Science.gov

Sample records for ad csf biomarkers

  1. Autosomal Dominant Alzheimer Disease: A Unique Resource to Study CSF Biomarker Changes in Preclinical AD

    PubMed Central

    Schindler, Suzanne Elizabeth; Fagan, Anne M.

    2015-01-01

    Our understanding of the pathogenesis of Alzheimer disease (AD) has been greatly influenced by investigation of rare families with autosomal dominant mutations that cause early onset AD. Mutations in the genes coding for amyloid precursor protein (APP), presenilin 1 (PSEN-1), and presenilin 2 (PSEN-2) cause over-production of the amyloid-β peptide (Aβ) leading to early deposition of Aβ in the brain, which in turn is hypothesized to initiate a cascade of processes, resulting in neuronal death, cognitive decline, and eventual dementia. Studies of cerebrospinal fluid (CSF) from individuals with the common form of AD, late-onset AD (LOAD), have revealed that low CSF Aβ42 and high CSF tau are associated with AD brain pathology. Herein, we review the literature on CSF biomarkers in autosomal dominant AD (ADAD), which has contributed to a detailed road map of AD pathogenesis, especially during the preclinical period, prior to the appearance of any cognitive symptoms. Current drug trials are also taking advantage of the unique characteristics of ADAD and utilizing CSF biomarkers to accelerate development of effective therapies for AD. PMID:26175713

  2. CSF biomarkers in neurodegenerative and vascular dementias.

    PubMed

    Llorens, Franc; Schmitz, Matthias; Ferrer, Isidro; Zerr, Inga

    2016-01-01

    Neurodegenerative diseases with abnormal protein aggregates such as Alzheimer's disease, tauopathies, synucleinopathies, and prionopathies, together with vascular encephalopathies, are cause of cognitive impairment and dementia. Identification of reliable biomarkers in biological fluids, particularly in the cerebrospinal fluid (CSF), is of extreme importance in optimizing the precise early clinical diagnosis of distinct entities and predicting the outcome in particular settings. In addition, the study of CSF biomarkers is useful to identify and monitor the underlying pathological processes developing in the central nervous system of affected individuals. Evidence suggests that levels of key CSF molecules correlate, in some circumstances, with prediction, disease progression, and severity of cognitive decline. Correlation of CSF markers and underlying pathological molecular substrates in brain is an exciting field for further study. However, while some dementias such as Creutzfeldt-Jakob disease have accurate CSF biomarkers, other disease types such as dementia with Lewy bodies, vascular dementia, and frontotemporal dementia lack reliable biomarkers for their specific clinical diagnosis. PMID:27016008

  3. Using CSF biomarkers to replicate genetic associations in Alzheimer's disease.

    PubMed

    Schott, Jonathan M

    2012-07-01

    Defining cases and controls on the basis of biomarkers rather than clinical diagnosis may reduce sample sizes required for genetic studies. The aim of this study was to assess whether characterizing case/control status on the basis of cerebrospinal fluid (CSF) profile would increase power to replicate known genetic associations for Alzheimer's disease (AD). Independent of clinical diagnosis, Alzheimer's Disease Neuroimaging Initiative (ADNI) subjects with 2 CSF biomarkers for AD (Aβ1-42 < 192 pg/mL and tau phosphorylated at threonine 181 (p-tau) > 23 pg/mL, "CSF-positive") were compared with those without CSF evidence for AD (Aβ1-42 > 192 pg/mL and 181-phosphorylated tau < 23 pg/mL, "CSF-negative"). Minor allele frequency (MAF) and odds ratios (ORs) between these 2 groups were calculated for 7 single-nucleotide polymorphisms (SNPs) of interest. Two hundred thirty-two individuals were CSF-positive and 94 CSF-negative. There were no differences in age (74.7 ± 7.2 vs. 75.0 ± 6.5 years, p = 0.7), but significant differences in Mini Mental State Examination (MMSE) (25.9 ± 2.6 vs. 28.2 ± 1.7, p < 0.001) between the CSF-positive and CSF-negative groups. Significant differences in MAF (p < 0.05, uncorrected) were seen for CR1 (rs1408077; OR, 1.59; 95% confidence interval [CI], 1.01-2.49), PICALM (rs541458; OR, 0.68, 95% CI, 0.47-0.98), TOMM40 (rs2075650; OR, 4.30; 95% CI, 2.61-7.06); and possession of 1 or more APOE ε4 alleles (OR, 9.84; 95% CI, 5.48-17.67). These results suggest that using biomarkers of AD pathology to define case and control status may increase power in genetic association studies. PMID:21459483

  4. Influence of APOE Genotype on Alzheimer's Disease CSF Biomarkers in a Spanish Population

    PubMed Central

    Monge-Argilés, J. A.; Gasparini-Berenguer, R.; Gutierrez-Agulló, M.; Muñoz-Ruiz, C.; Sánchez-Payá, J.; Leiva-Santana, C.

    2016-01-01

    Objectives. To evaluate the association between apolipoprotein E (APOE) genotype and cerebrospinal fluid (CSF) levels of Alzheimer's disease (AD) biomarkers and to study the influence of APOE genotype on the development of AD in a Spanish population. Material and Methods. The study comprised 29 amnestic mild cognitive impairment (MCI) patients and 27 control subjects. Using ELISA methodology, CSF biomarkers and tau/Aβ ratios were obtained. ANOVA and adjusted odds ratios were calculated. Results. We observed the effect of APOE genotype and age on CSF AD variables. The progression to AD was more clearly influenced by CSF AD variables than by age or APOE status. Conclusions. APOE status influences CSF AD variables. However, the presence of APOE ε4 does not appear to be a deterministic factor for the development of AD, because CSF variables have a greater influence on progression to the disease. These results confirm previous observations and, to our knowledge, are the first published in a Spanish population. PMID:27092308

  5. Predicting MCI outcome with clinically available MRI and CSF biomarkers

    PubMed Central

    Heister, D.; Brewer, J.B.; Magda, S.; Blennow, K.

    2011-01-01

    Objective: To determine the ability of clinically available volumetric MRI (vMRI) and CSF biomarkers, alone or in combination with a quantitative learning measure, to predict conversion to Alzheimer disease (AD) in patients with mild cognitive impairment (MCI). Methods: We stratified 192 MCI participants into positive and negative risk groups on the basis of 1) degree of learning impairment on the Rey Auditory Verbal Learning Test; 2) medial temporal atrophy, quantified from Food and Drug Administration–approved software for automated vMRI analysis; and 3) CSF biomarker levels. We also stratified participants based on combinations of risk factors. We computed Cox proportional hazards models, controlling for age, to assess 3-year risk of converting to AD as a function of risk group and used Kaplan-Meier analyses to determine median survival times. Results: When risk factors were examined separately, individuals testing positive showed significantly higher risk of converting to AD than individuals testing negative (hazard ratios [HR] 1.8–4.1). The joint presence of any 2 risk factors substantially increased risk, with the combination of greater learning impairment and increased atrophy associated with highest risk (HR 29.0): 85% of patients with both risk factors converted to AD within 3 years, vs 5% of those with neither. The presence of medial temporal atrophy was associated with shortest median dementia-free survival (15 months). Conclusions: Incorporating quantitative assessment of learning ability along with vMRI or CSF biomarkers in the clinical workup of MCI can provide critical information on risk of imminent conversion to AD. PMID:21998317

  6. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease

    PubMed Central

    Zetterberg, Henrik; Mattsson, Niklas; Johansson, Per; Minthon, Lennart; Blennow, Kaj; Olsson, Mattias

    2015-01-01

    Objective: To compare the diagnostic accuracy of CSF biomarkers and amyloid PET for diagnosing early-stage Alzheimer disease (AD). Methods: From the prospective, longitudinal BioFINDER study, we included 122 healthy elderly and 34 patients with mild cognitive impairment who developed AD dementia within 3 years (MCI-AD). β-Amyloid (Aβ) deposition in 9 brain regions was examined with [18F]-flutemetamol PET. CSF was analyzed with INNOTEST and EUROIMMUN ELISAs. The results were replicated in 146 controls and 64 patients with MCI-AD from the Alzheimer's Disease Neuroimaging Initiative study. Results: The best CSF measures for identifying MCI-AD were Aβ42/total tau (t-tau) and Aβ42/hyperphosphorylated tau (p-tau) (area under the curve [AUC] 0.93–0.94). The best PET measures performed similarly (AUC 0.92–0.93; anterior cingulate, posterior cingulate/precuneus, and global neocortical uptake). CSF Aβ42/t-tau and Aβ42/p-tau performed better than CSF Aβ42 and Aβ42/40 (AUC difference 0.03–0.12, p < 0.05). Using nonoptimized cutoffs, CSF Aβ42/t-tau had the highest accuracy of all CSF/PET biomarkers (sensitivity 97%, specificity 83%). The combination of CSF and PET was not better than using either biomarker separately. Conclusions: Amyloid PET and CSF biomarkers can identify early AD with high accuracy. There were no differences between the best CSF and PET measures and no improvement when combining them. Regional PET measures were not better than assessing the global Aβ deposition. The results were replicated in an independent cohort using another CSF assay and PET tracer. The choice between CSF and amyloid PET biomarkers for identifying early AD can be based on availability, costs, and doctor/patient preferences since both have equally high diagnostic accuracy. Classification of evidence: This study provides Class III evidence that amyloid PET and CSF biomarkers identify early-stage AD equally accurately. PMID:26354982

  7. Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP

    PubMed Central

    Watts, Kelly; Grossman, Murray; Glass, Jonathan; Lah, James J.; Hales, Chadwick; Shelnutt, Matthew; Van Deerlin, Vivianna; Trojanowski, John Q.; Levey, Allan I.

    2013-01-01

    Objectives: To validate the ability of candidate CSF biomarkers to distinguish between the 2 main forms of frontotemporal lobar degeneration (FTLD), FTLD with TAR DNA-binding protein 43 (TDP-43) inclusions (FTLD-TDP) and FTLD with Tau inclusions (FTLD-Tau). Methods: Antemortem CSF samples were collected from 30 patients with FTLD in a single-center validation cohort, and CSF levels of 5 putative FTLD-TDP biomarkers as well as levels of total Tau (t-Tau) and Tau phosphorylated at threonine 181 (p-Tau181) were measured using independent assays. Biomarkers most associated with FTLD-TDP were then tested in a separate 2-center validation cohort composed of subjects with FTLD-TDP, FTLD-Tau, Alzheimer disease (AD), and cognitively normal subjects. The sensitivity and specificity of FTLD-TDP biomarkers were determined. Results: In the first validation cohort, FTLD-TDP cases had decreased levels of p-Tau181 and interleukin-23, and increased Fas. Reduced ratio of p-Tau181 to t-Tau (p/t-Tau) was the strongest predictor of FTLD-TDP pathology. Analysis in the second validation cohort showed CSF p/t-Tau ratio <0.37 to distinguish FTLD-TDP from FTLD-Tau, AD, and healthy seniors with 82% sensitivity and 82% specificity. Conclusion: A reduced CSF p/t-Tau ratio represents a reproducible, validated biomarker for FTLD-TDP with performance approaching well-established CSF AD biomarkers. Introducing this biomarker into research and the clinical arena can significantly increase the power of clinical trials targeting abnormal accumulations of TDP-43 or Tau, and select the appropriate patients for target-specific therapies. Classification of evidence: This study provides Class II evidence that the CSF p/t-Tau ratio distinguishes FTLD-TDP from FTLD-Tau. PMID:24174584

  8. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer disease

    PubMed Central

    Fagan, Anne M.; Xiong, Chengjie; Jasielec, Mateusz S.; Bateman, Randall J.; Goate, Alison M.; Benzinger, Tammie L.S.; Ghetti, Bernardino; Martins, Ralph N.; Masters, Colin L.; Mayeux, Richard; Ringman, John M.; Rossor, Martin N.; Salloway, Stephen; Schofield, Peter R.; Sperling, Reisa A.; Marcus, Daniel; Cairns, Nigel J.; Buckles, Virginia D.; Ladenson, Jack H.; Morris, John C.; Holtzman, David M.

    2014-01-01

    Clinicopathologic evidence suggests the pathology of Alzheimer disease (AD) begins many years prior to cognitive symptoms. Biomarkers are required to identify affected individuals during this asymptomatic (“pre-clinical”) stage to permit intervention with potential disease-modifying therapies designed to preserve normal brain function. Studies of families with autosomal-dominant AD (ADAD) mutations provide a unique and powerful means to investigate AD biomarker changes during the asymptomatic period. In this biomarker study comparing cerebrospinal fluid (CSF), plasma and in vivo amyloid imaging, cross-sectional data obtained at baseline in individuals from ADAD families enrolled in the Dominantly Inherited Alzheimer Network (DIAN) demonstrate reduced concentrations of CSF amyloid-β1-42 (Aβ1–42) associated with the presence of β-amyloid plaques, and elevated concentrations of CSF tau, ptau181 and VILIP-1, markers of neurofibrillary tangles and/or neuronal injury/death, in asymptomatic mutation carriers 10-20 years prior to their estimated age at symptom onset (EAO), and prior to detection of cognitive deficits. When compared longitudinally, however, the concentrations of CSF biomarkers of neuronal injury/death within-individuals decrease after their EAO, suggesting a slowing of acute neurodegenerative processes with symptomatic disease progression. These results emphasize the importance of longitudinal, within-person assessment when modeling biomarker trajectories across the course of the disease. If corroborated, this pattern may influence the definition of a positive neurodegenerative biomarker outcome in clinical trials. PMID:24598588

  9. NIA-AA staging of preclinical Alzheimer disease: discordance and concordance of CSF and imaging biomarkers.

    PubMed

    Vos, Stephanie J B; Gordon, Brian A; Su, Yi; Visser, Pieter Jelle; Holtzman, David M; Morris, John C; Fagan, Anne M; Benzinger, Tammie L S

    2016-08-01

    The National Institute of Aging and Alzheimer's Association (NIA-AA) criteria for Alzheimer disease (AD) treat neuroimaging and cerebrospinal fluid (CSF) markers of AD pathology as if they would be interchangeable. We tested this assumption in 212 cognitively normal participants who have both neuroimaging and CSF measures of β-amyloid (CSF Aβ1-42 and positron emission tomography imaging with Pittsburgh Compound B) and neuronal injury (CSF t-tau and p-tau and structural magnetic resonance imaging) with longitudinal clinical follow-up. Participants were classified in preclinical AD stage 1 (β-amyloidosis) or preclinical AD stage 2+ (β-amyloidosis and neuronal injury) using the NIA-AA criteria, or in the normal or suspected non-Alzheimer disease pathophysiology group (neuronal injury without β-amyloidosis). At baseline, 21% of participants had preclinical AD based on CSF and 28% based on neuroimaging. Between modalities, staging was concordant in only 47% of participants. Disagreement resulted from low concordance between biomarkers of neuronal injury. Still, individuals in stage 2+ using either criterion had an increased risk for clinical decline. This highlights the heterogeneity of the definition of neuronal injury and has important implications for clinical trials using biomarkers for enrollment or as surrogate end point measures. PMID:27318129

  10. Cerebrospinal Fluid Biomarkers of Simian Immunodeficiency Virus Encephalitis : CSF Biomarkers of SIV Encephalitis.

    PubMed

    Bissel, Stephanie J; Kofler, Julia; Nyaundi, Julia; Murphey-Corb, Michael; Wisniewski, Stephen R; Wiley, Clayton A

    2016-06-01

    Antiretroviral therapy has led to increased survival of HIV-infected patients but also increased prevalence of HIV-associated neurocognitive disorders. We previously identified YKL40 as a potential cerebrospinal fluid (CSF) biomarker of lentiviral central nervous system (CNS) disease in HIV-infected patients and in the macaque model of HIV encephalitis. The aim of this study was to define the specificity and sensitivity along with the predictive value of YKL40 as a biomarker of encephalitis and to assess its relationship to CSF viral load. CSF YKL40 and SIV RNA concentrations were analyzed over the course of infection in 19 SIV-infected pigtailed macaques and statistical analyses were performed to evaluate the relationship to encephalitis. Using these relationships, CSF alterations of 31 neuroimmune markers were studied pre-infection, during acute and asymptomatic infection, at the onset of encephalitis, and at necropsy. YKL40 CSF concentrations above 1122 ng/ml were found to be a specific and sensitive biomarker for the presence of encephalitis and were highly correlated with CSF viral load. Macaques that developed encephalitis had evidence of chronic CNS immune activation during early, asymptomatic, and end stages of infection. At the onset of encephalitis, CSF demonstrated a rise of neuroimmune markers associated with macrophage recruitment, activation and interferon response. CSF YKL40 concentration and viral load are valuable biomarkers to define the onset of encephalitis. Chronic CNS immune activation precedes the development of encephalitis while some responses suggest protection from CNS lentiviral disease. PMID:27059917

