Science.gov

Sample records for acyrthosiphon pisum genome

  1. Genome sequence of the pea aphid Acyrthosiphon pisum.

    PubMed

    2010-02-23

    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.

  2. Genome Sequence of the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    2010-01-01

    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems. PMID:20186266

  3. The power of EST sequence data: Relation to Acyrthosiphon pisum genome annotation and functional genomics initiatives

    USDA-ARS?s Scientific Manuscript database

    Genes important to aphid biology, survival and reproduction were successfully identified by use of a genomics approach. We created and described the Sequencing, compilation, and annotation of the approxiamtely 525Mb nuclear genome of the pea aphid, Acyrthosiphon pisum, which represents an important ...

  4. The pea aphid (Acyrthosiphon pisum) genome encodes two divergent early developmental programs.

    PubMed

    Duncan, Elizabeth J; Leask, Megan P; Dearden, Peter K

    2013-05-01

    The pea aphid (Acyrthosiphon pisum) can reproduce either sexually or asexually (parthenogenetically), giving rise, in each case, to almost identical adults. These two modes of reproduction are accompanied by differences in ovarian morphology and the developmental environment of the offspring, with sexual forms producing eggs that are laid, whereas asexual development occurs within the mother. Here we examine the effect each mode of reproduction has on the expression of key maternal and axis patterning genes; orthodenticle (otd), hunchback (hb), caudal (cad) and nanos (nos). We show that three of these genes (Ap-hb, Ap-otd and Ap-cad) are expressed differently between the sexually and asexually produced oocytes and embryos of the pea aphid. We also show, using immunohistochemistry and cytoskeletal inhibitors, that Ap-hb RNA is localized differently between sexually and asexually produced oocytes, and that this is likely due to differences in the 3' untranslated regions of the RNA. Furthermore, Ap-hb and Ap-otd have extensive expression domains in early sexually produced embryos, but are not expressed at equivalent stages in asexually produced embryos. These differences in expression likely correspond with substantial changes in the gene regulatory networks controlling early development in the pea aphid. These data imply that in the evolution of parthenogenesis a new program has evolved to control the development of asexually produced embryos, whilst retaining the existing, sexual, developmental program. The patterns of modification of these developmental processes mirror the changes that we see in developmental processes between species, in that early acting pathways in development are less constrained, and evolve faster, than later ones. We suggest that the evolution of the novel asexual development pathway in aphids is not a simple modification of an ancestral system, but the evolution of two very different developmental mechanisms occurring within a single

  5. Cannibalism in the pea aphid, Acyrthosiphon pisum.

    PubMed

    Cooper, Lucy C; Desjonqueres, Camille; Leather, Simon R

    2014-12-01

    Previous observations of cannibalism have been made in the aphid Acyrthosiphon pisum (L.): this article seeks to quantify factors contributing to such behaviors. We observed and quantified the responses of a number of clones and life stages to varying levels of starvation, in the form of increasingly desiccated Vica faba L. plants (receiving 50, 25, or 10 mL every second day) or a complete absence of host plant. We found that, while the longest incidences of cannibalism are carried out by juveniles (F = 3.45, P = 0.019, df = 3) and targeted at adults, the starvation treatments had the most significant effect on the prevalence of cannibalism in mature A. pisum (F = 2.24, P = 0.025, df = 9). Furthermore, there was no difference between the prevalence or duration of cannibalistic activities within and between different clones (P ≥ 0.05 in all cases), though juveniles were more likely to target unrelated aphids (V = 6 112, P = 0.011), and spent more time feeding on aphids from the same culture (V = 6 062, P = 0.018).

  6. Immunity and other defenses in pea aphids, Acyrthosiphon pisum

    PubMed Central

    2010-01-01

    Background Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of response molecules, such as antimicrobial peptides and lysozymes, which degrade or destroy invaders. Using the recently sequenced genome of the pea aphid (Acyrthosiphon pisum), we conducted the first extensive annotation of the immune and stress gene repertoire of a hemipterous insect, which is phylogenetically distantly related to previously characterized insects models. Results Strikingly, pea aphids appear to be missing genes present in insect genomes characterized to date and thought critical for recognition, signaling and killing of microbes. In line with results of gene annotation, experimental analyses designed to characterize immune response through the isolation of RNA transcripts and proteins from immune-challenged pea aphids uncovered few immune-related products. Gene expression studies, however, indicated some expression of immune and stress-related genes. Conclusions The absence of genes suspected to be essential for the insect immune response suggests that the traditional view of insect immunity may not be as broadly applicable as once thought. The limitations of the aphid immune system may be representative of a broad range of insects, or may be aphid specific. We suggest that several aspects of the aphid life style, such as their association with microbial symbionts, could facilitate survival without strong immune protection. PMID:20178569

  7. EMS mutagenesis in the pea aphid Acyrthosiphon pisum.

    PubMed

    Tagu, Denis; Le Trionnaire, Gaël; Tanguy, Sylvie; Gauthier, Jean-Pierre; Huynh, Jean-René

    2014-04-16

    In aphids, clonal individuals can show distinct morphologic traits in response to environmental cues. Such phenotypic plasticity cannot be studied with classical genetic model organisms such as Caenorhabditis elegans or Drosophila melanogaster. The genetic basis of this biological process remain unknown, as mutations affecting this process are not available in aphids. Here, we describe a protocol to treat third-stage larvae with an alkylating mutagen, ethyl methanesulfonate (EMS), to generate random mutations within the Acyrthosiphon pisum genome. We found that even low concentrations of EMS were toxic for two genotypes of A. pisum. Mutagenesis efficiency was nevertheless assessed by estimating the occurrence of mutational events on the X chromosome. Indeed, any lethal mutation on the X-chromosome would kill males that are haploid on the X so that we used the proportion of males as an estimation of mutagenesis efficacy. We could assess a putative mutation rate of 0.4 per X-chromosome at 10 mM of EMS. We then applied this protocol to perform a small-scale mutagenesis on parthenogenetic individuals, which were screened for defects in their ability to produce sexual individuals in response to photoperiod shortening. We found one mutant line showing a reproducible altered photoperiodic response with a reduced production of males and the appearance of aberrant winged males (wing atrophy, alteration of legs morphology). This mutation appeared to be stable because it could be transmitted over several generations of parthenogenetic individuals. To our knowledge, this study represents the first example of an EMS-generated aphid mutant.

  8. EMS Mutagenesis in the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    Tagu, Denis; Le Trionnaire, Gaël; Tanguy, Sylvie; Gauthier, Jean-Pierre; Huynh, Jean-René

    2014-01-01

    In aphids, clonal individuals can show distinct morphologic traits in response to environmental cues. Such phenotypic plasticity cannot be studied with classical genetic model organisms such as Caenorhabditis elegans or Drosophila melanogaster. The genetic basis of this biological process remain unknown, as mutations affecting this process are not available in aphids. Here, we describe a protocol to treat third-stage larvae with an alkylating mutagen, ethyl methanesulfonate (EMS), to generate random mutations within the Acyrthosiphon pisum genome. We found that even low concentrations of EMS were toxic for two genotypes of A. pisum. Mutagenesis efficiency was nevertheless assessed by estimating the occurrence of mutational events on the X chromosome. Indeed, any lethal mutation on the X-chromosome would kill males that are haploid on the X so that we used the proportion of males as an estimation of mutagenesis efficacy. We could assess a putative mutation rate of 0.4 per X-chromosome at 10 mM of EMS. We then applied this protocol to perform a small-scale mutagenesis on parthenogenetic individuals, which were screened for defects in their ability to produce sexual individuals in response to photoperiod shortening. We found one mutant line showing a reproducible altered photoperiodic response with a reduced production of males and the appearance of aberrant winged males (wing atrophy, alteration of legs morphology). This mutation appeared to be stable because it could be transmitted over several generations of parthenogenetic individuals. To our knowledge, this study represents the first example of an EMS-generated aphid mutant. PMID:24531730

  9. Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera)

    PubMed Central

    Sabater-Muñoz, Beatriz; Legeai, Fabrice; Rispe, Claude; Bonhomme, Joël; Dearden, Peter; Dossat, Carole; Duclert, Aymeric; Gauthier, Jean-Pierre; Ducray, Danièle Giblot; Hunter, Wayne; Dang, Phat; Kambhampati, Srini; Martinez-Torres, David; Cortes, Teresa; Moya, Andrès; Nakabachi, Atsushi; Philippe, Cathy; Prunier-Leterme, Nathalie; Rahbé, Yvan; Simon, Jean-Christophe; Stern, David L; Wincker, Patrick; Tagu, Denis

    2006-01-01

    Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect. PMID:16542494

  10. Molecular characterisation of a candidate gut sucrase in the pea aphid, Acyrthosiphon pisum.

    PubMed

    Price, D R G; Karley, A J; Ashford, D A; Isaacs, H V; Pownall, M E; Wilkinson, H S; Gatehouse, J A; Douglas, A E

    2007-04-01

    The hydrolysis of sucrose, the principal dietary source of carbon for aphids, is catalysed by a gut alpha-glucosidase/transglucosidase activity. An alpha-glucosidase, referred to as APS1, was identified in both a gut-specific cDNA library and a sucrase-enriched membrane preparation from guts of the pea aphid Acyrthosiphon pisum by a combination of genomic and proteomic techniques. APS1 contains a predicted signal peptide, and has a predicted molecular mass of 68 kDa (unprocessed) or 66.4 kDa (mature protein). It has amino acid sequence similarity to alpha-glucosidases (EC 3.2.1.20) of glycoside hydrolase family 13 in other insects. The predicted APS1 protein contains two domains: an N-terminal catalytic domain, and a C-terminal hydrophobic domain. In situ localisation and RT-PCR studies revealed that APS1 mRNA was expressed in the gut distal to the stomach, the same localisation as sucrase activity. When expressed heterologously in Xenopus embryos, APS1 was membrane-bound and had sucrase activity. It is concluded that APS1 is a dominant, and possibly sole, protein mediating sucrase activity in the aphid gut.

  11. A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea).

    PubMed

    Miura, Toru; Braendle, Christian; Shingleton, Alexander; Sisk, Geoffroy; Kambhampati, Srinivas; Stern, David L

    2003-02-15

    Aphids exhibit divergent modes of embryogenesis during the sexual and asexual phases of the life cycle. To explore how a single genome can give rise to these alternative developmental modes, we have initiated embryological studies of the pea aphid, Acyrthosiphon pisum. Here we present a detailed description of parthenogenetic, viviparous embryonic development in the pea aphid. We compare and contrast development of the parthenogenetic embryo with that of the embryo resulting from sexual reproduction. The primary difference between the embryos is the scale on which development occurs: early parthenogenetic development occurs in a volume approximately three orders of magnitude smaller than the sexual egg, largely because of the apparent absence of yolk in the parthenogenetic egg. This results in a drastically different duration of syncytial energid cleavage and, presumably, patterning processes in the two embryos must act at scales that differ by orders of magnitude. The eggs also develop on time scales that differ approximately by an order of magnitude and the timing of the embryonic movements, collectively called blastokinesis, have temporally shifted relative to growth of the embryo. In addition, the endosymbiotic bacteria are transferred from mother to embryo in different ways in the two embryos. Finally, the function of the serosa has diverged greatly in the two embryos: in the sexual egg the serosa deposits a thick cuticle that protects the egg, whereas the serosa of the parthenogenetic embryo is greatly reduced and its function is unclear. The pea aphid is a useful model system for examining how a single genome has evolved to allow divergent modes of development. Copyright 2003 Wiley-Liss, Inc.

  12. Immunity and defense in pea aphids, Acyrthosiphon pisum

    USDA-ARS?s Scientific Manuscript database

    Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites, and stresses. At the center of pathogen-induced immune response are signaling pathways triggered by the recognition of fungal, bacterial, and viral signatures. T...

  13. Antifeedant activity and high mortality in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae) induced by biostable insect kinin analogs

    USDA-ARS?s Scientific Manuscript database

    The insect kinins are multifunctional neuropeptides found in a variety of arthropod species, including the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). A series of biostable insect kinin analogs based on the shared C-terminal pentapeptide core region were fed in solutions of artificial diet t...

  14. Influence of temperature on pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) resistance to natural enemy attack.

    PubMed

    Stacey, D A; Fellowes, M D E

    2002-08-01

    The ability to resist or avoid natural enemy attack is a critically important insect life history trait, yet little is understood of how these traits may be affected by temperature. This study investigated how different genotypes of the pea aphid Acyrthosiphon pisum Harris, a pest of leguminous crops, varied in resistance to three different natural enemies (a fungal pathogen, two species of parasitoid wasp and a coccinellid beetle), and whether expression of resistance was influenced by temperature. Substantial clonal variation in resistance to the three natural enemies was found. Temperature influenced the number of aphids succumbing to the fungal pathogen Erynia neoaphidis Remaudière & Hennebert, with resistance increasing at higher temperatures (18 vs. 28 degrees C). A temperature difference of 5 degrees C (18 vs. 23 degrees C) did not affect the ability of A. pisum to resist attack by the parasitoids Aphidius ervi Haliday and A. eadyi Starý, González & Hall. Escape behaviour from foraging coccinellid beetles (Hippodamia convergens Guerin-Meneville) was not directly influenced by aphid clone or temperature (16 vs. 21 degrees C). However, there were significant interactions between clone and temperature (while most clones did not respond to temperature, one was less likely to escape at 16 degrees C), and between aphid clone and ladybird presence (some clones showed greater changes in escape behaviour in response to the presence of foraging coccinellids than others). Therefore, while larger temperature differences may alter interactions between Acyrthosiphon pisum and an entomopathogen, there is little evidence to suggest that smaller changes in temperature will alter pea aphid-natural enemy interactions.

  15. Conditional Facilitation of an Aphid Vector, Acyrthosiphon pisum, by the Plant Pathogen, Pea Enation Mosaic Virus

    PubMed Central

    Hodge, Simon; Powell, Glen

    2010-01-01

    Plant pathogens can induce symptoms that affect the performance of insect herbivores utilizing the same host plant. Previous studies examining the effects of infection of tic bean, Vicia faba L. (Fabales: Fabaceae), by pea enation mosaic virus (PEMV), an important disease of legume crops, indicated there were no changes in the growth and reproductive rate of its primary vector the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). Here, we report the results of laboratory experiments investigating how A. pisum responded to PEMV infection of a different host plant, Pisum sativum L., at different stages of symptom development. Aphid growth rate was negatively related to the age of the host plant, but when they were introduced onto older plants with well-developed PEMV symptoms they exhibited a higher growth rate compared to those developing on uninfected plants of the same age. In choice tests using leaf discs A. pisum showed a strong preference for discs from PEMV-infected peas, probably in response to visual cues from the yellowed and mottled infected leaves. When adults were crowded onto leaves using clip-cages they produced more winged progeny on PEMV-infected plants. The results indicate that PEMV produces symptoms in the host plant that can enhance the performance of A. pisum as a vector, modify the production of winged progeny and affect their spatial distribution. The findings provide further evidence that some insect vector/plant pathogen interactions could be regarded as mutualistic rather than commensal when certain conditions regarding the age, stage of infection and species of host plant are met. PMID:21067425

  16. Cytochrome P450 gene, CYP4G51, modulates hydrocarbon production in the pea aphid, Acyrthosiphon pisum.

    PubMed

    Chen, Nan; Fan, Yong-Liang; Bai, Yu; Li, Xiang-Dong; Zhang, Zhan-Feng; Liu, Tong-Xian

    2016-09-01

    Terrestrial insects deposit a layer of hydrocarbons (HCs) as waterproofing agents on their epicuticle. The insect-specific CYP4G genes, subfamily members of P450, have been found in all insects with sequenced genomes to date. They are critical for HC biosynthesis in Drosophila; however, their functional roles in other insects including the piercing-sucking hemipterous aphids remain unknown. In this study, we presented the molecular characterization and a functional study of the CYP4G51 gene in the pea aphid, Acyrthosiphon pisum (Harris). CYP4G51 transcript was detectable across the whole life cycle of A. pisum, and was prominently expressed in the aphid head and abdominal cuticle. Up-regulation of CYP4G51 under desiccation stress was more significant in the third instar nymphs compared with the adults. Also, up-regulation of CYP4G51 was observed when the aphids fed on an artificial diet compared with those fed on the broad bean plant, and was positively correlated with a high level of cuticular HCs (CHCs). RNAi knockdown of CYP4G51 significantly reduced its expression and caused reductions in both internal and external HCs. A deficiency in CHCs resulted in aphids being more susceptible to desiccation, with increased mortality under desiccation stress. The current results confirm that CYP4G51 modulates HC biosynthesis to protect aphids from desiccation. Moreover, our data also indicate that saturated and straight-chain HCs play a major role in cuticular waterproofing in the pea aphid. A. pisum CYP4G51 could be considered as a novel RNAi target in the field of insect pest management.

  17. Transcriptome of Dickeya dadantii Infecting Acyrthosiphon pisum Reveals a Strong Defense against Antimicrobial Peptides

    PubMed Central

    Costechareyre, Denis; Chich, Jean-François; Strub, Jean-Marc; Rahbé, Yvan; Condemine, Guy

    2013-01-01

    The plant pathogenic bacterium Dickeya dadantii has recently been shown to be able to kill the aphid Acyrthosiphon pisum. While the factors required to cause plant disease are now well characterized, those required for insect pathogeny remain mostly unknown. To identify these factors, we analyzed the transcriptome of the bacteria isolated from infected aphids. More than 150 genes were upregulated and 300 downregulated more than 5-fold at 3 days post infection. No homologue to known toxin genes could be identified in the upregulated genes. The upregulated genes reflect the response of the bacteria to the conditions encountered inside aphids. While only a few genes involved in the response to oxidative stress were induced, a strong defense against antimicrobial peptides (AMP) was induced. Expression of a great number of efflux proteins and transporters was increased. Besides the genes involved in LPS modification by addition of 4-aminoarabinose (the arnBCADTEF operon) and phosphoethanolamine (pmrC, eptB) usually induced in Gram negative bacteria in response to AMPs, dltBAC and pbpG genes, which confer Gram positive bacteria resistance to AMPs by adding alanine to teichoic acids, were also induced. Both types of modification confer D. dadantii resistance to the AMP polymyxin. A. pisum harbors symbiotic bacteria and it is thought that it has a very limited immune system to maintain these populations and do not synthesize AMPs. The arnB mutant was less pathogenic to A. pisum, which suggests that, in contrast to what has been supposed, aphids do synthesize AMP. PMID:23342088

  18. Pea aphid Acyrthosiphon pisum sequesters plant-derived secondary metabolite L-DOPA for wound healing and UVA resistance.

    PubMed

    Zhang, Yi; Wang, Xing-Xing; Zhang, Zhan-Feng; Chen, Nan; Zhu, Jing-Yun; Tian, Hong-Gang; Fan, Yong-Liang; Liu, Tong-Xian

    2016-03-23

    Herbivores can ingest and store plant-synthesized toxic compounds in their bodies, and sequester those compounds for their own benefits. The broad bean, Vicia faba L., contains a high quantity of L-DOPA (L-3,4-dihydroxyphenylalanine), which is toxic to many insects. However, the pea aphid, Acyrthosiphon pisum, can feed on V. faba normally, whereas many other aphid species could not. In this study, we investigated how A. pisum utilizes plant-derived L-DOPA for their own benefit. L-DOPA concentrations in V. faba and A. pisum were analyzed to prove L-DOPA sequestration. L-DOPA toxicity was bioassayed using an artificial diet containing high concentrations of L-DOPA. We found that A. pisum could effectively adapt and store L-DOPA, transmit it from one generation to the next. We also found that L-DOPA sequestration verity differed in different morphs of A. pisum. After analyzing the melanization efficiency in wounds, mortality and deformity of the aphids at different concentrations of L-DOPA under ultraviolet radiation (UVA 365.0 nm for 30 min), we found that A. pisum could enhance L-DOPA assimilation for wound healing and UVA-radiation protection. Therefore, we conclude that A. pisum could acquire L-DOPA and use it to prevent UVA damage. This study reveals a successful co-evolution between A. pisum and V. faba.

  19. Pea aphid Acyrthosiphon pisum sequesters plant-derived secondary metabolite L-DOPA for wound healing and UVA resistance

    PubMed Central

    Zhang, Yi; Wang, Xing-Xing; Zhang, Zhan-Feng; Chen, Nan; Zhu, Jing-Yun; Tian, Hong-Gang; Fan, Yong-Liang; Liu, Tong-Xian

    2016-01-01

    Herbivores can ingest and store plant-synthesized toxic compounds in their bodies, and sequester those compounds for their own benefits. The broad bean, Vicia faba L., contains a high quantity of L-DOPA (L-3,4-dihydroxyphenylalanine), which is toxic to many insects. However, the pea aphid, Acyrthosiphon pisum, can feed on V. faba normally, whereas many other aphid species could not. In this study, we investigated how A. pisum utilizes plant-derived L-DOPA for their own benefit. L-DOPA concentrations in V. faba and A. pisum were analyzed to prove L-DOPA sequestration. L-DOPA toxicity was bioassayed using an artificial diet containing high concentrations of L-DOPA. We found that A. pisum could effectively adapt and store L-DOPA, transmit it from one generation to the next. We also found that L-DOPA sequestration verity differed in different morphs of A. pisum. After analyzing the melanization efficiency in wounds, mortality and deformity of the aphids at different concentrations of L-DOPA under ultraviolet radiation (UVA 365.0 nm for 30 min), we found that A. pisum could enhance L-DOPA assimilation for wound healing and UVA-radiation protection. Therefore, we conclude that A. pisum could acquire L-DOPA and use it to prevent UVA damage. This study reveals a successful co-evolution between A. pisum and V. faba. PMID:27006098

  20. Hunchback is required for abdominal identity suppression and germband growth in the parthenogenetic embryogenesis of the pea aphid, Acyrthosiphon pisum.

    PubMed

    Mao, Jianjun; Liu, Changyan; Zeng, Fanrong

    2013-12-01

    Aphid, a short germband insect, displays an embryogenesis different from that of long germband insect species. Furthermore, the development of its parthenogenetic and viviparous embryo is different from that of the embryo resulting from sexual reproduction. To better understand the genetic regulation of this type of embryogenesis, the functions of hunchback in asexual Acyrthosiphon pisum were investigated by parental RNAi. Microinjection of Aphb double-stranded RNA yielded several defective phenotypes. Quantitative real-time PCR analysis revealed that these defects resulted from reduction of Aphb mRNA level in injected aphids. All these results suggested that the hb gene in parthenogenetic and viviparous Acyrthosiphon pisum was involved in abdominal identity suppression and germband growth as its homologue does in sexual insects. © 2013 Wiley Periodicals, Inc.

  1. Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation.

    PubMed

    Mai, Van Chung; Bednarski, Waldemar; Borowiak-Sobkowiak, Beata; Wilkaniec, Barbara; Samardakiewicz, Sławomir; Morkunas, Iwona

    2013-09-01

    In this study we examined whether and to what extent oxidative stress is induced in seedling leaves of Pisum sativum L. cv. Cysterski in response to pea aphid (Acyrthosiphon pisum Harris) infestation. A. pisum caused oxidative stress conditions in pea leaves through enhanced production of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide anion radical (O2(·-)). Early, strong generation of H2O2 was observed at 24h in aphid-infested leaves. The highest level of H2O2 at this time point may be related to the functioning of H2O2 as a signaling molecule, triggering defense mechanisms in pea leaves against A. pisum. Additionally, the strong generation and continuous increase of O2(·-) production in aphid-infested leaves from 0 to 96 h enhanced the defense potential to protect against aphid herbivory. Also in the study cytochemical localization of H2O2 and O2(·-) in pea leaves after aphid infestation was determined using the confocal microscope. Relative release of H2O2 and O2(·-) was estimated by staining leaves with specific fluorochromes, i.e. dichlorodihydro-fluorescein diacetate (DCFH-DA) and dihydroethidium (DHE), respectively. DCFH-DA and DHE derived fluorescence was observed to cover a much larger tissue area in aphid-infested leaves, whereas little or no fluorescence was observed in the control leaves. Enhanced activity of the antioxidant enzymes superoxide dismutase (SOD, 1.15.1.1) and catalase (CAT, 1.11.1.6) is one of the most essential elements of defense responses in pea seedling leaves to oxidative stress. Additionally, generation of semiquinones, stable free radicals with g-values of 2.0020 and 2.0035, detected by electron paramagnetic resonance spectroscopy (EPR), was suggested as a protective action of pea that may contribute to build-up of a defensive barrier or activate other defense mechanisms. Concentrations of semiquinone radicals in aphid-infested seedling leaves not only were generally higher than in the control plants

  2. Peroxiredoxin 1 protects the pea aphid Acyrthosiphon pisum from oxidative stress induced by Micrococcus luteus infection.

    PubMed

    Zhang, Yongdong; Lu, Zhiqiang

    2015-05-01

    Reactive oxygen species (ROSs) are generated in organisms in response to infections caused by invading microbes. However, excessive ROSs will inflict oxidative damage on the host. Peroxiredoxins (Prxs) are antioxidative enzymes that may eliminate ROSs efficiently. In this study, ApPrx1 from the pea aphid Acyrthosiphon pisum was cloned, and its function was investigated in vitro and in vivo. In the presence of DTT, recombinant ApPrx1 protein from Escherichia coli showed antioxidative activity by eliminating H2O2 effectively. The H2O2 levels were significantly higher in Micrococcus luteus-infected aphids than in uninfected aphids, and ApPrx1 expression was remarkably up-regulated when the aphids were infected with M. luteus or injected with H2O2. When ApPrx1 expression was reduced by dsRNA injection, the survival of the aphids decreased significantly after M. luteus infection. Knockdown of ApPrx1 decreased M. luteus loads inside the aphids 48h post-infection. While under infection conditions, the H2O2 levels were much higher in ApPrx1 knockdown aphids than in dsGFP-injected aphids, indicating that the decreased survival of the aphids was caused by increased oxidative stress. Taken together, our results reveal that ApPrx1 plays a protective role in oxidative stress caused by bacterial infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Determination of melatonin in Acyrthosiphon pisum aphids by liquid chromatography-tandem mass spectrometry.

    PubMed

    Escrivá, Laura; Manyes, Lara; Barberà, Miquel; Martínez-Torres, David; Meca, Guiseppe

    2016-03-01

    Melatonin is a hormone mainly involved in the regulation of circadian and seasonal rhythms in both invertebrates and vertebrates. Despite the identification of melatonin in many insects, its involvement in the insect seasonal response remains unclear. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for melatonin analysis in aphids (Acyrthosiphon pisum) for the first time. After comparing two different procedures and five extraction solvents, a sample preparation procedure with a mixture of methanol/water (50:50) was selected for melatonin extraction. The method was validated by analyzing melatonin recovery at three spiked concentrations (5, 50 and 100 pg/mg) and showed satisfactory recoveries (75-110%), and good repeatability, expressed as relative standard deviation (<10%). Limits of detection (LOD) and quantitation (LOQ) were 1 pg/mg and 5 pg/mg, respectively. Eight concentration levels were used for constructing the calibration curves which showed good linearity between LOQ and 200 times LOQ. The validated method was successfully applied to 26 aphid samples demonstrating its usefulness for melatonin determination in insects. This is -to our knowledge- the first identification of melatonin in aphids by LC-MS/MS.

  4. Strategies used by two apterous strains of the pea aphid Acyrthosiphon pisum for passive dispersal

    PubMed Central

    Zhang, Yi; Wang, Xing-Xing; Zhu, Jing-Yun; Zhang, Zhan-Feng; Tian, Hong-Gang

    2016-01-01

    ABSTRACT Wingless forms of aphids are relatively sedentary, and have a limited ability to migrate or disperse. However, they can drop off hosts or walk away if disturbed, or their food quality or quantity become deteriorated. Earlier, we found that the pea aphid, Acyrthosiphon pisum (Harris, 1776), could use differed strategies to escape danger and locate new host plants. To determine the mechanisms behind the different strategies, we undertook a series of studies including the aphids' host location, energy reserves under starvation, glycogenesis, sugar assimilation, olfactory and probing behaviors. We found that in our controlled laboratory conditions, one strain (local laboratory strain) moved longer distances and dispersed wider ranges, and correspondingly these aphids assimilated more sugars, synthesized more glycogen, and moved faster than another strain (collected from Gansu Province, northwestern China). However, the latter strain could locate the host faster, probed leaves more frequently, and identified plant leaves more accurately than the former strain after they were starved. Our results explained how flightless or wingless insects adapt to fit biotic and abiotic challenges in the complex processes of natural selection. PMID:27628035

  5. Transgenerational seasonal timer for suppression of sexual morph production in the pea aphid, Acyrthosiphon pisum.

    PubMed

    Matsuda, Naoki; Kanbe, Takashi; Akimoto, Shin-Ichi; Numata, Hideharu

    2017-08-01

    Many aphid species switch reproductive modes seasonally, with the sexual generations appearing in autumn. Sexual generations are induced by short days. It has been reported that the appearance of sexual morphs is suppressed by a transgenerational factor (a seasonal timer) over several generations after hatching from overwintered eggs. The present study examined whether the seasonal timer measures the number of days from hatching or the number of generations from hatching using the pea aphid, Acyrthosiphon pisum Harris (Homoptera: Aphididae). Effects of temperature and photoperiod on the seasonal timer were also examined by successive rearing. The ability to produce sexual morphs was strongly suppressed in stem mothers (the foundress generation), and gradually recovered over successive generations produced during a few months. The duration for which the seasonal timer could function depended on the number of days from hatching and temperature, but not on photoperiod or the number of generations from hatching. We thus showed in a single study that the seasonal timer of the pea aphid has all the physiological characteristics shown in separate studies in different aphid species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Solenopsis invicta virus 3: Mapping of Structural Proteins, Ribosomal Frameshifting, and Similarities to Acyrthosiphon pisum virus and Kelp fly virus

    PubMed Central

    Valles, Steven M.; Bell, Susanne; Firth, Andrew E.

    2014-01-01

    Solenopsis invicta virus 3 (SINV-3) is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF) of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the structural proteins map to both ORF2 and the 3' end of ORF1, downstream of the sequence that encodes the RNA-dependent RNA polymerase. The genome organization and structural protein expression strategy resemble those of Acyrthosiphon pisum virus (APV), an aphid virus. The capsid protein that is encoded by the 3' end of ORF1 in SINV-3 and APV is predicted to have a jelly-roll fold similar to the capsid proteins of picornaviruses and caliciviruses. The capsid-extension protein that is produced by frameshifting, includes the jelly-roll fold domain encoded by ORF1 as its N-terminus, while the C-terminus encoded by the 5' half of ORF2 has no clear homology with other viral structural proteins. A third protein, encoded by the 3' half of ORF2, is associated with purified virions at sub-stoichiometric ratios. Although the structural proteins can be translated from the genomic RNA, we show that SINV-3 also produces a subgenomic RNA encoding the structural proteins. Circumstantial evidence suggests that APV may also produce such a subgenomic RNA. Both SINV-3 and APV are unclassified picorna-like viruses distantly related to members of the order Picornavirales and the family Caliciviridae. Within this grouping, features of the genome organization and capsid domain structure of SINV-3 and APV appear more similar to caliciviruses, perhaps suggesting the basis for a "Calicivirales" order. PMID:24686475

  7. The physiology of sterol nutrition in the pea aphid Acyrthosiphon pisum.

    PubMed

    Bouvaine, Sophie; T Behmer, Spencer; Lin, George G; Faure, Marie-Line; Grebenok, Robert J; Douglas, Angela E

    2012-11-01

    The phloem sap of fava bean (Vicia faba) plants utilized by the pea aphid Acyrthosiphon pisum contains three sterols, cholesterol, stigmasterol and sitosterol, in a 2:2:1 ratio. To investigate the nutritional value of these sterols, pea aphids were reared on chemically-defined diets containing each sterol at 0.1, 1 and 10μgml(-1) with a sterol-free diet as control. Larval growth rate and aphid lifespan did not vary significantly across the diets, indicating that sterol reserves can buffer some performance indices against a shortfall in dietary sterol over at least one generation. However, lifetime reproductive output was depressed in aphids on diets containing stigmasterol or no sterol, relative to diets supplemented with cholesterol or sitosterol. The cholesterol density of embryos in teneral adults was significantly higher than in the total body; and the number and biomass of embryos in aphids on diets with stigmasterol and no sterols were reduced relative to diets with cholesterol or sitosterol, indicating that the reproductive output of the pea aphid can be limited by the amount and composition of dietary sterol. In a complementary RNA-seq analysis of pea aphids reared on plants and diets with different sterol contents, 7.6% of the 17,417 detected gene transcripts were differentially expressed. Transcript abundance of genes with annotated function in sterol utilization did not vary significantly among treatments, suggesting that the metabolic response to dietary sterol may be mediated primarily at the level of enzyme function or metabolite concentration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Deciphering the Function of Octopaminergic Signaling on Wing Polyphenism of the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    Wang, Xing-Xing; Zhang, Yi; Zhang, Zhan-Feng; Tian, Hong-Gang; Liu, Tong-Xian

    2016-01-01

    Aphids exhibit wing polyphenism (winged or wingless) for adaption to predictable or temporally heterogeneous environmental changes; however, the underlying mechanism is still unclear. This morphological change could be stimulated by high aphid density, which in turn could affect octopaminergic signaling in aphids. Octopamine is a neurotransmitter synthesized in insects that can modify their physiological metabolism, locomotion, and other behaviors. We designed experiments to determine whether octopamine functions in wing formation of the pea aphid, Acyrthosiphon pisum (Harris). We determined gene expression of tyramine β-hydroxylase (TβH), a key enzyme in octopamine synthesis at different developmental stages, in different body parts, and in different densities of aphids. We also used TβH RNAi, octopamine receptor agonists (octopamine and synephrine), and an antagonist (mianserin) to modify octopaminergic signaling. We found that transcription of TβH was related to aphid density, which affected the proportion of winged offspring. By manually modifying the mother's octopaminergic signaling, TβH expression was suppressed, and TβH (enzyme) activity decreased. The proportion of winged offspring was also affected. Our results showed that octopamine could be a link in the wing determination system, as well as environmental stimulation. The RNAi results showed that the decrease of TβH expression increased aphid's reproduction; however, the decrease of TβH expression declined the numbers of winged-offspring producers, but did not affect the proportion of winged nymphs produced by the winged-offspring producer. In conclusion, the decline in the proportion of winged daughters in the next generation was caused by the decline of winged nymph producers. PMID:28018234

  9. Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum.

    PubMed

    Barberà, Miquel; Collantes-Alegre, Jorge Mariano; Martínez-Torres, David

    2017-04-01

    Aphids are typical photoperiodic insects that switch from viviparous parthenogenetic reproduction typical of long day seasons to oviparous sexual reproduction triggered by the shortening of photoperiod in autumn yielding an overwintering egg in which an embryonic diapause takes place. While the involvement of the circadian clock genes in photoperiodism in mammals is well established, there is still some controversy on their participation in insects. The availability of the genome of the pea aphid Acyrthosiphon pisum places this species as an excellent model to investigate the involvement of the circadian system in the aphid seasonal response. In the present report, we have advanced in the characterisation of the circadian clock genes and showed that these genes display extensive alternative splicing. Moreover, the expression of circadian clock genes, analysed at different moments of the day, showed a robust cycling of central clock genes period and timeless. Furthermore, the rhythmic expression of these genes was shown to be rapidly dampened under DD (continuous darkness conditions), thus supporting the model of a seasonal response based on a heavily dampened circadian oscillator. Additionally, increased expression of some of the circadian clock genes under short-day conditions suggest their involvement in the induction of the aphid seasonal response. Finally, in situ localisation of transcripts of genes period and timeless in the aphid brain revealed the site of clock neurons for the first time in aphids. Two groups of clock cells were identified: the Dorsal Neurons (DN) and the Lateral Neurons (LN), both in the protocerebrum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum.

    PubMed

    Taillebois, Emiliane; Beloula, Abdelhamid; Quinchard, Sophie; Jaubert-Possamai, Stéphanie; Daguin, Antoine; Servent, Denis; Tagu, Denis; Thany, Steeve H; Tricoire-Leignel, Hélène

    2014-01-01

    Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16 ± 0.04 nM and 41.7 ± 5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008 ± 0.002 nM and 1.135 ± 0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.

  11. Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum

    PubMed Central

    Taillebois, Emiliane; Beloula, Abdelhamid; Quinchard, Sophie; Jaubert-Possamai, Stéphanie; Daguin, Antoine; Servent, Denis; Tagu, Denis

    2014-01-01

    Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16±0.04 nM and 41.7±5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008±0.002 nM and 1.135±0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies. PMID:24801634

  12. Biostable and PEG polymer-conjugated insect pyrokinin analogs demonstrate antifeedant activity and induce high mortality in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae)

    USDA-ARS?s Scientific Manuscript database

    The pyrokinins are multifunctional neuropeptides found in a variety of arthropod species, including the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). A series of biostable pyrokinin analogs based on the shared C-terminal pentapeptide core region were fed in solutions of artificial diet to the ...

  13. Revisiting the anatomy of the central nervous system of a hemimetabolous model insect species: the pea aphid Acyrthosiphon pisum.

    PubMed

    Kollmann, Martin; Minoli, Sebastian; Bonhomme, Joël; Homberg, Uwe; Schachtner, Joachim; Tagu, Denis; Anton, Sylvia

    2011-02-01

    Aphids show a marked phenotypic plasticity, producing asexual or sexual and winged or wingless morphs depending on environmental conditions and season. We describe here the general structure of the brain of various morphs of the pea aphid Acyrthosiphon pisum. This is the first detailed anatomical study of the central nervous system of an aphid by immunocytochemistry (synapsin, serotonin, and several neuropeptides), ethyl-gallate staining, confocal laser scanning microscopy, and three-dimensional reconstructions. The study has revealed well-developed optic lobes composed of lamina, medulla, and lobula complex. Ocelli are only present in males and winged parthenogenetic females. The central complex is well-defined, with a central body divided into two parts, a protocerebral bridge, and affiliated lateral accessory lobes. The mushroom bodies are ill-defined, lacking calyces, and only being visualized by using an antiserum against the neuropeptide orcokinin. The antennal lobes contain poorly delineated glomeruli but can be clearly visualized by performing antennal backfills. On the basis of our detailed description of the brain of winged and wingless parthenogenetic A. pisum females, an anatomical map is now available that should improve our knowledge of the way that these structures are involved in the regulation of phenotypic plasticity.

  14. Chemical Composition and Behavioral Effects of Five Plant Essential Oils on the Green Pea Aphid Acyrthosiphon pisum (Harris) (Homoptera: Aphididae).

    PubMed

    Kasmi, Abir; Hammami, Majdi; Raoelison, Emmanuel G; Abderrabba, Manef; Bouajila, Jalloul; Ducamp, Christine

    2017-01-25

    Essential oils (EOs) from Schinus molle, Helichrysum gymnocephalum, Cedrelopsis grevei and Melaleuca viridiflora, four aromatic and medicinal plants, are commonly used in folk medicine. EOs were characterized by Gas Chromatography-Mass Spectrometry (GC-MS) and quantified by Gas Chromatography-Flame Ionization Detection (GC-FID); then evaluated for their behavioral effects on adults of the green pea aphid Acyrthosiphon pisum (Harris) using a Perspex four-armed olfactometer in order to test the compatibility of their use as phytoinsecticides to control this insect pest. Our results showed that the Eos from leaves of S. molle, M. viridiflora and C. grevei did not change aphids' behavior. However, S. molle fruits EO seemed to be attractive while H. gymnocephalum leaves EO exhibited repellency towards aphids at a dose of 10 μl. The major compounds in S. molle fruits EO were 6-epi-shyobunol (16.22%) and d-limonene (15.35%). While, in H. gymnocephalum leaves EO, 1.8 cineole was the main compound (47.4%). The difference in aphids' responses to these two EOs could be attributed to the differences in their compositions. Our findings suggest that these two EOs have potential applications for the integrated pest management (IPM) of A. pisum (Harris). This article is protected by copyright. All rights reserved.

  15. Selection of Reference Genes for Expression Analysis Using Quantitative Real-Time PCR in the Pea Aphid, Acyrthosiphon pisum (Harris) (Hemiptera, Aphidiae)

    PubMed Central

    Liu, Yong; Zhou, Xuguo

    2014-01-01

    To facilitate gene expression study and obtain accurate qRT-PCR analysis, normalization relative to stable expressed housekeeping genes is required. In this study, expression profiles of 11 candidate reference genes, including actin (Actin), elongation factor 1 α (EF1A), TATA-box-binding protein (TATA), ribosomal protein L12 (RPL12), β-tubulin (Tubulin), NADH dehydrogenase (NADH), vacuolar-type H+-ATPase (v-ATPase), succinate dehydrogenase B (SDHB), 28S ribosomal RNA (28S), 16S ribosomal RNA (16S), and 18S ribosomal RNA (18S) from the pea aphid Acyrthosiphon pisum, under different developmental stages and temperature conditions, were investigated. A total of four analytical tools, geNorm, Normfinder, BestKeeper, and the ΔCt method, were used to evaluate the suitability of these genes as endogenous controls. According to RefFinder, a web-based software tool which integrates all four above-mentioned algorithms to compare and rank the reference genes, SDHB, 16S, and NADH were the three most stable house-keeping genes under different developmental stages and temperatures. This work is intended to establish a standardized qRT-PCR protocol in pea aphid and serves as a starting point for the genomics and functional genomics research in this emerging insect model. PMID:25423476

  16. Identification of the prothoracicotropic hormone (Ptth) coding gene and localization of its site of expression in the pea aphid Acyrthosiphon pisum.

    PubMed

    Barberà, M; Martínez-Torres, D

    2017-10-01

    Insect hormones control essential aspects of physiology, behaviour and development in insects. The majority of insect hormones are peptide hormones that perform a highly diverse catalogue of functions. Prothoracicotropic hormone (PTTH) is a brain neuropeptide hormone whose main function is to stimulate the secretion of ecdysone (the moulting hormone) by the prothoracic glands in insect larvae thus playing a key role in the control of moulting and metamorphosis. Moreover, both PTTH release or blockade have been reported to act as a switch to terminate or initiate larval and pupal diapauses. In insects, diapause is a prevalent response often regulated by the photoperiod. It has been shown that PTTH participates as an output of the circadian clock and a role in photoperiodic processes is suggested in some insect species. Aphids (Hemiptera: Aphididae) reproduce by cyclical parthenogenesis with a sexual phase, induced by short photoperiods, that leads to the production of diapausing eggs. With the availability of the pea aphid (Acyrthosiphon pisum) genome, efforts to identify and characterize genes relevant to essential aspects of aphid biology have multiplied. In spite of its relevance, several genomic and transcriptomic studies on aphid neuropeptides failed to detect aphid PTTH amongst them. Here we report on the first identification of the aphid PTTH coding gene and the neuroanatomical localization of its expression in the aphid brain. © 2017 The Royal Entomological Society.

  17. Modification of Cry4Aa toward Improved Toxin Processing in the Gut of the Pea Aphid, Acyrthosiphon pisum

    PubMed Central

    Rausch, Michael A.; Chougule, Nanasaheb P.; Deist, Benjamin R.; Bonning, Bryony C.

    2016-01-01

    Aphids are sap-sucking insects (order: Hemiptera) that cause extensive damage to a wide range of agricultural crops. Our goal was to optimize a naturally occurring insecticidal crystalline (Cry) toxins produced by the soil-dwelling bacterium Bacillus thuringiensis for use against the pea aphid, Acyrthosiphon pisum. On the basis that activation of the Cry4Aa toxin is a rate-limiting factor contributing to the relatively low aphicidal activity of this toxin, we introduced cathepsin L and cathepsin B cleavage sites into Cry4Aa for rapid activation in the aphid gut environment. Incubation of modified Cry4Aa and aphid proteases in vitro demonstrated enhanced processing of the toxin into the active form for some of the modified constructs relative to non-modified Cry4Aa. Aphids fed artificial diet with toxin at a final concentration of 125 μg/ml showed enhanced mortality after two days for one of the four modified constructs. Although only modest toxin improvement was achieved by use of this strategy, such specific toxin modifications designed to overcome factors that limit aphid toxicity could be applied toward managing aphid populations via transgenic plant resistance. PMID:27171411

  18. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant

    PubMed Central

    Mutti, Navdeep S.; Louis, Joe; Pappan, Loretta K.; Pappan, Kirk; Begum, Khurshida; Chen, Ming-Shun; Park, Yoonseong; Dittmer, Neal; Marshall, Jeremy; Reese, John C.; Reeck, Gerald R.

    2008-01-01

    In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid–plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Here, we focus on a salivary protein we have arbitrarily designated Protein C002. We have shown, by using RNAi-based transcript knockdown, that this protein is important in the survival of the pea aphid (Acyrthosiphon pisum) on fava bean, a host plant. Here, we further characterize the protein, its transcript, and its gene, and we study the feeding process of knockdown aphids. The encoded protein fails to match any protein outside of the family Aphididae. By using in situ hybridization and immunohistochemistry, the transcript and the protein were localized to a subset of secretory cells in principal salivary glands. Protein C002, whose sequence contains an N-terminal secretion signal, is injected into the host plant during aphid feeding. By using the electrical penetration graph method on c002-knockdown aphids, we find that the knockdown affects several aspects of foraging and feeding, with the result that the c002-knockdown aphids spend very little time in contact with phloem sap in sieve elements. Thus, we infer that Protein C002 is crucial in the feeding of the pea aphid on fava bean. PMID:18621720

  19. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant.

    PubMed

    Mutti, Navdeep S; Louis, Joe; Pappan, Loretta K; Pappan, Kirk; Begum, Khurshida; Chen, Ming-Shun; Park, Yoonseong; Dittmer, Neal; Marshall, Jeremy; Reese, John C; Reeck, Gerald R

    2008-07-22

    In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid-plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Here, we focus on a salivary protein we have arbitrarily designated Protein C002. We have shown, by using RNAi-based transcript knockdown, that this protein is important in the survival of the pea aphid (Acyrthosiphon pisum) on fava bean, a host plant. Here, we further characterize the protein, its transcript, and its gene, and we study the feeding process of knockdown aphids. The encoded protein fails to match any protein outside of the family Aphididae. By using in situ hybridization and immunohistochemistry, the transcript and the protein were localized to a subset of secretory cells in principal salivary glands. Protein C002, whose sequence contains an N-terminal secretion signal, is injected into the host plant during aphid feeding. By using the electrical penetration graph method on c002-knockdown aphids, we find that the knockdown affects several aspects of foraging and feeding, with the result that the c002-knockdown aphids spend very little time in contact with phloem sap in sieve elements. Thus, we infer that Protein C002 is crucial in the feeding of the pea aphid on fava bean.

  20. Life-history trade-offs mediate 'personality' variation in two colour morphs of the pea aphid, Acyrthosiphon pisum.

    PubMed

    Schuett, Wiebke; Dall, Sasha R X; Kloesener, Michaela H; Baeumer, Jana; Beinlich, Felix; Eggers, Till

    2015-01-01

    Life-history trade-offs are considered a major driving force in the emergence of consistent behavioural differences (personality variation); but empirical tests are scarce. We investigated links between a personality trait (escape response), life-history and state variables (growth rate, size and age at first reproduction, age-dependent reproductive rates, lifetime reproductive success, life span) in red and green colour morphs of clonal pea aphids, Acyrthosiphon pisum. Escape response (dropping/non-dropping off a plant upon a predatory attack) was measured repeatedly to classify individuals as consistent droppers, consistent nondroppers or inconsistents. Red morphs experienced stronger trade-offs between early reproduction and life span than green morphs; and red consistent (non)droppers had highest lifetime reproductive success. Red droppers followed a risk-averse life-history strategy (high late reproduction), red nondroppers a risk-prone strategy (high early reproduction), while reproductive rates were equivalent for all green behavioural types and red inconsistents. This suggests that red morphs suffer the highest costs of dropping (they are most conspicuous to predators), which 'equivalates' fitness payoffs to both risk-takers (red non-droppers) and risk-averse red droppers. The strong trade-off also means that committing to a particular lifestyle (being consistent) maximises fitness. Our study suggests that life-history trade-offs likely mediate personality variation but effects might depend on interactions with other organismal characteristics (here: colour morph).

  1. Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids.

    PubMed

    Altincicek, Boran; Ter Braak, Bas; Laughton, Alice M; Udekwu, Klas I; Gerardo, Nicole M

    2011-10-01

    To better understand the molecular basis underlying aphid immune tolerance to beneficial bacteria and immune defense to pathogenic bacteria, we characterized how the pea aphid Acyrthosiphon pisum responds to Escherichia coli K-12 infections. E. coli bacteria, usually cleared in the hemolymph of other insect species, were capable of growing exponentially and killing aphids within a few days. Red fluorescence protein expressing E. coli K-12 laboratory strain multiplied in the aphid hemolymph as well as in the digestive tract, resulting in death of infected aphids. Selected gene deletion mutants of the E. coli K-12 predicted to have reduced virulence during systemic infections showed no difference in either replication or killing rate when compared to the wild type E. coli strain. Of note, however, the XL1-Blue E. coli K-12 strain exhibited a significant lag phase before multiplying and killing aphids. This bacterial strain has recently been shown to be more sensitive to oxidative stress than other E. coli K-12 strains, revealing a potential role for reactive oxygen species-mediated defenses in the otherwise reduced aphid immune system.

  2. The Differential Effect of Low-Dose Mixtures of Four Pesticides on the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    Taillebois, Emiliane; Thany, Steeve H.

    2016-01-01

    The modes of action of most insecticides are known, but little information exists regarding the toxicological interactions involving insecticide mixtures at low doses. The effects of mixtures of four insecticides were investigated using LC10 values (concentration leading to 10% mortality), acetamiprid (ACE, 0.235 µg/mL), chlorpyriphos (CHL, 107.0 µg/mL), deltamethrin (DEL, 5.831 µg/mL), and fipronil (FIP, 3.775 µg/mL) on the larvae of the pea aphid, Acyrthosiphon pisum. After 24 h exposure, 6 of the 11 tested combinations, DEL/FIP, ACE/DEL, CHL/FIP, ACE/DEL/FIP, ACE/CHL/FIP, and ACE/DEL/CHL/FIP, were toxic through an additive effect. Four combinations, ACE/FIP, DEL/CHL, ACE/CHL, and ACE/DEL/CHL had a synergistic effect, whereas only one DEL/CHL/FIP showed an antagonistic effect. The toxic effect of these mixtures was confirmed after 48 h of exposure, revealing an enhanced toxicity of CHL, DEL, and FIP in combination with ACE. We suggest that an insect pest management strategy should be evaluated in the future using different combinations of insecticides. PMID:27754329

  3. The Combined Effects of Bacterial Symbionts and Aging on Life History Traits in the Pea Aphid, Acyrthosiphon pisum

    PubMed Central

    Fan, Maretta H.; Gerardo, Nicole M.

    2014-01-01

    While many endosymbionts have beneficial effects on hosts under specific ecological conditions, there can also be associated costs. In order to maximize their own fitness, hosts must facilitate symbiont persistence while preventing symbiont exploitation of resources, which may require tight regulation of symbiont populations. As a host ages, the ability to invest in such mechanisms may lessen or be traded off with demands of other life history traits, such as survival and reproduction. Using the pea aphid, Acyrthosiphon pisum, we measured survival, lifetime fecundity, and immune cell counts (hemocytes, a measure of immune capacity) in the presence of facultative secondary symbionts. Additionally, we quantified the densities of the obligate primary bacterial symbiont, Buchnera aphidicola, and secondary symbionts across the host's lifetime. We found life history costs to harboring some secondary symbiont species. Secondary symbiont populations were found to increase with host age, while Buchnera populations exhibited a more complicated pattern. Immune cell counts peaked at the midreproductive stage before declining in the oldest aphids. The combined effects of immunosenescence and symbiont population growth may have important consequences for symbiont transmission and maintenance within a host population. PMID:24185857

  4. Sex versus parthenogenesis: a transcriptomic approach of photoperiod response in the model aphid Acyrthosiphon pisum (Hemiptera: Aphididae).

    PubMed

    Cortés, T; Tagu, D; Simon, J C; Moya, A; Martínez-Torres, D

    2008-01-31

    Most aphids develop a cyclic parthenogenesis life-cycle. After several generations of viviparous parthenogenetic females, it follows a single annual generation of sexual individuals, usually in autumn, that mate and lay the sexual eggs. Shortening of photoperiod at the end of the summer is a key factor inducing the sexual response. With the survey here reported we aimed at identifying a collection of candidate genes to participate at some point in the cascade of events that lead to the sexual phenotypes. Following a suppression subtractive hybridization methodology (SSH) on the model aphid Acyrthosiphon pisum, we built and characterised two reciprocal cDNA libraries (SDU and SDD) enriched respectively in genes up-regulated or down-regulated by short photoperiod conditions that lead to the sexual response in this aphid species. A total of 557 ESTs were obtained altogether representing 223 non-overlapping contigs. 29% of these were new sequences not present in previous aphid EST libraries. BLAST searches allowed putative identification of about 54% of the contigs present in both libraries. Relative quantification of expression through real-time quantitative PCR demonstrated the differential expression in relation with the photoperiod of 6 genes (3 up-regulated and 3 down-regulated by shortening the day length). Among these, expression of a tubulin gene, two cuticular proteins and a yet unidentified sequence along the day-night cycle was further investigated. Implications for current studies on gene regulation of the dichotomy sex vs. parthenogenesis in aphids are discussed.

  5. Post-reproductive parthenogenetic pea aphids (Acyrthosiphon pisum) are visually identifiable and disproportionately positioned distally to clonal colonies

    PubMed Central

    Diamond, Julia Daisy; Henneman, Nathaniel Fath; Levitis, Daniel A.

    2016-01-01

    The role of kin-selection in the evolution of post-reproductive life is controversial. While anthropological and demographic studies strongly suggest that humans and a few other species experience kin selection for significant post-reproductive survival, these results are necessarily correlational. Understanding could therefore be advanced by the development of a globally available, field and laboratory tractable experimental model of kin-selected post-reproductive survival. In only one invertebrate (Quadrartus yoshinomiyai, a gall-forming aphid endemic to Japan) have individuals too old to reproduce been shown to be both numerous in natural habitats and able to help close relatives survive or reproduce. Pea aphids, (Acyrthosiphon pisum), common, tractable organisms, frequently outlive their reproductive ages in laboratories, live in tight interacting groups that are often clonal, and therefore should be evaluated as potential model organisms for the study of adaptive post-reproductive life. The first major step in this process is to identify an optimal method for assessing if a parthenogenetic adult is post-reproductive. We evaluated three methods, relying respectively on isolation in clip cages, visual examination for embryonic eyespots, and dissection. In every case each method identified the same individuals as reproductive versus post-reproductive. While the clip-cage method requires a multi-day wait to produce data, and dissection is inevitably fatal, the eyespot method is quick (under one minute per individual) easy, and non-invasive. This method makes it possible to accurately assess the post-reproductive status of a large number of parthenogenetic pea aphids. We demonstrate the usefulness of the eyespot method in showing that while reproductively valuable adults tend to place themselves near the centers of clonal colonies, less valuable post-reproductive adults are more often at or beyond the edges of colonies. These encouraging early results provide both

  6. Post-reproductive parthenogenetic pea aphids (Acyrthosiphon pisum) are visually identifiable and disproportionately positioned distally to clonal colonies.

    PubMed

    Saberski, Erik T; Diamond, Julia Daisy; Henneman, Nathaniel Fath; Levitis, Daniel A

    2016-01-01

    The role of kin-selection in the evolution of post-reproductive life is controversial. While anthropological and demographic studies strongly suggest that humans and a few other species experience kin selection for significant post-reproductive survival, these results are necessarily correlational. Understanding could therefore be advanced by the development of a globally available, field and laboratory tractable experimental model of kin-selected post-reproductive survival. In only one invertebrate (Quadrartus yoshinomiyai, a gall-forming aphid endemic to Japan) have individuals too old to reproduce been shown to be both numerous in natural habitats and able to help close relatives survive or reproduce. Pea aphids, (Acyrthosiphon pisum), common, tractable organisms, frequently outlive their reproductive ages in laboratories, live in tight interacting groups that are often clonal, and therefore should be evaluated as potential model organisms for the study of adaptive post-reproductive life. The first major step in this process is to identify an optimal method for assessing if a parthenogenetic adult is post-reproductive. We evaluated three methods, relying respectively on isolation in clip cages, visual examination for embryonic eyespots, and dissection. In every case each method identified the same individuals as reproductive versus post-reproductive. While the clip-cage method requires a multi-day wait to produce data, and dissection is inevitably fatal, the eyespot method is quick (under one minute per individual) easy, and non-invasive. This method makes it possible to accurately assess the post-reproductive status of a large number of parthenogenetic pea aphids. We demonstrate the usefulness of the eyespot method in showing that while reproductively valuable adults tend to place themselves near the centers of clonal colonies, less valuable post-reproductive adults are more often at or beyond the edges of colonies. These encouraging early results provide both

  7. Sexual and asexual oogenesis require the expression of unique and shared sets of genes in the insect Acyrthosiphon pisum

    PubMed Central

    2012-01-01

    Background Although sexual reproduction is dominant within eukaryotes, asexual reproduction is widespread and has evolved independently as a derived trait in almost all major taxa. How asexuality evolved in sexual organisms is unclear. Aphids, such as Acyrthosiphon pisum, alternate between asexual and sexual reproductive means, as the production of parthenogenetic viviparous females or sexual oviparous females and males varies in response to seasonal photoperiodism. Consequently, sexual and asexual development in aphids can be analyzed simultaneously in genetically identical individuals. Results We compared the transcriptomes of aphid embryos in the stages of development during which the trajectory of oogenesis is determined for producing sexual or asexual gametes. This study design aimed at identifying genes involved in the onset of the divergent mechanisms that result in the sexual or asexual phenotype. We detected 33 genes that were differentially transcribed in sexual and asexual embryos. Functional annotation by gene ontology (GO) showed a biological signature of oogenesis, cell cycle regulation, epigenetic regulation and RNA maturation. In situ hybridizations demonstrated that 16 of the differentially-transcribed genes were specifically expressed in germ cells and/or oocytes of asexual and/or sexual ovaries, and therefore may contribute to aphid oogenesis. We categorized these 16 genes by their transcription patterns in the two types of ovaries; they were: i) expressed during sexual and asexual oogenesis; ii) expressed during sexual and asexual oogenesis but with different localizations; or iii) expressed only during sexual or asexual oogenesis. Conclusions Our results show that asexual and sexual oogenesis in aphids share common genetic programs but diverge by adapting specificities in their respective gene expression profiles in germ cells and oocytes. PMID:22336141

  8. Sexual and asexual oogenesis require the expression of unique and shared sets of genes in the insect Acyrthosiphon pisum.

    PubMed

    Gallot, Aurore; Shigenobu, Shuji; Hashiyama, Tomomi; Jaubert-Possamai, Stéphanie; Tagu, Denis

    2012-02-15

    Although sexual reproduction is dominant within eukaryotes, asexual reproduction is widespread and has evolved independently as a derived trait in almost all major taxa. How asexuality evolved in sexual organisms is unclear. Aphids, such as Acyrthosiphon pisum, alternate between asexual and sexual reproductive means, as the production of parthenogenetic viviparous females or sexual oviparous females and males varies in response to seasonal photoperiodism. Consequently, sexual and asexual development in aphids can be analyzed simultaneously in genetically identical individuals. We compared the transcriptomes of aphid embryos in the stages of development during which the trajectory of oogenesis is determined for producing sexual or asexual gametes. This study design aimed at identifying genes involved in the onset of the divergent mechanisms that result in the sexual or asexual phenotype. We detected 33 genes that were differentially transcribed in sexual and asexual embryos. Functional annotation by gene ontology (GO) showed a biological signature of oogenesis, cell cycle regulation, epigenetic regulation and RNA maturation. In situ hybridizations demonstrated that 16 of the differentially-transcribed genes were specifically expressed in germ cells and/or oocytes of asexual and/or sexual ovaries, and therefore may contribute to aphid oogenesis. We categorized these 16 genes by their transcription patterns in the two types of ovaries; they were: i) expressed during sexual and asexual oogenesis; ii) expressed during sexual and asexual oogenesis but with different localizations; or iii) expressed only during sexual or asexual oogenesis. Our results show that asexual and sexual oogenesis in aphids share common genetic programs but diverge by adapting specificities in their respective gene expression profiles in germ cells and oocytes.

  9. Dickeya dadantii, a Plant Pathogenic Bacterium Producing Cyt-Like Entomotoxins, Causes Septicemia in the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    Condemine, Guy; Rahbé, Yvan

    2012-01-01

    Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 108 cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria. PMID:22292023

  10. Stable isotope studies reveal pathways for the incorporation of non-essential amino acids in Acyrthosiphon pisum (pea aphids).

    PubMed

    Haribal, Meena; Jander, Georg

    2015-12-01

    Plant roots incorporate inorganic nitrogen into the amino acids glutamine, glutamic acid, asparagine and aspartic acid, which together serve as the primary metabolites of nitrogen transport to other tissues. Given the preponderance of these four amino acids, phloem sap is a nutritionally unbalanced diet for phloem-feeding insects. Therefore, aphids and other phloem feeders typically rely on microbial symbionts for the synthesis of essential amino acids. To investigate the metabolism of the four main transport amino acids by the pea aphid (Acyrthosiphon pisum), and its Buchnera aphidicola endosymbionts, aphids were fed defined diets with stable isotope-labeled glutamine, glutamic acid, asparagine or aspartic acid (U-(13)C, U-(15)N; U-(15)N; α-(15)N; or γ-(15)N). The metabolic fate of the dietary (15)N and (13)C was traced using gas chromatography-mass spectrometry (GC-MS). Nitrogen was the major contributor to the observed amino acid isotopomers with one additional unit mass (M+1). However, there was differential incorporation, with the amine nitrogen of asparagine being incorporated into other amino acids more efficiently than the amide nitrogen. Higher isotopomers (M+2, M+3 and M+4) indicated the incorporation of varying numbers of (13)C atoms into essential amino acids. GC-MS assays also showed that, even with an excess of dietary labeled glutamine, glutamic acid, asparagine or aspartic acid, the overall content of these amino acids in aphid bodies was mostly the product of catabolism of dietary amino acids and subsequent re-synthesis within the aphids. Thus, these predominant dietary amino acids are not passed directly to Buchnera endosymbionts for synthesis of essential amino acids, but are rather are produced de novo, most likely by endogenous aphid enzymes. © 2015. Published by The Company of Biologists Ltd.

  11. Identification of the main venom protein components of Aphidius ervi, a parasitoid wasp of the aphid model Acyrthosiphon pisum.

    PubMed

    Colinet, Dominique; Anselme, Caroline; Deleury, Emeline; Mancini, Donato; Poulain, Julie; Azéma-Dossat, Carole; Belghazi, Maya; Tares, Sophie; Pennacchio, Francesco; Poirié, Marylène; Gatti, Jean-Luc

    2014-05-06

    Endoparasitoid wasps are important natural enemies of the widely distributed aphid pests and are mainly used as biological control agents. However, despite the increased interest on aphid interaction networks, only sparse information is available on the factors used by parasitoids to modulate the aphid physiology. Our aim was here to identify the major protein components of the venom injected at oviposition by Aphidius ervi to ensure successful development in its aphid host, Acyrthosiphon pisum. A combined large-scale transcriptomic and proteomic approach allowed us to identify 16 putative venom proteins among which three γ-glutamyl transpeptidases (γ-GTs) were by far the most abundant. Two of the γ-GTs most likely correspond to alleles of the same gene, with one of these alleles previously described as involved in host castration. The third γ-GT was only distantly related to the others and may not be functional owing to the presence of mutations in the active site. Among the other abundant proteins in the venom, several were unique to A. ervi such as the molecular chaperone endoplasmin possibly involved in protecting proteins during their secretion and transport in the host. Abundant transcripts encoding three secreted cystein-rich toxin-like peptides whose function remains to be explored were also identified. Our data further support the role of γ-GTs as key players in A. ervi success on aphid hosts. However, they also evidence that this wasp venom is a complex fluid that contains diverse, more or less specific, protein components. Their characterization will undoubtedly help deciphering parasitoid-aphid and parasitoid-aphid-symbiont interactions. Finally, this study also shed light on the quick evolution of venom components through processes such as duplication and convergent recruitment of virulence factors between unrelated organisms.

  12. Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides using an artificial diet.

    PubMed

    Sadeghi, Amin; Van Damme, Els J M; Smagghe, Guy

    2009-01-01

    An improved technique was developed to assay the toxicity of insecticides against aphids using an artificial diet. The susceptibility of the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphidoidea) was determined for a selection of novel biorational insecticides, each representing a novel mode of action. Flonicamid, a novel systemic insecticide with selective activity as feeding blocker against sucking insects, showed high toxicity against first-instar A. pisum nymphs with an LC(50) of 20.4 microg/ml after 24 h, and of 0.24 microg/ml after 72 h. The toxicity was compared with another feeding blocker, pymetrozine, and the neonicotinoid, imidacloprid. In addition, four insect growth regulators were tested. The chitin synthesis inhibitor flufenoxuron, the juvenile hormone analogue pyriproxyfen, and the azadirachtin compound Neem Azal-T/S showed strong effects and reduced the aphid population by 50% after 3 days of treatment at a concentration of 7-9 microg/ml. The ecdysone agonist tested, halofenozide, was less potent. In conclusion, the improved aphid feeding apparatus can be useful as a miniature screening device for insecticides against different aphid pests. The present study demonstrated rapid and strong toxicity of flonicamid, and other biorational insecticides towards A. pisum.

  13. Evaluation of the Susceptibility of the Pea Aphid, Acyrthosiphon pisum, to a Selection of Novel Biorational Insecticides using an Artificial Diet

    PubMed Central

    Sadeghi, Amin; Van Damme, Els J.M.; Smagghe, Guy

    2009-01-01

    An improved technique was developed to assay the toxicity of insecticides against aphids using an artificial diet. The susceptibility of the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphidoidea) was determined for a selection of novel biorational insecticides, each representing a novel mode of action. Flonicamid, a novel systemic insecticide with selective activity as feeding blocker against sucking insects, showed high toxicity against first-instar A. pisum nymphs with an LC50 of 20.4 μg/ml after 24 h, and of 0.24 µg/ml after 72 h. The toxicity was compared with another feeding blocker, pymetrozine, and the neonicotinoid, imidacloprid. In addition, four insect growth regulators were tested. The chitin synthesis inhibitor flufenoxuron, the juvenile hormone analogue pyriproxyfen, and the azadirachtin compound Neem Azal-T/S showed strong effects and reduced the aphid population by 50% after 3 days of treatment at a concentration of 7–9 µg/ml. The ecdysone agonist tested, halofenozide, was less potent. In conclusion, the improved aphid feeding apparatus can be useful as a miniature screening device for insecticides against different aphid pests. The present study demonstrated rapid and strong toxicity of flonicamid, and other biorational insecticides towards A. pisum. PMID:20053120

  14. Larval Performance and Kill Rate of Convergent Ladybird Beetles, Hippodamia convergens, on Black Bean Aphids, Aphis fabae, and Pea Aphids, Acyrthosiphon pisum

    PubMed Central

    Hinkelman, Travis M.; Tenhumberg, Brigitte

    2013-01-01

    Generalist predator guilds play a prominent role in structuring insect communities and can contribute to limiting population sizes of insect pest species. A consequence of dietary breadth, particularly in predatory insects, is the inclusion of low-quality, or even toxic, prey items in the predator's diet. Consumption of low-quality prey items reduces growth, development, and survival of predator larvae, thereby reducing the population sizes of generalist predators. The objective of this paper was to examine the effect of a suspected low-quality aphid species, Aphis fabae (Scopoli) (Hemiptera: Aphididae), on the larval performance of an abundant North American predator, Hippodamia convergens (Guérin-Méneville) (Coleoptera: Coccinellidae). For comparison, H. convergens larvae were also reared on a known high-quality aphid species Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) and on a 50:50 mix of both aphid species. The proportion of H. convergens larvae surviving to the adult stage was dramatically lower (0.13) on the A. fabae diet than on the A. pisum diet (0.70); survival on the mixed diet was intermediate (0.45) to survival on the single-species diets. Similarly, surviving H. convergens larvae also developed more slowly and weighed less as adults on the A. fabae diet than on the A. pisum diet. Despite the relatively poor performance on the A. fabae diet, H. convergens larvae killed large numbers of A. fabae. Furthermore, H. convergens displayed a preference for A. fabae in the mixed diet treatment, most likely because A. fabae was easier to catch than A. pisum. The results suggest that increases in the distribution and abundance of A. fabae in North America may have negative effects on H. convergens population size. PMID:23909291

  15. Larval performance and kill rate of convergent ladybird beetles, Hippodamia convergens, on black bean aphids, Aphis fabae, and pea aphids, Acyrthosiphon pisum.

    PubMed

    Hinkelman, Travis M; Tenhumberg, Brigitte

    2013-01-01

    Generalist predator guilds play a prominent role in structuring insect communities and can contribute to limiting population sizes of insect pest species. A consequence of dietary breadth, particularly in predatory insects, is the inclusion of low-quality, or even toxic, prey items in the predator's diet. Consumption of low-quality prey items reduces growth, development, and survival of predator larvae, thereby reducing the population sizes of generalist predators. The objective of this paper was to examine the effect of a suspected low-quality aphid species, Aphis fabae (Scopoli) (Hemiptera: Aphididae), on the larval performance of an abundant North American predator, Hippodamia convergens (Guérin-Méneville) (Coleoptera: Coccinellidae). For comparison, H. convergens larvae were also reared on a known high-quality aphid species Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) and on a 50:50 mix of both aphid species. The proportion of H. convergens larvae surviving to the adult stage was dramatically lower (0.13) on the A. fabae diet than on the A. pisum diet (0.70); survival on the mixed diet was intermediate (0.45) to survival on the single-species diets. Similarly, surviving H. convergens larvae also developed more slowly and weighed less as adults on the A. fabae diet than on the A. pisum diet. Despite the relatively poor performance on the A. fabae diet, H. convergens larvae killed large numbers of A. fabae. Furthermore, H. convergens displayed a preference for A. fabae in the mixed diet treatment, most likely because A. fabae was easier to catch than A. pisum. The results suggest that increases in the distribution and abundance of A. fabae in North America may have negative effects on H. convergens population size.

  16. Infection Dynamic of Symbiotic Bacteria in the Pea Aphid Acyrthosiphon pisum Gut and Host Immune Response at the Early Steps in the Infection Process

    PubMed Central

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid. PMID:25811863

  17. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    PubMed

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  18. Gene Expression Analysis of Parthenogenetic Embryonic Development of the Pea Aphid, Acyrthosiphon pisum, Suggests That Aphid Parthenogenesis Evolved from Meiotic Oogenesis

    PubMed Central

    Srinivasan, Dayalan G.; Abdelhady, Ahmed; Stern, David L.

    2014-01-01

    Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity. PMID:25501006

  19. DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay.

    PubMed

    Christiaens, Olivier; Swevers, Luc; Smagghe, Guy

    2014-03-01

    Over the past decade, RNA interference (RNAi), the sequence-specific suppression of gene expression, has proven very promising for molecular research in many species, including model insects as Tribolium castaneum and Apis mellifera. It showed its usefulness to analyze gene function and its potential to manage pest populations and reduce disease pathogens. However, in several insects, the efficiency of RNAi is low or very variable at best. One of the factors that could influence RNAi efficiency in insects is degradation of dsRNA after administration to the insect. In this paper, we report on the importance of dsRNA breakdown in the pea aphid (Acyrthosiphon pisum) associated with the absence of an RNAi response upon oral feeding and injection with dsRNA targeting different genes such as the ecdysone hormone receptor and ultraspiracle. In essence, we discovered that both the salivary secretions of aphids and the hemolymph were able to degrade the dsRNA. In parallel, introduction of dsRNA in the aphid body was not able to provoke a response in the expression of the siRNA core machinery genes.

  20. Gene expression analysis of parthenogenetic embryonic development of the pea aphid, Acyrthosiphon pisum, suggests that aphid parthenogenesis evolved from meiotic oogenesis.

