohydrolases (PARG)), thereby constituting an ADP-ribosylation cycle. This review summarizes current findings related to the ARH family of proteins. This family comprises three members (ARH1-3) with similar size (39kDa) and amino acid sequence. ARH1 catalyzes the hydrolysis of the N-glycosidic bond of mono-(ADP-ribosyl)ated arginine. ARH3 hydrolyzes poly-(ADP-ribose) (PAR) and O-acetyl-ADP-ribose. The different substrate specificities of ARH1 and ARH3 contribute to their unique roles in the cell. Based on a phenotype analysis of ARH1(-/-) and ARH3(-/-) mice, ARH1 is involved in the action by bacterial toxins as well as in tumorigenesis. ARH3 participates in the degradation of PAR that is synthesized by PARP1 in response to oxidative stress-induced DNA damage; this hydrolytic reaction suppresses PAR-mediated cell death, a pathway termed parthanatos.

  11. Altering the Substrate Specificity of Organophosphorus Hydrolase for Enhanced Hydrolysis of Chlorpyrifos

    PubMed Central

    Cho, Catherine Mee-Hie; Mulchandani, Ashok; Chen, Wilfred

    2004-01-01

    Chlorpyrifos is one of the most popular pesticides used for agriculture crop protection, and widespread contamination is a potential concern. However, chlorpyrifos is hydrolyzed almost 1,000-fold slower than the preferred substrate, paraoxon, by organophosphorus hydrolase (OPH), an enzyme that can degrade a broad range of organophosphate pesticides. We have recently demonstrated that directed evolution can be used to generate OPH variants with up to 25-fold improvement in hydrolysis of methyl parathion. The obvious question and challenge are whether similar success could be achieved with this poorly hydrolyzed substrate, chlorpyrifos. For this study, five improved variants were selected from two rounds of directed evolution based on the formation of clear haloes on Luria-Bertani plates overlaid with chlorpyrifos. One variant, B3561, exhibited a 725-fold increase in the kcat/Km value for chlorpyrifos hydrolysis as well as enhanced hydrolysis rates for several other OP compounds tested. Considering that wild-type OPH hydrolyzes paraoxon at a rate close to the diffusion control limit, the 39-fold improvement in hydrolysis of paraoxon by B3561 suggests that this variant is one of the most efficient enzymes available to attack a wide spectrum of organophosphate nerve agents. PMID:15294802

  12. Expression pattern of recombinant organophosphorus hydrolase from Flavobacterium sp. ATCC 27551 in Escherichia coli.

    PubMed

    Kwak, Yunyoung; Rhee, In-Koo; Shin, Jae-Ho

    2013-09-01

    Concerned with the influence of tagging system on the expression of heterogeneous protein in Escherichia coli, we attempted to express the organophosphorus hydrolase (OPH) of Flavobacterium sp. ATCC 27551 in E. coli. Recombinant OPH was overproduced successfully in E. coli when modified without the use of a tobacco etch virus (TEV) protease cleavage sequence. In addition, though there has never been a report on the extracellular secretion of recombinant OPH harboring native Tat signal peptides in E. coli, the produced protein was observed to be secreted extracellularly. Through the use of reverse transcriptional quantitative real-time PCR and comparison of the predicted folding rate, it was determined that OPH expression may be affected by the existence of a TEV protease cleavage sequence at the C-terminus during the process of translated protein folding, leading to the suppressed OPH activity. With the potential compatibility between native Tat signal peptides of OPH and E. coli Tat pathway secretion system, we report a successful expression of recombinant OPH harboring native Tat signal peptides in E. coli, for the first time.

  13. Rational Design of Potent and Selective Inhibitors of an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa.

    PubMed

    Kitamura, Seiya; Hvorecny, Kelli L; Niu, Jun; Hammock, Bruce D; Madden, Dean R; Morisseau, Christophe

    2016-05-26

    The virulence factor cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is secreted by Pseudomonas aeruginosa and is the founding member of a distinct class of epoxide hydrolases (EHs) that triggers the catalysis-dependent degradation of the CFTR. We describe here the development of a series of potent and selective Cif inhibitors by structure-based drug design. Initial screening revealed 1a (KB2115), a thyroid hormone analog, as a lead compound with low micromolar potency. Structural requirements for potency were systematically probed, and interactions between Cif and 1a were characterized by X-ray crystallography. On the basis of these data, new compounds were designed to yield additional hydrogen bonding with residues of the Cif active site. From this effort, three compounds were identified that are 10-fold more potent toward Cif than our first-generation inhibitors and have no detectable thyroid hormone-like activity. These inhibitors will be useful tools to study the pathological role of Cif and have the potential for clinical application.

  14. Investigation into the mechanism of the Bacillus cereus phosphonoacetaldehyde hydrolase enzyme

    SciTech Connect

    Olsen, D.B.

    1988-01-01

    The enzyme phosphonoacetaldehyde hydrolase, isolated from Bacillus cereus, catalyzes the dephosphonylation of phosphonoacetaldehyde yielding acetaldehyde and phosphate. We determined that the enzyme was inactivated when it was incubated with substrate or acetaldehyde in the presence of NaBH{sub 4}. The chemical modification was determined to be specific for a single lysine residue by the use of active site radiolabeling methodologies. Phosphonatase was incubated with ({sup 3}H)-NaBH{sub 4} and phosphonoacetaldehyde, ({sup 14}C)-acetaldehyde/NaBH{sub 4}, and with (C{sub 2}-{sup 3}H)-phosphonoacetaldehyde/NaBH{sub 4} which yielded radiolabeled enzyme. The latter of these experiments yielded the most specifically labeled phosphonatase as determined by RP-HPLC separation of the peptides generated by a tryptic digest of the enzyme. The active site peptide was purified to homogeneity and its primary structure determined. {var epsilon}-N-Ethyl-L-lysine was identified as the radiolabeled component of the sequence. Acetonyl phosphonate was able to protect phosphonatase from phosphonoacetaldehyde/NaBH{sub 4} induced inactivation which suggests that the lysine is in the active site.