  11. Increased CSF biomarkers of angiogenesis in Parkinson disease

    PubMed Central

    Janelidze, Shorena; Francardo, Veronica; Hall, Sara; Zetterberg, Henrik; Blennow, Kaj; Adler, Charles H.; Beach, Thomas G.; Serrano, Geidy E.; van Westen, Danielle; Londos, Elisabet; Cenci, M. Angela; Hansson, Oskar

    2015-01-01

    Objective: To study biomarkers of angiogenesis in Parkinson disease (PD), and how these are associated with clinical characteristics, blood–brain barrier (BBB) permeability, and cerebrovascular disease. Methods: In this cross-sectional analysis, 38 elderly controls and 100 patients with PD (82 without dementia and 18 with dementia) were included from the prospective Swedish BioFinder study. CSF samples were analyzed for the angiogenesis biomarkers vascular endothelial growth factor (VEGF); its receptors, VEGFR-1 and VEGFR-2; placental growth factor (PlGF); angiopoietin 2 (Ang2); and interleukin-8. BBB permeability, white matter lesions (WMLs), and cerebral microbleeds (CMB) were assessed. CSF angiogenesis biomarkers were also measured in 2 validation cohorts: (1) 64 controls and 87 patients with PD with dementia; and (2) 35 controls and 93 patients with neuropathologically confirmed diagnosis of PD with and without dementia. Results: Patients with PD without dementia displayed higher CSF levels of VEGF, PlGF, and sVEGFR-2, and lower levels of Ang2, compared to controls. Similar alterations in VEGF, PlGF, and Ang2 levels were observed in patients with PD with dementia. Angiogenesis markers were associated with gait difficulties and orthostatic hypotension as well as with more pronounced BBB permeability, WMLs, and CMB. Moreover, higher levels of VEGF and PlGF levels were associated with increased CSF levels of neurofilament light (a marker of neurodegeneration) and monocyte chemotactic protein–1 (a marker of glial activation). The main results were validated in the 2 additional cohorts. Conclusions: CSF biomarkers of angiogenesis are increased in PD, and they are associated with gait difficulties, BBB dysfunction, WMLs, and CMB. Abnormal angiogenesis may be important in PD pathogenesis and contribute to dopa-resistant symptoms. PMID:26511451

  12. Characterization of novel CSF Tau and ptau biomarkers for Alzheimer's disease.

    PubMed

    Meredith, Jere E; Sankaranarayanan, Sethu; Guss, Valerie; Lanzetti, Anthony J; Berisha, Flora; Neely, Robert J; Slemmon, J Randall; Portelius, Erik; Zetterberg, Henrik; Blennow, Kaj; Soares, Holly; Ahlijanian, Michael; Albright, Charles F

    2013-01-01

    Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer's disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases. PMID:24116116

  13. Characterization of Novel CSF Tau and ptau Biomarkers for Alzheimer’s Disease

    PubMed Central

    Guss, Valerie; Lanzetti, Anthony J.; Berisha, Flora; Neely, Robert J.; Slemmon, J. Randall; Portelius, Erik; Zetterberg, Henrik; Blennow, Kaj; Soares, Holly; Ahlijanian, Michael; Albright, Charles F.

    2013-01-01

    Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases. PMID:24116116

  14. Multiplexed Immunoassay Panel Identifies Novel CSF Biomarkers for Alzheimer's Disease Diagnosis and Prognosis

    PubMed Central

    Craig-Schapiro, Rebecca; Kuhn, Max; Xiong, Chengjie; Pickering, Eve H.; Liu, Jingxia; Misko, Thomas P.; Perrin, Richard J.; Bales, Kelly R.; Soares, Holly; Fagan, Anne M.; Holtzman, David M.

    2011-01-01

    Background Clinicopathological studies suggest that Alzheimer's disease (AD) pathology begins ∼10–15 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers (Aβ42, tau, p-tau181). Methods and Findings Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1) individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR>0 groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-α, fibrinogen, FAS, eotaxin-3) enhanced the ability of the best-performing established CSF biomarker, the tau/Aβ42 ratio, to discriminate CDR>0 from CDR 0 individuals. Multiple machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR>0 individuals in the more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of markers for predicting risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) consisted of calbindin, Aβ42, and age. Conclusions/Significance Using a targeted proteomic screen, we identified novel candidate biomarkers that complement the best

  15. CSF YKL-40 and pTau181 are related to different cerebral morphometric patterns in early AD.

    PubMed

    Gispert, Juan Domingo; Monté, Gemma C; Falcon, Carles; Tucholka, Alan; Rojas, Santiago; Sánchez-Valle, Raquel; Antonell, Anna; Lladó, Albert; Rami, Lorena; Molinuevo, José Luis

    2016-02-01

    Cerebrospinal fluid (CSF) concentrations of YKL-40 that serve as biomarker of neuroinflammation are known to be altered along the clinico-biological continuum of Alzheimer's disease (AD). The specific structural cerebral correlates of CSF YKL-40 were evaluated across the early stages of AD from normal to preclinical to mild dementia. Nonlinear gray matter (GM) volume associations with CSF YKL-40 levels were assessed in a total of 116 subjects, including normal controls and those with preclinical AD as defined by CSF Aβ < 500 pg/mL, mild cognitive impairment (MCI) due to AD, or mild AD dementia. Age-corrected YKL-40 levels were increased in MCIs versus the rest of groups and showed an inverse u-shaped association with p-tau values. A similar nonlinear relationship was found between GM volume and YKL-40 in inferior and lateral temporal regions spreading to the supramarginal gyrus, insula, inferior frontal cortex, and cerebellum in MCI and AD. These findings for YKL-40 remained unchanged after adjusting for p-tau, which was found to be associated with GM volumes in distinct anatomic areas. CSF YKL-40, a biomarker of glial inflammation, is associated with a cerebral structural signature distinct from that related to p-tau neurodegeneration at the earliest stages of cognitive decline due to AD. PMID:26827642

  16. CSF protein biomarkers predicting longitudinal reduction of CSF β-amyloid42 in cognitively healthy elders

    PubMed Central

    Mattsson, N; Insel, P; Nosheny, R; Zetterberg, H; Trojanowski, J Q; Shaw, L M; Tosun, D; Weiner, M

    2013-01-01

    β-amyloid (Aβ) plaque accumulation is a hallmark of Alzheimer's disease (AD). It is believed to start many years prior to symptoms and is reflected by reduced cerebrospinal fluid (CSF) levels of the peptide Aβ1–42 (Aβ42). Here we tested the hypothesis that baseline levels of CSF proteins involved in microglia activity, synaptic function and Aβ metabolism predict the development of Aβ plaques, assessed by longitudinal CSF Aβ42 decrease in cognitively healthy people. Forty-six healthy people with three to four serial CSF samples were included (mean follow-up 3 years, range 2–4 years). There was an overall reduction in Aβ42 from a mean concentration of 211–195 pg ml−1 after 4 years. Linear mixed-effects models using longitudinal Aβ42 as the response variable, and baseline proteins as explanatory variables (n=69 proteins potentially relevant for Aβ metabolism, microglia or synaptic/neuronal function), identified 10 proteins with significant effects on longitudinal Aβ42. The most significant proteins were angiotensin-converting enzyme (ACE, P=0.009), Chromogranin A (CgA, P=0.009) and Axl receptor tyrosine kinase (AXL, P=0.009). Receiver-operating characteristic analysis identified 11 proteins with significant effects on longitudinal Aβ42 (largely overlapping with the proteins identified by linear mixed-effects models). Several proteins (including ACE, CgA and AXL) were associated with Aβ42 reduction only in subjects with normal baseline Aβ42, and not in subjects with reduced baseline Aβ42. We conclude that baseline CSF proteins related to Aβ metabolism, microglia activity or synapses predict longitudinal Aβ42 reduction in cognitively healthy elders. The finding that some proteins only predict Aβ42 reduction in subjects with normal baseline Aβ42 suggest that they predict future development of the brain Aβ pathology at the earliest stages of AD, prior to widespread development of Aβ plaques. PMID:23962923

  17. Meta-Review of CSF Core Biomarkers in Alzheimer’s Disease: The State-of-the-Art after the New Revised Diagnostic Criteria

    PubMed Central

    Ferreira, Daniel; Perestelo-Pérez, Lilisbeth; Westman, Eric; Wahlund, Lars-Olof; Sarría, Antonio; Serrano-Aguilar, Pedro

    2014-01-01

    Background: Current research criteria for Alzheimer’s disease (AD) include cerebrospinal fluid (CSF) biomarkers into the diagnostic algorithm. However, spreading their use to the clinical routine is still questionable. Objective: To provide an updated, systematic and critical review on the diagnostic utility of the CSF core biomarkers for AD. Data sources: MEDLINE, PreMedline, EMBASE, PsycInfo, CINAHL, Cochrane Library, and CRD. Eligibility criteria: (1a) Systematic reviews with meta-analysis; (1b) Primary studies published after the new revised diagnostic criteria; (2) Evaluation of the diagnostic performance of at least one CSF core biomarker. Results: The diagnostic performance of CSF biomarkers is generally satisfactory. They are optimal for discriminating AD patients from healthy controls. Their combination may also be suitable for mild cognitive impairment (MCI) prognosis. However, CSF biomarkers fail to distinguish AD from other forms of dementia. Limitations: (1) Use of clinical diagnosis as standard instead of pathological postmortem confirmation; (2) variability of methodological aspects; (3) insufficiently long follow-up periods in MCI studies; and (4) lower diagnostic accuracy in primary care compared with memory clinics. Conclusion: Additional work needs to be done to validate the application of CSF core biomarkers as they are proposed in the new revised diagnostic criteria. The use of CSF core biomarkers in clinical routine is more likely if these limitations are overcome. Early diagnosis is going to be of utmost importance when effective pharmacological treatment will be available and the CSF core biomarkers can also be implemented in clinical trials for drug development. PMID:24715863

  18. Relationship Between CSF Biomarkers of Alzheimer’s Disease and Rates of Regional Cortical Thinning in ADNI Data

    PubMed Central

    Tosun, Duygu; Schuff, Norbert; Shaw, Leslie M.; Trojanowski, John Q.; Weiner, Michael W.

    2015-01-01

    Previously it was reported that Alzheimer’s disease (AD) patients have reduced amyloid (Aβ1–42) and elevated total tau (t-tau) and phosphorylated tau (p-tau181p) in the cerebro-spinal fluid (CSF), suggesting that these same measures could be used to detect early AD pathology in healthy elderly (CN) and mild cognitive impairment (MCI). In this study, we tested the hypothesis that there would be an association among rates of regional brain atrophy, the CSF biomarkers Aβ1–42, t-tau, and p-tau181p and ApoE ε4 status, and that the pattern of this association would be diagnosis specific. Our findings primarily showed that lower CSF Aβ1–42 and higher tau concentrations were associated with increased rates of regional brain tissue loss and the patterns varied across the clinical groups. Taken together, these findings demonstrate that CSF biomarker concentrations are associated with the characteristic patterns of structural brain changes in CN and MCI that resemble to a large extent the pathology seen in AD. Therefore, the finding of faster progression of brain atrophy in the presence of lower Aβ1–42 levels and higher p-tau levels supports the hypothesis that CSF Aβ1–42 and tau are measures of early AD pathology. Moreover, the relationship among CSF biomarkers, ApoE ε4 status, and brain atrophy rates are regionally varying, supporting the view that the genetic predisposition of the brain to amyloid and tau mediated pathology is regional and disease stage specific. PMID:21971452

  19. Consensus Guidelines for CSF and Blood Biobanking for CNS Biomarker Studies

    PubMed Central

    Teunissen, Charlotte E.; Tumani, Hayrettin; Bennett, Jeffrey L.; Berven, Frode S.; Brundin, Lou; Comabella, Manuel; Franciotta, Diego; Federiksen, Jette L.; Fleming, John O.; Furlan, Roberto; Hintzen, Rogier Q.; Hughes, Steve G.; Jimenez, Connie R.; Johnson, Michael H.; Killestein, Joep; Krasulova, Eva; Kuhle, Jens; Magnone, Maria-Chiara; Petzold, Axel; Rajda, Cecilia; Rejdak, Konrad; Schmidt, Hollie K.; van Pesch, Vincent; Waubant, Emmanuelle; Wolf, Christian; Deisenhammer, Florian; Giovannoni, Gavin; Hemmer, Bernhard

    2011-01-01

    There is a long history of research into body fluid biomarkers in neurodegenerative and neuroinflammatory diseases. However, only a few biomarkers in cerebrospinal fluid (CSF) are being used in clinical practice. Anti-aquaporin-4 antibodies in serum are currently useful for the diagnosis of neuromyelitis optica (NMO), but we could expect novel CSF biomarkers that help define prognosis and response to treatment for this disease. One of the most critical factors in biomarker research is the inadequate powering of studies performed by single centers. Collaboration between investigators is needed to establish large biobanks of well-defined samples. A key issue in collaboration is to establish standardized protocols for biobanking to ensure that the statistical power gained by increasing the numbers of CSF samples is not compromised by pre-analytical factors. Here, consensus guidelines for CSF collection and biobanking are presented, based on the guidelines that have been published by the BioMS-eu network for CSF biomarker research. We focussed on CSF collection procedures, pre-analytical factors and high quality clinical and paraclinical information. Importantly, the biobanking protocols are applicable for CSF biobanks for research targeting any neurological disease. PMID:22096631

  20. Approach to Cerebrospinal Fluid (CSF) Biomarker Discovery and Evaluation in HIV Infection

    SciTech Connect

    Price, Richard W.; Peterson, Julia; Fuchs, Dietmar; Angel, Thomas E.; Zetterberg, Henrik; Hagberg, Lars; Spudich, Serena S.; Smith, Richard D.; Jacobs, Jon M.; Brown, Joseph N.; Gisslen, Magnus

    2013-12-13

    Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across the spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previouslydefined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.

  1. Differences in brain cholesterol metabolism and insulin in two subgroups of patients with different CSF biomarkers but similar white matter lesions suggest different pathogenic mechanisms.

    PubMed

    Besga, A; Cedazo-Minguez, A; Kåreholt, I; Solomon, A; Björkhem, I; Winblad, B; Leoni, V; Hooshmand, B; Spulber, G; Gonzalez-Pinto, A; Kivipelto, M; Wahlund, L O

    2012-02-29

    Investigate possible associations of white matter hyperintensities (WMHs) with the metabolism of cholesterol and insulin in two subgroups of patients with memory complaints and different CSF Aβ42 and CSF tau levels. 59 patients from the memory clinic at Karolinska Hospital were included. Degree of WMHs was rated using the ARWMC scale and the following biomarkers were measured in CSF and plasma: insulin, cholesterol, lanosterol, lathosterol, and oxidized cholesterol metabolites. The WMHs in CSF control-like group correlated with increased brain cholesterol synthesis and reduced efflux of oxysterols and insulin in CSF. In the CSF AD-like group, the WMHs correlated with increased peripheral cholesterol metabolism. Despite having similar appearance on FLAIR images, the pathogenic mechanisms of WMHS are likely to be different in the two groups investigated. PMID:22281444

  2. CSF neuroinflammatory biomarkers in bipolar disorder are associated with cognitive impairment.

    PubMed

    Rolstad, Sindre; Jakobsson, Joel; Sellgren, Carl; Isgren, Anniella; Ekman, Carl Johan; Bjerke, Maria; Blennow, Kaj; Zetterberg, Henrik; Pålsson, Erik; Landén, Mikael

    2015-08-01

    Persistent cognitive impairment in the euthymic state of bipolar disorder is increasingly recognized. Mounting evidence also suggests an association between neuroinflammation and cognitive dysfunction. The purpose of this study was to test if cerebrospinal fluid (CSF) markers of neuroinflammation could account for cognitive impairment in bipolar disorder. Hierarchical linear regression models were applied to account for performance in five cognitive domains using CSF neuroinflammatory biomarkers as predictors in patients with bipolar disorder type I and II (N=78). The associations between these biomarkers and cognition were further tested in healthy age- and sex-matched controls (N=86). In patients with bipolar disorder, the CSF biomarkers accounted for a significant proportion of the variance in executive functions (42.8%, p=<.0005) independently of age, medication, disease status, and bipolar subtype. The microglial marker YKL-40 had a high impact (beta=-.99), and was the only biomarker that contributed individually. CSF biomarkers were not associated with cognitive performance in healthy controls. The CSF neuroinflammation biomarker YKL-40 is associated with executive performance in euthymic bipolar disorder, but not in healthy controls. PMID:26024928

  3. microRNA (miRNA) speciation in Alzheimer's disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF).