    PubMed

    Srinivasan, Dayalan G; Abdelhady, Ahmed; Stern, David L

    2014-01-01

    Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity.

  1. Biostable multi-Aib analogs of tachykinin-related peptides demonstrate potent oral aphicidal activity in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae).

    PubMed

    Nachman, Ronald J; Mahdian, Kamran; Nässel, Dick R; Isaac, R Elwyn; Pryor, Nan; Smagghe, Guy

    2011-03-01

    The tachykinin-related peptides (TRPs) are multifunctional neuropeptides found in a variety of arthropod species, including the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). Two new biostable TRP analogs containing multiple, sterically hindered Aib residues were synthesized and found to exhibit significantly enhanced resistance to hydrolysis by angiotensin converting enzyme and neprilysin, membrane-bound enzymes that degrade and inactivate natural TRPs. The two biostable analogs were also found to retain significant myostimulatory activity in an isolated cockroach hindgut preparation, the bioassay used to isolate and identify the first members of the TRP family. Indeed one of the analogs (Leuma-TRP-Aib-1) matched the potency and efficacy of the natural, parent TRP peptide in this myotropic bioassay. The two biostable TRP analogs were further fed in solutions of artificial diet to the pea aphid over a period of 3 days and evaluated for antifeedant and aphicidal activity and compared with the effect of treatment with three natural, unmodified TRPs. The two biostable multi-Aib TRP analogs were observed to elicit aphicidal effects within the first 24 h. In contrast natural, unmodified TRPs, including two that are native to the pea aphid, demonstrated little or no activity. The most active analog, double-Aib analog Leuma-TRP-Aib-1 (pEA[Aib]SGFL[Aib]VR-NH(2)), featured aphicidal activity calculated at an LC(50) of 0.0083 nmol/μl (0.0087 μg/μl) and an LT(50) of 1.4 days, matching or exceeding the potency of commercially available aphicides. The mechanism of this activity has yet to be established. The aphicidal activity of the biostable TRP analogs may result from disruption of digestive processes by interfering with gut motility patterns and/or with fluid cycling in the gut; processes shown to be regulated by the TRPs in other insects. These active TRP analogs and/or second generation analogs offer potential as environmentally friendly pest aphid control agents.

  2. Jumping-ship can have its costs: implications of predation and host plant species for the maintenance of pea aphid (Acyrthosiphon pisum Harris) colour polymorphism.

    PubMed

    Balog, Adalbert

    2013-10-01

    The interplay between the host plant of an insect herbivore and an insect predator (here two-spot ladybird beetles; Adalia bipunctata (L).; Coleoptera: Coccinellidae), feeding upon such a herbivore was examined in the laboratory as factors possibly determining the differential abundance and success of green and red host races of pea aphid, Acyrthosiphon pisum Harris. The experiment comprised three treatments: two host plants (bean and clover), two treatment levels (control and predation) and three colour morph levels (green alone, red alone and green and red in mixture). Green morphs had higher fitness on the general host plant, bean Vicia faba, than on the derived host, clover (Trifolium pratense), in the absence of predation. Although green morph fitness was reduced by predation when infesting bean together with reds, there was no observable net fitness loss due to predation on clover in mixed colonies with red morphs. Red morphs exhibited fitness loss alone on both bean and clover, while clover plants seemingly prevented fitness loss in the presence of predation when red morphs were mixed with green ones. According to this scenario, when colour morphs existed as a mixed colony, the net fitness of either pea aphid morph was not influenced by predation on clover. Predators had significant effects only on red morphs on broad bean either when alone or were mixed together with green morphs. Thus, only red morphs experienced the benefits of switching from the general to the derived host red clover in the presence of predation. For green morphs, there was no apparent cost of switching host plants when they faced predation. Hence, the co-existence of green-red colour polymorphism of pea aphids on single host plants appears to be maintained by the morph gaining fitness on the derived host due to a host plant– and predation–reduction effect. These findings have important implications for understanding the ecology and evolution of host switching by different colour

  3. Pea (Pisum sativum L.) in the genomics era

    USDA-ARS?s Scientific Manuscript database

    Pea (Pisum sativum L.) was the original model organism for Mendel´s discovery of the laws of inheritance, making it the foundation of modern plant genetics. However, subsequent progress in pea genomics has lagged behind many other plant species, largely as a consequence of its low multiplication rat...

  4. Solenopsis invicta virus 3: mapping of structural proteins, ribosomal frameshifting, and similarities to Acyrthosiphon pisum virus and kelp fly virus

    USDA-ARS?s Scientific Manuscript database

    Solenopsis invicta virus 3 (SINV-3) is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF) of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the stru...

  5. Does phloem-based resistance to aphid feeding affect host-plant acceptance for reproduction? Parturition of the pea aphid, Acyrthosiphon pisum, on two near-isogenic lines of Medicago truncatula.

    PubMed

    Nam, K Jung; Powell, G; Hardie, J

    2013-12-01

    Probing behaviour (prior to parturition) and parturition of two clones (PS01 and N116) of the pea aphid, Acyrthosiphon pisum on two genotypes (near-isogenic lines (NILs)) (Q174_5.13 and Q174_9.10) of Medicago truncatula were investigated using electrical penetration graph (EPG) coupled with simultaneous visual monitoring for parturition. Line Q174_5.13 has been reported to show a phloem-based resistance to feeding in the clone PS01 but to be susceptible to the clone N116, whereas Q174_9.10 has shown to be susceptible to both aphid clones. The time taken to first parturition by clone PS01 was similar on Q174_5.13 and Q174_9.10. Prior to parturition, no aphids on Q174_5.13 contacted phloem, but 5% of the aphids on Q174_9.10 showed phloem salivation (recognized by EPG pattern E1). No phloem contact was observed with aphid clone N116 on either NILs of Medicago before first parturition occurred, and the time taken to first larviposition was similar on Q174_5.13 and Q174_9.10. The results indicate that the initiation of parturition of the clone PS01 and N116 on both NILs does not require the phloem contact and seems unchanged by a phloem-based resistance mechanism to feeding on Medicago. This finding suggests that host recognition and decisions about parturition occur before phloem contact or ingestion, and act independently on R-gene-mediated resistance.

  6. Multimodal dynamic response of the Buchnera aphidicola pLeu plasmid to variations in leucine demand of its host, the pea aphid Acyrthosiphon pisum

    PubMed Central

    Viñuelas, José; Febvay, Gérard; Duport, Gabrielle; Colella, Stefano; Fayard, Jean-Michel; Charles, Hubert; Rahbé, Yvan; Calevro, Federica

    2011-01-01

    Aphids, important agricultural pests, can grow and reproduce thanks to their intimate symbiosis with the γ-proteobacterium Buchnera aphidicola that furnishes them with essential amino acids lacking in their phloem sap diet. To study how B. aphidicola, with its reduced genome containing very few transcriptional regulators, responds to variations in the metabolic requirements of its host, we concentrated on the leucine metabolic pathway. We show that leucine is a limiting factor for aphid growth and it displays a stimulatory feeding effect. Our metabolic analyses demonstrate that symbiotic aphids are able to respond to leucine starvation or excess by modulating the neosynthesis of this amino acid. At a molecular level, this response involves an early important transcriptional regulation (after 12 h of treatment) followed by a moderate change in the pLeu plasmid copy number. Both responses are no longer apparent after 7 days of treatment. These experimental data are discussed in the light of a re-annotation of the pLeu plasmid regulatory elements. Taken together, our data show that the response of B. aphidicola to the leucine demand of its host is multimodal and dynamically regulated, providing new insights concerning the genetic regulation capabilities of this bacterium in relation to its symbiotic functions. PMID:21797941

  7. Multimodal dynamic response of the Buchnera aphidicola pLeu plasmid to variations in leucine demand of its host, the pea aphid Acyrthosiphon pisum.

    PubMed

    Viñuelas, José; Febvay, Gérard; Duport, Gabrielle; Colella, Stefano; Fayard, Jean-Michel; Charles, Hubert; Rahbé, Yvan; Calevro, Federica

    2011-09-01

    Aphids, important agricultural pests, can grow and reproduce thanks to their intimate symbiosis with the γ-proteobacterium Buchnera aphidicola that furnishes them with essential amino acids lacking in their phloem sap diet. To study how B. aphidicola, with its reduced genome containing very few transcriptional regulators, responds to variations in the metabolic requirements of its host, we concentrated on the leucine metabolic pathway. We show that leucine is a limiting factor for aphid growth and it displays a stimulatory feeding effect. Our metabolic analyses demonstrate that symbiotic aphids are able to respond to leucine starvation or excess by modulating the neosynthesis of this amino acid. At a molecular level, this response involves an early important transcriptional regulation (after 12 h of treatment) followed by a moderate change in the pLeu plasmid copy number. Both responses are no longer apparent after 7 days of treatment. These experimental data are discussed in the light of a re-annotation of the pLeu plasmid regulatory elements. Taken together, our data show that the response of B. aphidicola to the leucine demand of its host is multimodal and dynamically regulated, providing new insights concerning the genetic regulation capabilities of this bacterium in relation to its symbiotic functions.

  8. The whole genome sequence assembly of the soybean aphid, Aphis glycines

    USDA-ARS?s Scientific Manuscript database

    Aphids are emerging as model organisms for both basic and applied research. Of the 5,000 estimated species, only two aphids have published whole genome sequences: the pea aphid Acyrthosiphon pisum, and the Russian wheat aphid, Diuraphis noxia. The soybean aphid (Aphis glycines) is an extreme special...

  9. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing

    PubMed Central

    2011-01-01

    Background The garden pea, Pisum sativum, is among the best-investigated legume plants and of significant agro-commercial relevance. Pisum sativum has a large and complex genome and accordingly few comprehensive genomic resources exist. Results We analyzed the pea transcriptome at the highest possible amount of accuracy by current technology. We used next generation sequencing with the Roche/454 platform and evaluated and compared a variety of approaches, including diverse tissue libraries, normalization, alternative sequencing technologies, saturation estimation and diverse assembly strategies. We generated libraries from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings, comprising a total of 450 megabases. Libraries were assembled into 324,428 unigenes in a first pass assembly. A second pass assembly reduced the amount to 81,449 unigenes but caused a significant number of chimeras. Analyses of the assemblies identified the assembly step as a major possibility for improvement. By recording frequencies of Arabidopsis orthologs hit by randomly drawn reads and fitting parameters of the saturation curve we concluded that sequencing was exhaustive. For leaf libraries we found normalization allows partial recovery of expression strength aside the desired effect of increased coverage. Based on theoretical and biological considerations we concluded that the sequence reads in the database tagged the vast majority of transcripts in the aerial tissues. A pathway representation analysis showed the merits of sampling multiple aerial tissues to increase the number of tagged genes. All results have been made available as a fully annotated database in fasta format. Conclusions We conclude that the approach taken resulted in a high quality - dataset which serves well as a first comprehensive reference set for the model legume pea. We suggest future deep sequencing transcriptome projects of species lacking a genomics backbone will

  10. Bean pod mottle virus: a new powerful tool for functional genomics studies in Pisum sativum.

    PubMed

    Meziadi, Chouaib; Blanchet, Sophie; Richard, Manon M S; Pilet-Nayel, Marie-Laure; Geffroy, Valérie; Pflieger, Stéphanie

    2016-08-01

    Pea (Pisum sativum L.) is an important legume worldwide. The importance of pea in arable rotations and nutritional value for both human and animal consumption have fostered sustained production and different studies to improve agronomic traits of interest. Moreover, complete sequencing of the pea genome is currently underway and will lead to the identification of a large number of genes potentially associated with important agronomic traits. Because stable genetic transformation is laborious for pea, virus-induced gene silencing (VIGS) appears as a powerful alternative technology for determining the function of unknown genes. In this work, we present a rapid and efficient viral inoculation method using DNA infectious plasmids of Bean pod mottle virus (BPMV)-derived VIGS vector. Six pea genotypes with important genes controlling biotic and/or abiotic stresses were found susceptible to BPMV carrying a GFP reporter gene and showed fluorescence in both shoots and roots. In a second step, we investigated 37 additional pea genotypes and found that 30 were susceptible to BPMV and only 7 were resistant. The capacity of BPMV to induce silencing of endogenes was investigated in the most susceptible genotype using two visual reporter genes: PsPDS and PsKORRIGAN1 (PsKOR1) encoding PHYTOENE DESATURASE and a 1,4-β-D-glucanase, respectively. The features of the 'one-step' BPMV-derived VIGS vector include (i) the ease of rub-inoculation, without any need for biolistic or agro-inoculation procedures, (ii) simple cost-effective procedure and (iii) noninterference of viral symptoms with silencing. These features make BPMV the most adapted VIGS vector in pea to make low- to high-throughput VIGS studies. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Genetic diversity, population structure and genome-wide marker-trait association analysis of the USDA pea (Pisum sativum L.) core collection

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity, population structure and genome-wide marker-trait association analysis was conducted for the USDA pea (Pisum sativum L.) core collection. The core collection contained 285 accessions with diverse phenotypes and geographic origins. The 137 DNA markers included 102 polymorphic fra...

  12. Draft Genome Sequence of the Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens Strain CREA-C16 Isolated from Pea (Pisum sativum L.) Rhizosphere

    PubMed Central

    Sorrentino, Roberto; Scotti, Riccardo; Salzano, Melania; Aurilia, Vincenzo

    2017-01-01

    ABSTRACT Herein, we report the draft genome sequence of Pseudomonas fluorescens strain CREA-C16, a plant growth-promoting rhizobacterium that was isolated from the rhizosphere of Pisum sativum L. plants. The genome sequence is ~6 Mb in size, with a G+C content of 60.1%, and includes 4,457 candidate protein-encoding genes. PMID:28126933

  13. Draft Genome Sequence of the Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens Strain CREA-C16 Isolated from Pea (Pisum sativum L.) Rhizosphere.

    PubMed

    D'Agostino, Nunzio; Sorrentino, Roberto; Scotti, Riccardo; Salzano, Melania; Aurilia, Vincenzo; Zaccardelli, Massimo

    2017-01-26

    Herein, we report the draft genome sequence of Pseudomonas fluorescens strain CREA-C16, a plant growth-promoting rhizobacterium that was isolated from the rhizosphere of Pisum sativum L. plants. The genome sequence is ~6 Mb in size, with a G+C content of 60.1%, and includes 4,457 candidate protein-encoding genes. Copyright © 2017 D’Agostino et al.

  14. High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland

    SciTech Connect

    Mazur, Andrzej; De Meyer, Sofie E.; Tian, Rui; Wielbo, Jerzy; Zebracki, Kamil; Seshadri, Rekha; Reddy, T. B.K.; Markowitz, Victor; Ivanova, Natalia N.; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos C.; Reeve, Wayne

    2015-07-16

    We report that Rhizobium leguminosarum bv. viciae GB30 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Pisum sativum. GB30 was isolated in Poland from a nodule recovered from the roots of Pisum sativum growing at Janow. GB30 is also an effective microsymbiont of the annual forage legumes vetch and pea. Here we describe the features of R. leguminosarum bv. viciae strain GB30, together with sequence and annotation. The 7,468,464 bp high-quality permanent draft genome is arranged in 78 scaffolds of 78 contigs containing 7,227 protein-coding genes and 75 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.

  15. High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland

    DOE PAGES

    Mazur, Andrzej; De Meyer, Sofie E.; Tian, Rui; ...

    2015-07-16

    We report that Rhizobium leguminosarum bv. viciae GB30 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Pisum sativum. GB30 was isolated in Poland from a nodule recovered from the roots of Pisum sativum growing at Janow. GB30 is also an effective microsymbiont of the annual forage legumes vetch and pea. Here we describe the features of R. leguminosarum bv. viciae strain GB30, together with sequence and annotation. The 7,468,464 bp high-quality permanent draft genome is arranged in 78 scaffolds of 78 contigs containing 7,227 protein-coding genes and 75more » RNA-only encoding genes, and is part of the GEBA-RNB project proposal.« less

  16. High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. viciae strain GB30; an effective microsymbiont of Pisum sativum growing in Poland.

    PubMed

    Mazur, Andrzej; De Meyer, Sofie E; Tian, Rui; Wielbo, Jerzy; Zebracki, Kamil; Seshadri, Rekha; Reddy, Tbk; Markowitz, Victor; Ivanova, Natalia N; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos C; Reeve, Wayne

    2015-01-01

    Rhizobium leguminosarum bv. viciae GB30 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Pisum sativum. GB30 was isolated in Poland from a nodule recovered from the roots of Pisum sativum growing at Janow. GB30 is also an effective microsymbiont of the annual forage legumes vetch and pea. Here we describe the features of R. leguminosarum bv. viciae strain GB30, together with sequence and annotation. The 7,468,464 bp high-quality permanent draft genome is arranged in 78 scaffolds of 78 contigs containing 7,227 protein-coding genes and 75 RNA-only encoding genes, and is part of the GEBA-RNB project proposal.

  17. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    PubMed Central

    Macas, Jiří; Neumann, Pavel; Navrátilová, Alice

    2007-01-01

    Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data provide a starting point for

  18. Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.).

    PubMed

    Ma, Yu; Coyne, Clarice J; Grusak, Michael A; Mazourek, Michael; Cheng, Peng; Main, Dorrie; McGee, Rebecca J

    2017-02-13

    Marker-assisted breeding is now routinely used in major crops to facilitate more efficient cultivar improvement. This has been significantly enabled by the use of next-generation sequencing technology to identify loci and markers associated with traits of interest. While rich in a range of nutritional components, such as protein, mineral nutrients, carbohydrates and several vitamins, pea (Pisum sativum L.), one of the oldest domesticated crops in the world, remains behind many other crops in the availability of genomic and genetic resources. To further improve mineral nutrient levels in pea seeds requires the development of genome-wide tools. The objectives of this research were to develop these tools by: identifying genome-wide single nucleotide polymorphisms (SNPs) using genotyping by sequencing (GBS); constructing a high-density linkage map and comparative maps with other legumes, and identifying quantitative trait loci (QTL) for levels of boron, calcium, iron, potassium, magnesium, manganese, molybdenum, phosphorous, sulfur, and zinc in the seed, as well as for seed weight. In this study, 1609 high quality SNPs were found to be polymorphic between 'Kiflica' and 'Aragorn', two parents of an F6-derived recombinant inbred line (RIL) population. Mapping 1683 markers including 75 previously published markers and 1608 SNPs developed from the present study generated a linkage map of size 1310.1 cM. Comparative mapping with other legumes demonstrated that the highest level of synteny was observed between pea and the genome of Medicago truncatula. QTL analysis of the RIL population across two locations revealed at least one QTL for each of the mineral nutrient traits. In total, 46 seed mineral concentration QTLs, 37 seed mineral content QTLs, and 6 seed weight QTLs were discovered. The QTLs explained from 2.4% to 43.3% of the phenotypic variance. The genome-wide SNPs and the genetic linkage map developed in this study permitted QTL identification for pea seed mineral

  19. The significance of gut sucrase activity for osmoregulation in the pea aphid, Acyrthosiphon pisum.

    PubMed

    Karley, A J; Ashford, D A; Minto, L M; Pritchard, J; Douglas, A E

    2005-12-01

    The osmotic pressure of the body fluids of aphids is lower than in their diet of plant phloem sap. It is hypothesised that aphids reduce the osmotic pressure of ingested food by sucrase-mediated hydrolysis of dietary sucrose to glucose and fructose, and the polymerisation of glucose into oligosaccharides of low osmotic pressure per hexose unit. To test this hypothesis, the impact of the alpha-glucosidase inhibitor acarbose on the sugar relations and osmoregulation of aphids was explored. Acarbose inhibited sucrase activity in gut homogenates and the production of monosaccharides and oligosaccharides in the honeydew of live aphids. Acarbose caused an increase in the haemolymph osmotic pressure for aphids reared on a diet (containing 0.75 M sucrose) hyperosmotic to the haemolymph and not on the isoosmotic diet containing 0.2 M sucrose. It did not affect aphid feeding rate over 2 days, except at high concentrations on 0.75 M sucrose diet, and this may have been a secondary consequence of osmotic dysfunction. Acarbose-treated aphids died prematurely. With 5 microM dietary acarbose, mean survivorship on 0.2 M sucrose diet was 4.2 days, not significantly different from starved aphids, indicating that, although these aphids fed, they were deprived of utilisable carbon; and on 0.75 M sucrose diet, mean survivorship was just 2.8 days, probably as a consequence of osmotic failure. It is concluded that the aphid gut sucrase activity is essential for osmoregulation of aphids ingesting food hyperosmotic to their body fluids.

  20. Genomics of Environmentally Induced Phenotypes in 2 Extremely Plastic Arthropods

    PubMed Central

    Simon, Jean-Christophe; Pfrender, Michael E.; Tollrian, Ralph; Tagu, Denis

    2011-01-01

    Understanding how genes and the environment interact to shape phenotypes is of fundamental importance for resolving important issues in adaptive evolution. Yet, for most model species with mature genetics and accessible genomic resources, we know little about the natural environmental factors that shape their evolution. By contrast, animal species with deeply understood ecologies and well characterized responses to environmental cues are rarely subjects of genomic investigations. Here, we preview advances in genomics in aphids and waterfleas that may help transform research on the regulatory mechanisms of phenotypic plasticity. This insect and crustacean duo has the capacity to produce extremely divergent phenotypes in response to environmental stimuli. Sexual fate and reproductive mode are condition-dependent in both groups, which are also capable of altering morphology, physiology and behavior in response to biotic and abiotic cues. Recently, the genome sequences for the pea aphid Acyrthosiphon pisum and the waterflea Daphnia pulex were described by their respective research communities. We propose that an integrative study of genome biology focused on the condition-dependent transcriptional basis of their shared plastic traits and specialized mode of reproduction will provide broad insight into adaptive plasticity and genome by environment interactions. We highlight recent advances in understanding the genome regulation of alternative phenotypes and environmental cue processing, and we propose future research avenues to discover gene networks and epigenetic mechanisms underlying phenotypic plasticity. PMID:21525179

  1. Widespread selection across coding and noncoding DNA in the pea aphid genome.

    PubMed

    Bickel, Ryan D; Dunham, Joseph P; Brisson, Jennifer A

    2013-06-21

    Genome-wide patterns of diversity and selection are critical measures for understanding how evolution has shaped the genome. Yet, these population genomic estimates are available for only a limited number of model organisms. Here we focus on the population genomics of the pea aphid (Acyrthosiphon pisum). The pea aphid is an emerging model system that exhibits a range of intriguing biological traits not present in classic model systems. We performed low-coverage genome resequencing of 21 clonal pea aphid lines collected from alfalfa host plants in North America to characterize genome-wide patterns of diversity and selection. We observed an excess of low-frequency polymorphisms throughout coding and noncoding DNA, which we suggest is the result of a founding event and subsequent population expansion in North America. Most gene regions showed lower levels of Tajima's D than synonymous sites, suggesting that the majority of the genome is not evolving neutrally but rather exhibits significant constraint. Furthermore, we used the pea aphid's unique manner of X-chromosome inheritance to assign genomic scaffolds to either autosomes or the X chromosome. Comparing autosomal vs. X-linked sequence variation, we discovered that autosomal genes show an excess of low frequency variants indicating that purifying selection acts more efficiently on the X chromosome. Overall, our results provide a critical first step in characterizing the genetic diversity and evolutionary pressures on an aphid genome.

  2. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation.

    PubMed

    Mai, Van Chung; Drzewiecka, Kinga; Jeleń, Henryk; Narożna, Dorota; Rucińska-Sobkowiak, Renata; Kęsy, Jacek; Floryszak-Wieczorek, Jolanta; Gabryś, Beata; Morkunas, Iwona

    2014-05-01

    This study demonstrates the sequence of enhanced generation of signal molecules such as phytohormones, i.e. jasmonic acid (JA), ethylene (ET), salicylic acid (SA), and a relatively stable free radical, nitric oxide (NO), in response of Pisum sativum L. cv. Cysterski seedling leaves to the infestation of pea aphid Acyrthosiphon pisum (Harris) at a varied population size. In time from 0 to 96h after A. pisum infestation these signal molecules accumulated transiently. Moreover, the convergence of these signaling pathways occurred. JA and its methyl derivative MeJA reached the first maximum of generation at 24th hour of infestation. An increase in ET and NO generation was observed at 48th hour of infestation. The increase in SA, JA/MeJA and ET concentrations in aphid-infested leaves occurred from the 72nd to 96th hour. In parallel, an increase was demonstrated for the activities of enzymes engaged in the biosynthesis of SA, such as phenylalanine ammonia-lyase (PAL) and benzoic acid 2-hydroxylase (BA2H). Additionally, a considerable post-infestation accumulation of transcripts for PAL was observed. An increase in the activity of lipoxygenase (LOX), an important enzyme in the biosynthesis of JA was noted. This complex signaling network may contribute to the coordinated regulation of gene expression leading to specific defence responses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Tangible benefits of the pea aphid genome sequencing in proteomics research: enhancements in protein identification, data incorporation, and evaluation criteria

    USDA-ARS?s Scientific Manuscript database

    The pea aphid, Acyrthosiphon pisum, is an important agricultural pest and a model system for numerous aspects of aphid biology, including sexual and asexual reproduction, bacterial endosymbiosis, insecticide resistance, and the evolution of aphid and plant host interactions. Recently, its complete ...

  4. New Clues about the Evolutionary History of Metabolic Losses in Bacterial Endosymbionts, Provided by the Genome of Buchnera aphidicola from the Aphid Cinara tujafilina▿†

    PubMed Central

    Lamelas, Araceli; Gosalbes, María José; Moya, Andrés; Latorre, Amparo

    2011-01-01

    The symbiotic association between aphids (Homoptera) and Buchnera aphidicola (Gammaproteobacteria) started about 100 to 200 million years ago. As a consequence of this relationship, the bacterial genome has undergone a prominent size reduction. The downsize genome process starts when the bacterium enters the host and will probably end with its extinction and replacement by another healthier bacterium or with the establishment of metabolic complementation between two or more bacteria. Nowadays, several complete genomes of Buchnera aphidicola from four different aphid species (Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistacea, and Cinara cedri) have been fully sequenced. C. cedri belongs to the subfamily Lachninae and harbors two coprimary bacteria that fulfill the metabolic needs of the whole consortium: B. aphidicola with the smallest genome reported so far and “Candidatus Serratia symbiotica.” In addition, Cinara tujafilina, another member of the subfamily Lachninae, closely related to C. cedri, also harbors “Ca. Serratia symbiotica” but with a different phylogenetic status than the one from C. cedri. In this study, we present the complete genome sequence of B. aphidicola from C. tujafilina and the phylogenetic analysis and comparative genomics with the other Buchnera genomes. Furthermore, the gene repertoire of the last common ancestor has been inferred, and the evolutionary history of the metabolic losses that occurred in the different lineages has been analyzed. Although stochastic gene loss plays a role in the genome reduction process, it is also clear that metabolism, as a functional constraint, is also a powerful evolutionary force in insect endosymbionts. PMID:21571878

  5. Translational Genomics in Legumes Allowed Placing In Silico 5460 Unigenes on the Pea Functional Map and Identified Candidate Genes in Pisum sativum L.

    PubMed

    Bordat, Amandine; Savois, Vincent; Nicolas, Marie; Salse, Jérome; Chauveau, Aurélie; Bourgeois, Michael; Potier, Jean; Houtin, Hervé; Rond, Céline; Murat, Florent; Marget, Pascal; Aubert, Grégoire; Burstin, Judith

    2011-07-01

    To identify genes involved in phenotypic traits, translational genomics from highly characterized model plants to poorly characterized crop plants provides a valuable source of markers to saturate a zone of interest as well as functionally characterized candidate genes. In this paper, an integrated view of the pea genetic map was developed. A series of gene markers were mapped and their best reciprocal homologs were identified on M. truncatula, L. japonicus, soybean, and poplar pseudomolecules. Based on the syntenic relationships uncovered between pea and M. truncatula, 5460 pea Unigenes were tentatively placed on the consensus map. A new bioinformatics tool, http://www.thelegumeportal.net/pea_mtr_translational_toolkit, was developed that allows, for any gene sequence, to search its putative position on the pea consensus map and hence to search for candidate genes among neighboring Unigenes. As an example, a promising candidate gene for the hypernodulation mutation nod3 in pea was proposed based on the map position of the likely homolog of Pub1, a M. truncatula gene involved in nodulation regulation. A broader view of pea genome evolution was obtained by revealing syntenic relationships between pea and sequenced genomes. Blocks of synteny were identified which gave new insights into the evolution of chromosome structure in Papillionoids and Eudicots. The power of the translational genomics approach was underlined.

  6. Insecticidal Activity of a Basement Membrane-Degrading Protease against Heliothis virescens (Fabricius) and Acyrthosiphon pisum (Harris)

    USDA-ARS?s Scientific Manuscript database

    ScathL is a cathepsin L-like cysteine protease derived from the flesh fly Sarcophaga peregrina that functions in basement membrane (BM) remodeling during insect development. A recombinant baculovirus expressing ScathL (AcMLF9.ScathL) kills larvae of the tobacco budworm, Heliothis virescens, signific...

  7. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant

    USDA-ARS?s Scientific Manuscript database

    In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid-plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Her...

  8. Antifeedant Activity and High Mortality in the Pea Aphid Acyrthosiphon pisum (Hemiptera: Aphidae) Induced by Biostable Insect Kinin Analogs

    DTIC Science & Technology

    2010-01-01

    demonstrated antifeedant activity, with a marked reduction in honeydew formation observed after 1 day, and very high mortality. In contrast, an...activity, with a marked reduction in honeydew formation observed after 1 day, and very high mortality. In contrast, an unmodified, parent insect kinin and...For each concentration, three replicates were carried out and aphids were checked daily during 3 days for honeydew formation to determine antifeedant

  9. Posterior localization of ApVas1 positions the preformed germ plasm in the sexual oviparous pea aphid Acyrthosiphon pisum

    PubMed Central

    2014-01-01

    Background Germline specification in some animals is driven by the maternally inherited germ plasm during early embryogenesis (inheritance mode), whereas in others it is induced by signals from neighboring cells in mid or late development (induction mode). In the Metazoa, the induction mode appears as a more prevalent and ancestral condition; the inheritance mode is therefore derived. However, regarding germline specification in organisms with asexual and sexual reproduction it has not been clear whether both strategies are used, one for each reproductive phase, or if just one strategy is used for both phases. Previously we have demonstrated that specification of germ cells in the asexual viviparous pea aphid depends on a preformed germ plasm. In this study, we extended this work to investigate how germ cells were specified in the sexual oviparous embryos, aiming to understand whether or not developmental plasticity of germline specification exists in the pea aphid. Results We employed Apvas1, a Drosophila vasa ortholog in the pea aphid, as a germline marker to examine whether germ plasm is preformed during oviparous development, as has already been seen in the viviparous embryos. During oogenesis, Apvas1 mRNA and ApVas1 protein were both evenly distributed. After fertilization, uniform expression of Apvas1 remained in the egg but posterior localization of ApVas1 occurred from the fifth nuclear cycle onward. Posterior co-localization of Apvas1/ApVas1 was first identified in the syncytial blastoderm undergoing cellularization, and later we could detect specific expression of Apvas1/ApVas1 in the morphologically identifiable germ cells of mature embryos. This suggests that Apvas1/ApVas1-positive cells are primordial germ cells and posterior localization of ApVas1 prior to cellularization positions the preformed germ plasm. Conclusions We conclude that both asexual and sexual pea aphids rely on the preformed germ plasm to specify germ cells and that developmental plasticity of germline specification, unlike axis patterning, occurs in neither of the two aphid reproductive phases. Consequently, the maternal inheritance mode implicated by a preformed germ plasm in the oviparous pea aphid becomes a non-canonical case in the Hemimetabola, where so far the zygotic induction mode prevails in most other studied insects. PMID:24855557

  10. Genome expansion and differential expression of amino acid transporters at the aphid/Buchnera symbiotic interface.

    PubMed

    Price, Daniel R G; Duncan, Rebecca P; Shigenobu, Shuji; Wilson, Alex C C

    2011-11-01

    In insects, some of the most ecologically important symbioses are nutritional symbioses that provide hosts with novel traits and thereby facilitate exploitation of otherwise inaccessible niches. One such symbiosis is the ancient obligate intracellular symbiosis of aphids with the γ-proteobacteria, Buchnera aphidicola. Although the nutritional basis of the aphid/Buchnera symbiosis is well understood, the processes and structures that mediate the intimate interactions of symbiotic partners remain uncharacterized. Here, using a de novo approach, we characterize the complement of 40 amino acid polyamine organocation (APC) superfamily member amino acid transporters (AATs) encoded in the genome of the pea aphid, Acyrthosiphon pisum. We find that the A. pisum APC superfamily is characterized by extensive gene duplications such that A. pisum has more APC superfamily transporters than other fully sequenced insects, including a ten paralog aphid-specific expansion of the APC transporter slimfast. Detailed expression analysis of 17 transporters selected on the basis of their phylogenetic relationship to five AATs identified in an earlier bacteriocyte expressed sequence tag study distinguished a subset of eight transporters that have been recruited for amino acid transport in bacteriocyte cells at the symbiotic interface. These eight transporters include transporters that are highly expressed and/or highly enriched in bacteriocytes and intriguingly, the four AATs that show bacteriocyte-enriched expression are all members of gene family expansions, whereas three of the four that are highly expressed but not enriched in bacteriocytes retain one-to-one orthology with transporters in other genomes. Finally, analysis of evolutionary rates within the large A. pisum slimfast expansion demonstrated increased rates of molecular evolution coinciding with two major shifts in expression: 1) a loss of gut expression and possibly a gain of bacteriocyte expression and 2) loss of expression

  11. Analysis of the accumulation of Pea enation mosaic virus genomes in seed tissues and lack of evidence for seed transmission in pea (Pisum sativum).

    PubMed

    Timmerman-Vaughan, Gail; Larsen, Richard; Murray, Sarah; McPhee, Kevin; Coyne, Clarice

    2009-11-01

    Pea enation mosaic virus (PEMV) is an important virus disease of pea. International movement of commercial pea cultivars and germplasm can be problematic due to uncertainty about seed transmission of the viruses responsible for the disease. Whether PEMV is seedborne was assessed by collecting developing seed from infected plants and determining the relative concentrations of the PEMV-1 and PEMV-2 viral genomes using quantitative real-time reverse-transcription polymerase chain reaction. The relative accumulation of PEMV-1 and PEMV-2 was approximately 1,240 and 13,000 times higher, respectively, in leaf than in embryo tissues. Accumulation of PEMV-1 and PEMV-2 RNA was also significantly higher in pod walls and seed coats than in cotyledons or embryo axes. No evidence was obtained for seed transmission of PEMV in pea. Although PEMV-1 and PEMV-2 genomic RNAs were found in developing seed, no PEMV symptoms were observed in the field on more than 50,000 plants from seed derived from PEMV-infected source plants. These data demonstrate that PEMV is seedborne in pea but do not support a previous report that PEMV is seed transmitted. Absence of seed transmission may result from the low abundance of PEMV viral genomes in embryo tissue.

  12. Seed coat import and unloading in pisum. [Pisum sativum

    SciTech Connect

    Grusak, M.A.; Minchin, P.E.H.

    1987-08-01

    Experiments were undertaken with empty, attached ovules of Pisum sativum to observe the effects of osmotic solution changes on seed coat import and unloading into the apoplast. Through the use of /sup 11/CO/sub 2/ pulse labelling along with collimated monitoring of plant sections, the authors were able to continuously and simultaneously measure total pod import, import into a single ovule, and washout from the ovule into a flow-through bathing solution. The authors results indicated that changes in bathing solution sucrose concentration had no immediate effect on tracer washout in Pisum, but did affect ovule import. Lowering the sucrose concentration decreased import and raising the concentration increased import. Furthermore, these import changes were only gradually reflected in the seed coat washout profile, suggesting a buffering capability of the non-phloem seed coat tissues. Additional results have also led them to propose that the terminal site of seed coat unloading in Pisum is the plasmalemma of an non-phloem seed coat cell type, that unloading from this site occurs via a passive membrane transport process, and that solutes move symplastically to this compartment from the phloem.

  13. Genome-wide annotation and functional identification of aphid GLUT-like sugar transporters.

    PubMed

    Price, Daniel R G; Gatehouse, John A

    2014-08-04

    Phloem feeding insects, such as aphids, feed almost continuously on plant phloem sap, a liquid diet that contains high concentrations of sucrose (a disaccharide comprising of glucose and fructose). To access the available carbon, aphids hydrolyze sucrose in the gut lumen and transport its constituent monosaccharides, glucose and fructose. Although sugar transport plays a critical role in aphid nutrition, the molecular basis of sugar transport in aphids, and more generally across all insects, remains poorly characterized. Here, using the latest release of the pea aphid, Acyrthosiphon pisum, genome we provide an updated gene annotation and expression profile of putative sugar transporters. Finally, gut expressed sugar transporters are functionally expressed in yeast and screened for glucose and fructose transport activity. In this study, using a de novo approach, we identified 19 sugar porter (SP) family transporters in the A. pisum genome. Gene expression analysis, based on 214, 834 A. pisum expressed sequence tags, supports 17 sugar porter family transporters being actively expressed in adult female aphids. Further analysis, using quantitative PCR identifies 4 transporters, A. pisum sugar transporter 1, 3, 4 and 9 (ApST1, ApST3, ApST4 and ApST9) as highly expressed and/or enriched in gut tissue. When expressed in a Saccharomyces cerevisiae hexose transporter deletion mutant (strain EBY.VW4000), only ApST3 (previously characterized) and ApST4 (reported here) transport glucose and fructose resulting in functional rescue of the yeast mutant. Here we characterize ApST4, a 491 amino acid protein, with 12 predicted transmembrane regions, as a facilitative glucose/fructose transporter. Finally, phylogenetic reconstruction reveals that ApST4, and related, as yet uncharacterized insect transporters are phylogenetically closely related to human GLUT (SLC2A) class I facilitative glucose/fructose transporters. The gut enhanced expression of ApST4, and the transport specificity

  14. Genetic diversity in European Pisum germplasm collections.

    PubMed

    Jing, R; Ambrose, M A; Knox, M R; Smykal, P; Hybl, M; Ramos, Á; Caminero, C; Burstin, J; Duc, G; van Soest, L J M; Święcicki, W K; Pereira, M G; Vishnyakova, M; Davenport, G F; Flavell, A J; Ellis, T H N

    2012-07-01

    The distinctness of, and overlap between, pea genotypes held in several Pisum germplasm collections has been used to determine their relatedness and to test previous ideas about the genetic diversity of Pisum. Our characterisation of genetic diversity among 4,538 Pisum accessions held in 7 European Genebanks has identified sources of novel genetic variation, and both reinforces and refines previous interpretations of the overall structure of genetic diversity in Pisum. Molecular marker analysis was based upon the presence/absence of polymorphism of retrotransposon insertions scored by a high-throughput microarray and SSAP approaches. We conclude that the diversity of Pisum constitutes a broad continuum, with graded differentiation into sub-populations which display various degrees of distinctness. The most distinct genetic groups correspond to the named taxa while the cultivars and landraces of Pisum sativum can be divided into two broad types, one of which is strongly enriched for modern cultivars. The addition of germplasm sets from six European Genebanks, chosen to represent high diversity, to a single collection previously studied with these markers resulted in modest additions to the overall diversity observed, suggesting that the great majority of the total genetic diversity collected for the Pisum genus has now been described. Two interesting sources of novel genetic variation have been identified. Finally, we have proposed reference sets of core accessions with a range of sample sizes to represent Pisum diversity for the future study and exploitation by researchers and breeders.

  15. Settling Down: The Genome of Serratia symbiotica from the Aphid Cinara tujafilina Zooms in on the Process of Accommodation to a Cooperative Intracellular Life

    PubMed Central

    Manzano-Marín, Alejandro; Latorre, Amparo

    2014-01-01

    Particularly interesting cases of mutualistic endosymbioses come from the establishment of co-obligate associations of more than one species of endosymbiotic bacteria. Throughout symbiotic accommodation from a free-living bacterium, passing through a facultative stage and ending as an obligate intracellular one, the symbiont experiences massive genomic losses and phenotypic adjustments. Here, we scrutinized the changes in the coevolution of Serratia symbiotica and Buchnera aphidicola endosymbionts in aphids, paying particular attention to the transformations undergone by S. symbiotica to become an obligate endosymbiont. Although it is already known that S. symbiotica is facultative in Acyrthosiphon pisum, in Cinara cedri it has established a co-obligate endosymbiotic consortium along with B. aphidicola to fulfill the aphid’s nutritional requirements. The state of this association in C. tujafilina, an aphid belonging to the same subfamily (Lachninae) that C. cedri, remained unknown. Here, we report the genome of S. symbiotica strain SCt-VLC from the aphid C. tujafilina. While being phylogenetically and genomically very closely related to the facultative endosymbiont S. symbiotica from the aphid A. pisum, it shows a variety of metabolic, genetic, and architectural features, which point toward this endosymbiont being one step closer to an obligate intracellular one. We also describe in depth the process of genome rearrangements suffered by S. symbiotica and the role mobile elements play in gene inactivations. Finally, we postulate the supply to the host of the essential riboflavin (vitamin B2) as key to the establishment of S. symbiotica as a co-obligate endosymbiont in the aphids belonging to the subfamily Lachninane. PMID:24951564

  16. Bacterial Genes in the Aphid Genome: Absence of Functional Gene Transfer from Buchnera to Its Host

    PubMed Central

    Nikoh, Naruo; McCutcheon, John P.; Kudo, Toshiaki; Miyagishima, Shin-ya; Moran, Nancy A.; Nakabachi, Atsushi

    2010-01-01

    Genome reduction is typical of obligate symbionts. In cellular organelles, this reduction partly reflects transfer of ancestral bacterial genes to the host genome, but little is known about gene transfer in other obligate symbioses. Aphids harbor anciently acquired obligate mutualists, Buchnera aphidicola (Gammaproteobacteria), which have highly reduced genomes (420–650 kb), raising the possibility of gene transfer from ancestral Buchnera to the aphid genome. In addition, aphids often harbor other bacteria that also are potential sources of transferred genes. Previous limited sampling of genes expressed in bacteriocytes, the specialized cells that harbor Buchnera, revealed that aphids acquired at least two genes from bacteria. The newly sequenced genome of the pea aphid, Acyrthosiphon pisum, presents the first opportunity for a complete inventory of genes transferred from bacteria to the host genome in the context of an ancient obligate symbiosis. Computational screening of the entire A. pisum genome, followed by phylogenetic and experimental analyses, provided strong support for the transfer of 12 genes or gene fragments from bacteria to the aphid genome: three LD–carboxypeptidases (LdcA1, LdcA2,ψLdcA), five rare lipoprotein As (RlpA1-5), N-acetylmuramoyl-L-alanine amidase (AmiD), 1,4-beta-N-acetylmuramidase (bLys), DNA polymerase III alpha chain (ψDnaE), and ATP synthase delta chain (ψAtpH). Buchnera was the apparent source of two highly truncated pseudogenes (ψDnaE and ψAtpH). Most other transferred genes were closely related to genes from relatives of Wolbachia (Alphaproteobacteria). At least eight of the transferred genes (LdcA1, AmiD, RlpA1-5, bLys) appear to be functional, and expression of seven (LdcA1, AmiD, RlpA1-5) are highly upregulated in bacteriocytes. The LdcAs and RlpAs appear to have been duplicated after transfer. Our results excluded the hypothesis that genome reduction in Buchnera has been accompanied by gene transfer to the host

  17. A new species of Acyrthosiphon (Hemiptera, Aphididae) from France and Spain.

    PubMed

    Nieto Nafría, Juan M; Aldea, Marta; Castro, Marta

    2015-02-17

    A new species in one of the largest genera of Macrosiphini (Hemiptera, Aphididae), Acyrthosiphon pilosum sp. n., is described from apterous and alate viviparous females and oviparous females from French and Spanish Mediterranean localities, living on species of Ononis (Fabaceae), mainly O. natrix. The new species is characterized by the presence of many accessory setae on the ultimate rostral segment, and usually five setae on the first tarsal segments, a combination that is not present in any other known Acyrthosiphon species; in addition marginal tubercles are present on prothorax and several of abdominal segments 2-5.

  18. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis

    PubMed Central

    2010-01-01

    Background The genetic diversity of crop species is the result of natural selection on the wild progenitor and human intervention by ancient and modern farmers and breeders. The genomes of modern cultivars, old cultivated landraces, ecotypes and wild relatives reflect the effects of these forces and provide insights into germplasm structural diversity, the geographical dimension to species diversity and the process of domestication of wild organisms. This issue is also of great practical importance for crop improvement because wild germplasm represents a rich potential source of useful under-exploited alleles or allele combinations. The aim of the present study was to analyse a major Pisum germplasm collection to gain a broad understanding of the diversity and evolution of Pisum and provide a new rational framework for designing germplasm core collections of the genus. Results 3020 Pisum germplasm samples from the John Innes Pisum germplasm collection were genotyped for 45 retrotransposon based insertion polymorphism (RBIP) markers by the Tagged Array Marker (TAM) method. The data set was stored in a purpose-built Germinate relational database and analysed by both principal coordinate analysis and a nested application of the Structure program which yielded substantially similar but complementary views of the diversity of the genus Pisum. Structure revealed three Groups (1-3) corresponding approximately to landrace, cultivar and wild Pisum respectively, which were resolved by nested Structure analysis into 14 Sub-Groups, many of which correlate with taxonomic sub-divisions of Pisum, domestication related phenotypic traits and/or restricted geographical locations. Genetic distances calculated between these Sub-Groups are broadly supported by principal coordinate analysis and these, together with the trait and geographical data, were used to infer a detailed model for the domestication of Pisum. Conclusions These data provide a clear picture of the major distinct gene

  19. A Genome-Wide Identification and Analysis of the Basic Helix-Loop-Helix Transcription Factors in Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Wan, Pin-Jun; Yuan, San-Yue; Wang, Wei-Xia; Chen, Xu; Lai, Feng-Xiang; Fu, Qiang

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors in insects play essential roles in multiple developmental processes including neurogenesis, sterol metabolism, circadian rhythms, organogenesis and formation of olfactory sensory neurons. The identification and function analysis of bHLH family members of the most destructive insect pest of rice, Nilaparvata lugens, may provide novel tools for pest management. Here, a genome-wide survey for bHLH sequences identified 60 bHLH sequences (NlbHLHs) encoded in the draft genome of N. lugens. Phylogenetic analysis of the bHLH domains successfully classified these genes into 40 bHLH families in group A (25), B (14), C (10), D (1), E (8) and F (2). The number of NlbHLHs with introns is higher than many other insect species, and the average intron length is shorter than those of Acyrthosiphon pisum. High number of ortholog families of NlbHLHs was found suggesting functional conversation for these proteins. Compared to other insect species studied, N. lugens has the highest number of bHLH members. Furthermore, gene duplication events of SREBP, Kn(col), Tap, Delilah, Sim, Ato and Crp were found in N. lugens. In addition, a putative full set of NlbHLH genes is defined and compared with another insect species. Thus, our classification of these NlbHLH members provides a platform for further investigations of bHLH protein functions in the regulation of N. lugens, and of insects in general. PMID:27869716

  20. Optimization of Agroinfiltration in Pisum sativum Provides a New Tool for Studying the Salivary Protein Functions in the Pea Aphid Complex.

    PubMed

    Guy, Endrick; Boulain, Hélène; Aigu, Yoann; Le Pennec, Charlotte; Chawki, Khaoula; Morlière, Stéphanie; Schädel, Kristina; Kunert, Grit; Simon, Jean-Christophe; Sugio, Akiko

    2016-01-01

    Aphids are piercing-sucking insect pests and feed on phloem sap. During feeding, aphids inject a battery of salivary proteins into host plant. Some of these proteins function like effectors of microbial pathogens and influence the outcome of plant-aphid interactions. The pea aphid (Acyrthosiphon pisum) is the model aphid and encompasses multiple biotypes each specialized to one or a few legume species, providing an opportunity to investigate the underlying mechanisms of the compatibility between plants and aphid biotypes. We aim to identify the aphid factors that determine the compatibility with host plants, hence involved in the host plant specialization process, and hypothesize that salivary proteins are one of those factors. Agrobacterium-mediated transient gene expression is a powerful tool to perform functional analyses of effector (salivary) proteins in plants. However, the tool was not established for the legume species that A. pisum feeds on. Thus, we decided to optimize the method for legume plants to facilitate the functional analyses of A. pisum salivary proteins. We screened a range of cultivars of pea (Pisum sativum) and alfalfa (Medicago sativa). None of the M. sativa cultivars was suitable for agroinfiltration under the tested conditions; however, we established a protocol for efficient transient gene expression in two cultivars of P. sativum, ZP1109 and ZP1130, using A. tumefaciens AGL-1 strain and the pEAQ-HT-DEST1 vector. We confirmed that the genes are expressed from 3 to 10 days post-infiltration and that aphid lines of the pea adapted biotype fed and reproduced on these two cultivars while lines of alfalfa and clover biotypes did not. Thus, the pea biotype recognizes these two cultivars as typical pea plants. By using a combination of ZP1109 and an A. pisum line, we defined an agroinfiltration procedure to examine the effect of in planta expression of selected salivary proteins on A. pisum fitness and demonstrated that transient expression of

  1. Optimization of Agroinfiltration in Pisum sativum Provides a New Tool for Studying the Salivary Protein Functions in the Pea Aphid Complex

    PubMed Central

    Guy, Endrick; Boulain, Hélène; Aigu, Yoann; Le Pennec, Charlotte; Chawki, Khaoula; Morlière, Stéphanie; Schädel, Kristina; Kunert, Grit; Simon, Jean-Christophe; Sugio, Akiko

    2016-01-01

    Aphids are piercing-sucking insect pests and feed on phloem sap. During feeding, aphids inject a battery of salivary proteins into host plant. Some of these proteins function like effectors of microbial pathogens and influence the outcome of plant–aphid interactions. The pea aphid (Acyrthosiphon pisum) is the model aphid and encompasses multiple biotypes each specialized to one or a few legume species, providing an opportunity to investigate the underlying mechanisms of the compatibility between plants and aphid biotypes. We aim to identify the aphid factors that determine the compatibility with host plants, hence involved in the host plant specialization process, and hypothesize that salivary proteins are one of those factors. Agrobacterium-mediated transient gene expression is a powerful tool to perform functional analyses of effector (salivary) proteins in plants. However, the tool was not established for the legume species that A. pisum feeds on. Thus, we decided to optimize the method for legume plants to facilitate the functional analyses of A. pisum salivary proteins. We screened a range of cultivars of pea (Pisum sativum) and alfalfa (Medicago sativa). None of the M. sativa cultivars was suitable for agroinfiltration under the tested conditions; however, we established a protocol for efficient transient gene expression in two cultivars of P. sativum, ZP1109 and ZP1130, using A. tumefaciens AGL-1 strain and the pEAQ-HT-DEST1 vector. We confirmed that the genes are expressed from 3 to 10 days post-infiltration and that aphid lines of the pea adapted biotype fed and reproduced on these two cultivars while lines of alfalfa and clover biotypes did not. Thus, the pea biotype recognizes these two cultivars as typical pea plants. By using a combination of ZP1109 and an A. pisum line, we defined an agroinfiltration procedure to examine the effect of in planta expression of selected salivary proteins on A. pisum fitness and demonstrated that transient expression of

  2. Phylogeny, phylogeography and genetic diversity of Pisum genus

    USDA-ARS?s Scientific Manuscript database

    Tribe Fabeae (formerly Vicieae) contains some of humanity's most important grain legume crops, namely Lathyrus; Lens; Pisum; Vicia and the monotypic genus Vavilovia. Our study based on molecular data, have positioned Pisum between Vicia and Lathyrus and being closely allied to Vavilovia. Study of p...

  3. High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified Chinese commercial variety

    USDA-ARS?s Scientific Manuscript database

    Pea (Pisum sativum L.) is an important food legume globally, and is the plant species that J.G. Mendel used to lay the foundation of modern genetics. However, genomics resources of pea are limited comparing to other crop species. Application of marker assisted selection (MAS) in pea breeding has lag...

  4. Biosynthesis of the phytoalexin pisatin. [Pisum sativum

    SciTech Connect

    Preisig, C.L.; Bell, J.N.; Matthews, D.E.; VanEtten, H.D. ); Sun, Yuejin; Hrazdina, G. )

    1990-11-01

    NADPH-dependent reduction of 2{prime},7-dihydroxy-4{prime},5{prime}-methylenedioxyisoflavone to the isoflavanone sophorol, a proposed intermediate step in pisatin biosynthesis, was detected in extracts of Pisum sativum. This isoflavone reductase activity was inducible by treatment of pea seedlings with CuCl{sub 2}. The timing of induction coincided with that of the 6a-hydroxymaackiain 3-O-methyltransferase, which catalyzes the terminal biosynthetic step. Neither enzyme was light inducible. Further NADPH-dependent metabolism of sophorol by extracts of CuCl{sub 2}-treated seedlings was also observed; three products were radiolabeled when ({sup 3}H)sophorol was the substrate, one of which is tentatively identified as maackiain.

  5. Pea, Pisum sativum, and Its Anticancer Activity

    PubMed Central

    Rungruangmaitree, Runchana; Jiraungkoorskul, Wannee

    2017-01-01

    Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment. PMID:28503053

  6. Pea, Pisum sativum, and Its Anticancer Activity.

    PubMed

    Rungruangmaitree, Runchana; Jiraungkoorskul, Wannee

    2017-01-01

    Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment.

  7. Cytokinins in Pisum Transfer Ribonucleic Acid 1

    PubMed Central

    Vreman, Hendrik J.; Skoog, Folke; Frihart, Charles R.; Leonard, Nelson J.

    1972-01-01

    Five cytokinin-active ribonucleosides have been isolated from the transfer RNA of 7-day-old green pea shoots (Pisum sativum L. var. Alaska). Ultraviolet spectroscopy and mass spectrometry have been used to identify 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine, 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β- d-ribofuranosylpurine, and 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine. The latter was separated into the cis- and trans-isomers by thin layer chromatography. The fifth cytokinin is indicated to be 6-(3-methyl-2-butenylamino)-2-methylthio-9-β-d -ribofuranosylpurine on the basis of its chromatographic properties. PMID:16658059

  8. [Effects of high temperature on the mortality and fecundity of two co-existing cotton aphid species Aphis gossypii Glover and Acyrthosiphon gossypii Mordvilko].

    PubMed

    Gao, Gui-Zhen; Lü, Zhao-Zhi; Sun, Ping; Xia, De-Ping

    2012-02-01

    Aphis gossypii and Acyrthosiphon gossypii are the coexisting species on cotton plant, with their abundance differed within and among years. To explore whether the abundance difference was related to the different responses of the two aphid species to high temperature, a laboratory experiment was conducted to assess the mortality and reproduction of the two aphid species at high temperatures 32, 34, 36 and 38 degrees C. With the increasing temperature and prolonged exposure period, the cumulative mortality of the two aphid species increased, and Acyrthosiphon gossypii had a higher cumulative mortality than Aphis gossypii. The daily mortality of the aphids could be well simulated by complementary log-log (CLL) model. The median lethal temperature of the two aphid species estimated by CLL model decreased with prolonged exposure period. Under the same exposure period, the median lethal temperature of Aphis gossypii was higher than that of Acyrthosiphon gossypii. Within the range of 32-38 degrees C, the reproduction rate of the two aphid species decreased with increasing temperature, but Aphis gossypii had a significantly higher reproduction rate than Acyrthosiphon gossypii, indicating that at the temperature higher than 32 degrees C, Aphis gossypi had higher tolerance against high temperature than Acyrthosiphon gossypii, and consequently, had more competitive advantage under global warming.

  9. Carbohydrate breakdown by chloroplasts of Pisum sativum.

    PubMed

    Stitt, M; Rees, T A

    1980-01-17

    1. The aims of this work were to discover the pathways of starch breakdown and carbohydrate metabolism in intact isolated chloroplasts from shoots of Pisum sativum. 2. 14C from starch, labelled by supplying [14C]glucose to chloroplasts, appeared, during starch breakdown, in CO2, maltose and the fraction of the acidic compounds that contained 3-phosphoglycerate and sugar phosphates. 3. When intact chloroplasts were incubated in the dark, 3-phosphoglycerate, triose phosphates and, to a lesser extent, hexose 6-phosphates accumulated in the medium at rates comparable to those of starch breakdown in leaves. This accumulation was dependent upon orthophosphate. 4. The patterns of 14CO2 production from specifically labelled [14C]glucose supplied to isolated chloroplasts were those expected of the oxidative pentose phosphate pathway with extensive recycling, and glycolysis. The respone of this pattern to lack of orthophosphate, addition of unlabelled intermediates, and 2-phosphoglycollate confirmed this view. 5. Starch breakdown in pea chloroplasts is held to be dominantly phosphorolytic with the products being metabolized via the oxidative pentose phosphate pathway and glycolysis to 3-phosphoglycerate, triose phosphates and CO2 that are exported to the cytoplasm.

  10. Protein methylation in pea chloroplasts. [Pisum sativum

    SciTech Connect

    Niemi, K.J.; Adler, J.; Selman, B.R. )

    1990-07-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with ({sup 3}H-methyl)-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile ({sup 3}H)methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the ({sup 3}H)methyl group.

  11. Pea (Pisum sativum) cells arrested in G2 have nascent DNA with breaks between replicons and replication clusters

    SciTech Connect

    Van't Hof, J.

    1980-01-01

    DNA fiber autoradiography and alkaline sucrose sedimentation of DNA of cultured pea-root cells (Pisum sativum) arrested in G2 by carbohydrate starvation demonstrated that nascent DNA molecules of replicon (16 to 27 x 10/sup 6/D) and apparent cluster (approx. 330 x 10/sup 6/D) size were not joined. That the arrested cells were in G2 was confirmed by single-cell autoradiography and cytophotometry. In pea there are about 18 replicons per average cluster, 4.2 x 10/sup 3/ clusters, and 7.7 x 10/sup 4/ replicons per genome.

  12. New anthocyanins from purple pods of pea (Pisum spp.).

    PubMed

    Terahara, N; Honda, T; Hayashi, M; Ishimaru, K

    2000-12-01

    Two new anthocyanins were isolated from purple pods of pea (Pisum spp.). Their structures were identified as delphinidin 3-xylosylgalactoside-5-acetylglucoside and its deacetylated derivative by the usual chemical degradation methods and by spectroscopic methods such as UV-VIS, MS and NMR. Both pigments showed moderate stability and antioxidative activity in a neutral aqueous solution.

  13. Pea (Pisum sp.) genetic resources, its analysis and exploration

    USDA-ARS?s Scientific Manuscript database

    Pea is important temperate region pulse, with feed, fodder and vegetable uses. Originated and domesticated in Middle East and Mediterranean, it formed important dietary components of early civilizations. Although Pisum is a small genus with two or three species, it is very diverse and structured, r...

  14. Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes

    PubMed Central

    Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana; Kukavica, Biljana M.; Lüthje, Sabine

    2015-01-01

    Legumes are important crop plants and pea (Pisum sativum L.) has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula Gaertner) allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins). Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed. PMID:26539198

  15. Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes.

    PubMed

    Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana; Kukavica, Biljana M; Lüthje, Sabine

    2015-01-01

    Legumes are important crop plants and pea (Pisum sativum L.) has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula Gaertner) allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins). Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed.

  16. Pea weevil, Bruchus pisorum (L.) (Coleoptera: Bruchidae), resistance in Pisum sativum x P. fulvum interspecific crosses

    USDA-ARS?s Scientific Manuscript database

    The pea weevil, Bruchus pisorum (L.), is one of the most intractable pest problems of cultivated pea, Pisum sativum L., in the world. This study investigated the transfer of pea weevil resistance from two accessions (PI 595946, PI 343955) of wild pea, Pisum fulvum Sibth. & Sm., to interspecific pop...

  17. Micromonospora halotolerans sp. nov., isolated from the rhizosphere of a Pisum sativum plant.

    PubMed

    Carro, Lorena; Pukall, Rüdiger; Spröer, Cathrin; Kroppenstedt, Reiner M; Trujillo, Martha E

    2013-06-01

    A filamentous actinomycete strain designated CR18(T) was isolated on humic acid agar from the rhizosphere of a Pisum sativum plant collected in Spain. This isolate was observed to grow optimally at 28 °C, pH 7.0 and in the presence of 5 % NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence indicated a close relationship with the type strains of Micromonospora chersina and Micromonospora endolithica. A further analysis based on a concatenated DNA sequence stretch of 4,523 bp that included partial sequences of the atpD, gyrB, recA, rpoB and 16S rRNA genes clearly differentiated the new strain from recognized Micromonospora species compared. DNA-DNA hybridization studies further supported the taxonomic position of strain CR18(T) as a novel genomic species. Chemotaxonomic analyses which included whole cell sugars, polar lipids, fatty acid profiles and menaquinone composition confirmed the affiliation of the new strain to the genus Micromonospora and also highlighted differences at the species level. These studies were finally complemented with an array of physiological tests to help differentiate between the new strain and its phylogenetic neighbours. Consequently, strain CR18(T) (= CECT 7890(T) = DSM 45598(T)) is proposed as the type strain of a novel species, Micromonospora halotolerans sp. nov.

  18. Can snow depth be used to predict the distribution of the high Arctic aphid Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen?

    PubMed Central

    2011-01-01

    Background The Svalbard endemic aphid Acyrthosiphon svalbardicum (Heikinheimo, 1968) is host specific to Dryas octopetala L. ssp octopetala (Rosaceae). It has been hypothesized that the aphid is present on those areas with a thin winter snow cover and which therefore clear of snow earlier in the season. This early snow clearance results in a longer growing period and allows the aphid to experience at least the minimum number of degree days required to complete its life cycle. However, this hypothesis lacked a detailed field validation. We aimed to test the relationship between the aphid distribution and time of snow clearance at landscape scale, mapping snow depth at peak of snow accumulation for the two succeeding years 2009 and 2010 and examining site occupancy and plant phenology the following summers. Additionally, the distribution range mapped by Strathdee & Bale (1995) was revisited to address possible changes in range along the coast of the fjord. Results A linear relation between snow depth and timing of snow melt was found but with strong inter-annual and landscape variation. Both snow depth and plant phenology were found to affect patch occupancy. In August, the aphid, at the three life stages scored (viviparae, oviparae/males and eggs), was present most frequently in those D. octopetala patches with the most advanced plant phenology and which showed shallower snow depths in spring. However, many patches predicted to contain aphids were empty. The aphid distribution range has expanded 4.7 km towards the fjord mouth from 1995. Conclusions Snow depth alone, and hence date of snow clearance, cannot precisely define species distribution at landscape scale, as this cannot explain why are they unoccupied patches under shallow snow depths with advanced plant phenology. We nonetheless present a model Arctic system that could form the basis for long term monitoring for climate- driven species shifts. PMID:21995787

  19. Development of the alt Mutant of Pisum sativum L. 1

    PubMed Central

    Guo, Wei Wen; Proebsting, William M.; Potter, Sandra W.; Daley, Larry S.; Potter, John R.

    1987-01-01

    The alt (albina-terminalis) mutant of Pisum sativum L. germinates normally, produces several nodes, and then above a sharp transition produces 2 to 3 bleached nodes, ceases growth, and eventually dies. Green nodes have normal chlorophyll content, absorption spectra, photosynthetic rates, and ultrastructure. In bleaching tissues, the chloroplasts degenerate rapidly, followed by extensive disruption and loss of the remaining cytoplasm and organelles. Application of tissue extracts of normal genotypes of pea, corn, and bean stimulates apical development of alt. The resulting tissues have essentially normal structure and function. Application of thiamine, thiamine monophosphate, and thiamine pyrophosphate also stimulate normal apical development at concentrations of 1 micromolar and above. Partial characterization of the stimulus from pea seed extracts is consistent with thiamine as the active factor. Images Fig. 4 Fig. 6 Fig. 8 PMID:16665809

  20. On the shock response of pisum sativum and lepidium sativum

    NASA Astrophysics Data System (ADS)

    Leighs, James Allen; Hazell, Paul; Appleby-Thomas, Gareth James

    2012-03-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry to astrobiology. Consequently, knowledge of the damage mechanisms within, and the viability of shocked organic material are of significant importance. In this study, a single-stage gasgun has been employed to subject samples of Pisum sativum (common pea) and Lepidium sativum (curled cress) to planar shock loading. Impact pressures of up to ~11.5 GPa and ~0.5 GPa for pea and cress seed samples respectively have been reached. The development of the experimental approach is discussed and presented alongside results from modelled gauge traces showing the sample loading history. Viability of the shock-loaded pea and cress seeds was investigated via attempts at germination, which were unsuccessful with pea seeds but successful in all tests performed on cress seeds. This work suggests that organic structures could survive shockwaves that may be encountered during asteroid collisions.

  1. High-Throughput Development of SSR Markers from Pea (Pisum sativum L.) Based on Next Generation Sequencing of a Purified Chinese Commercial Variety

    PubMed Central

    Zhang, Xiaoyan; Hu, Jinguo; Bao, Shiying; Hao, Junjie; Li, Ling; He, Yuhua; Jiang, Junye; Wang, Fang; Tian, Shufang; Zong, Xuxiao

    2015-01-01

    Pea (Pisum sativum L.) is an important food legume globally, and is the plant species that J.G. Mendel used to lay the foundation of modern genetics. However, genomics resources of pea are limited comparing to other crop species. Application of marker assisted selection (MAS) in pea breeding has lagged behind many other crops. Development of a large number of novel and reliable SSR (simple sequence repeat) or microsatellite markers will help both basic and applied genomics research of this crop. The Illumina HiSeq 2500 System was used to uncover 8,899 putative SSR containing sequences, and 3,275 non-redundant primers were designed to amplify these SSRs. Among the 1,644 SSRs that were randomly selected for primer validation, 841 yielded reliable amplifications of detectable polymorphisms among 24 genotypes of cultivated pea (Pisum sativum L.) and wild relatives (P. fulvum Sm.) originated from diverse geographical locations. The dataset indicated that the allele number per locus ranged from 2 to 10, and that the polymorphism information content (PIC) ranged from 0.08 to 0.82 with an average of 0.38. These 1,644 novel SSR markers were also tested for polymorphism between genotypes G0003973 and G0005527. Finally, 33 polymorphic SSR markers were anchored on the genetic linkage map of G0003973 × G0005527 F2 population. PMID:26440522

  2. High-Throughput Development of SSR Markers from Pea (Pisum sativum L.) Based on Next Generation Sequencing of a Purified Chinese Commercial Variety.

    PubMed

    Yang, Tao; Fang, Li; Zhang, Xiaoyan; Hu, Jinguo; Bao, Shiying; Hao, Junjie; Li, Ling; He, Yuhua; Jiang, Junye; Wang, Fang; Tian, Shufang; Zong, Xuxiao

    2015-01-01

    Pea (Pisum sativum L.) is an important food legume globally, and is the plant species that J.G. Mendel used to lay the foundation of modern genetics. However, genomics resources of pea are limited comparing to other crop species. Application of marker assisted selection (MAS) in pea breeding has lagged behind many other crops. Development of a large number of novel and reliable SSR (simple sequence repeat) or microsatellite markers will help both basic and applied genomics research of this crop. The Illumina HiSeq 2500 System was used to uncover 8,899 putative SSR containing sequences, and 3,275 non-redundant primers were designed to amplify these SSRs. Among the 1,644 SSRs that were randomly selected for primer validation, 841 yielded reliable amplifications of detectable polymorphisms among 24 genotypes of cultivated pea (Pisum sativum L.) and wild relatives (P. fulvum Sm.) originated from diverse geographical locations. The dataset indicated that the allele number per locus ranged from 2 to 10, and that the polymorphism information content (PIC) ranged from 0.08 to 0.82 with an average of 0.38. These 1,644 novel SSR markers were also tested for polymorphism between genotypes G0003973 and G0005527. Finally, 33 polymorphic SSR markers were anchored on the genetic linkage map of G0003973 × G0005527 F2 population.

  3. Interdependence of Nitrogen Nutrition and Photosynthesis in Pisum sativum L

    PubMed Central

    Bethlenfalvay, Gabor J.; Abu-Shakra, Salah S.; Phillips, Donald A.

    1978-01-01

    Physiological responses to infection by strains of Rhizobium leguminosarum which differed in their capacity to reduce N2 were determined in 26-day-old pea plants (Pisum sativum L. cv. Alaska) grown under uniform environmental conditions in the absence of combined N. The highest N2 reduction rates, calculated from H2 evolution and C2H2-dependent C2H4 production measurements, were approximately 6-fold greater than the lowest. Higher N2 fixation rates were associated with greater CO2 exchange rates (R2 = 0.92) and carboxylation efficiency (R2 = 0.99). Increases in the apparent relative efficiency of N2 fixation [1-(H2 evolved in air/C2H2 reduced)] (acteroid efficiency) were associated with increases in whole-plant N2 fixation efficiency (N2/CO2 reduction ratio) (R2 = 0.95). Whole-plant dry weight and total N content were related by regression analysis (R2 = 0.98); both parameters were enhanced by increased N2 fixation in a manner analogous to previously reported increases caused by greater external applications of NH4+. These data reveal that photosynthetic parameters in genetically uniform host plants grown under identical environmental conditions are affected by N2 fixation characteristics of the rhizobial symbiont. The measured efficiencies of micro- and macrosymbiont are directly related under uniform environments. PMID:16660451

  4. Further characterization of ribosome binding to thylakoid membranes. [Pisum sativum

    SciTech Connect

    Hurewitz, J.; Jagendorf, A.T.

    1987-05-01

    Previous work indicated more polysomes bound to pea (Pisum sativum cv Progress No. 9) thylakoids in light than in the dark, in vivo. With isolated intact chloroplasts incubated in darkness, addition of MgATP had no effect but 24 to 74% more RNA was thylakoid-bound at pH 8.3 than at pH 7. Thus, the major effect of light on ribosome-binding in vivo may be due to higher stroma pH. In isolated pea chloroplasts, initiation inhibitors (pactamycin and kanamycin) decreased the extent of RNA binding, and elongation inhibitors (lincomycin and streptomycin) increased it. Thus, cycling of ribosomes is controlled by translation, initiation, and termination. Bound RNA accounted for 19 to 24% of the total chloroplast RNA and the incorporation of (/sup 3/H)leucine into thylakoids was proportional to the amount of this bound RNA. These data support the concept that stroma ribosomes are recruited into thylakoid polysomes, which are active in synthesizing thylakoid proteins.

  5. Burdock fructooligosaccharide induces stomatal closure in Pisum sativum.

    PubMed

    Guo, Yanling; Guo, Moran; Zhao, Wenlu; Chen, Kaoshan; Zhang, Pengying

    2013-09-12

    Burdock fructooligosaccharide (BFO) isolated from the root tissue of Arctium lappa is a reserve carbohydrate that can induce resistance against a number of plant diseases. Stomatal closure is a part of plant innate immune response to restrict bacterial invasion. In this study, the effects of BFO on stomata movement in Pisum sativum and the possible mechanisms were studied with abscisic acid (ABA) as a positive control. The results showed that BFO could induce stomatal closure accompanied by ROS and NO production, as is the case with ABA. BFO-induced stomatal closure was inhibited by pre-treatment with L-NAME (N(G)-nitro-L-arginine methyl ester, hydrochloride; nitric oxide synthase inhibitor) and catalase (hydrogen peroxide scavenger). Exogenous catalase completely restricted BFO-induced production of ROS and NO in guard cells. In contrast, L-NAME prevented the rise in NO levels but only partially restricted the ROS production. These results indicate that BFO-induced stomatal closure is mediated by ROS and ROS-dependent NO production.