  15. A Novel α/β-Hydrolase Gene IbMas Enhances Salt Tolerance in Transgenic Sweetpotato

    PubMed Central

    Song, Xuejin; He, Shaozhen; Liu, Qingchang

    2014-01-01

    Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbMas contains maspardin domain and belongs to α/β-hydrolase superfamily. Expression of IbMas was up-regulated in sweetpotato under salt stress and ABA treatment. The IbMas-overexpressing sweetpotato (cv. Shangshu 19) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbMas up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes, under salt stress. These findings suggest that overexpression of IbMas enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity. PMID:25501819

  16. Characterization of P-S bond hydrolysis in organophosphorothioate pesticides by organophosphorus hydrolase.

    PubMed

    Lai, K; Stolowich, N J; Wild, J R

    1995-04-01

    The extensive use of organophosphorothioate insecticides in agriculture has resulted in the risk of environmental contamination with a variety of broadly based neurotoxins that inhibit the acetylcholinesterases of many different animal species. Organophosphorus hydrolase (OPH, EC 3.1.8.1) is a broad-spectrum phosphotriesterase that is capable of detoxifying a variety of organophosphorus neurotoxins by hydrolyzing various phosphorus-ester bonds (P-O, P-F, P-CN, and P-S) between the phosphorus center and an electrophilic leaving group. OPH is capable of hydrolyzing the P-X bond of various organophosphorus compounds at quite different catalytic rates: P-O bonds (kcat = 67-5000 s-1), P-F bonds (kcat = 0.01-500 s-1), and P-S bonds (kcat = 0.0067 to 167 s-1). P-S bond cleavage was readily demonstrated and characterized in these studies by quantifying the released free thiol groups using 5,5'-dithio-bis-2-nitrobenzoic acid or by monitoring an upfield shift of approximately 31 ppm by 31P NMR. A decrease in the toxicity of hydrolyzed products was demonstrated by directly quantifying the loss of inhibition of acetylcholinesterase activity. Phosphorothiolate esters, such as demeton-S, provided noncompetitive inhibition for paraoxon (a P-O triester) hydrolysis, suggesting that the binding of these two different classes of substrates was not identical.

  17. Characterisation of the organophosphate hydrolase catalytic activity of SsoPox

    PubMed Central

    Hiblot, Julien; Gotthard, Guillaume; Chabriere, Eric; Elias, Mikael

    2012-01-01

    SsoPox is a lactonase endowed with promiscuous phosphotriesterase activity isolated from Sulfolobus solfataricus that belongs to the Phosphotriesterase-Like Lactonase family. Because of its intrinsic thermal stability, SsoPox is seen as an appealing candidate as a bioscavenger for organophosphorus compounds. A comprehensive kinetic characterisation of SsoPox has been performed with various phosphotriesters (insecticides) and phosphodiesters (nerve agent analogues) as substrates. We show that SsoPox is active for a broad range of OPs and remains active under denaturing conditions. In addition, its OP hydrolase activity is highly stimulated by anionic detergent at ambient temperature and exhibits catalytic efficiencies as high as kcat/KM of 105 M−1s−1 against a nerve agent analogue. The structure of SsoPox bound to the phosphotriester fensulfothion reveals an unexpected and non-productive binding mode. This feature suggests that SsoPox's active site is sub-optimal for phosphotriester binding, which depends not only upon shape but also on localised charge of the ligand. PMID:23139857

  18. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition.

    PubMed

    Palermo, Giulia; Favia, Angelo D; Convertino, Marino; De Vivo, Marco

    2016-06-20

    The design of multitarget-directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget-directed ligand named ARN2508 (2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2-arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti-inflammatory agents that simultaneously act on FAAH and COX.

  19. Discovery and molecular basis of potent noncovalent inhibitors of fatty acid amide hydrolase (FAAH).

    PubMed

    Min, Xiaoshan; Thibault, Stephen T; Porter, Amy C; Gustin, Darin J; Carlson, Timothy J; Xu, Haoda; Lindstrom, Michelle; Xu, Guifen; Uyeda, Craig; Ma, Zhihua; Li, Yihong; Kayser, Frank; Walker, Nigel P C; Wang, Zhulun

    2011-05-03

    Fatty acid amide hydrolase (FAAH), an amidase-signature family member, is an integral membrane enzyme that degrades lipid amides including the endogenous cannabinoid anandamide and the sleep-inducing molecule oleamide. Both genetic knock out and pharmacological administration of FAAH inhibitors in rodent models result in analgesic, anxiolytic, and antiinflammatory phenotypes. Targeting FAAH activity, therefore, presents a promising new therapeutic strategy for the treatment of pain and other neurological-related or inflammatory disorders. Nearly all FAAH inhibitors known to date attain their binding potency through a reversible or irreversible covalent modification of the nucleophile Ser241 in the unusual Ser-Ser-Lys catalytic triad. Here, we report the discovery and mechanism of action of a series of ketobenzimidazoles as unique and potent noncovalent FAAH inhibitors. Compound 2, a representative of these ketobenzimidazoles, was designed from a series of ureas that were identified from high-throughput screening. While urea compound 1 is characterized as an irreversible covalent inhibitor, the cocrystal structure of FAAH complexed with compound 2 reveals that these ketobenzimidazoles, though containing a carbonyl moiety, do not covalently modify Ser241. These inhibitors achieve potent inhibition of FAAH activity primarily from shape complementarity to the active site and through numerous hydrophobic interactions. These noncovalent compounds exhibit excellent selectivity and good pharmacokinetic properties. The discovery of this distinctive class of inhibitors opens a new avenue for modulating FAAH activity through nonmechanism-based inhibition.

  20. Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARα signaling.

    PubMed

    Obrowsky, Sascha; Chandak, Prakash G; Patankar, Jay V; Povoden, Silvia; Schlager, Stefanie; Kershaw, Erin E; Bogner-Strauss, Juliane G; Hoefler, Gerald; Levak-Frank, Sanja; Kratky, Dagmar

    2013-02-01

    Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triglyceride (TG) hydrolysis. The lack of ATGL results in TG accumulation in multiple tissues, underscoring the critical role of ATGL in maintaining lipid homeostasis. Recent evidence suggests that ATGL affects TG metabolism via activation of peroxisome proliferator-activated receptor α (PPARα). To investigate specific effects of intestinal ATGL on lipid metabolism we generated mice lacking ATGL exclusively in the intestine (ATGLiKO). We found decreased TG hydrolase activity and increased intracellular TG content in ATGLiKO small intestines. Intragastric administration of [(3)H]trioleate resulted in the accumulation of radioactive TG in the intestine, whereas absorption into the systemic circulation was unchanged. Intraperitoneally injected [(3)H]oleate also accumulated within TG in ATGLiKO intestines, indicating that ATGL mobilizes fatty acids from the systemic circulation absorbed by the basolateral side from the blood. Down-regulation of PPARα target genes suggested modulation of cholesterol absorption by intestinal ATGL. Accordingly, ATGL deficiency in the intestine resulted in delayed cholesterol absorption. Importantly, this study provides evidence that ATGL has no impact on intestinal TG absorption but hydrolyzes TGs taken up from the intestinal lumen and systemic circulation. Our data support the role of ATGL in modulating PPARα-dependent processes also in the small intestine.