    PubMed

    Alexandrov, Peter N; Dua, Prerna; Hill, James M; Bhattacharjee, Surjyadipta; Zhao, Yuhai; Lukiw, Walter J

    2012-01-01

    Human cerebrospinal fluid (CSF), produced by the choroid plexus and secreted into the brain ventricles and subarachnoid space, plays critical roles in intra-cerebral transport and the biophysical and immune protection of the brain. CSF composition provides valuable insight into soluble pathogenic bio-markers that may be diagnostic for brain disease. In these experiments we analyzed amyloid beta (Aβ) peptide and micro RNA (miRNA) abundance in CSF and in short post-mortem interval (PMI <2.1 hr) brain tissue-derived extracellular fluid (ECF) from Alzheimer's disease (AD) and age-matched control neocortex. There was a trend for decreased abundance of Aβ42 in the CSF and ECF in AD but it did not reach statistical significance (mean age ~72 yr; N=12; p~0.06, ANOVA). The most abundant nucleic acids in AD CSF and ECF were miRNAs, and their speciation and inducibility were studied further. Fluorescent miRNA-array-based analysis indicated significant increases in miRNA-9, miRNA-125b, miRNA-146a, miRNA-155 in AD CSF and ECF (N=12; p<0.01, ANOVA). Primary human neuronal-glial (HNG) cell co-cultures stressed with AD-derived ECF also displayed an up-regulation of these miRNAs, an effect that was quenched using the anti-NF-кB agents caffeic acid phenethyl ester (CAPE) or 1-fluoro-2-[2-(4-methoxy-phenyl)-ethenyl]-benzene (CAY10512). Increases in miRNAs were confirmed independently using a highly sensitive LED-Northern dot-blot assay. Several of these NF-кB-sensitive miRNAs are known to be up-regulated in AD brain, and associate with the progressive spreading of inflammatory neurodegeneration. The results indicate that miRNA-9, miRNA-125b, miRNA-146a and miRNA-155 are CSF- and ECF-abundant, NF-кB-sensitive pro-inflammatory miRNAs, and their enrichment in circulating CSF and ECF suggest that they may be involved in the modulation or proliferation of miRNA-triggered pathogenic signaling throughout the brain and central nervous system (CNS). PMID:23301201

  4. Genome-wide association study of CSF biomarkers Aβ1-42, t-tau, and p-tau181p in the ADNI cohort

    PubMed Central

    Kim, S.; Swaminathan, S.; Shen, L.; Risacher, S.L.; Nho, K.; Foroud, T.; Shaw, L.M.; Trojanowski, J.Q.; Potkin, S.G.; Huentelman, M.J.; Craig, D.W.; DeChairo, B.M.; Aisen, P.S.; Petersen, R.C.; Weiner, M.W.

    2011-01-01

    Objectives: CSF levels of Aβ1-42, t-tau, and p-tau181p are potential early diagnostic markers for probable Alzheimer disease (AD). The influence of genetic variation on these markers has been investigated for candidate genes but not on a genome-wide basis. We report a genome-wide association study (GWAS) of CSF biomarkers (Aβ1-42, t-tau, p-tau181p, p-tau181p/Aβ1-42, and t-tau/Aβ1-42). Methods: A total of 374 non-Hispanic Caucasian participants in the Alzheimer's Disease Neuroimaging Initiative cohort with quality-controlled CSF and genotype data were included in this analysis. The main effect of single nucleotide polymorphisms (SNPs) under an additive genetic model was assessed on each of 5 CSF biomarkers. The p values of all SNPs for each CSF biomarker were adjusted for multiple comparisons by the Bonferroni method. We focused on SNPs with corrected p < 0.01 (uncorrected p < 3.10 × 10−8) and secondarily examined SNPs with uncorrected p values less than 10−5 to identify potential candidates. Results: Four SNPs in the regions of the APOE, LOC100129500, TOMM40, and EPC2 genes reached genome-wide significance for associations with one or more CSF biomarkers. SNPs in CCDC134, ABCG2, SREBF2, and NFATC4, although not reaching genome-wide significance, were identified as potential candidates. Conclusions: In addition to known candidate genes, APOE, TOMM40, and one hypothetical gene LOC100129500 partially overlapping APOE; one novel gene, EPC2, and several other interesting genes were associated with CSF biomarkers that are related to AD. These findings, especially the new EPC2 results, require replication in independent cohorts. PMID:21123754

  5. MicroRNA Profiling of CSF Reveals Potential Biomarkers to Detect Alzheimer`s Disease

    PubMed Central

    Denk, Johannes; Boelmans, Kai; Siegismund, Christine; Lassner, Dirk; Arlt, Sönke; Jahn, Holger

    2015-01-01

    The miRBase-21 database currently lists 1881 microRNA (miRNA) precursors and 2585 unique mature human miRNAs. Since their discovery, miRNAs have proved to present a new level of epigenetic post-transcriptional control of protein synthesis. Initial results point to a possible involvement of miRNA in Alzheimer’s disease (AD). We applied OpenArray technology to profile the expression of 1178 unique miRNAs in cerebrospinal fluid (CSF) samples of AD patients (n = 22) and controls (n = 28). Using a Cq of 34 as cut-off, we identified positive signals for 441 miRNAs, while 729 miRNAs could not be detected, indicating that at least 37% of miRNAs are present in the brain. We found 74 miRNAs being down- and 74 miRNAs being up-regulated in AD using a 1.5 fold change threshold. By applying the new explorative “Measure of relevance” method, 6 reliable and 9 informative biomarkers were identified. Confirmatory MANCOVA revealed reliable miR-100, miR-146a and miR-1274a as differentially expressed in AD reaching Bonferroni corrected significance. MANCOVA also confirmed differential expression of informative miR-103, miR-375, miR-505#, miR-708, miR-4467, miR-219, miR-296, miR-766 and miR-3622b-3p. Discrimination analysis using a combination of miR-100, miR-103 and miR-375 was able to detect AD in CSF by positively classifying controls and AD cases with 96.4% and 95.5% accuracy, respectively. Referring to the Ingenuity database we could identify a set of AD associated genes that are targeted by these miRNAs. Highly predicted targets included genes involved in the regulation of tau and amyloid pathways in AD like MAPT, BACE1 and mTOR. PMID:25992776

  6. IL-17 production by CSF lymphocytes as a biomarker for cerebral vasculitis

    PubMed Central

    Thom, Vivien; Schmid, Sabrina; Gelderblom, Mathias; Hackbusch, Romy; Kolster, Manuela; Schuster, Simon; Thomalla, Götz; Keminer, Oliver; Pleß, Ole; Bernreuther, Christian; Glatzel, Markus; Wegscheider, Karl; Gerloff, Christian

    2016-01-01

    Objective: To explore the possibility of using interleukin-17 (IL-17) production by CD4+ T cells in the CSF as a potential biomarker for cerebral vasculitis in stroke patients. Methods: In this consecutive case study, we performed prospective analysis of CSF and blood in patients admitted to a university medical center with symptoms of stroke and suspected cerebral vasculitis. Flow cytometry was performed for intracellular detection of inflammatory cytokines in peripheral blood lymphocytes and expanded T cells from CSF. Results: CSF CD4+ lymphocytes from patients with cerebral vasculitis showed significantly higher levels of the proinflammatory cytokine IL-17 compared to patients with stroke not due to vasculitis or with other, noninflammatory neurologic diseases. There was no difference in the production of interferon-γ in the CSF and no overall differences in the relative frequencies of peripheral immune cells. Conclusions: Intracellular IL-17 in CSF cells is potentially useful in discriminating cerebral vasculitis as a rare cause in patients presenting with ischemic stroke. Classification of evidence: This study provides Class II evidence that an increased proportion of IL-17-producing CD4+ cells in CSF of patients presenting with stroke symptoms is indicative of cerebral vasculitis (sensitivity 73%, 95% confidence interval [CI] 39–94%; specificity 100%, 95% CI 74%–100%). PMID:27144213

  7. CSF and Serum Biomarkers Focusing on Cerebral Vasospasm and Ischemia after Subarachnoid Hemorrhage

    PubMed Central

    Jung, Carla S.; Lange, Bettina; Zimmermann, Michael; Seifert, Volker

    2013-01-01

    Delayed cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) remain severe complications after subarachnoid hemorrhage (SAH). Although focal changes in cerebral metabolism indicating ischemia are detectable by microdialysis, routinely used biomarkers are missing. We therefore sought to evaluate a panel of possible global markers in serum and cerebrospinal fluid (CSF) of patients after SAH. CSF and serum of SAH patients were analyzed retrospectively. In CSF, levels of inhibitory, excitatory, and structural amino acids were detected by high-performance liquid chromatography (HPLC). In serum, neuron-specific enolase (NSE) and S100B level were measured and examined in conjunction with CVS and DCI. CVS was detected by arteriography, and ischemic lesions were assessed by computed tomography (CT) scans. All CSF amino acids were altered after SAH. CSF glutamate, glutamine, glycine, and histidine were significantly correlated with arteriographic CVS. CSF glutamate and serum S100B were significantly correlated with ischemic events after SAH; however, NSE did not correlate neither with ischemia nor with vasospasm. Glutamate, glutamine, glycine, and histidine might be used in CSF as markers for CVS. Glutamate also indicates ischemia. Serum S100B, but not NSE, is a suitable marker for ischemia. These results need to be validated in larger prospective cohorts. PMID:23509668

  8. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis

    PubMed Central

    Bergman, Petra; Piket, Eliane; Khademi, Mohsen; James, Tojo; Brundin, Lou; Olsson, Tomas; Piehl, Fredrik

    2016-01-01

    Objective: To explore circulating microRNAs (miRNAs) in cell-free CSF as novel biomarkers for multiple sclerosis (MS). Methods: Profiling of miRNAs in CSF of pooled patients with clinically isolated syndrome (CIS), patients with relapsing-remitting MS, and inflammatory and noninflammatory neurologic disease controls was performed using TaqMan miRNA arrays. Two independent patient cohorts (n = 142 and n = 430) were used for validation with real-time PCR. Results: We reliably detected 88 CSF miRNAs in the exploratory cohort. Subsequent validation in 2 cohorts demonstrated significantly higher levels of miR-150 in patients with MS. Higher miR-150 levels were also observed in patients with CIS who converted to MS compared to nonconverters, and in patients initiating natalizumab treatment. Levels of miR-150 correlated with immunologic parameters including CSF cell count, immunoglobulin G index, and presence of oligoclonal bands, and with candidate protein biomarkers C-X-C motif chemokine 13, matrix metallopeptidase 9, and osteopontin. Correlation with neurofilament light chain (NFL) was observed only when NFL was adjusted for age using a method that requires further validation. Additionally, miR-150 discriminated MS from controls and CIS converters from nonconverters equally well as the most informative protein biomarkers. Following treatment with natalizumab, but not fingolimod, CSF levels of miR-150 decreased, while plasma levels increased with natalizumab and decreased with fingolimod, suggesting immune cells as a source of miR-150. Conclusions: Our findings demonstrate miR-150 as a putative novel biomarker of inflammatory active disease with the potential to be used for early diagnosis of MS. Classification of evidence: This study provides Class II evidence that CSF miR-150 distinguishes patients with MS from patients with other neurologic conditions. PMID:27144214

  9. A Low-Molecular-Weight Ferroxidase Is Increased in the CSF of sCJD Cases: CSF Ferroxidase and Transferrin as Diagnostic Biomarkers for sCJD

    PubMed Central

    Haldar, Swati; Beveridge, ’Alim J.; Wong, Joseph; Singh, Ajay; Galimberti, Daniela; Borroni, Barbara; Zhu, Xiongwei; Blevins, Janis; Greenlee, Justin; Perry, George; Mukhopadhyay, Chinmay K.; Schmotzer, Christine

    2013-01-01

    Abstract Aims: Most biomarkers used for the premortem diagnosis of sporadic Creutzfeldt-Jakob disease (CJD) are surrogate in nature, and provide suboptimal sensitivity and specificity. Results: We report that CJD-associated brain iron dyshomeostasis is reflected in the cerebrospinal fluid (CSF), providing disease-specific diagnostic biomarkers. Analysis of 290 premortem CSF samples from confirmed cases of CJD, Alzheimer's disease, and other dementias (DMs), and 52 non-DM (ND) controls revealed a significant difference in ferroxidase (Frx) activity and transferrin (Tf) levels in sporadic Creutzfeldt-Jakob disease (sCJD) relative to other DM and ND controls. A combination of CSF Frx and Tf discriminated sCJD from other DMs with a sensitivity of 86.8%, specificity of 92.5%, accuracy of 88.9%, and area-under-the receiver-operating-characteristic (ROC) curve of 0.94. This combination provided a similar diagnostic accuracy in discriminating CJD from rapidly progressing cases who died within 6 months of sample collection. Surprisingly, ceruloplasmin and amyloid precursor protein, the major brain Frxs, displayed minimal activity in the CSF. Most of the Frx activity was concentrated in the <3-kDa fraction in normal and diseased CSF, and resisted heat and proteinase-K treatment. Innovation: (i) A combination of CSF Frx and Tf provides disease-specific premortem diagnostic biomarkers for sCJD. (ii) A novel, nonenzymatic, nonprotein Frx predominates in human CSF that is distinct from the currently known CSF Frxs. Conclusion: The underlying cause of iron imbalance is distinct in sCJD relative to other DMs associated with the brain iron imbalance. Thus, change in the CSF levels of iron-management proteins can provide disease-specific biomarkers and insight into the cause of iron imbalance in neurodegenerative conditions. Antioxid. Redox Signal. 19, 1662–1675. PMID:23379482

  10. Comparing CSF biomarkers and brain MRI in the diagnosis of sporadic Creutzfeldt-Jakob disease

    PubMed Central

    Forner, Sven A.; Takada, Leonel T.; Bettcher, Brianne M.; Lobach, Iryna V.; Tartaglia, Maria Carmela; Torres-Chae, Charles; Haman, Aissatou; Thai, Julie; Vitali, Paolo; Neuhaus, John; Bostrom, Alan; Miller, Bruce L.; Rosen, Howard J.

    2015-01-01

    Summary We assessed the diagnostic utility of 3 CSF biomarkers—14-3-3 protein, total tau (T-tau), and neuron-specific enolase (NSE)—from the same lumbar puncture to distinguish between participants with neuropathologically confirmed sporadic Creutzfeldt-Jakob disease (sCJD, n = 57) and controls with nonprion rapidly progressive dementia (npRPD, n = 41). Measures of diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value, as well as logistic regression and area under the receiver operator curve (AUC), were used to assess the ability of these CSF biomarkers, alone or concomitantly, to predict diagnosis. In a subcohort with available MRI (sCJD n = 57, npRPD = 32), we compared visual assessment of diffusion-weighted imaging MRI sequences to these CSF biomarkers. MRI was the best predictor, with an AUC of 0.97 (confidence interval [CI] 0.92–1.00) and a diagnostic accuracy of 97% (CI 90%–100%). Of the CSF biomarkers, T-tau had a higher diagnostic accuracy (79.6%) than 14-3-3 (70.4%, CI for difference 8.7%, 9.7%; p = 0.048) or NSE (71.4%, CI for difference 7.6%, 8.7%; p = 0.03). PMID:26137420

  11. CSF biomarkers associated with disease heterogeneity in early Parkinson's disease: the Parkinson's Progression Markers Initiative study.