  6. Characterization of pea (Pisum sativum) seed protein fractions.

    PubMed

    Rubio, Luis A; Pérez, Alicia; Ruiz, Raquel; Guzmán, M Ángeles; Aranda-Olmedo, Isabel; Clemente, Alfonso

    2014-01-30

    Legume seed proteins have to be chemically characterized in order to properly link their nutritional effects with their chemical structure. Vicilin and albumin fractions devoid of cross-contamination, as assessed by mass peptide fingerprinting analysis, were obtained from defatted pea (Pisum sativum cv. Bilbo) meal. The extracted protein fractions contained 56.7-67.7 g non-starch polysaccharides kg⁻¹. The vicilin fraction was higher than legumins in arginine, isoleucine, leucine, phenylalanine and lysine. The most abundant amino acids in the albumin fraction were aspartic acid, glutamic acid, lysine and arginine, and the amounts of methionine were more than double than those in legumins and vicilins. The pea albumin fraction showed a clear enrichment of protease inhibitory activity when compared with the seed meal. In vitro digestibility values for pea proteins were 0.63 ±  0.04, 0.88 ±  0.04 and 0.41 ±  0.23 for legumins, vicilins and albumins respectively. Vicilin and albumin fractions devoid of cross-contamination with other proteins were obtained from pea seed meal. The vicilin fraction also contained low amounts of soluble non-starch polysaccharides and was enriched in isoleucine, leucine, phenylalanine and lysine. In vitro digestibility values for pea proteins were similar or even numerically higher than those for control proteins. © 2013 Society of Chemical Industry.

  7. A polygalacturonase localized in the Golgi apparatus in Pisum sativum.

    PubMed

    Ohashi, Takao; Jinno, Jun; Inoue, Yoshiyuki; Ito, Shoko; Fujiyama, Kazuhito; Ishimizu, Takeshi

    2017-02-23

    Pectin is a plant cell wall constituent that is mainly composed of polygalacturonic acid (PGA), a linear α1,4-D-galacturonic acid (GalUA) backbone. Polygalacturonase (PG) hydrolyzes the α1,4-linkages in PGA. Nearly all plant PGs identified thus far are secreted as soluble proteins. Here we describe the microsomal PG activity in pea (Pisum sativum) epicotyls and present biochemical evidence that it was localized to the Golgi apparatus, where pectins are biosynthesized. The microsomal PG was purified, and it was enzymatically characterized. The purified enzyme showed maximum activity towards pyridylaminated oligogalacturonic acids with six degrees of polymerization (PA-GalUA6), with a Km value of 11 μM for PA-GalUA6. The substrate preference of the enzyme was complementary to that of PGA synthase. The main PG activity in microsomes was detected in the Golgi fraction by sucrose density gradient ultracentrifugation. The activity of the microsomal PG was lower in rapidly growing epicotyls, in contrast to the high expression of PGA synthase. The role of this PG in the regulation of pectin biosynthesis or plant growth is discussed. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  8. Gravitropic response and circumnutation in pea (Pisum sativum) seedling roots.

    PubMed

    Kim, Hye-jeong; Kobayashi, Akie; Fujii, Nobuharu; Miyazawa, Yutaka; Takahashi, Hideyuki

    2016-05-01

    Plant circumnutation is a helical movement of growing organs such as shoots and roots. Gravitropic response is hypothesized to act as an external oscillator in shoot circumnutation, although this is subject to debate. The relationship between circumnutational movement and gravitropic response in roots remains unknown. In this study, we analyzed circumnutation of agravitropic roots using the ageotropum pea (Pisum sativum) mutant, and compared it with that of wild-type (cv. Alaska) pea roots. We further examined the relationship of gravitropic response to circumnutation of Alaska seedling roots by removing the gravisensing tissue (the root cap) and by treating the roots with auxin transport inhibitors. Alaska roots displayed circumnutational movements with a period of approximately 150 min, whereas ageotropum roots did not exhibit distinct circumnutational movement. Removal of the root cap in Alaska roots reduced gravitropic response and circumnutational movements. Treatment of Alaska roots with auxin transport inhibitors, 2,3,5-triiodobenzoic acid (TIBA) and N-(1-naphthyl)phthalamic acid (NPA), dramatically reduced gravitropic response and circumnutational movements. These results suggest that a gravity-regulated auxin transport is involved in circumnutation of pea seedling roots. © 2015 Scandinavian Plant Physiology Society.

  9. Review of the health benefits of peas (Pisum sativum L.).

    PubMed

    Dahl, Wendy J; Foster, Lauren M; Tyler, Robert T

    2012-08-01

    Pulses, including peas, have long been important components of the human diet due to their content of starch, protein and other nutrients. More recently, the health benefits other than nutrition associated with pulse consumption have attracted much interest. The focus of the present review paper is the demonstrated and potential health benefits associated with the consumption of peas, Pisum sativum L., specifically green and yellow cotyledon dry peas, also known as smooth peas or field peas. These health benefits derive mainly from the concentration and properties of starch, protein, fibre, vitamins, minerals and phytochemicals in peas. Fibre from the seed coat and the cell walls of the cotyledon contributes to gastrointestinal function and health, and reduces the digestibility of starch in peas. The intermediate amylose content of pea starch also contributes to its lower glycaemic index and reduced starch digestibility. Pea protein, when hydrolysed, may yield peptides with bioactivities, including angiotensin I-converting enzyme inhibitor activity and antioxidant activity. The vitamin and mineral contents of peas may play important roles in the prevention of deficiency-related diseases, specifically those related to deficiencies of Se or folate. Peas contain a variety of phytochemicals once thought of only as antinutritive factors. These include polyphenolics, in coloured seed coat types in particular, which may have antioxidant and anticarcinogenic activity, saponins which may exhibit hypocholesterolaemic and anticarcinogenic activity, and galactose oligosaccharides which may exert beneficial prebiotic effects in the large intestine.

  10. Transient protein expression in three Pisum sativum (green pea) varieties.

    PubMed

    Green, Brian J; Fujiki, Masaaki; Mett, Valentina; Kaczmarczyk, Jon; Shamloul, Moneim; Musiychuk, Konstantin; Underkoffler, Susan; Yusibov, Vidadi; Mett, Vadim

    2009-02-01

    The expression of proteins in plants both transiently and via permanently transformed lines has been demonstrated by a number of groups. Transient plant expression systems, due to high expression levels and speed of production, show greater promise for the manufacturing of biopharmaceuticals when compared to permanent transformants. Expression vectors based on a tobacco mosaic virus (TMV) are the most commonly utilized and the primary plant used, Nicotiana benthamiana, has demonstrated the ability to express a wide range of proteins at levels amenable to purification. N. benthamiana has two limitations for its use; one is its relatively slow growth, and the other is its low biomass. To address these limitations we screened a number of legumes for transient protein expression. Using the alfalfa mosaic virus (AMV) and the cucumber mosaic virus (CMV) vectors, delivered via Agrobacterium, we were able to identify three Pisum sativum varieties that demonstrated protein expression transiently. Expression levels of 420 +/- 26.24 mg GFP/kgFW in the green pea variety speckled pea were achieved. We were also able to express three therapeutic proteins indicating promise for this system in the production of biopharmaceuticals.

  11. A Genomic Reappraisal of Symbiotic Function in the Aphid/Buchnera Symbiosis: Reduced Transporter Sets and Variable Membrane Organisations

    PubMed Central

    Charles, Hubert; Balmand, Séverine; Lamelas, Araceli; Cottret, Ludovic; Pérez-Brocal, Vicente; Burdin, Béatrice; Latorre, Amparo; Febvay, Gérard; Colella, Stefano; Calevro, Federica; Rahbé, Yvan

    2011-01-01

    Buchnera aphidicola is an obligate symbiotic bacterium that sustains the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistaciae and Cinara cedri, using the re-annotation of their transmembrane proteins coupled with an exploration of their metabolic networks. Although metabolic analyses revealed high interdependencies between the host and the bacteria, we demonstrate here that transport in Buchnera is assured by low transporter diversity, when compared to free-living bacteria, being mostly based on a few general transporters, some of which probably have lost their substrate specificity. Moreover, in the four strains studied, an astonishing lack of inner-membrane importers was observed. In Buchnera, the transport function has been shaped by the distinct selective constraints occurring in the Aphididae lineages. Buchnera from A. pisum and S. graminum have a three-membraned system and similar sets of transporters corresponding to most compound classes. Transmission electronic microscopic observations and confocal microscopic analysis of intracellular pH fields revealed that Buchnera does not show any of the typical structures and properties observed in integrated organelles. Buchnera from B. pistaciae seem to possess a unique double membrane system and has, accordingly, lost all of its outer-membrane integral proteins. Lastly, Buchnera from C. cedri revealed an extremely poor repertoire of transporters, with almost no ATP-driven active transport left, despite the clear persistence of the ancestral three-membraned system. PMID:22229056

  12. Valorization of the peel of pea: Pisum sativum by evaluation of its antioxidant and antimicrobial activities.

    PubMed

    Hadrich, Fatma; Arbi, Mahdi El; Boukhris, Maher; Sayadi, Sami; Cherif, Slim

    2014-01-01

    This study deals with evaluating antioxidant and antimicrobial activities of the peel of pea (Pisum sativum), with particular attention to the content of some bioactive compounds. Total content of polyphenols and flavonoids of Pisum sativum peel extracts, including a crude aqueous extract, a methanolic extract and an ethyl acetate extract was carried out according to the standard methods to assess their corresponding antioxidant activities. The organic solvents extracts antioxidant activities, determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, ferric reducing (FRAP) assay and 2,2 azinobis 3-ethylbenzo-thiozoline-6-sulfonic acid (ABTS) assay, were relatively high. The highest activity was found in ethyl acetate extract. The antimicrobial activities of extracts were also assessed. The highest MIC value was occurred with E.Coli (850 µg/ml) when using ethyl acetate extract. From the results obtained, Pisum sativum peel can be considered as a very good source of health promoting compounds.

  13. Enhancing phytoremediative ability of Pisum sativum by EDTA application.

    PubMed

    Piechalak, Aneta; Tomaszewska, Barbara; Barałkiewicz, Danuta

    2003-12-01

    The aim of our research was to demonstrate how the presence of EDTA affects resistance of pea plants to Pb and Pb-EDTA presence, and to show the effectivity of lead ions accumulation and translocation. It was determined that EDTA not only increased the amount of Pb taken up by plants but also Pb ion transport through the xylem and metal translocation from roots to stems and leaves. It can be seen in the presented research results that addition of the chelator with Pb limited metal phytotoxicity. We also demonstrated a significant effect of EDTA not only on Pb accumulation and metal transport to the aboveground parts but also on the profile and amount of thiol compounds: glutathione (GSH), homoglutathione (hGSH) or phytochelatins (PCs), synthesized by the plants. We observed a significant effect of the synthetic chelator on increasing the level of Pb accumulation in roots of plants treated with Pb including EDTA (0.5 and 1 mM). Pisum sativum plants treated only with 1 mM Pb(NO3)2 accumulated over 50 mg Pb x g(-1) dry wt during 4 days of cultivation. Whereas in roots of pea plants exposed to Pb+0.5 mM EDTA 35% more Pb was observed. When 1 mM EDTA was applied roots of pea accumulated over 67% more metal. The presence of EDTA also increased metal uptake and transport to the aboveground parts. In pea plants treated only with 1 mM lead nitrate less than 3 mg Pb x g(-1) dry wt was transported, whereas in P. sativum treated with Pb-EDTA doubled amount of Pb was observed in stems and leaves.

  14. Photosynthetic Pod Wall of Pea (Pisum sativum L.)

    PubMed Central

    Atkins, Craig A.; Kuo, John; Pate, John S.; Flinn, Alastair M.; Steele, Trevor W.

    1977-01-01

    The pod wall of pea (Pisum sativum L.) was shown to contain two distinct photosynthetic layers. The outer, comprising chlorenchyma of the mesocarp, captured CO2 from the outside atmosphere; the inner, a chloroplast-containing epidermis lining the pod gas cavity, was involved in photoassimilation of the CO2 released from respiring seeds. Structural features of the pod included the thick cuticle and stomata of the outer epidermis, the inward projecting veinlets of the vascular network in the mesocarp, the sparsity of air spaces, the fiber and parenchyma layers of the endocarp, and the abundant chloroplasts, thin cuticle, and rounded outer contours of cells of the inner epidermis. The inner epidermis showed high specific activities of ribulose 1,5-diphosphate (RuDP) carboxylase (EC 4.1.1.39) and phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31), contained up to 20% of the pod's chlorophyll, and was capable of fixing 66% of the CO2 released during the photoperiod to the pod gas space by the seeds of a fully grown fruit. The in vitro carboxylation capacity of the pod exceeded the estimated gross photosynthesis of the fruit for all but the last few days of development. Chlorophyll content and carboxylation activity declined more markedly in the outer photosynthetic layers than in the inner epidermis. The ratio of activities of RuDP carboxylase to PEP carboxylase in pod extracts varied from 2.4:1 to 12:1 as against 48:1 to 156:1 in extracts of leaves. Structural and physiological properties of the pod were related to its capacity to conserve respired CO2 and provide photosynthate to developing seeds. Images PMID:16660184

  15. Chemical composition and pharmacological activities of Pisum sativum.

    PubMed

    Zilani, Md Nazmul Hasan; Sultana, Tamanna; Asabur Rahman, S M; Anisuzzman, Md; Islam, Md Amirul; Shilpi, Jamil A; Hossain, Md Golam

    2017-03-27

    Consumption of vegetables has been proven to be effective in the prevention of different diseases. Traditionally edible aerial part of Pisum sativum L. subsp. sativum (Fabaceae) is used to treat diabetes, heart diseases and as blood purifier. Present study was aimed to explore the traditional use of aerial parts of P. sativum as a source of antidiabetic agent. In addition, antioxidant activity and chemical composition was carried out. Total polyphenol content was spectrophotometrically determined using Folin Chiocalteu's reagent while the flavonoids by aluminum chloride colorimetric assay. Identification of compounds of the extract was made through HPLC and LCMS. Antihyperglycemic activity was assessed by oral glucose tolerance test in mice. Antioxidant activity was determined by DPPH free radical scavenging and reducing power assay. Total polyphenol and total flavonoids content were found to be 51.23 mg gallic acid equivalent and 30.88 mg quercetin equivalent per gram of dried plant extract respectively. Ellagic acid and p-coumeric acid were detected through HPLC. A total of eight compounds including naringenin, β-sitosterol were indentified through LCMS. In OGTT, extract (200 mg/kg bw) showed a 30.24% decrease (P< 0.05) in blood glucose levels at 30 min compared to the normal control. The extract showed IC50 value of 158.52 μg/mL in DPPH scavenging assay and also showed comparable reducing power. Along with other compounds ellagic acid and β-sitosterol present in the extract may be responsible for its antioxidant as well as antihyperglycemic activities. Altogether these results rationalize the use of this vegetable in traditional medicine.

  16. Flowering time adaption in Swedish landrace pea (Pisum sativum L.).

    PubMed

    Vanhala, Tytti; Normann, Kjersti R; Lundström, Maria; Weller, James L; Leino, Matti W; Hagenblad, Jenny

    2016-08-12

    Cultivated crops have repeatedly faced new climatic conditions while spreading from their site of origin. In Sweden, at the northernmost fringe of Europe, extreme conditions with temperature-limited growth seasons and long days require specific adaptation. Pea (Pisum sativum L.) has been cultivated in Sweden for millennia, allowing for adaptation to the local environmental conditions to develop. To study such adaptation, 15 Swedish pea landraces were chosen alongside nine European landraces, seven cultivars and three wild accessions. Number of days to flowering (DTF) and other traits were measured and the diversity of the flowering time genes HIGH RESPONSE TO PHOTOPERIOD (HR), LATE FLOWERING (LF) and STERILE NODES (SN) was assessed. Furthermore, the expression profiles of LF and SN were obtained. DTF was positively correlated with the length of growing season at the site of origin (GSO) of the Swedish landraces. Alleles at the HR locus were significantly associated with DTF with an average difference of 15.43 days between the two detected haplotypes. LF expression was found to have a significant effect on DTF when analysed on its own, but not when HR haplotype was added to the model. HR haplotype and GSO together explained the most of the detected variation in DTF (49.6 %). We show local adaptation of DTF, primarily in the northernmost accessions, and links between genetic diversity and diversity in DTF. The links between GSO and genetic diversity of the genes are less clear-cut and flowering time adaptation seems to have a complex genetic background.

  17. SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.)

    PubMed Central

    2013-01-01

    Background Field pea (Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-cost high-throughput genotyping systems, allowing the construction of saturated genetic linkage maps for identification of quantitative trait loci (QTLs) associated with traits of interest. Genetic markers in close linkage with the relevant genomic regions may then be implemented in varietal improvement programs. Results In this study, single nucleotide polymorphism (SNP) markers associated with expressed sequence tags (ESTs) were developed and used to generate comprehensive linkage maps for field pea. From a set of 36,188 variant nucleotide positions detected through in silico analysis, 768 were selected for genotyping of a recombinant inbred line (RIL) population. A total of 705 SNPs (91.7%) successfully detected segregating polymorphisms. In addition to SNPs, genomic and EST-derived simple sequence repeats (SSRs) were assigned to the genetic map in order to obtain an evenly distributed genome-wide coverage. Sequences associated with the mapped molecular markers were used for comparative genomic analysis with other legume species. Higher levels of conserved synteny were observed with the genomes of Medicago truncatula Gaertn. and chickpea (Cicer arietinum L.) than with soybean (Glycine max [L.] Merr.), Lotus japonicus L. and pigeon pea (Cajanus cajan [L.] Millsp.). Parents and RIL progeny were screened at the seedling growth stage for responses to salinity stress, imposed by addition of NaCl in the watering solution at a concentration of 18 dS m-1. Salinity-induced symptoms showed normal distribution, and the severity of the symptoms increased over time. QTLs for salinity tolerance were identified on linkage groups Ps III and VII, with flanking SNP markers suitable for

  18. Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits

    PubMed Central

    Bogdanova, Vera S.; Zaytseva, Olga O.; Mglinets, Anatoliy V.; Shatskaya, Natalia V.; Kosterin, Oleg E.; Vasiliev, Gennadiy V.

    2015-01-01

    In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized. PMID:25789472

  19. Chromosome aberration assays in Pisum for the study of environmental mutagens.

    PubMed

    Grant, W F; Owens, E T

    2001-05-01

    From a literature survey, 117 chemicals are tabulated that have been assayed in 179 assays for their clastogenic effects in Pisum. Of the 117 chemicals that have been assayed, 65 are reported at giving a positive reaction (i.e. causing chromosome aberrations), 30 positive with a dose response, five borderline positive. Seventeen chemicals gave a negative response. Eighty-one percent of the chemicals gave a definite positive response. A c-mitotic effect was detected from treatment with 17 chemicals. In addition to the above tabulation of chemicals, 39 chemicals have been reported with an antimitotic effect. Thirteen assays have been recorded for five types of radiation, which with the exception of ultrasound reacted positively. The results of assays with 38 chemicals and/or radiations in combined treatments, as well as 15 chemicals and three types of radiations that induce somatic mutations are tabulated. The Pisum sativum (2n=14) bioassay has been shown to be a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis for somatic mutations induced by chemicals, radiations, and environmental pollutants. For some chemicals, the Pisum assay is not as sensitive in assessing clastogenicity as the Allium assay, although this should be considered in relative terms. Pisum fulvum (2n=14) has been used in clastogenic studies also, but to a much lesser extent.

  20. Identification and Characterization of Partial Resistance to Fusarium root rot in the Pisum Core Collection

    USDA-ARS?s Scientific Manuscript database

    Fusarium solani f. sp. pisi (Fsp) is a serious seed and root rot pathogen found in both dryland and irrigated peas in the USA. Resistance to Fsp in 44 wild pea accessions from the Pisum Core Collection located in Pullman, WA, USA was characterized under greenhouse conditions. Germination rates, ro...

  1. Pea (Pisum sativum) Seed Production as an Assay for Reproductive Effects Due to Herbicides.

    EPA Science Inventory

    Even though herbicide drift can affect plant reproduction, current plant testing protocols emphasize effects on vegetative growth. In this study, we determined whether a short–growing season plant can indicate potential effects of herbicides on seed production. Pea (Pisum sativum...

  2. Pea (Pisum sativum) Seed Production as an Assay for Reproductive Effects Due to Herbicides.

    EPA Science Inventory

    Even though herbicide drift can affect plant reproduction, current plant testing protocols emphasize effects on vegetative growth. In this study, we determined whether a short–growing season plant can indicate potential effects of herbicides on seed production. Pea (Pisum sativum...

  3. Ferric reductase activity and PsFRO1 sequence variation in pisum sps

    USDA-ARS?s Scientific Manuscript database

    Physiological studies in pea (Pisum sativum) suggest that the reduction of iron (Fe) is the rate-limiting physiological process in Fe acquisition by dicotyledonous plants. Previous molecular work suggests that ferric reductase activity is regulated at both the transcriptional and post-translational ...

  4. Genetic Diversity within the USDA Pisum sativum Collection for Seed Sugar Composition and Concentration

    USDA-ARS?s Scientific Manuscript database

    The USDA Pisum sativum refined core collection was evaluated for concentrationa dn composition of low molceular weight carbohydrates. Six plants each from the 120 wrinkle-seeded accessions were grown ina commercial soilless mix in a greenhouse under 16hr/8hr day/night 20/15 C°. Pods were harvested...

  5. Genotyping by sequencing reveals the genetic diversity of the USDA pisum diversity collection

    USDA-ARS?s Scientific Manuscript database

    The USDA expanded Pisum Single Plant (PSP) core collection is a unique resource that represents the breadth of the genetic diversity of the genus in an inbred format that facilitates genetic study. The collection includes inbred accessions from the refined pea core collection, parent lines of USDA r...

  6. Genetic Diversity of Chinese and Global Pea (Pisum sativum L.) Collections.

    USDA-ARS?s Scientific Manuscript database

    Pea (Pisum sativum L.) is an important food and feed legume grown across many temperate regions of the world, especially from Asia to Europe and North America. The goal of this study was to use 30 informative pea microsatellite markers to compare genetic diversity in a global core from the USDA and ...

  7. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.

    PubMed

    Ferraro, Kiva; Jin, Alena L; Nguyen, Trinh-Don; Reinecke, Dennis M; Ozga, Jocelyn A; Ro, Dae-Kyun

    2014-09-16

    Proanthocyanidins (PAs) accumulate in the seeds, fruits and leaves of various plant species including the seed coats of pea (Pisum sativum), an important food crop. PAs have been implicated in human health, but molecular and biochemical characterization of pea PA biosynthesis has not been established to date, and detailed pea PA chemical composition has not been extensively studied. PAs were localized to the ground parenchyma and epidermal cells of pea seed coats. Chemical analyses of PAs from seeds of three pea cultivars demonstrated cultivar variation in PA composition. 'Courier' and 'Solido' PAs were primarily prodelphinidin-types, whereas the PAs from 'LAN3017' were mainly the procyanidin-type. The mean degree of polymerization of 'LAN3017' PAs was also higher than those from 'Courier' and 'Solido'. Next-generation sequencing of 'Courier' seed coat cDNA produced a seed coat-specific transcriptome. Three cDNAs encoding anthocyanidin reductase (PsANR), leucoanthocyanidin reductase (PsLAR), and dihydroflavonol reductase (PsDFR) were isolated. PsANR and PsLAR transcripts were most abundant earlier in seed coat development. This was followed by maximum PA accumulation in the seed coat. Recombinant PsANR enzyme efficiently synthesized all three cis-flavan-3-ols (gallocatechin, catechin, and afzalechin) with satisfactory kinetic properties. The synthesis rate of trans-flavan-3-ol by co-incubation of PsLAR and PsDFR was comparable to cis-flavan-3-ol synthesis rate by PsANR. Despite the competent PsLAR activity in vitro, expression of PsLAR driven by the Arabidopsis ANR promoter in wild-type and anr knock-out Arabidopsis backgrounds did not result in PA synthesis. Significant variation in seed coat PA composition was found within the pea cultivars, making pea an ideal system to explore PA biosynthesis. PsANR and PsLAR transcript profiles, PA localization, and PA accumulation patterns suggest that a pool of PA subunits are produced in specific seed coat cells early in

  8. Efficient production of human acidic fibroblast growth factor in pea (Pisum sativum L.) plants by agroinfection of germinated seeds

    PubMed Central

    2011-01-01

    Background For efficient and large scale production of recombinant proteins in plants transient expression by agroinfection has a number of advantages over stable transformation. Simple manipulation, rapid analysis and high expression efficiency are possible. In pea, Pisum sativum, a Virus Induced Gene Silencing System using the pea early browning virus has been converted into an efficient agroinfection system by converting the two RNA genomes of the virus into binary expression vectors for Agrobacterium transformation. Results By vacuum infiltration (0.08 Mpa, 1 min) of germinating pea seeds with 2-3 cm roots with Agrobacteria carrying the binary vectors, expression of the gene for Green Fluorescent Protein as marker and the gene for the human acidic fibroblast growth factor (aFGF) was obtained in 80% of the infiltrated developing seedlings. Maximal production of the recombinant proteins was achieved 12-15 days after infiltration. Conclusions Compared to the leaf injection method vacuum infiltration of germinated seeds is highly efficient allowing large scale production of plants transiently expressing recombinant proteins. The production cycle of plants for harvesting the recombinant protein was shortened from 30 days for leaf injection to 15 days by applying vacuum infiltration. The synthesized aFGF was purified by heparin-affinity chromatography and its mitogenic activity on NIH 3T3 cells confirmed to be similar to a commercial product. PMID:21548923

  9. The same allele of translation initiation factor 4E mediates resistance against two Potyvirus spp. in Pisum sativum.

    PubMed

    Bruun-Rasmussen, M; Møller, I S; Tulinius, G; Hansen, J K R; Lund, O S; Johansen, I E

    2007-09-01

    Pathogenicity of two sequenced isolates of Bean yellow mosaic virus (BYMV) was established on genotypes of Pisum sativum L. reported to carry resistance genes to BYMV and other potyviruses. Resistance to the white lupin strain of BYMV (BYMV-W) is inherited as a recessive gene named wlv that maps to linkage group VI together with other Potyvirus resistances. One of these, sbm1, confers resistance to strains of Pea seedborne mosaic virus and previously has been identified as a mutant allele of the eukaryotic translation initiation factor 4E gene (eIF4E). Sequence comparison of eIF4E from BYMV-W-susceptible and -resistant P. sativum genotypes revealed a polymorphism correlating with the resistance profile. Expression of eIF4E from susceptible plants in resistant plants facilitated BYMV-W infection in inoculated leaves. When cDNA of BYMV-W was agroinoculated, resistance mediated by the wlv gene frequently was overcome, and virus from these plants had a codon change causing an Arg to His change at position 116 of the predicted viral genome-linked protein (VPg). Accordingly, plants carrying the wlv resistance gene were infected upon inoculation with BYMV-W derived from cDNA with a His codon at position 116 of the VPg coding region. These results suggested that VPg determined pathogenicity on plants carrying the wlv resistance gene and that wlv corresponded to the sbm1 allele of eIF4E.

  10. Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth Markers

    PubMed Central

    Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lüthje, Sabine

    2017-01-01

    Legumes are a large and economically important family, containing a variety of crop plants. Alongside different cereals, some fruits, and tropical roots, a number of leguminosae evolved for millennia as crops with human society. One of these legumes is Pisum sativum L., the common garden pea. In the past, breeding has been largely selective on improved above-ground organs. However, parameters, such as root-growth, which determines acquisition of nutrients and water, have largely been underestimated. Although the genome of P. sativum is still not fully sequenced, multiple proteomic studies have been published on a variety of physiological aspects in the last years. The presented work focused on the connection between root length and the influence of the microsomal root proteome of four different pea cultivars after five days of germination (cultivar Vroege, Girl from the Rhineland, Kelvedon Wonder, and Blauwschokker). In total, 60 proteins were identified to have significantly differential abundances in the four cultivars. Root growth of five-days old seedlings and their microsomal proteome revealed a similar separation pattern, suggesting that cultivar-specific root growth performance is explained by differential membrane and ribosomal protein levels. Hence, we reveal and discuss several putative root growth protein markers possibly playing a key role for improved primary root growth breeding strategies. PMID:28257117

  11. Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth Markers.

    PubMed

    Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lüthje, Sabine

    2017-03-02

    Legumes are a large and economically important family, containing a variety of crop plants. Alongside different cereals, some fruits, and tropical roots, a number of leguminosae evolved for millennia as crops with human society. One of these legumes is Pisum sativum L., the common garden pea. In the past, breeding has been largely selective on improved above-ground organs. However, parameters, such as root-growth, which determines acquisition of nutrients and water, have largely been underestimated. Although the genome of P. sativum is still not fully sequenced, multiple proteomic studies have been published on a variety of physiological aspects in the last years. The presented work focused on the connection between root length and the influence of the microsomal root proteome of four different pea cultivars after five days of germination (cultivar Vroege, Girl from the Rhineland, Kelvedon Wonder, and Blauwschokker). In total, 60 proteins were identified to have significantly differential abundances in the four cultivars. Root growth of five-days old seedlings and their microsomal proteome revealed a similar separation pattern, suggesting that cultivar-specific root growth performance is explained by differential membrane and ribosomal protein levels. Hence, we reveal and discuss several putative root growth protein markers possibly playing a key role for improved primary root growth breeding strategies.

  12. Efficient production of human acidic fibroblast growth factor in pea (Pisum sativum L.) plants by agroinfection of germinated seeds.

    PubMed

    Fan, Yajun; Li, Wei; Wang, Junjie; Liu, Jingying; Yang, Meiying; Xu, Duo; Zhu, Xiaojuan; Wang, Xingzhi

    2011-05-06

    For efficient and large scale production of recombinant proteins in plants transient expression by agroinfection has a number of advantages over stable transformation. Simple manipulation, rapid analysis and high expression efficiency are possible. In pea, Pisum sativum, a Virus Induced Gene Silencing System using the pea early browning virus has been converted into an efficient agroinfection system by converting the two RNA genomes of the virus into binary expression vectors for Agrobacterium transformation. By vacuum infiltration (0.08 Mpa, 1 min) of germinating pea seeds with 2-3 cm roots with Agrobacteria carrying the binary vectors, expression of the gene for Green Fluorescent Protein as marker and the gene for the human acidic fibroblast growth factor (aFGF) was obtained in 80% of the infiltrated developing seedlings. Maximal production of the recombinant proteins was achieved 12-15 days after infiltration. Compared to the leaf injection method vacuum infiltration of germinated seeds is highly efficient allowing large scale production of plants transiently expressing recombinant proteins. The production cycle of plants for harvesting the recombinant protein was shortened from 30 days for leaf injection to 15 days by applying vacuum infiltration. The synthesized aFGF was purified by heparin-affinity chromatography and its mitogenic activity on NIH 3T3 cells confirmed to be similar to a commercial product.

  13. Effect of antifungal genes expressed in transgenic pea (Pisum sativum L.) on root colonization with Glomus intraradices.

    PubMed

    Hassan, Fathi; Noorian, Mojgan Sharifi; Jacobsen, Hans-Jörg

    2012-01-01

    Pathogenic fungi have always been a major problem in agriculture. One of the effective methods for controlling pathogen fungi to date is the introduction of resistance genes into the genome of crops. It is interesting to find out whether the induced resistance in crops will have a negative effect on non-target organisms such as root colonization with the AM fungi.   The objective of the present research was to study the influence of producing antifungal molecules by four transgenic pea (Pisum sativum L.) lines expressing PGIP gene from raspberry, VST-stilbene synthase from vine, a hybrid of PGIP/VST and bacterial Chitinase gene (Chit30) from Streptomyces olivaceoviridis respectively on the colonization potential of Glomus intraradices. Four different experiments were done in greenhouse and climate chamber, colonization was observed in all replications. The following parameters were used for evaluation: frequency of mycorrhization, the intensity of mycorrhization, the average presence of arbuscules within the colonized areas and the presence of arbuscules in the whole root system which showed insignificant difference between transgenic and non-transgenic plants. The root/shoot ratio exhibited different values according to the experiment condition. Compared with negative non-transgenic control all transgenic lines showed the ability to establish symbiosis and the different growth parameters had insignificant effect due to mycorrhization. The results of the present study proved that the introduced pathogen resistance genes did not affect the mycorrhization allocations in pea.

  14. SGRL can regulate chlorophyll metabolism and contributes to normal plant growth and development in Pisum sativum L.

    PubMed

    Bell, Andrew; Moreau, Carol; Chinoy, Catherine; Spanner, Rebecca; Dalmais, Marion; Le Signor, Christine; Bendahmane, Abdel; Klenell, Markus; Domoney, Claire

    2015-12-01

    Among a set of genes in pea (Pisum sativum L.) that were induced under drought-stress growth conditions, one encoded a protein with significant similarity to a regulator of chlorophyll catabolism, SGR. This gene, SGRL, is distinct from SGR in genomic location, encoded carboxy-terminal motif, and expression through plant and seed development. Divergence of the two encoded proteins is associated with a loss of similarity in intron/exon gene structure. Transient expression of SGRL in leaves of Nicotiana benthamiana promoted the degradation of chlorophyll, in a manner that was distinct from that shown by SGR. Removal of a predicted transmembrane domain from SGRL reduced its activity in transient expression assays, although variants with and without this domain reduced SGR-induced chlorophyll degradation, indicating that the effects of the two proteins are not additive. The combined data suggest that the function of SGRL during growth and development is in chlorophyll re-cycling, and its mode of action is distinct from that of SGR. Studies of pea sgrL mutants revealed that plants had significantly lower stature and yield, a likely consequence of reduced photosynthetic efficiencies in mutant compared with control plants under conditions of high light intensity.

  15. Regeneration of Pea (’Pisum sativum L’.) Plants from Shoot Apical Meristems,

    DTIC Science & Technology

    A procedure has been developed to obtain complete plants from meristems of three cultivars of Pisum sativum L. Benzyladenine (BA) alone or in...combination with naphthaleneacetic acid (NAA) at molar concentrations of 5 x .0000005 and .000001 respectively, induced shoot differentiation in meristems ...complete plant formation. Root formation, on the shoots produced by culturing meristems was induced by reculturing the shoots, 2 cm long, on half strength B5 medium supplemented with NAA at a concentration of .000001 M.

  16. Subcellular Localization of Asparaginase and Asparagine Aminotransferase in Pisum sativum Leaves 1

    PubMed Central

    Ireland, Robert J.; Joy, Kenneth W.

    1983-01-01

    Protoplasts isolated from young and mature pea leaves (Pisum sativum L.) were broken and their contents fractionated by differential centrifugation or on sucrose-density gradients. Asparaginase was found only in the cytosol of young leaves. Asparagine aminotransferase was found in both young and mature leaves and was localized exclusively in the peroxisome. This corroborates the observation that asparagine transamination is catalyzed by the serine:glyoxylate aminotransferase. PMID:16663132

  17. Changes in Leaf Proteins of Peas, Pisum sativum L., during Development on Deflorated Plants

    PubMed Central

    Malik, N. S. A.; Berrie, Alex M. M.

    1977-01-01

    The soluble (sap) proteins of leaves of pea, Pisum sativum L. cvs. Alaska and Greenfeast, allowed to develop normally or deflowered, to prevent senescence, were separated by isoelectric focusing. There was a decline in certain proteins, with increases in others as the leaves aged but preventing senescence of the whole plant did not alter the pattern of change in leaf proteins. We concluded that whole plant senescence proceeds independently of leaf senescence. PMID:16659844

  18. Expression of protein complexes and individual proteins upon transition of etioplasts to chloroplasts in pea (Pisum sativum).

    PubMed

    Kanervo, Eira; Singh, Munna; Suorsa, Marjaana; Paakkarinen, Virpi; Aro, Eveliina; Battchikova, Natalia; Aro, Eva-Mari

    2008-03-01

    The protein complexes of pea (Pisum sativum L.) etioplasts, etio-chloroplasts and chloroplasts were examined using 2D Blue Native/SDS-PAGE. The most prominent protein complexes in etioplasts were the ATPase and the Clp and FtsH protease complexes which probably have a crucial role in the biogenesis of etioplasts and chloroplasts. Also the cytochrome b(6)f (Cyt b(6)f) complex was assembled in the etioplast membrane, as well as Rubisco, at least partially, in the stroma. These complexes are composed of proteins encoded by both the plastid and nuclear genomes, indicating that a functional cross-talk exists between pea etioplasts and the nucleus. In contrast, the proteins and protein complexes that bind chlorophyll, with the PetD subunit and the entire Cyt b(6)f complex as an exception, did not accumulate in etioplasts. Nevertheless, some PSII core components such as PsbE and the luminal oxygen-evolvong complex (OEC) proteins PsbO and PsbP accumulated efficiently in etioplasts. After 6 h de-etiolation, a complete PSII core complex appeared with 40% of the maximal photochemical efficiency, but a fully functional PSII was recorded only after 24 h illumination. Similarly, the core complex of PSI was assembled after 6 h illumination, whereas the PSI-light-harvesting complex I was stably assembled only in chloroplasts illuminated for 24 h. Moreover, a battery of proteins responsible for defense against oxidative stress accumulated particularly in etioplasts, including the stromal and thylakoidal forms of ascorbate peroxidase, glutathione reductase and PsbS.

  19. The Temperature Response and Aggressiveness of Peyronellaea pinodes Isolates Originating from Wild and Domesticated Pisum sp. in Israel.

    PubMed

    Golani, M; Abbo, S; Sherman, A; Frenkel, O; Shtienberg, D

    2016-08-01

    Domesticated pea fields are grown in relatively close proximity to wild pea species in Israel. Despite the major role attributed to ascochyta blight in causing yield losses in domesticated pea, very limited information is available on the pathogens prevailing in natural ecosystems. The objectives of this study were (i) to identify the species causing ascochyta blight symptoms on leaves, stems, and petioles of domesticated pea and wild Pisum plants in Israel, and (ii) to quantify the temperature response(s) and aggressiveness of such pathogens originating from Pisum plants growing in sympatric and allopatric contexts. Eighteen fungal isolates were examined and identified; three of them were sampled from Pisum sativum, 11 from Pisum fulvum, and four from Pisum elatius. All isolates were identified as Peyronellaea pinodes. Spore germination and mycelial growth took place over a wide range of temperatures, the lower and upper cardinal temperatures being 2 to 9 and 33 to 38°C, respectively; the optimal temperatures ranged from 22 to 26°C. At an optimal temperature, disease severity was significantly higher for plants maintained under moist conditions for 24 h postinoculation than for those exposed to humidity for 5 or 10 h. Analyses of the data revealed that temperature responses, spore germination rates, and aggressiveness of isolates sampled from domesticated pea plants did not differ from those of isolates sampled from adjacent or distant wild populations. Host specificity was not observed. These observations suggest that Israel may be inhabited by a single metapopulation of P. pinodes.

  20. The movement of 2,4-dichlorophenoxy acetic acid in root segments of Pisum sativum L.

    PubMed

    Wilkins, H; Wilkins, M B

    1975-01-01

    The movement of 2,4-Dichlorophenoxy acetic acid (2,4-D) through subapical segments of the primary roots of Pisum seedlings has been investigated using [1-(14)C]2,4-D.Donation of [1-(14)C]2,4-D to the apical or basal ends of Pisum root segments at 25°C in darkness revealed a preferential movement of the compound towards the root apex i.e. an acropetal polarisation. Thus the movement of [1-(14)C]2,4-D into receiver blocks applied to the apical ends of the segments is greater than that into receiver blocks applied to the basal ends of the segments The low level of basipetal transport appears to be associated with a restriction of the movement of [1-(14)C]2,4-D to the half of the segment nearest the donor block.Acropetal transport of 2,4-D is faster than basipetal transport in root segments maintained at 15° and 35° C but is slower than basipetal transport if the segments are maintained at 25°C. Maximum velocitees are 0.71 and 0.83 mm h(-1) for acropetal and basipetal transport respectively.Evidence from experiments carried out (a) in an anaerobic environment in the presence or absence of sodium fluoride and (b) over a range of temperatures from 1-35°C, indicates that the movement of [1-(14)C]2,4-D is dependent on the metabolic activity of the Pisum root segments.Release of (14)CO2 during transport of [1-(14)C]2,4-D is small and supports chromatographic evidence that negligible degradation of the 2,4-D molecules takes place during transport through the root segments.

  1. Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts.

    PubMed

    Durieu, P; Ochatt, S J

    2000-07-01

    Large numbers of viable protoplasts of pea (Pisum sativum) and grass pea (Lathyrus sativus) were efficiently and reproducibly obtained and, for the first time, fused. Different procedures for fusion were compared, based either on electrofusion (750, 1000, 1250 or 1500 V cm(-1)), or on the use of macro or micromethods with a polyethylene glycol (PEG 6000 or PEG 1540), or a glycine/high pH solution. Over 10% of viable heterokaryons were obtained, with PEG as the most efficient and reproducible agent for protoplast fusion (>20% of viable heterokaryons). Both the division of heterokaryons and the formation of small calluses were observed.

  2. Phosphatidylinositol(4,5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues. [Pisum sativum

    SciTech Connect

    Irvine, R.F.; Letcher, A.J.; Lander, D.J. ); Dawson, A.P. ); Musgrave, A. ); Drobak, B.K. )

    1989-03-01

    Pea (Pisum sativum) leaf discs or swimming suspensions of Chlamydomonas eugametos were radiolabeled with ({sup 3}H)myo-inositol or ({sup 32}P)Pi and the lipids were extracted, deacylated, and their glycerol moieties removed. The resulting inositol trisphosphate and bisphosphate fractions were examined by periodate degradation, reduction and dephosphorylation, or by incubation with human red cell membranes. Their likely structures were identified as D-myo-inositol(1,4,5)trisphosphate and D-myo-inositol(1,4,)-bisphosphate. It is concluded that plants contain phosphatidylinositol(4)phosphate and phosphatidylinositol(4,5)bisphosphate; no other polyphosphoinositides were detected.

  3. Exposure of Vicia faba and Pisum sativum to copper-induced genotoxicity.

    PubMed

    Souguir, D; Ferjani, E; Ledoigt, G; Goupil, P

    2008-11-01

    The potential genotoxicity of Cu(2+) was investigated in Vicia faba and Pisum sativum seedlings in hydroponic culture conditions. Cu(2+) caused a dose-dependent increase in micronuclei frequencies in both plant models. Cytological analysis of root tips cells showed clastogenic and aneugenic effects of this heavy metal on V. faba root meristems. Cu(2+) induced chromosomal alterations at the lowest concentration used (2.5 mM) when incubated for 42 h, indicating the potent mutagenic effect of this ion. A spectrum of chromosomal abnormalities was observed in V. faba root meristems, illustrating the genotoxic events leading to micronuclei formation.

  4. Essentiality of Boron for Symbiotic Dinitrogen Fixation in Pea (Pisum sativum) Rhizobium Nodules.

    PubMed Central

    Bolanos, L.; Esteban, E.; De Lorenzo, C.; Fernandez-Pascual, M.; De Felipe, M. R.; Garate, A.; Bonilla, I.

    1994-01-01

    The effect of boron deficiency on symbiotic nitrogen fixation in pea (Pisum sativum) was examined. The absence of boron in the culture medium resulted in a decrease of the number of nodules and an alteration of nodule development leading to an inhibition of nitrogenase activity. Examination of boron-deficient nodules showed dramatic changes in cell walls and in both peribacteroid and infection thread membranes, suggesting a role for boron in the stability of these structures. These results indicate that boron is a requirement for normal nodule development and functionality. PMID:12232064

  5. Fucosylation of xyloglucan: localization of the transferase in dictyosomes of pea stem cells. [Pisum sativum

    SciTech Connect

    Camirand, A.; Brummell, D.; MacLachlan, G.

    1987-07-01

    Microsomal membranes from elongating regions of etiolated Pisum sativum stems were separated by rate-zonal centrifugation on Renografin gradients. The transfer of labeled fucose and xylose from GDP-(/sup 14/C) fucose and UDP-(/sup 14/C)xylose to xyloglucan occurred mainly in dictyosome-enriched fractions. No transferase activity was detected in secretory vesicle fractions. Pulse-chase experiments using pea stem slices incubated with (/sup 3/H)fucose suggest that xyloglucan chains are fucosylated and their structure completed within the dictyosomes, before being transported to the cell wall by secretory vesicles.

  6. Isolation and characterization of novel EST-derived genic markers in Pisum sativum (Fabaceae).

    PubMed

    Jain, Shalu; McPhee, Kevin E

    2013-11-01

    Novel markers were developed for pea (Pisum sativum) from pea expressed sequence tags (ESTs) having significant homology to Medicago truncatula gene sequences to investigate genetic diversity, linkage mapping, and cross-species transferability. • Seventy-seven EST-derived genic markers were developed through comparative mapping between M. truncatula and P. sativum in which 75 markers produced PCR products and 33 were polymorphic among 16 pea genotypes. • The novel markers described here will be useful for future genetic studies of P. sativum; their amplification in lentil (Lens culinaris) demonstrates their potential for use in closely related species.

  7. Isolation and characterization of novel EST-derived genic markers in Pisum sativum (Fabaceae)1

    PubMed Central

    Jain, Shalu; McPhee, Kevin E.

    2013-01-01

    • Premise of the study: Novel markers were developed for pea (Pisum sativum) from pea expressed sequence tags (ESTs) having significant homology to Medicago truncatula gene sequences to investigate genetic diversity, linkage mapping, and cross-species transferability. • Methods and Results: Seventy-seven EST-derived genic markers were developed through comparative mapping between M. truncatula and P. sativum in which 75 markers produced PCR products and 33 were polymorphic among 16 pea genotypes. • Conclusions: The novel markers described here will be useful for future genetic studies of P. sativum; their amplification in lentil (Lens culinaris) demonstrates their potential for use in closely related species. PMID:25202494

  8. Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum.

    PubMed

    Carro, Lorena; Riesco, Raúl; Spröer, Cathrin; Trujillo, Martha E

    2016-06-01

    Three novel actinobacterial strains, GUI2(T), GUI42 and CR21 isolated from nodular tissues and the rhizosphere of a sweet pea plant collected in Cañizal, Spain were identified according to their 16S rRNA gene sequences as new members of the genus Micromonospora. The closest phylogenetic members were found to be Micromonospora saelicesensis (99.2%) "Micromonospora zeae" (99.1%), "Micromonospora jinlongensis" (99%), Micromonospora lupini (98.9%) and Micromonospora zamorensis (98.8%). To resolve their full taxonomic position, four additional genes (atpD, gyrB, recA, rpoB) were partially sequenced and compared to available Micromonospora type strain sequences. DNA-DNA hybridization, BOX-PCR and ARDRA profiles confirmed that these strains represent a novel genomic species. All strains contained meso-diaminopimelic and hydroxy-diaminopimelic acids in their cell wall. Their fatty acid profiles comprised iso-C15:0, iso-C16:0 and anteiso-C15:0 as major components. The polar lipids diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol were found in the type strain GUI2(T) which also contained MK-10(H4) as the major menaquinone. Physiological and biochemical characteristics also differentiated the new isolates. Based on the integration of the above studies, strains GUI2(T), GUI42 and CR21 represent a novel Micromonospora species and we propose the name Micromonospora luteifusca sp. nov. The type strain is GUI2(T) (=CECT 8846(T); =DSM 100204(T)).

  9. Growth and some physiological attributes of pea (Pisum sativum L.) as affected by salinity.

    PubMed

    Najafi, F; Khavari-Nejad, R A; Rastgar-Jazii, F; Sticklen, M

    2007-08-15

    The effects of salt stress were studied on growth and physiology of pea (Pisum sativum L. cv. Green Arrow) in a pot study. Pea plants were treated with NaCl at 0, 10, 30, 50 and 70 mM in Hoagland solution. Plants were harvested after 21 days for measurements of physiological parameters. The highest NAR and RGR were found in 10 mM NaCl. However, in 70 mM NaCl, RGR and RLGR were significantly decreased in respect of other concentrations of NaCl. In 50 and 70 mM NaCl, chlorophylls contents and photosynthetic rate, were significantly decreased and CO2 compensation concentration and respiration rate increased in comparison with control. In 10 and 30 mM NaCl gas exchanges and chlorophyll contents were not significantly decrease in respect of control. Results indicated that Pisum sativum L. cv. Green Arrow can tolerate to 70 mM NaCl, also growth of plants in 10 and 30 mM NaCl was better than that of those in 0 mM NaCl.

  10. Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum.

    PubMed

    Zhang, Yu Jing; Zheng, Wen Tao; Everall, Isobel; Young, J Peter W; Zhang, Xiao Xia; Tian, Chang Fu; Sui, Xin Hua; Wang, En Tao; Chen, Wen Xin

    2015-09-01

    Four rhizobia-like strains, isolated from root nodules of Pisum sativum and Vicia faba grown in Anhui and Jiangxi Provinces of China, were grouped into the genus Rhizobium but were distinct from all recognized species of the genus Rhizobium by phylogenetic analysis of 16S rRNA and housekeeping genes. The combined sequences of the housekeeping genes atpD, recA and glnII for strain CCBAU 23252(T) showed 86.9 to 95% similarity to those of known species of the genus Rhizobium. All four strains had nodC and nifH genes and could form effective nodules with Pisum sativum and Vicia faba, and ineffective nodules with Phaseolus vulgaris, but did not nodulate Glycine max, Arachis hypogaea, Medicago sativa, Trifolium repens or Lablab purpureus in cross-nodulation tests. Fatty acid composition, DNA-DNA relatedness and a series of phenotypic tests also separated these strains from members of closely related species. Based on all the evidence, we propose a novel species, Rhizobium anhuiense sp. nov., and designate CCBAU 23252(T) ( = CGMCC 1.12621(T) = LMG 27729(T)) as the type strain. This strain was isolated from a root nodule of Vicia faba and has a DNA G+C content of 61.1 mol% (Tm).

  11. Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection.

    PubMed

    Desalegn, G; Turetschek, R; Kaul, H-P; Wienkoop, S

    2016-06-30

    The long cultivation of field pea led to an enormous diversity which, however, seems to hold just little resistance against the ascochyta blight disease complex. The potential of below ground microbial symbiosis to prime the immune system of Pisum for an upcoming pathogen attack has hitherto received little attention. This study investigates the effect of beneficial microbes on the leaf proteome and metabolome as well as phenotype characteristics of plants in various symbiont interactions (mycorrhiza, rhizobia, co-inoculation, non-symbiotic) after infestation by Didymella pinodes. In healthy plants, mycorrhiza and rhizobia induced changes in RNA metabolism and protein synthesis. Furthermore, metal handling and ROS dampening was affected in all mycorrhiza treatments. The co-inoculation caused the synthesis of stress related proteins with concomitant adjustment of proteins involved in lipid biosynthesis. The plant's disease infection response included hormonal adjustment, ROS scavenging as well as synthesis of proteins related to secondary metabolism. The regulation of the TCA, amino acid and secondary metabolism including the pisatin pathway, was most pronounced in rhizobia associated plants which had the lowest infection rate and the slowest disease progression. A most comprehensive study of the Pisum sativum proteome and metabolome infection response to Didymella pinodes is provided. Several distinct patterns of microbial symbioses on the plant metabolism are presented for the first time. Upon D. pinodes infection, rhizobial symbiosis revealed induced systemic resistance e.g. by an enhanced level of proteins involved in pisatin biosynthesis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Molecular Characterization and Mitogenic Activity of a Lectin from Purse Crab Philyra Pisum

    PubMed Central

    Na, Jong Cheon; Park, Byung Tae; Chung, Woo Hyuk

    2011-01-01

    A lectin from the hemolymph of purse crab, Philyra pisum, was found to have anti-proliferative activity on human lung cancer cells by our laboratory. In this study, P. pisum lectin (PPL) was molecularly characterized including molecular mass, amino acid sequences, amino acid composition, and the effects of metal ions, temperature, and pH on the activity. We found that PPL showed mitogenic activity on human lymphocytes and BALB/c mouse splenocytes. The mitogenic activity (maximum stimulation index, SI=9.57±0.59) of PPL on human lymphocytes was higher than that of a standard well-known plant mitogen, concanavalin A (maximum SI=8.80±0.59). The mitogenic activity mediated by PPL is required for optimum dosing, and higher or lower concentrations caused decreases in mitogenic response. PPL also induced mitogenic activity on mouse splenocytes, however, the maximum SI (1.77±0.09) on mouse splenocytes of PPL was lower than that (2.14±0.15) of concanavalin A. In conclusion, PPL is a metal ion-dependent monomer lectin with mitogenic activity, and could be used as a lymphocyte or splenocyte stimulator. PMID:21994481

  13. Association mapping of yield candidate gene homologs in a diverse collection of pea (Pisum sativum L.) lines

    USDA-ARS?s Scientific Manuscript database

    Association mapping, based on linkage disequilibrium (LD), is used increasingly to describe associations between allelic variation and phenotype. Yield is a key economic trait for most field crops, including pea (Pisum sativum L.). Recent reports in plant systems have identified candidate genes fo...

  14. Induction of Glutamine Synthetase Activity in Nonnodulated Roots of Glycine max, Phaseolus vulgaris, and Pisum sativum1

    PubMed Central

    Hoelzle, Inger; Finer, John J.; McMullen, Michael D.; Streeter, John G.

    1992-01-01

    Nitrate or ammonium fertilization significantly increased glutamine synthetase (GS) activity in nonnodulated roots of French bean (Phaseolus vulgaris), soybean (Glycine max), and pea (Pisum sativum). Western analysis revealed substantial GS antibody-positive protein in root extracts that had minimal GS activity, indicating that an inactive form of GS may be present in nonfertilized plants. Images Figure 1 PMID:16652993

  15. Effect of clinorotation on the leaf mesophyll structure and pigment content in Arabidopsis thaliana L. and Pisum sativum L.

    PubMed

    Adamchuk, N I

    2004-07-01

    Properties of mesophyll cells and photosynthetic membranes of Arabidopsis thaliana (L.) Heynh. and Pisum sativum (L.) plants grown in a horizontal clinostat and in control conditions were compared. Obtained data have show that under clinorotation conditions seedlings have experienced the following cell morphology changes structural chloroplast rearrangement in palisade cells, pigment content alteration, and cell aging acceleration.

  16. Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes.

    PubMed

    Coyne, C J; McClendon, M T; Walling, J G; Timmerman-Vaughan, G M; Murray, S; Meksem, K; Lightfoot, D A; Shultz, J L; Keller, K E; Martin, R R; Inglis, D A; Rajesh, P N; McPhee, K E; Weeden, N F; Grusak, M A; Li, C-M; Storlie, E W

    2007-09-01

    Pea (Pisum sativum L.) has a genome of about 4 Gb that appears to share conserved synteny with model legumes having genomes of 0.2-0.4 Gb despite extensive intergenic expansion. Pea plant inventory (PI) accession 269818 has been used to introgress genetic diversity into the cultivated germplasm pool. The aim here was to develop pea bacterial artificial chromosome (BAC) libraries that would enable the isolation of genes involved in plant disease resistance or control of economically important traits. The BAC libraries encompassed about 3.2 haploid genome equivalents consisting of partially HindIII-digested DNA fragments with a mean size of 105 kb that were inserted in 1 of 2 vectors. The low-copy oriT-based T-DNA vector (pCLD04541) library contained 55 680 clones. The single-copy oriS-based vector (pIndigoBAC-5) library contained 65 280 clones. Colony hybridization of a universal chloroplast probe indicated that about 1% of clones in the libraries were of chloroplast origin. The presence of about 0.1% empty vectors was inferred by white/blue colony plate counts. The usefulness of the libraries was tested by 2 replicated methods. First, high-density filters were probed with low copy number sequences. Second, BAC plate-pool DNA was used successfully to PCR amplify 7 of 9 published pea resistance gene analogs (RGAs) and several other low copy number pea sequences. Individual BAC clones encoding specific sequences were identified. Therefore, the HindIII BAC libraries of pea, based on germplasm accession PI 269818, will be useful for the isolation of genes underlying disease resistance and other economically important traits.

  17. DNA Methylation and Genome Evolution in Honeybee: Gene Length, Expression, Functional Enrichment Covary with the Evolutionary Signature of DNA Methylation

    PubMed Central

    Zeng, Jia; Yi, Soojin V.

    2010-01-01

    A growing body of evidence suggests that DNA methylation is functionally divergent among different taxa. The recently discovered functional methylation system in the honeybee Apis mellifera presents an attractive invertebrate model system to study evolution and function of DNA methylation. In the honeybee, DNA methylation is mostly targeted toward transcription units (gene bodies) of a subset of genes. Here, we report an intriguing covariation of length and epigenetic status of honeybee genes. Hypermethylated and hypomethylated genes in honeybee are dramatically different in their lengths for both exons and introns. By analyzing orthologs in Drosophila melanogaster, Acyrthosiphon pisum, and Ciona intestinalis, we show genes that were short and long in the past are now preferentially situated in hyper- and hypomethylated classes respectively, in the honeybee. Moreover, we demonstrate that a subset of high-CpG genes are conspicuously longer than expected under the evolutionary relationship alone and that they are enriched in specific functional categories. We suggest that gene length evolution in the honeybee is partially driven by evolutionary forces related to regulation of gene expression, which in turn is associated with DNA methylation. However, lineage-specific patterns of gene length evolution suggest that there may exist additional forces underlying the observed interaction between DNA methylation and gene lengths in the honeybee. PMID:20924039

  18. cDNA cloning, primary structure and gene expression for H-protein, a component of the glycine-cleavage system (glycine decarboxylase) of pea (Pisum sativum) leaf mitochondria.

    PubMed Central

    Macherel, D; Lebrun, M; Gagnon, J; Neuburger, M; Douce, R

    1990-01-01

    We have isolated and characterized cDNA clones encoding the H-protein of the glycine-cleavage system of pea (Pisum sativum) leaf mitochondria. The deduced primary structure revealed that the 131-amino-acid polypeptide is cytoplasmically synthesized with a 34-amino-acid mitochondrial targeting peptide. The lipoate-binding site was assigned to be lysine-63, as deduced from a sequence comparison with several lipoate-bearing proteins. The expression of the gene encoding H-protein was shown to occur specifically in the leaf tissue, with light exerting an additional effect by increasing the mRNA levels severalfold. Two polyadenylation sites were found in the mRNA, and a single-copy gene encoding the H-protein was detected in pea genome. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2363710

  19. Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus.

    PubMed

    Bogdanova, V S; Kosterin, O E; Yadrikhinskiy, A K

    2014-05-01

    Divergent wild and endemic peas differ in hybrid sterility in reciprocal crosses with cultivated pea depending on alleles of a nuclear 'speciation gene' involved in nuclear-cytoplasmic compatibility. In hybrids between cultivated and wild peas, nuclear-cytoplasmic conflict frequently occurs. One of the nuclear genes involved, Scs1, was earlier mapped on Linkage Group III. In reciprocal crosses of seven divergent pea accessions with cultivated P. sativum, some alleles of Scs1 manifested incompatibility with an alien cytoplasm as a decrease in pollen fertility to about 50 % in the heterozygotes and lack of some genotypic classes among F2 segregants. Earlier, we defined monophyletic evolutionary lineages A, B, C and D of pea according to allelic state of three markers, from nuclear, plastid and mitochondrial genomes. All tested representatives of wild peas from the lineages A and C exhibited incompatibility due to Scs1 deleterious effects in crosses with testerlines of P. sativum subsp. sativum (the common cultivated pea) at least in one direction. A wild pea from the lineage B and a cultivated pea from the lineage D were compatible with the testerline in both directions. The tested accession of cultivated P. abyssinicum (lineage A) was partially compatible in both directions. The Scs1 alleles of some pea accessions even originating from the same geographic area were remarkably different in their compatibility with cultivated Pisum sativum cytoplasm. Variability of a gene involved in reproductive isolation is of important evolutionary role and nominate Scs1 as a speciation gene.

  20. Malate Dehydrogenases of Pisum sativum: Tissue Distribution and Properties of the Particulate Forms.

    PubMed

    Zschoche, W C; Ting, I P

    1973-06-01

    Mitochondria and leaf microbodies isolated from leaves of pea (Pisum sativum) by sucrose density gradient centrifugation were each shown to have a unique form (isoenzyme) of malate dehydrogenase (EC 1.1.1.37) based on chromatographic and kinetic properties. Root organelle preparations were shown to contain only a mitochondrial malate dehydrogenase with physical and kinetic properties similar to the leaf form. The absence of a detectable root microbody malate dehydrogenase similar to the leaf enzyme, which is intermediate in electrophoretic and chromatographic properties between the mitochondrial and soluble isoenzymes, was confirmed by diethylaminoethyl cellulose column chromatography and starch-gel electrophoresis of total homogenates from leaf and root tissue. These findings tend to support the role of the leaf microbody isoenzyme in a pathway unique to photosynthetic tissue.

  1. Comparative phloem Mobility of nickel in nonsenescent plants. [Pisum sativa L. ; Pelargonium zonale L

    SciTech Connect

    Neumann, P.M.; Chamel, A.

    1986-06-01

    /sup 63/Ni was applied to nonsenescent source leaves and found to be transported to sink tissues in pea (Pisum saativum L.) and geranium plants (Pelargonium zonale L.). The comparative mobilities (percent tracer transported out of source leaf division % /sup 86/Rb transported) for /sup 63/Ni in peas was 2.12 and in geranium 0.25. The value for the phloem mobile /sup 86/Rb was 1.00. By contrast, the comparative mobility of /sup 45/Ca, which is relatively immobile in the phloem, was low (0.05 in peas, 0.00 in geranium). Interruption of the phloem pathway between source and sink leaves by steam girdling almost completely inhibited /sup 63/Ni accumulation in the sink leaves of both species. The authors conclude that Ni is transported from nonsenescent source leaves to sink tissues via the phloem of leguminous and nonleguminous plants.

  2. Identification of the 64 kilodalton chloroplast stromal phosphoprotein as phosphoglucomutase. [Pisum sativum

    SciTech Connect

    Salvucci, M.E.; Drake, R.R.; Broadbent, K.P.; Haley, B.E. ); Hanson, K.R.; McHale, N.A. )

    1990-05-01

    Phosphorylation of the 64 kilodalton stromal phosphoprotein by incubation of pea (Pisum sativum) chloroplast extracts with ({gamma}-{sup 32}P)ATP decreased in the presence of Glc-6-P and Glc-1,6-P{sub 2}, but was stimulated by glucose. Two-dimensional gel electrophoresis following incubation of intact chloroplasts and stromal extracts with ({gamma}-{sup 32}P)ATP, or incubation of stromal extracts and partially purified phosphoglucomutase (EC 2.7.5.1) with ({sup 32}P)Glc-1-P showed that the identical 64 kilodalton polypeptide was labeled. A 62 kilodalton polypeptide was phosphorylated by incubation of tobacco (Nicotiana sylvestris) stromal extracts with either ({gamma}-{sup 32}P)ATP or ({sup 32}P)Glc-1-P. In contrast, an analogous polypeptide was not phosphorylated in extracts from a tobacco mutant deficient in plastid phosphoglucomutase activity. The results indicate that the 64 (or 62) kilodalton chloroplast stromal phosphoprotein is phosphoglucomutase.

  3. Ethylene Inhibitors Restore Nodulation to sym 5 Mutants of Pisum sativum L. cv Sparkle 12

    PubMed Central

    Fearn, Jeffrey C.; LaRue, Thomas A.

    1991-01-01

    The sym 5 mutants of pea, Pisum sativum L. cv Sparkle, do not differ in growth habit from their normal parent and nodulate poorly at a root temperature of 20°C. If inhibitors of ethylene formation or action (Co2+, aminoethoxyvinylglycine, or Ag+) are added to the substrate, nodulation of the sym 5 mutants is increased. Similar treatments of four other mutant sym lines do not restore nodulation. When Ag+ is added to the substrate from 4 days before to 4 days after inoculation with rhizobia, nodulation of sym 5 mutants is increased. The roots of the mutant need only be exposed to Ag+ for 4 hours to significantly increase nodule numbers. The content of free 1-aminocyclopropane-1-carboxylic acid and the production of ethylene in the lateral roots of sym 5 mutants do not differ from Sparkle. PMID:16668158

  4. A glucuronyltransferase involved in glucuronoxylan synthesis in pea (Pisum sativum) epicotyls.

    PubMed Central

    Waldron, K W; Brett, C T

    1983-01-01

    A particulate enzyme preparation made from epicotyls of 1-week-old etiolated pea (Pisum sativum) seedlings was shown to incorporate glucuronic acid from UDP-D-[U-14C]glucuronic acid into a hemicellulosic polysaccharide. Optimum conditions for the incorporation include the presence of Mn2+ ions at between 4 and 10 mmol/litre and a pH between 5 and 6. UDP-D-xylose at 1 mmol/litre allows incorporation to continue for at least 8 h. In its absence, the reaction stops within 30 min. Analysis of the product by partial and total acid hydrolysis, followed by paper chromatography or electrophoresis, indicates that the polysaccharide produced is a glucuronoxylan. PMID:6412678

  5. Effect of Ethylene on Cell Division and Deoxyribonucleic Acid Synthesis in Pisum sativum1

    PubMed Central

    Apelbaum, Akiva; Burg, Stanley P.

    1972-01-01

    Ethylene and supraoptimal levels of 2,4-dichlorophenoxyacetic acid inhibit the growth of the apical hook region of etiolated Pisum sativum (var. Alaska) seedlings by stopping almost all cell divisions. Cells are prevented from entering prophase. The hormones also retard cell division in intact root tips and completely stop the process in lateral buds. The latter inhibition is reversed partially by benzyl adenine. In root tips and the stem plumular and subhook regions, ethylene inhibits DNA synthesis. The magnitude of this inhibition is correlated with the degree of repression of cell division in meristematic tissue, suggesting that the effect on cell division results from a lack of DNA synthesis. Ethylene inhibits cell division within a few hours with a dose-response curve similar to that for most other actions of the gas. Experiments with seedlings grown under hypobaric conditions suggest that the gas naturally controls plumular expansion and cell division in the apical region. Images PMID:16658105

  6. Rapidly Induced Wound Ethylene from Excised Segments of Etiolated Pisum sativum L., cv. Alaska

    PubMed Central

    Saltveit, Mikal E.; Dilley, David R.

    1978-01-01

    Increased ethylene synthesis was rapidly induced throughout the apical meristematic region of etiolated seedlings of Pisum sativum L., cv. Alaska by cuts made 1 centimeter from the apical hook. The wound signal was transmitted at about 2 millimeters per minute. Accumulation of substance(s) at the cut surfaces of excised sections, as the result of interrupted translocation, did not initiate or significantly contribute to wound-induced ethylene synthesis, nor was the cut surface the site of enhanced ethylene synthesis. Cutting subapical sections into shorter pieces showed that cells less than 2 millimeters from a cut surface produced about 30% less ethylene than cells greater than 2 millimeters from a cut surface. PMID:16660590

  7. [Meiotic abnormalities as expression of nuclear-cytoplasmic incompatibility in crosses of Pisum sativum subspecies].

    PubMed

    Bogdanova, V S; Galieva, E R

    2009-05-01

    Meiosis in anthers and mitosis in somatic cells were studied in reciprocal F1 hybrids of the accession VIR320, which belonged to wild Pisum sativum ssp. elatius (Bieb.) Schmal., and the laboratory line Sprint-1. When VIR320 was used as a maternal form, the hybrids displayed nuclear-cytoplasmic conflict, which caused chlorophyll defects and meiotic abnormalities. One or two chromosomes lagged in the equatorial region during chromosome segregation to the poles, distorting cytokinesis and yielding abnormal microspores. Chlorophyll defects were not observed, and meiotic abnormalities were far less frequent in reciprocal hybrids and in the case of an abnormal paternal inheritance of plastids from Sprint-1. Mitosis lacked overt abnormalities in all of the hybrids.

  8. Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress.

    PubMed

    Hattab, Sabrine; Dridi, Boutheina; Chouba, Lassad; Ben, Kheder Mohamed; Bousetta, Hamadi

    2009-01-01

    The present work aimed to study the physiological effects of cadmium (Cd) and copper (Cu) in pea (Pisum sativum). Pea plants were exposed to increasing doses of cadmium chloride (CdCl2) and copper chloride (CuCl2) for 20 d. The examined parameters, namely root and shoot lengths, the concentration of photosynthetic pigments and the rate of photosynthesis were affected by the treatments especially with high metals concentrations. The analysis of heavy metals accumulation shows that leaves significantly accumulate cadmium for all the tested concentrations. However, copper was significantly accumulated only with the highest tested dose. This may explain the higher inhibitory effects of cadmium on photosynthesis and growth in pea plants. These results are valuable for understanding the biological consequences of heavy metals contamination particularly in soils devoted to organic agriculture.

  9. Nitrogen deficiency hinders etioplast development in stems of dark-grown pea (Pisum sativum) shoot cultures.

    PubMed

    Kósa, Annamária; Preininger, Éva; Böddi, Béla

    2015-11-01

    The effects of nitrogen (N) deprivation were studied in etiolated pea plants (Pisum sativum cv. Zsuzsi) grown in shoot cultures. The average shoot lengths decreased and the stems significantly altered considering their pigment contents, 77 K fluorescence spectra and ultrastructural properties. The protochlorophyllide (Pchlide) content and the relative contribution of the 654-655 nm emitting flash-photoactive Pchlide form significantly decreased. The etioplast inner membrane structure characteristically changed: N deprivation correlated with a decrease in the size and number of prolamellar bodies (PLBs). These results show that N deficiency directly hinders the pigment production, as well as the synthesis of other etioplast inner membrane components in etiolated pea stems. © 2015 Scandinavian Plant Physiology Society.

  10. Development of an indirect enzyme linked immunoassay for abscisic acid. [Pisum sativum

    SciTech Connect

    Ross, G.S.; Elder, P.A.; McWha, J.A.; Pearce, D.; Pharis, R.P.

    1987-09-01

    AN INDIRECT METHOD OF ENZYME-LINKED-IMMUNOSORBENT-ASSAY (ELISA) IS REPORTED FOR ABSCISIC ACID (ABA), UTILIZING A THYROGLOBULIN-ABA CONJUGATE FOR COATING WELLS. THE ASSAY CAN USE COMMERCIALLY AVAILABLE MONOCLONAL ANTIBODIES, IS SENSITIVE TO AS LITTLE AS 20 PICOGRAMS ABA PER WELL, AND IS MUCH MORE CONSERVATIVE OF ANTIBODY THAN DIRECT METHODS. THE MOST DILUTE ABA STANDARDS DID NOT RETAIN THEIR ANTIGENICITY DURING STORAGE, SO ABA STANDARD SETS WERE DILUTED IMMEDIATELY PRIOR TO USE. THE INDIRECT ELISA WAS USED SUCCESSFULLY TO ESTIMATE ABA CONCENTRATIONS IN DEVELOPING COTYLEDONS OF PISUM SATIVUM L., AFTER ONLY LITTLE PRELIMINARY PURIFICATION. IT WAS VALIDATED FOR THIS TISSUE THROUGH THE USE OF GAS CHROMATOGRAPHY-ELECTRON CAPTURE DETECTION (GC-EC), AND CAPILLARY GC-SELECTED ION MONITORING (GC-MS-SIM) USING LABELLED ABA AS AN INTERNAL STANDARD. FULL SPECTRUM GC-MASS SPECTROMETRY WAS ALSO USED TO VERIFY THAT ABA WAS PRESENT IN A SAMPLE ASSAYED QUANTITATIVELY BY BOTH ELISA AND GC-MS-SIM.

  11. Development and characterization of 37 novel EST-SSR markers in Pisum sativum (Fabaceae).

    PubMed

    Zhuang, Xiaofeng; McPhee, Kevin E; Coram, Tristan E; Peever, Tobin L; Chilvers, Martin I

    2013-01-01

    Simple sequence repeat markers were developed based on expressed sequence tags (EST-SSR) and screened for polymorphism among 23 Pisum sativum individuals to assist development and refinement of pea linkage maps. In particular, the SSR markers were developed to assist in mapping of white mold disease resistance quantitative trait loci. • Primer pairs were designed for 46 SSRs identified in EST contiguous sequences assembled from a 454 pyrosequenced transcriptome of the pea cultivar, 'LIFTER'. Thirty-seven SSR markers amplified PCR products, of which 11 (30%) SSR markers produced polymorphism in 23 individuals, including parents of recombinant inbred lines, with two to four alleles. The observed and expected heterozygosities ranged from 0 to 0.43 and from 0.31 to 0.83, respectively. • These EST-SSR markers for pea will be useful for refinement of pea linkage maps, and will likely be useful for comparative mapping of pea and as tools for marker-based pea breeding.