  1. Cooperation between hepatic cholesteryl ester hydrolase and scavenger receptor BI for hydrolysis of HDL-CE.

    PubMed

    Yuan, Quan; Bie, Jinghua; Wang, Jing; Ghosh, Siddhartha S; Ghosh, Shobha

    2013-11-01

    Liver is the sole organ responsible for the final elimination of cholesterol from the body either as biliary cholesterol or bile acids. High density lipoprotein (HDL)-derived cholesterol is the major source of biliary sterols and represents a mechanism for the removal of cholesterol from peripheral tissues including artery wall-associated macrophage foam cells. Via selective uptake through scavenger receptor BI (SR-BI), HDL-cholesterol is thought to be directly secreted into bile, and HDL cholesteryl esters (HDL-CEs) enter the hepatic metabolic pool and need to be hydrolyzed prior to conversion to bile acids. However, the identity of hepatic CE hydrolase (CEH) as well as the role of SR-BI in bile acid synthesis remains elusive. In this study we examined the role of human hepatic CEH (CES1) in facilitating hydrolysis of SR-BI-delivered HDL-CEs. Over-expression of CEH led to increased hydrolysis of HDL-[³H]CE in primary hepatocytes and SR-BI expression was required for this process. Intracellular CEH associated with BODIPY-CE delivered by selective uptake via SR-BI. CEH and SR-BI expression enhanced the movement of [³H]label from HDL-[³H]CE to bile acids in vitro and in vivo. Taken together, these studies demonstrate that SR-BI-delivered HDL-CEs are hydrolyzed by hepatic CEH and utilized for bile acid synthesis.

  2. Soluble epoxide hydrolase inhibition alleviates neuropathy in Akita (Ins2 Akita) mice.

    PubMed

    Wagner, Karen; Gilda, Jennifer; Yang, Jun; Wan, Debin; Morisseau, Christophe; Gomes, Aldrin V; Hammock, Bruce D

    2017-03-01

    The soluble epoxide hydrolase (sEH) is a regulatory enzyme responsible for the metabolism of bioactive lipid epoxides of both omega-6 and omega-3 long chain polyunsaturated fatty acids. These natural epoxides mediate cell signaling in several physiological functions including blocking inflammation, high blood pressure and both inflammatory and neuropathic pain. Inhibition of the sEH maintains the level of endogenous bioactive epoxy-fatty acids (EpFA) and allows them to exert their generally beneficial effects. The Akita (Ins2(Akita) or Ins2(C96Y)) mice represent a maturity-onset of diabetes of the young (MODY) model in lean, functionally unimpaired animals, with a sexually dimorphic disease phenotype. This allowed for a test of male and female mice in a battery of functional and nociceptive assays to probe the role of sEH in this system. The results demonstrate that inhibiting the sEH is analgesic in diabetic neuropathy and this occurs in a sexually dimorphic manner. Interestingly, sEH activity is also sexually dimorphic in the Akita model, and moreover correlates with disease status particularly in the hearts of male mice. In addition, in vivo levels of oxidized lipid metabolites also correlate with increased sEH expression and the pathogenesis of disease in this model. Thus, sEH is a target to effectively block diabetic neuropathic pain but also demonstrates a potential role in mitigating the progression of this disease.

  3. The ubiquitin hydrolase USP22 contributes to 3'-end processing of JAK-STAT-inducible genes.

    PubMed

    Chipumuro, Edmond; Henriksen, Melissa A

    2012-02-01

    The JAK-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway drives cellular growth, differentiation, and the immune response. STAT-activated gene expression is both rapid and transient and requires dynamic post-translational modification of the chromatin template. We previously showed that monoubiquitination of histone H2B (ubH2B) is highly dynamic at the STAT1 target gene, interferon regulatory factor 1 (IRF1), suggesting that a deubiquitinase is recruited during gene activation. Here, we report that RNAi-mediated knockdown of the ubiquitin hydrolase, USP22, results in 2-fold higher ubH2B, and 2-fold lower transcriptional elongation at IRF1. We also demonstrate that USP22 depletion diminishes 3'-end cleavage/polyadenylation by 2- to 3-fold. Furthermore, the polyadenylation factor CPSF73 is not effectively recruited, and serine 2 phosphorylation (Ser2P) of the C-terminal domain of RNA polymerase II is also disrupted. The transcriptional and processing defects observed in the USP22-knockdown cells are reversed by transient USP22 overexpression. Together, these results suggest that ubH2B helps recruit polyadenylation factors to STAT1-activated genes. We propose a working model, wherein a cycle of H2B ubiquitination/deubiquitination specifies Ser2P to regulate elongation and 3'-end processing of JAK-STAT-inducible mRNAs. These results further elaborate USP22 function and its role as a putative cancer stem cell marker.

  4. Heterogeneous expression and functional relevance of the ubiquitin carboxyl-terminal hydrolase L1 in melanoma.

    PubMed

    Wulfänger, Jens; Biehl, Katharina; Tetzner, Anja; Wild, Peter; Ikenberg, Kristian; Meyer, Stefanie; Seliger, Barbara

    2013-12-01

    The expression of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is deregulated in human cancer cells with tumor inhibiting or promoting functions. Due to less knowledge on the role of UCHL1 in melanoma progression, the expression pattern and function of UCHL1 as well as the deregulated signaling pathways were characterized. A large number of melanoma cell lines, tissue microarrays of melanoma lesions and control tissues were analyzed for UCHL1 expression using PCR, Western blot and/or immunohistochemistry. The analysis revealed that melanocyte cultures, 24 of 331 melanoma lesions, two of 18 short-term cultures and two of 19 melanoma cell lines tested, respectively, heterogeneously expressed UCHL1. The low frequency of UCHL1 expression in melanoma cells was due to gene silencing by promoter DNA hypermethylation. Using different transfection models an enzyme activity-dependent growth promoting function of UCHL1 via the activation of the mitogen-activated protein kinase signaling pathway was found in melanoma cells. Under oxygen stress a dose-dependent effect of UCHL1 was detected, which was mediated by a dynamic modification of the PI3K-Akt signaling. Thus, the aberrant UCHL1 expression in melanoma cells is linked to dynamic changes in growth properties and signal transduction cascades suggesting that UCHL1 provides a novel marker and/or therapeutic target at least for a subset of melanoma patients.

  5. Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes.