    PubMed

    Kang, Ju-Hee; Mollenhauer, Brit; Coffey, Christopher S; Toledo, Jon B; Weintraub, Daniel; Galasko, Douglas R; Irwin, David J; Van Deerlin, Vivianna; Chen-Plotkin, Alice S; Caspell-Garcia, Chelsea; Waligórska, Teresa; Taylor, Peggy; Shah, Nirali; Pan, Sarah; Zero, Pawel; Frasier, Mark; Marek, Kenneth; Kieburtz, Karl; Jennings, Danna; Tanner, Caroline M; Simuni, Tanya; Singleton, Andrew; Toga, Arthur W; Chowdhury, Sohini; Trojanowski, John Q; Shaw, Leslie M

    2016-06-01

    The development of biomarkers to predict the progression of Parkinson's disease (PD) from its earliest stage through its heterogeneous course is critical for research and therapeutic development. The Parkinson's Progression Markers Initiative (PPMI) study is an ongoing international multicenter, prospective study to validate biomarkers in drug-naïve PD patients and matched healthy controls (HC). We quantified cerebrospinal fluid (CSF) alpha-synuclein (α-syn), amyloid-beta1-42 (Aβ1-42), total tau (t-tau), and tau phosphorylated at Thr181 (p-tau) in 660 PPMI subjects at baseline, and correlated these data with measures of the clinical features of these subjects. We found that CSF α-syn, t-tau and p-tau levels, but not Aβ1-42, were significantly lower in PD compared with HC, while the diagnostic value of the individual CSF biomarkers for PD diagnosis was limited due to large overlap. The level of α-syn, but not other biomarkers, was significantly lower in PD patients with non-tremor-dominant phenotype compared with tremor-dominant phenotype. In addition, in PD patients the lowest Aβ1-42, or highest t-tau/Aβ1-42 and t-tau/α-syn quintile in PD patients were associated with more severe non-motor dysfunction compared with the highest or lowest quintiles, respectively. In a multivariate regression model, lower α-syn was significantly associated with worse cognitive test performance. APOE ε4 genotype was associated with lower levels of Aβ1-42, but neither with PD diagnosis nor cognition. Our data suggest that the measurement of CSF biomarkers in early-stage PD patients may relate to disease heterogeneity seen in PD. Longitudinal observations in PPMI subjects are needed to define their prognostic performance. PMID:27021906

  12. Monitoring concussion in a knocked-out boxer by CSF biomarker analysis.

    PubMed

    Neselius, Sanna; Brisby, Helena; Granholm, Fredrik; Zetterberg, Henrik; Blennow, Kaj

    2015-09-01

    Concussion is common in many sports, and the incidence is increasing. The medical consequences after a sport-related concussion have received increased attention in recent years since it is known that concussions cause axonal and glial damage, which disturbs the cerebral physiology and makes the brain more vulnerable for additional concussions. This study reports on a knocked-out amateur boxer in whom cerebrospinal fluid (CSF) neurofilament light (NFL) protein, reflecting axonal damage, was used to identify and monitor brain damage. CSF NFL was markedly increased during 36 weeks, suggesting that neuronal injury persists longer than expected after a concussion. CSF biomarker analysis may be valuable in the medical counselling of concussed athletes and in return-to-play considerations. PMID:24819180

  13. Neurological Assessment and Its Relationship to CSF Biomarkers in Amateur Boxers

    PubMed Central

    Neselius, Sanna; Brisby, Helena; Marcusson, Jan; Zetterberg, Henrik; Blennow, Kaj; Karlsson, Thomas

    2014-01-01

    Background Mild traumatic brain injury (TBI) or concussion is common in many sports. Today, neuropsychological evaluation is recommended in the monitoring of a concussion and in return-to-play considerations. To investigate the sensitivity of neuropsychological assessment, we tested amateur boxers post bout and compared with controls. Further the relationship between neuropsychological test results and brain injury biomarkers in the cerebrospinal fluid (CSF) were investigated. Method Thirty amateur boxers on high elite level with a minimum of 45 bouts and 25 non-boxing matched controls were included. Memory tests (Rey Osterrieth Complex Figure, Listening Span, Digit Span, Controlled Word Association Test, and computerized testing of episodic memory), tests of processing speed and executive functions (Trail Making, Reaction Time, and Finger Tapping) were performed and related to previously published CSF biomarker results for the axonal injury marker neurofilament light (NFL). Results The neurological assessment showed no significant differences between boxers and controls, although elevated CSF NFL, as a sign of axonal injury, was detected in about 80% of the boxers 1–6 days post bout. The investigation of the relationship between neuropsychological evaluation and CSF NFL concentrations revealed that boxers with persisting NFL concentration elevation after at least 14 days resting time post bout, had a significantly poorer performance on Trail Making A (p = 0.041) and Simple Reaction Time (p = 0.042) compared to other boxers. Conclusion This is the first study showing traumatic axonal brain injury can be present without measureable cognitive impairment. The repetitive, subconcussive head trauma in amateur boxing causes axonal injury that can be detected with analysis of CSF NFL, but is not sufficient to produce impairment in memory tests, tests of processing speed, or executive functions. The association of prolonged CSF NFL increase in boxers with

  14. Cerebrospinal Fluid (CSF) Neuronal Biomarkers across the Spectrum of HIV Infection: Hierarchy of Injury and Detection

    PubMed Central

    Peterson, Julia; Gisslen, Magnus; Zetterberg, Henrik; Fuchs, Dietmar; Shacklett, Barbara L.; Hagberg, Lars; Yiannoutsos, Constantin T.; Spudich, Serena S.; Price, Richard W.

    2014-01-01

    The character of central nervous system (CNS) HIV infection and its effects on neuronal integrity vary with evolving systemic infection. Using a cross-sectional design and archived samples, we compared concentrations of cerebrospinal fluid (CSF) neuronal biomarkers in 143 samples from 8 HIV-infected subject groups representing a spectrum of untreated systemic HIV progression and viral suppression: primary infection; four groups of chronic HIV infection neuroasymptomatic (NA) subjects defined by blood CD4+ T cells of >350, 200–349, 50–199, and <50 cells/µL; HAD; treatment-induced viral suppression; and ‘elite’ controllers. Samples from 20 HIV-uninfected controls were also examined. The neuronal biomarkers included neurofilament light chain protein (NFL), total and phosphorylated tau (t-tau, p-tau), soluble amyloid precursor proteins alpha and beta (sAPPα, sAPPβ) and amyloid beta (Aβ) fragments 1–42, 1–40 and 1–38. Comparison of the biomarker changes showed a hierarchy of sensitivity in detection and suggested evolving mechanisms with progressive injury. NFL was the most sensitive neuronal biomarker. Its CSF concentration exceeded age-adjusted norms in all HAD patients, 75% of NA CD4<50, 40% of NA CD4 50–199, and 42% of primary infection, indicating common neuronal injury with untreated systemic HIV disease progression as well as transiently during early infection. By contrast, only 75% of HAD subjects had abnormal CSF t-tau levels, and there were no significant differences in t-tau levels among the remaining groups. sAPPα and β were also abnormal (decreased) in HAD, showed less marked change than NFL with CD4 decline in the absence of HAD, and were not decreased in PHI. The CSF Aβ peptides and p-tau concentrations did not differ among the groups, distinguishing the HIV CNS injury profile from Alzheimer's disease. These CSF biomarkers can serve as useful tools in selected research and clinical settings for patient classification, pathogenetic

  15. Proteomic Identification of Biomarkers in the Cerebrospinal fluid (CSF) of Astrocytoma Patients

    PubMed Central

    Khwaja, Fatima W.; Reed, Matthew S.; Olson, Jeffrey J.; Schmotzer, Brian J.; Gillespie, G.Yancey; Guha, Abhijit; Groves, Morris D.; Kesari, Santosh; Pohl, Jan; Van Meir, Erwin G.

    2008-01-01

    The monitoring of changes in the protein composition of the cerebrospinal fluid (CSF) can be used as a sensitive indicator of central nervous system (CNS) pathology, yet its systematic application to analysis of CNS neoplasia has been limited. There is a pressing need for both a better understanding of gliomagenesis, and the development of reliable biomarkers of the disease. In this report, we used two proteomic techniques, two-dimensional gel electrophoresis (2-DE) and cleavable Isotope-Coded Affinity Tag (cICAT), to compare CSF proteomes in order to identify tumor and grade specific biomarkers in patients bearing brain tumors of differing histologies and grades. Retrospective analyses were performed on 60 samples derived from astrocytomas WHO grade II, III and IV, schwannomas, metastastic brain tumors, inflammatory samples and non-neoplastic controls. We identified 103 potential tumor-specific markers; of which 20 were high-grade astrocytoma-specific. These investigations allowed us to identify a spectrum of signature proteins that could differentiate between low (AII) and high-grade (AIV) astrocytoma, which may represent new diagnostic, prognostic and disease follow-up markers when used alone or in combination. These candidate biomarkers may also have functional properties that play a critical role in the development and malignant progression of human astrocytomas, thus possibly representing novel therapeutic targets for this highly lethal disease. PMID:17269713

  16. CSF biomarker associations with change in hippocampal volume and precuneus thickness: implications for the Alzheimer's pathological cascade.

    PubMed

    Stricker, Nikki H; Dodge, Hiroko H; Dowling, N Maritza; Han, S Duke; Erosheva, Elena A; Jagust, William J

    2012-12-01

    Neurofibrillary tangles (NFT) and amyloid plaques are hallmark neuropathological features of Alzheimer's disease (AD). There is some debate as to which neuropathological feature comes first in the disease process, with early autopsy studies suggesting that NFT develop first, and more recent neuroimaging studies supporting the early role of amyloid beta (Aβ) deposition. Cerebrospinal fluid (CSF) biomarkers of Aβ₄₂ and hyperphosphorylated tau (p-tau) have been shown to serve as in vivo proxy measures of amyloid plaques and NFT, respectively. The aim of this study was to examine the association between CSF biomarkers and rate of atrophy in the precuneus and hippocampus. These regions were selected because the precuneus appears to be affected early and severely by Aβ deposition, and the hippocampus similarly by NFT pathology. We predicted (1) baseline Aβ₄₂ would be related to accelerated rate of cortical thinning in the precuneus and volume loss in the hippocampus, with the latter relationship expected to be weaker, (2) baseline p-tau(181p) would be related to accelerated rate of hippocampal atrophy and cortical thinning in the precuneus, with the latter relationship expected to be weaker. Using all ADNI cohorts, we fitted separate linear mixed-effects models for changes in hippocampus and precuneus longitudinal outcome measures with baseline CSF biomarkers modeled as predictors. Results partially supported our hypotheses: Both baseline p-tau(181p) and Aβ₄₂ were associated with hippocampal atrophy over time. Neither p-tau(181p) nor Aβ₄₂ were significantly related to cortical thinning in the precuneus over time. However, follow-up analyses demonstrated that having abnormal levels of both Aβ₄₂ and p-tau(181p) was associated with an accelerated rate of atrophy in both the hippocampus and precuneus. Results support early effects of Aβ in the Alzheimer's disease process, which are less apparent than and perhaps dependent on p-tau effects as the

  17. Metallomics study in CSF for putative biomarkers to predict cerebral vasospasm.

    PubMed

    Zhang, Yaofang; Clark, Joseph F; Pyne-Geithman, Gail; Caruso, Joseph

    2010-09-01

    suggested protein similarities or differences across the three CSF sample types. Six protein families with possible protein markers were further identified, and may be considered as possible focus areas for discovering valuable biomarkers to preclude the debilitating or deadly vasospasm. PMID:21072354

  18. Age-dependent inverse correlations in CSF and plasma amyloid-β(1-42) concentrations prior to amyloid plaque deposition in the brain of 3xTg-AD mice.

    PubMed

    Cho, Soo Min; Lee, Sejin; Yang, Seung-Hoon; Kim, Hye Yun; Lee, Michael Jisoo; Kim, Hyunjin Vincent; Kim, Jiyoon; Baek, Seungyeop; Yun, Jin; Kim, Dohee; Kim, Yun Kyung; Cho, Yakdol; Woo, Jiwan; Kim, Tae Song; Kim, YoungSoo

    2016-01-01

    Amyloid-β (Aβ) plays a critical role as a biomarker in Alzheimer's disease (AD) diagnosis. In addition to its diagnostic potential in the brain, recent studies have suggested that changes of Aβ level in the plasma can possibly indicate AD onset. In this study, we found that plasma Aβ(1-42) concentration increases with age, while the concentration of Aβ(1-42) in the cerebrospinal fluid (CSF) decreases in APPswe, PS1M146V and TauP301L transgenic (3xTg-AD) mice, if measurements were made before formation of ThS-positive plaques in the brain. Our data suggests that there is an inverse correlations between the plasma and CSF Aβ(1-42) levels until plaques form in transgenic mice's brains and that the plasma Aβ concentration possesses the diagnostic potential as a biomarker for diagnosis of early AD stages. PMID:26830653

  19. Age-dependent inverse correlations in CSF and plasma amyloid-β(1–42) concentrations prior to amyloid plaque deposition in the brain of 3xTg-AD mice

    PubMed Central

    Cho, Soo Min; Lee, Sejin; Yang, Seung-Hoon; Kim, Hye Yun; Lee, Michael Jisoo; Kim, Hyunjin Vincent; Kim, Jiyoon; Baek, Seungyeop; Yun, Jin; Kim, Dohee; Kim, Yun Kyung; Cho, Yakdol; Woo, Jiwan; Kim, Tae Song; Kim, YoungSoo

    2016-01-01

    Amyloid-β (Aβ) plays a critical role as a biomarker in Alzheimer’s disease (AD) diagnosis. In addition to its diagnostic potential in the brain, recent studies have suggested that changes of Aβ level in the plasma can possibly indicate AD onset. In this study, we found that plasma Aβ(1–42) concentration increases with age, while the concentration of Aβ(1–42) in the cerebrospinal fluid (CSF) decreases in APPswe, PS1M146V and TauP301L transgenic (3xTg-AD) mice, if measurements were made before formation of ThS-positive plaques in the brain. Our data suggests that there is an inverse correlations between the plasma and CSF Aβ(1–42) levels until plaques form in transgenic mice’s brains and that the plasma Aβ concentration possesses the diagnostic potential as a biomarker for diagnosis of early AD stages. PMID:26830653

  20. Validation of soluble amyloid-β precursor protein assays as diagnostic CSF biomarkers for neurodegenerative diseases.

    PubMed

    van Waalwijk van Doorn, Linda J C; Koel-Simmelink, Marleen J; Haußmann, Ute; Klafki, Hans; Struyfs, Hanne; Linning, Philipp; Knölker, Hans-Joachim; Twaalfhoven, Harry; Kuiperij, H Bea; Engelborghs, Sebastiaan; Scheltens, Philip; Verbeek, Marcel M; Vanmechelen, Eugeen; Wiltfang, Jens; Teunissen, Charlotte E

    2016-04-01

    Analytical validation of a biomarker assay is essential before implementation in clinical practice can occur. In this study, we analytically validated the performance of assays detecting soluble amyloid-β precursor protein (sAPP) α and β in CSF in two laboratories according to previously standard operating procedures serving this goal. sAPPα and sAPPβ ELISA assays from two vendors (IBL-international, Meso Scale Diagnostics) were validated. The performance parameters included precision, sensitivity, dilutional linearity, recovery, and parallelism. Inter-laboratory variation, biomarker comparison (sAPPα vs. sAPPβ) and clinical performance was determined in three laboratories using 60 samples of patients with subjective memory complaints, Alzheimer's disease, or frontotemporal dementia. All performance parameters of the assays were similar between labs and within predefined acceptance criteria. The only exceptions were minor out-of-range results for recovery at low concentrations and, despite being within predefined acceptance criteria, non-comparability of the results for evaluation of the dilutional linearity and hook-effect. Based on the inter-laboratory correlation between Lab #1 and Lab #2, the IBL-international assays were more robust (sAPPα: r(2) = 0.92, sAPPβ: r(2) = 0.94) than the Meso Scale Diagnostics (MSD) assay (sAPPα: r(2) = 0.70, sAPPβ: r(2) = 0.80). Specificity of assays was confirmed using assay-specific peptide competitors. Clinical validation showed consistent results across the clinical groups in the different laboratories for all assays. The validated sAPP assays appear to be of sufficient technical quality and perform well. Moreover, the study shows that the newly developed standard operating procedures provide highly useful tools for the validation of new biomarker assays. A recommendation was made for renewed instructions to evaluate the dilutional linearity and hook-effect. We analytically validated the performance of assays

  1. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: A systematic review.