  12. Root and foliar uptake, translocation, and distribution of [14C] fluoranthene in pea plants (Pisum sativum).

    PubMed

    Zezulka, Stěpán; Klemš, Marek; Kummerová, Marie

    2014-10-01

    Uptake of (14)C-labeled fluoranthene ([(14)C]FLT) via both roots and leaves of Pisum sativum seedlings and distribution of [(14) C] in plants by both acropetal and basipetal transport was evaluated. The highest [(14)C] level was found in the root base (≈270 × 10(4) dpm/g dry wt) and the lowest level in the stem apex (<2 × 10(4) dpm/g dry wt) after just 2 h of root exposure. For foliar uptake, the highest level of [(14)C] was found in the stem and root apex (both ≈2 × 10(4) dpm/g dry wt) (except for treated leaves), while the lowest level was found in the root base (<0.6 × 10(4) dpm/g dry wt). © 2014 SETAC.

  13. On the shock response of Pisum Sativum (a.k.a the Common Pea)

    NASA Astrophysics Data System (ADS)

    Leighs, James; Hazell, Paul; Appleby-Thomas, Gareth

    2011-06-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry (dynamic pasteurisation) to astrobiology (e.g. the theory of panspermia, which suggests that planets could be `seeded' with life `piggy-backing' of interplanetary bodies). Consequently, knowledge of the damage mechanisms and viability of shocked organic material is of paramount importance. In this study a single-stage gas-gun has been employed to subject samples of Pisum Sativum (the Common Pea) to semi-planar shock loading, corresponding to impact pressures of up to c.3 GPa. The experimental approach adopted is discussed along with results from Manganin gauges embedded in the target capsule which show the loading history. Further, the viability of the shock-loaded peas was investigated via attempts at germination. Finally, microscopic examination of the impacted specimens allowed a qualitative assessment of damage mechanisms to be made.

  14. Extracellular superoxide production associated with secondary root growth following desiccation of Pisum sativum seedlings.

    PubMed

    Roach, Thomas; Kranner, Ilse

    2011-10-15

    The seedling stage is arguably the most vulnerable phase in the plant life cycle, where the young establishing plant is extremely sensitive to environmental stresses such as drought. Here, the production of superoxide (O(2)(-)), a molecule involved in stress signaling, was measured in response to desiccation of Pisum sativum L. seedlings. Following desiccation that was sufficient to kill the radicle meristem, viability could be retained by seedlings that grew secondary roots. Upon rehydration, secondary roots formed in a region that had displayed intense extracellular O(2)(-)production on desiccation. Treating partially desiccated seedlings with hydrogen peroxide (H(2)O(2)) prevented viability loss. In summary, reactive oxygen species (ROS) appear to participate in the signaling required for secondary root formation following desiccation stress of P. sativum seedlings.

  15. Genetic Variation Controlling Wrinkled Seed Phenotypes in Pisum: How Lucky Was Mendel?

    PubMed

    Rayner, Tracey; Moreau, Carol; Ambrose, Mike; Isaac, Peter G; Ellis, Noel; Domoney, Claire

    2017-06-06

    One of the traits studied by Mendel in pea (Pisum sativum L.) was the wrinkled-seeded phenotype, and the molecular basis for a mutation underlying this phenotype was discovered in the 1990s. Although the starch-branching enzyme gene mutation identified at the genetic locus r is most likely to be that in seeds available to Mendel in the mid-1800s, it has remained an open question as to whether or not additional natural mutations in this gene exist within Pisum germplasm collections. Here, we explore this question and show that all but two wrinkled-seeded variants in one such collection correspond to either the mutant allele described previously for the r locus or a mutation at a second genetic locus, rb, affecting the gene encoding the large subunit of Adenosine diphosphoglucose (ADP-glucose) pyrophosphorylase; the molecular basis for the rb mutation is described here. The genetic basis for the phenotype of one (JI 2110) of the two lines which are neither r nor rb has been studied in crosses with a round-seeded variant (JI 281); for which extensive genetic marker data were expected. In marked contrast to the trait studied by Mendel and the rb phenotype; the data suggest that the wrinkled-seeded phenotype in JI 2110 is maternally determined, controlled by two genetic loci, and the extent to which it is manifested is very sensitive to the environment. Metabolite analysis of the cotyledons of JI 2110 revealed a profile for sucrose and sucrose-derived compounds that was more similar to that of wild-type round-seeded, than that of wrinkled-seeded r, pea lines. However, the metabolite profile of the seed coat (testa) of JI 2110 was distinct from that of other round-seeded genotypes tested which, together with analysis of recombinant inbred progeny lines, suggests an explanation for the seed phenotype.

  16. Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes

    PubMed Central

    Neumann, Pavel; Schubert, Veit; Fuková, Iva; Manning, Jasper E.; Houben, Andreas; Macas, Jiří

    2016-01-01

    Species of the legume genera Lathyrus and Pisum possess chromosomes that exhibit a unique structure of their centromeric regions, which is clearly apparent during metaphase by the formation of extended primary constrictions which span up to a third of the length of the chromosome. In addition, these species express two different variants of the CenH3 protein which are co-localized in multiple domains along the poleward surface of the primary constrictions. Here, we show that the constrictions represent a distinct type of chromatin differing from the chromosome arms. In metaphase, histone phosphorylation patterns including H3S10ph, H3S28ph, and H3T3ph were observed along the entire constriction, in a way similar to holocentric chromosomes. On the other hand, distribution of phosphorylated H2AT120 was different from that previously reported from either, holocentric and monocentric chromosomes, occurring at chromatin surrounding but not overlapping CenH3 domains. Since some of these phosphorylations play a role in chromatid cohesion, it can be assumed that they facilitate correct chromosome segregation by ensuring that multiple separate CenH3 domains present on the same chromatid are oriented toward the same pole. The constrictions also displayed distinct patterns of histone methylation marks, being enriched in H3K9me2 and depleted in H3K4me3 and H3K27me2 compared to the chromosome arms. Super-resolution fluorescence microscopy revealed that although both CenH3 protein variants are present in all CenH3 domains detected on metaphase chromosomes, they are only partially co-localized while there are chromatin subdomains which are mostly made of only one CenH3 variant. Taken together, these data revealed specific features of extended primary constrictions of Lathyrus and Pisum and support the idea that they may represent an intermediate stage between monocentric and holocentric chromosomes. PMID:26973677

  17. Rubisco activity in guard cells compared with the solute requirement for stomatal opening. [Pisum sativum

    SciTech Connect

    Reckmann, U.; Scheibe, R.; Raschke, K. )

    1990-01-01

    We investigated whether the reductive pentose phosphate path in guard cells of Pisum sativum had the capacity to contribute significantly to the production of osmotica during stomatal opening in the light. Amounts of ribulose 1,5-bisphophate carboxylase/oxygenase (Rubisco) were determined by the ({sup 14}C) carboxyarabinitol bisphosphate assay. A guard cell contained about 1.2 and a mesophyll cell about 324 picograms of the enzyme; the ratio was 1:270. The specific activities of Rubisco in guard cells and in mesophyll cells were equal; there was no indication of a specific inhibitor of Rubisco in guard cells. Rubisco activity was 115 femtomol per guard-cell protoplast and hour. This value was different from zero with a probability of 0.99. After exposure of guard-cell protoplasts to {sup 14}CO{sub 2} for 2 seconds in the light, about one-half of the radioactivity was in phosphorylated compounds and <10% in malate. Guard cells in epidermal strips produced a different labelling pattern; in the light, <10% of the label was in phosphorylated compounds and about 60% in malate. The rate of solute accumulation in intact guard cells was estimated to have been 900 femto-osmol per cell and hour. If Rubisco operated at full capacity in guard cells, and hexoses were produced as osmotica, solutes could be supplied at a rate of 19femto-osmol per cell and hour, which would constitute 2% of the estimated requirement. The capacity of guard-cell Rubisco to meet the solute requirement for stomatal opening in leaves of Pisum sativum is insignificant.

  18. Extraction, purification, kinetic and thermodynamic properties of urease from germinating Pisum Sativum L. seeds.

    PubMed

    El-Hefnawy, Mohamed E; Sakran, Mohamed; Ismail, Ali I; Aboelfetoh, Eman Fahmy

    2014-07-28

    Urease, one of the highly efficient known enzymes, catalyzes the hydrolysis of urea into ammonia and carbon dioxide. The present study aimed to extract urease from pea seeds (Pisum Sativum L). The enzyme was then purified in three consequence steps: acetone precipitation, DEAE-cellulose ion-exchange chromatography, and gel filtration chromatography (Sephacryl S-200 column). The purification fold was 12.85 with a yield of 40%. The molecular weight of the isolated urease was estimated by chromatography to be 269,000 Daltons. Maximum urease activity (190 U/g) was achieved at the optimum conditions of 40°C and pH of 7.5 after 5 min of incubation. The kinetic parameters, Km and Vmax, were estimated by Lineweaver-Burk fits and found to be 500 mM and 333.3 U/g, respectively. The thermodynamic constants of activation, ΔH, Ea, and ΔS, were determined using Arrhenius plot and found to be 21.20 kJ/mol, 23.7 kJ/mol, and 1.18 kJ/mol/K, respectively. Urease was purified from germinating Pisum Sativum L. seeds. The purification fold, yield, and molecular weight were determined. The effects of pH, concentration of enzyme, temperature, concentration of substrate, and storage period on urease activity were examined. This may provide an insight on the various aspects of the property of the enzyme. The significance of extracting urease from different sources could play a good role in understanding the metabolism of urea in plants.

  19. Extraction, purification, kinetic and thermodynamic properties of urease from germinating Pisum Sativum L. seeds

    PubMed Central

    2014-01-01

    Background Urease, one of the highly efficient known enzymes, catalyzes the hydrolysis of urea into ammonia and carbon dioxide. The present study aimed to extract urease from pea seeds (Pisum Sativum L). The enzyme was then purified in three consequence steps: acetone precipitation, DEAE-cellulose ion-exchange chromatography, and gel filtration chromatography (Sephacryl S-200 column). Results The purification fold was 12.85 with a yield of 40%. The molecular weight of the isolated urease was estimated by chromatography to be 269,000 Daltons. Maximum urease activity (190 U/g) was achieved at the optimum conditions of 40°C and pH of 7.5 after 5 min of incubation. The kinetic parameters, K m and V max , were estimated by Lineweaver-Burk fits and found to be 500 mM and 333.3 U/g, respectively. The thermodynamic constants of activation, ΔH, E a , and ΔS, were determined using Arrhenius plot and found to be 21.20 kJ/mol, 23.7 kJ/mol, and 1.18 kJ/mol/K, respectively. Conclusions Urease was purified from germinating Pisum Sativum L. seeds. The purification fold, yield, and molecular weight were determined. The effects of pH, concentration of enzyme, temperature, concentration of substrate, and storage period on urease activity were examined. This may provide an insight on the various aspects of the property of the enzyme. The significance of extracting urease from different sources could play a good role in understanding the metabolism of urea in plants. PMID:25065975

  20. Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers.

    PubMed

    Teshome, Abel; Bryngelsson, Tomas; Dagne, Kifle; Geleta, Mulatu

    2015-08-19

    Field pea (Pisum sativum L.) is among the prominent crops in the world as food and feed. There are relatively few simple sequence repeat (SSR) markers developed from expressed sequence tags (ESTs) in P. sativum. In the present study, 15 new EST-SSR markers were developed from publicly available ESTs. These markers have successfully amplified their target loci across seven Pisum sativum subsp. sativum accessions. Eleven (73%) of these SSRs were trinucleotide repeats, two (13%) dinucleotide and two (13%) were hexanucleotide repeats. Across-taxa transferability of these new markers was also tested on other subspecies of Pisum as well as on P. fulvum, Vicia faba and Lens culinaris. In Pisum sativum subsp. sativum, 13 of the 15 markers were polymorphic and 12 of them subsequently used for genetic diversity analysis. Forty six accessions, of which 43 were from Ethiopia, were subjected to genetic diversity analysis using these newly developed markers. All accessions were represented by 12 individuals except two (NGB103816 and 237508) that were represented by 9 and 11 individuals, respectively. A total of 37 alleles were detected across all accessions. PS10 was the most polymorphic locus with six alleles, and the average number of alleles per locus over the 12 polymorphic loci was 3.1. Several rare and private alleles were also revealed. The most distinct accession (32048) had private alleles at three loci with 100% frequency. These newly developed EST-SSR primer-pairs successfully amplified expected loci in P. sativum subsp. sativum as well as in other subspecies of the genus Pisum and related genera. High levels of genetic variation were detected in field pea accessions from Ethiopia using these markers. This result implies the potential of the Ethiopian field pea gene pool for improvement of field peas in various desirable traits. In addition, these markers could be a valuable asset in resolving the inconsistency in the taxonomic status of the different subspecies of

  1. Parasites and pathogens of the endosymbiotic pea crab (Pinnotheres pisum) from blue mussels (Mytilus edulis) in England.

    PubMed

    Longshaw, Matt; Feist, Stephen W; Bateman, Kelly S

    2012-02-01

    A histopathological survey of the commensal pea crab (Pinnotheres pisum) from the mantle cavities of blue mussels (Mytilus edulis) has been conducted. A total of 266 pea crabs from eight sites around the English coastline were examined. Of these, 82 were negative for any visible infections by histology. The remaining pea crabs were infected with an intranuclear bacilliform virus designated as P. pisum bacilliform virus (PpBV) in the hepatopancreatic epithelial cells, peritrichous ciliates on the gills, an intracytoplasmic microsporidian infection of the hepatopancreatocytes, a myophilic microsporidian infection, the gregarine Cephaloidophora fossor in the hepatopancreas, the entoniscid isopod Pinnotherion vermiforme, a low level nematode infection and an acanthocephalan cystacanth. Host reactions to infections were generally subdued. Results are discussed in relation to the endocommensal habitat of the pea crabs.

  2. [Morphological Changes in the Structure of Blastozones during Fasciation of Pisum sativum L. and Arabidopsis thaliana (L.) Heynh].

    PubMed

    Bykova, E A; Labunskaya, E A; Chub, V V

    2015-01-01

    Different effects of fasciation on the structure of blastozones and ultimately on the morphology of the plants of the two families investigated was detected. The results of this study demonstrate that in Arabidopsis thaliana phyllotaxis changes, leading to the formation of whorled leaf aestivation (two or four leaf in the whorl). We also demonstrated that in Pisum sativum the number of folioles of a compound leaf increased, the number of stipules also increased, and stipules can grow together and form a structure similar to the sheath of Gramineae. Our results demonstrated that a common manifestation of fasciations in Arabidopsis and Pisum is the formation of a flattened meristem, which extended along the same line (axes of fasciation).

  3. The defensive aphid symbiont Hamiltonella defensa affects host quality differently for Aphelinus glycinis versus Aphelinus atriplicis

    USDA-ARS?s Scientific Manuscript database

    Endosymbiont interactions with hosts have important affects on fitness, including the fitness of many pest and beneficial species. Among these interactions, facultative endosymbiotic bacteria can protect aphid species from parasitoids. APHIS CRACCIVORA and ACYRTHOSIPHON PISUM harbor the symbiotic ...

  4. Internode length in Pisum. Gene na may block gibberellin synthesis between ent-7. cap alpha. -hydroxykaurenoic acid and biggerellin A/sub 12/-aldehyde. [Pisum sativum

    SciTech Connect

    Ingram, T.J.; Reid, J.B.

    1987-04-01

    The elongation response of the gibberellin (GA) deficient genotypes na, ls, and lh of peas (Pisum sativum L.) to a range of GA-precursors was examined. Plants possessing gene na did not respond to precursors in the GA biosynthetic pathway prior to GA/sub 12/-aldehyde. In contrast, plants possessing lh and ls responded as well as wild-type plants (dwarfed with AMO-1618) to these compounds. The results suggest that GA biosynthesis is blocked prior to ent-kaurene in the lh and ls mutants and between ent-7..cap alpha..-hydroxykaurenoic acid and GA/sub 12/-aldehyde in the na mutant. Feeds of ent(/sup 3/H)kaurenoic acid and (/sup 2/H)GA/sub 12/-aldehyde to a range of genotypes supported the above conclusions. The na line WL1766 was shown by gas chromatography-mass spectrometry (GC-MS) to metabolize(/sup 2/H)GA/sub 12/-aldehyde to a number of (/sup 2/H)C/sub 19/-GAs including GA/sub 1/. However, there was no indication in na genotypes for the metabolism of ent-(/sup 3/H)kaurenoic acid to these GAs. In contrast, the expanding shoot tissue of all Na genotypes examined metabolized ent-(/sup 3/H)kaurenoic acid to radioactive compounds that co-chromatographed with GA/sub 1/, GA/sub 8/, GA/sub 20/, and GA/sub 29/. However, insufficient material was present for unequivocal identification of the metabolites. The radioactive profiles from HPLC of extracts of the node treated with ent-(/sup 3/H)kaurenoic acid were similar for both Na and na plants and contained ent-16..cap alpha..,17-dihydroxykaurenoic acid and ent-6..cap alpha..,7..cap alpha..,16..beta..,17-tetrahydroxykaurenoic acid (both characterized by GC-MS), suggesting that the metabolites arose from side branches of the main GA-biosynthetic pathway. Thus, both Na and na plants appear capable of ent-7..cap alpha..-hydroxylation.

  5. Ascochyta blight disease of pea (Pisum sativum L.): defence-related candidate genes associated with QTL regions and identification of epistatic QTL.

    PubMed

    Timmerman-Vaughan, Gail M; Moya, Leire; Frew, Tonya J; Murray, Sarah R; Crowhurst, Ross

    2016-05-01

    Advances have been made in our understanding of Ascochyta blight resistance genetics through mapping candidate genes associated with QTL regions and demonstrating the importance of epistatic interactions in determining resistance. Ascochyta blight disease of pea (Pisum sativum L.) is economically significant with worldwide distribution. The causal pathogens are Didymella pinodes, Phoma medicaginis var pinodella and, in South Australia, P. koolunga. This study aimed to identify candidate genes that map to quantitative trait loci (QTL) for Ascochyta blight field disease resistance and to explore the role of epistatic interactions. Candidate genes associated with QTL were identified beginning with 101 defence-related genes from the published literature. Synteny between pea and Medicago truncatula was used to narrow down the candidates for mapping. Fourteen pea candidate sequences were mapped in two QTL mapping populations, A26 × Rovar and A88 × Rovar. QTL peaks, or the intervals containing QTL peaks, for the Asc2.1, Asc4.2, Asc4.3 and Asc7.1 QTL were defined by four of these candidate genes, while another three candidate genes occurred within 1.0 LOD confidence intervals. Epistasis involving QTL × background marker and background marker × background marker interactions contributed to the disease response phenotypes observed in the two mapping populations. For each population, five pairwise interactions exceeded the 5% false discovery rate threshold. Two candidate genes were involved in significant pairwise interactions. Markers in three genomic regions were involved in two or more epistatic interactions. Therefore, this study has identified pea defence-related sequences that are candidates for resistance determination, and that may be useful for marker-assisted selection. The demonstration of epistasis informs breeders that the architecture of this complex quantitative resistance includes epistatic interactions with non-additive effects.

  6. Auxin effects on in vitro and in vivo protein phosphorylation in pea. [Pisum sativum

    SciTech Connect

    Gallagher, S.R.; Ray, P.M.

    1987-04-01

    Terminal 8mm sections from the third internode of dark grown 7 day old Pisum sativum cv Alaska seedlings were separated into membrane and soluble fractions. SDS gradient PAGE identified approximately 50 in vivo phosphorylated proteins and proved superior to 2-D SDS PAGE in terms of resolution and repeatability. Addition of indoleacetic acid (IAA), fusicoccin, or 2,4 dichlorophenoxyacetic acid to membranes resulted in no detectable change in the number or phosphorylation level of the labeled proteins during in vitro phosphorylation in the presence of submicromolar concentrations of calcium. Similar results were obtained with soluble proteins. In the absence of calcium, the level of in vitro protein phosphorylation was much less, but not auxin effects could be identified. Furthermore, treatment of the sections with IAA in vivo followed by cell fractionation and in vitro phosphorylation failed to identify auxin responsive proteins. Lastly, when sections were labeled with /sup 32/P inorganic phosphate in the presence of 17 uM IAA, no auxin specific changes were found in the level of phosphorylation or in the number of phosphorylated proteins. Auxin effects on phosphorylation are thus slight or below their detection limit.

  7. [Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.)].

    PubMed

    Mihoub, Asma; Chaoui, Abdelilah; El Ferjani, Ezzedine

    2005-01-01

    Seeds of pea (Pisum sativum L.) were germinated for four days over two sheets of filter paper moistened with H2O (control) and 5 mM Cd(NO3)2 or CuSO4 (treated). The relationship between heavy-metal stress and breakdown of storage compounds was studied. Germination rate and growth of radicle decreased, while the water content in stressed seeds remained around the control values. Cotyledons changed their biochemical constituents: disorders in the contents of micronutrients (Fe, Mn, Zn), free amino acids and soluble sugars were found. Decline of alpha-amylase activity as well as acid phosphatase were also observed, whereas beta-amylase and alkaline phosphatase ones were not modified by heavy-metal treatments. These results suggest that the inhibition of seed germinations after exposure to cadmium or copper is not the consequence of starvation in water uptake by seed tissues, but may be due to a failure in the reserve mobilization process from cotyledons.

  8. A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.).

    PubMed

    Dumont, Estelle; Bahrman, Nasser; Goulas, Estelle; Valot, Benoît; Sellier, Hélène; Hilbert, Jean-Louis; Vuylsteker, Christophe; Lejeune-Hénaut, Isabelle; Delbreil, Bruno

    2011-01-01

    Two pea lines (Pisum sativum L.) with contrasted behaviours towards chilling and subsequent frost were studied by a proteomic approach to better understand cold acclimation. Following a chilling period, the Champagne line becomes tolerant to frost whereas Terese remains sensitive. Variance analysis allowed to select 260 statistically variable spots with 68 identified proteins (35 in leaves, 18 in stems, and 15 in roots). These proteins were shared out in proteins related to chilling response or cold acclimation. The better adaptation of Champagne to chilling might be related to a higher content in proteins involved in photosynthesis and in defence mechanisms. Moreover Champagne might prevent freezing damage particularly thanks to a higher constitutive expression of housekeeping proteins related to Terese. After three days of subsequent frost, proteomes of previously chilled plants also showed significant differences compared to unchilled plants. Out of 112 statistically variable spots (44 in leaves, 38 in stems, and 30 in roots), 32 proteins were identified. These proteins were related to frost response or frost resistance. It seems that Champagne could resist to frost with the reorientation of the energy metabolism. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Agronomical factors influencing the legumin/vicilin ratio in pea (Pisum sativum L.) seeds.

    PubMed

    Mertens, Cécile; Dehon, Lydie; Bourgeois, Audrey; Verhaeghe-Cartrysse, Christine; Blecker, Christophe

    2012-06-01

    Many research studies have investigated the impact of agronomical factors on the protein content of pea (Pisum sativum). This study aimed to establish if a correlation exists between protein content and legumin/vicilin (L/V) ratio in pea seeds and to identify agronomical factors that have an impact on this ratio. The L/V ratio was positively correlated with protein content (r = 0.58, P ≤ 0.01), but no linear regression was applicable (adjusted R(2) = 0.31). Both variety and cultivation year had a highly significant effect on the ratio (P < 0.001). The interaction between these two factors was also highly significant (P < 0.001), some varieties being less sensitive to climatic conditions than others. Cultivation location had a highly significant effect (P < 0.01). There was no interaction between variety and location. Seeding density had a highly significant effect on the ratio (P < 0.01), with a saturation effect above 60 seeds m(-2). Further studies should establish if a linear regression model can be applied to pea varieties independently. Varieties with a stable L/V ratio can prove to be useful in the food industry. Other agronomical factors (soil type and seeding density) should be considered for the production of pea seeds with a specific L/V ratio. Copyright © 2011 Society of Chemical Industry.

  10. Growth stimulation of dwarf peas (Pisum sativum L.) through homeopathic potencies of plant growth substances.

    PubMed

    Baumgartner, S; Thurneysen, A; Heusser, P

    2004-10-01

    Efficacy of higher homeopathic potencies is controversial. Universally accepted specific detection assays for homeopathic dilutions do not exist. Basic research has to develop a spectrum of standardized tools to investigate the mode of action and nature of homeopathic potencies. Can the shoot growth reaction of dwarf peas (gibberellin- deficient mutants) be regarded as evidence of treatment with homeopathic potencies of plant growth substances? Pea seed (Pisum sativum L. cv. Fruher Zwerg) is immersed for 24 hours in homeopathic potency or control solutions for soaking. Plants germinate and grow in a standard cultivation substrate under controlled environmental conditions. Shoot length is measured 14 days after planting. A screening of homeopathic potencies (12x-30x) of four different plant growth substances revealed biological activity of certain potency levels of gibberellin and kinetin (p < 0.05). Growth stimulation through gibberellin 17x (5 x 10(-18 M)) was assessed in six independent replications; results confirmed those of the screening (p < 0.05). The effect of gibberellin 17x seemed to weaken during the course of the experiments. The results back the hypothesis that homeopathic potencies of plant growth substances affect pea shoot growth. Dwarf peas might thus be an interesting system model for studying the action of homeopathic potencies. Further work is required to identify all boundary conditions modulating the reactivity of this system.

  11. Profile and Functional Properties of Seed Proteins from Six Pea (Pisum sativum) Genotypes

    PubMed Central

    Barac, Miroljub; Cabrilo, Slavica; Pesic, Mirjana; Stanojevic, Sladjana; Zilic, Sladjana; Macej, Ognjen; Ristic, Nikola

    2010-01-01

    Extractability, extractable protein compositions, technological-functional properties of pea (Pisum sativum) proteins from six genotypes grown in Serbia were investigated. Also, the relationship between these characteristics was presented. Investigated genotypes showed significant differences in storage protein content, composition and extractability. The ratio of vicilin:legumin concentrations, as well as the ratio of vicilin + convicilin: Legumin concentrations were positively correlated with extractability. Our data suggest that the higher level of vicilin and/or a lower level of legumin have a positive influence on protein extractability. The emulsion activity index (EAI) was strongly and positively correlated with the solubility, while no significant correlation was found between emulsion stability (ESI) and solubility, nor between foaming properties and solubility. No association was evident between ESI and EAI. A moderate positive correlation between emulsion stability and foam capacity was observed. Proteins from the investigated genotypes expressed significantly different emulsifying properties and foam capacity at different pH values, whereas low foam stability was detected. It appears that genotype has considerable influence on content, composition and technological-functional properties of pea bean proteins. This fact can be very useful for food scientists in efforts to improve the quality of peas and pea protein products. PMID:21614186

  12. Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum.

    PubMed

    Cheng, Wei; Zhang, Liang; Jiao, Chengjin; Su, Miao; Yang, Tao; Zhou, Lina; Peng, Renyi; Wang, Ranran; Wang, Chongying

    2013-09-01

    Flooding of soils often results in hypoxic conditions surrounding plant roots, which is a harmful abiotic stress to crops. Hydrogen sulfide (H2S) is a highly diffusible, gaseous molecule that modulates cell signaling and is involved in hypoxia signaling in animal cells. However, there have been no previous studies of H2S in plant cells in response to hypoxia. The effects of H2S on hypoxia-induced root tip death were studied in pea (Pisum sativum) via analysis of endogenous H2S and reactive oxygen species (ROS) levels. The activities of key enzymes involved in antioxidative and H2S metabolic pathways were determined using spectrophotometric assays. Ethylene was measured by gas chromatography. We found that exogenous H2S pretreatment dramatically alleviated hypoxia-induced root tip death by protecting root tip cell membranes from ROS damage induced by hypoxia and by stimulating a quiescence strategy through inhibiting ethylene production. Conversely, root tip death induced by hypoxia was strongly enhanced by inhibition of the key enzymes responsible for endogenous H2S biosynthesis. Our results demonstrated that exogenous H2S pretreatment significantly alleviates hypoxia-induced root tip death in pea seedlings and, therefore, enhances the tolerance of the plant to hypoxic stress. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Immunocytochemical localization of Pisum sativum TRXs f and m in non-photosynthetic tissues.

    PubMed

    Traverso, José A; Vignols, Florence; Cazalis, Roland; Serrato, Antonio J; Pulido, Pablo; Sahrawy, Mariam; Meyer, Yves; Cejudo, Francisco Javier; Chueca, Ana

    2008-01-01

    Plants are the organisms containing the most complex multigenic family for thioredoxins (TRX). Several types of TRXs are targeted to chloroplasts, which have been classified into four subgroups: m, f, x, and y. Among them, TRXs f and m were the first plastidial TRXs characterized, and their function as redox modulators of enzymes involved in carbon assimilation in the chloroplast has been well-established. Both TRXs, f and m, were named according to their ability to reduce plastidial fructose-1,6-bisphosphatase (FBPase) and malate dehydrogenase (MDH), respectively. Evidence is presented here based on the immunocytochemistry of the localization of f and m-type TRXs from Pisum sativum in non-photosynthetic tissues. Both TRXs showed a different spatial pattern. Whilst PsTRXm was localized to vascular tissues of all the organs analysed (leaves, stems, and roots), PsTRXf was localized to more specific cells next to xylem vessels and vascular cambium. Heterologous complementation analysis of the yeast mutant EMY63, deficient in both yeast TRXs, by the pea plastidial TRXs suggests that PsTRXm, but not PsTRXf, is involved in the mechanism of reactive oxygen species (ROS) detoxification. In agreement with this function, the PsTRXm gene was induced in roots of pea plants in response to hydrogen peroxide.

  14. Transfer cell wall ingrowths and transport capacity in pea leaf discs. [Pisum sativum cv

    SciTech Connect

    Wimmers, L.E.; Turgeon, R.

    1986-04-01

    Transfer cell wall ingrowths are thought to increase transport capacity by increasing plasmelemma surface area. Little direct evidence for this hypothesis exists since experimental systems in which the surface area of wall ingrowths can be modulated have not been available. They grew Pisum sativum cv. Little Marvel plants under three light regimes (150, 500, 1000 umol photons m/sup -2/ sec/sup -1/) using 1000 watt Sylvania Metal Halide lamps. Wall ingrowths in minor vein phloem parenchyma cells were analyzed morphometrically from electron micrographs and a positive correlation was found between light intensity and extent of wall ingrowths. Vein loading was assayed by floating abraded leaf discs on /sup 14/C-sucrose (1 mM). There was a positive correlation between uptake and transfer cell wall surface area, although the latter increased more than the former. No significant differences were found in vein length, numbers of phloem elements, or phloem cross sectional areas. Changes in light intensity after a leaf reached maturity did not change uptake potential over a period of at least three days.

  15. Transfer cell wall ingrowths and vein loading characteristics in pea leaf discs. [Pisum sativum

    SciTech Connect

    Wimmers, L.E.; Turgeon, R.

    1987-04-01

    Transfer cell wall ingrowths are thought to increase transport capacity by increasing plasmalemma surface area. Leaf minor vein phloem transfer cells presumably enhance phloem loading. In Pisum sativum cv. Little marvel grown under different light regimes (150 to 1000 ..mu..mol photons m/sup -2/ sec/sup -1/) there is a positive correlation between light intensity and wall ingrowth area in phloem transfer cells. The extent of ingrowth and correlation to light intensity is greatest in minor veins, decreasing as vein size increases. Vein loading was assayed by floating abraded leaf discs on /sup 14/C-sucrose (10 mM). There is a positive correlation between uptake and transfer cell wall area, although the latter increased more than the former. The difference in uptake is stable throughout the photoperiod, and is also stable in mature leaves for at least four days after plants are transfered to a different light intensity. Sucrose uptake is biphasic. The saturable component of uptake is sensitive to light intensity, the Km for sucrose is negatively correlated to light intensity, while V/sub max/remains unchanged.

  16. NADH induces the generation of superoxide radicals in leaf peroxisomes. [Pisum sativum L

    SciTech Connect

    del Rio, L.A.; Sandalio, L.M.; Palma, J.M. ); Fernandez, V.M.; Ruperez, F.L. )

    1989-03-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O{sub 2}{sup {minus}}) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O{sub 2}{sup {minus}} radicals. In the soluble fractions of peroxisomes, no generation of O{sub 2}{sup {minus}} radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes suggests that O{sub 2}{sup {minus}} generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related roles for peroxisomes in cellular metabolism.

  17. Nitrite reduction and carbohydrate metabolism in plastids purified from roots of Pisum sativum L.

    PubMed

    Bowsher, C G; Hucklesby, D P; Emes, M J

    1989-03-01

    Intact preparations of plastids from pea (Pisum sativum L.) roots have been used to investigate the metabolism of glucose-6-phosphate and reduction of inorganic nitrite within these organelles. The ability of hexose-phosphates to support nitrite reduction was dependent on the integrity of the preparation and was barely measurable in broken organelles. In intact plastids, nitrite was reduced most effectively in the presence of glucose-6-phosphate (Glc6P), fructose-6-phosphate and ribose-5-phosphate and to a lesser extent glucose-1-phosphate. The Km (Glc6P) of plastid-located Glc6P dehydrogenase (EC 1.1.1.49) and Glc6P-dependent nitrite reduction were virtually identical (0.68 and 0.66 mM respectively) and a similar relationship was observed between fructose-6-phosphate, hexose-phosphate isomerase (EC 5.3.1.9) and nitrite reduction. The pattern of release of CO2 from different carbon atoms of Glc6P supplied to root plastids, indicates the operation of both glycolysis and the oxidative pentose-phosphate pathway with some recycling in the latter. During nitrite reduction the evolution of CO2 from carbon atom 1 of Glc6P was stimulated but not from carbon atoms 2, 3, 4, or 6. The importance of these results with regard to the regulation of the pathways of carbohydrate oxidation and nitrogen assimilation within root plastids is discussed.

  18. Structure of Pisum sativum Rubisco with bound ribulose 1,5-bisphosphate

    PubMed Central

    Loewen, Peter C.; Didychuk, Allison L.; Switala, Jacek; Perez-Luque, Rosa; Fita, Ignacio; Loewen, Michele C.

    2013-01-01

    The first structure of a ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from a pulse crop is reported. Rubisco was purified from Pisum sativum (garden pea) and diffraction-quality crystals were obtained by hanging-drop vapour diffusion in the presence of the substrate ribulose 1,5-bisphosphate. X-ray diffraction data were recorded to 2.20 Å resolution from a single crystal at the Canadian Light Source. The overall quaternary structure of non-activated P. sativum Rubisco highlights the conservation of the form I Rubisco hexadecameric complex. The electron density places the substrate in the active site at the interface of the large-subunit dimers. Lys201 in the active site is not carbamylated as expected for this non-activated structure. Some heterogeneity in the small-subunit sequence is noted, as well as possible variations in the conformation and contacts of ribulose 1,5-bisphosphate in the large-subunit active sites. Overall, the active-site conformation most closely correlates with the ‘closed’ conformation observed in other substrate/inhibitor-bound Rubisco structures. PMID:23295478

  19. Sink to Source Transition in Tendrils of a Semileafless Mutant, Pisum sativum cv Curly 1

    PubMed Central

    Côté, Richard; Gerrath, Jean M.; Peterson, Carol A.; Grodzinski, Bernard

    1992-01-01

    Sink to source transition parallels loss of thigmotropic capacity in tendrils of a semileafless mutant, Pisum sativum cv Curly. Macroscopic tendril development is subdivided based on thigmotropic capacity. Stage I is the elongation stage and, although the rate of photosynthesis is similar to that of stage II and III tendrils, dark respiration rates are higher in stage I. During stage II, tendrils are thigmotropic and act as a sink. Even though stage II tendrils have CO2 exchange characteristics similar to those of stage III tendrils, which are coiled, our fluorescein, 14C-partitioning, and 11C-translocation experiments suggest that stage I and II tendrils do not export carbon. Only stage III tendrils act as sources of newly fixed carbon. Export from them is blocked by cold, heat girdling of the petiole, or anoxia treatment of the tendrils. A late stage II tendril complex, in which coiling is occurring, may be exporting photoassimilates; however, this phenomenon can be attributed to the fact that the pea leaf is a compound structure and there may be one or more stage III tendrils, no longer thigmotropic, within the tendril complex. Photosynthetic maturity in pea tendrils occurs at stage III and is characterized by the ability of these tendrils to export photoassimilates. Images Figure 1 Figure 2 Figure 3 PMID:16653179

  20. Induction of Root Nodule Senescence by Combined Nitrogen in Pisum sativum L 1

    PubMed Central

    Chen, Pin-Ching; Phillips, Donald A.

    1977-01-01

    Root nodule senescence induced by nitrate and ammonium in Pisum sativum L. was defined by determining nitrogenase activity and leghemoglobin content with the acetylene reduction and pyridine hemochrome assays. Root systems supplied with 100 mm KNO3 or 100 mm NH4Cl exhibited a decrease in nitrogenase activity followed by a decline in leghemoglobin content. Increasing the CO2 concentration from 0.000320 atm to 0.00120 atm had no effect on the time course of root nodule senescence when 20 mm KNO3 was supplied to the roots; in vitro nitrate reductase activity was detected in leaves and roots, but not bacteroids. Nitrate appeared in leaves, roots, and the nodule cytosol fraction but not bacteroids when 20 mm KNO3 was supplied to roots. When nitrate entered through the shoots, however, no root nodule senescence was observed, and no nitrate was detected in root or nodule cytosol fractions although nitrate and nitrate reductase were found in leaves. The results suggest that nitrate does not induce root nodule senescence through competition between nitrate reductase and nitrogenase for products of photosynthesis. PMID:16659869

  1. Roots of Pisum sativum L. exhibit hydrotropism in response to a water potential gradient in vermiculite.

    PubMed

    Tsuda, Shogo; Miyamoto, Naoko; Takahashi, Hideyuki; Ishihara, Kuni; Hirasawa, Tadashi

    2003-12-01

    In the present study, root hydrotropism in an agravitropic mutant of Pisum sativum L. grown in vermiculite with a steep water potential gradient was examined. When wet and dry vermiculite were placed side by side, water diffused from the wet (-0.04 MPa) to the dry (-1.2 MPa) and a steep water potential gradient became apparent in the dry vermiculite close to the boundary between the two. The extent and location of the gradient remained stable between the fourth and sixth day after filling a box with vermiculite, and the steepest gradient (approx. 0.02 MPa mm-1) was found in the initially dry vermiculite between 60 and 80 mm from the boundary. When seedlings with 25-35 mm long roots were planted in the initially dry vermiculite near where the gradient had been established, each of the main roots elongated toward the wet vermiculite, i.e. toward the high water potential. Control roots elongated without curvature in both the wet and the dry vermiculite, in which no water potential gradient was detectable. These results show that pea roots respond to the water potential gradient around them and elongate towards the higher water potential. Therefore, positive hydrotropism occurs in vermiculite just as it does in air. Hydrotropism in soil may be significant when a steep water potential gradient is apparent, such as when drip irrigation is applied.

  2. Nitrogen Stress and Apparent Photosynthesis in Symbiotically Grown Pisum sativum L. 1

    PubMed Central

    Dejong, Ted M.; Phillips, Donald A.

    1981-01-01

    Pea plants (Pisum sativum L. cv. Alaska) were inoculated individually with one of 15 Rhizobium leguminosarum strains and grown under uniform environmental conditions in the absence of combined N. Differences in effectiveness of the Rhizobium strains produced plants with differing rates of whole plant apparent N2 fixation and total N content at the same morphological stage of development. Plants were analyzed to determine interactions between N2 fixation, N allocation, apparent photosynthesis, and growth. Total leaf N increased linearly with total N2 fixation (R2 = 0.994). The proportion of total N allocated to leaves, the per cent N content of individual leaves, and the photosynthetic efficiency of individual leaves showed a curvilinear response with increasing plant N content. Differences in allocation patterns of leaf N between plants with low and high N content resulted in differences in the relationship between total N content and plant dry weight. Results from this study show that N2 fixation interacts with leaf photosynthetic efficiency and plant growth in a manner that is dependent upon the allocation of symbiotically fixed N. PMID:16661907

  3. Effects of SO2 on Stomatal Metabolism in Pisum sativum L. 1

    PubMed Central

    Rao, I. Madhusudana; Amundson, Robert G.; Alscher-Herman, Ruth; Anderson, Louise E.

    1983-01-01

    Pea (Pisum sativum L. cv `Little Marvel') plants were exposed to SO2 for short term (3 hours) and long term (2 days) at 0.2 and at 0.5 microliter per liter (ppm) levels. The effect of this treatment on the activity of phosphoenolpyruvate carboxylase, NAD- and NADP-malate dehydrogenases, and alanine aminotransferase from epidermis and whole leaves was investigated. Short-term exposure to SO2 at 0.2 or 0.5 ppm decreased the activity of the carboxylase and the dehydrogenases in the epidermis. In contrast, the activity of the same three enzymes increased in whole leaves with either short- or long-term exposure to SO2. Alanine aminotransferase in epidermis or whole leaves was not much affected by short-term exposure, but the epidermal activity was decreased and whole leaf activity was increased with long-term exposure. SO2 exposure which was initiated prior to illumination decreased the free thiol content of both epidermis and of whole leaf. Net photosynthesis was reversibly inhibited by long-term exposure to SO2 at 0.5 ppm. No effect of 0.5 ppm SO2 on stomatal conductance was detectable after 3 hours. Stomatal conductance appeared to decrease after longer exposure times (2 days) at 0.5 ppm. PMID:16663045

  4. Rapidly Induced Wound Ethylene from Excised Segments of Etiolated Pisum sativum L., cv. Alaska

    PubMed Central

    Saltveit, Mikal E.; Dilley, David R.

    1978-01-01

    A rapidly induced, transitory increase in the rate of ethylene synthesis occurred in wounded tissue excised from actively growing regions of etiolated barley, cucumber, maize, oat, pea, tomato, and wheat seedlings. Cutting intact stems or excising 9-mm segments of tissue from near the apex of 7-day-old etiolated Pisum sativum L., cv. Alaska seedlings induced a remarkably consistent pattern of ethylene production. At 25 C, wound-induced ethylene production by segments excised 9 mm below the apical hook increased linearly after a lag of 26 minutes from 2.7 nanoliters per g per hour to the first maxium of 11.3 nanoliters per g per hour at 56 minutes. The rate of production then decreased to a minimum at 90 minutes, increased to a lower second maximum at 131 minutes, and subsequently declined over a period of about 100 minutes to about 4 nanoliters per g per hour. Removal of endogenous ethylene, before the wound response commenced, had no effect on the kinetics of ethylene production. Tissue containing large amounts of dissolved ethylene released it as an exponential decay with no lag period. Rapidly induced wound ethylene is synthesized by the tissue and is not merely the result of facilitated diffusion of ethylene already present in the tissue through the newly exposed cut surfaces. Previously wounded apical sections did not exhibit a second response when rewounded. No significant correlation was found between wound-induced ethylene synthesis and either CO2 or ethane production. PMID:16660312

  5. Phytochrome regulation of gibberellin metabolism in shoots of dwarf Pisum sativum L

    SciTech Connect

    Campell, B.R.

    1986-01-01

    To study the effect of light on the recessive dwarfing allele, le, of Pisum sativum L., etiolated, paclobutrazol treated LeLe (cv. Alaska) and lele (cv. Progress) pea seedlings were transferred to different light regimes. The growth response of both genotypes to applications of GA/sub 1/, GA/sub 20/, and steviol was measured over 48 hours using position transducers. Both genotypes responded to GA/sub 1/ under red irradiation and in darkness. The LeLe plants grew in response to steviol and GA/sub 20/ under red irradiation and in darkness. The lele plants responded to steviol and GA/sub 20/ in darkness, but showed a much smaller response when red irradiated. The red effect on lele plants was reversible by far-red irradiation. (/sup 3/H)GA/sub 20/ was applied to nana pea seedlings, homozygous for le, grown under different light regimes. Radioactive metabolites were later extracted from the shoots of the treated plants. Both the free acid and conjugate pools were analyzed by reversed phase HPLC, and some radioactive metabolites were tentatively identified by comparing their retention times to those of authentic (/sup 3/H)GAs.

  6. Dark-induced and organ-specific expression of two asparagine synthetase genes in Pisum sativum.

    PubMed Central

    Tsai, F Y; Coruzzi, G M

    1990-01-01

    Nucleotide sequence analysis of cDNAs for asparagine synthetase (AS) of Pisum sativum has uncovered two distinct AS mRNAs (AS1 and AS2) encoding polypeptides that are highly homologous to the human AS enzyme. The amino-terminal residues of both AS1 and AS2 polypeptides are identical to the glutamine-binding domain of the human AS enzyme, indicating that the full-length AS1 and AS2 cDNAs encode glutamine-dependent AS enzymes. Analysis of nuclear DNA shows that AS1 and AS2 are each encoded by single genes in P.sativum. Gene-specific Northern blot analysis reveals that dark treatment induces high-level accumulation of AS1 mRNA in leaves, while light treatment represses this effect as much as 30-fold. Moreover, the dark-induced accumulation of AS1 mRNA was shown to be a phytochrome-mediated response. Both AS1 and AS2 mRNAs also accumulate to high levels in cotyledons of germinating seedlings and in nitrogen-fixing root nodules. These patterns of AS gene expression correlate well with the physiological role of asparagine as a nitrogen transport amino acid during plant development. Images Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1968003

  7. Biological changes of green pea (Pisum sativum L.) by selenium enrichment.

    PubMed

    Garousi, Farzaneh; Kovács, Béla; Domokos-Szabolcsy, Éva; Veres, Szilvia

    2017-03-01

    Supplement of common fertilizers with selenium (Se) for crop production will be an effective way to produce selenium-rich food and feed. The value of green pea seeds and forages as alternative protein source can be improved by using agronomic biofortification. Therefore, biological changes of green pea (Pisum sativum L.) and influences of inorganic forms of Se (sodium selenite and sodium selenate) at different concentrations on the accumulation of magnesium (Mg) and phosphorus (P) were investigated in greenhouse experiment. 3 mg kg(-1) of selenite had positive effects to enhance photosynthetic attributes and decrease lipid peroxidation significantly. At the same time, Se accumulation increased in all parts of plant by increasing Se supply. Moreover, Mg and P accumulations were significantly increased at 3 mg kg(-1) selenite and 1 mg kg(-1) selenate treatments, respectively. By contrast higher selenite concentrations (≥30 mg kg(-1)) exerted toxic effects on plants. Relative chlorophyll content, actual photochemical efficiency of PSII (ФPSII) and Mg accumulation showed significant decrease while membrane lipid peroxidation increased. Thus, the present findings prove Se biofortification has positive effects on biological traits of green pea to provide it as a proper functional product.

  8. Application of SNPs to improve yield of Pisum sativum L. (pea).

    PubMed

    Mehmood, Ansar; Murtaza, Ghulam

    2017-06-01

    Nanotechnology opens an enormous scope of novel application in the fields of biotechnology and agricultural industries, because nanoparticles (NPs) have unique physicochemical properties, i.e. high surface area, high reactivity, tunable pore size and particle morphology. Present study was carried out to determine the role of silver NPs (SNPs) to improve yield of Pisum sativum L. SNPs (10-100 nm) were synthesised by green method using extract of Berberis lycium Royle. Pea seeds were soaked and seedling were foliage sprayed by 0, 30, 60 and 90 ppm SNPs. The experiment was arranged as split-split plot randomised complete block design with three replicates. The application of SNPs enhanced significantly number of seeds pod(-1), number of pods plant(-1), hundred seed weight, biological yield and green pod yield over control. The highest yield was found when 60 ppm SNPs were applied. However, exposure to 90 ppm SNPs, the yield of the pea decreased significantly as compared with 30 and 60 ppm. This research shows that SNPs have definite ability to improve growth and yield of crops. Nevertheless, a comprehensive experimentation is needed to establish the most appropriate concentration, size and mode of application of SNPs for higher growth and maximum yield of pea.

  9. Rapid wall relaxation in elongating tissues. [Glycine max (L. ); Pisum sativum L

    SciTech Connect

    Matyssek, R.; Maruyama, S.; Boyer, J.S. )

    1988-01-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max (L.) Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, the authors investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. The authors found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species.

  10. Purification and Characterization of a Lectin from Green Split Peas (Pisum sativum).

    PubMed

    Ng, Tzi Bun; Chan, Yau Sang; Ng, Charlene Cheuk Wing; Wong, Jack Ho

    2015-11-01

    Lectins have captured the attention of a large number of researchers on account of their various exploitable activities, including antitumor, immunomodulatory, antifungal, as well as HIV reverse transcriptase inhibitory activities. A mannose/glucose-specific lectin was isolated from green split peas (a variety of Pisum sativum) and characterized. The purification step involved anion-exchange chromatography on a DEAE-cellulose column, cation-exchange chromatography on an SP-Sepharose column, and gel filtration by fast protein liquid chromatography (FPLC) on Superdex 200. The purified lectin had a native molecular mass of around 50 kDa as determined by size exclusion chromatography. It appeared as a heterotetramer, composed of two distinct polypeptide bands with a molecular mass of 6 and 19 kDa, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The N-terminal sequence of green split pea lectin shows some degree of homology compared to lectins from other legume species. Its hemagglutinating activity was inhibited by glucose, mannose, and sucrose, and attenuated at pH values higher than 12 or lower than 3. Hemagglutinating activity was preserved at temperatures lower than 80 °C. The lectin did not show antifungal activity toward fungi including Fusarium oxysporum, Botrytis cinerea, and Mycosphaerella arachidicola. Green split pea lectin showed a mitogenic effect toward murine splenocytes and could inhibit the activity of HIV-1 reverse transcriptase.

  11. Analysis of the state of posttranslational calmodulin methylation in developing pea plants. [Pisum sativum

    SciTech Connect

    Oh, Sukheung; Roberts, D.M. )

    1990-07-01

    A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of ({sup 3}H)methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated and green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity.

  12. Control of storage-protein synthesis during seed development in pea (Pisum sativum L.).

    PubMed

    Gatehouse, J A; Evans, I M; Bown, D; Croy, R R; Boulter, D

    1982-10-15

    The tissue-specific syntheses of seed storage proteins in the cotyledons of developing pea (Pisum sativum L.) seeds have been demonstrated by estimates of their qualitative and quantitative accumulation by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and rocket immunoelectrophoresis respectively. Vicilin-fraction proteins initially accumulated faster than legumin, but whereas legumin was accumulated throughout development, different components of the vicilin fraction had their predominant periods of synthesis at different stages of development. The translation products in vitro of polysomes isolated from cotyledons at different stages of development reflected the synthesis in vivo of storage-protein polypeptides at corresponding times. The levels of storage-protein mRNA species during development were estimated by 'Northern' hybridization using cloned complementary-DNA probes. This technique showed that the levels of legumin and vicilin (47000-Mr precursors) mRNA species increased and decreased in agreement with estimated rates of synthesis of the respective polypeptides. The relative amounts of these messages, estimated by kinetic hybridization were also consistent. Legumin mRNA was present in leaf poly(A)+ RNA at less than one-thousandth of the level in cotyledon poly(A)+ (polyadenylated) RNA, demonstrating tissue-specific expression. Evidence is presented that storage-protein mRNA species are relatively long-lived, and it is suggested that storage-protein synthesis is regulated primarily at the transcriptional level.

  13. Influence of ammonium chloride on the nitrogenase activity of nodulated pea plants (Pisum sativum).

    PubMed Central

    Houwaard, F

    1978-01-01

    A study was made on the short-term effect of ammonium ions on the nitrogenase activity of pea root nodules. Nodulated pea plants (Pisum sativum), having reached maximum acetylene-reducing activity, were supplied with NH4Cl (20 mM). Nitrogenase activity of intact plants, detached nodules, and isolated bacteroids was measured at differed time intervals. A significant drop (20 to 40%) in the acetylene-reducing activity of treated intact plants and their detached nodules was observed after 1 day. No drop in the nitrogenase activity of bacteroids (assayed aerobically, or anaerobically after treatment with ethylenediaminetetraacetic acid-toluene) occurred for 2 to 4 days after the addition of NH4+ to the plants, depending on cultural conditions. From these results it is concluded that the adverse effect of NH4+ on acetylene reduction by intact plants and detached nodules during the first 2 days is not due to a decrease in the amount of nitrogenase in the bacteroids. It is suggested that the effect has to be attributed to a reduced supply to the bacteroids of energy-delivery photosynthates. PMID:677873

  14. Conserved thioredoxin fold is present in Pisum sativum L. sieve element occlusion-1 protein.

    PubMed

    Tuteja, Narendra; Umate, Pavan; Tuteja, Renu

    2010-06-01

    Homology-based three-dimensional model for Pisum sativum sieve element occlusion 1 (Ps.SEO1) (forisomes) protein was constructed. A stretch of amino acids (residues 320 to 456) which is well conserved in all known members of forisomes proteins was used to model the 3D structure of Ps.SEO1. The structural prediction was done using Protein Homology/analogY Recognition Engine (PHYRE) web server. Based on studies of local sequence alignment, the thioredoxin-fold containing protein [Structural Classification of Proteins (SCOP) code d1o73a_], a member of the glutathione peroxidase family was selected as a template for modeling the spatial structure of Ps.SEO1. Selection was based on comparison of primary sequence, higher match quality and alignment accuracy. Motif 1 (EVF) is conserved in Ps.SEO1, Vicia faba (Vf.For1) and Medicago truncatula (Mt.SEO3); motif 2 (KKED) is well conserved across all forisomes proteins and motif 3 (IGYIGNP) is conserved in Ps.SEO1 and Vf.For1.

  15. Purification and characterization of ornithine transcarbamylase from pea (Pisum sativum L.)

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Richardson, D. P.

    1991-01-01

    Pea (Pisum sativum) ornithine transcarbamylase (OTC) was purified to homogeneity from leaf homogenates in a single-step procedure, using delta-N-(phosphonacetyl)-L-ornithine-Sepharose 6B affinity chromatography. The 1581-fold purified OTC enzyme exhibited a specific activity of 139 micromoles citrulline per minute per milligram of protein at 37 degrees C, pH 8.5. Pea OTC represents approximately 0.05% of the total soluble protein in the leaf. The molecular weight of the native enzyme was approximately 108,200, as estimated by Sephacryl S-200 gel filtration chromatography. The purified protein ran as a single molecular weight band of 36,500 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results suggest that the pea OTC is a trimer of identical subunits. The overall amino acid composition of pea OTC is similar to that found in other eukaryotic and prokaryotic OTCs, but the number of arginine residues is approximately twofold higher. The increased number of arginine residues probably accounts for the observed isoelectric point of 7.6 for the pea enzyme, which is considerably more basic than isoelectric point values that have been reported for other OTCs.

  16. Digestion of fibre polysaccharides of pea (Pisum sativum) hulls, carrot and cabbage by adult cockerels.

    PubMed

    Longstaff, M; McNab, J M

    1989-11-01

    Characterization of the carbohydrates of pea (Pisum sativum) hulls, carrot and cabbage using both colorimetric and gas-liquid chromatographic techniques permitted a detailed investigation into the extent of digestion of differing types of fibre. These digestion studies were greatly aided by the development of a rapid bioassay employing starved adult cockerels. Total collection of undigested residues, uncontaminated by food spillage, could be made from trays placed under the cockerels. Chemical analysis showed that pea hulls consisted mainly of fibre with very little available carbohydrate present, whereas more than half of freeze-dried carrot and cabbage consisted of available carbohydrate (sucrose, glucose, fructose, starch) and consequently considerably less fibre was present. The fibre of carrot and cabbage was similarly composed of nearly equal amounts of neutral and acidic polysaccharides, whereas pea-hull fibre had four times as much neutral as acidic polysaccharides. The digestibility of total neutral polysaccharides from all three foodstuffs was extremely low. However, there appeared to be preferential digestion of polysaccharides composed of rhamnose, arabinose and galactose residues, all associated with pectic material, in contrast to the indigestibility of polysaccharides composed of fucose, xylose and glucose. Acidic polysaccharides were digested to a greater extent than neutral ones, and those of carrot and cabbage more so than pea hulls. The polysaccharides which were the most soluble were also the most digestible, but due to the arbitrariness of polysaccharide solubility, quantification of their total digestibility per se was considered not possible.

  17. Does low uranium concentration generates phytotoxic symptoms in Pisum sativum L. in nutrient medium?

    PubMed

    Tawussi, Frank; Walther, Clemens; Gupta, Dharmendra K

    2017-09-06

    Due to excessive mining and use of radionuclide especially uranium (U) and its fission products, numerous health hazards as well as environmental contamination worldwide have been created. The present study focused on demonstrating whether low concentration of U treatment in liquid nutient medium may translocate traces of U in plants and in fruits of Pisum sativum after 30 and 60 days of exposure for the safe use as a food supplement for human/animals. Hydroponically grown plants (in amended Hoagland medium) were treated with two different concentrations of uranium ([U] = 100 and 500 nM, respectively). Plants showed a decrease in total chlorophyll after 60 days of treatment. On the other hand, Eh of the nutrient medium was not affected from the initial days till 60 days of treatment, but pH of nutrient medium was increased upon durations, highest at 60 days of treatment. In seeds, micro/macro elements were under limit as well as U concentration was also under detection limit. We did not observe any U in the above ground parts (shoots/seeds) of the plant, i.e., under detection limit. Our observation suggests that P. sativum plants may be useful to grow at low radionuclide [U]-contaminated areas for safe human/animal use, but for other fission products, we have to investigate further for the safe human/animal use.

  18. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.).

    PubMed

    Fichtner, Franziska; Barbier, Francois F; Feil, Regina; Watanabe, Mutsumi; Annunziata, Maria Grazia; Chabikwa, Tinashe G; Höfgen, Rainer; Stitt, Mark; Beveridge, Christine A; Lunn, John E

    2017-09-04

    Trehalose 6-phosphate (Tre6P) is a signal of sucrose availability in plants, and has been implicated in regulation of shoot branching by the abnormal branching phenotypes of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) mutants with altered Tre6P metabolism. Decapitation of garden pea (Pisum sativum) plants has been proposed to release the dormancy of axillary buds lower down the stem due to changes in sucrose supply, and we hypothesized that this response is mediated by Tre6P. Decapitation led to a rapid and sustained rise in Tre6P levels in axillary buds, coinciding with the onset of bud outgrowth. This response was suppressed by simultaneous defoliation that restricts the supply of sucrose to axillary buds in decapitated plants. Decapitation also led to a rise in amino acid levels in buds, but a fall in phosphoenolpyruvate and 2-oxoglutarate. Supplying sucrose to stem node explants in vitro triggered a concentration-dependent increase in the Tre6P content of the buds that was highly correlated with their rate of outgrowth. These data show that changes in bud Tre6P levels are correlated with initiation of bud outgrowth following decapitation, suggesting that Tre6P is involved in the release of bud dormancy by sucrose. Tre6P might also be linked to a reconfiguration of carbon and nitrogen metabolism to support the subsequent growth of the bud into a new shoot. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Development and characterization of 37 novel EST-SSR markers in Pisum sativum (Fabaceae)1

    PubMed Central

    Zhuang, Xiaofeng; McPhee, Kevin E.; Coram, Tristan E.; Peever, Tobin L.; Chilvers, Martin I.

    2013-01-01

    • Premise of the study: Simple sequence repeat markers were developed based on expressed sequence tags (EST-SSR) and screened for polymorphism among 23 Pisum sativum individuals to assist development and refinement of pea linkage maps. In particular, the SSR markers were developed to assist in mapping of white mold disease resistance quantitative trait loci. • Methods and Results: Primer pairs were designed for 46 SSRs identified in EST contiguous sequences assembled from a 454 pyrosequenced transcriptome of the pea cultivar, ‘LIFTER’. Thirty-seven SSR markers amplified PCR products, of which 11 (30%) SSR markers produced polymorphism in 23 individuals, including parents of recombinant inbred lines, with two to four alleles. The observed and expected heterozygosities ranged from 0 to 0.43 and from 0.31 to 0.83, respectively. • Conclusions: These EST-SSR markers for pea will be useful for refinement of pea linkage maps, and will likely be useful for comparative mapping of pea and as tools for marker-based pea breeding. PMID:25202482

  20. Effects of SO/sub 2/ on stomatal metabolism in Pisum sativum L

    SciTech Connect

    Rao, I.M.; Amundson, R.G.; Alshcer-Herman, R.; Anderson, L.E.

    1983-01-01

    Pea (Pisum sativum L. cv 'Little Marvel') plants were exposed to SO/sub 2/ for short term (3 hours) and long term (2 days) at 0.2 and at 0.5 microliter per liter (ppm) levels. The effect of this treatment on the activity of phosphoenolpyruvate carboxylase, NAD- and NADP-malate dehydrogenases, and alanine aminotransferase from epidermis and whole leaves was investigated. Short-term exposure to SO/sub 2/ at 0.2 or 0.5 ppm decreased the activity of the carboxylase and the dehydrogenases in the epidermis. In contrast, the activity of the same three enzymes increased in whole leaves with either short- or long-term exposure to SO/sub 2/. Alanine aminotransferase in epidermis or whole leaves was not much affected by short-term exposure, but the epidermal activity was decreased and whole leaf activity was increased with long-term exposure. SO/sub 2/ exposure which was initiated prior to illumination decreased the free thiol content of both epidermis and of whole leaf. Net photosynthesis was reversibly inhibited by long-term exposure to SO/sub 2/ at 0.5 ppm. No effect of 0.5 ppm SO/sub 2/ on stomatal conductance was detectable after 3 hours. Stomatal conductance appeared to decrease after longer exposure times (2 days) at 0.5 ppm.

  1. Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum.

    PubMed

    Rafiq, Marina; Shahid, Muhammad; Abbas, Ghulam; Shamshad, Saliha; Khalid, Sana; Niazi, Nabeel Khan; Dumat, Camille

    2017-07-03

    In this study, we determined the effect of ethylenediaminetetraacetic acid (EDTA) and calcium (Ca) on arsenic (As) uptake and toxicity to Pisum sativum. Plants were treated with three levels of As (25, 125, and 250 µM) in the presence and absence of three levels of Ca (1, 5, and 10 mM) and EDTA (25, 125, and 250 µM). Exposure to As caused an overproduction of hydrogen peroxide (H2O2) in roots and leaves, which induced lipid peroxidation and decreased pigment contents. Application of both Ca and EDTA significantly reduced As accumulation by pea, Ca being more effective in reducing As accumulation. Both Ca and EDTA enhanced As-induced H2O2 production, but reduced lipid peroxidation. In the case of pigment contents, EDTA significantly reduced pigment contents, whereas Ca significantly enhanced pigment contents compared to As alone. The effect of As treatment in the presence and absence of EDTA and Ca was more pronounced in younger leaves compared to older leaves. The effect of amendments varied greatly with their applied levels, as well as type and age of plant organs. Importantly, due to possible precipitation of Ca-As compounds, the soils with higher levels of Ca ions are likely to be less prone to food chain contamination.

  2. Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L.

    PubMed

    Yadu, Shrishti; Dewangan, Teman Lal; Chandrakar, Vibhuti; Keshavkant, S

    2017-01-01

    This study was undertaken to scrutinize efficacy of salicylic acid (SA) and/or sodium nitroprusside [SNP, source of nitric oxide (NO)] to mitigate injury symptoms of saline stress in Pisum sativum L. Exposure to sodium chloride (NaCl) was found to be injurious to germinating P. sativum L. (var. Shubhra IM-9101) and a direct correlation between severity of toxicity and NaCl-concentrations could be discernible. Both SA and NO serves as signal molecules in plant stress responses, and play crucial roles in key regulatory pathways of growth, development and metabolism. The limiting effects of salinity on radicle length and biomass accumulation were considerably released by SA and/or SNP and among which their combined application was found to be the most promising. Supplemented SA and/or SNP, particularly their cocktail, resulted in a substantial decline in reactive oxygen species accumulation, which later caused reduced accumulations of malondialdehyde, 4-hydroxy-2-nonenal and protein carbonyl, in NaCl subjected germinating P. sativum L. seeds. SA and/or SNP had significant inducing effects on activities of superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase. Additionally, exogenous SA and/or SNP led to the higher proline, sugar and glycinebetaine contents, than that of the control. On the basis of accumulated results, it could be concluded that the cocktail of SA and SNP may be efficiently used to overcome the adverse signatures of salinity stress.

  3. Study of effect of AC and DC magnetic fields on growth of Pisum sativum seeds

    NASA Astrophysics Data System (ADS)

    Bahar, Mahmood; Yasaie Mehrjardi, Yasaman; Sojoodi, Jaleh; Bayani, Hosien; Kazem Salem, Mohammad

    2013-08-01

    This paper concentrates on the effect of the AC and DC magnetic fields on plant growth. The effect of AC magnetic field with intensities of 2.25, 1.66 and 1.49 mT and DC magnetic field with intensities of 3.6, 2.41 and 2.05 mT in exposure durations of 2, 4, 6, 8, 10 and 12 min on two groups of dry and wet Pisum sativum seedlings was studied. In each experiment 10 seeds were used; the experiments were repeated three times for each group and there was a sham exposed group for comparison purposes. The light cycle was 12 h light/12 h darkness and the temperature was 25 ± 1° C. The index of growth is considered to be the root and stem elongation on the sixth day. It was observed that AC magnetic field has a positive effect on the growth in all durations and intensities. Moreover, it is highlighted that during the experiments, the mean growth of dry seedlings significantly increased by a factor of 11 in AC magnetic field with the lowest intensity of 1.49 mT (p < 0.05). It was also shown that AC magnetic fields had a more positive effect on the growth of plants in comparison to DC magnetic fields.

  4. Study of DC and AC electric field effect on Pisum sativum seeds growth

    NASA Astrophysics Data System (ADS)

    Mahmood, Bahar; Jaleh, Sojoodi; Yasaman, Yasaie

    2014-07-01

    In this research the effect of electric field on two groups of wet and dry Pisum sativum seeds growth was studied. To generate the required electric field a parallel-plate capacitor with round copper plates of 30 cm diameter was used. The experiments were performed once in fixed exposure duration of 8 min in variable DC electric field of 0.25-1.5 kV/m. The other experiments were performed in variable fields of 50-125 kV/m in fixed exposure duration of 8 min, in two groups of AC and DC electric fields. The experiments were repeated three times. In each experiment 10 seeds were used and there was a sham exposed group for comparison, too. After application of electric field, the seeds were kept for six days in the same growth chamber with the temperature of 25 ± 1 °C and 12 h light/12 h darkness. On the 6th day length of stems and height of roots were measured. After doing statistical analysis, in low intensities of DC electric field, the highest significant increase of mean growth (The average of stem length and the height of roots) was seen in 1.5 kV/m in wet seeds. In high intensities of DC and AC electric fields, the highest significant increase of mean growth was seen in AC electric field of 100 kV/m in wet seeds.

  5. Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum

    SciTech Connect

    Cheesbourgh, T.M.; Kolattukudy, P.E.

    1984-11-01

    Mechanism of enzymatic conversion of a fatty acid to the corresponding alkane by the loss of the carboxyl carbon was investigated with particulate preparations from Pisum sativum. A heavy particulate preparation (sp. gr., 1.30 g/cm/sup 3/) isolated by two density-gradient centrifugation steps catalyzed conversion of octadecanal to heptadecane and CO. Experiments with (1-/sup 3/H, 1-/sup 14/C)octadecanal showed the stoichiometry of the reaction and retention of the aldehydic hydrogen in the alkane during this enzymatic decarbonylation. This decarbonylase showed an optimal pH of 7.0 and a K/sub m/ of 35 ..mu..M for the aldehyde. This enzyme was severly inhibited by metal ion chelators and showed no requirement for any cofactors. Microsomal preparations and the particulate fractions from the first density-gradient step catalyzed acyl-CoA reduction to the corresponding aldehyde. Electron microscopic examination showed the presence of fragments of cell wall/cuticle but no vesicles in the decarbonylase preparation. It is concluded that the aldehydes produced by the acyl-CoA reductase located in the endomembranes of the epidermal cells are converted to alkanes by the decarbonylase located in the cell wall/cuticle region. 20 references, 4 figures, 1 tables.

  6. Cloning, overexpression, purification and preliminary crystallographic studies of a mitochondrial type II peroxiredoxin from Pisum sativum

    SciTech Connect

    Barranco-Medina, Sergio; López-Jaramillo, Francisco Javier; Bernier-Villamor, Laura; Sevilla, Francisca; Lázaro, Juan-José

    2006-07-01

    The isolation, purification, crystallization and molecular-replacement solution of mitochondrial type II peroxiredoxin from P. sativum is reported. A cDNA encoding an open reading frame of 199 amino acids corresponding to a type II peroxiredoxin from Pisum sativum with its transit peptide was isolated by RT-PCR. The 171-amino-acid mature protein (estimated molecular weight 18.6 kDa) was cloned into the pET3d vector and overexpressed in Escherichia coli. The recombinant protein was purified and crystallized by the hanging-drop vapour-diffusion technique. A full data set (98.2% completeness) was collected using a rotating-anode generator to a resolution of 2.8 Å from a single crystal flash-cooled at 100 K. X-ray data revealed that the protein crystallizes in space group P1, with unit-cell parameters a = 61.88, b = 66.40, c = 77.23 Å, α = 102.90, β = 104.40, γ = 99.07°, and molecular replacement using a theoretical model predicted from the primary structure as a search model confirmed the presence of six molecules in the unit cell as expected from the Matthews coefficient. Refinement of the structure is in progress.

  7. Dark Respiration Protects Photosynthesis Against Photoinhibition in Mesophyll Protoplasts of Pea (Pisum sativum) 1

    PubMed Central

    Saradadevi, Kanakagiri; Raghavendra, Agepati S.

    1992-01-01

    The optimal light intensity required for photosynthesis by mesophyll protoplasts of pea (Pisum sativum) is about 1250 microeinsteins per square meter per second. On exposure to supra-optimal light intensity (2500 microeinsteins per square meter per second) for 10 min, the protoplasts lost 30 to 40% of their photosynthetic capacity. Illumination with normal light intensity (1250 microeinsteins per square meter per second) for 10 min enhanced the rate of dark respiration in protoplasts. On the other hand, when protoplasts were exposed to photoinhibitory light, their dark respiration also was markedly reduced along with photosynthesis. The extent of photoinhibition was increased when protoplasts were incubated with even low concentrations of classic respiratory inhibitors: 1 micromolar antimycin A, 1 micromolar sodium azide, and 1 microgram per milliliter oligomycin. At these concentrations, the test inhibitors had very little or no effect directly on the process of photosynthetic oxygen evolution. The promotion of photoinhibition by inhibitors of oxidative electron transport (antimycin A, sodium azide) and phosphorylation (oligomycin) was much more pronounced than that by inhibitors of glycolysis and tricarboxylic acid cycle (sodium fluoride and sodium malonate, respectively). We suggest that the oxidative electron transport and phosphorylation in mitochondria play an important role in protecting the protoplasts against photoinhibition of photosynthesis. Our results also demonstrate that protoplasts offer an additional experimental system for studies on photoinhibition. PMID:16668993

  8. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum).

    PubMed

    Pandey, Nalini; Singh, Gaurav Kumar

    2012-03-01

    Pea plants (Pisum sativum cv. Swati) exposed to different concentration of cadmium (50,100, 200 microM Cd) under controlled glass house conditions were quantified for different physiological parameters and antioxidative enzymes. In pea plants, Cd produced a significant inhibition of growth and induced chlorosis, marginal yellowing and necrosis in young leaves, the effect being most pronounced at 200 microM Cd supply. An alteration in the activated oxygen metabolism of pea plants were also detected as evidenced by an increase in concentration of H2O2 and TBARS along with decrease in the chlorophyll and carotenoid concentration in leaves. Cadmium toxicity induced an increase in non-protein thiol, ascorbate, proline and cysteine concentration. A significant increment in the activity of SOD, APX and GR, and a decrease in CAT was observed as a result of Cd treatment. The enhanced activity of SOD and inhibition of CAT and POD produces a high build up of H2O2 which appears to be the main cause of oxidative stress due to Cd toxicity in pea plants.