    PubMed

    Susor, Andrej; Liskova, Lucie; Toralova, Tereza; Pavlok, Antonin; Pivonkova, Katerina; Karabinova, Pavla; Lopatarova, Miloslava; Sutovsky, Peter; Kubelka, Michal

    2010-06-01

    The ubiquitin-proteasome system regulates many cellular processes through rapid proteasomal degradation of ubiquitin-tagged proteins. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is one of the most abundant proteins in mammalian oocytes. It has weak hydrolytic activity as a monomer and acts as a ubiquitin ligase in its dimeric or oligomeric form. Recently published data show that insufficiency in UCHL1 activity coincides with polyspermic fertilization; however, the mechanism by which UCHL1 contributes to this process remains unclear. Using UCHL1-specific inhibitors, we induced a high rate of polyspermy in bovine zygotes after in vitro fertilization. We also detected decreased levels in the monomeric ubiquitin and polyubiquitin pool. The presence of UCHL1 inhibitors in maturation medium enhanced formation of presumptive UCHL1 oligomers and subsequently increased abundance of K63-linked polyubiquitin chains in oocytes. We analyzed the dynamics of cortical granules (CGs) in UCHL1-inhibited oocytes; both migration of CGs toward the cortex during oocyte maturation and fertilization-induced extrusion of CGs were impaired. These alterations in CG dynamics coincided with high polyspermy incidence in in vitro-produced UCHL1-inhibited zygotes. These data indicate that antipolyspermy defense in bovine oocytes may rely on UCHL1-controlled functioning of CGs.

  6. Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery.

    PubMed

    Debelyy, Mykhaylo O; Platta, Harald W; Saffian, Delia; Hensel, Astrid; Thoms, Sven; Meyer, Helmut E; Warscheid, Bettina; Girzalsky, Wolfgang; Erdmann, Ralf

    2011-08-12

    Peroxisomal matrix protein import is facilitated by cycling receptors shuttling between the cytosol and the peroxisomal membrane. One crucial step in this cycle is the ATP-dependent release of the receptors from the peroxisomal membrane. This step is facilitated by the peroxisomal AAA (ATPases associated with various cellular activities) proteins Pex1p and Pex6p with ubiquitination of the receptor being the main signal for its export. Here we report that the AAA complex contains dislocase as well as deubiquitinating activity. Ubp15p, a ubiquitin hydrolase, was identified as a novel constituent of the complex. Ubp15p partially localizes to peroxisomes and is capable of cleaving off ubiquitin moieties from the type I peroxisomal targeting sequence (PTS1) receptor Pex5p. Furthermore, Ubp15p-deficient cells are characterized by a stress-related PTS1 import defect. The results merge into a picture in which removal of ubiquitin from the PTS1 receptor Pex5p is a specific event and might represent a vital step in receptor recycling.

  7. The region-specific functions of two ubiquitin C-terminal hydrolase isozymes along the epididymis.

    PubMed

    Kwon, Jungkee; Sekiguchi, Satoshi; Wang, Yu-Lai; Setsuie, Rieko; Yoshikawa, Yasuhiro; Wada, Keiji

    2006-01-01

    We previously showed that gad mice, which are deficient for ubiquitin C-terminal hydrolase L1 (UCH-L1), have a significantly increased number of defective spermatozoa, suggesting that UCH-L1 functions in sperm quality control during epididymal maturation. The epididymis is the site of spermatozoa maturation, transport and storage. Region-specific functions along the epididymis are essential for establishing the environment required for sperm maturation. We analyzed the region-specific expression of UCH-L1 and UCH-L3 along the epididymis, and also assessed the levels of ubiquitin, which has specificity for UCH-L1. In wild-type mice, western blot analysis demonstrated a high level of UCH-L1 expression in the caput epididymis, consistent with ubiquitin expression, whereas UCH-L3 expression was high in the cauda epididymis. We also investigated the function of UCH-L1 and UCH-L3 in epididymal apoptosis induced by efferent duct ligation. The caput epididymides of gad mice were resistant to apoptotic stress induced by efferent duct ligation, whereas Uchl3 knockout mice showed a marked increase in apoptotic cells following ligation. In conclusion, the response of gad and Uchl3 knockout mice to androgen withdrawal suggests a reciprocal function of the two UCH enzymes in the caput epididymis.

  8. Structure of the Ubiquitin Hydrolase UCH-L3 Complexed with a Suicide Substrate

    SciTech Connect

    Misaghi, S.; Galardy, P.J.; Meester, W.J.; Ovaa, H.; Ploegh, H.L.; Gaudet, R.

    2009-03-24

    Ubiquitin C-terminal hydrolases (UCHs) comprise a family of small ubiquitin-specific proteases of uncertain function. Although no cellular substrates have been identified for UCHs, their highly tissue-specific expression patterns and the association of UCH-L1 mutations with human disease strongly suggest a critical role. The structure of the yeast UCH Yuh1-ubiquitin aldehyde complex identified an active site crossover loop predicted to limit the size of suitable substrates. We report the 1.45 {angstrom} resolution crystal structure of human UCH-L3 in complex with the inhibitor ubiquitin vinylmethylester, an inhibitor that forms a covalent adduct with the active site cysteine of ubiquitin-specific proteases. This structure confirms the predicted mechanism of the inhibitor and allows the direct comparison of a UCH family enzyme in the free and ligand-bound state. We also show the efficient hydrolysis by human UCH-L3 of a 13-residue peptide in isopeptide linkage with ubiquitin, consistent with considerable flexibility in UCH substrate size. We propose a model for the catalytic cycle of UCH family members which accounts for the hydrolysis of larger ubiquitin conjugates.

  9. Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate.

    PubMed

    Misaghi, Shahram; Galardy, Paul J; Meester, Wim J N; Ovaa, Huib; Ploegh, Hidde L; Gaudet, Rachelle

    2005-01-14

    Ubiquitin C-terminal hydrolases (UCHs) comprise a family of small ubiquitin-specific proteases of uncertain function. Although no cellular substrates have been identified for UCHs, their highly tissue-specific expression patterns and the association of UCH-L1 mutations with human disease strongly suggest a critical role. The structure of the yeast UCH Yuh1-ubiquitin aldehyde complex identified an active site crossover loop predicted to limit the size of suitable substrates. We report the 1.45 A resolution crystal structure of human UCH-L3 in complex with the inhibitor ubiquitin vinylmethylester, an inhibitor that forms a covalent adduct with the active site cysteine of ubiquitin-specific proteases. This structure confirms the predicted mechanism of the inhibitor and allows the direct comparison of a UCH family enzyme in the free and ligand-bound state. We also show the efficient hydrolysis by human UCH-L3 of a 13-residue peptide in isopeptide linkage with ubiquitin, consistent with considerable flexibility in UCH substrate size. We propose a model for the catalytic cycle of UCH family members which accounts for the hydrolysis of larger ubiquitin conjugates.