    PubMed

    Kothur, Kavitha; Wienholt, Louise; Brilot, Fabienne; Dale, Russell C

    2016-01-01

    Despite improved understanding of the pathogenesis of neuroinflammatory disorders of the brain and development of new diagnostic markers, our biomarker repertoire to demonstrate and monitor inflammation remains limited. Using PubMed database, we reviewed 83 studies on CSF cytokines and chemokines and describe the pattern of elevation and possible role of cytokines/chemokines as biomarkers in viral and autoimmune inflammatory neurological disorders of the CNS. Despite inconsistencies and overlap of cytokines and chemokines in different neuroinflammation syndromes, there are some trends regarding the pattern of cytokines/chemokine elevation. Namely B cell markers, such as CXCL13 and BAFF are predominantly investigated and found to be elevated in autoantibody-associated disorders, whereas interferon gamma (IFN-γ) is elevated mainly in viral encephalitis. Th2 and Th17 cytokines are frequently elevated in acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica (NMO), whereas Th1 and Th17 cytokines are more commonly elevated in multiple sclerosis (MS). Cytokine/chemokine profiling might provide new insights into disease pathogenesis, and improve our ability to monitor inflammation and response to treatment. PMID:26463515

  2. Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer’s disease, mild cognitive impairment and elderly controls

    PubMed Central

    Chou, Yi-Yu; Leporé, Natasha; Avedissian, Christina; Madsen, Sarah K.; Parikshak, Neelroop; Hua, Xue; Shaw, Leslie M.; Trojanowski, John Q.; Weiner, Michael W.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Automated ventricular mapping with multi-atlas fluid image alignment reveals genetic effects in Alzheimer’s disease, NeuroImage 40(2): 615–630); with this method, we calculated minimal numbers of subjects needed to detect correlations between clinical scores and ventricular maps. We also assessed correlations between emerging CSF biomarkers of Alzheimer’s disease pathology and localizable deficits in the brain, in 80 AD, 80 mild cognitive impairment (MCI), and 80 healthy controls from the Alzheimer’s Disease Neuroimaging Initiative. Six expertly segmented images and their embedded parametric mesh surfaces were fluidly registered to each brain; segmentations were averaged within subjects to reduce errors. Surface-based statistical maps revealed powerful correlations between surface morphology and 4 variables: (1) diagnosis, (2) depression severity, (3) cognitive function at baseline, and (4) future cognitive decline over the following year. Cognitive function was assessed using the mini-mental state exam (MMSE), global and sum-of-boxes clinical dementia rating (CDR) scores, at baseline and 1-year follow-up. Lower CSF Aβ1–42 protein levels, a biomarker of AD pathology assessed in 138 of the 240 subjects, were correlated with lateral ventricular expansion. Using false discovery rate (FDR) methods, 40 and 120 subjects, respectively, were needed to discriminate AD and MCI from normal groups. 120 subjects were required to detect correlations between ventricular enlargement and MMSE, global CDR, sum-of-boxes CDR and clinical depression scores. Ventricular expansion maps correlate with pathological and cognitive measures in AD, and may be useful in future imaging-based clinical trials. PMID:19236926

  3. CSF biomarkers of monocyte activation and chemotaxis correlate with magnetic resonance spectroscopy metabolites during chronic HIV disease.

    PubMed

    Anderson, Albert M; Fennema-Notestine, Christine; Umlauf, Anya; Taylor, Michael J; Clifford, David B; Marra, Christina M; Collier, Ann C; Gelman, Benjamin B; McArthur, Justin C; McCutchan, J Allen; Simpson, David M; Morgello, Susan; Grant, Igor; Letendre, Scott L

    2015-10-01

    Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) persist despite combination antiretroviral therapy (cART), supporting the need to better understand HIV neuropathogenesis. Magnetic resonance spectroscopy (MRS) of the brain has demonstrated abnormalities in HIV-infected individuals despite cART. We examined the associations between MRS metabolites and selected cerebrospinal fluid (CSF) biomarkers reflecting monocyte/macrophage activation and chemotaxis. A multicenter cross-sectional study involving five sites in the USA was conducted. The following CSF biomarkers were measured: soluble CD14 (sCD14), monocyte chemotactic protein-1 (MCP-1), interferon inducible protein 10 (IP-10), and stromal cell-derived growth factor 1 alpha (SDF-1α). The following MRS metabolites were measured from basal ganglia (BG), frontal white matter (FWM), and frontal gray matter (FGM): N-acetylaspartate (NAA), myo-inositol (MI), choline (Cho), and creatine (Cr). CSF biomarkers were compared to absolute MRS metabolites as well as metabolite/Cr ratios using linear regression. Eighty-three HIV-infected individuals were included, 78 % on cART and 37 % with HAND. The most robust positive correlations were between MCP-1 and Cho in BG (R (2) 0.179, p < 0.001) as well as MCP-1 and MI in FWM (R (2) 0.137, p = 0.002). Higher Cr levels in FWM were associated with MCP-1 (R (2) 0. 075, p = 0.01) and IP-10 (R (2) 0.106, p = 0.003). Comparing biomarkers to MRS metabolite/Cr ratios impacted some relationships, e.g., higher sCD14 levels were associated with lower Cho/Cr ratios in FGM (R (2) 0.224, p < 0.001), although higher MCP-1 levels remained associated with Cho/Cr in BG. These findings provide evidence that monocyte activation and chemotaxis continue to contribute to HIV-associated brain abnormalities in cART-treated individuals. PMID:26069183

  4. Mean diffusivity: A biomarker for CSF-related disease and genetic liability effects in schizophrenia

    PubMed Central

    Narr, Katherine L.; Hageman, Nathan; Woods, Roger P.; Hamilton, Liberty S.; Clark, Kristi; Phillips, Owen; Shattuck, David W.; Asarnow, Robert F.; Toga, Arthur W.; Nuechterlein, Keith H.

    2009-01-01

    Mean diffusivity (MD), the rotationally invariant magnitude of water diffusion that is greater in CSF and smaller in organized brain tissue, has been suggested to reflect schizophrenia-associated cortical atrophy. Regional changes, associations with CSF, and the effects of genetic predisposition towards schizophrenia, however, remain uncertain. Six-direction DTI and high-resolution structural images were obtained from 26 schizophrenia patients, 36 unaffected first-degree patient relatives, 20 control subjects and 32 control relatives (N = 114). Registration procedures aligned DTI data across imaging modalities. MD was averaged within lobar regions and the cingulate and superior temporal gyri. CSF volume and MD were highly correlated. Significant bilateral temporal, and superior temporal MD increases were observed in schizophrenia compared to unrelated control probands. First-degree relatives of schizophrenia probands showed larger MD measures compared to controls within bilateral superior temporal regions with CSF volume correction. Superior temporal lobe brain tissue deficits and proximal CSF enlargements are widely documented in schizophrenia. Larger MD indices in patients and their relatives may thus reflect similar pathophysiological mechanisms. However, persistence of regional MD effects after controlling for CSF volume, suggests that MD is a sensitive biological marker of disease and genetic liability, characterizing at least partially distinct aspects of brain structural integrity. PMID:19081707

  5. Effect of intellectual enrichment on AD biomarker trajectories

    PubMed Central

    Lesnick, Timothy G.; Przybelski, Scott A.; Knopman, David S.; Machulda, Mary; Lowe, Val J.; Mielke, Michelle M.; Roberts, Rosebud O.; Gunter, Jeffrey L.; Senjem, Matthew L.; Geda, Yonas E.; Rocca, Walter A.; Petersen, Ronald C.; Jack, Clifford R.

    2016-01-01

    Objective: To investigate the effect of age, sex, APOE4 genotype, and lifestyle enrichment (education/occupation, midlife cognitive activity, and midlife physical activity) on Alzheimer disease (AD) biomarker trajectories using longitudinal imaging data (brain β-amyloid load via Pittsburgh compound B PET and neurodegeneration via 18fluorodeoxyglucose (FDG) PET and structural MRI) in an elderly population without dementia. Methods: In the population-based longitudinal Mayo Clinic Study of Aging, we studied 393 participants without dementia (340 clinically normal, 53 mild cognitive impairment; 70 years and older) who had cognitive and physical activity measures and at least 2 visits with imaging biomarkers. We dichotomized participants into high (≥14 years) and low (<14 years) education levels using the median. For the entire cohort and the 2 education strata, we built linear mixed models to investigate the effect of the predictors on each of the biomarker outcomes. Results: Age was associated with amyloid and neurodegeneration trajectories; APOE4 status appears to influence only the amyloid and FDG trajectories but not hippocampal volume trajectory. In the high-education stratum, high midlife cognitive activity was associated with lower amyloid deposition in APOE4 carriers. APOE4 status was associated with lower FDG uptake in the entire cohort and in participants with lower education but not the high-education cohort. Conclusions: There were minimal effects of lifestyle enrichment on AD biomarker trajectories (specifically rates). Lifetime intellectual enrichment (high education, high midlife cognitive activity) is associated with lower amyloid in APOE4 carriers. High education is protective from the APOE4 effect on FDG metabolism. Differing education levels may explain the conflicting results seen in the literature. PMID:26911640

  6. Autoantibodies Profile in Matching CSF and Serum from AD and aMCI patients: Potential Pathogenic Role and Link to Oxidative Damage.

    PubMed

    Di Domenico, Fabio; Pupo, Gilda; Giraldo, Esther; Lloret, Ana; Badia, Mari-Carmen; Schinina, Maria Eugenia; Giorgi, Alessandra; Butterfield, D Allan; Vina, Jose; Perluigi, Marzia

    2016-01-01

    Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Amyloid-ß-peptide (Aß) forms senile plaques, which, together with hyperphosphorylated tau-based neurofibrillary tangles, are the hallmarks of AD neuropathology. Evidence support the involvement of immune system in AD progression and current concepts regarding its pathogenesis include the participation of inflammatory and autoimmune components in the neurodegenerative process. Pathologically, immune system components have been detected in the brain, cerebrospinal fluid (CSF) and in serum of AD subjects and their trend of variation correlates with disease progression. However, patients with AD present significantly lower levels of antibody immunoreactivity against Aß in serum and CSF than healthy controls suggesting that a depletion of such patrolling system is involved in the deposition of toxic aggregates in AD. Within this frame, incomplete and often controversial results are reported about CNS immune/ autoimmune responses during AD, and a better comprehension of such processes is needed. Our research will aim to shed light on the nature and potential role of autoantibodies in CSF and serum from AD and amnestic mild cognitive impairment (aMCI) patients compared to healthy subjects by using an immunoproteomics approach. Our method allows recognition of natural occurring antibodies by the identification of brain antigen targeted by human IgGs. Overall our data reveal that the alterations of autoantibodies profile both in CSF and serum follow disease staging and progression. However, we demonstrate a fair overlap between CSF and serum suggesting the existence of different immunogenic events. Interestingly, CSF autoantibodies recognized, among others, key players of energy metabolic pathway, including glycolysis and TCA cycle, found oxidatively modified in AD brain studies. These data suggest a potential casual sequence

  7. Altered protein phosphorylation as a resource for potential AD biomarkers.

    PubMed

    Henriques, Ana Gabriela; Müller, Thorsten; Oliveira, Joana Machado; Cova, Marta; da Cruz E Silva, Cristóvão B; da Cruz E Silva, Odete A B

    2016-01-01

    The amyloidogenic peptide, Aβ, provokes a series of events affecting distinct cellular pathways regulated by protein phosphorylation. Aβ inhibits protein phosphatases in a dose-dependent manner, thus it is expected that the phosphorylation state of specific proteins would be altered in response to Aβ. In fact several Alzheimer's disease related proteins, such as APP and TAU, exhibit pathology associated hyperphosphorylated states. A systems biology approach was adopted and the phosphoproteome, of primary cortical neuronal cells exposed to Aβ, was evaluated. Phosphorylated proteins were recovered and those whose recovery increased or decreased, upon Aβ exposure across experimental sets, were identified. Significant differences were evident for 141 proteins and investigation of their interactors revealed key protein clusters responsive to Aβ treatment. Of these, 73 phosphorylated proteins increased and 68 decreased upon Aβ addition. These phosphorylated proteins represent an important resource of potential AD phospho biomarkers that should be further pursued. PMID:27466139

  8. Altered protein phosphorylation as a resource for potential AD biomarkers

    PubMed Central

    Henriques, Ana Gabriela; Müller, Thorsten; Oliveira, Joana Machado; Cova, Marta; da Cruz e Silva, Cristóvão B.; da Cruz e Silva, Odete A. B.

    2016-01-01

    The amyloidogenic peptide, Aβ, provokes a series of events affecting distinct cellular pathways regulated by protein phosphorylation. Aβ inhibits protein phosphatases in a dose-dependent manner, thus it is expected that the phosphorylation state of specific proteins would be altered in response to Aβ. In fact several Alzheimer’s disease related proteins, such as APP and TAU, exhibit pathology associated hyperphosphorylated states. A systems biology approach was adopted and the phosphoproteome, of primary cortical neuronal cells exposed to Aβ, was evaluated. Phosphorylated proteins were recovered and those whose recovery increased or decreased, upon Aβ exposure across experimental sets, were identified. Significant differences were evident for 141 proteins and investigation of their interactors revealed key protein clusters responsive to Aβ treatment. Of these, 73 phosphorylated proteins increased and 68 decreased upon Aβ addition. These phosphorylated proteins represent an important resource of potential AD phospho biomarkers that should be further pursued. PMID:27466139

  9. Relationship of cognitive reserve and CSF biomarkers to emergence of clinical symptoms in preclinical Alzheimer’s Disease

    PubMed Central

    Soldan, Anja; Pettigrew, Corinne; Li, Shanshan; Wang, Mei-Cheng; Moghekar, Abhay; Selnes, Ola A.; Albert, Marilyn; O’Brien, Richard

    2013-01-01

    Levels of β-amyloid and phosphorylated tau (p-tau), as measured in cerebrospinal fluid (CSF), have been associated with risk of progressing from normal cognition to onset of clinical symptoms during preclinical Alzheimer’s disease (AD). We examined whether cognitive reserve (CR) modifies this association. CSF was obtained at baseline from 239 participants (mean age 57.2 years) who had been followed for up to 17 years with clinical and cognitive assessments (mean follow-up 8 years). A composite score based on the National Adult Reading Test (NART), vocabulary, and years of education at baseline was used as an index of CR. Cox regression models showed that increased risk of progressing from normal cognition to symptom onset was associated with lower CR, lower baseline β-amyloid, and higher baseline p-tau. There was no interaction between CR and β-amyloid, suggesting that the protective effects of higher CR are equivalent across the observed range of amyloid levels. By contrast, both tau and p-tau interacted with CR, indicating that CR was more protective at lower levels of tau and p-tau. PMID:23916061

  10. The Glycan Role in the Glycopeptide Immunogenicity Revealed by Atomistic Simulations and Spectroscopic Experiments on the Multiple Sclerosis Biomarker CSF114(Glc)

    NASA Astrophysics Data System (ADS)

    Bruno, Agostino; Scrima, Mario; Novellino, Ettore; D'Errico, Gerardino; D'Ursi, Anna Maria; Limongelli, Vittorio

    2015-03-01

    Glycoproteins are often recognized as not-self molecules by antibodies triggering the onset of severe autoimmune diseases such as Multiple Sclerosis (MS). Thus, the development of antigen-mimicking biomarkers represents an attractive strategy for an early diagnosis of the disease. An example is the synthetic glycopeptide CSF114(Glc), which was designed and tested as MS biomarker and whose clinical application was limited by its reduced ability to detect autoantibodies in MS patients. In the attempt to improve the efficacy of CSF114(Glc), we have characterized all the events leading to the final binding of the biomarker to the autoantibody using atomistic simulations, ESR and NMR experiments. The glycosydic moiety plays a primary role in the whole process. In particular, in an environment mimicking that used in the clinical tests the glycopeptide assumes a α-helix structure that is functional for the interaction with the antibody. In this conformation CSF114(Glc) binds the monoclonal antibody mAb8-18C5 similarly to the myelin oligodendrocyte glycoprotein MOG, which is a known MS auto-antigen, thus explaining its diagnostic activity. Our study offers new molecular bases to design more effective biomarkers and provides a most valid protocol to investigate other systems where the environment effect is determinant for the biological activity.

  11. The glycan role in the glycopeptide immunogenicity revealed by atomistic simulations and spectroscopic experiments on the multiple sclerosis biomarker CSF114(Glc).

    PubMed

    Bruno, Agostino; Scrima, Mario; Novellino, Ettore; D'Errico, Gerardino; D'Ursi, Anna Maria; Limongelli, Vittorio

    2015-01-01

    Glycoproteins are often recognized as not-self molecules by antibodies triggering the onset of severe autoimmune diseases such as Multiple Sclerosis (MS). Thus, the development of antigen-mimicking biomarkers represents an attractive strategy for an early diagnosis of the disease. An example is the synthetic glycopeptide CSF114(Glc), which was designed and tested as MS biomarker and whose clinical application was limited by its reduced ability to detect autoantibodies in MS patients. In the attempt to improve the efficacy of CSF114(Glc), we have characterized all the events leading to the final binding of the biomarker to the autoantibody using atomistic simulations, ESR and NMR experiments. The glycosydic moiety plays a primary role in the whole process. In particular, in an environment mimicking that used in the clinical tests the glycopeptide assumes a α-helix structure that is functional for the interaction with the antibody. In this conformation CSF114(Glc) binds the monoclonal antibody mAb8-18C5 similarly to the myelin oligodendrocyte glycoprotein MOG, which is a known MS auto-antigen, thus explaining its diagnostic activity. Our study offers new molecular bases to design more effective biomarkers and provides a most valid protocol to investigate other systems where the environment effect is determinant for the biological activity. PMID:25776265

  12. Cerebrospinal fluid biomarkers and memory present distinct associations along the continuum from healthy subjects to AD patients.