  9. PsPMEP, a pollen-specific pectin methylesterase of pea (Pisum sativum L.).

    PubMed

    Gómez, María Dolores; Renau-Morata, Begoña; Roque, Edelín; Polaina, Julio; Beltrán, José Pío; Cañas, Luis A

    2013-09-01

    Pectin methylesterases (PMEs) are a family of enzymes involved in plant reproductive processes such as pollen development and pollen tube growth. We have isolated and characterized PsPMEP, a pea (Pisum sativum L.) pollen-specific gene that encodes a protein with homology to PMEs. Sequence analysis showed that PsPMEP belongs to group 2 PMEs, which are characterized by the presence of a processable amino-terminal PME inhibitor domain followed by the catalytic PME domain. Moreover, PsPMEP contains several motifs highly conserved among PMEs with the essential amino acid residues involved in enzyme substrate binding and catalysis. Northern blot and in situ hybridization analyses showed that PsPMEP is expressed in pollen grains from 4 days before anthesis till anther dehiscence and in pollinated carpels. In the PsPMEP promoter region, we have identified several conserved cis-regulatory elements that have been associated with gene pollen-specific expression. Expression analysis of PsPMEP promoter fused to the uidA reporter gene in Arabidopsis thaliana plants showed a similar expression pattern when compared with pea, indicating that this promoter is also functional in a non-leguminous plant. GUS expression was detected in mature pollen grains, during pollen germination, during pollen tube elongation along the transmitting tract, and when the pollen tube reaches the embryo sac in the ovule.

  10. Purification and characterization of ornithine transcarbamylase from pea (Pisum sativum L.)

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Richardson, D. P.

    1991-01-01

    Pea (Pisum sativum) ornithine transcarbamylase (OTC) was purified to homogeneity from leaf homogenates in a single-step procedure, using delta-N-(phosphonacetyl)-L-ornithine-Sepharose 6B affinity chromatography. The 1581-fold purified OTC enzyme exhibited a specific activity of 139 micromoles citrulline per minute per milligram of protein at 37 degrees C, pH 8.5. Pea OTC represents approximately 0.05% of the total soluble protein in the leaf. The molecular weight of the native enzyme was approximately 108,200, as estimated by Sephacryl S-200 gel filtration chromatography. The purified protein ran as a single molecular weight band of 36,500 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results suggest that the pea OTC is a trimer of identical subunits. The overall amino acid composition of pea OTC is similar to that found in other eukaryotic and prokaryotic OTCs, but the number of arginine residues is approximately twofold higher. The increased number of arginine residues probably accounts for the observed isoelectric point of 7.6 for the pea enzyme, which is considerably more basic than isoelectric point values that have been reported for other OTCs.

  11. Organic meat quality of dual purpose young bulls supplemented with pea (Pisum sativum L.) or soybean.

    PubMed

    Corazzin, Mirco; Piasentier, Edi; Saccà, Elena; Bazzoli, Ilario; Bovolenta, Stefano

    2017-07-12

    One of the main constraints established by organic legislation that limits the development of the rearing of young bulls is the ban on the use of genetically modified organisms (GMO). Most of the worldwide cultivated soybean is GMO, therefore the use of alternative protein sources should be evaluated. In this study, the effect of dietary substitution of soybean with pea (Pisum sativum L.) on carcass characteristics and meat quality of dual purpose young bulls reared following the organic method was investigated. Twenty-four young bulls of Rendena breed were randomly assigned to two diet treatments differing in protein supplement (soybean (SB) or field pea (FP)). Carcass characteristics and meat chemical composition, colour, cooking loss and Warner-Bratzler shear force did not differ between groups. Regarding meat fatty acid composition, SB showed higher concentrations of C18:0 and C18:1 t and lower C16:1n-9c, C14:0, C17:1n-9c and C18:1n-9c than FP. In descriptive sensory analysis, trained judges were not able to differentiate meats from SB and FP, which also had similar overall liking expressed by consumers. The results of this study indicate that FP can replace SB in the diet of dual purpose young bulls with only a minor influence on fatty acid composition and no effect on carcass characteristics and meat quality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Cloning, overexpression, purification and preliminary crystallographic studies of a mitochondrial type II peroxiredoxin from Pisum sativum

    PubMed Central

    Barranco-Medina, Sergio; López-Jaramillo, Francisco Javier; Bernier-Villamor, Laura; Sevilla, Francisca; Lázaro, Juan-José

    2006-01-01

    A cDNA encoding an open reading frame of 199 amino acids corresponding to a type II peroxiredoxin from Pisum sativum with its transit peptide was isolated by RT-PCR. The 171-amino-acid mature protein (estimated molecular weight 18.6 kDa) was cloned into the pET3d vector and overexpressed in Escherichia coli. The recombinant protein was purified and crystallized by the hanging-drop vapour-diffusion technique. A full data set (98.2% completeness) was collected using a rotating-anode generator to a resolution of 2.8 Å from a single crystal flash-cooled at 100 K. X-ray data revealed that the protein crystallizes in space group P1, with unit-cell parameters a = 61.88, b = 66.40, c = 77.23 Å, α = 102.90, β = 104.40, γ = 99.07°, and molecular replacement using a theoretical model predicted from the primary structure as a search model confirmed the presence of six molecules in the unit cell as expected from the Matthews coefficient. Refinement of the structure is in progress. PMID:16820697

  13. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum.

    PubMed

    Kranner, Ilse; Roach, Thomas; Beckett, Richard P; Whitaker, Claire; Minibayeva, Farida V

    2010-07-01

    Extracellularly produced reactive oxygen species (ROS) play key roles in plant development, but their significance for seed germination and seedling establishment is poorly understood. Here we report on the characteristics of extracellular ROS production during seed germination and early seedling development in Pisum sativum. Extracellular superoxide (O2(.-)) and hydrogen peroxide (H2O2) production and the activity of extracellular peroxidases (ECPOX) were determined spectrophotometrically, and O2(.-) was identified by electron paramagnetic resonance. Cell wall fractionation of cotyledons, seed coats and radicles was used in conjunction with polyacrylamide gel electrophoresis to investigate substrate specificity and molecular masses of O2(.-)-producing enzymes, and the forces that bind them to the cell wall. Seed imbibition was accompanied by an immediate, transient burst of redox activity that involved O2(.-) and other substances capable of oxidizing epinephrine, and also H2O2. At the final stages of germination, coinciding with radicle elongation, a second increase in O2(.-) but not H2O2 production occurred and was correlated with an increase in extracellular ECPOX activity. Electrophoretic analyses of cell wall fractions demonstrated the presence of enzymes capable of O2(.-) production. The significance of extracellular ROS production during seed germination and early seedling development, and also during seed aging, is discussed.

  14. Characterization by enzyme-linked immunosorbent assay of monoclonal antibodies to Pisum and Avena phytochrome

    SciTech Connect

    Cordonnier, M.M.; Greppin, H.; Pratt, L.H.

    1984-01-01

    Nine monoclonal antibodies to pea (Pisum sativum L.) and 16 to oat (Avena sativa L.) phytochrome are characterized by enzyme-linked immunosorbent assay against phytochrome from six different sources: pea, zucchini (Cucurbita pepo L.), lettuce (Lactuca sativa L.), oat, rye (Secale cereale L.), and barley (Hordeum vulgare L.). All antibodies were raised against phytochrome with a monomer size near 120,000 daltons. Nevertheless, none of them discriminated qualitatively between 118/114-kilodalton oat phytochrome and a photoreversible, 60-kilodalton proteolytic degradation product derived from it. In addition, none of the 23 antibodies tested discriminated substantially between phytochrome - red-absorbing form and phytochrome - far red-absorbing form. Two antibodies to pea and six to oat phytochrome also bound strongly to phytochrome from the other species, even though these two plants are evolutionarily widely divergent. Of these eight antibodies, two bound significantly to all of the six phytochrome preparations tested, indicating that these two may recognize highly conserved regions of the chromoprotein. Since the molecular function of phytochrome is unknown, these two antibodies may serve as unique probes for regions of this pigment that are important to its mode of action. 27 references, 3 figures, 1 table.

  15. Isozymes of beta-N-Acetylhexosaminidase from Pea Seeds (Pisum sativum L.).

    PubMed

    Harley, S M; Beevers, L

    1987-12-01

    Four isozymes of beta-N-acetylhexosaminidase (beta-NAHA) from pea seeds (Pisum sativum L.) have been separated, with one, designated beta-NAHA-II, purified to apparent homogeneity by means of an affinity column constructed by ligating p-aminophenyl-N-acetyl-beta-d-thioglucosaminide to Affi-Gel 202. The other three isozymes have been separated and purified 500- to 1750-fold by chromatography on Concanavalin A-Sepharose, Zn(2+) charged immobilized metal affinity chromatography, hydrophobic chromatography, and ion exchange chromatography on CM-Sephadex. All four isozymes are located in the protein bodies of the cotyledons. The molecular weight of each isozyme is 210,000. beta-NAHA-II is composed of two heterogenous subunits. The subunits are not held together by disulfide bonds, but sulfhydryl groups are important for catalysis. All four isozymes release p-nitrophenol from both p-nitrophenyl-N-acetyl-beta-d-glucosaminide and p-nitrophenyl-N-acetyl-beta-d-galactosaminide. The ratio of activity for hydrolysis of the two substrates is pH dependent. The K(m) value for the two substrates and pH optima of the isozymes are comparable to beta-NAHAs from other plant sources.

  16. Purification, characterization and physiological role of sucrose synthase in the pea seed coat (Pisum sativum L.).

    PubMed

    Déjardin, A; Rochat, C; Maugenest, S; Boutin, J P

    1997-01-01

    The seed coat is a maternal organ which surrounds the embryo and is involved in the control of its nutrition. This study with pea (Pisum sativum L.) was conducted to understand more fully the sucrose/starch interconversions occurring in the seed coat. The concentrations of soluble sugars, the starch content, and the activities of the sucrose-metabolizing enzymes, sucrose synthase (Sus; EC 2.4.1.13), alkaline and soluble acid invertase (EC 3.2.1.26) and sucrose-phosphate synthase (SPS; EC 2.4.1.14) were compared at four developmental stages during seed filling. Among the four enzymes, only Sus activity was very high and strongly correlated with the starch concentration in the seed coat. Sucrose synthase catalyses the cleavage of sucrose in the presence of UDP into UDP-glucose and fructose. Sucrose synthase was purified from pea seed coats in a three-step protocol, consisting of diethylaminoethyl-Sephacel chromatography, gel filtration and affinity chromatography. The enzyme was characterized at the biochemical and molecular levels. Sucrose synthase exhibits biochemical properties which allow it to function in the direction of both sucrose cleavage and synthesis. The mass-action ratio of its four substrate was close to the theoretical equilibrium constant at the four developmental stages we studied. A labelling experiment on seed coats has shown that Sus activity is reversible in vivo and can produce 37% of neo-synthesized sucrose in the seed coat cells (minimum value). It is concluded that Sus could play a central role in the control of sucrose concentration in the seed coat cells in response to the demand for sucrose in the embryo during the development of the seed.

  17. Stimulation of nodulation in field peas (Pisum sativum) by low concentrations of ammonium in hydroponic culture

    NASA Technical Reports Server (NTRS)

    Waterer, J. G.; Vessey, J. K.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1992-01-01

    Although the inhibitory effects of high concentrations of mineral N (> 1.0 mM) on nodule development and function have often been studied, the effects of low, static concentrations of NH4+ (< 1.0 mM) on nodulation are unknown. In the present experiments we examine the effects of static concentrations of NH4+ at 0, 0.1 and 0.5 mM in flowing, hydroponic culture on nodule establishment and nitrogenase activity in field peas [Pisum sativum L. cv. Express (Svalof AB)] for the initial 28 days after planting (DAP). Peas grown in the presence of low concentrations of NH4+ had significantly greater nodule numbers (up to 4-fold) than plants grown without NH4+. Nodule dry weight per plant was significantly higher at 14, 21 and 28 DAP in plants grown in the presence of NH4+, but individual nodule mass was lower than in plants grown without NH4+. The nodulation pattern of the plants supplied with NH4+ was similar to that often reported for supernodulating mutants, however the plants did not express other growth habits associated with supernodulation. Estimates of N2 fixation indicate that the plus-NH4+ peas fixed as much or more N2 than the plants supplied with minus-NH4+ nutrient solution. There were no significant differences in nodule numbers, nodule mass or NH4+ uptake between the plants grown at the two concentrations of NH4+. Nodulation appeared to autoregulate by 14 DAP in the minus-NH4+ treatment. Plant growth and N accumulation in the minus-NH4+ plants lagged behind those of the plus-NH4+ treatments prior to N2 fixation becoming well established in the final week of the experiment. The plus-NH4+ treatments appeared not to elicit autoregulation and plants continued to initiate nodules throughout the experiment.

  18. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen.

    PubMed

    Cárcamo, Héctor A; Herle, Carolyn E; Lupwayi, Newton Z

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada, 2015.

  19. Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers.

    PubMed

    Smykal, Peter; Horacek, Jiri; Dostalova, Radmila; Hybl, Miroslav

    2008-01-01

    The distinctness, uniformity and stability (DUS) requirements involve expensive, space- and time-consuming measurements of morphological traits. Moreover, for a majority of traits, interactions between genotype and environment complicate the evaluation. Molecular markers have a potential to facilitate this procedure, increase the reliability of decisions, and substantially save the time and space needed for experiments. We chose 25 varieties of pea (Pisum sativum L.) from the list of recommended varieties for cultivation in the Czech Republic, and made both a standard classification by 12 morphological descriptors and a classification by biochemical-molecular markers. Two isozyme systems, 10 microsatellite loci, 2 retrotransposons for multilocus inter-retrotransposon amplified polymorphism (IRAP), and 12 retrotransposon-based insertion polymorphism (RBIP) DNA markers were analysed. The main objective of the study was to examine the potential of each method for discrimination between pea varieties. The results demonstrate a high potential and resolving power of DNA-based methods. Superior in terms of high information content and discrimination power were SSR markers, owing to high allelic variation, which was the only biochemical-molecular method allowing clear identification of all varieties. Retrotransposon markers in RBIP format proved to be the most robust and easy to score method, while multilocus IRAP produced informative fingerprint already in a single analysis. Isozyme analysis offered a fast and less expensive alternative. The results showed that molecular identification could be used to assess distinctness and complement morphological assessment, especially in cases where the time frame plays an important role. Currently developed pea marker systems might serve also for germplasm management and genetic diversity studies.

  20. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread

    PubMed Central

    Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-01-01

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). PMID:25862230

  1. Physical basis for altered stem elongation rates in internode length mutants of Pisum

    NASA Technical Reports Server (NTRS)

    Behringer, F. J.; Cosgrove, D. J.; Reid, J. B.; Davies, P. J.

    1990-01-01

    Biophysical parameters related to gibberellin (GA)-dependent stem elongation were examined in dark-grown stem-length genotypes of Pisum sativum L. The rate of internode expansion in these genotypes is altered due to recessive mutations which affect either the endogenous levels of, or response to, GA. The GA deficient dwarf L181 (ls), two GA insensitive semierectoides dwarfs NGB5865 and NGB5862 (lka and lkb, respectively) and the slender' line L197 (la crys), which is tall regardless of GA content, were compared to the wild-type tall cultivar, Torsdag. Osmotic pressure, estimated by vapor pressure osmometry, and turgor pressure, measured directly with a pressure probe, did not correlate with the differences in growth rate among the genotypes. Mechanical wall properties of frozen-thawed tissue were measured using a constant force assay. GA deficiency resulted in increased wall stiffness judged both on the basis of plastic compliance and plastic extensibility normalized for equal stem circumference. Plastic compliance was not reduced in the GA insensitive dwarfs, though lka reduced circumference-normalized plasticity. In contrast, in vivo wall relaxation, determined by the pressure-block technique, differed among genotypes in a manner which did correlate with extension rates. The wall yield threshold was 1 bar or less in the tall lines, but ranged from 3 to 6 bars in the dwarf genotypes. The results with the ls mutant indicate that GA enhances stem elongation by both decreasing the wall yield threshold and increasing the wall yield coefficient. In the GA-insensitive mutants, lka and lkb, the wall yield threshold is substantially elevated. Plants possessing lka may also possess a reduced wall yield coefficient.

  2. Stomatal responses of Argenteum - a mutant of Pisum sativum L. with readily detachable leaf epidermis.

    PubMed

    Jewer, P C; Incoll, L D; Shaw, J

    1982-07-01

    Epidermis is easily detached from both adaxial and abaxial surfaces of leaf four of the Argenteum mutant of Pisum sativum L. The isolated epidermis has stomata with large, easily-measured pores. Hairs and glands are absent. The density of stomata is high and contamination by mesophyll cells is low. In the light and in CO2-free air, stomata in isolated adaxial epidermis of Argenteum mutant opened maximally after 4 h incubation at 25°C. The response of stomata to light was dependent on the concentration of KCl in the incubation medium and was maximal at 50 mol m(-3) KCl. Stomata did not respond to exogenous kinetin, but apertures were reduced by incubation of epidermis on solutions containing between 10(-5) and 10(-1) mol m(-3) abscisic acid (ABA). The responses of stomata of Argenteum mutant to light, exogenous KCl, ABA and kinetin were comparable with those described previously for stomata in isolated epidermis of Commelina communis. A method for preparing viable protoplasts of guard cells from isolated epidermis of Argenteum mutant is described. The response of guard cell protoplasts to light, exogenous KCl, ABA and kinetin were similar to those of stomata in isolated epidermis except that the increase in volume of the protoplasts in response to light was maximal at a lower concentration of KCl (10 mol m(-3)) and that protoplasts responded more rapidly to light than stomata in isolated epidermis. The protoplasts did not respond to exogenous kinetin, but when incubated for 1 h in the light and in CO2-free air on a solution containing 10(-3) mol m(-3) ABA, they decreased in volume by 30%. The advantages of using epidermis from Argenteum mutant for experiments on stomatal movements are discussed.

  3. Palladium uptake by Pisum sativum: partitioning and effects on growth and reproduction.

    PubMed

    Ronchini, Matteo; Cherchi, Laura; Cantamessa, Simone; Lanfranchi, Marco; Vianelli, Alberto; Gerola, Paolo; Berta, Graziella; Fumagalli, Alessandro

    2015-05-01

    Environmental palladium levels are increasing because of anthropogenic activities. The considerable mobility of the metal, due to solubilisation phenomena, and its known bioavailability may indicate interactions with higher organisms. The aim of the study was to determine the Pd uptake and distribution in the various organs of the higher plant Pisum sativum and the metal-induced effects on its growth and reproduction. P. sativum was grown in vermiculite with a modified Hoagland's solution of nutrients in the presence of Pd at concentrations ranging 0.10-25 mg/L. After 8-10 weeks in a controlled environment room, plants were harvested and dissected to isolate the roots, stems, leaves, pods and peas. The samples were analysed for Pd content using AAS and SEM-EDX. P. sativum absorbed Pd, supplied as K₂PdCl₄, beginning at seed germination and continuing throughout its life. Minimal doses (0.10-1.0 mg Pd/L) severely inhibited pea reproductive processes while showing a peculiar hormetic effect on root development. Pd concentrations ≥1 mg/L induced developmental delay, with late growth resumption, increased leaf biomass (up to 25%) and a 15-20% reduction of root mass. Unsuccessful repeated blossoming efforts led to misshapen pods and no seed production. Photosynthesis was also disrupted. The absorbed Pd (ca. 0.5 % of the supplied metal) was primarily fixed in the root, specifically in the cortex, reaching concentrations up to 200 μg/g. The metal moved through the stem (up to 1 μg/g) to the leaves (2 μg/g) and pods (0.3 μg/g). The presence of Pd in the pea fruits, together with established evidence of environmental Pd accumulation and bioavailability, suggests possible contamination of food plants and propagation in the food chain and must be the cause for concern.

  4. Long-Term Fungal Inhibition by Pisum sativum Flour Hydrolysate during Storage of Wheat Flour Bread.

    PubMed

    Rizzello, Carlo Giuseppe; Lavecchia, Anna; Gramaglia, Valerio; Gobbetti, Marco

    2015-06-15

    In order to identify antifungal compounds from natural sources to be used as ingredients in the bakery industry, water/salt-soluble extracts (WSE) from different legume flour hydrolysates obtained by the use of a fungal protease were assayed against Penicillium roqueforti DPPMAF1. The agar diffusion assays allowed the selection of the pea (Pisum sativum) hydrolysate as the most active. As shown by the hyphal radial growth rate, the WSE had inhibitory activity towards several fungi isolated from bakeries. The MIC of the WSE was 9.0 mg/ml. Fungal inhibition was slightly affected by heating and variations in pH. The antifungal activity was attributed to three native proteins (pea defensins 1 and 2 and a nonspecific lipid transfer protein [nsLTP]) and a mixture of peptides released during hydrolysis. The three proteins have been reported previously as components of the defense system of the plant. Five peptides were purified from WSE and were identified as sequences encrypted in leginsulin A, vicilin, provicilin, and the nsLTP. To confirm antifungal activity, the peptides were chemically synthesized and tested. Freeze-dried WSE were used as ingredients in leavened baked goods. In particular, breads made by the addition of 1.6% (wt/wt) of the extract and fermented by baker's yeast or sourdough were characterized for their main chemical, structural, and sensory features, packed in polyethylene bags, stored at room temperature, and compared to controls prepared without pea hydrolysate. Artificially inoculated slices of a bread containing the WSE did not show contamination by fungi until at least 21 days of storage and behaved like the bread prepared with calcium propionate (0.3%, wt/wt). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Rapidly Induced Wound Ethylene from Excised Segments of Etiolated Pisum sativum L., cv. Alaska

    PubMed Central

    Saltveit, Mikal E.; Dilley, David R.

    1978-01-01

    Wound-induced ethylene synthesis by subapical stem sections of etiolated Pisum sativum L., cv. Alaska seedlings, as described by Saltveit and Dilley (Plant Physiol 1978 61: 447-450), was half-saturated at 3.6% (v/v) O2 and saturated at about 10% O2. Corresponding values for CO2 production during the same period were 1.1% and 10% O2, respectively. Anaerobiosis stopped all ethylene evolution and delayed the characteristic pattern of wound ethylene synthesis. Exposing tissue to 3.5% CO2 in air in a flow-through system reduced wound ethylene synthesis by 30%. Enhancing gas diffusivity by reducing the total pressure to 130 mm Hg almost doubled the rate of wound ethylene synthesis and this effect was negated by exposure to 250 μl liter−1 propylene. Applied ethylene or propylene stopped wound ethylene synthesis during the period of application, but unlike N2, no lag period was observed upon flushing with air. It is concluded that the characteristic pattern of wound-induced ethylene synthesis resulted from negative feedback control by endogenous ethylene. No wound ethylene was produced for 2 hours after excision at 10 or 38 C. Low temperatures prolonged the lag period, but did not prevent induction of the wound response, since tissue held for 2 hours at 10 C produced wound ethylene immediately when warmed to 30 C. In contrast, temperatures above 36 C prevented induction of wound ethylene synthesis, since tissue cooled to 30 C after 1 hour at 40 C required 2 hours before ethylene production returned to normal levels. The activation energy between 15 and 36 C was 12.1 mole kilocalories degree−1. PMID:16660362

  6. Alternative Path Mediated ATP Synthesis in Roots of Pisum sativum upon Nitrogen Supply 1

    PubMed Central

    de Visser, Ries; Brouwer, Koos Spreen; Posthumus, Freek

    1986-01-01

    Changes in the efficiency of root respiration were examined on intact plants of Pisum sativum L. cv Rondo after addition of nitrate or ammonium to the culture solutions. Nitrate was absorbed immediately after addition and elicited a respiratory rise (O2-uptake as well as CO2-production) to 160% at most. This occurred both in roots of plants fixing N2 and in those of non-nodulated plants pregrown for 1 or 2 weeks on a nitrogen-free culture solution. In older plants, used after 2 weeks of N-free growth, the full capacity of the cytochrome path was engaged in root respiration. This was demonstrated by the absence of an effect of the uncoupler carbonylcyanide m-chlorophenylhydrazone in the presence of 25 millimolar salicylhydroxamate, an inhibitor of the alternative path. In these plants more than 90% of the nitrate-induced stimulation of root respiration was salicylhydroxamate-sensitive. In young plants, used after 1 week of N-free growth, the cytochrome path was not saturated. Its activity increased instantaneously at the expense of alternative path activity, which initially dropped to zero and subsequently increased to 160% of the control 7 hours after nitrate supply. The rate of photosynthesis rose to 120% of the control, but not before 1 hour after nitrate supply, suggesting that the stimulation of root respiration was not due to a higher rate of photosynthesis. Experiments with plants grown with a split-root system showed that respiration rate and alternative path activity only increased in the root halves exposed to nitrogen. Ammonium was equally effective as nitrate in stimulating root respiration. These results lead to the conclusion that alternative-path mediated root respiration contributes to synthesis of ATP during at least the first 24 hours following nitrogen supply. Images Fig. 5 PMID:16664616

  7. Carbon Transfer and Partitioning between Vegetative and Reproductive Organs in Pisum sativum L

    PubMed Central

    Jeuffroy, Marie-Hélène; Warembourg, Fernand R.

    1991-01-01

    Assimilate partitioning was studied in the common pea (Pisum sativum L.) by feeding 14CO2 to whole plants and measuring radioactivity in different organs 48 hours after labeling. Two experimental protocols were used. For the first, one reproductive node was darkened with an aluminum foil, to prevent photosynthesis during labeling. The aim was to study assimilate translocation among nodes. The second was carried out to assess any priority among sinks. Whole plants were shaded, during labeling, to reduce carbon assimilation. Various developmental stages between the onset of flowering and the final stage in seed abortion of the last pod were chosen for labeling. When all photosynthetic structures at the first reproductive node were darkened at any stage of development after the formation of the first flower, the first pod was supplied with assimilates from other nodes. In contrast, later developed pods, when photosynthetic structures at their node were darkened, received assimilates from other nodes only when they were beyond their final stage in seed abortion. Reducing illumination to 30% did not change distribution of assimilated carbon between vegetative and reproductive structures, nor among pods. It appears that the relative proportion of 14C allocated to any one pod, compared to other pods, depends on the dry weight of that pod as a proportion of the total reproductive dry weight. When the plant was growing actively, following the start of the reproductive phase until a few days before the end of flowering, the top of the plant (i.e., all the organs above the last opened flower) had a higher sink strength and a higher relative specific activity than pods, suggesting that it was a more competitive sink for assimilates. The pattern of assimilate distribution described here provides an explanation for pod and seed abortion. PMID:16668406

  8. Physical basis for altered stem elongation rates in internode length mutants of Pisum

    SciTech Connect

    Behringer, F.J.; Davies, P.J. ); Cosgrove, D.J. ); Reid, J.B. )

    1990-09-01

    Biophysical parameters related to gibberellin (GA)-dependent stem elongation were examined in dark-grown stem-length genotypes of Pisum sativum L. The rate of internode expansion in these genotypes is altered due to recessive mutations which affect either the endogenous levels of, or response to, GA. The GA deficient dwarf L181 (ls), two GA insensitive semierectoides dwarfs NGB5865 and NGB5862 (lka and lkb, respectively) and the slender line L197 (la cry{sup s}), which is tall regardless of GA content, were compared to the wild-type tall cultivar, Torsdag. Osmotic pressure, estimated by vapor pressure osmometry, and turgor pressure, measured directly with a pressure probe, did not correlate with the differences in growth rate among the genotypes. Mechanical wall properties of frozen-thawed tissue were measured using a constant force assay. GA deficiency resulted in increased wall stiffness judged both on the basis of plastic compliance and plastic extensibility normalized for equal stem circumference. Plastic compliance was not reduced in the GA insensitive dwarfs, though lka reduced circumference-normalized plasticity. In contrast, in vivo wall relaxation, determined by the pressure-block technique, differed among genotypes in a manner which did correlate with extension rates. The wall yield threshold was 1 bar or less in the tall lines, but ranged from 3 to 6 bars in the dwarf genotypes. The results with the ls mutant indicate that GA enhances stem elongation by both decreasing the wall yield threshold and increasing the wall yield coefficient. In the GA-insensitive mutants, lka and lkb, the wall yield threshold is substantially elevated. Plants possessing lka may also possess a reduced wall yield coefficient.

  9. The tropic response of plant roots to oxygen: oxytropism in Pisum sativum L.

    PubMed

    Porterfield, D M; Musgrave, M E

    1998-09-01

    Plant roots are known to orient growth through the soil by gravitropism, hydrotropism, and thigmotropism. Recent observations of plant roots that developed in a microgravity environment in space suggested that plant roots may also orient their growth toward oxygen (oxytropism). Using garden pea (Pisum sativum L. cv. Weibul's Apollo) and an agravitropic mutant (cv. Ageotropum), root oxytropism was studied in the controlled environment of a microrhizotron. A series of channels in the microrhizotron allowed establishment of an oxygen gradient of 0.8 mmol mol-1 mm-1. Curvature of seedling roots was determined prior to freezing the roots for subsequent spectrophotometric determinations of alcohol dehydrogenase activity. Oxytropic curvature was observed all along the gradient in both cultivars of pea. The normal gravitropic cultivar showed a maximal curvature of 45 degrees after 48 h, while the agravitropic mutant curved to 90 degrees. In each cultivar, the amount of curvature declined as the oxygen concentration decreased, and was linearly related to the root elongation rate. Since oxytropic curvature occurred in roots exposed to oxygen concentrations that were not low enough to induce the hypoxically responsive protein alcohol dehydrogenase, we suspect that the oxygen sensor associated with oxytropism does not control the induction of hypoxic metabolism. Our results indicate that oxygen can play a critical role in determining root orientation as well as impacting root metabolic status. Oxytropism allows roots to avoid oxygen-deprived soil strata and may also be the basis of an auto-avoidance mechanism, decreasing the competition between roots for water and nutrients as well as oxygen.

  10. Cell wall yield properties of growing tissue: evaluation by in vivo stress relaxation. [Pisum sativus L

    SciTech Connect

    Cosgrove, D.J.

    1985-06-01

    Growing pea stem tissue, when isolated from an external supply of water, undergoes stress relaxation because of continued loosening of the cell wall. A theoretical analysis is presented to show that such stress relaxation should result in an exponential decrease in turgor pressure down to the yield threshold (Y), with a rate constant given by phi epsilon where phi is the metabolically maintained irreversible extensibility of the cell wall and epsilon is the volumetric elastic modulus of the cell. Stress relaxation was measured in pea (Pisum sativus L.) stem segments using the pressure microprobe technique. From the rate of stress relaxation, phi of segments pretreated with water was calculated to be 0.08 per megapascal per hour while that of auxin-pretreated tissue was 0.24 per megapascal per hour. These values agreed closely with estimates of phi made by a steady-state technique. The yield threshold (0.29 megapascal) was not affected by auxin. A theoretical analysis is also presented to show that the tissue hydraulic conductance may be estimated from the T/sub 1/2/ of tissue swelling. Experimentally, pea stems had a swelling T/sub 1/2/ of 2.0 minutes, corresponding to a relative hydraulic conductance of about 2.0 per megapascal per hour. This value is at least 8 times larger than phi. From these data and from computer modeling, it appears that the radial gradient in water potential which sustains water uptake in growing pea segments is small (0.04 megapascal). This means that hydraulic conductance does not substantially restrict growth. The results also demonstrate that the stimulation of growth by auxin can be entirely accounted for by the change in phi.

  11. Physiology of Movements in Stems of Seedling Pisum sativum L. cv. Alaska 12

    PubMed Central

    Britz, Steven J.; Galston, Arthur W.

    1982-01-01

    Gravitropism and nutation in the stems of dark-grown, seedling peas (Pisum sativum L. cv. Alaska) were recorded on time-lapse photographs made with photomorphogenetically inactive light. Although gravitropism and nutation have been connected by several different theories in the past, our experiments indicate that the two processes are in fact dissociable. The evidence is as follows: (a) Nutational patterns are asymmetric. There is much greater amplitude of oscillation in the plane parallel (∥) to the plane of the apical hook than in the plane perpendicular (⊥), yet the average gravitropic response is equal in these two planes. (b) Brief red light irradiation given 16 to 24 hours before observation greatly increases the amplitude of nutation in the ∥-plane, but has no influence on the kinetics of gravitropic response. (c) An inhibitor of auxin transport, α-naphthylphthalamic acid, strongly inhibits nutation at 5 micromolar but affects gravitropism only at higher concentrations. (d) Nutation is also strongly inhibited by removal of the apical bud, but gravitropism is unaffected. (e) The period of nutation does not exhibit a constant relationship to the response time of gravitropism. The above evidence is inconsistent with theories that gravitropism is an asymmetrically modified nutation or, alternatively, that nutational oscillations result in a simple fashion from gravitropic overshoots. The evidence is consistent with, although not proof of, autonomous factors such as an endogenous rhythm of growth as the cause of nutation in pea stems. However, gravity and nutation do interact. Nutation in a population of seedlings can be synchronized and brought into phase by a single gravitropic induction. Furthermore, the response time and initial rate of gravitropic curvature depend to some extent on the phase of nutational curvature at which gravitropic induction is begun. PMID:16662458

  12. Growth, seed development and genetic analysis in wild type and Def mutant of Pisum sativum L

    PubMed Central

    2011-01-01

    Background The def mutant pea (Pisum sativum L) showed non-abscission of seeds from the funicule. Here we present data on seed development and growth pattern and their relationship in predicting this particular trait in wild type and mutant lines as well as the inheritance pattern of the def allele in F2 and F3 populations. Findings Pod length and seed fresh weight increase with fruit maturity and this may affect the abscission event in pea seeds. However, the seed position in either the distal and proximal ends of the pod did not show any difference. The growth factors of seed fresh weight (FW), width of funicles (WFN), seed width (SW) and seed height (SH) were highly correlated and their relationships were determined in both wild type and def mutant peas. The coefficient of determination R2 values for the relationship between WFN and FW, SW and SH and their various interactions were higher for the def dwarf type. Stepwise multiple regression analysis showed that variation of WFN was associated with SH and SW. Pearson's chi square analysis revealed that the inheritance and segregation of the Def locus in 3:1 ratio was significant in two F2 populations. Structural analysis of the F3 population was used to confirm the inheritance status of the Def locus in F2 heterozygote plants. Conclusions This study investigated the inheritance of the presence or absence of the Def allele, controlling the presence of an abscission zone (AZ) or an abscission-less zone (ALZ) forming in wild type and mutant lines respectively. The single major gene (Def) controlling this phenotype was monogenic and def mutants were characterized and controlled by the homozygous recessive def allele that showed no palisade layers in the hilum region of the seed coat. PMID:22078070

  13. Antioxidant Enzymes Regulate Reactive Oxygen Species during Pod Elongation in Pisum sativum and Brassica chinensis

    PubMed Central

    Liu, Nan; Lin, Zhifang; Guan, Lanlan; Gaughan, Gerald; Lin, Guizhu

    2014-01-01

    Previous research has focused on the involvement of reactive oxygen species (ROS) in cell wall loosening and cell extension in plant vegetative growth, but few studies have investigated ROS functions specifically in plant reproductive organs. In this study, ROS levels and antioxidant enzyme activities were assessed in Pisum sativum and Brassica chinensis pods at five developmental stages. In juvenile pods, the high levels of O2.− and.OH indicates that they had functions in cell wall loosening and cell elongation. In later developmental stages, high levels of.OH were also related to increases in cell wall thickness in lignified tissues. Throughout pod development, most of the O2.− was detected on plasma membranes of parenchyma cells and outer epidermis cells of the mesocarp, while most of the H2O2 was detected on plasma membranes of most cells throughout the mesocarp. This suggests that these sites are presumably the locations of ROS generation. The antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) apparently contributed to ROS accumulation in pod wall tissues. Furthermore, specifically SOD and POD were found to be associated with pod growth through the regulation of ROS generation and transformation. Throughout pod development, O2.− decreases were associated with increased SOD activity, while changes in H2O2 accumulation were associated with changes in CAT and POD activities. Additionally, high POD activity may contribute to the generation of.OH in the early development of pods. It is concluded that the ROS are produced in different sites of plasma membranes with the regulation of antioxidant enzymes, and that substantial ROS generation and accumulation are evident in cell elongation and cell wall loosening in pod wall cells. PMID:24503564

  14. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development.

    PubMed

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-11-01

    CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far generally accepted. © The Author 2014. Published by

  15. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil.

    PubMed

    Mukherjee, Arnab; Peralta-Videa, Jose R; Bandyopadhyay, Susmita; Rico, Cyren M; Zhao, Lijuan; Gardea-Torresdey, Jorge L

    2014-01-01

    The toxicological effects of zinc oxide nanoparticles (ZnO NPs) in plants are still largely unknown. In the present study, green pea (Pisum sativum L.) plants were treated with 0, 125, 250, and 500 mg kg(-1) of either ZnO NPs or bulk ZnO in organic matter enriched soil. Corresponding toxicological effects were measured on the basis of plant growth, chlorophyll production, Zn bioaccumulation, H2O2 generation, stress enzyme activity, and lipid peroxidation using different cellular, molecular, and biochemical approaches. Compared to control, all ZnO NP concentrations significantly increased (p ≤ 0.05) root elongation but no effects were observed in the stem. Whereas all bulk ZnO treatments significantly increased both root and stem length. After 25 days, chlorophyll in leaves decreased, compared to control, by ~61%, 67%, and 77% in plants treated with 125, 250, and 500 mg kg(-1) ZnO NPs, respectively. Similar results were found in bulk ZnO treated plants. At all ZnO NP concentrations CAT was significantly reduced in leaves (p ≤ 0.05), while APOX was reduced in both roots and leaves. In the case of bulk ZnO, APOX activity was down-regulated in the root and leaf and CAT was unaffected. At 500 mg kg(-1) treatment, the H2O2 in leaves increased by 61% with a twofold lipid peroxidation, which would be a predictive biomarker of nanotoxicity. This study could be pioneering in evaluating the phytotoxicity of ZnO NPs to green peas and can serve as a good indicator for measuring the effects on ZnO NPs in plants grown in organic matter enriched soil.

  16. Characterization of alpha-Amylase from Shoots and Cotyledons of Pea (Pisum sativum L.) Seedlings.

    PubMed

    Beers, E P; Duke, S H

    1990-04-01

    The most abundant alpha-amylase (EC 3.2.1.1) in shoots and cotyledons from pea (Pisum sativum L.) seedlings was purified 6700-and 850-fold, respectively, utilizing affinity (amylose and cycloheptaamylose) and gel filtration chromatography and ultrafiltration. This alpha-amylase contributed at least 79 and 15% of the total amylolytic activity in seedling cotyledons and shoots, respectively. The enzyme was identified as an alpha-amylase by polarimetry, substrate specificity, and end product analyses. The purified alpha-amylases from shoots and cotyledons appear identical. Both are 43.5 kilodalton monomers with pls of 4.5, broad pH activity optima from 5.5 to 6.5, and nearly identical substrate specificities. They produce identical one-dimensional peptide fingerprints following partial proteolysis in the presence of SDS. Calcium is required for activity and thermal stability of this amylase. The enzyme cannot attack maltodextrins with degrees of polymerization below that of maltotetraose, and hydrolysis of intact starch granules was detected only after prolonged incubation. It best utilizes soluble starch as substrate. Glucose and maltose are the major end products of the enzyme with amylose as substrate. This alpha-amylase appears to be secreted, in that it is at least partially localized in the apoplast of shoots. The native enzyme exhibits a high degree of resistance to degradation by proteinase K, trypsin/chymostrypsin, thermolysin, and Staphylococcus aureus V8 protease. It does not appear to be a high-mannose-type glycoprotein. Common cell wall constituents (e.g. beta-glucan) are not substrates of the enzyme. A very low amount of this alpha-amylase appears to be associated with chloroplasts; however, it is unclear whether this activity is contamination or alpha-amylase which is integrally associated with the chloroplast.

  17. The tropic response of plant roots to oxygen: oxytropism in Pisum sativum L

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Musgrave, M. E.

    1998-01-01

    Plant roots are known to orient growth through the soil by gravitropism, hydrotropism, and thigmotropism. Recent observations of plant roots that developed in a microgravity environment in space suggested that plant roots may also orient their growth toward oxygen (oxytropism). Using garden pea (Pisum sativum L. cv. Weibul's Apollo) and an agravitropic mutant (cv. Ageotropum), root oxytropism was studied in the controlled environment of a microrhizotron. A series of channels in the microrhizotron allowed establishment of an oxygen gradient of 0.8 mmol mol-1 mm-1. Curvature of seedling roots was determined prior to freezing the roots for subsequent spectrophotometric determinations of alcohol dehydrogenase activity. Oxytropic curvature was observed all along the gradient in both cultivars of pea. The normal gravitropic cultivar showed a maximal curvature of 45 degrees after 48 h, while the agravitropic mutant curved to 90 degrees. In each cultivar, the amount of curvature declined as the oxygen concentration decreased, and was linearly related to the root elongation rate. Since oxytropic curvature occurred in roots exposed to oxygen concentrations that were not low enough to induce the hypoxically responsive protein alcohol dehydrogenase, we suspect that the oxygen sensor associated with oxytropism does not control the induction of hypoxic metabolism. Our results indicate that oxygen can play a critical role in determining root orientation as well as impacting root metabolic status. Oxytropism allows roots to avoid oxygen-deprived soil strata and may also be the basis of an auto-avoidance mechanism, decreasing the competition between roots for water and nutrients as well as oxygen.

  18. Physical basis for altered stem elongation rates in internode length mutants of Pisum.

    PubMed

    Behringer, F J; Cosgrove, D J; Reid, J B; Davies, P J

    1990-01-01

    Biophysical parameters related to gibberellin (GA)-dependent stem elongation were examined in dark-grown stem-length genotypes of Pisum sativum L. The rate of internode expansion in these genotypes is altered due to recessive mutations which affect either the endogenous levels of, or response to, GA. The GA deficient dwarf L181 (ls), two GA insensitive semierectoides dwarfs NGB5865 and NGB5862 (lka and lkb, respectively) and the slender' line L197 (la crys), which is tall regardless of GA content, were compared to the wild-type tall cultivar, Torsdag. Osmotic pressure, estimated by vapor pressure osmometry, and turgor pressure, measured directly with a pressure probe, did not correlate with the differences in growth rate among the genotypes. Mechanical wall properties of frozen-thawed tissue were measured using a constant force assay. GA deficiency resulted in increased wall stiffness judged both on the basis of plastic compliance and plastic extensibility normalized for equal stem circumference. Plastic compliance was not reduced in the GA insensitive dwarfs, though lka reduced circumference-normalized plasticity. In contrast, in vivo wall relaxation, determined by the pressure-block technique, differed among genotypes in a manner which did correlate with extension rates. The wall yield threshold was 1 bar or less in the tall lines, but ranged from 3 to 6 bars in the dwarf genotypes. The results with the ls mutant indicate that GA enhances stem elongation by both decreasing the wall yield threshold and increasing the wall yield coefficient. In the GA-insensitive mutants, lka and lkb, the wall yield threshold is substantially elevated. Plants possessing lka may also possess a reduced wall yield coefficient.

  19. Stimulation of nodulation in field peas (Pisum sativum) by low concentrations of ammonium in hydroponic culture

    NASA Technical Reports Server (NTRS)

    Waterer, J. G.; Vessey, J. K.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1992-01-01

    Although the inhibitory effects of high concentrations of mineral N (> 1.0 mM) on nodule development and function have often been studied, the effects of low, static concentrations of NH4+ (< 1.0 mM) on nodulation are unknown. In the present experiments we examine the effects of static concentrations of NH4+ at 0, 0.1 and 0.5 mM in flowing, hydroponic culture on nodule establishment and nitrogenase activity in field peas [Pisum sativum L. cv. Express (Svalof AB)] for the initial 28 days after planting (DAP). Peas grown in the presence of low concentrations of NH4+ had significantly greater nodule numbers (up to 4-fold) than plants grown without NH4+. Nodule dry weight per plant was significantly higher at 14, 21 and 28 DAP in plants grown in the presence of NH4+, but individual nodule mass was lower than in plants grown without NH4+. The nodulation pattern of the plants supplied with NH4+ was similar to that often reported for supernodulating mutants, however the plants did not express other growth habits associated with supernodulation. Estimates of N2 fixation indicate that the plus-NH4+ peas fixed as much or more N2 than the plants supplied with minus-NH4+ nutrient solution. There were no significant differences in nodule numbers, nodule mass or NH4+ uptake between the plants grown at the two concentrations of NH4+. Nodulation appeared to autoregulate by 14 DAP in the minus-NH4+ treatment. Plant growth and N accumulation in the minus-NH4+ plants lagged behind those of the plus-NH4+ treatments prior to N2 fixation becoming well established in the final week of the experiment. The plus-NH4+ treatments appeared not to elicit autoregulation and plants continued to initiate nodules throughout the experiment.

  20. Synthesis of Phytochelatins and Homo-Phytochelatins in Pisum sativum L.

    PubMed Central

    Klapheck, S.; Schlunz, S.; Bergmann, L.

    1995-01-01

    In the roots of pea plants (Pisum sativum L.) cultivated with 20 [mu]M CdCl2 for 3 d, synthesis of phytochelatins [PCs or ([gamma]EC)nG, where [gamma]EC is [gamma]glutamylcysteine and G is glycine] and homophytochelatins [h-PCs, ([gamma]EC)n[beta]-alanine] is accompanied by a drastic decrease in glutathione (GSH) content, but an increase in homoglutathione (h-GSH) content. In contrast, the in vitro activity of GSH synthetase increases 5-fold, whereas h-GSH synthetase activity increases regardless of Cd exposure. The consititutive enzyme PC synthase, which catalyzes the transfer of the [gamma]-EC moiety of GSH to an acceptor GSH molecule thus producing ([gamma]EC)2G, is activated by heavy metals, with Cd and Cu being strong activators and Zn being a very poor activator. Using h-GSH or hm-GSH for substrate, the synthesis rate of([gamma]EC)2[beta]-alanine and [gamma]EC)2-serine is only 2.4 and 0.3%, respectively, of the sythesis rate of ([gamma]EC)2G with GSH as substrate. However, in the presence of a constant GSH level, increasing the concentration of h-GSH or hm-GSH results in increased synthesis of ([gamma]EC)2[beta]-alanine or ([gamma]EC)2-serine, respecively; simultaneously, the synthesis of ([gamma]EC)2G is inhibited. [gamma]EC is not a substrate of PC synthase. These results are best explained by assuming that PC synthase has a [gamma]EC donor binding site, which is very specific for GSH, and a [gamma]EC acceptor binding site, which is less specific and accepts several tripeptides, namely GSH, h-GSH, and hm-GSH. PMID:12228379

  1. Physical basis for altered stem elongation rates in internode length mutants of Pisum

    NASA Technical Reports Server (NTRS)

    Behringer, F. J.; Cosgrove, D. J.; Reid, J. B.; Davies, P. J.

    1990-01-01

    Biophysical parameters related to gibberellin (GA)-dependent stem elongation were examined in dark-grown stem-length genotypes of Pisum sativum L. The rate of internode expansion in these genotypes is altered due to recessive mutations which affect either the endogenous levels of, or response to, GA. The GA deficient dwarf L181 (ls), two GA insensitive semierectoides dwarfs NGB5865 and NGB5862 (lka and lkb, respectively) and the slender' line L197 (la crys), which is tall regardless of GA content, were compared to the wild-type tall cultivar, Torsdag. Osmotic pressure, estimated by vapor pressure osmometry, and turgor pressure, measured directly with a pressure probe, did not correlate with the differences in growth rate among the genotypes. Mechanical wall properties of frozen-thawed tissue were measured using a constant force assay. GA deficiency resulted in increased wall stiffness judged both on the basis of plastic compliance and plastic extensibility normalized for equal stem circumference. Plastic compliance was not reduced in the GA insensitive dwarfs, though lka reduced circumference-normalized plasticity. In contrast, in vivo wall relaxation, determined by the pressure-block technique, differed among genotypes in a manner which did correlate with extension rates. The wall yield threshold was 1 bar or less in the tall lines, but ranged from 3 to 6 bars in the dwarf genotypes. The results with the ls mutant indicate that GA enhances stem elongation by both decreasing the wall yield threshold and increasing the wall yield coefficient. In the GA-insensitive mutants, lka and lkb, the wall yield threshold is substantially elevated. Plants possessing lka may also possess a reduced wall yield coefficient.

  2. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development

    PubMed Central

    Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina

    2014-01-01

    Background and Aims CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. Methods CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. Key Results CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. Conclusions The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far

  3. The tropic response of plant roots to oxygen: oxytropism in Pisum sativum L

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Musgrave, M. E.

    1998-01-01

    Plant roots are known to orient growth through the soil by gravitropism, hydrotropism, and thigmotropism. Recent observations of plant roots that developed in a microgravity environment in space suggested that plant roots may also orient their growth toward oxygen (oxytropism). Using garden pea (Pisum sativum L. cv. Weibul's Apollo) and an agravitropic mutant (cv. Ageotropum), root oxytropism was studied in the controlled environment of a microrhizotron. A series of channels in the microrhizotron allowed establishment of an oxygen gradient of 0.8 mmol mol-1 mm-1. Curvature of seedling roots was determined prior to freezing the roots for subsequent spectrophotometric determinations of alcohol dehydrogenase activity. Oxytropic curvature was observed all along the gradient in both cultivars of pea. The normal gravitropic cultivar showed a maximal curvature of 45 degrees after 48 h, while the agravitropic mutant curved to 90 degrees. In each cultivar, the amount of curvature declined as the oxygen concentration decreased, and was linearly related to the root elongation rate. Since oxytropic curvature occurred in roots exposed to oxygen concentrations that were not low enough to induce the hypoxically responsive protein alcohol dehydrogenase, we suspect that the oxygen sensor associated with oxytropism does not control the induction of hypoxic metabolism. Our results indicate that oxygen can play a critical role in determining root orientation as well as impacting root metabolic status. Oxytropism allows roots to avoid oxygen-deprived soil strata and may also be the basis of an auto-avoidance mechanism, decreasing the competition between roots for water and nutrients as well as oxygen.

  4. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  5. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress.

    PubMed

    Rivera-Becerril, Facundo; van Tuinen, Diederik; Martin-Laurent, Fabrice; Metwally, Ashraf; Dietz, Karl-Josef; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2005-12-01

    Molecular responses to cadmium (Cd) stress were studied in mycorrhizal and non-mycorrhizal Pisum sativum L. cv. Frisson inoculated with Glomus intraradices. Biomass decreases caused by the heavy metal were significantly less in mycorrhizal than in non-mycorrhizal plants. Real-time reverse transcriptase-polymerase chain reaction showed that genes implicated in pathways of Cd detoxification varied in response to mycorrhiza development or Cd application. Expression of a metallothionein-encoding gene increased strongly in roots of Cd-treated non-mycorrhizal plants. Genes encoding gamma-glutamylcysteine synthetase and glutathione (GSH) synthetase, responsible for the synthesis of the phytochelatin (PC) precursor GSH, were activated by Cd in mycorrhizal and non-mycorrhizal plants. Cd stress decreased accumulation of GSH/homoglutathione (hGSH) and increased thiol groups in pea roots, whether mycorrhizal or not, suggesting synthesis of PCs and/or homophytochelatins. An hGSH synthetase gene, involved in hGSH synthesis, did not respond to Cd alone but was activated by mycorrhizal development in the presence of Cd. Transcript levels of a glutathione reductase gene were only increased in non-mycorrhizal roots treated with Cd. Studies of three stress-related genes showed that a heat-shock protein gene was activated in mycorrhizal roots or by Cd and chitinase gene transcripts increased under Cd stress to a greater extent in mycorrhizal roots, whilst a chalcone isomerase gene was only up-regulated by Cd. Results indicate that although heavy metal chelation pathways contribute to Cd stress responses in pea, they may not make a major contribution to Cd tolerance strategies operating in the arbuscular mycorrhizal symbiosis.

  6. Efficacy of Vermicompost against fertilizers on Cicer and Pisum and on population diversity of N2 fixing bacteria.

    PubMed

    Sinha, Jayanta; Biswas, Chanchal Kumar; Ghosh, Arup; Saha, Amit

    2010-05-01

    Vermicompost is a very important biofertilizer produced through the artificial cultivation of worms i.e. Vermiculture. Vermicompost is enriched with all beneficial soil bacteria and also contain many of the essential plant nutrients like N, P, K and micronutrients. It increases soil aeration, texture and jilt. In this work, study is being carried out to find out the effect of different fertilizers such as DAF, FYM and Vermicompost on various morphological parameters and on the in vitro growth of bacterial colonies and its diversity in relation to two important leguminous plants such as Pisum sp. and Cicer sp. Results showed that plant grown in Vermicompost pretreated soil exhibited maximum increase in all morphological parameters such as root length, shoot length, number of root branches, number of stem branches, number of leaves, number of flowers, number of pods and number of root nodules in four months sampling in comparison to untreated, FYM treated and DAP treated soils. Further in Vermicompost pretreated soil, number of N2 fixing bacterial colony was maximum and showed highest diversity indices (1.6 and 0.99 and 2.0 and 0.99 for Cicer sp. and Pisum sp. respectively) than FYM, DAP and untreated control. Thus not only does the Vermicompost stimulate plant growth but also it increases the N2 fixing bacterial population in soil and also its diversity.

  7. Isoenzymes of superoxide dismutase in nodules of Phaseolus vulgaris L. , Pisum sativum L. , and Vigna unguiculata (L. ) Walp

    SciTech Connect

    Becana, M.; Paris, F.J.; Sandalio, L.M.; Del Rio, L.A. Unidad de Bioquimica Vegetal, Granada )

    1989-08-01

    The activity and isozymic composition of superoxide dismutase were determined in nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L.) Walp. A Mn-SOD was present in Rhizobium and two in Bradyrhizobium and bacteroids. Nodule mitochondria from all three legume species had a single Mn-SOD with similar relative mobility, whereas the cytosol contained several CuZn-SODs: two in Phaseolus and Pisum, and four in Vigna. In the cytoplasm of V. unguiculata nodules, a Fe-containing SOD was also present, with an electrophoretic mobility between those of CuZn- and Mn-SODs, and an estimated molecular weight of 57,000. Total SOD activity of the soluble fraction of host cells, expressed on a nodule fresh weight basis, exceeded markedly that of bacteroids. Likewise, specific SOD activities of free-living bacteria were superior or equal to those of their symbiotic forms. Soluble extracts of bacteria and bacteroids did not show peroxidase activity, but the nodule cell cytoplasm contained diverse peroxidase isozymes which were readily distinguishable from leghemoglobin components by electrophoresis. Data indicated that peroxidases and leghemoglobins did not significantly interfere with SOD localization on gels. Treatment with chloroform-ethanol scarcely affected the isozymic pattern of SODs and peroxidases, and had limited success in the removal of leghemoglobin.

  8. Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the open field during winter in Qingdao.

    USDA-ARS?s Scientific Manuscript database

    As a cool season crop, pea (Pisum sativum L.) can tolerate frost at the vegetative stage but has yield loss when freezing stress occurs at reproductive stage. Cold tolerance improvement of pea varieties is important for the stable yield and the expansion of winter pea planting area. Under the natura...

  9. Evaluation of expression stability of candidate references genes among green and yellow pea cultivars (Pisum sativum L.) subjected to abiotic and biotic stress

    USDA-ARS?s Scientific Manuscript database

    Dry pea (Pisum sativum) is grown as human and animal feed throughout the world. Large yield losses in pea due to biotic and abiotic stresses compel an improved understanding of mechanisms of stress tolerance and genetic determinants conditioning these tolerances. The availability of stably expressed...

  10. Complete Release of Axillary Buds from Apical Dominance in Intact, Light-Grown Seedlings of Pisum sativum L. following a Single Application of Cytokinin 1

    PubMed Central

    Pillay, Indiren; Railton, Ian D.

    1983-01-01

    Single applications of either 6-benzyladenine or zeatin to inhibited axillary buds of intact, light-grown seedlings of Pisum sativum L. cv Black-eyed Susan, resulted in the formation of rapidly elongating, leafy shoots. Similar treatment with kinetin or isopentenyladenine caused only limited but outgrowth which stopped 6 days after application. Images Fig. 2 PMID:16662939

  11. Kinetic features of gravicurvature of pea (Pisum sativum) and cress (Lepidium sativum) roots

    NASA Astrophysics Data System (ADS)

    Polishchuk, O. V.

    The upper sides of roots oriented horizontally grow more rapidly than the lower sides, causing the root ultimately to grow downward; this phenomenon is known as positive gravitropism. This ability is based on implicit mechanism which is being extensively investigated. Elaborate analysis of kinetic features of gravicurvature may complement the investigation. Pea and cress roots have positive gravitropism as roots of majority of higher plants. Mainly we investigated dependence of gravicurvature angle on time of gravistimulation. Two-day-old seedlings of cress (Lepidium sativum L. cv. P896) and four-day-old pea ones (Pisum sativum L. cv. Damir-2) were placed on 1% agar medium in Petri dishes and turned on angle of gravistimulation. Then they were photographed at the same position each hour of gravistimulation. Photographs were analyzed with the help of Image Tool software program. Both pea and cress roots showed two phases of gravitropic response during gravistimulation for 6 hours when the initial angle of gravistimulation was 135 degrees. Two peaks of the rate of bending were observed. In cress roots, the first peak was much lower and the distance between the two peaks was greater than in pea roots. Curves of gravitropic bending of cress roots grown in agar had one or two inflections while in the case of roots grown on filter paper curves had no inflections. These data are in agreement with the effect of the external medium on the gravitropic curvature of rice roots reported by Staves et al. (1997). Our results may reflect the fact that at least two systems that contribute to gravicurvature may exist in roots. These systems may be ligand-receptor complexes that may be formed with different kinetics in two different regions of the root. The most probable ligand is auxin and the regions appear to be central elongation zone (CEZ) and distal elongation zone (DEZ), that were reported to be centers of tropic bending in roots. Thus, dependence of rate of root bending on

  12. Stomatal Response and Leaf Injury of Pisum sativum L. with SO2 and O3 Exposures 12

    PubMed Central

    Olszyk, David M.; Tibbitts, Theodore W.

    1981-01-01

    Stomatal response during exposure to SO2 and O3 and subsequent leaf injury were examined in plants of Pisum sativum L. `Alsweet' grown in a peat-vermiculite medium in controlled environment chambers. Plants developing under moisture stress, induced by drying the medium to 50% of field capacity, exhibited greater stomatal closure during exposures and less than one-fourth the necrosis compared to plants developing in a medium maintained at field capacity. Plants under moisture stress had only a slightly more negative plant water potential (≃−4.0 bars) than at field capacity (≃−3.4 bars). Plants exposed to pollutants for 2 hours near the beginning or end of a 16-hour light period had greater stomatal closure during exposures and less leaf necrosis than plants exposed during the middle of the light period. Images PMID:16661711

  13. Micromonospora ureilytica sp. nov., Micromonospora noduli sp. nov. and Micromonospora vinacea sp. nov., isolated from Pisum sativum nodules.

    PubMed

    Carro, Lorena; Riesco, Raúl; Spröer, Cathrin; Trujillo, Martha E

    2016-09-01

    A diversity study on the presence of strains representing the genus Micromonospora in Pisum sativum nodules collected from Cañizal (Spain) has provided evidence of the high number of isolates that might represent novel species. In the present work, we have characterized three of these isolates: GUI23T, GUI43T and GUI63T. Phenotypic and genotypic analyses confirmed that all strains represent novel species of the genus Micromonospora with the following proposed names: Micromonospora ureilytica sp. nov., type strain GUI23T (=CECT 9022T=DSM 101692T), Micromonospora noduli sp. nov., type strain GUI43T (=CECT 9020T=DSM 101694T), and Micromonospora vinacea sp. nov., type strain GUI63T (=CECT 9019T=DSM 101695T).

  14. Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera).

    PubMed

    Richter, A; Jacobsen, H-J; de Kathen, A; de Lorenzo, G; Briviba, K; Hain, R; Ramsay, G; Kiesecker, H

    2006-11-01

    The pea (Pisum sativum L.) varieties Baroness (United Kingdome) and Baccara (France) were transformed via Agrobacterium tumefaciens-mediated gene transfer with pGPTV binary vectors containing the bar gene in combination with two different antifungal genes coding for polygalacturonase-inhibiting protein (PGIP) from raspberry (Rubus idaeus L.) driven by a double 35S promoter, or the stilbene synthase (Vst1) from grape (Vitis vinifera L.) driven by its own elicitor-inducible promoter. Transgenic lines were established and transgenes combined via conventional crossing. Resveratrol, produced by Vst1 transgenic plants, was detected using HPLC and the PGIP expression was determined in functional inhibition assays against fungal polygalacturonases. Stable inheritance of the antifungal genes in the transgenic plants was demonstrated.

  15. Callose deposition during gravitropism of Zea mays and Pisum sativum and its inhibition by 2-deoxy-D-glucose

    NASA Technical Reports Server (NTRS)

    Jaffe, M. J.; Leopold, A. C.

    1984-01-01

    In etiolated corn (Zea mays L.) and etiolated pea (Pisum sativum L.) seedlings, a gravitropic stimulation induces the deposition of callose. In the corn coleoptiles this occurs within 5 min of gravity stimulation, and prior to the beginning of curvature. Both gravitropic curvature and callose deposition reach their maxima by 12 h. Within the first 2 h more callose is deposited on the upper (concave) side, but after 2-3 h, this deposition pattern is reversed. An inhibitor of protein glycosylation, 2-deoxy-D-glucose (DDG), inhibits callose production and considerably retards gravitropic bending in both species of plants. Mannose can relieve the inhibition of gravitropic bending by DDG. The pea mutant "Ageotropum", which does not respond to gravity when etiolated, also fails to produce callose in response to a gravitic stimulus. These correlations indicate that callose deposition may be a biochemical component of gravitropism in plant shoots.

  16. Differential changes in size distribution of xyloglucan in the cell walls of gravitropically responding Pisum sativum epicotyls

    NASA Technical Reports Server (NTRS)

    Talbott, L. D.; Pickard, B. G.

    1994-01-01

    Growth-related change in the size distribution of hemicellulosic wall polymers during the gravitropic curvature response of intact pea (Pisum sativum L. cv Alaska) epicotyls was examined by gel-filtration chromatography. The gravitropic response was characterized by the appearance of curvature 20 to 30 min after horizontal placement, with 35 degrees of curvature attained by 80 min. Correlated with the onset of curvature, on the upper side of the epicotyl, there was a conspicuous transient increase in the abundance of relatively large hemicellulosic xyloglucan polymers, similar to increases previously found under conditions where diminished wall extensibility was expected. On the lower side there was a moderate, slower, and longer-term increase in abundance of small xyloglucan, similar to changes previously found in connection with auxin-stimulated growth responses. Both shifts occurred primarily in the epidermis. They appear to represent two coordinated physiological mechanisms contributing to differential growth.

  17. Differential changes in size distribution of xyloglucan in the cell walls of gravitropically responding Pisum sativum epicotyls.

    PubMed

    Talbott, L D; Pickard, B G

    1994-10-01

    Growth-related change in the size distribution of hemicellulosic wall polymers during the gravitropic curvature response of intact pea (Pisum sativum L. cv Alaska) epicotyls was examined by gel-filtration chromatography. The gravitropic response was characterized by the appearance of curvature 20 to 30 min after horizontal placement, with 35 degrees of curvature attained by 80 min. Correlated with the onset of curvature, on the upper side of the epicotyl, there was a conspicuous transient increase in the abundance of relatively large hemicellulosic xyloglucan polymers, similar to increases previously found under conditions where diminished wall extensibility was expected. On the lower side there was a moderate, slower, and longer-term increase in abundance of small xyloglucan, similar to changes previously found in connection with auxin-stimulated growth responses. Both shifts occurred primarily in the epidermis. They appear to represent two coordinated physiological mechanisms contributing to differential growth.

  18. Nucleotide sequence of a complementary DNA encoding pea cytosolic copper/zinc superoxide dismutase. [Pisum sativum L

    SciTech Connect

    White, D.A.; Zilinskas, B.A. )

    1991-08-01

    The authors now report the nucleotide sequence of the cytosolic Cu/Zn SOD cloned from a {lambda}gt11 cDNA library constructed from mRNA extracted from leaves of 7- to 10-d pea seedlings (Pisum sativum L.). The clone was isolated using a 22-base synthetic oligonucleotide complementary to the amino acid sequence CGIIGLQG. This sequence, found at the protein's carboxy terminus, is highly conserved among plant cytosolic Cu/Zn SODs but not chloroplastic Cu/Zn SODs. The 738-base pair sequence contains an open reading frame specifying 152 codons and a predicted M{sub r} of 18,024 D. The deduced amino acid sequence is highly homologous (79-82% identity) with the sequences of other known plant cytosolic Cu/Zn SODs but less highly conserved (63-65%) when compared with several chloroplastic Cu/Zn SODs including pea (10).

  19. Hypolipidemic Effect of the Autoclaved Extract Prepared from Pea (Pisum sativum L.) Pods In Vivo and In Vitro.

    PubMed

    Inagaki, Kae; Nishimura, Yuuki; Iwata, Emiko; Manabe, Sachinobu; Goto, Masahiro; Ogura, Yoshio; Hotta, Hisako

    2016-01-01

    By autoclaving, we obtained a polyphenol and dietary fiber from pea (Pisum sativum L.) pods in parallel without acid or alkali treatment or organic solvent extraction. Rats fed a high-sucrose (HS) diet containing 3% autoclaved extract (AE) for 4 wk exhibited significantly lower serum triglyceride and total cholesterol levels than rats fed a HS diet. AE and soluble dietary fiber (SDF) from AE exhibited pancreatic lipase inhibitory activity at 13.3 mg/mL in vitro. AE and insoluble dietary fiber (IDF) from AE adsorbed cholesterol. In total, 30% and 10% of a cholesterol micelle were significantly adsorbed by 2,000 mg of AE and 100 mg of IDF from AE in 7 mL, respectively. The amount of bifidobacteria in the cecum of the AE group was significantly increased compared with that in the HS group. These results suggest that AE has hypolipidemic, bifidogenic potential.

  20. Dissipation of pendimethalin in the soil of field pea (Pisum sativum L.) and detection of terminal residues in plants.

    PubMed

    Sondhia, Shobha

    2013-01-01

    Dissipation of pendimethalin in the soil of field peas (Pisum sativum L.) at 0 to 110 days, and terminal residues in green and mature pea were studied under field conditions. Pendimethalin was applied as pre-emergence herbicide at 750, to 185 g a.i. ha(-1) in winter, in field peas. Dissipation of pendimethalin in the soil at 0 to 110 days followed first-order kinetics showing a half-life of 19.83 days averaged over all doses. Low pendimethalin residues were found in mature pea grain (0.004, 0.003, <0.001 μg g(-1)), and straw (0.007, 0.002, <0.001 μg g(-1)) at 750, 350 and 185 g a.i. ha(-1) treatments, respectively. The study indicated that residues of pendimethalin in green and mature pea were within the prescribed MRL limits.

  1. Differential changes in size distribution of xyloglucan in the cell walls of gravitropically responding Pisum sativum epicotyls

    NASA Technical Reports Server (NTRS)

    Talbott, L. D.; Pickard, B. G.

    1994-01-01

    Growth-related change in the size distribution of hemicellulosic wall polymers during the gravitropic curvature response of intact pea (Pisum sativum L. cv Alaska) epicotyls was examined by gel-filtration chromatography. The gravitropic response was characterized by the appearance of curvature 20 to 30 min after horizontal placement, with 35 degrees of curvature attained by 80 min. Correlated with the onset of curvature, on the upper side of the epicotyl, there was a conspicuous transient increase in the abundance of relatively large hemicellulosic xyloglucan polymers, similar to increases previously found under conditions where diminished wall extensibility was expected. On the lower side there was a moderate, slower, and longer-term increase in abundance of small xyloglucan, similar to changes previously found in connection with auxin-stimulated growth responses. Both shifts occurred primarily in the epidermis. They appear to represent two coordinated physiological mechanisms contributing to differential growth.

  2. The effect of propionic acid and valeric acid on the cell cycle in root meristems of Pisum sativum

    SciTech Connect

    Tramontano, W.A.; Yang, Shauyu; Delillo, A.R. )

    1990-01-01

    Propionic acid and valeric acid at 1mM reduced the mitotic index of root meristem cells of Pisum sativum to < 1% after 12 hr in aerated White's medium. This effect varied with different acid concentrations. After a 12 hr exposure to either acid, seedlings transferred to fresh medium without either acid, resumed their normal mitotic index after 12 hr, with a burst of mitosis 8 hr post-transfer. Exposure of root meristem cells to either acid also inhibited ({sup 3}H)-TdR incorporation. Neither acid significantly altered the distribution of meristematic cells in G1 and G2 after 12 hr. The incorporation of ({sup 3}H) - uridine was also unaltered by the addition of either acid. This information suggests that propionic acid and valeric acid, limit progression through the cell cycle by inhibiting DNA synthesis and arresting cells in G1 and G2. These results were consistent with previous data which utilized butyric acid.

  3. Callose deposition during gravitropism of Zea mays and Pisum sativum and its inhibition by 2-deoxy-D-glucose

    NASA Technical Reports Server (NTRS)

    Jaffe, M. J.; Leopold, A. C.

    1984-01-01

    In etiolated corn (Zea mays L.) and etiolated pea (Pisum sativum L.) seedlings, a gravitropic stimulation induces the deposition of callose. In the corn coleoptiles this occurs within 5 min of gravity stimulation, and prior to the beginning of curvature. Both gravitropic curvature and callose deposition reach their maxima by 12 h. Within the first 2 h more callose is deposited on the upper (concave) side, but after 2-3 h, this deposition pattern is reversed. An inhibitor of protein glycosylation, 2-deoxy-D-glucose (DDG), inhibits callose production and considerably retards gravitropic bending in both species of plants. Mannose can relieve the inhibition of gravitropic bending by DDG. The pea mutant "Ageotropum", which does not respond to gravity when etiolated, also fails to produce callose in response to a gravitic stimulus. These correlations indicate that callose deposition may be a biochemical component of gravitropism in plant shoots.

  4. The conformational stability and biophysical properties of the eukaryotic thioredoxins of Pisum sativum are not family-conserved.

    PubMed

    Aguado-Llera, David; Martínez-Gómez, Ana Isabel; Prieto, Jesús; Marenchino, Marco; Traverso, José Angel; Gómez, Javier; Chueca, Ana; Neira, José L

    2011-02-22

    Thioredoxins (TRXs) are ubiquitous proteins involved in redox processes. About forty genes encode TRX or TRX-related proteins in plants, grouped in different families according to their subcellular localization. For instance, the h-type TRXs are located in cytoplasm or mitochondria, whereas f-type TRXs have a plastidial origin, although both types of proteins have an eukaryotic origin as opposed to other TRXs. Herein, we study the conformational and the biophysical features of TRXh1, TRXh2 and TRXf from Pisum sativum. The modelled structures of the three proteins show the well-known TRX fold. While sharing similar pH-denaturations features, the chemical and thermal stabilities are different, being PsTRXh1 (Pisum sativum thioredoxin h1) the most stable isoform; moreover, the three proteins follow a three-state denaturation model, during the chemical-denaturations. These differences in the thermal- and chemical-denaturations result from changes, in a broad sense, of the several ASAs (accessible surface areas) of the proteins. Thus, although a strong relationship can be found between the primary amino acid sequence and the structure among TRXs, that between the residue sequence and the conformational stability and biophysical properties is not. We discuss how these differences in the biophysical properties of TRXs determine their unique functions in pea, and we show how residues involved in the biophysical features described (pH-titrations, dimerizations and chemical-denaturations) belong to regions involved in interaction with other proteins. Our results suggest that the sequence demands of protein-protein function are relatively rigid, with different protein-binding pockets (some in common) for each of the three proteins, but the demands of structure and conformational stability per se (as long as there is a maintained core), are less so.