  10. Heterogeneous expression and biological function of ubiquitin carboxy-terminal hydrolase-L1 in osteosarcoma.

    PubMed

    Zheng, Shuier; Qiao, Guanglei; Min, Daliu; Zhang, Zhichang; Lin, Feng; Yang, Qingcheng; Feng, Tao; Tang, Lina; Sun, Yuanjue; Zhao, Hui; Li, Hongtao; Yu, Wenxi; Yang, Yumei; Shen, Zan; Yao, Yang

    2015-04-01

    Ubiquitin carboxyl terminal hydrolase 1 (UCHL1), a member of the UCH class of DUBs, has been reported as either an oncogene or a tumor suppressor. However, the molecular mechanism underlying the biological function of UCHL1 in osteosarcoma is still unclear. This study was aimed at elucidating the roles of UCHL1 in regulating the biological behavior of osteosarcoma cells. In this study, we found that UCHL1 was elevated in osteosarcoma compared with normal bone tissue. Moreover, UCHL1 expression level was correlated with tumor maximum diameter, high rate of lung metastases and short survival time. Then, we found that knockdown of UCHL1 in osteosarcoma cell MG63 inhibited cell proliferation and significantly increased cell population in the G1 phase. Several cyclins promoting G1/S phase transition were reduced after UCHL1 knockdown, including cell cycle regulator cyclin D1, cyclin E1 and CDK6. Moreover, inhibition of UCHL1 in MG63 cells dramatically induced cell apoptosis. We also found that down-regulation of UCHL1 in MG63 significantly inhibited cell invasion. Then, we found that there was a positive correlation between UCHL1 expression level and the Akt and ERK phosphorylation status. Finally, in vivo data showed that knockdown of UCHL1 inhibited osteosarcoma growth in nude mice. These results indicate that UCHL1 could work as an oncogene and may serve as a promising therapeutic strategy for osteosarcoma.

  11. Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova.

    PubMed

    Koyanagi, Sayaka; Hamasaki, Hiroko; Sekiguchi, Satoshi; Hara, Kenshiro; Ishii, Yoshiyuki; Kyuwa, Shigeru; Yoshikawa, Yasuhiro

    2012-03-01

    Maternal proteins are rapidly degraded by the ubiquitin-proteasome system during oocyte maturation in mice. Ubiquitin C-terminal hydrolase L1 (UCHL1) is highly and specifically expressed in mouse ova and is involved in the polyspermy block. However, the role of UCHL1 in the underlying mechanism of polyspermy block is poorly understood. To address this issue, we performed a comprehensive proteomic analysis to identify maternal proteins that were relevant to the role of UCHL1 in mouse ova using UCHL1-deficient gad. Furthermore, we assessed morphological features in gad mouse ova using transmission electron microscopy. NACHT, LRR, and PYD domain-containing (NALP) family proteins and endoplasmic reticulum (ER) chaperones were identified by proteomic analysis. We also found that the 'maternal antigen that embryos require' (NLRP5 (MATER)) protein level increased significantly in gad mouse ova compared with that in wild-type mice. In an ultrastructural study, gad mouse ova contained less ER in the cortex than in wild-type mice. These results provide new insights into the role of UCHL1 in the mechanism of polyspermy block in mouse ova.

  12. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

    PubMed

    Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N

    2009-06-17

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.

  13. Reversible monoubiquitination regulates the Parkinson disease-associated ubiquitin hydrolase UCH-L1.

    PubMed

    Meray, Robin K; Lansbury, Peter T

    2007-04-06

    Deubiquitinating enzymes (DUBs) are negative regulators of protein ubiquitination and play an important role in ubiquitin-dependent processes. Recent studies have found that diverse cellular mechanisms are employed to control the activity of DUBs. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) is a highly expressed neuronal DUB linked to Parkinson disease; however, little is known about its specific functions or modes of regulation. Here, we demonstrate that UCH-L1 is post-translationally modified by monoubiquitin in cells, at lysine residues near the active site. This modification restricts enzyme activity by preventing binding to ubiquitinated targets, and permanent monoubiquitination, as mimicked by a ubiquitin-UCH-L1 fusion, inhibits UCH-L1 in its capacity to increase free ubiquitin levels in cells. Interestingly, UCH-L1 catalyzes its own deubiquitination in an intramolecular manner, thereby regulating the lifetime of this modification. Our results illustrate monoubiquitination as a reversible regulatory mechanism for DUB activity involving auto-deubiquitination.

  14. Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer's progression in vivo.

    PubMed

    Zhang, Mingming; Cai, Fang; Zhang, Shuting; Zhang, Si; Song, Weihong

    2014-12-03

    Deposition of amyloid β protein (Aβ) to form neuritic plaques in the brain is the pathological hallmark of Alzheimer's disease (AD). Aβ is produced by β- and γ-cleavages of amyloid β precursor protein (APP). Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a de-ubiquitinating enzyme that cleaves ubiquitin at its carboxyl terminal. Dysfunction of UCHL1 has been reported in neurodegenerative diseases. However, whether UCHL1 affects Aβ production and AD progression remains unknown. Here we report that UCHL1 interacts with APP and regulates Aβ production. UCHL1 increases free ubiquitin level and accelerates the lysosomal degradation of APP by promoting its ubiquitination. Furthermore, we demonstrate that overexpression of UCHL1 by intracranial injection of UCHL1-expressing rAAV reduces Aβ production, inhibits neuritic plaque formation and improves memory deficits in AD transgenic model mice. Our study suggests that UCHL1 may delay Alzheimer's progression by regulating APP degradation in a long-term fashion, and that overexpression of UCHL1 may be a safe and effective disease-modifying strategy to treat AD.

  15. Functional analysis of an S-adenosylhomocysteine hydrolase homolog of chestnut blight fungus.

    PubMed

    Liao, Suhuan; Li, Ru; Shi, Liming; Wang, Jinzi; Shang, Jinjie; Zhu, Pingchuan; Chen, Baoshan

    2012-11-01

    S-adenosylhomocysteine (SAH), formed after donation of the methyl group of S-adenosylmethionine (SAM) to a methyl acceptor, is reversibly hydrolyzed to adenosine (ADO) and homocysteine (HCY) by S-adenosylhomocysteine hydrolase (SAHH). In chestnut blight fungus (Cryphonectria parasitica), sahh, a hypovirus-regulated gene that encodes a deduced SAHH protein was shown to have an SAHH enzymatic activity in vitro. Deletion of sahh resulted in the increased accumulation of intracellular SAH and SAM but decreased ADO, and a remarkably increased accumulation of transcripts that encode adenosine kinase, methionine adenosyltransferase, and an O-methyltransferase, key components of the methylation pathway. The Δsahh knockout mutants showed a phenotype of slower growth rate, fewer aerial hyphae, loss of orange pigment, absence of asexual fruiting bodies and conidia, and a significant reduction in virulence. Deletion of sahh significantly reduced the accumulation level of transcripts of the cyp1 that encodes cyclophilin A as well as genes of the heterotrimeric G-protein signaling pathways including cpga1, cpgb1, and cpgc1 and ste12, a target activated by the MAP kinase cascade. Taken together, we demonstrated that SAHH is required for virulence and multiple traits of phenotype in C. parasitica, by regulation of the expression of genes involved in key process of the cell.