    PubMed

    Rami, Lorena; Fortea, Juan; Bosch, Beatriz; Solé-Padullés, Cristina; Lladó, Albert; Iranzo, Alex; Sánchez-Valle, Raquel; Molinuevo, Jose Luis

    2011-01-01

    The objective was to study the association between cerebrospinal fluid (CSF) levels of amyloid-β (Aβ)(1-42), t-tau, and p-tau and cognitive performance along the Alzheimer's disease (AD) continuum from healthy subjects to AD patients and, specifically, among patients in the pre-dementia stage of the disease. A total of 101 subjects were studied: 19 healthy controls (CTR), 17 subjects with subjective memory complaints (SMC), 47 with mild cognitive impairment (MCI), and 18 AD patients. Only memory performance significantly correlated with CSF levels of Aβ(1-42), t-tau, and p-tau along the AD continuum. Subgroup analyses revealed that in SMC patients Aβ(1-42) levels positively correlated with the total recall score of the Free and Cued Selective Reminding Test (FCRST) (r = 0.666; p < 0.005), Digit Span (r = 0.752; p < 0.005), and CERAD world list learning (r = 0.697; p < 0.005). In MCI patients, a significant inverse correlation was found between the word list recall score from the CERAD and t-tau (r = -0.483; p < 0.005) and p-tau levels (r = -0.495; p < 0.005), as well as between the total recall subtest score from the FCRST and both t-tau (r = -0.420; p < 0.005) and p-tau levels (r = -0.422; p < 0.005). No significant correlations were found between other aspects of cognition and CSF levels in CTR or AD patients. These results indicate that memory performance is related to Aβ(1-42) levels in SMC, while it is associated with tau in the prodromal stage of the disease. This suggests that in the continuum from healthy aging to AD, memory performance is first related with Aβ(1-42) levels and then with t-tau or p-tau, before becoming independent of biomarker levels in the dementia stage. PMID:21098971

  13. Update on the core and developing cerebrospinal fluid biomarkers for Alzheimer disease

    PubMed Central

    Babić, Mirjana; Švob Štrac, Dubravka; Mück-Šeler, Dorotea; Pivac, Nela; Stanić, Gabrijela; Hof, Patrick R.; Šimić, Goran

    2014-01-01

    Alzheimer disease (AD) is a complex neurodegenerative disorder, whose prevalence will dramatically rise by 2050. Despite numerous clinical trials investigating this disease, there is still no effective treatment. Many trials showed negative or inconclusive results, possibly because they recruited only patients with severe disease, who had not undergone disease-modifying therapies in preclinical stages of AD before severe degeneration occurred. Detection of AD in asymptomatic at risk individuals (and a few presymptomatic individuals who carry an autosomal dominant monogenic AD mutation) remains impractical in many of clinical situations and is possible only with reliable biomarkers. In addition to early diagnosis of AD, biomarkers should serve for monitoring disease progression and response to therapy. To date, the most promising biomarkers are cerebrospinal fluid (CSF) and neuroimaging biomarkers. Core CSF biomarkers (amyloid β1-42, total tau, and phosphorylated tau) showed a high diagnostic accuracy but were still unreliable for preclinical detection of AD. Hence, there is an urgent need for detection and validation of novel CSF biomarkers that would enable early diagnosis of AD in asymptomatic individuals. This article reviews recent research advances on biomarkers for AD, focusing mainly on the CSF biomarkers. In addition to core CSF biomarkers, the potential usefulness of novel CSF biomarkers is discussed. PMID:25165049

  14. A low molecular-weight ferroxidase is increased in the CSF of sCJD cases: CSF ferroxidase and transferrin as diagnostic biomarkers for sCJD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imbalance of brain iron homeostasis is a common feature of neurodegenerative conditions that include sporadic Creutzfeldt-Jakob disease (sCJD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease, among others. However, the mechanisms underlying this change are unclear. In s...

  15. CSF beta-amyloid 1–42 – what are we measuring in Alzheimer's disease?

    PubMed Central

    Hu, William T; Watts, Kelly D; Shaw, Leslie M; Howell, Jennifer C; Trojanowski, John Q; Basra, Sundeep; Glass, Jonathan D; Lah, James J; Levey, Allan I

    2015-01-01

    Objective To characterize biological and technical factors which influence cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarker levels, including the presence of apolipoprotein E (APOE) ε4 allele, AD diagnosis, Aβ-binding proteins, sample processing, and preanalytical handling. Methods CSF was collected from 140 subjects with normal cognition, mild cognitive impairment, AD, and non-AD dementia. CSF levels of beta-amyloid 1–42 (Aβ42), total Tau (t-Tau), and Tau phosphorylated at threonine 181 (p-Tau181) were analyzed following the standard and modified protocols. CSF levels of apoJ, apoE, albumin, and α-synuclein were measured in a subgroup (n = 69), and their effects on measured AD biomarker levels were also determined in vitro using human CSF samples. Results CSF Aβ42 levels measured using the AD Neuro-imaging Initiative (ADNI) protocol (which we call suspended Aβ42 or susAβ) were lower than total measurable CSF Aβ42 in all groups, and on average represents 57% of the latter. Logistic regression analysis showed this proportion (% susAβ) to be directly correlated with CSF Aβ42 and apoJ levels, but inversely correlated with CSF t-Tau levels. Finally, we showed in vitro that increasing apoE and apoJ levels directly increased % susAβ. Conclusion CSF susAβ levels are influenced by biological and technical factors, and may represent a marker of Aβ susceptible to lipoprotein-mediated clearance. Clinical trials should include total measurable Aβ42 and susAβ to better inform outcomes. PMID:25750918

  16. Increased CSF Aβ during the very early phase of cerebral Aβ deposition in mouse models

    PubMed Central

    Maia, Luis F; Kaeser, Stephan A; Reichwald, Julia; Lambert, Marius; Obermüller, Ulrike; Schelle, Juliane; Odenthal, Jörg; Martus, Peter; Staufenbiel, Matthias; Jucker, Mathias

    2015-01-01

    Abnormalities in brains of Alzheimer's disease (AD) patients are thought to start long before the first clinical symptoms emerge. The identification of affected individuals at this ‘preclinical AD’ stage relies on biomarkers such as decreased levels of the amyloid-β peptide (Aβ) in the cerebrospinal fluid (CSF) and positive amyloid positron emission tomography scans. However, there is little information on the longitudinal dynamics of CSF biomarkers, especially in the earliest disease stages when therapeutic interventions are likely most effective. To this end, we have studied CSF Aβ changes in three Aβ precursor protein transgenic mouse models, focusing our analysis on the initial Aβ deposition, which differs significantly among the models studied. Remarkably, while we confirmed the CSF Aβ decrease during the extended course of brain Aβ deposition, a 20–30% increase in CSF Aβ40 and Aβ42 was found around the time of the first Aβ plaque appearance in all models. The biphasic nature of this observed biomarker changes stresses the need for longitudinal biomarker studies in the clinical setting and the search for new ‘preclinical AD’ biomarkers at even earlier disease stages, by using both mice and human samples. Ultimately, our findings may open new perspectives in identifying subjects at risk for AD significantly earlier, and in improving the stratification of patients for preventive treatment strategies. PMID:25978969

  17. The added value of biomarker analysis to the genesis of Plaggic Anthrosols.

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; Jansen, Boris

    2015-04-01

    degradation, resulting in the second extension of sand drifting. To improve our knowledge about the evolution of plaggen soils we can combine data of pollen and biomarker spectra of samples of plaggic deposits. Species, present in pollen spectra of plaggic deposits, can have three sources: 1. Pollen, already present in sods, used in the stable to produce manure. 2. Pollen, originating from flowering crop species. 3. Pollen, originating from flowering species in the surroundings. Species, present in biomarker spectra, can have three sources: 1. Biomarkers from tissues, present in sods, used for manure production. 2. Biomarkers from decomposed roots of crop species. 3. Biomarkers from straw of crop species, used in the stable for manure production. Comparison pollen and biomarker spectra of samples of a regular Anthrosol (Posteles, NE-Netherlands) and a Buried (Nabbegat, SE-Netherlands, buried around 1800 AD) Plaggic Anthrosol yielded some interesting features: a. The biomarker spectra of the 2Ap horizons (agricultural layer below the plaggic deposits) are dominated by biomarkers of deciduous trees (dominated by Quercus), indicating the use of organic litter from the forests. These trees are also present in the pollen spectra. b. The biomarker spectra of the plaggic deposits are dominated by crop species (Avena, Secale, Fagpyrum), Calluna is absent in most of the spectra. This is different from pollen spectra where Calluna is present, together with crop species and transported pollen of other species. Only the biomarker spectra of the upper 10 cm of the plaggic horizons are dominated by Calluna. c. Comparison of the spectra of the buried and regular Plaggic Anthrosols show the contribution of biomarkers of roots of Zea mais (introduced around 1950 AD), suppressing the other species. The negligible percentages of Calluna in biomarker spectra of plaggic deposits suggest an overestimating of the use of heath sods in the traditional interpretation of the genesis of plaggic horizons

  18. CSF d-serine concentrations are similar in Alzheimer's disease, other dementias, and elderly controls.

    PubMed

    Biemans, Elisanne A L M; Verhoeven-Duif, Nanda M; Gerrits, Johan; Claassen, Jurgen A H R; Kuiperij, H Bea; Verbeek, Marcel M

    2016-06-01

    Cerebrospinal fluid (CSF) levels of d-serine were recently reported as a potential new biomarker for Alzheimer's disease (AD), showing a perfect distinction between AD patients and healthy controls. In this study, we aimed to confirm these results and extend these previous findings to dementia with Lewy bodies and frontotemporal dementia. d-Serine levels in CSF of 29 AD patients, 8 dementia with Lewy bodies patients, 14 frontotemporal dementia patients, and 28 nondemented controls were measured using ultra-high-performance liquid chromatography-tandem mass spectrometry. In contrast to previous findings, in our study CSF d-serine levels were only slightly increased in AD patients compared with controls. CSF d-serine in AD did not differ from other dementias and was also not correlated to mini-mental state examination-scores. Owing to the large overlap of d-serine levels, we conclude that CSF d-serine is neither a suitable biomarker for AD nor for cognitive decline. PMID:27143438

  19. CSF Apo-E levels associate with cognitive decline and MRI changes

    PubMed Central

    Toledo, Jon B.; Da, Xiao; Weiner, Michael W.; Wolk, David A.; Xie, Sharon X.; Arnold, Steven E.; Davatzikos, Christos; Shaw, Leslie M.; Trojanowski, John Q.

    2014-01-01

    Apolipoprotein E (APOE) ε4 allele is the most important genetic risk factor for Alzheimer’s disease (AD) and it is thought to do so by modulating levels of the its product, apolipoprotein E (Apo-E), and regulating amyloid-β (Aβ) clearance. However, information on clinical and biomarker correlates of Apo-E proteins is scarce. We examined the relationship of cerebrospinal fluid (CSF) and plasma Apo-E protein levels, and APOE genotype to cognition and AD biomarker changes in 311 AD Neuroimaging Initiative (ADNI) subjects with CSF Apo-E measurements and 565 subjects with plasma Apo-E measurements. At baseline, higher CSF Apo-E levels were associated with higher total and phosphorylated CSF tau levels. CSF Apo-E levels were associated with longitudinal cognitive decline, MCI conversion to dementia, and grey matter atrophy rate in total tau/Aβ1–42 ratio and APOE genotype adjusted analyses. In analyses stratified by APOE genotype, our results were only significant in the group without the ε4 allele. Baseline CSF Apo-E levels did not predict longitudinal CSF Aβ or tau changes. Plasma Apo-E levels show a mild correlation with CSF Apo-E levels, but were not associated with longitudinal cognitive and MRI changes. Based on our analyses, we speculate that increased CSF Apo-E2 or -E3 levels might represent a protective response to injury in AD and may have neuroprotective effects by decreasing neuronal damage independent of tau and amyloid deposition in addition to its effects on amyloid clearance. PMID:24385135

  20. Diagnostic accuracy of CSF Ab42 and florbetapir PET for Alzheimer's disease

    PubMed Central

    Mattsson, Niklas; Insel, Philip S; Landau, Susan; Jagust, William; Donohue, Michael; Shaw, Leslie M; Trojanowski, John Q; Zetterberg, Henrik; Blennow, Kaj; Weiner, Michael

    2014-01-01

    Background Reduced cerebrospinal fluid (CSF) β-amyloid42 (Aβ42) and increased florbetapir positron emission tomography (PET) uptake reflects brain Aβ accumulation. These biomarkers are correlated with each other and altered in Alzheimer's disease (AD), but no study has directly compared their diagnostic performance. Methods We examined healthy controls (CN, N = 169) versus AD dementia patients (N = 118), and stable (sMCI; no dementia, followed up for at least 2 years, N = 165) versus progressive MCI (pMCI; conversion to AD dementia, N = 59). All subjects had florbetapir PET (global and regional; temporal, frontal, parietal, and cingulate) and CSF Aβ42 measurements at baseline. We compared area under the curve (AUC), sensitivity, and specificity (testing a priori and optimized cutoffs). Clinical diagnosis was the reference standard. Results CSF Aβ42 and (global or regional) PET florbetapir did not differ in AUC (CN vs. AD, CSF 84.4%; global PET 86.9%; difference [95% confidence interval] −6.7 to 1.5). CSF Aβ42 and global PET florbetapir did not differ in sensitivity, but PET had greater specificity than CSF in most comparisons. Sixteen CN progressed to MCI and AD (six Aβ negative, seven Aβ positive, and three PET positive but CSF negative). Interpretation The overall diagnostic accuracies of CSF Aβ42 and PET florbetapir were similar, but PET had greater specificity. This was because some CN and sMCI subjects appear pathological using CSF but not using PET, suggesting that low CSF Aβ42 not always translates to cognitive decline or brain Aβ accumulation. Other factors, including costs and side effects, may also be considered when determining the optimal modality for different applications. PMID:25356425

  1. CSF analysis

    MedlinePlus

    Cerebrospinal fluid analysis ... Analysis of CSF can help detect certain conditions and diseases. All of the following can be, but ... An abnormal CSF analysis result may be due to many different causes, ... Encephalitis (such as West Nile and Eastern Equine) Hepatic ...