  5. Cell Wall Pectin and its Methyl-esterification in Transition Zone Determine Al Resistance in Cultivars of Pea (Pisum sativum)

    PubMed Central

    Li, Xuewen; Li, Yalin; Qu, Mei; Xiao, Hongdong; Feng, Yingming; Liu, Jiayou; Wu, Lishu; Yu, Min

    2016-01-01

    The initial response of plants to aluminum (Al) is the inhibition of root elongation, while the transition zone is the most Al sensitive zone in the root apex, which may sense the presence of Al and regulate the responses of root to Al toxicity. In the present study, the effect of Al treatment (30 μM, 24 h) on root growth, Al accumulation, and properties of cell wall of two pea (Pisum sativum L.) cultivars, cv Onward (Al-resistant) and cv Sima (Al-sensitive), were studied to disclose whether the response of root transition zone to Al toxicity determines Al resistance in pea cultivars. The lower relative root elongation (RRE) and higher Al content were founded in cv Sima compared with cv Onward, which were related to Al-induced the increase of pectin in root segments of both cultivars. The increase of pectin is more prominent in Al-sensitive cultivar than in Al-resistant cultivar. Aluminum toxicity also induced the increase of pectin methylesterases (PME), which is 2.2 times in root transition zone in Al-sensitive cv Sima to that of Al resistant cv Onward, thus led to higher demethylesterified pectin content in root transition zone of Al-sensitive cv Sima. The higher demethylesterified pectin content in root transition zone resulted in more Al accumulation in the cell wall and cytosol in Al-sensitive cv Sima. Our results provide evidence that the increase of pectin content and PME activity under Al toxicity cooperates to determine Al sensitivity in root transition zone that confers Al resistance in cultivars of pea (Pisum sativum). PMID:26870060

  6. Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients.

    PubMed

    Tiwari, K K; Dwivedi, S; Singh, N K; Rai, U N; Tripathi, R D

    2009-05-01

    Due to widespread industrial use, chromium (Cr) is considered a hazardous environmental pollutant. It is known to inhibit plant growth and development. The present study provides the evidence of the phytotoxicity of this metal on the pea (Pisum sativum L. cv Azad) plants. The plants of pea (Pisum sativum L.) were grown in refined sand under different concentrations i.e. 0.05, 0.1, 0.2, 0.3 and 0.4 mM of Cr (VI) in order to study the effect on growth and yield, photosynthetic pigments, relative water content, non-reducing sugar and protein with activity of certain enzymes like catalase, peroxidase, starch phosphorylase and ribonuclease. The analysis of the results showed that photosynthetic pigments (68.68%), relative water contents (62.77%), non-reducing sugar (66.66%) and protein (81.57%) were decrease along with reduction in plant height (52.69%) and leaf area (50.81%) of the pea plants. However, in response to various concentration of Cr exposed plants showed significant induction of reducing and total sugars with enzymes like catalase, starch phosphorylase and ribonuclease. The translocation of Cr in various part of pea plant have been found in order of root> stem> leaves>seeds which ranged between 34.8 to 217.3 mg g(-1) d.wt. (dry weight) in roots, 6.5 to 173.13 mg g(-1) d.wt. in shoot, 4.2 to 74.43 mg g(-1) d.wt. in leaves and 0.94 to 8.64 mg g(-1) d.wt. in seeds, that is also reflected by the transfer factor of Cr from refined sand to tested species.

  7. Analysis of a diverse global Pisum sp. collection and comparison to a Chinese local P. sativum collection with microsatellite markers.

    PubMed

    Zong, Xuxiao; Redden, Robert J; Liu, Qingchang; Wang, Shumin; Guan, Jianping; Liu, Jin; Xu, Yanhong; Liu, Xiuju; Gu, Jing; Yan, Long; Ades, Peter; Ford, Rebecca

    2009-01-01

    Twenty-one informative microsatellite loci were used to assess and compare the genetic diversity among Pisum genotypes sourced from within and outside China. The Chinese germplasm comprised 1243 P. sativum genotypes from 28 provinces and this was compared to 774 P. sativum genotypes that represented a globally diverse germplasm collection, as well as 103 genotypes from related Pisum species. The Chinese P. sativum germplasm was found to contain genotypes genetically distinct from the global gene pool sourced outside China. The Chinese spring type genotypes were separate from the global gene pool and from the other main Chinese gene pool of winter types. The distinct Chinese spring gene pool comprised genotypes from Inner Mongolia and Sha'anxi provinces, with those from Sha'anxi showing the greatest diversity. The other main gene pool within China included both spring types from other northern provinces and winter types from central and southern China, plus some accessions from Inner Mongolia and Sha'anxi. A core collection of Chinese landraces chosen to represent molecular diversity was compared both to the wider Chinese collection and to a geographically diverse core collection of Chinese landraces. The average gene diversity and allelic richness per locus of both the micro-satellite based core and the wider collection were similar, and greater than the geographically diverse core. The genetic diversity of P. sativum within China appears to be quite different to that detected in the global gene pool, including the presence of several rare alleles, and may be a useful source of allelic variation for both major gene and quantitative traits.

  8. Cell Wall Pectin and its Methyl-esterification in Transition Zone Determine Al Resistance in Cultivars of Pea (Pisum sativum).

    PubMed

    Li, Xuewen; Li, Yalin; Qu, Mei; Xiao, Hongdong; Feng, Yingming; Liu, Jiayou; Wu, Lishu; Yu, Min

    2016-01-01

    The initial response of plants to aluminum (Al) is the inhibition of root elongation, while the transition zone is the most Al sensitive zone in the root apex, which may sense the presence of Al and regulate the responses of root to Al toxicity. In the present study, the effect of Al treatment (30 μM, 24 h) on root growth, Al accumulation, and properties of cell wall of two pea (Pisum sativum L.) cultivars, cv Onward (Al-resistant) and cv Sima (Al-sensitive), were studied to disclose whether the response of root transition zone to Al toxicity determines Al resistance in pea cultivars. The lower relative root elongation (RRE) and higher Al content were founded in cv Sima compared with cv Onward, which were related to Al-induced the increase of pectin in root segments of both cultivars. The increase of pectin is more prominent in Al-sensitive cultivar than in Al-resistant cultivar. Aluminum toxicity also induced the increase of pectin methylesterases (PME), which is 2.2 times in root transition zone in Al-sensitive cv Sima to that of Al resistant cv Onward, thus led to higher demethylesterified pectin content in root transition zone of Al-sensitive cv Sima. The higher demethylesterified pectin content in root transition zone resulted in more Al accumulation in the cell wall and cytosol in Al-sensitive cv Sima. Our results provide evidence that the increase of pectin content and PME activity under Al toxicity cooperates to determine Al sensitivity in root transition zone that confers Al resistance in cultivars of pea (Pisum sativum).

  9. The Conformational Stability and Biophysical Properties of the Eukaryotic Thioredoxins of Pisum Sativum Are Not Family-Conserved

    PubMed Central

    Aguado-Llera, David; Martínez-Gómez, Ana Isabel; Prieto, Jesús; Marenchino, Marco; Traverso, José Angel; Gómez, Javier; Chueca, Ana; Neira, José L.

    2011-01-01

    Thioredoxins (TRXs) are ubiquitous proteins involved in redox processes. About forty genes encode TRX or TRX-related proteins in plants, grouped in different families according to their subcellular localization. For instance, the h-type TRXs are located in cytoplasm or mitochondria, whereas f-type TRXs have a plastidial origin, although both types of proteins have an eukaryotic origin as opposed to other TRXs. Herein, we study the conformational and the biophysical features of TRXh1, TRXh2 and TRXf from Pisum sativum. The modelled structures of the three proteins show the well-known TRX fold. While sharing similar pH-denaturations features, the chemical and thermal stabilities are different, being PsTRXh1 (Pisum sativum thioredoxin h1) the most stable isoform; moreover, the three proteins follow a three-state denaturation model, during the chemical-denaturations. These differences in the thermal- and chemical-denaturations result from changes, in a broad sense, of the several ASAs (accessible surface areas) of the proteins. Thus, although a strong relationship can be found between the primary amino acid sequence and the structure among TRXs, that between the residue sequence and the conformational stability and biophysical properties is not. We discuss how these differences in the biophysical properties of TRXs determine their unique functions in pea, and we show how residues involved in the biophysical features described (pH-titrations, dimerizations and chemical-denaturations) belong to regions involved in interaction with other proteins. Our results suggest that the sequence demands of protein-protein function are relatively rigid, with different protein-binding pockets (some in common) for each of the three proteins, but the demands of structure and conformational stability per se (as long as there is a maintained core), are less so. PMID:21364950

  10. Amino acid fingerprint in the rhizosphere of Pisum sativum in response to water stress

    NASA Astrophysics Data System (ADS)

    Bobille, Hélène; Fustec, Joëlle; Robins, Richard J.; Cukier, Caroline; Limami, Anis M.

    2017-04-01

    In cropping systems, legumes release substantial amounts of nitrogen (N) into the soil, via rhizodeposition, and constitute a sustainable source of N, instead of synthetic N fertilisers (Fustec et al. 2010). More frequent or/and intense droughts and floodings, due to climate change and intensification of agriculture, may affect N rhizodeposition (Preece & Peñuelas 2016). However, the effects of water stress on this process are poorly documented. A part of N derived from root exudates, mainly in amino acids (AAs) form, is suspected shape and regulate rhizosphere microbial community, thus playing a potential role in maintaining plant health in case of abiotic stress (Moe 2013). We hypothesized that root AA exudation could change significantly, according to water availability, and would help to understand N metabolism changes in plant-rhizosphere interactions. Because studying exudation from plant grown in unsterilized soil is challenging (Oburger et al. 2013), we have measured the rhizosphere AA fingerprint (RAAF), as the result of interactions between AA exudation and rhizospheric environment. In addition, plants were stem-labeled (cotton-wick) with 15N-urea for 72 h to provide direct evidence of a link between root AA and exudation in the soil. The RAAF was measured in Pisum sativum rhizosphere, under either a water deficit or a water excess for 72 h. Water deficit decreases biomass accumulation in shoots but not in roots. Then, water deficit had no significant effect on total AAs released into the rhizosphere but, it significantly modified the composition of RAAF, with a preferential increase of proline, alanine and glutamate and a rise in isotopic enrichment of AAs derived from oxaloacetate in tricarboxylic acidic cycle (asparagine, aspartate, threonine and isoleucine). These results support the idea that, under the early stages of water deficit, recently assimilated N is rapidly translocated to the roots, and part of it is exudated in AAs. Most of the exudated

  11. Effects of Arsenite, Sulfite, and Sulfate on Photosynthetic Carbon Metabolism in Isolated Pea (Pisum sativum L., cv Little Marvel) Chloroplasts 1

    PubMed Central

    Marques, Ivano A.; Anderson, Louise E.

    1986-01-01

    Photosynthetic CO2-fixation in isolated pea (Pisum sativum L., cv Little Marvel) chloroplasts during induction is markedly inhibited by 0.4 millimolar sulfite. Sulfate at the same concentration has almost no effect. The 14CO2-fixation pattern indicates that the primary effect of sulfite is inhibition of the reaction catalyzed by ribulose bisphosphate carboxylase and a stimulation of export of intermediates out of the chloroplasts. Inhibition of light modulation of stromal enzyme activity does not appear to account for the toxicity of SO2 in this Pisum variety. Arsenite at 0.2 millimolar concentrations inhibits light activation and inhibits photosynthetic CO2 fixation. The 14CO2-fixation pattern indicates that the primary effect of arsenite is inhibition of light activation of reductive pentose phosphate pathway enzyme activity. PMID:16665056

  12. GyDB mobilomics

    PubMed Central

    Muñoz-Pomer, Alfonso; Domínguez-Escribá, Laura; Covelli, Laura; Bernad, Lucía; Ramasamy, Sukanya; Futami, Ricardo; Sempere, Jose M; Moya, Andrés; Llorens, Carlos

    2011-01-01

    The Gypsy Database concerning Mobile Genetic Elements (release 2.0) is a wiki-style project devoted to the phylogenetic classification of LTR retroelements and their viral and host gene relatives characterized from distinct organisms. Furthermore, GyDB 2.0 is concerned with studying mobile elements within genomes. Therefore, an in-progress repository was created for databases with annotations of mobile genetic elements from particular genomes. This repository is called Mobilomics and the first uploaded database contains 549 LTR retroelements and related transposases which have been annotated from the genome of the Pea aphid Acyrthosiphon pisum. Mobilomics is accessible from the GyDB 2.0 project using the URL: http://gydb.org/index.php/Mobilomics. PMID:22016855

  13. Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars.

    PubMed

    Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lyon, David; Geilfus, Christoph-Martin; Lüthje, Sabine

    2016-05-17

    Iron deficiency (-Fe) is one of the major problems in crop production. Dicots, like pea (Pisum sativum L.), are Strategy I plants, which induce a group of specific enzymes such as Fe(III)-chelate reductase (FRO), Fe responsive transporter (IRT) and H(+)-ATPase (HA) at the root plasma membrane under -Fe. Different species and cultivars have been shown to react diversely to -Fe. Furthermore, different kinds of experimental set-ups for -Fe have to be distinguished: i) short-term vs. long-term, ii) constant vs. acute alteration and iii) buffered vs. unbuffered systems. The presented work compares the effects of constant long-term -Fe in an unbuffered system on roots of four different pea cultivars in a timely manner (12, 19 and 25days). To differentiate the effects of -Fe and plant development, control plants (+Fe) were analyzed in comparison to -Fe plants. Besides physiological measurements, an integrative study was conducted using a comprehensive proteome analysis. Proteins, related to stress adaptation (e.g. HSP), reactive oxygen species related proteins and proteins of the mitochondrial electron transport were identified to be changed in their abundance. Regulations and possible functions of identified proteins are discussed. Pea (Pisum sativum L.) belongs to the legume family (Fabaceae) and is an important crop plant due to high Fe, starch and protein contents. According to FAOSTAT data (September 2015), world production of the garden pea quadrupled from 1970 to 2012. Since the initial studies by Gregor Mendel, the garden pea became the most-characterized legume and has been used in numerous investigations in plant biochemistry and physiology, but is not well represented in the "omics"-related fields. A major limitation in pea production is the Fe availability from soils. Adaption mechanisms to Fe deficiency vary between species, and even cultivars have been shown to react diversely. A label-free proteomic approach, in combination with physiological measurements

  14. Genomic Tools in Pea Breeding Programs: Status and Perspectives

    PubMed Central

    Tayeh, Nadim; Aubert, Grégoire; Pilet-Nayel, Marie-Laure; Lejeune-Hénaut, Isabelle; Warkentin, Thomas D.; Burstin, Judith

    2015-01-01

    Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22–25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome. PMID:26640470

  15. Rates of sugar uptake by guard cell protoplasts of pisum sativum L. Related To the solute requirement for stomatal opening

    PubMed

    Ritte; Rosenfeld; Rohrig; Raschke

    1999-10-01

    We wished to determine whether the capacity of the sugar uptake mechanisms of guard cells of the Argenteum mutant of pea (Pisum sativum L.) sufficed to support a concurrent stomatal opening movement. Sugar uptake by guard cell protoplasts was determined by silicone-oil-filtering centrifugation. The protoplasts took up [(14)C]glucose, [(14)C]fructose, and [(14)C]sucrose (Suc), apparently in symport with protons. Mannose, galactose, and fructose competed with Glc for transport by a presumed hexose carrier. The uptake of Glc saturated with a K(m) of 0.12 mM and a V(max) of 19 fmol cell(-1) h(-1). At external concentrations <1 mM, the uptake of Suc was slower than that of Glc. It exhibited a saturating component with a K(m) varying between 0.25 and 0.8 mM and a V(max) between 1 and 10 fmol cell(-1) h(-1), and at external concentrations >1 mM, a non-saturating component. At apoplastic sugar concentrations below 4 mM, sugar import was estimated to be mainly in the form of hexoses and too slow to support a simultaneous stomatal opening movement. If, however, during times of high photosynthesis and transpiration, the apoplastic Suc concentration rose and entered the range of non-saturating import, absorbed Suc could replace potassium malate as the osmoticum for the maintenance of stomatal opening.

  16. Foliar Application of Plant Growth-Promoting Rhizobacteria Increases Antifungal Compounds in Pea (Pisum sativum) Against Erysiphe pisi.

    PubMed

    Bahadur, A; Singh, U P; Sarma, B K; Singh, D P; Singh, K P; Singh, A

    2007-09-01

    Systemic effect of two plant growth-promoting rhizobacterial (PGPR) strains,viz., Pseudomonas fluorescens (Pf4) and P. aeruginosa (Pag), was evaluated on pea (Pisum sativum) against the powdery mildew pathogen Erysiphe pisi. Foliar spray of the two PGPR strains was done on specific nodal leaves of pea and conidial germination of E. pisi was observed on other nodal leaves,distal to the treated ones. Conidial germination was reduced on distant leaves and at the same time,specific as well as total phenolic compounds increased in the leaves distal to those applied with PGPR strains,thereby indicating a positive correlation. The strains induced accumulation of phenolic compounds in pea leaves and the amount increased when such leaves were get inoculated with E. pisi conidia. Between the two strains, Pag was found to be more effective than Pf4 as its effect was more persistent in pea leaves. Foliar application of PGPR strains for the control of powdery mildew of pea is demonstrated in vitro while correlating it with the increased accumulation of plant phenolics.

  17. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum).

    PubMed

    Tokala, Ranjeet K; Strap, Janice L; Jung, Carina M; Crawford, Don L; Salove, Michelle Hamby; Deobald, Lee A; Bailey, J Franklin; Morra, M J

    2002-05-01

    A previously undescribed plant-microbe interaction between a root-colonizing Streptomyces species, S. lydicus WYEC108, and the legume Pisum sativum is described. The interaction is potentially of great importance to the health and growth in nature of this nodulating legume. The root-colonizing soil actinomycete S. lydicus WYEC108 influences pea root nodulation by increasing root nodulation frequency, possibly at the level of infection by Rhizobium spp. S. lydicus also colonizes and then sporulates within the surface cell layers of the nodules. Colonization leads to an increase in the average size of the nodules that form and improves the vigor of bacteroids within the nodules by enhancing nodular assimilation of iron and possibly other soil nutrients. Bacteroid accumulation of the carbon storage polymer, poly-beta-hydroxybutyrate, is reduced in colonized nodules. Root nodules of peas taken from agricultural fields in the Palouse hills of northern Idaho were also found to be colonized by actinomycete hyphae. We hypothesize that root and nodule colonization is one of several mechanisms by which Streptomyces acts as a naturally occurring plant growth-promoting bacterium in pea and possibly other leguminous plants.

  18. Symbiotic dinitrogen fixation as affected by short-term application of nitrate to nodulated Pisum sativum L.

    PubMed

    Skrdleta, V; Gaudinová, A; Nĕmcová, M; Hyndráková, A

    1980-01-01

    Effect of nitrate on the nitrogenase (C2H2-reduction) activity, growth of nodule tissue accumulation of nitrate and nitrate reductase activity in 4-weeks-old nodulated peas (Pisum sativum L.) was investigated. A relatively slow decrease of the total nitrogenase activity (mumol C2H4 per root per h), as compared with plants cultivated without nitrate, was due to both retardation of further growth of the nodule tissue and to a decrease of their specific nitrogenase activity (mumol C2H4 per gf.wt. per h). However, an absolute and pronounced decrease of both nitrogenase activities occurred only 4 or 7 d after the application of nitrate. The addition of nitrate led to its rapid accumulation in the nodule and leaf tissue with a simultaneous induction of the nitrate reductase activity. The nitrogenase activity was not completely inhibited even after a 7-d cultivation with 280 m NO3- -N in the nutrient medium and after accumulation of up to 180 ppm NO3- -Nf.wt. in the nodule tissue. The results obtained indicate that the "photosynthate deprivation" reflects competition between assimilation of nitrate and fixation of dinitrogen.

  19. [Research progress on the cloning of Mendel's gene in pea (Pisum sativum L.) and its application in genetics teaching].

    PubMed

    He, Feng-Hua; Zhu, Bi-Yan; Gao, Feng; Li, Shao-Shan; Li, Niang-Hui

    2013-07-01

    One hundred and fifty years ago, Gregor Mendel investigated the segregation of seven traits in pea (Pisum sativum) and established the law of segregation and the law of independent assortment in genetics. After the two laws of genetics were rediscovered in 1900, the seven traits have been extensively investigated in the fields of plant physiology and biochemistry as well as in the cell and molecular levels. Recently, with the development of molecular technology in genetics, four genes for seed shape (R), stem length (Le), cotyledon colour (I), and flower colour (A) have been cloned and sequenced; and another three genes for immature pod colour (Gp), fasciation (Fa) and pod form (V) have been located in the linkage groups, respectively. The identification and cloning of the four Mendel's genes will help deeply understand the basic concept of gene in many respects: like the diversity of gene function, the different origins for gene mutation in molecular level, and the molecular nature of a dominant gene or a recessive gene. In teaching of genetics, the introduction of most recent research advancements of cloning of Mendel's genes to the students and the interpretation of the Mendel's laws in molecular level will help students promote their learning interests in genetics and help students grasp the whole content from classical genetics to molecular genetics and the developmental direction of this subject.

  20. A proposed interplay between peroxidase, amine oxidase and lipoxygenase in the wounding-induced oxidative burst in Pisum sativum seedlings.

    PubMed

    Roach, Thomas; Colville, Louise; Beckett, Richard P; Minibayeva, Farida V; Havaux, Michel; Kranner, Ilse

    2015-04-01

    Plant surfaces form the barrier between a plant and its environment. Upon damage, the wound healing process begins immediately and is accompanied by a rapid production of extracellular reactive oxygen species (ROS), essential in deterring pathogens, signalling responses and cell wall restructuring. Although many enzymes produce extracellular ROS, it is unclear if ROS-producing enzymes act synergistically. We characterised the oxidative burst of superoxide (O2(·-)) and hydrogen peroxide (H2O2) that follows wounding in pea (Pisum sativum L.) seedlings. Rates of ROS production were manipulated by exogenous application of enzyme substrates and inhibitors. The results indicate significant roles for di-amine oxidases (DAO) and peroxidases (Prx) rather than NADPH oxidase. The burst of O2(·-) was strongly dependent on the presence of H2O2 produced by DAO. Potential substrates released from wounded seedlings included linoleic acid that, upon exogenous application, strongly stimulated catalase-sensitive O2(·-) production. Moreover, a 65kD plasma membrane (PM) guaiacol Prx was found in the secretome of wounded seedlings and showed dependence on linoleic acid for O2(·-) production. Lipoxygenases are suggested to modulate O2(·-) production by consuming polyunsaturated fatty acids in the apoplast. Overall, a O2(·-)-producing mechanism involving H2O2-derived from DAO, linoleic acid and a PM-associated Prx is proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Different patterns of vein loading of exogenous ( sup 14 C)sucrose in leaves of pisum sativum and coleus blumei

    SciTech Connect

    Turgeon, R.; Wimmers, L.E. )

    1988-05-01

    Vein loading of exogenous ({sup 14}C)sucrose was studied using short uptake and wash periods to distinguish between direct loading into veins and loading via mesophyll tissue. Mature leaf tissue of Pisum sativum L. cv Little Marvel, or Coleus blumei Benth. cv Candidum, was abraded and leaf discs were floated on ({sup 14}C)sucrose solution for 1 or 2 minutes. Discs were then washed for 1 to 30 min either at room temperature or in the cold and were frozen, lyophilized, and autoradiographed. In P. sativum, veins were clearly labeled after 1 minute uptake and 1 minute wash periods. Autoradiographic images did not change appreciably with longer times of uptake or wash. Vein loading was inhibited by p-chloromercuribenzenesulfonic acid. These results indicate that uptake of exogenous sucrose occurs directly into the veins in this species. When C. blumei leaf discs were floated on ({sup 14}C)sucrose for 2 minutes and washed in the cold, the mesophyll was labeled but little, if any, minor vein loading occurred. When discs were labeled for 2 minutes and washed at room temperature, label was transferred from the mesophyll to the veins within minutes. These results indicate that there may be different patterns of phloem loading of photosynthetically derived sucrose in these two species.

  2. Root and nodule growth in Pisum sativum L. in relation to photosynthesis: analysis using 13C-labelling.

    PubMed

    Voisin, A S; Salon, C; Jeudy, C; Warembourg, F R

    2003-10-01

    The effect of the nitrogen source (gaseous nitrogen, N2, or nitrate ions, NO3-) on the use of carbon (C) for root and nodule growth of pea (Pisum sativum L.) was investigated using 13C-labelling of assimilated CO2 at various stages of growth. Nitrate supply and growing conditions (sowing dates, air CO2 concentration) were varied to alter photosynthetic rates. Nodules are the sink with the highest demand for C in both the vegetative and flowering stages, growing at the expense of shoot and root in the vegetative stage, but only at the expense of roots at flowering. Until flowering, the addition of C into root and nodule biomass was linearly related to pre-existing biomass, thus determining net sink strengths which decreased with root and nodule age. Nodule growth patterns did not depend on the N source, whereas root growth was increased by nitrate when nodule biomass was low. At seed filling, the increase in C of biomass of the root system was no longer related to pre-existing biomass and C was preferentially diverted to roots of plants assimilating nitrate, or to nodules for plants fixing N2.

  3. The loss of carbon-20 in C19-gibberellin biosynthesis in a cell-free system from Pisum sativum L.

    PubMed

    Kamiya, Y; Takahashi, N; Graebe, J E

    1986-12-01

    The fate of the carbon-20 atom in gibberellin (GA) biosynthesis was studied in a cell-free system from Pisum sativum. This carbon atom is lost at the aldehyde stage of oxidation when C20-GAs are converted to C19-GAs. Gibberellin A12 labeled with (14)C at C-20 was prepared from [3'-(14)C]mevalonic acid with a cell-free system from Cucurbita maxima and incubated with the pea system. Analysis of the gas and aqueous phases showed that (14)CO2 was formed at the same rate and in nearly equivalent amounts as (14)C-labeled C19-GAs whereas [(14)C]formic acid and [(14)C]formaldehyde were not detectable. The possibility that C-20 had been lost as formic acid which had then been converted to CO2 was investigated by control incubations with [(14)C]formic acid. The rate of release of (14)CO2 from [(14)C]formic acid was only one fiftieth of the rate of (14)CO2 release from [(14)C]GA12 as the substrate. We conclude that in the formation of C19-GAs from C20-GAs, the C-20 is removed directly as CO2.

  4. Net Photosynthesis, Electron Transport Capacity, and Ultrastructure of Pisum sativum L. Exposed to Ultraviolet-B Radiation 1

    PubMed Central

    Brandle, James R.; Campbell, William F.; Sisson, William B.; Caldwell, Martyn M.

    1977-01-01

    Pisum sativum L. was exposed to ultraviolet-B (UV-B) radiation (280-315 nm) in greenhouse and controlled environment chambers to examine the effect of this radiation on photosynthetic processes. Net photosynthetic rates of intact leaves were reduced by UV-B irradiation. Stable leaf diffusion resistances indicated that the impairment of photosynthesis did not involve the simple limitation of CO2 diffusion into the leaf. Dark respiration rates were increased by previous exposure to this radiation. Electron transport capacity as indicated by methylviologen reduction was also sensitive to UV-B irradiation. The ability of ascorbate-reduced 2,6-dichlorophenolindophenol to restore much of the electron transport capacity of the UV-B-irradiated plant material suggested that inhibition by this radiation was more closely associated with photosystem II than with photosystem I. Electron micrographs indicated structural damage to chloroplasts as well as other organelles. Plant tissue irradiated for only 15 minutes exhibited dilation of thylakoid membranes of the chloroplast in some cells. Some reduction in Hill reaction activity was also evidenced in these plant materials which had been irradiated for periods as short as 15 minutes. Images PMID:16660029

  5. Differential Gene Expression in the Meristem and during Early Fruit Growth of Pisum sativum L. Identifies Potential Targets for Breeding

    PubMed Central

    Smitha Ninan, Annu; Shah, Anish; Song, Jiancheng; Jameson, Paula E.

    2017-01-01

    For successful molecular breeding it is important to identify targets to the gene family level, and in the specific species of interest, in this case Pisum sativum L. The cytokinins have been identified as a key breeding target due to their influence on plant architecture, and on seed size and sink activity. We focused on the cytokinin biosynthetic gene family (the IPTs) and the gene family key to the destruction of cytokinins (the CKXs), as well as other gene families potentially affected by changing cytokinin levels. These included key meristem genes (WUS and BAM1) and the transporter gene families, sucrose transporters (SUTs) and amino acid permeases (AAPs). We used reverse transcription quantitative PCR (RT-qPCR) to monitor gene expression in the vegetative meristem and in pre- and post-fertilisation young pea fruits. PsWUS expression was specific to the shoot apical meristem while PsBAM1 was highly expressed in the shoot apical meristem (SAM) but was also expressed at a low level in the young fruit. Differential expression was shown between genes and within gene families for IPT, CKX, SUT, and AAP. PsCKX7 showed strong gene family member-specific expression in the SAM, and was also expressed in young pea fruits. We suggest that PsCKX7 is a potential target for downregulation via molecular breeding or gene editing. PMID:28212324

  6. Products of dark CO sub 2 fixation in pea root nodules support bacteroid metabolism. [Pisum sativum L

    SciTech Connect

    Rosendahl, L.; Pedersen, W.B. ); Vance, C.P. )

    1990-05-01

    Products of the nodule cytosol in vivo dark ({sup 14}C)CO{sub 2} fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv Bodil) nodules. The distribution of the metabolites of the dark CO{sub 2} fixation products was compared in effective (fix{sup +}) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix{sup {minus}}) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The {sup 14}C incorporation from ({sup 14}C)CO{sub 2} was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the {sup 14}C label in the cytosol was found in organic acids in both symbioses. The results indicate a central role for nodule cytosol dark CO{sub 2} fixation in the supply of the bacteroids with dicarboxylic acids.

  7. Effect of Light Intensity on Efficiency of Carbon Dioxide and Nitrogen Reduction in Pisum sativum L. 1

    PubMed Central

    Bethlenfalvay, Gabor J.; Phillips, Donald A.

    1977-01-01

    Photosynthetic efficiency, primary productivity, and N2 reduction were determined in peas (Pisum sativum L. var. Alaska) grown at light intensities ranging from severely limiting to saturating. Plants grown under higher light intensities showed greater carboxylation and light capture potential and higher rates of net C exchange. Uptake of N2, computed from measured C2H2 reduction and H2 evolution rates, also increased with growth light intensity, while the previously proposed relative efficiency of N2 fixation, based on these same parameters, declined. The plot of N/C ratios (total nitrogen content/plant dry weight) increased hyperbolically with light intensity, and the plot of N2/CO2 uptake ratios (N2 uptake rate/net CO2 uptake rate) increased linearly. Both plots extrapolated to the light compensation point. The data indicate that the relative efficiency of N2 fixation is not necessarily correlated with maximum plant productivity and that evaluation of a plant's capacity to reduce N2 is related directly to concurrent CO2 reduction. A measure of whole plant N2 fixation efficiency based on the N2/CO2 uptake ratio is proposed. PMID:16660203

  8. Root and Nodule Growth in Pisum sativum L. in Relation to Photosynthesis: Analysis Using 13C‐labelling

    PubMed Central

    VOISIN, A. S.; SALON, C.; JEUDY, C.; WAREMBOURG, F. R.

    2003-01-01

    The effect of the nitrogen source (gaseous nitrogen, N2, or nitrate ions, NO3–) on the use of carbon (C) for root and nodule growth of pea (Pisum sativum L.) was investigated using 13C‐labelling of assimilated CO2 at various stages of growth. Nitrate supply and growing conditions (sowing dates, air CO2 concentration) were varied to alter photosynthetic rates. Nodules are the sink with the highest demand for C in both the vegetative and flowering stages, growing at the expense of shoot and root in the vegetative stage, but only at the expense of roots at flowering. Until flowering, the addition of C into root and nodule biomass was linearly related to pre‐existing biomass, thus determining net sink strengths which decreased with root and nodule age. Nodule growth patterns did not depend on the N source, whereas root growth was increased by nitrate when nodule biomass was low. At seed filling, the increase in C of biomass of the root system was no longer related to pre‐existing biomass and C was preferentially diverted to roots of plants assimilating nitrate, or to nodules for plants fixing N2. PMID:14507741

  9. Stomatal Response and Leaf Injury of Pisum sativum L. with SO2 and O3 Exposures 12

    PubMed Central

    Olszyk, David M.; Tibbitts, Theodore W.

    1981-01-01

    Plants of Pisum sativum L. `Alsweet' were grown under a controlled environment and exposed to SO2 and O3 to determine whether changes in stomatal aperture during exposure were related to subsequent leaf injury. Stomata consistently closed with injurious levels of SO2 and O3. Measurements with diffusion porometers demonstrated ≃75 and 25% lower conductance with SO2 and O3 exposures, respectively, compared to the conductance of control plants. Stomata also showed a closing response with noninjurious levels of SO2 but an opening response with noninjurious levels of O3. Stomata closed to the same degree with combinations of SO2 plus O3 as with SO2 alone. Stomata of expanding leaves closed more during pollutant exposures than stomata of expanded leaves. The abaxial and adaxial stomata both exhibited closure with SO2 and combinations of SO2 plus O3, but abaxial stomata tended to close and adaxial stomata tended to open with exposure to O3 alone. The changes in stomatal aperture were not closely correlated with the amount of leaf injury produced by different pollutant levels. Stomata closed, not only with exposure to pollutant levels that caused severe necrosis, but also with levels that caused only a trace of injury. There was no evidence of a reduced amount of closure or even stomatal opening with combinations of SO2 and O3 compared to plants exposed to the pollutants alone to explain the large amount of injury to plants exposed to pollutant combinations. PMID:16661710

  10. Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum)

    PubMed Central

    Yang, Jin; Qu, Mei; Fang, Jing; Shen, Ren Fang; Feng, Ying Ming; Liu, Jia You; Bian, Jian Feng; Wu, Li Shu; He, Yong Ming; Yu, Min

    2016-01-01

    We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. ‘Zhongwan no. 6’) were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (104 RBCs) was approximately 24.5% of the total Al in the root apex (0–2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity. PMID:27679639

  11. Gibberellic Acid-Promoted Lignification and Phenylalanine Ammonia-lyase Activity in a Dwarf Pea (Pisum sativum) 1

    PubMed Central

    Cheng, Christina K.-C.; Marsh, H. V.

    1968-01-01

    The effects of gibberellic acid on lignification in seedlings of a dwarf and a tall cultivar of pea (Pisum sativum) grown under red or white light or in the darkness, were studied. Gibberellic acid (10−6-10−4 m) promoted stem elongation in both light and dark and increased the percentage of lignin in the stems of the light-grown dwarf pea. The gibberellin had no effect on the lignin content of the tall pea although high concentrations (10−4 m) promoted growth of the tall plants. Time course studies indicated that the enhanced lignification in the gibberellin-treated dwarf plants occurred only after a lag period of several days. It was concluded that gibberellic acid-enhanced ligmification had no direct relation to gibberellic acid-promoted growth. The activity of phenylalanine ammonia-lyase (E.C. 4.3.1.5) was higher in gibberellin-treated dwarf plants grown under white or red light than in untreated dwarf plants. Gibberellic acid had no detectable effect on the activity of this enzyme when the plants were grown in darkness, just as it had no effect on lignification under dark conditions. The data suggest that in gibberellin-deficient peas the activity of phenylalanine ammonia-lyase is one of the limiting factors in lignification. PMID:16656968

  12. Molecular characterization of a distinct monopartite begomovirus associated with betasatellites and alphasatellites infecting Pisum sativum in Nepal.

    PubMed

    Shahid, M S; Pudashini, B J; Khatri-Chhetri, G B; Briddon, R W; Natsuaki, K T

    2017-04-01

    Pea (Pisum sativum) plants exhibiting leaf distortion, yellowing, stunted growth and reduction in leaf size from Rampur, Nepal were shown to be infected by a begomovirus in association with betasatellites and alphasatellites. The begomovirus associated with the disease showed only low levels of nucleotide sequence identity (<91%) to previously characterized begomoviruses. This finding indicates that the pea samples were infected with an as yet undescribed begomovirus for which the name Pea leaf distortion virus (PLDV) is proposed. Two species of betasatellite were identified in association with PLDV. One group of sequences had high (>78%) nucleotide sequence identity to isolates of Ludwigia leaf distortion betasatellite (LuLDB), and the second group had less than 78% to all other betasatellite sequences. This showed PLDV to be associated with either LuLDB or a previously undescribed betasatellite for which the name Pea leaf distortion betasatellite is proposed. Two types of alphasatellites were identified in the PLDV-infected pea plants. The first type showed high levels of sequence identity to Ageratum yellow vein alphasatellite, and the second type showed high levels of identity to isolates of Sida yellow vein China alphasatellite. These are the first begomovirus, betasatellites and alphasatellites isolated from pea.

  13. Remote sensing study of the influence of herbicides on the spectral reflectance of pea plant leaves (Pisum sativum L.)

    NASA Astrophysics Data System (ADS)

    Krezhova, D.; Alexieva, V.; Yanev, T.; Ivanov, S.

    Results from a remote sensing study of spectral reflectance of leaves of pea plants Pisum sativum L treated by the herbicides atrazine 2 4-D glyphosate fluridone and chlorsulfuron are reported According to the classification of the Herbicide Action Committee reflecting their mode of action they belong to different groups photosystem II bloker - C1 atrazine synthetic auxins - O 2 4-D inhibition of EPSP synthase - G glyphosate photobleaching - F1 fluridone and inhibition of acetoctate synthase - B chlorsulfuron The plants studied were grown hydroponically in a growth chamber in a nutritious medium to which every herbicide was added at three low concentrations 1 mu M 0 1 mu M and 0 01 mu M with respect to the field dose applied in the agricultural practice The spectral measurements of the leaf spectral reflectance were carried out in laboratory using a multichannel spectrometer in the visible and near infrared regions of the spectrum 480 div 810 nm Data was registered in 128 channels at a high spectral resolution of 2 6 nm halfwidth and a spatial resolution of 2 mm 2 The reflectance spectra were obtained from the leaf-reflected radiation referenced against a standard white screen To assess the changes arising in the leaf spectral reflectance under the herbicide action the developed by us approach based on discriminant analysis and other statistical methods was applied The spectral reflectance characteristics SRC were investigated in three spectral intervals 520 div 580 nm region of maximal

  14. Non-host disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization.

    PubMed

    Seneviratne, Herana Kamal; Dalisay, Doralyn S; Kim, Kye-Won; Moinuddin, Syed G A; Yang, Hong; Hartshorn, Christopher M; Davin, Laurence B; Lewis, Norman G

    2015-05-01

    Continually exposed to potential pathogens, vascular plants have evolved intricate defense mechanisms to recognize encroaching threats and defend themselves. They do so by inducing a set of defense responses that can help defeat and/or limit effects of invading pathogens, of which the non-host disease resistance response is the most common. In this regard, pea (Pisum sativum) pod tissue, when exposed to Fusarium solani f. sp. phaseoli spores, undergoes an inducible transcriptional activation of pathogenesis-related genes, and also produces (+)-pisatin, its major phytoalexin. One of the inducible pathogenesis-related genes is Disease Resistance Response-206 (DRR206), whose role in vivo was unknown. DRR206 is, however, related to the dirigent protein (DP) family. In this study, its biochemical function was investigated in planta, with the metabolite associated with its gene induction being pinoresinol monoglucoside. Interestingly, both pinoresinol monoglucoside and (+)-pisatin were co-localized in pea pod endocarp epidermal cells, as demonstrated using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging. In addition, endocarp epidermal cells are also the site for both chalcone synthase and DRR206 gene expression. Taken together, these data indicate that both (+)-pisatin and pinoresinol monoglucoside function in the overall phytoalexin responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Genetic control and identification of QTLs associated with visual quality traits of field pea (Pisum sativum L.).

    PubMed

    Ubayasena, Lasantha; Bett, Kirstin; Tar'an, Bunyamin; Warkentin, Thomas

    2011-04-01

    Visual quality of field pea (Pisum sativum L.) is one of the most important determinants of the market value of the harvested crop. Seed coat color, seed shape, and seed dimpling are the major components of visual seed quality of field pea and are considered as important breeding objectives. The objectives of this research were to study the genetics and to identify quantitative trait loci (QTLs) associated with seed coat color, seed shape, and seed dimpling of green and yellow field peas. Two recombinant inbred line populations (RILs) consisting of 120 and 90 lines of F(5)-derived F(7) (F(5:7)) yellow pea (P. sativum 'Alfetta' × P. sativum 'CDC Bronco') and green pea (P. sativum 'Orb' × P. sativum 'CDC Striker'), respectively, were evaluated over two years at two locations in Saskatchewan, Canada. Quantitative inheritance with polygenic control and transgressive segregation were observed for all visual quality traits studied. All 90 RILs of the green pea population and 92 selected RILs from the yellow pea population were screened using AFLP and SSR markers and two linkage maps were developed. Nine QTLs controlling yellow seed lightness, 3 for yellow seed greenness, 15 for seed shape, and 9 for seed dimpling were detected. Among them, five QTLs located on LG II, LG IV, and LG VII were consistent in at least two environments. The QTLs and their associated markers will be useful tools to assist pea breeding programs attempting to pyramid positive alleles for the traits.

  16. The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L.

    PubMed

    Lejeune-Hénaut, I; Hanocq, E; Béthencourt, L; Fontaine, V; Delbreil, B; Morin, J; Petit, A; Devaux, R; Boilleau, M; Stempniak, J J; Thomas, M; Lainé, A L; Foucher, F; Baranger, A; Burstin, J; Rameau, C; Giauffret, C

    2008-05-01

    An understanding of the genetic determinism of frost tolerance is a prerequisite for the development of frost tolerant cultivars for cold northern areas. In legumes, it is not known to which extent vernalization requirement or photoperiod responsiveness are necessary for the development of frost tolerance. In pea (Pisum sativum L.) however, the flowering locus Hr is suspected to influence winter frost tolerance by delaying floral initiation until after the main winter freezing periods have passed. The objective of this study was to dissect the genetic determinism of frost tolerance in pea by QTL analysis and to assess the genetic linkage between winter frost tolerance and the Hr locus. A population of 164 recombinant inbred lines (RILs), derived from the cross Champagne x Terese was evaluated both in the greenhouse and in field conditions to characterize the photoperiod response from which the allele at the Hr locus was inferred. In addition, the population was also assessed for winter frost tolerance in 11 field conditions. Six QTL were detected, among which three were consistent among the different experimental conditions, confirming an oligogenic determinism of frost tolerance in pea. The Hr locus was found to be the peak marker for the highest explanatory QTL of this study. This result supports the hypothesis of the prominent part played by the photoperiod responsiveness in the determinism of frost tolerance for this species. The consistency of three QTL makes these positions interesting targets for marker-assisted selection.

  17. The effect of different alleles at the r locus on the synthesis of seed storage proteins in Pisum sativum.

    PubMed

    Turner, S R; Barratt, D H; Casey, R

    1990-05-01

    Rocket immunoelectrophoresis was used to measure the accumulation of storage proteins in developing cotyledons of two Pisum sativum (pea) genotypes, that were close to isogenic except for the nature of the allele at the r locus. There was a marked decrease in legumin accumulation in the rr (wrinkled-seeded) genotype compared to the RR (round-seeded) genotype. The accumulation of vicilin did not differ greatly between the two genotypes. Pulse-labelling studies indicated that the differences in rates of accumulation of legumin between the rr and RR genotypes were a consequence of differences in rates of protein synthesis. Measurements of relative amounts of specific mRNAs, using cDNA clones as probes, showed lower amounts of legumin mRNA in developing cotyledons of the rr, compared to the RR, genotype. Both vicilin mRNAs and convicilin mRNA, the latter of which shows a similar temporal pattern of expression to those of the major legumin species, are relatively unaffected by the nature of the allele at the r locus. Nuclear run-on transcription experiments indicated no differences in the rate of synthesis of legumin transcripts in the rr and RR near-isolines. The consequences of homozygosity for the r allele on storage protein mRNA levels in vitro may be mimicked by manipulating the sucrose concentration of the culture medium.

  18. Differential Gene Expression in the Meristem and during Early Fruit Growth of Pisum sativum L. Identifies Potential Targets for Breeding.

    PubMed

    Smitha Ninan, Annu; Shah, Anish; Song, Jiancheng; Jameson, Paula E

    2017-02-16

    For successful molecular breeding it is important to identify targets to the gene family level, and in the specific species of interest, in this case Pisum sativum L. The cytokinins have been identified as a key breeding target due to their influence on plant architecture, and on seed size and sink activity. We focused on the cytokinin biosynthetic gene family (the IPTs) and the gene family key to the destruction of cytokinins (the CKXs), as well as other gene families potentially affected by changing cytokinin levels. These included key meristem genes (WUS and BAM1) and the transporter gene families, sucrose transporters (SUTs) and amino acid permeases (AAPs). We used reverse transcription quantitative PCR (RT-qPCR) to monitor gene expression in the vegetative meristem and in pre- and post-fertilisation young pea fruits. PsWUS expression was specific to the shoot apical meristem while PsBAM1 was highly expressed in the shoot apical meristem (SAM) but was also expressed at a low level in the young fruit. Differential expression was shown between genes and within gene families for IPT, CKX, SUT, and AAP. PsCKX7 showed strong gene family member-specific expression in the SAM, and was also expressed in young pea fruits. We suggest that PsCKX7 is a potential target for downregulation via molecular breeding or gene editing.

  19. Purification, properties and amino acid sequence of a low-Mr abundant seed protein from pea (Pisum sativum L.).

    PubMed

    Gatehouse, J A; Gilroy, J; Hoque, M S; Croy, R R

    1985-01-01

    The seeds of pea (Pisum sativum L.) contain several proteins in the albumin solubility fraction that are significant components of total cotyledonary protein (5-10%) and are accumulated in developing seeds concurrently with storage-protein synthesis. One of these proteins, of low Mr and designated 'Psa LA', has been purified, characterized and sequenced. Psa LA has an Mr of 11000 and contains polypeptides of Mr 6000, suggesting that the protein molecules are dimeric. The amino acid sequence contains 54 residues, with a high content (10/54) of asparagine/aspartate. It has no inhibitory action towards trypsin or chymotrypsin, and is distinct from the inhibitors of those enzymes found in pea seeds, nor does it inhibit hog pancreatic alpha-amylase. The protein contains no methionine, but significant amounts of cysteine (four residues per polypeptide), suggesting a possible role as a sulphur storage protein. However, its sequence is not homologous with low-Mr (2S) storage proteins from castor bean (Ricinus communis) or rape (Brassica napus). Psa LA therefore represents a new type of low-Mr seed protein.

  20. Characterization of pea vicilin. 1. Denoting convicilin as the alpha-subunit of the Pisum vicilin family.

    PubMed

    O'Kane, Francesca E; Happe, Randolph P; Vereijken, Johan M; Gruppen, Harry; van Boekel, Martinus A J S

    2004-05-19

    Vicilin, a major globulin protein of pea that has been described as "extremely heterogeneous in terms of its polypeptide composition", was extracted from pea flour under alkaline conditions and subsequently fractionated by salt under acid conditions. This procedure induced the separation of vicilin into two fractions, which, after purification, were called vicilin 1 degrees and vicilin 2 degrees. Vicilin 2 degrees was seen on SDS-PAGE to contain the third globulin protein of pea, convicilin (a band at approximately 70 kDa). Vicilin fractions were thus characterized using gel electrophoresis, differential scanning calorimetry, circular dichroism, and pH-dependent solubility in order to determine whether the convicilin should in fact be considered as a third separate globulin protein of pea. On the basis of the results obtained it was concluded that this distinct polypeptide of the Pisum vicilin gene family should be further denoted as a subunit of the salt extractable protein vicilin. The definition of vicilin heterogeneity should therefore be extended to acknowledge the possible oligomeric inclusion of the 70 kDa polypeptide that is here denoted as the alpha-subunit.

  1. Pea (Pisum sativum L.) seed albumin extracts show anti-inflammatory effect in the DSS model of mouse colitis.

    PubMed

    Utrilla, Ma Pilar; Peinado, Ma Jesus; Ruiz, Raquel; Rodriguez-Nogales, Alba; Algieri, Francesca; Rodriguez-Cabezas, Ma Elena; Clemente, Alfonso; Galvez, Julio; Rubio, Luis A

    2015-04-01

    This study investigates the preventive effects of two pea (Pisum sativum) seed albumin extracts, either in the presence (pea seed extract [PSE]) or absence (albumin fraction from PSE [AF-PSE]) of soluble polysaccharides, in the dextran sodium sulfate (DSS) induced colitis in mice. Male C57BL/6J mice were assigned to five groups: one noncolitic and four colitic. Colitis was induced by incorporating DSS (3.5%) in the drinking water for 4 days, after which DSS was removed. Treated groups received orally PSE (15 g/kg⋅day), or AF-PSE (1.5 g/kg⋅day), or pure soy Bowman-Birk inhibitor (BBI; 50 mg/kg⋅day), starting 2 wk before colitis induction, and maintained for 9 days after. All treated groups showed intestinal anti-inflammatory effect, evidenced by reduced microscopic histological damage in comparison with untreated colitic mice. The treatments ameliorated the colonic mRNA expression of different proinflammatory markers: cytokines, inducible enzymes, metalloproteinases, adhesion molecules, and toll-like receptors, as well as proteins involved in maintaining the epithelial barrier function. Furthermore, the administration of PSE, AF-PSE, or soy BBI restored bacterial counts, partially or totally, to values in healthy mice. PSE and AF-PSE ameliorated DSS-induced damage to mice, their effects being due, at least partially, to the presence of active BBI. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Foliar Application of Plant Growth-Promoting Rhizobacteria Increases Antifungal Compounds in Pea (Pisum sativum) Against Erysiphe pisi

    PubMed Central

    Bahadur, A.; Sarma, B. K.; Singh, D. P.; Singh, K. P.; Singh, A.

    2007-01-01

    Systemic effect of two plant growth-promoting rhizobacterial (PGPR) strains,viz., Pseudomonas fluorescens (Pf4) and P. aeruginosa (Pag), was evaluated on pea (Pisum sativum) against the powdery mildew pathogen Erysiphe pisi. Foliar spray of the two PGPR strains was done on specific nodal leaves of pea and conidial germination of E. pisi was observed on other nodal leaves,distal to the treated ones. Conidial germination was reduced on distant leaves and at the same time,specific as well as total phenolic compounds increased in the leaves distal to those applied with PGPR strains,thereby indicating a positive correlation. The strains induced accumulation of phenolic compounds in pea leaves and the amount increased when such leaves were get inoculated with E. pisi conidia. Between the two strains, Pag was found to be more effective than Pf4 as its effect was more persistent in pea leaves. Foliar application of PGPR strains for the control of powdery mildew of pea is demonstrated in vitro while correlating it with the increased accumulation of plant phenolics. PMID:24015083

  3. Expression of small heat shock protein (sHSP) genes in the garden pea (Pisum sativum) under slow horizontal clinorotation.

    PubMed

    Talalaiev, Oleksandr; Korduym, Elizabeth

    2014-04-30

    Plant cells respond to stress conditions, such as high temperatures, by synthesizing small heat shock proteins (sHSPs). sHSPs are molecular chaperones that assist in protein folding and prevent irreversible protein aggregation. Although many sHSP genes are temperature-inducible, other variables, such as altered gravity, can induce significant changes in plant cell gene expression. Furthermore, not all subfamilies of sHSP genes share the same expression pattern. The objective of our research was to determine the effect of simulated microgravity (clinorotation) on the expression of sHSP gene subfamilies with different subcellular locations in etiolated pea (Pisum sativum) seedlings. sHSP gene expression levels were examined using quantitative real-time RT-PCR (qPCR). qPCR results demonstrated that sHSP genes were constitutively expressed in seedlings. High temperatures increased the expression of sHSP genes by several thousand-fold. However, simulated microgravity did not have any significant effects on sHSP gene expression.

  4. Characterization of Low-Strigolactone Germplasm in Pea (Pisum sativum L.) Resistant to Crenate Broomrape (Orobanche crenata Forsk.).

    PubMed

    Pavan, Stefano; Schiavulli, Adalgisa; Marcotrigiano, Angelo Raffaele; Bardaro, Nicoletta; Bracuto, Valentina; Ricciardi, Francesca; Charnikhova, Tatsiana; Lotti, Concetta; Bouwmeester, Harro; Ricciardi, Luigi

    2016-10-01

    Crenate broomrape (Orobanche crenata Forsk.) is a devastating parasitic weed threatening the cultivation of legumes around the Mediterranean and in the Middle East. So far, only moderate levels of resistance were reported to occur in pea (Pisum sativum L.) natural germplasm, and most commercial cultivars are prone to severe infestation. Here, we describe the selection of a pea line highly resistant to O. crenata, following the screening of local genetic resources. Time series observations show that delayed emergence of the parasite is an important parameter associated with broomrape resistance. High performance liquid chromatography connected to tandem mass spectrometry analysis and in vitro broomrape germination bioassays suggest that the resistance mechanism might involve the reduced secretion of strigolactones, plant hormones exuded by roots and acting as signaling molecules for the germination of parasitic weeds. Two years of replicated trials in noninfested fields indicate that the resistance is devoid of pleiotropic effects on yield, in contrast to pea experimental mutants impaired in strigolactone biosynthesis and, thus, is suitable for use in breeding programs.

  5. Functional characterization of PeIF5B as eIF5B homologue from Pisum sativum.

    PubMed

    Rasheedi, Sheeba; Suragani, Madhuri; Raviprasad, Podili; Ghosh, Sudip; Suragani, Rajasekhar N V S; Ramaiah, Kolluru V A; Ehtesham, Nasreen Z

    2015-11-01

    We earlier reported 'PeIF5B' as a novel factor from Pisum sativum that has sequence similarity to eIF5B (S. Rasheedi, S. Ghosh, M. Suragani et al., P. sativum contains a factor with strong homology to eIF5B, Gene 399 (2007) 144-151). The main aim of the present study was to perform functional characterization of PeIF5B as an eIF5B homologue from plant system. PeIF5B shows binding to Met - tRNA(f)(Met), hydrolyses GTP and interacts with ribosomes. In vivo growth complementation analysis shows that PeIF5B partially complements its yeast homologue. Interestingly, PeIF5B mainly localizes in the nucleus as confirmed by nuclear localization signal (NLS) prediction, confocal imaging and immunoblots of cellular fractions. Similar to the yeast eIF5B but unlike the human orthologue, PeIF5B is an intron-less gene. This study highlights PeIF5B's role as a functional eIF5B homologue possibly participating in nuclear translation in plant system. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum).

    PubMed

    Yang, Jin; Qu, Mei; Fang, Jing; Shen, Ren Fang; Feng, Ying Ming; Liu, Jia You; Bian, Jian Feng; Wu, Li Shu; He, Yong Ming; Yu, Min

    2016-01-01

    We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. 'Zhongwan no. 6') were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (10(4) RBCs) was approximately 24.5% of the total Al in the root apex (0-2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity.

  7. Arabidopsis thaliana and Pisum sativum models demonstrate that root colonization is an intrinsic trait of Burkholderia cepacia complex bacteria.

    PubMed

    Vidal-Quist, J Cristian; O'Sullivan, Louise A; Desert, Annaëlle; Fivian-Hughes, Amanda S; Millet, Coralie; Jones, T Hefin; Weightman, Andrew J; Rogers, Hilary J; Berry, Colin; Mahenthiralingam, Eshwar

    2014-02-01

    Burkholderia cepacia complex (Bcc) bacteria possess biotechnologically useful properties that contrast with their opportunistic pathogenicity. The rhizosphere fitness of Bcc bacteria is central to their biocontrol and bioremediation activities. However, it is not known whether this differs between species or between environmental and clinical strains. We investigated the ability of 26 Bcc strains representing nine different species to colonize the roots of Arabidopsis thaliana and Pisum sativum (pea). Viable counts, scanning electron microscopy and bioluminescence imaging were used to assess root colonization, with Bcc bacteria achieving mean (±sem) levels of 2.49±0.23×10(6) and 5.16±1.87×10(6) c.f.u. per centimetre of root on the A. thaliana and P. sativum models, respectively. The A. thaliana rhizocompetence model was able to reveal loss of colonization phenotypes in Burkholderia vietnamiensis G4 transposon mutants that had only previously been observed in competition experiments on the P. sativum model. Different Bcc species colonized each plant model at different rates, and no statistical difference in root colonization was observed between isolates of clinical or environmental origin. Loss of the virulence-associated third chromosomal replicon (>1 Mb DNA) did not alter Bcc root colonization on A. thaliana. In summary, Bcc bacteria possess intrinsic root colonization abilities irrespective of their species or source. As Bcc rhizocompetence does not require their third chromosomal replicon, the possibility of using synthetic biology approaches to engineer virulence-attenuated biotechnological strains is tractable.

  8. Massive Analysis of cDNA Ends (MACE) for transcript-based marker design in pea (Pisum sativum L.).

    PubMed

    Zhernakov, Aleksandr; Rotter, Björn; Winter, Peter; Borisov, Alexey; Tikhonovich, Igor; Zhukov, Vladimir

    2017-03-01

    Aimed at gene-based markers design, we generated and analyzed transcriptome sequencing datasets for six pea (Pisum sativum L.) genetic lines that have not previously been massively genotyped. Five cDNA libraries obtained from nodules or nodulated roots of genetic lines Finale, Frisson, Sparkle, Sprint-2 and NGB1238 were sequenced using a versatile 3'-RNA-seq protocol called MACE (Massive Analysis of cDNA Ends). MACE delivers a single next-generation sequence from the 3'-end of each individual cDNA molecule that precisely quantifies the respective transcripts. Since the contig generated from the 3'-end of the cDNA by assembling all sequences encompasses the highly polymorphic 3'-untranslated region (3'-UTR), MACE efficiently detects single nucleotide variants (SNVs). Mapping MACE reads to the reference nodule transcriptome assembly of the pea line SGE (Transcriptome Shotgun Assembly GDTM00000000.1) resulted in characterization of over 34,000 polymorphic sites in more than 9700 contigs. Several of these SNVs were located within recognition sequences of restriction endonucleases which allowed the design of co-dominant CAPS markers for the particular transcript. Cleaned reads of sequenced libraries are available from European Nucleotide Archive (http://www.ebi.ac.uk/) under accessions PRJEB18101, PRJEB18102, PRJEB18103, PRJEB18104, PRJEB17691.

  9. Stress induced β subunit of heterotrimeric G-proteins from Pisum sativum interacts with mitogen activated protein kinase

    PubMed Central

    Bhardwaj, Deepak; Sheikh, Arsheed Hussain; Sinha, Alok Krishna

    2011-01-01

    We here report in Pisum sativum system a novel protein-protein interaction of β-subunit of heterotrimeric G-proteins (PsGβ) with a Mitogen activated protein kinase (PsMPK3) during cDNA library screening by yeast-two-hybrid assay. The transcript of these two genes also showed co-regulation under abscisic acid (ABA) and methyl jasmonate (MeJA) treatments. The protein-protein interaction was further validated by performing one-to-one interaction and β-galactosidase assay in yeast system. β-subunit of G-proteins from a heterologous system Oryzae sativa also showed interaction with PsMPK3. The interaction between PsGβ and PsMPK3 was further confirmed by in vitro protein-protein interaction. This suggested that MPK3 function as effector molecule for Gβ, which may helps in the regulation of stomatal functioning. These findings also provide an evidence for a possible cross-talk between MPK3 and G-protein-mediated signaling pathways in plants. PMID:21350337

  10. Fatty acid alpha-dioxygenase from Pisum sativum: temporal and spatial regulation during germination and plant development.

    PubMed

    Meisner, Anke K; Saffert, Alexander; Schreier, Peter; Schön, Astrid

    2009-03-01

    alpha-Dioxygenases are expressed in plants in response to biotic and abiotic stress. They catalyze the enantioselective 2-hydroperoxidation of long-chain fatty acids, the initial step of the alpha-oxidation pathway of fatty acids in plants. In this study, the complete cDNA of an alpha-dioxygenase from germinating pea seeds (Pisum sativum) is presented. The deduced amino acid sequence establishes that the enzyme belongs to the recently characterized family of alpha-dioxygenating enzymes in plants. We also present the first systematic study on the expression of alpha-dioxygenase in germinating and developing pea plants. During germination, alpha-dioxygenase mRNA accumulates in the cotyledons and the embryonic axis of pea seeds de novo. In developing pea plants, the transcript is detected almost exclusively in roots. The accumulation of alpha-dioxygenase protein parallels transcript accumulation in that it is abundant in germinating as well as young plant tissue, and correlates with loss of mRNA during plant maturation. alpha-Dioxygenase enzymatic activity in plant extracts is highest in cotyledons during imbibition. In the embryonic axis and roots of developing plants comparable activity levels are observed, whereas in shoots little alpha-oxidation activity is detected. With this contribution, we present information on the temporal and spatial expression of alpha-dioxygenase during plant germination and development, supporting the hypothesis that the alpha-oxidation pathway of fatty acids plays a role during plant developmental processes.

  11. The role of the epidermis in auxin-induced and fusicoccin-induced elongation of Pisum sativum stem segments.

    PubMed

    Brummell, D A; Hall, J L

    1980-12-01

    The effects of peeling and wounding on the indole-3-acetic acid (IAA) and fusicoccin (FC) growth response of etiolated Pisum sativum L. cv. Alaska stem tissue were examined. Over a 5 h growth period, peeling was found to virtually eliminate the IAA response, but about 30% of the FC response remained. In contrast, unpeeled segments wounded with six vertical slits exhibited significant responses to both IAA and FC, indicating that peeling does not act by damaging the tissue. Microscopy showed that the epidermis was removed intact and that the underlying tissue was essentially undamaged. Neither the addition of 2% sucrose to the incubation medium nor the use of a range of IAA concentrations down to 10(-8) M restored IAA-induced growth in peeled segments, suggesting that lack of osmotic solutes and supra-optimal uptake of IAA were not important factors over this time period. It is concluded that, although the possibility remains that peeling merely allows leakage of hydrogen ions into the medium, it seems more likely that peeling off the epidermis removes the auxin responsive tissue.

  12. Distribution and Properties of a Potassium-dependent Asparaginase Isolated from Developing Seeds of Pisum sativum and Other Plants 1

    PubMed Central

    Sodek, Ladaslav; Lea, Peter J.; Miflin, Benjamin J.

    1980-01-01

    Asparaginase (EC 3.5.1.1) was isolated from the developing seed of Pisum sativum. The enzyme is dependent upon the presence of K+ for activity, although Na+ and Rb+ may substitute to a lesser extent. Maximum activity was obtained at K+ concentrations above 20 millimolar. Potassium ions protected the enzyme against heat denaturation. The enzyme has a molecular weight of 68,300. Asparaginase activity developed initially in the testa, with maximum activity (3.6 micromoles per hour per seed) being present 13 days after flowering. Maximum activity (1.2 micromoles per hour per seed) did not develop in the cotyledon until 21 days after flowering. Glutamine synthetase and glutamate dehydrogenase were also present in the testae and cotyledons but maximum activity developed later than that of asparaginase. Potassium-dependent asparaginase activity was also detected in the developing seeds of Vicia faba, Phaseolus multiflorus, Zea mays, Hordeum vulgare, and two Lupinus varieties. No stimulation of activity was detected with the enzyme isolated from Lupinus polyphyllus, which has previously been shown to contain a K+-independent enzyme. PMID:16661136

  13. Apparent equilibrium constant and mass-action ratio for sucrose-phosphate synthase in seeds of Pisum sativum.

    PubMed Central

    Lunn, J E; ap Rees, T

    1990-01-01

    The aim of this work was to use preparations from germinating seeds of Pisum sativum to determine the apparent equilibrium constant of the reaction catalysed by sucrose-phosphate synthase (EC 2.4.1.14) and to compare this with the mass-action ratio of the reaction in the seeds. The apparent equilibrium constant ranged from 5.3 at 0.25 mM-MgCl2, pH 7.0, to 62 at 10 mM-MgCl2, pH 7.5. The sucrose phosphate content of the seeds, 23 nmol/g fresh wt., was determined by separating sucrose phosphate from sucrose by ion-exchange chromatography and then measuring the sucrose released by alkaline phosphatase. Comparison of equilibrium constants and mass-action ratios in the cotyledons of 38 h-germinated seeds showed that the reactions catalysed by glucose-6-phosphate isomerase, phosphoglucomutase and UDP-glucose pyrophosphorylase are close to equilibrium, and those catalysed by sucrose-phosphate synthase and sucrose phosphatase are considerably displaced from equilibrium in vivo. PMID:2140258

  14. Pinolide, a new nonenolide produced by Didymella pinodes , the causal agent of ascochyta blight on Pisum sativum.

    PubMed

    Cimmino, Alessio; Andolfi, Anna; Fondevilla, Sara; Abouzeid, Mohamed A; Rubiales, Diego; Evidente, Antonio

    2012-05-30

    An aggressive isolate of Didymella pinodes isolated from pea ( Pisum sativum ) produced four different metabolites in vitro. The metabolites isolated from the culture filtrates were characterized by spectroscopic and optical methods. A new nonenolide, named pinolide, was isolated and characterized as (2S*,7R*,8S*,5E,9R*)-2,7,8-trihydroxy-9-propyl-5-nonen-9-olide. Pinolidoxin, the main toxin produced by D. pinodes, was also isolated together with two other closely related nonenolides, identified as herbarumin II and 2-epi-herbarumin II. Herbarumin II and 2-epi-herbarumin II have been previously isolated from the fungi Phoma herbarum and Paraphaeosphaeria recurvifoliae , respectively, but described here to be isolated for the first time from D. pinodes. When tested on leaves of the host plant and other legumes and weeds, pinolidoxin was phytotoxic in all of the plant species, whereas the other three nonenolides did not produce any symptoms. The importance of the stereochemistry of the hydroxy group at C-7 on phytotoxicity also is discussed.

  15. Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum.

    PubMed

    Winnicki, Konrad; Żabka, Aneta; Bernasińska, Joanna; Matczak, Karolina; Maszewski, Janusz

    2015-06-01

    In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Co-localization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50% of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species.

  16. Halloween genes and nuclear receptors in ecdysteroid biosynthesis and signalling in the pea aphid.

    PubMed

    Christiaens, O; Iga, M; Velarde, R A; Rougé, P; Smagghe, G

    2010-03-01

    The pea aphid (Acyrthosiphon pisum) is the first whole genome sequenced insect with a hemimetabolic development and an emerging model organism for studies in ecology, evolution and development. The insect steroid moulting hormone 20-hydroxyecdysone (20E) controls and coordinates development in insects, especially the moulting/metamorphosis process. We, therefore present here a comprehensive characterization of the Halloween genes phantom, disembodied, shadow, shade, spook and spookiest, coding for the P450 enzymes that control the biosynthesis of 20E. Regarding the presence of nuclear receptors in the pea aphid genome, we found 19 genes, representing all of the seven known subfamilies. The annotation and phylogenetic analysis revealed a strong conservation in the class of Insecta. But compared with other sequenced insect genomes, three orthologues are missing in the Acyrthosiphon genome, namely HR96, PNR-like and Knirps. We also cloned the EcR, Usp, E75 and HR3. Finally, 3D-modelling of the ligand-binding domain of Ap-EcR exhibited the typical canonical structural scaffold with 12 alpha-helices associated with a short hairpin of two antiparallel beta-strands. Upon docking, 20E was located in the hormone-binding groove, supporting the hypothesis that EcR has a role in 20E signalling.

  17. Prophage Genomics

    PubMed Central

    Canchaya, Carlos; Proux, Caroline; Fournous, Ghislain; Bruttin, Anne; Brüssow, Harald

    2003-01-01

    The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and γ-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and γ-proteobacteria. PMID:12794192

  18. [Influence of calcium and rhizobial infections (Rhizobium leguminosarum) on the dynamics of nitric oxide (NO) content in roots of etiolated pea (Pisum sativum L.) seedlings].

    PubMed

    Glian'ko, A K; Ishchenko, A A; Stepanov, A V

    2014-01-01

    The effect of exogenous calcium (Ca2+) and rhizobial infections (Rhizobium leguminosarum bv viceae) on the dynamics of the level of nitric oxide (NO) was studied in cross cuts of roots of two-day-old etiolated pea seedlings (Pisum sativum L.) using a DAF-2DA fluorescent probe. Fluctuations of the NO level, indicating the presence of a rhythm in the generation of NO in roots, were observed during the incubation of seedlings in water, a CaCl2 solution, and with rhizobial infections. Exogenous factors (Ca2+ and two rhizobial stamms) change the time dynamics of the NO level in comparison with the control (water).

  19. Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.).

    PubMed

    Rubiales, Diego; Fernández-Aparicio, Monica; Pérez-de-Luque, Alejandro; Castillejo, Mari A; Prats, Elena; Sillero, Josefina C; Rispail, Nicolas; Fondevilla, Sara

    2009-05-01

    Pea cultivation is strongly hampered in Mediterranean and Middle East farming systems by the occurrence of Orobanche crenata Forsk. Strategies of control have been developed, but only marginal successes have been achieved. Most control methods are either unfeasible, uneconomical, hard to achieve or result in incomplete protection. The integration of several control measures is the most desirable strategy. [corrected] Recent developments in control are presented and re-evaluated in light of recent developments in crop breeding and molecular genetics. These developments are placed within a framework that is compatible with current agronomic practices. The current focus in applied breeding is leveraging biotechnological tools to develop more and better markers to speed up the delivery of improved cultivars to the farmer. To date, however, progress in marker development and delivery of useful markers has been slow. The application of knowledge gained from basic genomic research and genetic engineering will contribute to more rapid pea improvement for resistance against O. crenata and/or the herbicide.

  20. The auxin conjugate indole-3-acetyl-aspartate affects responses to cadmium and salt stress in Pisum sativum L.

    PubMed

    Ostrowski, Maciej; Ciarkowska, Anna; Jakubowska, Anna

    2016-02-01

    The synthesis of IAA-amino acid conjugates is one of the crucial regulatory mechanisms for the control of auxin activity during physiological and pathophysiological responses. Indole-3-acetyl-aspartate (IAA-Asp) is a low molecular weight amide conjugate that predominates in pea (Pisum sativum L.) tissues. IAA-Asp acts as an intermediate during the auxin degradation pathway. However, some recent investigations suggest a direct signaling function of this conjugate in various processes. In this study, we examine the effect of 100 μM IAA-Asp alone and in combination with salt stress (160 mM NaCl) or heavy metal stress (250 μM CdCl2) on H2O2 concentration, protein carbonylation as well as catalase and ascorbate (APX) and guaiacol peroxidase (GPX) activities in 7-day-old pea seedlings. As revealed by spectrophotometric analyses, IAA-Asp increased the carbonylated protein level and reduced the H2O2 concentration. Moreover, IAA-aspartate potentiated the effect of both Cd(2+) ions and NaCl on the H2O2 level. The enzymatic activities (catalase and peroxidases) were examined using spectrophotometric and native-PAGE assays. IAA-Asp alone did not affect catalase activity, whereas the two peroxidases were regulated differently. IAA-Asp reduced the APX activity during 48h cultivation. APX activity was potentiated by IAA-Asp+NaCl after 48h. Guaiacol peroxidase activity was diminished by all tested compounds. Based on these results, we suggest that IAA-Asp can directly and specifically affect the pea responses to abiotic stress. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Enhancing Neoplasm Expression in Field Pea (Pisum sativum) via Intercropping and Its Significance to Pea Weevil (Bruchus pisorum) Management

    PubMed Central

    Teshome, Abel; Bryngelsson, Tomas; Mendesil, Esayas; Marttila, Salla; Geleta, Mulatu

    2016-01-01

    Neoplasm formation, a non-meristematic tissue growth on young field pea (Pisum sativum L.) pods is triggered in the absence of UV light and/or in response to oviposition by pea weevil (Bruchus pisorum L.). This trait is expressed in some genotypes [neoplastic (Np) genotypes] of P. sativum and has the capacity to obstruct pea weevil larval entry into developing seeds. In the present study, 26% of the tested accessions depicted the trait when grown under greenhouse conditions. However, UV light inhibits full expression of this trait and subsequently it is inconspicuous at the field level. In order to investigate UV light impact on the expression of neoplasm, particular Np genotypes were subjected to UV lamp light exposure in the greenhouse and sunlight at the field level. Under these different growing conditions, the highest mean percentage of Np pods was in the control chamber in the greenhouse (36%) whereas in single and double UV lamp chambers, the percentage dropped to 10 and 15%, respectively. Furthermore, when the same Np genotypes were grown in the field, the percentage of Np pods dropped significantly (7%). In order to enhance Np expression at the field level, intercropping of Np genotypes with sorghum was investigated. As result, the percentage of Np pods was threefold in intercropped Np genotypes as compared to those without intercropping. Therefore, intercropping Np genotypes with other crops such as sorghum and maize can facilitate neoplasm formation, which in turn can minimize the success rate of pea weevil larvae entry into developing seeds. Greenhouse artificial infestation experiments showed that pea weevil damage in Np genotypes is lower in comparison to wild type genotypes. Therefore, promoting Np formation under field conditions via intercropping can serve as part of an integrated pea weevil management strategy especially for small scale farming systems. PMID:27242855

  2. The cadmium-tolerant pea (Pisum sativum L.) mutant SGECdt is more sensitive to mercury: assessing plant water relations

    PubMed Central

    Belimov, Andrey A.; Dodd, Ian C.; Safronova, Vera I.; Malkov, Nikita V.; Davies, William J.; Tikhonovich, Igor A.