  16. Distribution and evolution of glycoside hydrolase family 45 cellulases in nematodes and fungi

    PubMed Central

    2014-01-01

    Background Horizontal gene transfer (HGT) has been suggested as the mechanism by which various plant parasitic nematode species have obtained genes important in parasitism. In particular, cellulase genes have been acquired by plant parasitic nematodes that allow them to digest plant cell walls. Unlike the typical glycoside hydrolase (GH) family 5 cellulase genes which are found in several nematode species from the order Tylenchida, members of the GH45 cellulase have only been identified in a cluster including the families Parasitaphelenchidae (with the pinewood nematode Bursaphelenchus xylophilus) and Aphelenchoididae, and their origins remain unknown. Results In order to investigate the distribution and evolution of GH45 cellulase genes in nematodes and fungi we performed a wide ranging screen for novel putative GH45 sequences. This revealed that the sequences are widespread mainly in Ascomycetous fungi and have so far been found in a single major nematode lineage. Close relationships between the sequences from nematodes and fungi were found through our phylogenetic analyses. An intron position is shared by sequences from Bursaphelenchus nematodes and several Ascomycetous fungal species. Conclusions The close phylogenetic relationships and conserved gene structure between the sequences from nematodes and fungi strongly supports the hypothesis that nematode GH45 cellulase genes were acquired via HGT from fungi. The rapid duplication and turnover of these genes within Bursaphelenchus genomes demonstrate that useful sequences acquired via HGT can become established in the genomes of recipient organisms and may open novel niches for these organisms to exploit. PMID:24690293

  17. Glycoside hydrolase processivity is directly related to oligosaccharide binding free energy.

    PubMed

    Payne, Christina M; Jiang, Wei; Shirts, Michael R; Himmel, Michael E; Crowley, Michael F; Beckham, Gregg T

    2013-12-18

    Many glycoside hydrolase (GH) enzymes act via a processive mechanism whereby an individual carbohydrate polymer chain is decrystallized and hydrolyzed along the chain without substrate dissociation. Despite considerable structural and biochemical studies, a molecular-level theory of processivity that relates directly to structural features of GH enzymes does not exist. Here, we hypothesize that the degree of processivity is directly linked to the ability of an enzyme to decrystallize a polymer chain from a crystal, quantified by the binding free energy of the enzyme to the cello-oligosaccharide. We develop a simple mathematical relationship formalizing this hypothesis to quantitatively relate the binding free energy to experimentally measurable kinetic parameters. We then calculate the absolute ligand binding free energy of cellulose chains to the biologically and industrially important GH Family 7 processive cellulases with free energy perturbation/replica-exchange molecular dynamics. Taken with previous observations, our results suggest that degree of processivity is directly correlated to the binding free energy of cello-oligosaccharide ligands to GH7s. The observed binding free energies also suggest candidate polymer morphologies susceptible to enzyme action when compared to the work required to decrystallize cellulose chains. We posit that the ligand binding free energy is a key parameter in comparing the activity and function of GHs and may offer a molecular-level basis toward a general theory of carbohydrate processivity in GHs and other enzymes able to process linear carbohydrate polymers, such as cellulose and chitin synthases.

  18. Cloning, Expression and Characterization of a Glycoside Hydrolase Family 39 Xylosidase from Bacillus Halodurans C-125

    NASA Astrophysics Data System (ADS)

    Wagschal, Kurt; Franqui-Espiet, Diana; Lee, Charles C.; Robertson, George H.; Wong, Dominic W. S.

    The gene encoding a glycoside hydrolase family 39 xylosidase (BH1068) from the alkaliphile Bacillus halodurans strain C-125 was cloned with a C-terminal His-tag, and the recombinant gene product termed BH1068(His)6 was expressed in Escherichia coli. Of the artificial substrates tested, BH1068(His)6 hydrolyzed nitrophenyl derivatives of β-d-xylopyranose, α-l-arabinofuranose, and α-l-arabinopyranose. Deviation from Michaelis-Menten kinetics at higher substrate concentrations indicative of transglycosylation was observed, and k cat and K m values were measured at both low and high substrate concentrations to illuminate the relative propensities to proceed along this alternate reaction pathway. The pH maximum was 6.5, and under the conditions tested, maximal activity was at 47°C, and thermal instability occurred above 45°C. BH1068(His)6 was inactive on arabinan, hydrolyzed xylooligosaccharides, and released only xylose from oat, wheat, rye, beech, and birch arabinoxylan, and thus, can be classified as a xylosidase with respect to natural substrate specificity. The enzyme was not inhibited by up to 200 mM xylose. The oligomerization state was tetrameric under the size-exclusion chromatography conditions employed.

  19. Methyl parathion hydrolase based nanocomposite biosensors for highly sensitive and selective determination of methyl parathion.

    PubMed

    Chen, Shizhen; Huang, Jing; Du, Dan; Li, Jinlin; Tu, Haiyang; Liu, Deli; Zhang, Aidong

    2011-07-15

    This article reports the fabrication of a nanocomposite biosensor for the sensitive and specific detection of methyl parathion. The nanocomposite sensing film was prepared via the formation of gold nanoparticles on silica particles, mixing with multiwall carbon nanotubes and subsequent covalent immobilization of methyl parathion hydrolase. The composite of the individual materials was finely tuned to offer the sensing film with high specific surface area and high conductivity. A significant synergistic effect of nanocomposites on the biosensor performance was observed in biosensing methyl parathion. The square wave voltammetric responses displayed well defined peaks, linearly proportional to the concentrations of methyl parathion in the range from 0.001 μg mL⁻¹ to 5.0 μg mL⁻¹ with a detection limit of 0.3 ng mL⁻¹. The application of this biosensor in the analysis of spiked garlic samples was also evaluated. The proposed protocol can be used as a platform for the simple and fast construction of biosensors with good performance for the determination of enzyme-specific electroactive species.