  2. BACE1 activity in cerebrospinal fluid and its relation to markers of AD pathology.

    PubMed

    Mulder, Sandra D; van der Flier, Wiesje M; Verheijen, Jan H; Mulder, Cees; Scheltens, Philip; Blankenstein, Marinus A; Hack, C Erik; Veerhuis, Robert

    2010-01-01

    Several studies have shown that reduced amyloid-beta 1-42 (Abeta(42)) and increased tau levels in cerebrospinal fluid (CSF) reflect increased Alzheimer's disease (AD) pathology in the brain. beta-site APP cleaving enzyme (BACE1) is thought to be the major beta-secretase involved in Abeta production in the brain, and therefore we investigated the relation between BACE1 activity and CSF markers Abeta(40), Abeta(42), total tau (t-tau), and tau phosphorylated at threonine 181 (p-tau) in CSF of control (n=12), mild cognitive impairment (n=18), and AD (n=17) subjects. Patients were classified according to their Abeta(42), t-tau, and p-tau CSF biomarker levels, with either an AD-like biomarker profile (two or three biomarkers abnormal: Abeta(42) < 495 pg/ml in combination with t-tau > 356 pg/ml, and/or p-tau > 54 pg/ml) or a normal biomarker profile (biomarker abnormal). This resulted in 19 subjects with an AD-like biomarker profile (66 +/- 6 years, 53% female, and Mini-Mental Status Examination (MMSE) score: 23 +/- 5) and 28 subjects with a normal biomarker profile (62 +/- 11 years, 43% female, and MMSE score: 27 +/- 4). Subjects with an AD-like biomarker profile had higher CSF BACE1 activity levels, compared to patients with a normal biomarker profile (20 pg/ml and 16 pg/ml respectively; p=0.01), when controlled for age and gender. In the whole sample, BACE1 activity correlated with CSF levels of Abeta(40), t-tau, and p-tau (r=0.38, r=0.63, and r=0.65; all p< 0.05), but not with Abeta(42). These data suggest that increased BACE1 activity in CSF relates to AD pathology in the brain. PMID:20164582

  3. The added value of biomarker analysis to the genesis of Plaggic Anthrosols.

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; Jansen, Boris

    2015-04-01

    degradation, resulting in the second extension of sand drifting. To improve our knowledge about the evolution of plaggen soils we can combine data of pollen and biomarker spectra of samples of plaggic deposits. Species, present in pollen spectra of plaggic deposits, can have three sources: 1. Pollen, already present in sods, used in the stable to produce manure. 2. Pollen, originating from flowering crop species. 3. Pollen, originating from flowering species in the surroundings. Species, present in biomarker spectra, can have three sources: 1. Biomarkers from tissues, present in sods, used for manure production. 2. Biomarkers from decomposed roots of crop species. 3. Biomarkers from straw of crop species, used in the stable for manure production. Comparison pollen and biomarker spectra of samples of a regular Anthrosol (Posteles, NE-Netherlands) and a Buried (Nabbegat, SE-Netherlands, buried around 1800 AD) Plaggic Anthrosol yielded some interesting features: a. The biomarker spectra of the 2Ap horizons (agricultural layer below the plaggic deposits) are dominated by biomarkers of deciduous trees (dominated by Quercus), indicating the use of organic litter from the forests. These trees are also present in the pollen spectra. b. The biomarker spectra of the plaggic deposits are dominated by crop species (Avena, Secale, Fagpyrum), Calluna is absent in most of the spectra. This is different from pollen spectra where Calluna is present, together with crop species and transported pollen of other species. Only the biomarker spectra of the upper 10 cm of the plaggic horizons are dominated by Calluna. c. Comparison of the spectra of the buried and regular Plaggic Anthrosols show the contribution of biomarkers of roots of Zea mais (introduced around 1950 AD), suppressing the other species. The negligible percentages of Calluna in biomarker spectra of plaggic deposits suggest an overestimating of the use of heath sods in the traditional interpretation of the genesis of plaggic horizons

  4. Physical activity attenuates age-related biomarker alterations in preclinical AD

    PubMed Central

    Schultz, Stephanie A.; Oh, Jennifer M.; Larson, Jordan; Edwards, Dorothy; Cook, Dane; Koscik, Rebecca; Gallagher, Catherine L.; Dowling, N.M.; Carlsson, Cynthia M.; Bendlin, Barbara B.; LaRue, Asenath; Rowley, Howard A.; Christian, Brad T.; Asthana, Sanjay; Hermann, Bruce P.; Johnson, Sterling C.; Sager, Mark A.

    2014-01-01

    Objective: To examine whether engagement in physical activity might favorably alter the age-dependent evolution of Alzheimer disease (AD)-related brain and cognitive changes in a cohort of at-risk, late-middle-aged adults. Methods: Three hundred seventeen enrollees in the Wisconsin Registry for Alzheimer's Prevention underwent T1 MRI; a subset also underwent 11C-Pittsburgh compound B–PET (n = 186) and 18F-fluorodeoxyglucose–PET (n = 152) imaging. Participants' responses on a self-report measure of current physical activity were used to classify them as either physically active or physically inactive based on American Heart Association guidelines. They also completed a comprehensive neuropsychological battery. Covariate-adjusted regression analyses were used to test whether the adverse effect of age on imaging and cognitive biomarkers was modified by physical activity. Results: There were significant age × physical activity interactions for β-amyloid burden (p = 0.014), glucose metabolism (p = 0.015), and hippocampal volume (p = 0.025) such that, with advancing age, physically active individuals exhibited a lesser degree of biomarker alterations compared with the physically inactive. Similar age × physical activity interactions were also observed on cognitive domains of Immediate Memory (p = 0.042) and Visuospatial Ability (p = 0.016). In addition, the physically active group had higher scores on Speed and Flexibility (p = 0.002) compared with the inactive group. Conclusions: In a middle-aged, at-risk cohort, a physically active lifestyle is associated with an attenuation of the deleterious influence of age on key biomarkers of AD pathophysiology. However, because our observational, cross-sectional design cannot establish causality, randomized controlled trials/longitudinal studies will be necessary for determining whether midlife participation in structured physical exercise forestalls the development of AD and related disorders in later life. PMID:25298312

  5. Differential levels of p75NTR ectodomain in CSF and blood in patients with Alzheimer's disease: a novel diagnostic marker

    PubMed Central

    Jiao, S-S; Bu, X-L; Liu, Y-H; Wang, Q-H; Liu, C-H; Yao, X-Q; Zhou, X-F; Wang, Y-J

    2015-01-01

    Alzheimer's disease (AD) is the primary cause of dementia in the elderly. The ectodomain of p75 neurotrophin receptor (p75NTR-ECD) has been suggested to play important roles in regulating beta-amyloid (Aβ) deposition and in protecting neurons from the toxicity of soluble Aβ. However, whether and how the serum and cerebrospinal fluid (CSF) levels of p75NTR-ECD change in patients with AD are not well documented. In the present study, we determined the concentrations of serum p75NTR-ECD in an AD group, a Parkinson disease group and a stroke group, as well as in a group of elderly controls without neurological disorders (EC). We also determined the levels of CSF p75NTR-ECD in a subset of the AD and EC groups. Our data showed that a distinct p75NTR-ECD profile characterized by a decreased CSF level and an increased serum level was present concomitantly with AD patients but not with other diseases. p75NTR-ECD levels in both the serum and CSF were strongly correlated with Mini-Mental State Examination (MMSE) scores and showed sound differential diagnostic value for AD. Moreover, when combining CSF Aβ42, CSF Aβ42/40, CSF ptau181 or CSF ptau181/Aβ42 with CSF p75NTR-ECD, the area under the receiver operating characteristic curve (AUC) and diagnostic accuracies improved. These findings indicate that p75NTR-ECD can serve as a specific biomarker for AD and the determination of serum and CSF p75NTR-ECD levels is likely to be helpful in monitoring AD progression. PMID:26440538

  6. High-Dimensional Medial Lobe Morphometry: An Automated MRI Biomarker for the New AD Diagnostic Criteria

    PubMed Central

    Valdivia, Fernando

    2014-01-01

    Introduction. Medial temporal lobe atrophy assessment via magnetic resonance imaging (MRI) has been proposed in recent criteria as an in vivo diagnostic biomarker of Alzheimer's disease (AD). However, practical application of these criteria in a clinical setting will require automated MRI analysis techniques. To this end, we wished to validate our automated, high-dimensional morphometry technique to the hypothetical prediction of future clinical status from baseline data in a cohort of subjects in a large, multicentric setting, compared to currently known clinical status for these subjects. Materials and Methods. The study group consisted of 214 controls, 371 mild cognitive impairment (147 having progressed to probable AD and 224 stable), and 181 probable AD from the Alzheimer's Disease Neuroimaging Initiative, with data acquired on 58 different 1.5 T scanners. We measured the sensitivity and specificity of our technique in a hierarchical fashion, first testing the effect of intensity standardization, then between different volumes of interest, and finally its generalizability for a large, multicentric cohort. Results. We obtained 73.2% prediction accuracy with 79.5% sensitivity for the prediction of MCI progression to clinically probable AD. The positive predictive value was 81.6% for MCI progressing on average within 1.5 (0.3 s.d.) year. Conclusion. With high accuracy, the technique's ability to identify discriminant medial temporal lobe atrophy has been demonstrated in a large, multicentric environment. It is suitable as an aid for clinical diagnostic of AD. PMID:25254139

  7. CSF analysis

    MedlinePlus

    ... Plasmin system of Alzheimer's disease: CSF Analysis. J Neural Transm . 2012:119:763-769. PMID: 22415062. www. ... Coconut Creek, FL. Review provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, Isla ...

  8. Identifying informative imaging biomarkers via tree structured sparse learning for AD diagnosis.

    PubMed

    Liu, Manhua; Zhang, Daoqiang; Shen, Dinggang

    2014-07-01

    Neuroimaging provides a powerful tool to characterize neurodegenerative progression and therapeutic efficacy in Alzheimer's disease (AD) and its prodromal stage-mild cognitive impairment (MCI). However, since the disease pathology might cause different patterns of structural degeneration, which is not pre-known, it is still a challenging problem to identify the relevant imaging markers for facilitating disease interpretation and classification. Recently, sparse learning methods have been investigated in neuroimaging studies for selecting the relevant imaging biomarkers and have achieved very promising results on disease classification. However, in the standard sparse learning method, the spatial structure is often ignored, although it is important for identifying the informative biomarkers. In this paper, a sparse learning method with tree-structured regularization is proposed to capture patterns of pathological degeneration from fine to coarse scale, for helping identify the informative imaging biomarkers to guide the disease classification and interpretation. Specifically, we first develop a new tree construction method based on the hierarchical agglomerative clustering of voxel-wise imaging features in the whole brain, by taking into account their spatial adjacency, feature similarity and discriminability. In this way, the complexity of all possible multi-scale spatial configurations of imaging features can be reduced to a single tree of nested regions. Second, we impose the tree-structured regularization on the sparse learning to capture the imaging structures, and then use them for selecting the most relevant biomarkers. Finally, we train a support vector machine (SVM) classifier with the selected features to make the classification. We have evaluated our proposed method by using the baseline MR images of 830 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, which includes 198 AD patients, 167 progressive MCI (pMCI), 236 stable MCI

  9. Divergent CSF tau alterations in two common tauopathies: Alzheimer’s disease and Progressive Supranuclear Palsy

    PubMed Central

    Wagshal, Dana; Sankaranarayanan, Sethu; Guss, Valerie; Hall, Tracey; Berisha, Flora; Lobach, Iryna; Karydas, Anna; Voltarelli, Lisa; Scherling, Carole; Heuer, Hilary; Tartaglia, Maria Carmela; Miller, Zachary; Coppola, Giovanni; Ahlijanian, Michael; Soares, Holly; Kramer, Joel H; Rabinovici, Gil D; Rosen, Howard J; Miller, Bruce L; Meredith, Jere; Boxer, Adam L

    2014-01-01

    Background Elevated CSF tau is considered a biomarker of neuronal injury in newly developed Alzheimer’s disease (AD) and mild cognitive impairment (MCI) criteria. However, previous studies have failed to detect alterations of tau species in other primary tauopathies. We assessed CSF tau protein abnormalities in AD, a tauopathy with prominent Aβ pathology, and progressive supranuclear palsy (PSP), a primary tauopathy characterized by deposition of four microtubule binding repeat (4R) tau with minimal Aβ pathology. Methods 26 normal control (NC), 37 AD, and 24 PSP patients participated in the study. AD and PSP were matched for severity using the clinical dementia rating sum of boxes (CDR-sb) scores. The INNO BIA AlzBio3 multiplex immunoassay was used to measure CSF Aβ, total tau, and ptau181. Additional, novel ELISAs targeting different N-terminal and central tau epitopes were developed to examine CSF tau components and to investigate interactions between diagnostic group, demographics, and genetic variables. Results PSP had lower CSF N-terminal and C-terminal tau concentrations than NC and AD measured with both the novel tau ELISAs and the standard AlzBio3 tau and ptau assays. AD had higher total tau and ptau levels than NC and PSP. There was a gender by diagnosis interaction in both AD and PSP for most tau species, with lower concentrations for male compared to female patients. Conclusions CSF tau fragment concentrations are different in PSP compared with AD despite the presence of severe tau pathology and neuronal injury in both disorders. CSF tau concentration likely reflects multiple factors in addition to the degree of neuronal injury. PMID:24899730

  10. Biomarkers in the Diagnosis and Prognosis of Alzheimer's Disease.

    PubMed

    Schaffer, Cole; Sarad, Nakia; DeCrumpe, Ashton; Goswami, Disha; Herrmann, Sara; Morales, Jose; Patel, Parth; Osborne, Jim

    2015-10-01

    Alzheimer's disease (AD) is a neurodegenerative disease that inhibits cognitive functions and has no cure. This report reviews the current diagnostic standards for AD with an emphasis on early diagnosis using the cerebrospinal fluid (CSF) biomarkers amyloid-beta, t-tau, and p-tau and fluorodeoxyglucose positron emission tomography imaging. Abnormal levels of these CSF biomarkers and decreased cerebral uptake of glucose have recently been used in the early diagnosis of AD in experimental studies. These promising biomarkers can be measured using immunoassays performed in singleplex or multiplex formats. Although presently, there are no Food and Drug Administration-approved in vitro diagnostics (IVDs) for early detection of AD, a multiplex immunoassay measuring a panel of promising AD biomarkers in CSF may be a likely IVD candidate for the clinical AD diagnostic market. Specifically, the INNO-BIA AlzBio3 immunoassay kit, performed using bead arrays on the xMAP Luminex analyzer, allows simultaneous quantification of amyloid-beta, t-tau, and p-tau biomarkers. AD biomarkers can also be screened using enzyme-linked immunosorbent assays that are offered as laboratory-developed tests. PMID:25424384

  11. Alzheimer's Disease Cerebrospinal Fluid and Neuroimaging Biomarkers: Diagnostic Accuracy and Relationship to Drug Efficacy.

    PubMed

    Khan, Tapan K; Alkon, Daniel L

    2015-01-01

    Widely researched Alzheimer's disease (AD) biomarkers include in vivo brain imaging with PET and MRI, imaging of amyloid plaques, and biochemical assays of Aβ 1 - 42, total tau, and phosphorylated tau (p-tau-181) in cerebrospinal fluid (CSF). In this review, we critically evaluate these biomarkers and discuss their clinical utility for the differential diagnosis of AD. Current AD biomarker tests are either highly invasive (requiring CSF collection) or expensive and labor-intensive (neuroimaging), making them unsuitable for use in the primary care, clinical office-based setting, or to assess drug efficacy in clinical trials. In addition, CSF and neuroimaging biomarkers continue to face challenges in achieving required sensitivity and specificity and minimizing center-to-center variability (for CSF-Aβ 1 - 42 biomarkers CV = 26.5% ; http://www.alzforum.org/news/conference-coverage/paris-standardization-hurdle-spinal-fluid-imaging-markers). Although potentially useful for selecting patient populations for inclusion in AD clinical trials, the utility of CSF biomarkers and neuroimaging techniques as surrogate endpoints of drug efficacy needs to be validated. Recent trials of β- and γ-secretase inhibitors and Aβ immunization-based therapies in AD showed no significant cognitive improvements, despite changes in CSF and neuroimaging biomarkers. As we learn more about the dysfunctional cellular and molecular signaling processes that occur in AD, and how these processes are manifested in tissues outside of the brain, new peripheral biomarkers may also be validated as non-invasive tests to diagnose preclinical and clinical AD. PMID:26402622

  12. A Decade of Cerebrospinal Fluid Biomarkers for Alzheimer's Disease in Belgium.

    PubMed

    Somers, Charisse; Struyfs, Hanne; Goossens, Joery; Niemantsverdriet, Ellis; Luyckx, Jill; De Roeck, Naomi; De Roeck, Ellen; De Vil, Bart; Cras, Patrick; Martin, Jean-Jacques; De Deyn, Peter-Paul; Bjerke, Maria; Engelborghs, Sebastiaan

    2016-08-10

    During the past ten years, over 5,000 cerebrospinal fluid (CSF) samples were analyzed at the Reference Center for Biological Markers of Dementia (BIODEM), UAntwerp, for core Alzheimer's disease (AD) CSF biomarkers: amyloid-β peptide of 42 amino acids (Aβ1-42), total tau protein (T-tau), and tau phosphorylated at threonine 181 (P-tau181P). CSF biomarker analyses were performed using single-analyte ELISA kits. In-house validated cutoff values were applied: Aβ1-42 <638.5 pg/mL, T-tau >296.5 pg/mL, P-tau181P >56.5 pg/mL. A CSF biomarker profile was considered to be suggestive for AD if the CSF Aβ1-42 concentration was below the cutoff, in combination with T-tau and/or P-tau181P values above the cutoff (IWG2 criteria for AD). Biomarker analyses were requested for following clinical indications: 1) neurochemical confirmation of AD in case of clinical AD, 2) neurochemical confirmation of AD in case of doubt between AD and a non-AD dementia, 3) neurochemical diagnosis of prodromal AD in case of mild cognitive impairment, 4) neurochemical confirmation of AD in case of psychiatric symptoms (like depression, psychosis), or 5) other clinical indications. During these ten years, the number of yearly referred samples increased by 238% and clinical indications for referral showed a shift from neurochemical confirmation of AD in case of clinical AD to differential dementia diagnosis in case of doubt between AD and a non-AD dementia. Four percent of the patients also had a postmortem neuropathological examination. Together, these biomarker data were the basis for several research papers, and significantly contributed to the validation of these biomarkers in autopsy-confirmed subjects. PMID:27567807