    2015-01-01

    Heavy metals have multiple effects on plant growth and physiology, including perturbation of plant water status. These effects were assessed by exposing the unique Cd-tolerant and Cd-accumulating pea (Pisum sativum L.) mutant SGECdt and its wild-type (WT) line SGE to either cadmium (1, 4 μM CdCl2) or mercury (0.5, 1, 2 μM HgCl2) in hydroponic culture for 12 days. When exposed to Cd, SGECdt accumulated more Cd in roots, xylem sap, and shoot, and had considerably more biomass than WT plants. WT plants lost circa 0.2 MPa turgor when grown in 4 μM CdCl2, despite massive decreases in whole-plant transpiration rate and stomatal conductance. In contrast, root Hg accumulation was similar in both genotypes, but WT plants accumulated more Hg in leaves and had a higher stomatal conductance, and root and shoot biomass compared with SGECdt. Shoot excision resulted in greater root-pressure induced xylem exudation of SGECdt in the absence of Cd or Hg and following Cd exposure, whereas the opposite response or no genotypic differences occurred following Hg exposure. Exposing plants that had not been treated with metal to 50 μM CdCl2 for 1h increased root xylem exudation of WT, whereas 50 μM HgCl2 inhibited and eliminated genotypic differences in root xylem exudation, suggesting differences between WT and SGECdt plants in aquaporin function. Thus, root water transport might be involved in mechanisms of increased tolerance and accumulation of Cd in the SGECdt mutant. However, the lack of cross-tolerance to Cd and Hg stress in the mutant indicates metal-specific mechanisms related to plant adaptation. PMID:25694548

  3. Symbiotic N2 fixation activity in relation to C economy of Pisum sativum L. as a function of plant phenology.

    PubMed

    Voisin, A S; Salon, C; Jeudy, C; Warembourg, F R

    2003-12-01

    The relationships between symbiotic nitrogen fixation (SNF) activity and C fluxes were investigated in pea plants (Pisum sativum L. cv. Baccara) using simultaneous 13C and 15N labelling. Analysis of the dynamics of labelled CO2 efflux from the nodulated roots allowed the different components associated with SNF activity to be calculated, together with root and nodule synthetic and maintenance processes. The carbon costs for the synthesis of roots and nodules were similar and decreased with time. Carbon lost by turnover, associated with maintenance processes, decreased with time for nodules while it increased in the roots. Nodule turnover remained higher than root turnover until flowering. The effect of the N source on SNF was investigated using plants supplied with nitrate or plants only fixing N2. SNF per unit nodule biomass (nodule specific activity) was linearly related to the amount of carbon allocated to the nodulated roots regardless of the N source, with regression slopes decreasing across the growth cycle. These regression slopes permitted potential values of SNF specific activity to be defined. SNF activity decreased as the plants aged, presumably because of the combined effects of both increasing C costs of SNF (from 4.0 to 6.7 g C g-1 N) and the limitation of C supply to the nodules. SNF activity competed for C against synthesis and maintenance processes within the nodulated roots. Synthesis was the main limiting factor of SNF, but its importance decreased as the plant aged. At seed-filling, SNF was probably more limited by nodule age than by C supply to the nodulated roots.

  4. Effects of Glycolate Pathway Intermediates on Glycine Decarboxylation and Serine Synthesis in Pea (Pisum sativum L.) 1

    PubMed Central

    Shingles, Richard; Woodrow, Lorna; Grodzinski, Bernard

    1984-01-01

    Glycine decarboxylation and serine synthesis were studied in pea (Pisum sativum L.) leaf discs, in metabolically active intact chloroplasts, and in mitochondria isolated both partially by differential centrifugation (i.e. `crude') and by further purification on a Percoll gradient. Glycolate, glyoxylate, and formate reduced glycine decarboxylase activity (14CO2 and NH3 release) in the crude green-colored mitochondrial fractions, and in the leaf discs without markedly altering serine synthesis from [1-14C]glycine. Glycolate acted because it was converted to glyoxylate which behaves as a noncompetitive inhibitor (Ki = 5.1 ± 0.5 millimolar) on the mitochondrial glycine decarboxylation reaction in both crude and Percoll-purified mitochondria. In contrast, formate facilitates glycine to serine conversion by a route which does not involve glycine breakdown in the crude mitochondrial fraction and leaf discs. Formate does not alter the conversion of two molecules of glycine to one CO2, one NH3, and one serine molecule in the Percoll-purified mitochondria. In chloroplasts which were unable to break glycine down to CO2 and NH3, serine was labeled equally from [14C]formate and [1-14C]glycine. The maximum rate of serine synthesis observed in chloroplasts is similar to that in isolated metabolically active mitochondria. Formate does not appear to be able to substitute for the one-carbon unit produced during mitochondrial glycine breakdown but can facilitate serine synthesis from glycine in a chloroplast reaction which is probably a secondary one in vivo. PMID:16663485

  5. Enzymes of serine and glycine metabolism in leaves and non-photosynthetic tissues of Pisum sativum L.

    PubMed

    Walton, N J; Woolhouse, H W

    1986-01-01

    A comparative study is presented of the activities of enzymes of glycine and serine metabolism in leaves, germinated cotyledons and root apices of pea (Pisum sativum L.). Data are given for aminotransferase activities with glyoxylate, hydroxypyruvate and pyruvate, for enzymes associated with serine synthesis from 3-phosphoglycerate and for glycine decarboxylase and serine hydroxymethyltransferase. Aminotransferase activities differ between the tissues in that, firstly, appreciable transamination of serine, hydroxypyruvate and asparagine occurs only in leaf extracts and, secondly, glyoxylate is transaminated more actively than pyruvate in leaf extracts, whereas the converse is true of extracts of cotyledons and root apices. Alanine is the most active amino-group donor to both glyoxylate and hydroxypyruvate. 3-Phosphoglycerate dehydrogenase and glutamate: O-phosphohydroxypyruvate aminotransferase have comparable activities in all three tissues, except germinated cotyledons, in which the aminotransferase appears to be undetectable. Glycollate oxidase is virtually undetectable in the non-photosynthetic tissues and in these tissues the activity of glycerate dehydrogenase is much lower than that of 3-phosphoglycerate dehydrogenase. Glycine decarboxylase activity in leaves, measured in the presence of oxaloacetate, is equal to about 30-40% of the measured rate of CO2 fixation and is therefore adequate to account for the expected rate of photorespiration. The activity of glycine decarboxylase in the non-photosynthetic tissues is calculated to be about 2-5% of the activity in leaves and has the characteristics of a pyridoxal-and tetrahydrofolate-dependent mitochondrial reaction; it is stimulated by oxaloacetate, although not by ADP. In leaves, the measured activity of serine hydroxymethyltransferase is somewhat lower than that of glycine decarboxylase, whereas in root apices it is substantially higher. Differential centrifugation of extracts of root apices suggests that an

  6. Ultrastructural organization of chloroplast membranes in mutants of Pisum sativum L. with impaired activity in the photosystems.

    PubMed

    Popov, V I; Matorin, D N; Gostimsky, S V; Tageeva, S V; Allakhverdov, B L

    1981-05-01

    The ultrastructural organization and the photosynthesis reactions of chloroplast membranes were studied in three lethal mutants of Pisum sativum, Chl-1, Chl-19 and Chl-5, all lacking the capacity to evolve oxygen. The rates of 2,6-dichloroindophenol reduction, delayed fluorescence and electron-spin-resonance signal 1 indicate that Chl-1 and Chl-19 have an impaired activity in photosystem II (PS II), while in Chl-5 the electron transport is blocked between PS I and the reactions of CO2 fixation. Ultrathin sectioning demonstrates the presence of giant grana in the chloroplasts of Chl-1 and Chl-19, while the chloroplast structure of the Chl-5 is very similar to that of the wild-type. The grana of the Chl-19 mutant contain large multilamellar regions of tightly packed membranes. When the chloroplast membranes were studied by freeze-fracture, the exoplasmic and protoplasmic fracture faces (EF and PF, respectively) in both stacked and unstacked membranes were found to show large differences in particle concentrations and relative population area (per μm(2)), and also in particle size distribution, between all mutant chloroplast membranes and the wild-type. A close correlation between increasing kmt (ratio of particle concentrations on PF/EF) and PS II activity was observed. The differences in particle concentrations on both fracture faces in different regions of the intact chloroplast membranes of the wild-type are the consequence of a rearrangement of existing membrane components by lateral particle movements since quantitative measurements demonstrate almost complete conservation of intramembrane particles in number and size during the stacking of stroma thylakoid membranes. The results indicating particle movements strongly support the concept that the chloroplast membranes have a highly dynamic structure.

  7. Enzymology of Glutamine Metabolism Related to Senescence and Seed Development in the Pea (Pisum sativum L.) 1

    PubMed Central

    Storey, Richard; Beevers, Leonard

    1978-01-01

    The metabolism of glutamine in the leaf and subtended fruit of the aging pea (Pisum sativum L. cv. Burpeeana) has been studied in relation to changes in the protein, chlorophyll, and free amino acid content of each organ during ontogenesis. Glutamine synthetase [EC 6.3.1.2] activity was measured during development and senescence in each organ. Glutamate synthetase [EC 2.6.1.53] activity was followed in the pod and cotyledon during development and maturation. Maximal glutamine synthetase activity and free amino acid accumulation occurred together in the young leaf. Glutamine synthetase (in vitro) in leaf extracts greatly exceeded the requirement (in vivo) for reduced N in the organ. Glutamine synthetase activity, although declining in the senescing leaf, was sufficient (in vitro) to produce glutamine from all of the N released during protein hydrolysis (in vivo). Maximal glutamine synthetase activity in the pod was recorded 6 days after the peak accumulation of the free amino acids in this organ. In the young pod, free amino acids accumulated as glutamate synthetase activity increased. Maximal pod glutamate synthetase activity occurred simultaneously with maximal leaf glutamine synthetase activity, but 6 days prior to the corresponding maximum of glutamine synthetase in the pod. Cotyledonary glutamate synthetase activity increased during the assimilatory phase of embryo growth which coincided with the loss of protein and free amino acids from the leaf and pod; maximal activity was recorded simultaneously with maximal pod glutamine synthetase. We suggest that the activity of glutamine synthetase in the supply organs (leaf, pod) furnishes the translocated amide necessary for the N nutrition of the cotyledon. The subsequent activity of glutamate synthetase could provide a mechanism for the transfer of imported amide N to alpha amino N subsequently used in protein synthesis. In vitro measurements of enzyme activity indicate there was sufficient catalytic potential in

  8. Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca.

    PubMed

    Karunakaran, R; Ramachandran, V K; Seaman, J C; East, A K; Mouhsine, B; Mauchline, T H; Prell, J; Skeffington, A; Poole, P S

    2009-06-01

    Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.

  9. Effect of CO sub 2 enriched air on the kinetics of leaf expansion. [Pisum sativa; Glycine max

    SciTech Connect

    Potter, J.R. )

    1991-05-01

    Vegetative plants of Pisum sativum (pea) and Glycine max (soybean) were transferred from 350 to 1,200 ppm CO{sub 2} when they had one (pea) or two (soybean) mature leaves and several developing leaves. Controls were kept at 350 ppm. For pea, high CO{sub 2} for 8 days increased dry mass of root, stem, and leaf fractions by 30-50%. Leaf dry mass increase was due primarily to carbohydrate, particularly starch. Dawn levels of starch increased 10-fold within 1 day at high CO{sub 2} and 20-fold at 2 days. At 2 days after transfer leaf starch levels were 1.0 mg cm{sup {minus}2} of leaf area or nearly 30% of leaf dry weight. Soybean data are less complete, but 10 days at high CO{sub 2} increased leaf + stem dry mass by 50% and leaf weight per unit area increased by 14 and 48% at dawn within 1 and 2 days, respectively, at high CO{sub 2}. However 8-10 days at high CO{sub 2} increased total leaf area only slightly (about 15%) for both species, with all the leaf area increase occurring at nodes that were nearly microscopic at the time of transfer. For soybean, most of the increased leaf area due to high CO{sub 2} was from lateral bud break despite a high CO{sub 2} did not stimulated more leaves per plant. Apparently, extra photosynthate had a delayed effect on leaf expansion and did not increase nodes along the main axis. Leaf expansion under high CO{sub 2} was not limited by photosynthate.

  10. Transcriptomic Analysis of Rhizobium leguminosarum Biovar viciae in Symbiosis with Host Plants Pisum sativum and Vicia cracca▿ †

    PubMed Central

    Karunakaran, R.; Ramachandran, V. K.; Seaman, J. C.; East, A. K.; Mouhsine, B.; Mauchline, T. H.; Prell, J.; Skeffington, A.; Poole, P. S.

    2009-01-01

    Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is γ-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis. PMID:19376875

  11. Expression of the le Mutation in Young Ovaries of Pisum sativum and Its Effect on Fruit Development.

    PubMed Central

    Santes, C. M.; Hedden, P.; Sponsel, V. M.; Reid, J. B.; Garcia-Martinez, J. L.

    1993-01-01

    The effect of the le mutation on the growth and gibberellin (GA) content of developing fruits was investigated using the near-isogenic lines of Pisum sativum L. 205+ (LeLe) and 205- (lele). Although stem elongation is known to be reduced in 205- plants by approximately 65%, the growth of pods and seeds was unaffected by the le mutation. GA1, GA3, and GA20 stimulated parthenocarpic development of unpollinated ovaries on both 205+ and 205- plants. GA20 was less active on 205- ovaries than on 205+, whereas GA1 had similar, high activity in both lines. The activity of GA3 was even higher than that of GA1 in both lines. Decapitation of 205+ plants induced parthenocarpic development of unpollinated ovaries, but this treatment was much less effective on 205- plants. The contents of GA1 and GA8 in entire ovaries 6 d after anthesis, as well as in the pod and fertilized ovules, were substantially lower in 205- than in 205+ plants, whereas the reverse was true for the levels of GA20 and GA29. These results suggest that 3[beta]-hydroxylation of GA20 to GA1 is reduced in ovaries as well as in vegetative tissues. Thus, the le mutation appears to be expressed in young reproductive organs of the 205- line, even though it does not affect the fruit phenotype. Because the content of GA3 in the ovary was similar in the two lines, one explanation for the normal fruit size in the 205- line is that GA3 is the native regulator of pod growth. Alternatively, sufficient GA1 may still be produced in 205- fruits to maintain normal pod growth. PMID:12231727

  12. Hypoxic stress triggers a programmed cell death pathway to induce vascular cavity formation in Pisum sativum roots.

    PubMed

    Sarkar, Purbasha; Gladish, Daniel K

    2012-12-01

    Flooding at warm temperatures induces hypoxic stress in Pisum sativum seedling roots. In response, some undifferentiated cells in the primary root vascular cylinder start degenerating and form a longitudinal vascular cavity. Changes in cellular morphology and cell wall ultrastructure detected previously in the late stages of cavity formation suggest possible involvement of programmed cell death (PCD). In this study, cytological events occurring in the early stages of cavity formation were investigated. Systematic DNA fragmentation, a feature of many PCD pathways, was detected in the cavity-forming roots after 3 h of flooding in situ by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and in isolated total DNA by gel electrophoresis. High molecular weight DNA fragments of about 20-30 kb were detected by pulse-field gel electrophoresis, but no low-molecular weight internucleosomal DNA fragments were detected by conventional gel electrophoresis. Release of mitochondrial cytochrome c protein into the cytosol, an integral part of mitochondria-dependent PCD pathways, was detected in the cavity-forming roots within 2 h of flooding by fluorescence microscopy of immunolabeled cytochrome c in situ and in isolated mitochondrial and cytosolic protein fractions by western blotting. DNA fragmentation and cytochrome c release remained confined to the undifferentiated cells in center of the root vascular cylinders, even after 24 h of flooding, while outer vascular cylinder cells and cortical cells maintained cellular integrity and normal activity. These findings confirm that hypoxia-induced vascular cavity formation in P. sativum roots involves PCD, and provides a chronological model of cytological events involved in this rare and understudied PCD system.

  13. Recessive Resistance in Pisum sativum and Potyvirus Pathotype Resolved in a Gene-for-Cistron Correspondence between Host and Virus

    PubMed Central

    Johansen, I. Elisabeth; Lund, Ole Søgaard; Hjulsager, Charlotte K.; Laursen, Jesper

    2001-01-01

    Pea seed-borne mosaic potyvirus (PSbMV) isolates are divided into pathotypes P-1, P-2, and P-4 according to their infection profile on a panel of Pisum sativum lines. P. sativum PI 269818 is resistant to P-1 and P-2 isolates and is susceptible to P-4 isolates. Resistance to P-1 is inherited as a single recessive gene, denoted sbm-1, and the pathogenicity determinant has previously been mapped to the virus-coded protein VPg. In the cultivar Bonneville, a second recessive gene, sbm-2, confers specific resistance to P-2. By exchanging cistrons between a P-2 and a P-4 isolate, the P3-6k1 cistron was identified as the PSbMV host-specific pathogenicity determinant on Bonneville. Exchange of P3-6k1 did not affect infection on PI 269818, and infection of Bonneville was not altered by substitution of the VPg cistron, indicating that P3-6k1 and VPg are independent determinants of pathotype-specific infectivity. On PI 269818 the pathogenicity determinant of both P-1 and P-2 mapped to the N terminus of VPg. This suggests that VPg from the P-1 and P-2 isolates are functionally similar on this host and that resistance to P-1 and P-2 in PI 269818 may operate by the same mechanism. Identification of VPg–sbm-1 and P3-6k1–sbm-2 as independent pairs of genetic interactors between PSbMV and P. sativum provides a simple explanation of the three known pathotypes of PSbMV. Furthermore, analysis of β-glucuronidase-tagged P-2 virus indicated that sbm-2 resistance affected an early step in infection, implying that the P3-6k1 region plays a critical role in potyvirus replication or cell-to-cell movement. PMID:11413328

  14. Boron Supply Enhances Aluminum Tolerance in Root Border Cells of Pea (Pisum sativum) by Interacting with Cell Wall Pectins.

    PubMed

    Li, Xue Wen; Liu, Jia You; Fang, Jing; Tao, Lin; Shen, Ren Fang; Li, Ya Lin; Xiao, Hong Dong; Feng, Ying Ming; Wen, Hai Xiang; Guan, Jia Hua; Wu, Li Shu; He, Yong Ming; Goldbach, Heiner E; Yu, Min

    2017-01-01

    Aluminum (Al) toxicity is the primary factor limiting crop growth in acidic soils. Boron (B) alleviates Al toxicity in plants, which is mainly considered to be due to the formation of Rhamnogalacturonan II-B (RGII-B) complexes, which helps to stabilize the cytoskeleton. It is unclear yet whether this is due to the increasing of net negative charges and/or further mechanisms. Kinetics of Al accumulation and adsorption were investigated using entire cells, cell wall and pectin of root border cells (RBCs) of pea (Pisum sativum), to reveal the mechanism of B in interacting with alkali-soluble and chelator-soluble pectin for an increased Al tolerance in RBCs. The results show that B could rescue RBCs from Al-induced cell death by accumulating more Al in the cell wall, predominately in alkali-soluble pectin. Boron also promotes Al(3+) adsorption and inhibits Al(3+) desorption from alkali-soluble pectin. Thus, more Al(3+) is immobilized within the alkali-soluble pectin fraction and less in the chelator-soluble pectin, rendering Al(3+) less mobile. Boron induces an increase of RG-II (KDO,2-keto-3-deoxyoctonic acid) content for forming more borate-RGII complexes, and the decrease of pectin methyl-esterification, thus creates more negative charges to immobilize Al(3+) in cell wall pectin. The study provides evidence that abundant B supply enhances the immobilization of Al in alkali-soluble pectin, thus most likely reducing the entry of Al(3+) into the symplast from the surroundings.

  15. Key metabolic traits of Pisum sativum maintain cell vitality during Didymella pinodes infection: cultivar resistance and the microsymbionts' influence.

    PubMed

    Turetschek, Reinhard; Desalegn, Getinet; Epple, Tamara; Kaul, Hans-Peter; Wienkoop, Stefanie

    2017-03-06

    Ascochyta blight causes severe losses in field pea production and the search for resistance traits towards the causal agent Didymella pinodes is of particular importance for farmers. Various microsymbionts have been reported to shape the plants' immune response. However, regardless their contribution to resistance, they are hardly included in experimental designs. We delineate the effect of symbionts (rhizobia, mycorrhiza) on the leaf proteome and metabolome of two field pea cultivars with varying resistance levels against D. pinodes and, furthermore, show cultivar specific symbiont colonisation efficiency. The pathogen infection showed a stronger influence on the interaction with the microsymbionts in the susceptible cultivar, which was reflected in decreased nodule weight and root mycorrhiza colonisation. Vice versa, symbionts induced variation of the host's infection response which, however, was overruled by genotypic resistance associated traits of the tolerant cultivar such as maintenance of photosynthesis and provision of sugars and carbon back bones to fuel secondary metabolism. Moreover, resistance appears to be linked to sulphur metabolism, a functional glutathione-ascorbate hub and fine adjustment of jasmonate and ethylene synthesis to suppress induced cell death. We conclude that these metabolic traits are essential for sustainment of cell vitality and thus, a more efficient infection response. The infection response of two Pisum sativum cultivars with varying resistance levels towards Didymella pinodes was analysed most comprehensively at proteomic and metabolomic levels. Enhanced tolerance was linked to newly discovered cultivar specific metabolic traits such as hormone synthesis and presumably suppression of cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Enhancing Neoplasm Expression in Field Pea (Pisum sativum) via Intercropping and Its Significance to Pea Weevil (Bruchus pisorum) Management.

    PubMed

    Teshome, Abel; Bryngelsson, Tomas; Mendesil, Esayas; Marttila, Salla; Geleta, Mulatu

    2016-01-01

    Neoplasm formation, a non-meristematic tissue growth on young field pea (Pisum sativum L.) pods is triggered in the absence of UV light and/or in response to oviposition by pea weevil (Bruchus pisorum L.). This trait is expressed in some genotypes [neoplastic (Np) genotypes] of P. sativum and has the capacity to obstruct pea weevil larval entry into developing seeds. In the present study, 26% of the tested accessions depicted the trait when grown under greenhouse conditions. However, UV light inhibits full expression of this trait and subsequently it is inconspicuous at the field level. In order to investigate UV light impact on the expression of neoplasm, particular Np genotypes were subjected to UV lamp light exposure in the greenhouse and sunlight at the field level. Under these different growing conditions, the highest mean percentage of Np pods was in the control chamber in the greenhouse (36%) whereas in single and double UV lamp chambers, the percentage dropped to 10 and 15%, respectively. Furthermore, when the same Np genotypes were grown in the field, the percentage of Np pods dropped significantly (7%). In order to enhance Np expression at the field level, intercropping of Np genotypes with sorghum was investigated. As result, the percentage of Np pods was threefold in intercropped Np genotypes as compared to those without intercropping. Therefore, intercropping Np genotypes with other crops such as sorghum and maize can facilitate neoplasm formation, which in turn can minimize the success rate of pea weevil larvae entry into developing seeds. Greenhouse artificial infestation experiments showed that pea weevil damage in Np genotypes is lower in comparison to wild type genotypes. Therefore, promoting Np formation under field conditions via intercropping can serve as part of an integrated pea weevil management strategy especially for small scale farming systems.

  17. Primary and Secondary Abscission in Pisum sativum and Euphorbia pulcherrima-How Do They Compare and How Do They Differ?

    PubMed

    Hvoslef-Eide, Anne K; Munster, Cristel M; Mathiesen, Cecilie A; Ayeh, Kwadwo O; Melby, Tone I; Rasolomanana, Paoly; Lee, YeonKyeong

    2015-01-01

    Abscission is a highly regulated and coordinated developmental process in plants. It is important to understand the processes leading up to the event, in order to better control abscission in crop plants. This has the potential to reduce yield losses in the field and increase the ornamental value of flowers and potted plants. A reliable method of abscission induction in poinsettia (Euphorbia pulcherrima) flowers has been established to study the process in a comprehensive manner. By correctly decapitating buds of the third order, abscission can be induced in 1 week. AFLP differential display (DD) was used to search for genes regulating abscission. Through validation using qRT-PCR, more information of the genes involved during induced secondary abscission have been obtained. A study using two pea (Pisum sativum) mutants in the def (Developmental funiculus) gene, which was compared with wild type peas (tall and dwarf in both cases) was performed. The def mutant results in a deformed, abscission-less zone instead of normal primary abscission at the funiculus. RNA in situ hybridization studies using gene sequences from the poinsettia differential display, resulted in six genes differentially expressed for abscission specific genes in both poinsettia and pea. Two of these genes are associated with gene up- or down-regulation during the first 2 days after decapitation in poinsettia. Present and previous results in poinsettia (biochemically and gene expressions), enables a more detailed division of the secondary abscission phases in poinsettia than what has previously been described from primary abscission in Arabidopsis. This study compares the inducible secondary abscission in poinsettia and the non-abscising mutants/wild types in pea demonstrating primary abscission zones. The results may have wide implications on the understanding of abscission, since pea and poinsettia have been separated for 94-98 million years in evolution, hence any genes or processes in common

  18. Xyloglucan oligosaccharides promote growth and activate cellulase: Evidence for a role of cellulase in cell expansion. [Pisum sativum L

    SciTech Connect

    McDougall, G.J.; Fry, S.C. )

    1990-07-01

    Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose{sub 4} {center dot} xylose{sub 3} (XG7) core. The substituted oligosaccharides XG8 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose) and XG9n (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose{sub 2}) were more effective than XG7 itself and XG9 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose {center dot} fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10{sup {minus}4} molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of ({sup 3}H)xyloglucan to ethanol-soluble fragments. This suggests that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products).

  19. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum.

    PubMed

    Song, Juanjuan; Ye, Guoliang; Qian, Zhengjiang; Ye, Qing

    2016-12-01

    Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lpr), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lprc), and leaf cell hydraulic conductivity (Lplc) were investigated, using hydroponically grown Pea plants. Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lpr and K leaf were reduced by 29 %, and Lprc and Lplc were reduced by 20 and 29 %, respectively. Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.

  20. Metabolism of inositol(1,4,5)trisphosphate by a soluble enzyme fraction from pea (Pisum sativum) roots

    SciTech Connect

    Drobak, B.K.; Watkins, P.A.C.; Roberts, K. ); Chattaway, J.A. Univ. of East Anglia, Norwich ); Dawson, A.P. )

    1991-02-01

    Metabolism of the putative messenger molecule D-myo-inositol(1,4,5)trisphosphate (Ins(1,4,5)P{sub 3}) in plant cells has been studied using a soluble fraction from pea (pisum sativum) roots as enzyme source and (5-{sup 32}P)Ins(1,4,5)P{sub 3} and (2-{sup 3}H)Ins(1,4,5)P{sub 3} as tracers. Ins(1,4,5)P{sub 3} was rapidly converted into both lower and higher inositol phosphates. The major dephosphorylation product was inositol (4,5) bisphosphate (Ins(4,5)P{sub 2}) whereas inositol(1,4)bisphosphate (Ins(1,4)P{sub 2}) was only present in very small quantities throughout a 15 minute incubation period. In addition to these compounds, small amounts of nine other metabolites were produced including inositol and inositol(1,4,5,X)P{sub 4}. Dephosphorylation of Ins(1,4,5)P{sub 3} to Ins(4,5)P{sub 2} was dependent on Ins(1,4,5)P{sub 3} concentration and was partially inhibited by the phosphohydrolase inhibitors 2,3-diphosphoglycerate, glucose 6-phosphate, and p-nitrophenylphosphate. Conversion of Ins(1,4,5)P{sub 3} to Ins(4,5)P{sub 2} and Ins(1,4,5,X)P{sub 4} was inhibited by 55 micromolar Ca{sup 2+}. This study demonstrates that enzymes are present in plant tissues which are capable of rapidly converting Ins(1,4,5)P{sub 3} and that pathways of inositol phosphate metabolism exist which may prove to be unique to the plant kingdom.

  1. Boron Supply Enhances Aluminum Tolerance in Root Border Cells of Pea (Pisum sativum) by Interacting with Cell Wall Pectins

    PubMed Central

    Fang, Jing; Tao, Lin; Shen, Ren Fang; Li, Ya Lin; Xiao, Hong Dong; Feng, Ying Ming; Wen, Hai Xiang; Guan, Jia Hua; Wu, Li Shu; He, Yong Ming; Goldbach, Heiner E.; Yu, Min

    2017-01-01

    Aluminum (Al) toxicity is the primary factor limiting crop growth in acidic soils. Boron (B) alleviates Al toxicity in plants, which is mainly considered to be due to the formation of Rhamnogalacturonan II-B (RGII-B) complexes, which helps to stabilize the cytoskeleton. It is unclear yet whether this is due to the increasing of net negative charges and/or further mechanisms. Kinetics of Al accumulation and adsorption were investigated using entire cells, cell wall and pectin of root border cells (RBCs) of pea (Pisum sativum), to reveal the mechanism of B in interacting with alkali-soluble and chelator-soluble pectin for an increased Al tolerance in RBCs. The results show that B could rescue RBCs from Al-induced cell death by accumulating more Al in the cell wall, predominately in alkali-soluble pectin. Boron also promotes Al3+ adsorption and inhibits Al3+ desorption from alkali-soluble pectin. Thus, more Al3+ is immobilized within the alkali-soluble pectin fraction and less in the chelator-soluble pectin, rendering Al3+ less mobile. Boron induces an increase of RG-II (KDO,2-keto-3-deoxyoctonic acid) content for forming more borate-RGII complexes, and the decrease of pectin methyl-esterification, thus creates more negative charges to immobilize Al3+ in cell wall pectin. The study provides evidence that abundant B supply enhances the immobilization of Al in alkali-soluble pectin, thus most likely reducing the entry of Al3+ into the symplast from the surroundings. PMID:28533794

  2. Pisum sativum p68 DEAD-box protein is ATP-dependent RNA helicase and unique bipolar DNA helicase.

    PubMed

    Tuteja, Narendra; Tarique, Mohammed; Banu, Mst Sufara Akhter; Ahmad, Moaz; Tuteja, Renu

    2014-08-01

    DEAD-box helicases play essential role in DNA and RNA metabolism such as replication, repair, recombination, transcription, translation, ribosome biogenesis and splicing which regulate plant growth and development. The presence of helicases in the stress-induced ORFs identified by cDNA microarray indicates that helicases might be playing an important role in stabilizing growth in plants under stress. p68 DEAD-box helicase has been identified and characterized from animal systems but the properties and functions of plant p68 are poorly understood. In this study, the identification, purification and characterization of recombinant p68 from Pisum sativum (Psp68) is presented. Psp68 possesses all the characteristic motifs like DEAD-box ATP-binding and helicase C terminal motifs and is structurally similar to human p68 homologue. Psp68 exhibits ATPase activity in the presence of both DNA and RNA and it binds to DNA as well as RNA. It contains the characteristic RNA helicase activity. Interestingly Psp68 also shows the unique DNA helicase activity, which is bipolar in nature (unwinds DNA in both the 5'-3' and 3'-5' directions). The Km values of Psp68 for ATPase are 0.5126 and 0.9142 mM in the presence of DNA and RNA, respectively. The Km values of Psp68 are 1.6129 and 1.14 nM for DNA helicase and RNA helicase, respectively. The unique properties of Psp68 suggest that it could be a multifunctional protein involved in different aspect of DNA and RNA metabolism. This discovery should make an important contribution to better understanding of nucleic acids metabolism plants.

  3. Expression of arginine decarboxylase is induced during early fruit development and in young tissues of Pisum sativum (L.).

    PubMed

    Pérez-Amador, M A; Carbonell, J; Granell, A

    1995-09-01

    A cDNA coding for arginine decarboxylase (ADC, EC 4.1.1.19) has been isolated from a cDNA library of parthenocarpic young fruits of Pisum sativum (L.). The deduced aminoacid sequence is 74%, 46% and 35% identical to ADCs from tomato, oat and Escherichia coli, respectively. When the pea ADC cDNA was put under the control of the galactose inducible yeast promoter CYC1-GAL10 and introduced into Saccharomyces cerevisiae, it conferred galactose-regulated expression of the ADC activity. The ADC activity expressed in S. cerevisiae was inhibited 99% by alpha-DL-difluoromethylarginine (DFMA), a specific inhibitor of ADC activity. No activity was detected in the untransformed S. cerevisiae, nor when it was transformed with an antisense ADC construct. This provides direct evidence that the ADC cDNA from pea encoded a functional, specific ADC activity and that S. cerevisiae is able to process correctly the protein. In the pea plant, gene expression of the ADC is high in young developing tissues like shoot tips, young leaflets and flower buds. Fully expanded leaflets and roots have much lower, but still detectable, levels of the ADC transcript. In the ovary and fruit, they are developmentally regulated, showing high levels of expression during the early stages of fruit growth, which in pea is mainly due to cell expansion. The observed changes in the steady-state levels of ADC mRNA alone, however, cannot account for the differences in ADC activity suggesting that other regulatory mechanisms must be acting.

  4. A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase I activity.

    PubMed

    Pham, X H; Reddy, M K; Ehtesham, N Z; Matta, B; Tuteja, N

    2000-10-01

    DNA helicases play an essential role in all aspects of nucleic acid metabolism, by providing a duplex-unwinding function. This is the first report of the isolation of a cDNA (1.6 kb) clone encoding functional DNA helicase from a plant (pea, Pisum sativum). The deduced amino-acid sequence has eight conserved helicase motifs of the DEAD-box protein family. It is a unique member of this family, containing DESD and SRT motifs instead of DEAD/H and SAT. The encoded 45.5 kDa protein has been overexpressed in bacteria and purified to homogeneity. The purified protein contains ATP-dependent DNA and RNA helicase, DNA-dependent ATPase, and ATP-binding activities. The protein sequence contains striking homology with eIF-4A, which has not so far been reported as DNA helicase. The antibodies against pea helicase inhibit in vitro translation. The gene is expressed as 1.6 kb mRNA in different organs of pea. The enzyme is localized in the nucleus and cytosol, and unwinds DNA in the 3' to 5' direction. The pea helicase interacts with pea topoisomerase I protein and stimulates its activity. These results suggest that pea DNA helicase could be an important multifunctional protein involved in protein synthesis, maintaining the basic activities of the cell, and in upregulation of topoisomerase I activity. The discovery of such a protein with intrinsic multiple activity should make an important contribution to our better understanding of DNA and RNA transactions in plants.

  5. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes.

    PubMed

    Rivera-Becerril, Facundo; Calantzis, Catherine; Turnau, Katarzyna; Caussanel, Jean-Pierre; Belimov, Andrei A; Gianinazzi, Silvio; Strasser, Reto J; Gianinazzi-Pearson, Vivienne

    2002-05-01

    The role of arbuscular mycorrhiza in reducing Cd stress was investigated in three genotypes of Pisum sativum L. (cv. Frisson, VIR4788, VIR7128), grown in soil/sand pot cultures in the presence and absence of 2-3 mg kg(-1) bioavailable Cd, and inoculated or not with the arbuscular mycorrhizal fungus Glomus intraradices. Shoot, root and pod biomass were decreased by Cd in non-mycorrhizal plants. The presence of mycorrhiza attenuated the negative effect of Cd so that shoot biomass and activity of photosystem II, based on chlorophyll a fluorescence, were not significantly different between mycorrhizal plants growing in the presence or absence of the heavy metal (HM). Total P concentrations were not significantly different between mycorrhizal and non-mycorrhizal plants treated with Cd. From 20-50-fold more Cd accumulated in roots than in shoots of Cd-treated plants, and overall levels were comparable to other metal-accumulating plants. Genetic variability in Cd accumulation existed between the pea genotypes. Concentration of the HM was lowest in roots of VIR4788 and in pods of VIR4788 and VIR7128. G. intraradices inoculation decreased Cd accumulation in roots and pods of cv. Frisson, whilst high concentrations were maintained in roots and pods of mycorrhizal VIR7128. Shoot concentrations of Cd increased in mycorrhizal cv. Frisson and VIR4788. Sequestration of Cd in root cell walls and/or cytoplasm, measured by EDS/SEM, was comparable between non-mycorrhizal pea genotypes but considerably decreased in mycorrhizal cv. Frisson and VIR7128. Possible mechanisms for mycorrhiza buffering of Cd-induced stress in the pea genotypes are discussed.

  6. Primary and Secondary Abscission in Pisum sativum and Euphorbia pulcherrima—How Do They Compare and How Do They Differ?

    PubMed Central

    Hvoslef-Eide, Anne K.; Munster, Cristel M.; Mathiesen, Cecilie A.; Ayeh, Kwadwo O.; Melby, Tone I.; Rasolomanana, Paoly; Lee, YeonKyeong

    2016-01-01

    Abscission is a highly regulated and coordinated developmental process in plants. It is important to understand the processes leading up to the event, in order to better control abscission in crop plants. This has the potential to reduce yield losses in the field and increase the ornamental value of flowers and potted plants. A reliable method of abscission induction in poinsettia (Euphorbia pulcherrima) flowers has been established to study the process in a comprehensive manner. By correctly decapitating buds of the third order, abscission can be induced in 1 week. AFLP differential display (DD) was used to search for genes regulating abscission. Through validation using qRT-PCR, more information of the genes involved during induced secondary abscission have been obtained. A study using two pea (Pisum sativum) mutants in the def (Developmental funiculus) gene, which was compared with wild type peas (tall and dwarf in both cases) was performed. The def mutant results in a deformed, abscission-less zone instead of normal primary abscission at the funiculus. RNA in situ hybridization studies using gene sequences from the poinsettia differential display, resulted in six genes differentially expressed for abscission specific genes in both poinsettia and pea. Two of these genes are associated with gene up- or down-regulation during the first 2 days after decapitation in poinsettia. Present and previous results in poinsettia (biochemically and gene expressions), enables a more detailed division of the secondary abscission phases in poinsettia than what has previously been described from primary abscission in Arabidopsis. This study compares the inducible secondary abscission in poinsettia and the non-abscising mutants/wild types in pea demonstrating primary abscission zones. The results may have wide implications on the understanding of abscission, since pea and poinsettia have been separated for 94–98 million years in evolution, hence any genes or processes in common

  7. Diversification of MIF immune regulators in aphids: link with agonistic and antagonistic interactions.

    PubMed

    Dubreuil, Géraldine; Deleury, Emeline; Crochard, Didier; Simon, Jean-Christophe; Coustau, Christine

    2014-09-05

    The widespread use of genome sequencing provided evidences for the high degree of conservation in innate immunity signalling pathways across animal phyla. However, the functioning and evolutionary history of immune-related genes remains unknown for most invertebrate species. A striking observation coming from the analysis of the pea aphid Acyrthosiphon pisum genome is the absence of important conserved genes known to be involved in the antimicrobial responses of other insects. This reduction in antibacterial immune defences is thought to be related to their long-term association with beneficial symbiotic bacteria and to facilitate symbiont maintenance. An additional possibility to avoid elimination of mutualistic symbionts is a fine-tuning of the host immune response. To explore this hypothesis we investigated the existence and potential involvement of immune regulators in aphid agonistic and antagonistic interactions. In contrast to the limited antibacterial arsenal, we showed that the pea aphid Acyrthosiphon pisum expresses 5 members of Macrophage Migration Inhibitory Factors (ApMIF), known to be key regulators of the innate immune response. In silico searches for MIF members in insect genomes followed by phylogenetic reconstruction suggest that evolution of MIF genes in hemipteran species has been shaped both by differential losses and serial duplications, raising the question of the functional importance of these genes in aphid immune responses. Expression analyses of ApMIFs revealed reduced expression levels in the presence, or during the establishment of secondary symbionts. By contrast, ApMIFs expression levels significantly increased upon challenge with a parasitoid or a Gram-negative bacteria. This increased expression in the presence of a pathogen/parasitoid was reduced or missing, in the presence of facultative symbiotic bacteria. This work provides evidence that while aphid's antibacterial arsenal is reduced, other immune genes widely absent from insect

  8. Aquaculture Genomics

    USDA-ARS?s Scientific Manuscript database

    The genomics chapter covers the basics of genome mapping and sequencing and the current status of several relevant species. The chapter briefly describes the development and use of (cDNA, BAC, etc.) libraries for mapping and obtaining specific sequence information. Other topics include comparative ...

  9. Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum).

    PubMed

    Mahajan, Shilpi; Sopory, Sudhir K; Tuteja, Narendra

    2006-03-01

    The studies on calcium sensor calcineurin B-like protein (CBL) and CBL interacting protein kinases (CIPK) are limited to Arabidopsis and rice and their functional role is only beginning to emerge. Here, we present cloning and characterization of a protein kinase (PsCIPK) from a legume, pea, with novel properties. The PsCIPK gene is intronless and encodes a protein that showed partial homology to the members of CIPK family. The recombinant PsCIPK protein was autophosphorylated at Thr residue(s). Immunoprecipitation and yeast two-hybrid analysis showed direct interaction of PsCIPK with PsCBL, whose cDNA and genomic DNA were also cloned in this study. PsCBL showed homology to AtCBL3 and contained calcium-binding activity. We demonstrate for the first time that PsCBL is phosphorylated at its Thr residue(s) by PsCIPK. Immunofluorescence/confocal microscopy showed that PsCBL is exclusively localized in the cytosol, whereas PsCIPK is localized in the cytosol and the outer membrane. The exposure of plants to NaCl, cold and wounding co-ordinately upregulated the expression of PsCBL and PsCIPK genes. The transcript levels of both genes were also coordinately stimulated in response to calcium and salicylic acid. However, drought and abscisic acid had no effect on the expression of these genes. These studies show the ubiquitous presence of CBL/CIPK in higher plants and enhance our understanding of their role in abiotic and biotic stress signalling.

  10. Antarctic Genomics

    PubMed Central

    Clarke, Andrew; Cockell, Charles S.; Convey, Peter; Detrich III, H. William; Fraser, Keiron P. P.; Johnston, Ian A.; Methe, Barbara A.; Murray, Alison E.; Peck, Lloyd S.; Römisch, Karin; Rogers, Alex D.

    2004-01-01

    With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies. PMID:18629155

  11. Recovery from Photoinhibition in Peas (Pisum sativum L.) Acclimated to Varying Growth Irradiances (Role of D1 Protein Turnover).

    PubMed Central

    Aro, E. M.; McCaffery, S.; Anderson, J. M.

    1994-01-01

    D1 protein turnover and restoration of the photochemical efficiency of photosystem II (PSII) after photoinhibition of pea leaves (Pisum sativum L. cv Greenfeast) acclimated to different light intensities were investigated. All peas acclimated to different light intensities were able to recover from photoinhibition, at least partially, at light intensities far above their growth light irradiance. However, the capacity of pea leaves to recover from photoinhibition under increasing high irradiances was strictly dependent on the light acclimation of the leaves; i.e. the higher the irradiance during growth, the better the capacity of pea leaves to recover from photoinhibition at moderate and high light. In our experimental conditions, mainly D1 protein turnover-dependent recovery was monitored, since in the presence of an inhibitor of chloroplast-encoded protein synthesis, lincomycin, only negligible recovery took place. In darkness, neither the restoration of PSII photochemical efficiency nor any notable degradation of damaged D1 protein took place. In low light, however, good recovery of PSII occurred in all peas acclimated to different light intensities and was accompanied by fast degradation of the D1 protein. The rate of degradation of the D1 protein was estimated to be 3 to 4 times faster in photoinhibited leaves than in nonphotoinhibited leaves under the recovery conditions of 50 [mu]mol of photons m-2 s-1. In moderate light of 400 [mu]mol of photons m-2 s-1, the photoinhibited low-light peas were not able to increase further the rate of D1 protein degradation above that observed in nonphotoinhibited leaves, nor was the restoration of PSII function possible. On the other hand, photoinhibited high-light leaves were able to increase the rate of D1 protein degradation above that of nonphotoinhibited leaves even in moderate and high light, ensuring at least partial restoration of PSII function. We conclude that the capacity of photoinhibited leaves to restore PSII

  12. Photosynthesis light-independent reactions are sensitive biomarkers to monitor lead phytotoxicity in a Pb-tolerant Pisum sativum cultivar.

    PubMed

    Rodriguez, Eleazar; da Conceição Santos, Maria; Azevedo, Raquel; Correia, Carlos; Moutinho-Pereira, José; Ferreira de Oliveira, José Miguel Pimenta; Dias, Maria Celeste

    2015-01-01

    Lead (Pb) environmental contamination remains prevalent. Pisum sativum L. plants have been used in ecotoxicological studies, but some cultivars showed to tolerate and accumulate some levels of Pb, opening new perspectives to their use in phytoremediation approaches. However, the putative use of pea plants in phytoremediation requires reliable toxicity endpoints. Here, we evaluated the sensitivity of a large number of photosynthesis-related biomarkers in Pb-exposed pea plants. Plants (cv. "Corne de Bélier") were exposed to Pb concentrations up to 1,000 mg kg(-1) soil during 28 days. The photosynthetic potential biomarkers that were analyzed included pigments, chlorophyll (Chl) a fluorescence, gas exchange, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activity, and carbohydrates. Flow cytometry (FCM) was also used to assess the morpho-functional status of chloroplasts. Finally, Pb-induced nutrient disorders were also evaluated. Net CO2 assimilation rate (A) and RuBisCO activity decreased strongly in Pb-exposed plants. Plant dry mass (DM) accumulation, however, was only reduced in the higher Pb concentrations tested (500 and 1,000 mg kg(-1) soil). Pigment contents increased solely in plants exposed to the largest Pb concentration, and in addition, the parameters related to the light-dependent reactions of photosynthesis, Fv/Fm and ΦPSII, were not affected by Pb exposure. In contrast to this, carbohydrates showed an overall tendency to increase in Pb-exposed plants. The morphological status of chloroplasts was affected by Pb exposure, with a general trend of volume decrease and granularity increase. These results point the endpoints related to the light-independent reactions of photosynthesis as more sensitive predictors of Pb-toxicity than the light-dependent reactions ones. Among the endpoints related to the light-independent photosynthesis reactions, RuBisCO activity and A were found to be the most sensitive. We discuss here the advantages of using

  13. Geographical Gradient of the eIF4E Alleles Conferring Resistance to Potyviruses in Pea (Pisum) Germplasm

    PubMed Central

    Konečná, Eva; Šafářová, Dana; Navrátil, Milan; Hanáček, Pavel; Coyne, Clarice; Flavell, Andrew; Vishnyakova, Margarita; Ambrose, Mike; Redden, Robert; Smýkal, Petr

    2014-01-01

    Background The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the eIF4E gene to identify novel genetic diversity. Methodology/Principal findings Germplasm of 2803 pea accessions was screened for eIF4E intron 3 length polymorphism, resulting in the detection of four eIF4EA-B-C-S variants, whose distribution was geographically structured. The eIF4EA variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, eIF4EB, was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The eIF4EC variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The eIF4ES variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (eIF4EA-1-2-3-4-5-6-7, eIF4EB-1, eIF4EC-2) conferred resistance to the P1 PSbMV pathotype. Conclusions/Significance This work identified novel eIF4E alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible eIF4ES1 allele. Despite high variation present in wild Pisum accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis

  14. Solvent hydrogen isotope effects and anion inhibition of CO2 hydration catalysed by carbonic anhydrase from Pisum sativum.

    PubMed

    Johansson, I M; Forsman, C

    1994-09-15

    Chloroplast carbonic anhydrase from Pisum sativum has been studied to elucidate the catalytic mechanism and to test if the mechanism proposed for human carbonic anhydrase II is also valid for pea carbonic anhydrase. The catalytic activity was found to depend on the chemical nature of the buffer. Barbital buffer gives the highest turnover number at infinite buffer concentration and the lowest Km value with respect to the buffer, while the kinetic parameters obtained in the imidazole-type buffer, 1-methylimidazole, do not differ from those obtained using the biological-type buffer Mops. The anion inhibition of CO2 hydration was investigated using SCN- at pH 6-9. The binding of the anion was found to be pH dependent with the strongest interaction at low pH. We obtained an uncompetitive inhibition pattern at high pH and noncompetitive inhibition patterns at pH 7 and low pH. The catalytic mechanism was further tested by measurements of the solvent hydrogen isotope effects on the kinetic parameters for CO2 hydration. The observed effects were comparatively small with a kcat value of approximately 2 irrespective of the pH. The effect on kcat/Km and on Km changes when going from high pH to pH 7 and low pH. At high pH, the solvent isotope effect in Km is at least 3, giving a value below 1 for kcat/Km, while at pH 7 and low pH the major effect is found in kcat/Km with values of 2.6 and 2.9. The dependence of the CO2-hydration activity on the buffer concentration is in agreement with a ping-pong mechanism with buffer acting as a second substrate. This is analogous to the behaviour of human carbonic anhydrase II. The inhibition patterns and the observed isotope effects at high pH can also be explained within the framework of the catalytic mechanism for human carbonic anhydrase II, with a rate-determining and buffer-dependent part. The results are consistent with a mechanism involving a proton transfer that contributes to rate limitation. However, the isotope effects found at p

  15. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces

    PubMed Central

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders. PMID:26809053

  16. Geographical gradient of the eIF4E alleles conferring resistance to potyviruses in pea (Pisum) germplasm.

    PubMed

    Konečná, Eva; Šafářová, Dana; Navrátil, Milan; Hanáček, Pavel; Coyne, Clarice; Flavell, Andrew; Vishnyakova, Margarita; Ambrose, Mike; Redden, Robert; Smýkal, Petr

    2014-01-01

    The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the eIF4E gene to identify novel genetic diversity. Germplasm of 2803 pea accessions was screened for eIF4E intron 3 length polymorphism, resulting in the detection of four eIF4E(A-B-C-S) variants, whose distribution was geographically structured. The eIF4E(A) variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, eIF4E(B), was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The eIF4E(C) variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The eIF4E(S) variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (eIF4E(A-1-2-3-4-5-6-7), eIF4E(B-1), eIF4E(C-2)) conferred resistance to the P1 PSbMV pathotype. This work identified novel eIF4E alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible eIF4E(S1) allele. Despite high variation present in wild Pisum accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis to study the co-evolution of potyviruses and the

  17. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces.

    PubMed

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders.

  18. The cadmium-tolerant pea (Pisum sativum L.) mutant SGECdt is more sensitive to mercury: assessing plant water relations.

    PubMed

    Belimov, Andrey A; Dodd, Ian C; Safronova, Vera I; Malkov, Nikita V; Davies, William J; Tikhonovich, Igor A

    2015-04-01

    Heavy metals have multiple effects on plant growth and physiology, including perturbation of plant water status. These effects were assessed by exposing the unique Cd-tolerant and Cd-accumulating pea (Pisum sativum L.) mutant SGECd(t) and its wild-type (WT) line SGE to either cadmium (1, 4 μM CdCl2) or mercury (0.5, 1, 2 μM HgCl2) in hydroponic culture for 12 days. When exposed to Cd, SGECd(t) accumulated more Cd in roots, xylem sap, and shoot, and had considerably more biomass than WT plants. WT plants lost circa 0.2 MPa turgor when grown in 4 μM CdCl2, despite massive decreases in whole-plant transpiration rate and stomatal conductance. In contrast, root Hg accumulation was similar in both genotypes, but WT plants accumulated more Hg in leaves and had a higher stomatal conductance, and root and shoot biomass compared with SGECd(t). Shoot excision resulted in greater root-pressure induced xylem exudation of SGECd(t) in the absence of Cd or Hg and following Cd exposure, whereas the opposite response or no genotypic differences occurred following Hg exposure. Exposing plants that had not been treated with metal to 50 μM CdCl2 for 1h increased root xylem exudation of WT, whereas 50 μM HgCl2 inhibited and eliminated genotypic differences in root xylem exudation, suggesting differences between WT and SGECd(t) plants in aquaporin function. Thus, root water transport might be involved in mechanisms of increased tolerance and accumulation of Cd in the SGECd(t) mutant. However, the lack of cross-tolerance to Cd and Hg stress in the mutant indicates metal-specific mechanisms related to plant adaptation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Modulation of CuO nanoparticles toxicity to green pea (Pisum sativum Fabaceae) by the phytohormone indole-3-acetic acid.

    PubMed

    Ochoa, Loren; Medina-Velo, Illya A; Barrios, Ana C; Bonilla-Bird, Nestor J; Hernandez-Viezcas, Jose A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2017-11-15

    The response of plants to copper oxide nanoparticles (nano-CuO) in presence of exogenous phytohormones is unknown. In this study, green pea (Pisum sativum) plants were cultivated to full maturity in soil amended with nano-CuO (10-100nm, 74.3% Cu), bulk-CuO (bCuO, 100-10,000nm, 79.7% Cu), and CuCl2 at 50 and 100mg/kg and indole-3-acetic acid (IAA) at 10 and 100μM. Results showed that IAA at 10 and 100μM, averaged over all Cu treatments, reduced the number of plants by ~23% and ~34%, respectively. IAA at 10μM, nano-CuO at 50mg/kg, b-CuO at 50mg/kg, and CuCl2 at 100mg/kg reduced pod biomass by about 50%. Although some combinations of IAA, mainly at 100μM, with the Cu compounds altered nutrient accumulation in tissues, none of them affected pod elements. Conversely, without IAA, nano-CuO at 50mg/kg, increased pod Fe and Ni by 258% and 325%, respectively, while bCuO at 100mg/kg increased pod Ni by 275%, compared with control. With IAA at 10μM, nano-CuO (100mg/kg) and bCuO (50mg/kg) increased stem Cu by ~84% and ~78%. When IAA increased to 100μM, nano-CuO and bCuO reduced stem Ca by 32% and 37%, and Mg by ~35%. Results suggest that both the nano-CuO and bCuO could improve the nutritional quality of pea pods, while exogenous IAA combined with Cu-based compounds could impact green pea production since these treatments reduced the number of plants and pod biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization.

    PubMed

    Serova, Tatiana A; Tikhonovich, Igor A; Tsyganov, Viktor E

    2017-05-01

    A delay in the senescence of symbiotic nodules could prolong active nitrogen fixation, resulting in improved crop yield and a reduced need for chemical fertilizers. The molecular genetic mechanisms underlying nodule senescence have not been extensively studied with a view to breeding varieties with delayed nodule senescence. In such studies, plant mutants with the phenotype of premature degradation of symbiotic structures are useful models to elucidate the genetic basis of nodule senescence. Using a dataset from transcriptome analysis of Medicago truncatula Gaertn. nodules and previous studies on pea (Pisum sativum L.) nodules, we developed a set of molecular markers based on genes that are known to be activated during nodule senescence. These genes encode cysteine proteases, a thiol protease, a bZIP transcription factor, enzymes involved in the biosynthesis of ethylene (ACS2 for ACC synthase and ACO1 for ACC oxidase) and ABA (AO3 for aldehyde oxidase), and an enzyme involved in catabolism of gibberellins (GA 2-oxidase). We analyzed the transcript levels of these genes in the nodules of two pea wild-types (cv. Sparkle and line Sprint-2) and two mutant lines, one showing premature nodule senescence (E135F (sym13)) and one showing no morphological signs of symbiotic structure degradation (Sprint-2Fix(-) (sym31)). Real-time PCR analyses revealed that all of the selected genes showed increased transcript levels during nodule aging in all phenotypes. Remarkably, at 4 weeks after inoculation (WAI), the transcript levels of all analyzed genes were significantly higher in the early senescent nodules of the mutant line E135F (sym13) and in nodules of the mutant Sprint-2Fix(-) (sym31) than in the active nitrogen-fixing nodules of wild-types. In contrast, the transcript levels of the same genes of both wild-types were significantly increased only at 6 WAI. We evaluated the expression of selected markers in the different histological nodule zones of pea cv. Sparkle and its

  1. Differential Toxicity of Bare and Hybrid ZnO Nanoparticles in Green Pea (Pisum sativum L.): A Life Cycle Study.

    PubMed

    Mukherjee, Arnab; Sun, Youping; Morelius, Erving; Tamez, Carlos; Bandyopadhyay, Susmita; Niu, Genhua; White, Jason C; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-01-01

    The effect of surface or lattice modification of nanoparticles (NPs) on terrestrial plants is poorly understood. We investigated the impact of different zinc oxide (ZnO) NPs on green pea (Pisum sativum L.), one of the highest consumed legumes globally. Pea plants were grown for 65 d in soil amended with commercially available bare ZnO NPs (10 nm), 2 wt% alumina doped (Al2O3@ZnO NPs, 15 nm), or 1 wt% aminopropyltriethoxysilane coated NPs (KH550@ZnO NP, 20 nm) at 250 and 1000 mg NP/kg soil inside a greenhouse. Bulk (ZnO) and ionic Zn (zinc chloride) were included as controls. Plant fresh and dry biomass, changes in leaf pigment concentrations, elements (Zn, Al, Si), and protein and carbohydrate profile of green pees were quantified upon harvest at 65 days. With the exception of the coated 1000 mg/kg NP treatment, fresh and dry weight were unaffected by Zn exposure. Although, all treated plants showed higher tissue Zn than controls, those exposed to Al2O3@ZnO NPs at 1000 mg/kg had greater Zn concentration in roots and seeds, compared to bulk Zn and the other NP treatments, keeping Al and Si uptake largely unaffected. Higher Zn accumulation in green pea seeds were resulted in coated ZnO at 250 mg/kg treatments. In leaves, Al2O3@ZnO NP at 250 mg/kg significantly increased Chl-a and carotenoid concentrations relative to the bulk, ionic, and the other NP treatments. The protein and carbohydrate profiles remained largely unaltered across all treatments with the exception of Al2O3@ZnO NPs at 1000 mg/kg where sucrose concentration of green peas increased significantly, which is likely a biomarker of stress. Importantly, these findings demonstrate that lattice and surface modification can significantly alter the fate and phytotoxic effects of ZnO NPs in food crops and seed nutritional quality. To the authors' knowledge, this is the first report of a life cycle study on comparative toxicity of bare, coated, and doped ZnO NPs on a soil-grown food crop.

  2. Development and Partial Characterization of Nearly Isogenic Pea Lines (Pisum sativum L.) that Alter Uptake Hydrogenase Activity in Symbiotic Rhizobium.

    PubMed

    Phillips, D A; Kapulnik, Y; Bedmar, E J; Joseph, C M

    1990-04-01

    Some Rhizobium bacteria have H(2)-uptake (Hup) systems that oxidize H(2) evolved from nitrogenase in leguminous root nodules. Pea (Pisum sativum L.) cultivars ;JI1205' and ;Alaska' produce high Hup (Hup(++)) and moderate Hup (Hup(+)) phenotypes, respectively, in Rhizobium leguminosarum 128C53. The physiological significance and biochemical basis of this host plant genetic effect are unknown. The purpose of this investigation was to advance basic Hup studies by developing nearly isogenic lines of peas that alter Hup phenotypes in R. leguminosarum strains containing hup genes. Eight pairs of nearly isogenic pea lines that produce Hup(++) and Hup(+) phenotypes in R. leguminosarum 128C53 were identified in 173 F(2)-derived F(6) families produced from crosses between JI1205 and Alaska. Tests with the pea isolines and three strains of hup-containing R. leguminosarum showed that the isolines altered Hup activity significantly (P

  3. Differential Toxicity of Bare and Hybrid ZnO Nanoparticles in Green Pea (Pisum sativum L.): A Life Cycle Study

    PubMed Central

    Mukherjee, Arnab; Sun, Youping; Morelius, Erving; Tamez, Carlos; Bandyopadhyay, Susmita; Niu, Genhua; White, Jason C.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2016-01-01

    The effect of surface or lattice modification of nanoparticles (NPs) on terrestrial plants is poorly understood. We investigated the impact of different zinc oxide (ZnO) NPs on green pea (Pisum sativum L.), one of the highest consumed legumes globally. Pea plants were grown for 65 d in soil amended with commercially available bare ZnO NPs (10 nm), 2 wt% alumina doped (Al2O3@ZnO NPs, 15 nm), or 1 wt% aminopropyltriethoxysilane coated NPs (KH550@ZnO NP, 20 nm) at 250 and 1000 mg NP/kg soil inside a greenhouse. Bulk (ZnO) and ionic Zn (zinc chloride) were included as controls. Plant fresh and dry biomass, changes in leaf pigment concentrations, elements (Zn, Al, Si), and protein and carbohydrate profile of green pees were quantified upon harvest at 65 days. With the exception of the coated 1000 mg/kg NP treatment, fresh and dry weight were unaffected by Zn exposure. Although, all treated plants showed higher tissue Zn than controls, those exposed to Al2O3@ZnO NPs at 1000 mg/kg had greater Zn concentration in roots and seeds, compared to bulk Zn and the other NP treatments, keeping Al and Si uptake largely unaffected. Higher Zn accumulation in green pea seeds were resulted in coated ZnO at 250 mg/kg treatments. In leaves, Al2O3@ZnO NP at 250 mg/kg significantly increased Chl-a and carotenoid concentrations relative to the bulk, ionic, and the other NP treatments. The protein and carbohydrate profiles remained largely unaltered across all treatments with the exception of Al2O3@ZnO NPs at 1000 mg/kg where sucrose concentration of green peas increased significantly, which is likely a biomarker of stress. Importantly, these findings demonstrate that lattice and surface modification can significantly alter the fate and phytotoxic effects of ZnO NPs in food crops and seed nutritional quality. To the authors' knowledge, this is the first report of a life cycle study on comparative toxicity of bare, coated, and doped ZnO NPs on a soil-grown food crop. PMID:26793219

  4. Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil.

    PubMed

    Cohen, Clara K; Garvin, David F; Kochian, Leon V

    2004-03-01

    Fe uptake in dicotyledonous plants is mediated by a root plasma membrane-bound ferric reductase that reduces extracellular Fe(III)-chelates, releasing Fe(2+) ions, which are then absorbed via a metal ion transporter. We previously showed that Fe deficiency induces an increased capacity to absorb Fe and other micronutrient and heavy metals such as Zn(2+) and Cd(2+) into pea ( Pisum sativum L.) roots [Cohen et al. (1998) Plant Physiol 116:1063-1072). To investigate the molecular basis for this phenomenon, an Fe-regulated transporter that is a homologue of the Arabidopsis IRT1 micronutrient transporter was isolated from pea seedlings. This cDNA clone, designated RIT1 for root iron transporter, encodes a 348 amino acid polypeptide with eight putative membrane-spanning domains that is induced under Fe deficiency and can functionally complement yeast mutants defective in high- and low-affinity Fe transport. Chelate buffer techniques were used to control Fe(2+) in the uptake solution at nanomolar activities representative of those found in the rhizosphere, and radiotracer methodologies were employed to show that RIT1 is a very high-affinity (59)Fe(2+) uptake system ( K(m) =54-93 nM). Additionally, radiotracer ((65)Zn, (109)Cd) flux techniques were used to show that RIT can also mediate a lower affinity Zn and Cd influx ( K(m) of 4 and 100 microM, for Zn(2+) and Cd(2+), respectively). These findings suggest that, in typical agricultural soils, RIT1 functions primarily as a high-affinity Fe(2+) transporter that mediates root Fe acquisition. This is consistent with recent findings with Arabidopsis IRT1 knockout mutants that strongly suggest that this transporter plays a key role in root Fe uptake and nutrition. However, the ability of RIT1 to facilitate Zn and Cd uptake when these metals are present at elevated concentrations suggests that RIT1 may be one pathway for the entry of toxic metals into the food chain. Furthermore, the finding that plant Fe deficiency status may

  5. Immunolocalization of pectic polysaccharides during abscission in pea seeds (Pisum sativum L.) and in abscission less def pea mutant seeds.

    PubMed

    Lee, YeonKyeong; Ayeh, Kwadwo Owusu; Ambrose, Mike; Hvoslef-Eide, Anne Kathrine

    2016-08-31

    In pea seeds (Pisum sativum L.), the presence of the Def locus determines abscission event between its funicle and the seed coat. Cell wall remodeling is a necessary condition for abscission of pea seed. The changes in cell wall components in wild type (WT) pea seed with Def loci showing seed abscission and in abscission less def mutant peas were studied to identify the factors determining abscission and non-abscission event. Changes in pectic polysaccharides components were investigated in WT and def mutant pea seeds using immunolabeling techniques. Pectic monoclonal antibodies (1 → 4)-β-D-galactan (LM5), (1 → 5)-α-L-arabinan(LM6), partially de-methyl esterified homogalacturonan (HG) (JIM5) and methyl esterified HG (JIM7) were used for this study. Prior to abscission zone (AZ) development, galactan and arabinan reduced in the predestined AZ of the pea seed and disappeared during the abscission process. The AZ cells had partially de-methyl esterified HG while other areas had highly methyl esterified HG. A strong JIM5 labeling in the def mutant may be related to cell wall rigidity in the mature def mutants. In addition, the appearance of pectic epitopes in two F3 populations resulting from cross between WT and def mutant parents was studied. As a result, we identified that homozygous dominant lines (Def/Def) showing abscission and homozygous recessive lines (def/def) showing non-abscission had similar immunolabeling pattern to their parents. However, the heterogeneous lines (Def/def) showed various immunolabeling pattern and the segregation pattern of the Def locus. Through the study of the complexity and variability of pectins in plant cell walls as well as understanding the segregation patterns of the Def locus using immunolabeling techniques, we conclude that cell wall remodeling occurs in the abscission process and de-methyl esterification may play a role in the non-abscission event in def mutant. Overall, this study contributes new insights into

  6. Das Lektin aus der Erbse Pisum sativum : Bindungsstudien, Monomer-Dimer-Gleichgewicht und Rückfaltung aus Fragmenten

    NASA Astrophysics Data System (ADS)

    Küster, Frank

    2002-11-01

    Das Lektin aus Pisum sativum, der Gartenerbse, ist Teil der Familie der Leguminosenlektine. Diese Proteine haben untereinander eine hohe Sequenzhomologie, und die Struktur ihrer Monomere, ein all-ß-Motiv, ist hoch konserviert. Dagegen gibt es innerhalb der Familie eine große Vielfalt an unterschiedlichen Quartärstrukturen, die Gegenstand kristallographischer und theoretischer Arbeiten waren. Das Erbsenlektin ist ein dimeres Leguminosenlektin mit einer Besonderheit in seiner Struktur: Nach der Faltung in der Zelle wird aus einem Loop eine kurze Aminosäuresequenz herausgeschnitten, so dass sich in jeder Untereinheit zwei unabhängige Polypeptidketten befinden. Beide Ketten sind aber stark miteinander verschränkt und bilden eine gemeinsame strukturelle Domäne. Wie alle Lektine bindet Erbsenlektin komplexe Oligosaccharide, doch sind seine physiologische Rolle und der natürliche Ligand unbekannt. In dieser Arbeit wurden Versuche zur Entwicklung eines Funktionstests für Erbsenlektin durchgeführt und seine Faltung, Stabilität und Monomer-Dimer-Gleichgewicht charakterisiert. Um die spezifische Rolle der Prozessierung für Stabilität und Faltung zu untersuchen, wurde ein unprozessiertes Konstrukt in E. coli exprimiert und mit der prozessierten Form verglichen. Beide Proteine zeigen die gleiche kinetische Stabilität gegenüber chemischer Denaturierung. Sie denaturieren extrem langsam, weil nur die isolierten Untereinheiten entfalten können und das Monomer-Dimer-Gleichgewicht bei mittleren Konzentrationen an Denaturierungsmittel auf der Seite der Dimere liegt. Durch die extrem langsame Entfaltung zeigen beide Proteine eine apparente Hysterese im Gleichgewichtsübergang, und es ist nicht möglich, die thermodynamische Stabilität zu bestimmen. Die Stabilität und die Geschwindigkeit der Assoziation und Dissoziation in die prozessierten bzw. nichtprozessierten Untereinheiten sind für beide Proteine gleich. Darüber hinaus konnte gezeigt werden, dass auch unter

  7. Light- induced electron transfer and ATP synthesis in a carotene synthesizing insect

    NASA Astrophysics Data System (ADS)

    Valmalette, Jean Christophe; Dombrovsky, Aviv; Brat, Pierre; Mertz, Christian; Capovilla, Maria; Robichon, Alain

    2012-08-01

    A singular adaptive phenotype of a parthenogenetic insect species (Acyrthosiphon pisum) was selected in cold conditions and is characterized by a remarkable apparition of a greenish colour. The aphid pigments involve carotenoid genes well defined in chloroplasts and cyanobacteria and amazingly present in the aphid genome, likely by lateral transfer during evolution. The abundant carotenoid synthesis in aphids suggests strongly that a major and unknown physiological role is related to these compounds beyond their canonical anti-oxidant properties. We report here that the capture of light energy in living aphids results in the photo induced electron transfer from excited chromophores to acceptor molecules. The redox potentials of molecules involved in this process would be compatible with the reduction of the NAD+ coenzyme. This appears as an archaic photosynthetic system consisting of photo-emitted electrons that are in fine funnelled into the mitochondrial reducing power in order to synthesize ATP molecules.

  8. Genome databases

    SciTech Connect

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  9. Genome Sequencing.

    PubMed

    Verma, Mansi; Kulshrestha, Samarth; Puri, Ayush

    2017-01-01

    Genome sequencing is an important step toward correlating genotypes with phenotypic characters. Sequencing technologies are important in many fields in the life sciences, including functional genomics, transcriptomics, oncology, evolutionary biology, forensic sciences, and many more. The era of sequencing has been divided into three generations. First generation sequencing involved sequencing by synthesis (Sanger sequencing) and sequencing by cleavage (Maxam-Gilbert sequencing). Sanger sequencing led to the completion of various genome sequences (including human) and provided the foundation for development of other sequencing technologies. Since then, various techniques have been developed which can overcome some of the limitations of Sanger sequencing. These techniques are collectively known as "Next-generation sequencing" (NGS), and are further classified into second and third generation technologies. Although NGS methods have many advantages in terms of speed, cost, and parallelism, the accuracy and read length of Sanger sequencing is still superior and has confined the use of NGS mainly to resequencing genomes. Consequently, there is a continuing need to develop improved real time sequencing techniques. This chapter reviews some of the options currently available and provides a generic workflow for sequencing a genome.

  10. Genome-wide SNP identification, linkage map construction and QTL mapping for mineral nutrient concentrations and contents in pea (Pisum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Marker-assisted breeding is now routinely used in major crops to facilitate more efficient cultivar improvement. This has been significantly enabled by the use of next-generation sequencing technology to identify loci and markers associated with traits of interest. While rich in a variety of nutriti...

  11. Analysis of the accumulation of Pea enation mosaic virus genomes in seed tissues and lack of evidence for seed transmission in pea (Pisum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Pea enation mosaic virus (PEMV) is an important virus disease of pea. International movement of commercial pea cultivars and germplasm can be problematic due to uncertainty about seed transmission of the viruses responsible for the disease. Whether PEMV is seed-borne was assessed by collecting dev...