  20. Altering the substrate specificity of methyl parathion hydrolase with directed evolution.

    PubMed

    Ng, Tee-Kheang; Gahan, Lawrence R; Schenk, Gerhard; Ollis, David L

    2015-05-01

    Many organophosphates (OPs) are used as pesticides in agriculture. They pose a severe health hazard due to their inhibitory effect on acetylcholinesterase. Therefore, detoxification of water and soil contaminated by OPs is important. Metalloenzymes such as methyl parathion hydrolase (MPH) from Pseudomonas sp. WBC-3 hold great promise as bioremediators as they are able to hydrolyze a wide range of OPs. MPH is highly efficient towards methyl parathion (1 × 10(6) s(-1) M(-1)), but its activity towards other OPs is more modest. Thus, site saturation mutagenesis (SSM) and DNA shuffling were performed to find mutants with improved activities on ethyl paraxon (6.1 × 10(3) s(-1) M(-1)). SSM was performed on nine residues lining the active site. Several mutants with modest activity enhancement towards ethyl paraoxon were isolated and used as templates for DNA shuffling. Ultimately, 14 multiple-site mutants with enhanced activity were isolated. One mutant, R2F3, exhibited a nearly 100-fold increase in the kcat/Km value for ethyl paraoxon (5.9 × 10(5) s(-1) M(-1)). These studies highlight the 'plasticity' of the MPH active site that facilitates the fine-tuning of its active site towards specific substrates with only minor changes required. MPH is thus an ideal candidate for the development of an enzyme-based bioremediation system.

  1. A high throughput fluorescent assay for measuring the activity of fatty acid amide hydrolase.

    PubMed

    Kage, Karen L; Richardson, Paul L; Traphagen, Linda; Severin, Jean; Pereda-Lopez, Ana; Lubben, Thomas; Davis-Taber, Rachel; Vos, Melissa H; Bartley, Diane; Walter, Karl; Harlan, John; Solomon, Larry; Warrior, Usha; Holzman, Thomas F; Faltynek, Connie; Surowy, Carol S; Scott, Victoria E

    2007-03-30

    Fatty acid amide hydrolase (FAAH) is the enzyme responsible for the rapid degradation of fatty acid amides such as the endocannabinoid anandamide. Inhibition of FAAH activity has been suggested as a therapeutic approach for the treatment of chronic pain, depression and anxiety, through local activation of the cannabinoid receptor CB1. We have developed a high throughput screening assay for identification of FAAH inhibitors using a novel substrate, decanoyl 7-amino-4-methyl coumarin (D-AMC) that is cleaved by FAAH to release decanoic acid and the highly fluorescent molecule 7-amino-4-methyl coumarin (AMC). This assay gives an excellent signal window for measuring FAAH activity and, as a continuous assay, inherently offers improved sensitivity and accuracy over previously reported endpoint assays. The assay was validated using a panel of known FAAH inhibitors and purified recombinant human FAAH, then converted to a 384 well format and used to screen a large library of compounds (>600,000 compounds) to identify FAAH inhibitors. This screen identified numerous novel FAAH inhibitors of diverse chemotypes. These hits confirmed using a native FAAH substrate, anandamide, and had very similar rank order potency to that obtained using the D-AMC substrate. Collectively these data demonstrate that D-AMC can be successfully used to rapidly and effectively identify novel FAAH inhibitors for potential therapeutic use.

  2. γ-Glutamyl Hydrolase: Kinetic Characterization of Isopeptide Hydrolysis Using Fluorogenic Substrates†

    PubMed Central

    Alexander, Jessica P.; Ryan, Thomas J.; Ballou, David P.; Coward, James K.

    2008-01-01

    γ-Glutamyl hydrolase, a cysteine peptidase, catalyzes the hydrolysis of poly-γ-glutamate derivatives of folate co-factors and many antifolate drugs. We have used internally quenched fluorogenic derivatives of glutamyl-γ-glutamate and (4,4-difluoro)glutamyl-γ-glutamate to examine the effect of fluorine substitution adjacent to the scissile isopeptide bond. Using a newly developed continuous fluorescence assay, the hydrolysis of both substrates could be described by Michaelis-Menten kinetics. Fluorine substitution resulted in a significant decrease in observed rates of hydrolysis under steady-state conditions due primarily to a ~ 15-fold increase in Km. Using stopped-flow techniques, hydrolysis of the non-fluorinated isopeptide was characterized by a burst phase followed by a steady-state rate, indicating that formation of the acyl enzyme is not rate-limiting for hydrolysis of this isopeptide. This conclusion was confirmed by analysis of the progress curves over a wide range of substrate concentration, which demonstrated that the acylation rate (k2) is ~ 10-fold higher than the deacylation rate (k3). The increased value of Km associated with the difluoro derivative limited the ability to obtain comparable pre-steady-state kinetics data at saturating concentration of substrate due to inner filter effects. However, even under non-saturating conditions, a modest burst was observed for the difluoro derivative. These data indicate that either deacylation or rearrangement of the enzyme-product complex is rate-limiting in this isopeptide hydrolysis reaction. PMID:18171026

  3. Roles of poly(3-hydroxybutyrate) depolymerase and 3HB-oligomer hydrolase in bacterial PHB metabolism.

    PubMed

    Sugiyama, Akinori; Kobayashi, Teruyuki; Shiraki, Mari; Saito, Terumi

    2004-06-01

    Many poly-3-hydroxybutyrate (PHB)-degrading enzymes have been studied. But biological roles of 3HB-oligomer hydrolases (3HBOHs) and how PHB depolymerases (PHBDPs) and 3HBOHs cooperate in PHB metabolism are not fully elucidated. In this study, several PHBDPs and 3HBOHs from three types of bacteria were purified, and their substrate specificity, kinetic properties, and degradation products were investigated. From the results, PHBDP and 3HBOH seemed to play a role in PHB metabolism in three types of bacteria, as follows: (A) In Ralstonia pickettii T1, an extracellular PHBDP degrades extracellular PHB to various-sized 3HB-oligomers, which an extracellular 3HBOH hydrolyzes to 3HB-monomers. (B) In Acidovorax sp. SA1, an extracellular PHBDP hydrolyzes extracellular PHB to small 3HB-oligomers (dimer and trimer), which an intracellular 3HBOH efficiently degrades to 3HB in the cell. (C) In Ralstonia eutropha H16, an intracellular 3HBOH helps in the degradation of intracellular PHB inclusions by PHBDP.

  4. Colorimetric assay for S-adenosylhomocysteine hydrolase activity and inhibition using fluorosurfactant-capped gold nanoparticles.