  12. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  13. Listeria Genomics

    NASA Astrophysics Data System (ADS)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  14. In silico prediction of proteins related to xyloglucan fucosyltransferases in Solanaceae genomes

    PubMed Central

    Lehner, Arnaud; Menu-Bouaouiche, Laurence; Dardelle, Flavien; Le Mauff, François; Driouich, Azeddine; Lerouge, Patrice; Mollet, Jean-Claude

    2015-01-01

    Two independent studies have shown that the cell wall of pollen tubes from tobacco and tomato species contained fucosylated xyloglucan (XyG). These findings are intriguing as many reports have shown that XyG of somatic cells of these species is not fucosylated but instead is arabinosylated. In order to produce fucosylated XyG, plants must express a functional galactoside α-2-fucosyltransferase. Here, using a bioinformatics approach, we show that several candidate genes coding for XyG fucosyltransferases are present in the genome of coffee and several Solanaceae species including tomato, tobacco, potato, eggplant and pepper. BLAST and protein alignments with the 2 well-characterized XyG fucosyltransferases from Arabidopsis thaliana and Pisum sativum revealed that at least 6 proteins from different Solanaceae species and from coffee displayed the 3 conserved motifs required for XyG fucosyltransferase activity. PMID:26176901

  15. In silico prediction of proteins related to xyloglucan fucosyltransferases in Solanaceae genomes.

    PubMed

    Lehner, Arnaud; Menu-Bouaouiche, Laurence; Dardelle, Flavien; Le Mauff, François; Driouich, Azeddine; Lerouge, Patrice; Mollet, Jean-Claude

    2015-01-01

    Two independent studies have shown that the cell wall of pollen tubes from tobacco and tomato species contained fucosylated xyloglucan (XyG). These findings are intriguing as many reports have shown that XyG of somatic cells of these species is not fucosylated but instead is arabinosylated. In order to produce fucosylated XyG, plants must express a functional galactoside α-2-fucosyltransferase. Here, using a bioinformatics approach, we show that several candidate genes coding for XyG fucosyltransferases are present in the genome of coffee and several Solanaceae species including tomato, tobacco, potato, eggplant and pepper. BLAST and protein alignments with the 2 well-characterized XyG fucosyltransferases from Arabidopsis thaliana and Pisum sativum revealed that at least 6 proteins from different Solanaceae species and from coffee displayed the 3 conserved motifs required for XyG fucosyltransferase activity.

  16. Biochemical Evidence for the Role of the Waxy Protein from Pea (Pisum sativum L.) as a Granule-Bound Starch Synthase.

    PubMed

    Sivak, M. N.; Wagner, M.; Preiss, J.

    1993-12-01

    Proteins were solubilized from starch extracted from developing pea (Pisum sativum L.) embryos and chromatography of these proteins on a Mono-Q column separated two peaks of starch synthase activity. The major activity peak comprised more than 80% of the total activity. This fraction contained only the Waxy protein, as shown by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate followed by staining for proteins or by immunoblot. A 77-kD polypeptide associated with the starch granules and presumed by others to be a starch synthase could not be detected in any of the active fractions. The native molecular weight of the solubilized starch synthase was 59,600 [plus or minus] 1700 as determined by sucrose density gradient. It is concluded that in pea seeds the Waxy protein and the starch synthase bound to the granule are the same protein.

  17. [Activity of agglutinin inhibitor of the kujavian pea (Pisum sativum L.) in mothers' blood and umbilical cord blood considering the course of pregnancy and delivery].

    PubMed

    Lange-Konior, K

    1999-01-01

    The aim of the paper was to evaluate the activity of inhibitor of the phytoagglutinin Pisum sativum (IfPs) in sera of mothers' and umbilical blood of their newborns in confrontation with the course of pregnancy and delivery. The investigations involved 152 tests of sera collected from women delivering at Department of Obstetrics and Perinatology in the Institute of Gynecology and Obstetrics PMU in Szczecin in the years 1992-1993, as well as 156 samples of sera stemming from their newborn infants and were taken from the umbilical cord vessels. The method of investigations being used in the paper was the reaction of inhibiting the phytohemagglutination, wherein the inhibiting action of sera in bearing women and of sera in umbilical blood exerted on agglutinating one was assessed in relation to human erythrocytes of the group 0 with Pisum sativum lectin properties. The accepted titer of inhibitor of the agglutinin Pisum sativum (IfPs) was expressed as the highest dilution of serum, at which complete inhibition of phytohemagglutination was still preserved. The performed investigations have disclosed statistically significant differences between the activity of IfPs occurring in sera of the mothers and the inhibiting factor in umbilical blood sera of the newborns (Tab. 1). No effect of the duration of pregnancy and the course of pregnancy on the IfPs activity in sera of mothers was disclosed. The absence of inhibitor of Pisum sativum lectin in umbilical blood sera was essentially frequently recorded in premature termination of pregnancy between 31-37 weeks of its duration as well as in sera of newborns born by cesarean section and newborns with birth mass being equal or lower than 2500 g in comparison to sera of full term newborns born by forces of nature (Tab. 2, 3, 5). The birth status of newborns according to Apgar scale did not have any influence of IfPs activity in their sera, however, IfPs activity in sera of umbilical blood was statistically significantly more

  18. Polysaccharide fraction from higher plants which strongly interacts with the cytosolic phosphorylase isozyme. I. Isolation and characterization. [Spinacia oleracea L. ; Pisum sativum L

    SciTech Connect

    Yang, Yi; Steup, M. )

    1990-11-01

    From leaves of Spinacia oleracea L. or from Pisum sativum L. and from cotyledons of germinating pea seeds a high molecular weight polysaccharide fraction was isolated. The apparent size of the fraction, as determined by gel filtration, was similar to that of dextran blue. Following acid hydrolysis the monomer content of the polysaccharide preparation was studied using high pressure liquid and thin layer chromatography. Glucose, galactose, arabinose, and ribose were the main monosaccharide compounds. The native polysaccharide preparation interacted strongly with the cytosolic isozyme of phosphorylase (EC 2.4.1.1). Interaction with the plastidic phosphorylase isozyme(s) was by far weaker. Interaction with the cytosolic isozyme was demonstrated by affinity electrophoresis, kinetic measurements, and by {sup 14}C-labeling experiments in which the glucosyl transfer from ({sup 14}C)glucose 1-phosphate to the polysaccharide preparation was monitored.

  19. Combinatorial variation in coding and promoter sequences of genes at the Tri locus in Pisum sativum accounts for variation in trypsin inhibitor activity in seeds.

    PubMed

    Page, D; Aubert, G; Duc, G; Welham, T; Domoney, C

    2002-05-01

    Cultivars of Pisum sativum that differ with respect to the quantitative expression of trypsin/chymotrypsin inhibitor proteins in seeds have been examined in terms of the structure of the corresponding genes. The patterns of divergence in the promoter and coding sequences are described, and the divergence among these exploited for the development of facile DNA-based assays to distinguish genotypes. Quantitative effects on gene expression may be attributed to the overall gene complement and to particular promoter/coding sequence combinations, as well as to the existence of distinct active-site variants that ultimately influence protein activity. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00438-002-0667-4.

  20. Influence of s-Triazines on Some Enzymes of Carbohydrates and Nitrogen Metabolism in Leaves of Pea (Pisum sativum L.) and Sweet Corn (Zea mays L.)

    PubMed Central

    Wu, M. T.; Singh, B.; Salunkhe, D. K.

    1971-01-01

    Foliar applications of 2 milligrams per liter of 2-chloro-4,6-bis (ethylamino)-s-triazine, 2-methylmercapto-4-ethylamino-6-isobutylamino-s-triazine, and 2-methoxy-4-isopropylamino-6-butylamino-s-triazine caused increases in the activities of starch phosphorylase, pyruvate kinase, cytochrome oxidase, and glutamate dehydrogenase 5, 10, and 15 days after treatment in the leaves of 3-week-old seedlings of pea (Pisum sativum L.) and sweet corn (Zea mays L.). The results indicate that sublethal concentrations of s-triazine compounds affect the physiological and biochemical events in plants which favor more utilization of carbohydrates for nitrate reduction and synthesis of amino acids and proteins. PMID:16657830

  1. Comparative Genomics of Serratia spp.: Two Paths towards Endosymbiotic Life

    PubMed Central

    Manzano-Marín, Alejandro; Lamelas, Araceli; Moya, Andrés; Latorre, Amparo

    2012-01-01

    Symbiosis is a widespread phenomenon in nature, in which insects show a great number of these associations. Buchnera aphidicola, the obligate endosymbiont of aphids, coexists in some species with another intracellular bacterium, Serratia symbiotica. Of particular interest is the case of the cedar aphid Cinara cedri, where B. aphidicola BCc and S. symbiotica SCc need each other to fulfil their symbiotic role with the insect. Moreover, various features seem to indicate that S. symbiotica SCc is closer to an obligate endosymbiont than to other facultative S. symbiotica, such as the one described for the aphid Acirthosyphon pisum (S. symbiotica SAp). This work is based on the comparative genomics of five strains of Serratia, three free-living and two endosymbiotic ones (one facultative and one obligate) which should allow us to dissect the genome reduction taking place in the adaptive process to an intracellular life-style. Using a pan-genome approach, we have identified shared and strain-specific genes from both endosymbiotic strains and gained insight into the different genetic reduction both S. symbiotica have undergone. We have identified both retained and reduced functional categories in S. symbiotica compared to the Free-Living Serratia (FLS) that seem to be related with its endosymbiotic role in their specific host-symbiont systems. By means of a phylogenomic reconstruction we have solved the position of both endosymbionts with confidence, established the probable insect-pathogen origin of the symbiotic clade as well as the high amino-acid substitution rate in S. symbiotica SCc. Finally, we were able to quantify the minimal number of rearrangements suffered in the endosymbiotic lineages and reconstruct a minimal rearrangement phylogeny. All these findings provide important evidence for the existence of at least two distinctive S. symbiotica lineages that are characterized by different rearrangements, gene content, genome size and branch lengths. PMID:23077583

  2. Genome mapping

    USDA-ARS?s Scientific Manuscript database

    Genome maps can be thought of much like road maps except that, instead of traversing across land, they traverse across the chromosomes of an organism. Genetic markers serve as landmarks along the chromosome and provide researchers information as to how close they may be to a gene or region of inter...

  3. Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum.

    PubMed

    Puli, Mallikarjuna Rao; Rajsheel, Pidakala; Aswani, Vetcha; Agurla, Srinivas; Kuchitsu, Kazuyuki; Raghavendra, Agepati S

    2016-10-01

    Phyto-S1P and S1P induced stomatal closure in epidermis of pea ( Pisum sativum ) by raising the levels of NO and pH in guard cells. Phosphosphingolipids, such as phytosphingosine-1-phosphate (phyto-S1P) and sphingosine-1-phosphate (S1P), are important signaling components during drought stress. The biosynthesis of phyto-S1P or S1P is mediated by sphingosine kinases (SPHKs). Although phyto-S1P and S1P are known to be signaling components in higher plants, their ability to induce stomatal closure has been ambiguous. We evaluated in detail the effects of phyto-S1P, S1P and SPHK inhibitors on signaling events leading to stomatal closure in the epidermis of Pisum sativum. Phyto-S1P or S1P induced stomatal closure, along with a marked rise in nitric oxide (NO) and cytoplasmic pH of guard cells, as in case of ABA. Two SPHK inhibitors, DL-threo dihydrosphingosine and N',N'-dimethylsphingosine, restricted ABA-induced stomatal closure and prevented the increase of NO or pH by ABA. Modulators of NO or pH impaired both stomatal closure and increase in NO or pH by phyto-S1P/S1P. The stomatal closure by phyto-S1P/S1P was mediated by phospholipase D and phosphatidic acid (PA). When present, PA elevated the levels of pH, but not NO of guard cells. Our results demonstrate that stomatal closure induced by phyto-S1P and S1P depends on rise in pH as well as NO of guard cells. A scheme of signaling events initiated by phyto-S1P/S1P, and converging to cause stomatal closure, is proposed.

  4. Pea (Pisum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Pea belongs to the Leguminosae plant family, the third largest flowering plant family with 800 genera and over 18,000 species. Tribe Fabeae is considered one of the youngest groups in the legumes and Bayesian molecular clock and ancestral range analysis suggest a crown age of 23 – 16 Mya, in the mi...

  5. Peas (Pisum sativum L.).

    PubMed

    Grant, Jan; Cooper, Pauline

    2006-01-01

    In this chapter we describe a robust method for transformation of peas that has been successfully used in our laboratory since 1992. Using immature pea seed collected from field- or greenhouse-grown plants, we have produced transgenic lines for over 30 genotypes including named pea cultivars and advanced breeding lines. This method uses immature cotyledons as the explant, and the transformation efficiency is in the range 0.2 to 13.5% of cotyledons producing at least one independently transformed line. Agrobacterium tumefaciens strains AGL1 and KYRT1 are the most successful in our procedure, and kanamycin, phosphinothricin, and hygromycin are reliable selectable markers. Potentially useful genes have been introduced for pest and disease resistance, altering quality traits, and investigating metabolic pathways and are being studied in transgenic pea lines.

  6. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System

    PubMed Central

    Arp, Alex P.; Hunter, Wayne B.; Pelz-Stelinski, Kirsten S.

    2016-01-01

    Citrus production worldwide is currently facing significant losses due to citrus greening disease, also known as Huanglongbing. The citrus greening bacteria, Candidatus Liberibacter asiaticus (CLas), is a persistent propagative pathogen transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Hemipterans characterized to date lack a number of insect immune genes, including those associated with the Imd pathway targeting Gram-negative bacteria. The D. citri draft genome was used to characterize the immune defense genes present in D. citri. Predicted mRNAs identified by screening the published D. citri annotated draft genome were manually searched using a custom database of immune genes from previously annotated insect genomes. Toll and JAK/STAT pathways, general defense genes Dual oxidase, Nitric oxide synthase, prophenoloxidase, and cellular immune defense genes were present in D. citri. In contrast, D. citri lacked genes for the Imd pathway, most antimicrobial peptides, 1,3-β-glucan recognition proteins (GNBPs), and complete peptidoglycan recognition proteins. These data suggest that D. citri has a reduced immune capability similar to that observed in A. pisum, P. humanus, and R. prolixus. The absence of immune system genes from the D. citri genome may facilitate CLas infections, and is possibly compensated for by their relationship with their microbial endosymbionts. PMID:27965582

  7. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System.

    PubMed

    Arp, Alex P; Hunter, Wayne B; Pelz-Stelinski, Kirsten S

    2016-01-01

    Citrus production worldwide is currently facing significant losses due to citrus greening disease, also known as Huanglongbing. The citrus greening bacteria, Candidatus Liberibacter asiaticus (CLas), is a persistent propagative pathogen transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Hemipterans characterized to date lack a number of insect immune genes, including those associated with the Imd pathway targeting Gram-negative bacteria. The D. citri draft genome was used to characterize the immune defense genes present in D. citri. Predicted mRNAs identified by screening the published D. citri annotated draft genome were manually searched using a custom database of immune genes from previously annotated insect genomes. Toll and JAK/STAT pathways, general defense genes Dual oxidase, Nitric oxide synthase, prophenoloxidase, and cellular immune defense genes were present in D. citri. In contrast, D. citri lacked genes for the Imd pathway, most antimicrobial peptides, 1,3-β-glucan recognition proteins (GNBPs), and complete peptidoglycan recognition proteins. These data suggest that D. citri has a reduced immune capability similar to that observed in A. pisum, P. humanus, and R. prolixus. The absence of immune system genes from the D. citri genome may facilitate CLas infections, and is possibly compensated for by their relationship with their microbial endosymbionts.

  8. Personal genomics services: whose genomes?

    PubMed Central

    Gurwitz, David; Bregman-Eschet, Yael

    2009-01-01

    New companies offering personal whole-genome information services over the internet are dynamic and highly visible players in the personal genomics field. For fees currently ranging from US$399 to US$2500 and a vial of saliva, individuals can now purchase online access to their individual genetic information regarding susceptibility to a range of chronic diseases and phenotypic traits based on a genome-wide SNP scan. Most of the companies offering such services are based in the United States, but their clients may come from nearly anywhere in the world. Although the scientific validity, clinical utility and potential future implications of such services are being hotly debated, several ethical and regulatory questions related to direct-to-consumer (DTC) marketing strategies of genetic tests have not yet received sufficient attention. For example, how can we minimize the risk of unauthorized third parties from submitting other people's DNA for testing? Another pressing question concerns the ownership of (genotypic and phenotypic) information, as well as the unclear legal status of customers regarding their own personal information. Current legislation in the US and Europe falls short of providing clear answers to these questions. Until the regulation of personal genomics services catches up with the technology, we call upon commercial providers to self-regulate and coordinate their activities to minimize potential risks to individual privacy. We also point out some specific steps, along the trustee model, that providers of DTC personal genomics services as well as regulators and policy makers could consider for addressing some of the concerns raised below. PMID:19259127

  9. Citrus Genomics

    PubMed Central

    Talon, Manuel; Gmitter Jr., Fred G.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop. PMID:18509486

  10. Imaging genomics.

    PubMed

    Hariri, Ahmad R; Weinberger, Daniel R

    2003-01-01

    The recent completion of a working draft of the human genome sequence promises to provide unprecedented opportunities to explore the genetic basis of individual differences in complex behaviours and vulnerability to neuropsychiatric illness. Functional neuroimaging, because of its unique ability to assay information processing at the level of brain within individuals, provides a powerful approach to such functional genomics. Recent fMRI studies have established important physiological links between functional genetic polymorphisms and robust differences in information processing within distinct brain regions and circuits that have been linked to the manifestation of various disease states such as Alzheimer's disease, schizophrenia and anxiety disorders. Importantly, all of these biological relationships have been revealed in relatively small samples of healthy volunteers and in the absence of observable differences at the level of behaviour, underscoring the power of a direct assay of brain physiology like fMRI in exploring the functional impact of genetic variation.

  11. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  12. Ancient genomics.

    PubMed

    Der Sarkissian, Clio; Allentoft, Morten E; Ávila-Arcos, María C; Barnett, Ross; Campos, Paula F; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D; Moreno-Mayar, J Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M Thomas P; Willerslev, Eske; Orlando, Ludovic

    2015-01-19

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.

  13. Insecticidal activity of recombinant avidin produced in yeast.

    PubMed

    Hinchliffe, Gareth; Bown, David P; Gatehouse, John A; Fitches, Elaine

    2010-06-01

    An expression construct encoding chicken (Gallus gallus) avidin was assembled from amplified fragments of genomic DNA. Recombinant, functional avidin was produced in Pichia pastoris, with yields of up to 80 mg/l of culture supernatant. The recombinant avidin had similar insecticidal activity to egg white avidin when assayed against larvae of a lepidopteran crop pest, cabbage moth (Mamestra brassicae), causing >90% reduction in growth and 100% mortality when fed in optimised diets at levels of 1.5 microM and 15 microM (100 ppm and 1000 ppm wet weight of recombinant protein). The recombinant protein was also highly toxic to a hemipteran pest, the pea aphid (Acyrthosiphon pisum), when fed in liquid artificial diet, causing 100% mortality after 4 days when present at concentrations > or = 3.8 microM (0.25 mg/ml, 250 ppm). Mortality was dose-dependent, with an estimated LC(50) of 2.1 microM. Toxicity to A. pisum was prevented by biotin supplementation of diet. In contrast, avidin had no significant effects on the survival of cereal aphid (Sitobion avenae) at concentrations up to 30 microM in liquid diet. Analysis of genomic DNA showed that symbionts from both aphid species lack the ability to synthesise biotin de novo. Cereal aphids appear to be less sensitive to recombinant avidin in the diet through proteolysis of the ingested protein, which would allow recovery of bound biotin. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  14. The effects of diet on herbivory by a predaceous lady beetle

    USDA-ARS?s Scientific Manuscript database

    Prey and non-prey foods often contain different nutrients, and optimal diets for predatory insects often contain both food classes. We tested whether late instars of Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae) reared on prey- Acyrthosiphon pisum Harris (Hemiptera: Aphididae) or eggs of ...

  15. A Proteomic Workflow Using High-Throughput De Novo Sequencing Towards Complementation of Genome Information for Improved Comparative Crop Science.

    PubMed

    Turetschek, Reinhard; Lyon, David; Desalegn, Getinet; Kaul, Hans-Peter; Wienkoop, Stefanie

    2016-01-01

    The proteomic study of non-model organisms, such as many crop plants, is challenging due to the lack of comprehensive genome information. Changing environmental conditions require the study and selection of adapted cultivars. Mutations, inherent to cultivars, hamper protein identification and thus considerably complicate the qualitative and quantitative comparison in large-scale systems biology approaches. With this workflow, cultivar-specific mutations are detected from high-throughput comparative MS analyses, by extracting sequence polymorphisms with de novo sequencing. Stringent criteria are suggested to filter for confidential mutations. Subsequently, these polymorphisms complement the initially used database, which is ready to use with any preferred database search algorithm. In our example, we thereby identified 26 specific mutations in two cultivars of Pisum sativum and achieved an increased number (17 %) of peptide spectrum matches.

  16. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    PubMed

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps

  17. A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.)

    PubMed Central

    Hradilová, Iveta; Trněný, Oldřich; Válková, Markéta; Cechová, Monika; Janská, Anna; Prokešová, Lenka; Aamir, Khan; Krezdorn, Nicolas; Rotter, Björn; Winter, Peter; Varshney, Rajeev K.; Soukup, Aleš; Bednář, Petr; Hanáček, Pavel; Smýkal, Petr

    2017-01-01

    The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objective of this study was to analyze anatomical structure of seed coat and pod, identify metabolic compounds associated with water-impermeable seed coat and differentially expressed genes involved in pea seed dormancy and pod dehiscence. Comparative anatomical, metabolomics, and transcriptomic analyses were carried out on wild dormant, dehiscent Pisum elatius (JI64, VIR320) and cultivated, indehiscent Pisum sativum non-dormant (JI92, Cameor) and recombinant inbred lines (RILs). Considerable differences were found in texture of testa surface, length of macrosclereids, and seed coat thickness. Histochemical and biochemical analyses indicated genotype related variation in composition and heterogeneity of seed coat cell walls within macrosclereids. Liquid chromatography–electrospray ionization/mass spectrometry and Laser desorption/ionization–mass spectrometry of separated seed coats revealed significantly higher contents of proanthocyanidins (dimer and trimer of gallocatechin), quercetin, and myricetin rhamnosides and hydroxylated fatty acids in dormant compared to non-dormant genotypes. Bulk Segregant Analysis coupled to high throughput RNA sequencing resulted in identification of 770 and 148 differentially expressed genes between dormant and non-dormant seeds or dehiscent and indehiscent pods, respectively. The expression of 14 selected dormancy-related genes was studied by qRT-PCR. Of these, expression pattern of four genes: porin (MACE-S082), peroxisomal membrane PEX14-like protein (MACE-S108), 4-coumarate CoA ligase (MACE-S131), and UDP-glucosyl transferase (MACE-S139) was in agreement in all four genotypes with Massive analysis of cDNA Ends (MACE) data. In case of pod

  18. Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics.

    PubMed

    Paula, Débora P; Linard, Benjamin; Andow, David A; Sujii, Edison R; Pires, Carmen S S; Vogler, Alfried P

    2015-07-01

    DNA methods are useful to identify ingested prey items from the gut of predators, but reliable detection is hampered by low amounts of degraded DNA. PCR-based methods can retrieve minute amounts of starting material but suffer from amplification biases and cross-reactions with the predator and related species genomes. Here, we use PCR-free direct shotgun sequencing of total DNA isolated from the gut of the harlequin ladybird Harmonia axyridis at five time points after feeding on a single pea aphid Acyrthosiphon pisum. Sequence reads were matched to three reference databases: Insecta mitogenomes of 587 species, including H. axyridis sequenced here; A. pisum nuclear genome scaffolds; and scaffolds and complete genomes of 13 potential bacterial symbionts. Immediately after feeding, multicopy mtDNA of A. pisum was detected in tens of reads, while hundreds of matches to nuclear scaffolds were detected. Aphid nuclear DNA and mtDNA decayed at similar rates (0.281 and 0.11 h(-1) respectively), and the detectability periods were 32.7 and 23.1 h. Metagenomic sequencing also revealed thousands of reads of the obligate Buchnera aphidicola and facultative Regiella insecticola aphid symbionts, which showed exponential decay rates significantly faster than aphid DNA (0.694 and 0.80 h(-1) , respectively). However, the facultative aphid symbionts Hamiltonella defensa, Arsenophonus spp. and Serratia symbiotica showed an unexpected temporary increase in population size by 1-2 orders of magnitude in the predator guts before declining. Metagenomics is a powerful tool that can reveal complex relationships and the dynamics of interactions among predators, prey and their symbionts. © 2014 John Wiley & Sons Ltd.

  19. Genetic diversity and trait genomic prediction in a pea diversity panel.

    PubMed

    Burstin, Judith; Salloignon, Pauline; Chabert-Martinello, Marianne; Magnin-Robert, Jean-Bernard; Siol, Mathieu; Jacquin, Françoise; Chauveau, Aurélie; Pont, Caroline; Aubert, Grégoire; Delaitre, Catherine; Truntzer, Caroline; Duc, Gérard

    2015-02-21

    Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection. A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted. The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being

  20. Whole Genome Sequencing

    MedlinePlus

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  1. The platypus genome unraveled.

    PubMed

    O'Brien, Stephen J

    2008-06-13

    The genome of the platypus has been sequenced, assembled, and annotated by an international genomics team. Like the animal itself the platypus genome contains an amalgam of mammal, reptile, and bird-like features.

  2. Genome evolution: the dynamics of static genomes.

    PubMed

    Stechmann, Alexandra

    2004-06-22

    A random survey of a microsporidian genome has revealed some striking features. Although the genomes of microsporidians are among the smallest known for eukaryotes, their organisation appears to be well conserved.

  3. Genome cartography: charting the apicomplexan genome.

    PubMed

    Kissinger, Jessica C; DeBarry, Jeremy

    2011-08-01

    Genes reside in particular genomic contexts that can be mapped at many levels. Historically, 'genetic maps' were used primarily to locate genes. Recent technological advances in the determination of genome sequences have made the analysis and comparison of whole genomes possible and increasingly tractable. What do we see if we shift our focus from gene content (the 'inventory' of genes contained within a genome) to the composition and organization of a genome? This review examines what has been learned about the evolution of the apicomplexan genome as well as the significance and impact of genomic location on our understanding of the eukaryotic genome and parasite biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Genomic selection requires genomic control of inbreeding.

    PubMed

    Sonesson, Anna K; Woolliams, John A; Meuwissen, Theo H E

    2012-08-16

    In the past, pedigree relationships were used to control and monitor inbreeding because genomic relationships among selection candidates were not available until recently. The aim of this study was to understand the consequences for genetic variability across the genome when genomic information is used to estimate breeding values and in managing the inbreeding generated in the course of selection on genome-enhanced estimated breeding values. These consequences were measured by genetic gain, pedigree- and genome-based rates of inbreeding, and local inbreeding across the genome. Breeding schemes were compared by simulating truncation selection or optimum contribution selection with a restriction on pedigree- or genome-based inbreeding, and with selection using estimated breeding values based on genome- or pedigree-based BLUP. Trait information was recorded on full-sibs of the candidates. When the information used to estimate breeding values and to constrain rates of inbreeding were either both pedigree-based or both genome-based, rates of genomic inbreeding were close to the desired values and the identical-by-descent profiles were reasonably uniform across the genome. However, with a pedigree-based inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding were much higher than expected. With pedigree-instead of genome-based estimated breeding values, the impact of the largest QTL on the breeding values was much smaller, resulting in a more uniform genome-wide identical-by-descent profile but genomic rates of inbreeding were still higher than expected based on pedigree relationships, because they measure the inbreeding at a neutral locus not linked to any QTL. Neutral loci did not exist here, where there were 100 QTL on each chromosome. With a pedigree-based inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding substantially exceeded the value of its constraint. In contrast, with a genome

  5. Plant Genome Duplication Database.

    PubMed

    Lee, Tae-Ho; Kim, Junah; Robertson, Jon S; Paterson, Andrew H

    2017-01-01

    Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at http://chibba.agtec.uga.edu/duplication/.

  6. Evidence for Phytochrome Regulation of Gibberellin A20 3β-Hydroxylation in Shoots of Dwarf (lele) Pisum sativum L. 1

    PubMed Central

    Campell, Bruce R.; Bonner, Bruce A.

    1986-01-01

    The effect of light on the dwarfing allele, le, in Pisum sativum L. was tested as the growth response to gibberellins prior to or beyond the presumed block in the gibberellin biosynthetic pathway. The response to the substrate (GA20), the product (GA1), and a nonendogenous early precursor (steviol) was compared in plants bearing the normal Le and the deficient lele genotypes in plants made low in gibberellin content genetically (nana lines) or by paclobutrazol treatment to tall (cv Alaska) and dwarf (cv Progress) peas. Both genotypes responded to GA1 under red irradiation and in darkness. The lele plants grew in response to GA20 and steviol in darkness but showed a much smaller response when red irradiated. The Le plants responded to GA20 and steviol in both light and darkness. The red effects on lele plants were largely reversible by far-red irradiation. It is concluded that the deficiency in 3β-hydroxylation of GA20 to GA1 in genotype lele is due to a Pfr-induced blockage in the expression of that activity. PMID:16665165

  7. Reactive oxygen species from type-I photosensitized reactions contribute to the light-induced wilting of dark-grown pea (Pisum sativum) epicotyls.

    PubMed

    Hideg, Eva; Vitányi, Beáta; Kósa, Annamária; Solymosi, Katalin; Bóka, Károly; Won, Sungae; Inoue, Yumi; Ridge, Robert W; Böddi, Béla

    2010-04-01

    Type-II, singlet oxygen-mediated photosensitized damage has already been shown to occur in epicotyls of dark-germinated pea (Pisum sativum L.) seedlings upon illumination, resulting in fast turgor loss and wilting. In this study we show evidence that the palette of reactive oxygen species (ROS) is more complex. Hydrogen peroxide, superoxide and hydroxyl radicals are also formed, suggesting the occurrence of type-I reactions as well. Moreover, hydrogen peroxide injection into the epicotyls in the dark was able to provoke wilting directly. Formation of hydroxyl radicals could also be triggered by the addition of hydrogen peroxide in the dark, preferentially in the mid-sections where wilting occurs, showing that potential mediators of a Fenton reaction are present in the epicotyls, but unevenly distributed. Localization of light-inducible ROS formation fully (hydrogen peroxide) or partially (superoxide radicals) overlaps with the distribution of monomer protochlorophyllide complexes, showing that these pigment forms are capable of provoking both type-I and type-II reactions.

  8. Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and Methyl orange dye degradation studies

    NASA Astrophysics Data System (ADS)

    Prasad, Cheera; Yuvaraja, Gutha; Venkateswarlu, Ponneri

    2017-02-01

    We have been developed facile and ecofriendly method for the synthesis of Fe3O4 magnetic nanoparticles (MNPs) using an aqueous extract of Pisum sativum peels (PS) is used as reducing and capping agent. The as synthesized PS-Fe3O4 MNPs are characterized by diverse techniques such as FTIR, powder XRD, TEM, BET and Raman spectroscopy measurements. The results show that the obtained Fe3O4 nanoparticles exhibits high specific surface area (∼17.6 m2/g) and agglomerated spherical in shape with the size range of 20-30 nm. The magnetic properties of PS-Fe3O4 MNPs sample clearly exhibits ferromagnetic nature with a saturation magnetization of 64.2 emu/g. Further, the catalytic properties of PS-Fe3O4 MNPs for degradation of Methyl orange (MO) dye in aqueous solution have been investigated by UV-visible spectroscopy. The results show that PS-Fe3O4 MNPs is an efficient catalyst for degradation of Methyl orange dye than previously reported ones.

  9. Comparative investigation of concentrations of major and trace elements in organic and conventional Danish agricultural crops. 1. Onions (Allium cepa Hysam) and peas (Pisum sativum ping pong).

    PubMed

    Gundersen, V; Bechmann, I E; Behrens, A; Stürup, S

    2000-12-01

    210 samples of onions (Allium cepa Hysam) from 11 conventionally and 10 organically cultivated sites and 190 samples of peas (Pisum sativum Ping Pong) from 10 conventionally and 9 organically cultivated sites in Denmark were collected and analyzed for 63 and 55 major and trace elements, respectively, by high-resolution inductively coupled plasma mass spectrometry. Sampling, sample preparation, and analysis of the samples were performed under carefully controlled contamination-free conditions. Comparative statistical tests of the element concentration mean values for each site show significantly (p < 0.05) different levels of Ca, Mg, B, Bi, Dy, Eu, Gd, Lu, Rb, Sb, Se, Sr, Ti, U, and Y between the organically and conventionally grown onions and significantly (p < 0.05) different levels of P, Gd, and Ti between the organically and conventionally grown peas. Principal component analysis (PCA) applied to the 63 elements measured in the individual onion samples from the 21 sites split up the sites into two groups according to the cultivation method when the scores of the first and third principal components were plotted against each other. Correspondingly, for peas, a PCA applied to the 55 elements measured as mean values for each site split up the 19 sites into two groups according to the cultivation method when the scores of the third and fourth principal component were plotted against each other. The methodology may be used as authenticity control for organic cultivation after further method development.

  10. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  11. Increasing the rate of drying reduces metabolic imbalance, lipid peroxidation and critical water content in radicles of garden pea (Pisum sativum L.).

    PubMed

    Ntuli, Tobias M; Pammenter, Norman W; Berjak, Patricia

    2013-01-01

    Orthodox seeds become desiccation-sensitive as they undergo germination. As a result, germinating seeds serve as a model to study desiccation sensitivity in plant tissues. The effects of the rate of drying on the viability, respiratory metabolism and free radical processes were thus studied during dehydration and wet storage of radicles of Pisum sativum. For both drying regimes desiccation could be described by exponential and inverse modified functions. Viability, as assessed by germination capacity and tetrazolium staining, remained at 100% during rapid (< 24 h) desiccation. However, it declined sharply at c. 0.26 g g¹ dm following slow (c. 5 days) drying. Increasing the rate of dehydration thus lowered the critical water content for survival. Rapid desiccation was also associated with higher activities and levels of malate dehydrogenase and the oxidized form of nicotinamide adenine dinucleotide. It was also accompanied by lower hydroperoxide levels and membrane damage. In addition, the activitiy of glutathione reductase was greater during rapid drying. Ageing may have contributed to increased damage during slow dehydration, since viability declined even in wet storage after two weeks. The results presented are consistent with rapid desiccation reducing the accumulation of damage resulting from desiccation-induced aqueous-based deleterious reactions. In addition, they show that radicles are a useful model to study desiccation sensitivity in plant tissues.

  12. Characterization of a rapid, blue light-mediated change in detectable phosphorylation of a plasma membrane protein from etiolated pea (Pisum sativum L. ) seedlings

    SciTech Connect

    Short, T.W.; Briggs, W.R. )

    1990-01-01

    When crude microsomal membranes from apical stem segments of etiolated Pisum sativum L. cv Alaska are mixed in vitro with {gamma}-({sup 32}P)ATP, a phosphorylated band of apparent molecular mass 120 kilodaltons can be detected on autoradiographs of sodium dodecyl sulfate electrophoresis gels. If the stem sections are exposed to blue light immediately prior to membrane isolation, this band is not evident. Comparisons of the kinetics, tissue distribution, and dark recovery of the phosphorylation response with those published for blue light mediated phototropism or rapid growth inhibition indicate that the phosphorylation could be linked to one or both of the reactions described. However, the fluence-response relationships for the change in detectable phosphorylation match quite closely those reported for phototropism but not those for growth inhibition. Blue light has also been found to regulate the capacity for in vitro phosphorylation of a second protein. It has an apparent molecular mass of 84 kilodaltons and is localized primarily in basal stem sections.

  13. Rates of Sugar Uptake by Guard Cell Protoplasts of Pisum sativum L. Related to the Solute Requirement for Stomatal Opening1

    PubMed Central

    Ritte, Gerhard; Rosenfeld, Johanna; Rohrig, Kerstin; Raschke, Klaus

    1999-01-01

    We wished to determine whether the capacity of the sugar uptake mechanisms of guard cells of the Argenteum mutant of pea (Pisum sativum L.) sufficed to support a concurrent stomatal opening movement. Sugar uptake by guard cell protoplasts was determined by silicone-oil-filtering centrifugation. The protoplasts took up [14C]glucose, [14C]fructose, and [14C]sucrose (Suc), apparently in symport with protons. Mannose, galactose, and fructose competed with Glc for transport by a presumed hexose carrier. The uptake of Glc saturated with a Km of 0.12 mm and a Vmax of 19 fmol cell−1 h−1. At external concentrations <1 mm, the uptake of Suc was slower than that of Glc. It exhibited a saturating component with a Km varying between 0.25 and 0.8 mm and a Vmax between 1 and 10 fmol cell−1 h−1, and at external concentrations >1 mm, a non-saturating component. At apoplastic sugar concentrations below 4 mm, sugar import was estimated to be mainly in the form of hexoses and too slow to support a simultaneous stomatal opening movement. If, however, during times of high photosynthesis and transpiration, the apoplastic Suc concentration rose and entered the range of non-saturating import, absorbed Suc could replace potassium malate as the osmoticum for the maintenance of stomatal opening. PMID:10517857

  14. Seasonal Patterns of 13C Partitioning Between Shoots and Nodulated Roots of N2‐ or Nitrate‐fed Pisum sativum L.

    PubMed Central

    VOISIN, A. S.; SALON, C.; JEUDY, C.; WAREMBOURG, F. R.

    2003-01-01

    The effect of nitrogen source (N2 or nitrate) on carbon assimilation by photosynthesis and on carbon partitioning between shoots and roots was investigated in pea (Pisum sativum L. ‘Baccara’) plants at different growth stages using 13C labelling. Plants were grown in the greenhouse on different occasions in 1999 and 2000. Atmospheric [CO2] and growth conditions were varied to alter the rate of photosynthesis. Carbon allocation to nodulated roots was unaffected by N source. At the beginning of the vegetative period, nodulated roots had priority for assimilates over shoots; this priority decreased during later stages and became identical to that of the shoot during seed filling. Carbon allocation to nodulated roots was always limited by competition with shoots, and could be predicted for each phenological stage: during vegetative and flowering stages a single, negative exponential relationship was established between sink intensity (percentage of C allocated to the nodulated root per unit biomass) and net photosynthesis. At seed filling, the amount of carbon allocated to the nodulated root was directly related to net photosynthesis. Respiration of nodulated roots accounted for more than 60 % of carbon allocated to them during growth. Only at flowering was respiration affected by N supply: it was significantly higher for strictly N2‐fixing plants (83 %) than for plants fed with nitrate (71 %). At the vegetative stage, the increase in carbon in nodulated root biomass was probably limited by respiration losses. PMID:12646498

  15. A Comparison of the Effects of Chilling on Leaf Gas Exchange in Pea (Pisum sativum L.) and Cucumber (Cucumis sativus L.) 1

    PubMed Central

    Peeler, Thomas C.; Naylor, Aubrey W.

    1988-01-01

    The effects of chilling on the photosynthesis of a chilling-resistant species, pea (Pisum sativum L. cv Alaska) and a chilling-sensitive species, cucumber (Cucumis sativus L. cv Ashley) were compared in order to determine the differences in the photosynthetic chilling sensitivity of these two species. For these experiments, plants were chilled (5°C) for different lengths of time in the dark or light. Following a 1 hour recovery period at 25°C, photosynthetic activity was measured by gas exchange (CO2 uptake and H2O release), quantum yield, and induced chlorophyll fluorescence. The results show that pea photosynthesis was largely unaffected by two consecutive nights of chilling in the dark, or by chilling during a complete light and dark cycle (15 hours/9 hours). Cucumber gas exchange was reduced by one night of chilling, but its quantum yield and variable fluorescence were unaffected by dark chilling. However, chilling cucumber in the light led to reduced CO2 fixation, increased internal leaf CO2 concentration, decreased quantum yield, and loss of variable fluorescence. These results indicate that chilling temperatures in conjunction with light damaged the light reactions of photosynthesis, while chilling in the dark did not. PMID:16665856

  16. The active site architecture of Pisum sativum β-carbonic anhydrase is a mirror image of that of α-carbonic anhydrases

    PubMed Central

    Kimber, Matthew S.; Pai, Emil F.

    2000-01-01

    We have determined the structure of the β–carbonic anhydrase from the dicotyledonous plant Pisum sativum at 1.93 Å resolution, using a combination of multiple anomalous scattering off the active site zinc ion and non-crystallographic symmetry averaging. The mol– ecule assembles as an octamer with a novel dimer of dimers of dimers arrangement. Two distinct patterns of conservation of active site residues are observed, implying two potentially mechanistically distinct classes of β–carbonic anhydrases. The active site is located at the interface between two monomers, with Cys160, His220 and Cys223 binding the catalytic zinc ion and residues Asp162 (oriented by Arg164), Gly224, Gln151, Val184, Phe179 and Tyr205 interacting with the substrate analogue, acetic acid. The substrate binding groups have a one to one correspondence with the functional groups in the α–carbonic anhydrase active site, with the corresponding residues being closely superimposable by a mirror plane. Therefore, despite differing folds, α- and β–carbonic anhydrase have converged upon a very similar active site design and are likely to share a common mechanism. PMID:10747009

  17. Discriminant Analysis of Defective and Non-Defective Field Pea (Pisum sativum L.) into Broad Market Grades Based on Digital Image Features.

    PubMed

    McDonald, Linda S; Panozzo, Joseph F; Salisbury, Phillip A; Ford, Rebecca

    2016-01-01

    Field peas (Pisum sativum L.) are generally traded based on seed appearance, which subjectively defines broad market-grades. In this study, we developed an objective Linear Discriminant Analysis (LDA) model to classify market grades of field peas based on seed colour, shape and size traits extracted from digital images. Seeds were imaged in a high-throughput system consisting of a camera and laser positioned over a conveyor belt. Six colour intensity digital images were captured (under 405, 470, 530, 590, 660 and 850nm light) for each seed, and surface height was measured at each pixel by laser. Colour, shape and size traits were compiled across all seed in each sample to determine the median trait values. Defective and non-defective seed samples were used to calibrate and validate the model. Colour components were sufficient to correctly classify all non-defective seed samples into correct market grades. Defective samples required a combination of colour, shape and size traits to achieve 87% and 77% accuracy in market grade classification of calibration and validation sample-sets respectively. Following these results, we used the same colour, shape and size traits to develop an LDA model which correctly classified over 97% of all validation samples as defective or non-defective.

  18. Arginine Decarboxylase and Putrescine Oxidase in Ovaries of Pisum sativum L. (Changes during Ovary Senescence and Early Stages of Fruit Development).

    PubMed Central

    Perez-Amador, M. A.; Carbonell, J.

    1995-01-01

    Enzymatic activities involved in putrescine metabolism in ovaries of Pisum sativum L. during ovary senescence and fruit set were investigated. Accumulation of putrescine was observed during incubation of extracts from gibberellic acid-treated unpollinated ovaries (young developing fruits) but not in extracts from untreated ovaries (senescent ovaries). Extracts from pea ovaries showed arginine decarboxylase (ADC) activity, but ornithine decarboxylase and arginase activity were not detected. ADC activity decreased in presenescent ovaries and increased markedly after induction of fruit set with gibberellic acid. Increases in ADC activity were also observed with application of other plant growth substances (benzy-ladenine and 2,4-dichlorophenoxyacetic acid), after pollination, and in the slender (la crys) pea mutant. By contrast, putrescine oxidase activity increased in presenescent ovaries but did not increase during early fruit development. All of these results suggest that ADC and putrescine oxidase are involved in the control of putrescine metabolism. Ovary senescence is characterized by the absence of putrescine biosynthesis enzymes and increased levels of putrescine oxidase and fruit development by an increase in ADC and a constant level of putrescine oxidase. PMID:12228409

  19. Spatial and Temporal Influences on the Cell-Specific Distribution of Glycine Decarboxylase in Leaves of Wheat (Triticum aestivum L.) and Pea (Pisum sativum L.) 1

    PubMed Central

    Tobin, Alyson K.; Thorpe, Julian R.; Hylton, Christopher M.; Rawsthorne, Stephen

    1989-01-01

    The distribution of glycine decarboxylase (GDC) in leaves of pea (Pisum sativum L.) and wheat (Triticum aestivum L.) has been investigated using immunogold labeling of the P-protein subunit of the GDC complex. Mitochondria in photosynthetic mesophyll cells were densely labeled, whereas those in nonphotosynthetic vascular parenchyma and epidermal cells were only weakly labeled. In pea leaves the density of immunogold labeling on mitochondria in the chloroplast-containing bundle sheath and stomatal guard cells was intermediate between that in mesophyll and epidermal cells. In both species the density of labeling on mitochondria in a cell appeared to reflect the photosynthetic capacity of the cell. This relationship was further examined in wheat where a natural developmental gradient exists along the lamina such that cell maturity increases with distance from the basal meristem. In this case the density of labeling on mesophyll cell mitochondria increased with photosynthetic development and with increasing maturity of the cell. Vascular cell mitochondria, however, became less densely labeled as the cells matured. The results indicate a close, positive correlation between the concentration of GDC in the mitochondria and the photosynthetic status of the host cell. This relationship is maintained effectively under the influence of both spatial (i.e. cellular differentiation across the lamina) and temporal (i.e. cellular development along the lamina) constraints. Images Figure 1 Figure 2 PMID:16667135

  20. Signal Integration by ABA in the Blue Light-Induced Acidification of Leaf Pavement Cells in Pea (Pisum sativum L. var. Argenteum)

    PubMed Central

    den Os, Désirée; Staal, Marten

    2007-01-01

    Leaf pavement cell expansion in light depends on apoplastic acidification by a plasma membrane proton-pumping ATPase, modifying cell wall extensibility and providing the driving force for uptake of osmotically active solutes generating turgor. This paper shows that the plant hormone ABA inhibits light-induced leaf disk growth as well as the blue light-induced pavement cell growth in pea (Pisum sativum L.). In the phytochrome chromophore-deficient mutant pcd2, the effect of ABA on the blue light-induced apoplastic acidification response, which exhibits a high fluence phase via phytochrome and a low fluence phase via an unknown blue light receptor, is still present, indicating an interaction of ABA with the blue light receptor pathway. Furthermore, it is shown that ABA inhibits the blue light-induced apoplastic acidification reversibly. These results indicate that the effect of ABA on apoplastic acidification can provide a mechanism for short term, reversible adjustment of leaf growth rate to environmental change. PMID:19516983

  1. Purification and Characterization of S-Adenosyl-l-methionine:6a-Hydroxymaackiain 3-O-Methyltransferase from Pisum sativum1

    PubMed Central

    Preisig, Carol L.; Matthews, David E.; VanEtten, Hans D.

    1989-01-01

    The isoflavonoid phytoalexin pisatin is synthesized by Pisum sativum in response to microbial infection and certain other forms of stress. An enzyme which synthesizes pisatin by methylating the 3-hydroxyl of (+)6a-hydroxymaackiain (HMK) was extracted from CuCl2-stressed pea seedlings. The enzyme was enriched 370-fold by (NH4)2SO4 precipitation, DEAE chromatography, chromatofocusing, and hydrophobic interaction chromatography (HIC), to a specific activity of 8.2 microkatals per gram protein. Enzyme activity profiles from chromatofocusing and HIC columns suggested the presence of two isozymes, of pl 5.2 and 4.9. Nondenaturing gel filtration of the HIC-purified enzyme gave a single peak of activity at the same elution volume as BSA (66 kilodaltons); the active fractions showed two proteins upon SDS-PAGE, of Mr 66,000 and 43,000. The smaller protein was most abundant in chromatographic fractions containing peak enzyme activity throughout purification. In a partially purified preparation, this 43 kilodalton protein was the only one photoaffinity labelled by [3H]S-adenosyl-l-methionine. The purified enzyme preferred the (+) over the (−) stereoisomer of HMK and other pterocarpans; overall, (+)HMK was the best substrate. Km values were 2.3 micromolar for (+)HMK and 35 micromolar for S-adenosyl-l-methionine. The methyltransferase had a pH optimum of 7.9 and no apparent divalent cation requirement. Images Figure 2 Figure 3 Figure 5 Figure 6 PMID:16667069

  2. The Use of Fura-2 Fluorescence to Monitor the Movement of Free Calcium Ions into the Matrix of Plant Mitochondria (Pisum sativum and Helianthus tuberosus).

    PubMed

    Zottini, M.; Zannoni, D.

    1993-06-01

    Purified mitochondria isolated from pea (Pisum sativum L. cv Alaska) stems and Jerusalem artichoke (Helianthus tuberosus L. cv OB1) tubers were loaded with the acetoxymethyl ester of the fluorescent Ca2+ indicator fura-2. This made possible the continuous monitoring of free [Ca2+] in the matrix ([Ca2+]m) without affecting the apparent viability of the mitochondria. Pea stem mitochondria contained an initial [Ca2+]m of approximately 60 to 100 nM, whereas [Ca2+]m was severalfold higher (400-600 nM) in mitochondria of Jerusalem artichoke tubers. At low extramitochondrial Ca2+ concentrations ([greater than or equal to]100 nM), there was an energy-dependent membrane potential increase in [Ca2+]m; the final [Ca2+]m was phosphate-dependent in Jerusalem artichoke but was phosphate-independent in pea stem mitochondria. The data presented indicate that (a) there is no absolute requirement for phosphate in Ca2+ uptake; (b) plant mitochondria can accumulate external free Ca2+ by means of an electrophoretic Ca2+ uniporter with an apparent affinity for Ca2+ (Km approximately 150 nM) that is severalfold lower than that measured by conventional methods (isotopes and Ca2+-sensitive electrodes); and (c) [Ca2+]m is within the regulatory range of mammalian intramitochondrial dehydrogenases.

  3. [Features of Expression of the PsSst] and PsIgn1 Genes in Nodules of Pea (Pisum sativum L.) Symbiotic Mutants].

    PubMed

    Zhukova, V A; Rychagova, T S; Fedorina, Ya V; Pinaeva, A G; Andronova, E E; Borisova, A Yu; Tikhonovich, I A

    2016-04-01

    The sequences of the PsSst1 and PsIgn1 genes of pea (Pisum sativum L.) homologous to the symbiotic LjSST1 and LjIGN1 genes of Lotusjaponicus (Regel.) K. Larsen are determined. The expression level of PsSst1 and PsIgn1 genes is determined by real-time PCR in nodules of several symbiotic mutants and original lines of pea. Lines with increased (Sprint-2Fix⁻ (Pssym31)) and decreased (P61 (Pssym25)) expression level of both genes are revealed along with the lines characterized by changes in the expression level of only one of these genes. The revealed features of the PsSst1 and PsIgn1 expression allow us to expand the phenotypic characterization of pea symbiotic mutants. In addition, PsSst1 and PsIgn1 cDNA is sequenced in selected mutant lines, characterized by a decreased expression level of these genes in nodules, but no mutations are found.

  4. Evaluation of the protection exerted by Pisum sativum Ferredoxin-NADP(H) Reductase against injury induced by hypothermia on Cos-7 cells.

    PubMed

    Pucci Molineris, M; Di Venanzio, G; Mamprin, M E; Mediavilla, M G

    2013-08-01

    Hypothermia is employed as a method to diminish metabolism rates and preserve tissues and cells. However, low temperatures constitute a stress that produces biochemical changes whose extension depends on the duration and degree of cold exposure and is manifested when physiological temperature is restored. For many cellular types, cold induces an oxidative stress that is dependent on the elevation of intracellular iron, damages macromolecules, and is prevented by the addition of iron chelators. Pisum sativum Ferredoxin-NADP(H) Reductase (FNR) has been implicated in protection from injury mediated by intracellular iron increase and successfully used to reduce oxidative damage on bacterial, plant and mammalian systems. In this work, FNR was expressed in Cos-7 cells; then, they were submitted to cold incubation and iron overload to ascertain whether this enzyme was capable of diminishing the harm produced by these challenges. Contrary to expected, FNR was not protective and even exacerbated the damage under certain circumstances. It was also found that the injury induced by hypothermia in Cos-7 cells presented both iron-dependent and iron-independent components of damage when cells were actively dividing but only iron-independent component when cells were in an arrested state. This is in agreement with previous findings which showed that iron-dependent damage is also an energy-dependent process.

  5. Systemic Induction of the Defensin and Phytoalexin Pisatin Pathways in Pea (Pisum sativum) against Aphanomyces euteiches by Acetylated and Nonacetylated Oligogalacturonides.

    PubMed

    Selim, Sameh; Sanssené, Jean; Rossard, Stéphanie; Courtois, Josiane

    2017-06-19

    Oligogalacturonides (OGs) are known for their powerful ability to stimulate the plant immune system but little is known about their mode of action in pea (Pisum sativum). In the present study, we investigated the elicitor activity of two fractions of OGs, with polymerization degrees (DPs) of 2-25, in pea against Aphanomyces euteiches. One fraction was nonacetylated (OGs - Ac) whereas the second one was 30% acetylated (OGs + Ac). OGs were applied by injecting the upper two rachises of the plants at three- and/or four-weeks-old. Five-week-old roots were inoculated with 10⁵ zoospores of A. euteiches. The root infection level was determined at 7, 10 and 14 days after inoculation using the quantitative real-time polymerase chain reaction (qPCR). Results showed significant root infection reductions namely 58, 45 and 48% in the plants treated with 80 µg OGs + Ac and 59, 56 and 65% with 200 µg of OGs - Ac. Gene expression results showed the upregulation of genes involved in the antifungal defensins, lignans and the phytoalexin pisatin pathways and a priming effect in the basal defense, SA and ROS gene markers as a response to OGs. The reduction of the efficient dose in OGs + Ac is suggesting that acetylation is necessary for some specific responses. Our work provides the first evidence for the potential of OGs in the defense induction in pea against Aphanomyces root rot.

  6. Genetic Changes Accompanying the Domestication of Pisum sativum: Is there a Common Genetic Basis to the ‘Domestication Syndrome’ for Legumes?

    PubMed Central

    Weeden, Norman F.

    2007-01-01

    Background and Aims The changes that occur during the domestication of crops such as maize and common bean appear to be controlled by relatively few genes. This study investigates the genetic basis of domestication in pea (Pisum sativum) and compares the genes involved with those determined to be important in common bean domestication. Methods Quantitative trait loci and classical genetic analysis are used to investigate and identify the genes modified at three stages of the domestication process. Five recombinant inbred populations involving crosses between different lines representing different stages are examined. Key Results A minimum of 15 known genes, in addition to a relatively few major quantitative trait loci, are identified as being critical to the domestication process. These genes control traits such as pod dehiscence, seed dormancy, seed size and other seed quality characters, stem height, root mass, and harvest index. Several of the genes have pleiotropic effects that in species possessing a more rudimentary genetic characterization might have been interpreted as clusters of genes. Very little evidence for gene clustering was found in pea. When compared with common bean, pea has used a different set of genes to produce the same or similar phenotypic changes. Conclusions Similar to results for common bean, relatively few genes appear to have been modified during the domestication of pea. However, the genes involved are different, and there does not appear to be a common genetic basis to ‘domestication syndrome’ in the Fabaceae. PMID:17660515

  7. Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements.

    PubMed

    Kitaeva, Anna B; Demchenko, Kirill N; Tikhonovich, Igor A; Timmers, Antonius C J; Tsyganov, Viktor E

    2016-04-01

    In this study we analyzed and compared the organization of the tubulin cytoskeleton in nodules of Medicago truncatula and Pisum sativum. We combined antibody labeling and green fluorescent protein tagging with laser confocal microscopy to observe microtubules (MTs) in nodules of both wild-type (WT) plants and symbiotic plant mutants blocked at different steps of nodule development. The 3D MT organization of each histological nodule zone in both M. truncatula and P. sativum is correlated to specific developmental processes. Endoplasmic MTs appear to support infection thread growth, infection droplet formation and bacterial release into the host cytoplasm in nodules of both species. No differences in the organization of the MT cytoskeleton between WT and bacterial release mutants were apparent, suggesting both that the phenotype is not linked to a defect in MT organization and that the growth of hypertrophied infection threads is supported by MTs. Strikingly, bacterial release coincides with a change in the organization of cortical MTs from parallel arrays into an irregular, crisscross arrangement. After release, the organization of endoplasmic MTs is linked to the distribution of symbiosomes. The 3D MT organization of each nodule histological zone in M. truncatula and P. sativum was analyzed and linked to specific developmental processes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Identification of Phenolic Compounds from Seed Coats of Differently Colored European Varieties of Pea (Pisum sativum L.) and Characterization of Their Antioxidant and In Vitro Anticancer Activities.

    PubMed

    Stanisavljević, Nemanja S; Ilić, Marija D; Matić, Ivana Z; Jovanović, Živko S; Čupić, Tihomir; Dabić, Dragana Č; Natić, Maja M; Tešić, Živoslav Lj

    2016-01-01

    To date little has been done on identification of major phenolic compounds responsible for anticancer and antioxidant properties of pea (Pisum sativum L.) seed coat extracts. In the present study, phenolic profile of the seed coat extracts from 10 differently colored European varieties has been determined using ultrahigh-performance liquid chromatography-linear trap quadrupole orbitrap mass spectrometer technique. Extracts of dark colored varieties with high total phenolic content (up to 46.56 mg GAE/g) exhibited strong antioxidant activities (measured by 2,2-diphenyl-1-picrylhydrazyl or DPPH assay, and ferric ion reducing and ferrous ion chelating capacity assays) which could be attributed to presence of gallic acid, epigallocatechin, naringenin, and apigenin. The aqueous extracts of dark colored varieties exert concentration-dependent cytotoxic effects on all tested malignant cell lines (human colon adenocarcinoma LS174, human breast carcinoma MDA-MB-453, human lung carcinoma A594, and myelogenous leukemia K562). Correlation analysis revealed that intensities of cytotoxic activity of the extracts strongly correlated with contents of epigallocatechin and luteolin. Cell cycle analysis on LS174 cells in the presence of caspase-3 inhibitor points out that extracts may activate other cell death modalities besides caspase-3-dependent apoptosis. The study provides evidence that seed coat extracts of dark colored pea varieties might be used as potential cancer-chemopreventive and complementary agents in cancer therapy.

  9. Quantification of Pea enation mosaic virus 1 and 2 during infection of Pisum sativum by one step real-time RT-PCR.

    PubMed

    Doumayrou, Juliette; Sheber, Melissa; Bonning, Bryony C; Miller, W Allen

    2017-02-01

    Pea enation mosaic virus 1 (PEMV1) and Pea enation mosaic virus 2 (PEMV2) are two viruses in an obligate symbiosis that cause pea enation mosaic disease mainly in plants in the Fabaceae family. This virus system is a valuable model to investigate plant virus replication, movement and vector transmission. Thus, here we describe growth conditions, virus detection methods, and virus accumulation behavior. To measure the accumulation and movement of PEMV1 and PEMV2 in plants during the course of infection, we developed a quantitative real-time one-step reverse transcription PCR procedure using the SYBR-green(®) technology. Viral primers were designed that anneal to conserved but distinct regions in the RNA-dependent RNA polymerase gene of each virus. Moreover, the normalization of viral accumulation was performed to correct for sample-to-sample variation by designing primers to two different Pisum sativum housekeeping genes: actin and β-tubulin. Transcript levels for these housekeeping genes did not change significantly in response to PEMV infection. Conditions were established for maximum PCR efficiency for each gene, and quantification using QuBit(®) technology. Both viruses reached maximum accumulation around 21days post-inoculation of pea plants. These results provide valuable tools and knowledge to allow reproducible studies of this emerging model virus system virus complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Role of cyanide-resistant respiration in the response of two pea hybrids to CO/sub 2/ enrichment. [Pisum sativum

    SciTech Connect

    Musgrave, M.E.; Strain, B.R.; Siedow, J.N.

    1986-04-01

    Two cultivars of pea (Pisum sativum L., cvs. Alaska and Progress No. 9) were reciprocally crossed to yield hybrids differing in the presence or absence of the cyanide-resistant (alternative) pathway of respiration. The growth of this material in greenhouses maintained at either 350 or 650 ppm CO/sub 2/ was compared. The objective was to assess the significance of the alternative pathway to whole plant carbon budgets and further to use CO/sub 2/ enrichment as a means of testing the hypothesis that the alternative pathway might be important in oxidizing excess carbohydrates. More structural and storage carbohydrates were available in the cross lacking the pathway than in the reciprocal cross as shown by greater plant height, leaf area, specific leaf weight, branching, total dry matter and seed production. Specific leaf weight increased strongly under CO/sub 2/ enrichment in the hybrid lacking the pathway while it was the same at 350 and 650 ppm in the reciprocal cross. These results suggest that respiration via the alternative pathway may be energetically wasteful in terms of whole plant carbon budgets.

  11. COCHLEATA controls leaf size and secondary inflorescence architecture via negative regulation of UNIFOLIATA (LEAFY ortholog) gene in garden pea Pisum sativum.

    PubMed

    Sharma, Vishakha; Chaudhary, Swati; Kumar, Arvind; Kumar, Sushil

    2012-12-01

    UNIFOLIATA [(UNI) or UNIFOLIATA-TENDRILLED ACACIA (UNI-TAC)] expression is known to be negatively regulated by COCHLEATA (COCH) in the differentiating stipules and flowers of Pisum sativum. In this study, additional roles of UNI and COCH in P. sativum were investigated. Comparative phenotyping revealed pleiotropic differences between COCH (UNI-TAC and uni-tac) and coch (UNI-TAC and uni-tac) genotypes of common genetic background. Secondary inflorescences were bracteole-less and bracteolated in COCH and coch genotypes, respectively. In comparison to the leaves and corresponding sub-organs and tissues produced on COCH plants, coch plants produced leaves of 1.5-fold higher biomass, 1.5-fold broader petioles and leaflets that were 1.8-fold larger in span and 1.2-fold dorso-ventrally thicker. coch leaflets possessed epidermal cells 1.3-fold larger in number and size, 1.4-fold larger spongy parenchyma cells and primary vascular bundles with 1.2-fold larger diameter. The transcript levels of UNI were at least 2-fold higher in coch leaves and secondary inflorescences than the corresponding COCH organs. It was concluded that COCH negatively regulated UNI in the differentiating leaves and secondary inflorescences and thereby controlled their sizes and/or structures. It was also surmised that COCH and UNI (LFY homolog) occur together widely in stipulate flowering plants.

  12. Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions.

    PubMed

    Vitányi, Beáta; Kósa, Annamária; Solymosi, Katalin; Böddi, Béla

    2013-06-01

    To study if etiolation symptoms exist in plants grown under natural illumination conditions, under-soil epicotyl segments of light-grown pea (Pisum sativum) plants were examined and compared to those of hydroponically dark-grown plants. Light-, fluorescence- and electron microscopy, 77 K fluorescence spectroscopy, pigment extraction and pigment content determination methods were used. Etioplasts with prolamellar bodies and/or prothylakoids, protochlorophyll (Pchl) and protochlorophyllide (Pchlide) forms (including the flash-photoactive 655 nm emitting form) were found in the (pro)chlorenchyma of epicotyl segments under 3 cm soil depth; their spectral properties were similar to those of hydroponically grown seedlings. However, differences were found in etioplast sizes and Pchlide:Pchl molar ratios, which indicate differences in the developmental rates of the under-soil and of hydroponically developed cells. Tissue regions closer to the soil surface showed gradual accumulation of chlorophyll, and in parallel, decrease of Pchl and Pchlide. These results proved that etioplasts and Pchlide exist in soil-covered parts of seedlings even if they have a 3-4-cm long photosynthetically active shoot above the soil surface. This underlines that etiolation symptoms do develop under natural growing conditions, so they are not merely artificial, laboratory phenomena. Consequently, dark-grown laboratory plants are good models to study the early stages of etioplast differentiation and the Pchlide-chlorophyllide phototransformation. Copyright © Physiologia Plantarum 2012.

  13. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  14. In situ expression of two storage protein genes in relation to histo-differentiation at mid-embryogenesis in Medicago truncatula and Pisum sativum seeds.

    PubMed

    Abirached-Darmency, M; Abdel-gawwad, M R; Conejero, G; Verdeil, J L; Thompson, R

    2005-08-01

    The seed consists of several layers of specialized cell-types that divide and differentiate following a highly regulated programme in time and space. A cytological approach was undertaken in order to study the histo-differentiation at mid-embryogenesis in Medicago truncatula as a model legume, and in Pisum sativum using serial sections of embedded immature seed. Little published information is available about seed development in Medicago species. The observations from this study revealed a number of distinctive features of Medicago seed development and differentiation. Transfer cells, involved in nutrient transfer to the embryo, were clearly identified in the thin-walled parenchyma of the innermost integument. Histological Schiff-naphthol enabled carbohydrate accumulation to be followed in the different seed compartments, and revealed the storage protein bodies. Non-radioactive mRNA in situ hybridization, was carried out using mRNA probes from two highly expressed genes encoding the major vicilin and legumin A storage protein types. The timing of mRNA expression was related to that of the corresponding proteins already identified.

  15. Cell length, light and(14)C-labelled indol-3yl-acetic acid transport inPisum satisum L. andPhaseolus vulgaris L.

    PubMed

    Eliezer, J; Morris, D A

    1980-01-01

    The putative auxin-transporting cells of the intact herbaceous dicotyledon are the young, differentiating vascular elements. The length of these cells was found to be considerably greater in dwarf (Meteor) than in tall (Alderman) varieties ofPisum sativum L., and to be greater in etiolated than in light-grown plants ofP. sativum cv Meteor andPhaseolus vulgaris L. cv Mexican Black. Under given light conditions during transport these large differences in cell length did not influence the shapes of the transport profiles or the velocity of transport of(14)C-labelled indol-3yl-acetic acid (IAA) applied to the apical bud. However, in both etiolated and light-grown bean and dwarf pea plants the velocity of transport in darkness was ca. 25% lower than that in light. Under the same conditions of transport velocities in bean were about twice those observed in the dwarf pea. Exposure to light during transport increased the rate of export of(14)C from the labelled shoot apex in green dwarf pea plants but not in etiolated plants. The light conditions to which the plants were exposed during growth and transport had little effect on the rates of uptake of IAA from the applied solutions. The results indicate that the velocity of auxin transport is independent of the frequency of cell-to-cell interfaces along the transport pathway and it is suggested that in intact plants auxin transport is entirely symplastic.

  16. Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: a laboratory experimental approach.

    PubMed

    Saqrane, Sana; Ouahid, Youness; El Ghazali, Issam; Oudra, Brahim; Bouarab, Lahcen; del Campo, Francisca F

    2009-06-01

    The aim of the present study was to investigate the effect of exposure to a microcystin (MC)-containing extract from a cyanobacteria bloom on growth, development, mineral nutrient accumulation, and photosynthetic activity of Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars. The MCs in the extract, identified by HPLC and/or mass spectrometry (MS) were: MC-RR, -LR, -YR, -(H4)YR, -WR, and -FR. Plant growth and development was tested along 30 exposure days. After this period, MC-extract caused a clear reduction in plant growth and productivity, as well as deleterious effects on development and Photosystem II activity, measured by Fv/Fm fluorescence. However, the chlorophyll (a + b) content hardly varied, and the accumulation of Na+, K+, Ca2+, P and N was enhanced. All the effects observed were plant species, MC concentration, and exposure-time dependent. Relative accumulation of each MC variant greatly varied among plant species and plant organ. The data obtained supports the idea that the use of surface water containing MCs for crop irrigation can affect both plant yield and quality, and secondly, that MC accumulation in edible plants might pose a potential risk for human and animal health, if the MC intake exceeded the recommended tolerable limits.

  17. Crystal structure of Pisum arvense seed lectin (PAL) and characterization of its interaction with carbohydrates by molecular docking and dynamics.

    PubMed

    Pinto-Junior, Vanir Reis; Santiago, Mayara Queiroz; Nobre, Camila Bezerra; Osterne, Vinicius Jose Silva; Leal, Rodrigo Bainy; Cajazeiras, Joao Batista; Lossio, Claudia Figueiredo; Rocha, Bruno Anderson Matias; Martins, Maria Gleiciane Queiroz; Nobre, Clareane Avelino Simplicio; Silva, Mayara Torquato Lima; Nascimento, Kyria Santiago; Cavada, Benildo Sousa

    2017-09-15

    The Pisum arvense lectin (PAL), a legume protein belonging to the Vicieae tribe, is capable of specific recognition of mannose, glucose and its derivatives without altering its structure. In this work, the three-dimensional structure of PAL was determined by X-ray crystallography and studied in detail by a combination of molecular docking and molecular dynamics (MD). Crystals belonging to monoclinic space group P21 were grown by the vapor diffusion method at 293 K. The structure was solved at 2.16 Å and was similar to that of other Vicieae lectins. The structure presented Rfactor and Rfree of 17.04% and 22.08%, respectively, with all acceptable geometric parameters. Molecular docking was performed to analyze interactions of the lectin with monosaccharides, disaccharides and high-mannose N-glycans. PAL demonstrated different affinities on carbohydrates, depending on bond orientation and glycosidic linkage present in ligands. Furthermore, the lectin interacted with representative N-glycans in a manner consistent with the biological effects described for Vicieae lectins. Carbohydrate-recognition domain (CRD) in-depth analysis was performed by MD, describing the behavior of CRD residues in complex with ligand, stability, flexibility of the protein over time, CRD volume and topology. This is a first report of its kind for a lectin of the Vicieae tribe. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Aqueous pathways dominate permeation of solutes across Pisum sativum seed coats and mediate solute transport via diffusion and bulk flow of water.

    PubMed

    Niemann, Sylvia; Burghardt, Markus; Popp, Christian; Riederer, Markus

    2013-05-01

    The permeability of seed coats to solutes either of biological or anthropogenic origin plays a major role in germination, seedling growth and seed treatment by pesticides. An experimental set-up was designed for investigating the mechanisms of seed coat permeation, which allows steady-state experiments with isolated seed coats of Pisum sativum. Permeances were measured for a set of organic model compounds with different physicochemical properties and sizes. The results show that narrow aqueous pathways dominate the diffusion of solutes across pea seed coats, as indicated by a correlation of permeances with the molecular sizes of the compounds instead of their lipophilicity. Further indicators for an aqueous pathway are small size selectivity and a small effect of temperature on permeation. The application of an osmotic water potential gradient across isolated seed coats leads to an increase in solute transfer, indicating that the aqueous pathways form a water-filled continuum across the seed coat allowing the bulk flow of water. Thus, the uptake of organic solutes across pea testae has two components: (1) by diffusion and (2) by bulk water inflow, which, however, is relevant only during imbibition. © 2012 Blackwell Publishing Ltd.

  19. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis.

    PubMed

    Paiva, N L; Sun, Y; Dixon, R A; VanEtten, H D; Hrazdina, G

    1994-08-01

    Isoflavone reductase (IFR) reduces achiral isoflavones to chiral isoflavanones during the biosynthesis of chiral pterocarpan phytoalexins. A cDNA clone for IFR from pea (Pisum sativum) was isolated using the polymerase chain reaction and expressed in Escherichia coli. Analysis of circular dichroism (CD) spectra of the reduction product sophorol obtained using the recombinant enzyme indicated that the isoflavanone possessed the 3R stereochemistry, in contrast to previous reports indicating a 3S-isoflavanone as the product of the pea IFR. Analysis of CD spectra of sophorol produced using enzyme extracts of CuCl2-treated pea seedlings confirmed the 3R stereochemistry. Thus, the stereochemistry of the isoflavanone intermediate in (+)-pisatin biosynthesis in pea is the same as that in (-)-medicarpin biosynthesis in alfalfa, although the final pterocarpans have the opposite stereochemistry. At the amino acid level the pea IFR cDNA was 91.8 and 85.2% identical to the IFRs from alfalfa and chickpea, respectively. IFR appears to be encoded by a single gene in pea. Its transcripts are highly induced in CuCl2-treated seedlings, consistent with the appearance of IFR enzyme activity and pisatin accumulation.

  20. Ensembl genomes 2016: more genomes, more complexity

    USDA-ARS?s Scientific Manuscript database

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...

  1. Ensembl Genomes 2016: more genomes, more complexity.

    PubMed

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Ove