    PubMed

    Lin, Jia-Hui; Chang, Chung-Wei; Wu, Zong-Han; Tseng, Wei-Lung

    2010-11-01

    This study reports a simple colorimetric method for the sensitive detection of S-adenosylhomocysteine hydrolase (SAHH) activity and inhibition using fluorosurfactant-capped gold nanoparticles (FSN-AuNPs). FSN stabilizes the AuNPs against conditions of high ionic strength, and FSN-AuNPs are merely aggregated in the presence of homocysteine (HCys) and cysteine. Because of this feature, FSN-AuNPs were found to be dispersed in the presence of S-adenosylhomocysteine (SAH) that lacks a free thiol group. After SAHH catalyzed the hydrolysis of SAH, the produced HCys molecules were bound to the surface of AuNPs through the formation of Au-S bonds. As a result, the nanoparticle (NP) aggregation occurred through electrostatic attraction between each HCys-attached AuNP. This approach had a minimum detectable concentration of 100 units/L (~6 nM). Additionally, because adenosine analogs are capable of inhibiting SAHH activity, the addition of adenosine analogs to a solution containing SAH and SAHH resulted in the suppression of hydrolyzed SAH-induced NP aggregation. Adenosine analogs exhibited the following trend in the half-maximal inhibitory concentrations: adenosine > adenosine monophosphate > adenosine diphosphate ~ adenosine triphosphate. We have demonstrated that the combination of SAHH inhibition and FSN-AuNPs can be utilized for the selective detection of adenosine.

  5. Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme.

    PubMed

    Walker, Jeremy P; Kimble, Kyle W; Asher, Sanford A

    2007-12-01

    We developed an intelligent polymerized crystalline colloidal array (IPCCA) photonic crystal sensing material which reversibly senses the organophosphate compound methyl paraoxon at micromolar concentrations in aqueous solutions. A periodic array of colloidal particles is embedded in a poly-2-hydroxyethylacrylate hydrogel. The particle lattice spacing is such that the array Bragg-diffracts visible light. We utilize a bimodular sensing approach in which the enzyme organophosphorus hydrolase (OPH) catalyzes the hydrolysis of methyl paraoxon at basic pH, producing p-nitrophenolate, dimethylphosphate, and two protons. The protons lower the pH and create a steady-state pH gradient. Protonation of the phenolates attached to the hydrogel makes the free energy of mixing of the hydrogel less favorable, which causes the hydrogel to shrink. The IPCCA's lattice constant decreases, which blueshifts the diffracted light. The magnitude of the steady-state diffraction blueshift is proportional to the concentration of methyl paraoxon. The current detection limit is 0.2 micromol methyl paraoxon per liter.

  6. Pharmacological inhibition of soluble epoxide hydrolase ameliorates diet-induced metabolic syndrome in rats.

    PubMed

    Iyer, Abishek; Kauter, Kathleen; Alam, Md Ashraful; Hwang, Sung Hee; Morisseau, Christophe; Hammock, Bruce D; Brown, Lindsay

    2012-01-01

    The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH) during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment with trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a potent sEH inhibitor, alleviated the signs of metabolic syndrome in vivo including glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.

  7. Immobilization of bile salt hydrolase enzyme on mesoporous SBA-15 for co-precipitation of cholesterol.

    PubMed

    Bhange, Pallavi; Sridevi, N; Bhange, Deu S; Prabhune, Asmita; Ramaswamy, Veda

    2014-02-01

    We describe herein a simple and effective strategy for immobilization of bile salt hydrolase enzyme by grafting glutaraldehyde groups inside channels of APTES functionalized SBA-15. The increase in glutaraldehyde concentration prevents leakage of enzyme but showed a steep decrease in enzyme activity in the immobilized matrix. So the degree of cross-linking should be the minimum possible to ensure sufficient stability without loss of activity. Cross-linking carried out with 0.1% glutaraldehyde concentration showed the highest activity, so this was used in all further experiments. Physico-chemical characterizations of the immobilized enzyme were carried out by XRD, N2 adsorption, TEM, FTIR and (29)Si CP-MAS NMR techniques. Immobilized BSH exhibits enhanced stability over a wide pH (3-11) and temperature range (40-80 °C) and retains an activity even after recycling experiments and six months of storage. From our in vivo research experiment toward co-precipitation of cholesterol, we have shown that immobilized BSH enzyme may be the promising catalyst for the reduction of serum cholesterol levels in our preliminary investigation. Enhancement in pH stability at the extreme side of pH may favor the use of immobilized BSH enzyme for drug delivery purpose to with stand extreme pH conditions in the gastrointestinal conditions.

  8. Coacervate Core Micelles for the Dispersion and Stabilization of Organophosphate Hydrolase in Organic Solvents

    NASA Astrophysics Data System (ADS)

    Mills, Carolyn; Obermeyer, Allie; Dong, Xuehui; Olsen, Bradley D.

    Bulk organophosphate (OP) nerve agents are difficult to decontaminate on site and dangerous to transport. The organophosphate hydrolase (OPH) enzyme is an efficient catalyst for hydrolyzing, and thus decontaminating, these compounds, but suffers from poor stability in the hydrophobic bulk OP environment. Here, we exploit the complex coacervation phase separation phenomenon to form complex coacervate core micelles (C3Ms) that can protect this OPH enzyme under these conditions. Stable C3Ms form when mixing a charged-neutral block copolymer methyl-quaternized poly(4-vinylpyridine)-block-poly(oligo(ethylene glycol) methacrylate) (Qp4vp- b-POEGMA), a homopolymer poly(acrylic acid) (PAA), and OPH under a certain conditions. The C3Ms are then transferred into two organic solvents, ethanol and dimethyl methylphosphonate (DMMP), which is a good simulant for the physical properties of the OP compounds. The C3Ms retain their nanostructures in the organic solvents. The activity test of OPH indicates that the C3Ms successfully protect OPH activity in organic solvents.

  9. Organophosphate Hydrolase in Conductometric Biosensor for the Detection of Organophosphate Pesticides

    PubMed Central

    Mulyasuryani, Ani; Prasetyawan, Sasangka

    2015-01-01

    The research has developed an enzyme biosensor for the detection organophosphate pesticide residues. The biosensor consists of a pair of screen-printed carbon electrode (SPCEs). One of electrodes contains immobilized organophosphate hydrolase (OPH) on a chitosan membrane by cross-linking it with glutaraldehyde. The area of the electrodes was optimized to 3, 5, and 7 mm2. The OPH was isolated from Pseudomonas putida, and was purified by the ammonium sulfate precipitation method, with 6444 ppm (A) and 7865 ppm (B). The organophosphate pesticide samples were 0–100 ppb in tris-acetate buffer 0.05 M, pH 8.5. The results showed that the best performance of the biosensor was achieved by the enzyme A with an electrode area of 5 mm2. The sensitivity of the biosensor was between 3 and 32 µS/ppb, and the detection limit for the organophosphate pesticides was 40 ppb (diazinon), 30 ppb (malathion), 20 ppb (chlorpyrifos), and 40 ppm (profenofos). PMID:26483607