  13. MicroRNA-29a Is a Candidate Biomarker for Alzheimer's Disease in Cell-Free Cerebrospinal Fluid.

    PubMed

    Müller, Mareike; Jäkel, Lieke; Bruinsma, Ilona B; Claassen, Jurgen A; Kuiperij, H Bea; Verbeek, Marcel M

    2016-07-01

    The identification of reliable biomarkers for Alzheimer's disease (AD) remains challenging. Recently, abnormal levels of microRNAs (miRNAs) miR-27a, miR-29a, miR-29b, and miR-125b in cerebrospinal fluid (CSF) of AD patients were reported. We aimed to confirm the biomarker potential of these miRNAs for AD diagnosis. Additionally, we examined the influence of blood contamination on CSF miRNA levels as potential confounding factor. We studied expression levels of the four miRNAs by quantitative PCR in CSF samples of AD patients and non-demented controls, and in blood-spiked CSF. Levels of miR-29a, but not of the other three miRNAs, were increased by a factor of 2.2 in CSF of AD patients. Spiking of small amounts of blood into CSF revealed that miR-27a and miR-29a, but not miR-125b levels were strongly influenced by the number of blood cells in the sample. In conclusion, miR-29a may be a candidate biomarker for AD, but only when used in cell-free CSF. PMID:25895659

  14. How many biomarkers to discriminate neurodegenerative dementia?

    PubMed

    Sancesario, Giulia M; Bernardini, Sergio

    2015-01-01

    A number of cerebrospinal fluid (CSF) biomarkers are currently used for the diagnosis of dementia. Opposite changes in the level of amyloid-β(1-42) versus total tau and phosphorylated-tau181 in the CSF reflect the specific pathology of Alzheimer's disease (AD) in the brain. This panel of biomarkers has proven to be effective to differentiate AD from controls and from the major types of neurodegenerative dementia, and to evaluate the progression from mild cognitive impairment to AD. In the absence of specific biomarkers reflecting the pathologies of the other most common forms of dementia, such as Lewy Body disease, Frontotemporal lobar degeneration, Creutzfeldt-Jakob disease, etc., the evaluation of biomarkers of AD pathology is used, attempting to exclude rather than to confirm AD. Other biomarkers included in the common clinical practice do not clearly relate to the underlying pathology: progranulin (PGRN) is a selective marker of frontotemporal dementia with mutations in the PGRN gene; the 14-3-3 protein is a highly sensitive and specific marker for Creutzfeldt-Jakob disease, but has to be used carefully in differentiating rapid progressive dementia; and α-synuclein is an emerging candidate biomarker of the different forms of synucleinopathy. This review summarizes several biomarkers of neurodegenerative dementia validated based on the neuropathological processes occurring in brain tissue. Notwithstanding the paucity of pathologically validated biomarkers and their high analytical variability, the combinations of these biomarkers may well represent a key and more precise analytical and diagnostic tool in the complex plethora of degenerative dementia. PMID:26292074

  15. Rethinking on the concept of biomarkers in preclinical Alzheimer's disease.

    PubMed

    Berti, Valentina; Polito, Cristina; Lombardi, Gemma; Ferrari, Camilla; Sorbi, Sandro; Pupi, Alberto

    2016-05-01

    The neuropathological processes eventually leading to Alzheimer's disease (AD) are thought to start decades before the appearance of clinical symptoms and the clinical diagnosis of AD dementia. The term "preclinical AD" has been recently introduced to identify this "silent stage" of AD, when the disease is already present, but symptoms are not yet clinically evident. Advances in AD biomarkers have dramatically improved the ability to detect AD pathological processes in vivo in cognitively intact subjects, thus demonstrating the presence of AD pathology in the preclinical phase. This review focuses on the recent advances in the field of neuroimaging and CSF AD biomarkers specifically in the preclinical phase of AD, and aims to discuss the significance that such biomarkers could have in cognitively intact subjects. Even though the use of such biomarkers in AD preclinical phase has contributed to improve our understanding of AD early pathological processes, it raised also a number of new challenges that still remain to be overcome, such as a better definition of the clinical and individual significance of currently known biomarkers in preclinical stages and the development of novel biomarkers of different early AD-related events. PMID:26792010

  16. CSF myelin basic protein

    MedlinePlus

    CSF myelin basic protein is a test to measure the level of myelin basic protein (MBP) in the cerebrospinal fluid (CSF). The CSF ... less than 4 ng/mL of myelin basic protein in the CSF. Normal value ranges may vary ...

  17. Improving CSF Biomarkers’ Performance for Predicting Progression from Mild Cognitive Impairment to Alzheimer’s Disease by Considering Different Confounding Factors: A Meta-Analysis

    PubMed Central

    Ferreira, Daniel; Rivero-Santana, Amado; Perestelo-Pérez, Lilisbeth; Westman, Eric; Wahlund, Lars-Olof; Sarría, Antonio; Serrano-Aguilar, Pedro

    2014-01-01

    Background: Cerebrospinal fluid (CSF) biomarkers’ performance for predicting conversion from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) is still suboptimal. Objective: By considering several confounding factors we aimed to identify in which situations these CSF biomarkers can be useful. Data Sources: A systematic review was conducted on MEDLINE, PreMedline, EMBASE, PsycInfo, CINAHL, Cochrane, and CRD (1990–2013). Eligibility Criteria: (1) Prospective studies of CSF biomarkers’ performance for predicting conversion from MCI to AD/dementia; (2) inclusion of Aβ42 and T-tau and/or p-tau. Several meta-analyses were performed. Results: Aβ42/p-tau ratio had high capacity to predict conversion to AD in MCI patients younger than 70 years. The p-tau had high capacity to identify MCI cases converting to AD in ≤24 months. Conclusions: Explaining how different confounding factors influence CSF biomarkers’ predictive performance is mandatory to elaborate a definitive map of situations, where these CSF biomarkers are useful both in clinics and research. PMID:25360114

  18. Maternal Family History is Associated with Alzheimer's Disease Biomarkers

    PubMed Central

    Honea, Robyn A.; Vidoni, Eric D.; Swerdlow, Russell H.; Burns, Jeffrey M.

    2013-01-01

    A family history of Alzheimer's disease (AD) increases one's risk of developing late-onset AD (LOAD), and a maternal family history of LOAD influences risk more than a paternal family history. Accumulating evidence suggests that a family history of dementia associates with AD-typical biomarker changes. We analyzed cross-sectional data from non-demented, mild cognitive impairment (MCI), and LOAD participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) with PET imaging using Pittsburgh Compound B (PiB, n = 99) and cerebrospinal fluid (CSF) analysis (n = 403) for amyloid-β peptide (Aβ) and total tau. We assessed the relationship of CSF and PiB biomarkers and family history of dementia, as well as parent gender effects. In the larger analysis of CSF biomarkers, we assessed diagnosis groups individually. In the overall sample, CSF Aβ, tau/Aβ ratio, and global PiB uptake were significantly different between family history positive and negative groups, with markers of increased AD burden associated with a positive maternal family history of dementia. Moreover, a maternal family history of dementia was associated with significantly greater PiB Aβ load in the brain in the parietal cortex, precuneus, and sensorimotor cortex. Individuals with MCI positive for a maternal family history of dementia had significantly more markers of AD pathophysiology than individuals with no family history of dementia. A family history of dementia is associated with AD-typical biomarker changes. These biomarker associations are most robust in individuals with a maternal family history, suggesting that a maternally inherited factor influences AD risk. PMID:22669011

  19. Biomarkers in translational research of Alzheimer's disease.

    PubMed

    Tarawneh, Rawan; Holtzman, David M

    2010-01-01

    The identification and characterization of amyloid-beta (Abeta) and tau as the main pathological substrates of Alzheimer's disease (AD) have driven many efforts in search for suitable biomarkers for AD. In the last decade, research in this area has focused on developing a better understanding of the principles that govern protein deposition, mechanisms that link aggregation to toxicity and neuronal death, and a better understanding of protein dynamics in brain tissue, interstitial fluid and CSF. While Abeta and tau represent the two key pathological mediators of disease, other aspects of this multifaceted disease (e.g. oxidative stress, calcium-mediated toxicity, and neuroinflammation) are being unraveled, with the hope to develop a more comprehensive approach in exploring disease mechanisms. This has not only expanded possible areas for disease-modifying therapies, but has also allowed the introduction of novel, and potentially useful, fluid and radiological markers for the presence and progression of AD pathology. There is no doubt that the identification of several fluid and imaging biomarkers that can reliably detect the early stages of AD will have great implications in the design of clinical trials, in the selection of homogenous research populations, and in the assessment of disease outcomes. Markers with good diagnostic specificity will aid researchers in differentiating individuals with preclinical and probable AD from individuals who do not have AD pathology or have other dementing disorders. Markers that change with disease progression may offer utility in assessing the rates of disease progression and the efficacy of potential therapeutic agents on AD pathology. For both of these purposes, CSF Abeta42, amyloid imaging, and CSF tau appear to be very good markers of the presence of AD pathology as well as predictive of who will progress from MCI to AD. Volumetric MRI is also good at separating individuals with MCI and AD from controls and is predictive of

  20. CSF monoamine metabolites, cholinesterases and lactate in the adult hydrocephalus syndrome (normal pressure hydrocephalus) related to CSF hydrodynamic parameters.

    PubMed Central

    Malm, J; Kristensen, B; Ekstedt, J; Adolfsson, R; Wester, P

    1991-01-01

    Monoamine metabolites, cholinesterases and lactic acid in lumbar cerebrospinal fluid (CSF) were investigated on patients with the adult hydrocephalus syndrome (idiopathic normal pressure syndrome; AHS, n = 15), Alzheimer's disease (AD, n = 14), multi-infarct dementia (MID, n = 13) and controls (n = 21). Patients had clinical and CSF hydrodynamic investigations. Monoamine concentrations were determined by reversed-phase liquid chromatography, cholinesterases and lactate were determined photometrically. In the AHS patients, CSF monoamine concentrations were not significantly different compared with controls, AD or MID patients. AHS and AD patients showed a similar reduction of CSF acetylcholinesterase activity compared with controls. Positive correlations were found in concentrations of CSF homovanillic acid, CSF 5-hydroxyindoleacetic acid and CSF lactic acid versus CSF outflow conductance (that is, resistance against CSF outflow) in the AHS patients. A similar pattern was observed in a subgroup of MID patients characterised by dilated ventricles and disturbed CSF hydrodynamics. These data suggest that a low CSF outflow conductance may facilitate the clearance of acidic substances from the arachnoid space at the probenecid sensitive active transport site. Alternative explanations would be that a pathologically low CSF outflow conductance is accompanied by an inverse caudorostral flow of CSF or a compromised trans-ependymal diffusion. PMID:1709421

  1. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers.

    PubMed

    Jack, Clifford R; Bennett, David A; Blennow, Kaj; Carrillo, Maria C; Feldman, Howard H; Frisoni, Giovanni B; Hampel, Harald; Jagust, William J; Johnson, Keith A; Knopman, David S; Petersen, Ronald C; Scheltens, Philip; Sperling, Reisa A; Dubois, Bruno

    2016-08-01

    Biomarkers have become an essential component of Alzheimer disease (AD) research and because of the pervasiveness of AD pathology in the elderly, the same biomarkers are used in cognitive aging research. A number of current issues suggest that an unbiased descriptive classification scheme for these biomarkers would be useful. We propose the "A/T/N" system in which 7 major AD biomarkers are divided into 3 binary categories based on the nature of the pathophysiology that each measures. "A" refers to the value of a β-amyloid biomarker (amyloid PET or CSF Aβ42); "T," the value of a tau biomarker (CSF phospho tau, or tau PET); and "N," biomarkers of neurodegeneration or neuronal injury ([(18)F]-fluorodeoxyglucose-PET, structural MRI, or CSF total tau). Each biomarker category is rated as positive or negative. An individual score might appear as A+/T+/N-, or A+/T-/N-, etc. The A/T/N system includes the new modality tau PET. It is agnostic to the temporal ordering of mechanisms underlying AD pathogenesis. It includes all individuals in any population regardless of the mix of biomarker findings and therefore is suited to population studies of cognitive aging. It does not specify disease labels and thus is not a diagnostic classification system. It is a descriptive system for categorizing multidomain biomarker findings at the individual person level in a format that is easy to understand and use. Given the present lack of consensus among AD specialists on terminology across the clinically normal to dementia spectrum, a biomarker classification scheme will have broadest acceptance if it is independent from any one clinically defined diagnostic scheme. PMID:27371494

  2. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers

    PubMed Central

    Bennett, David A.; Blennow, Kaj; Carrillo, Maria C.; Feldman, Howard H.; Frisoni, Giovanni B.; Hampel, Harald; Jagust, William J.; Johnson, Keith A.; Knopman, David S.; Petersen, Ronald C.; Scheltens, Philip; Sperling, Reisa A.; Dubois, Bruno

    2016-01-01

    Biomarkers have become an essential component of Alzheimer disease (AD) research and because of the pervasiveness of AD pathology in the elderly, the same biomarkers are used in cognitive aging research. A number of current issues suggest that an unbiased descriptive classification scheme for these biomarkers would be useful. We propose the “A/T/N” system in which 7 major AD biomarkers are divided into 3 binary categories based on the nature of the pathophysiology that each measures. “A” refers to the value of a β-amyloid biomarker (amyloid PET or CSF Aβ42); “T,” the value of a tau biomarker (CSF phospho tau, or tau PET); and “N,” biomarkers of neurodegeneration or neuronal injury ([18F]-fluorodeoxyglucose–PET, structural MRI, or CSF total tau). Each biomarker category is rated as positive or negative. An individual score might appear as A+/T+/N−, or A+/T−/N−, etc. The A/T/N system includes the new modality tau PET. It is agnostic to the temporal ordering of mechanisms underlying AD pathogenesis. It includes all individuals in any population regardless of the mix of biomarker findings and therefore is suited to population studies of cognitive aging. It does not specify disease labels and thus is not a diagnostic classification system. It is a descriptive system for categorizing multidomain biomarker findings at the individual person level in a format that is easy to understand and use. Given the present lack of consensus among AD specialists on terminology across the clinically normal to dementia spectrum, a biomarker classification scheme will have broadest acceptance if it is independent from any one clinically defined diagnostic scheme. PMID:27371494

  3. Is abeta a sufficient biomarker for monitoring anti-abeta clinical studies? A critical review.

    PubMed

    Moreth, Jens; Mavoungou, Chrystelle; Schindowski, Katharina

    2013-01-01

    Amyloid-beta (Aβ) in Alzheimer's disease (AD) appeared to be a promising target for disease-modifying therapeutic strategies like passive immunotherapy with anti-Aβ monoclonal antibodies (mAbs). Biochemical markers in cerebrospinal fluid (CSF) include alterations of Aβ that allow the diagnosis of AD. Biomarker strategies, such as the levels of Aβ in CSF and plasma, currently play an important role in early clinical trials for AD. Indeed, these strategies have a relevant impact on the outcome of such studies, since the biomarkers are used to monitor the bioactivity of anti-Aβ mAbs. The clinical trials of Solanezumab were mainly based on the readout of Aβ levels in CSF and plasma, whereas those of Bapineuzumab were based on cognition; however, little is known about the mechanisms altering these biomarker levels, and no biomarker has yet been proven to be a successful predictor for AD therapy. In addition, the Aβ biomarkers allow for the determination of free and bound anti-Aβ mAb in order to monitor the available amount of bioactive drug and could give hints to the mechanism of action. In this review, we discuss clinical Aβ biomarker data and the latest regulatory strategies. PMID:23847530

  4. CSF-VDRL test

    MedlinePlus

    Venereal disease research laboratory slide test - CSF ... provider's instructions on how to prepare for this test. ... The CSF-VDRL test is done to diagnose syphilis in the brain or spinal cord. Brain and spinal cord involvement is often a ...

  5. CSF oligoclonal banding - slideshow

    MedlinePlus

    ... presentations/100145.htm CSF oligoclonal banding - series—Normal anatomy ... Overview The cerebrospinal fluid (CSF) serves to supply nutrients to the central nervous system (CNS) and collect waste products, as well as ...

  6. Synergistic anti-tumor efficacy of immunogenic adenovirus ONCOS-102 (Ad5/3-D24-GM-CSF) and standard of care chemotherapy in preclinical mesothelioma model.

    PubMed

    Kuryk, Lukasz; Haavisto, Elina; Garofalo, Mariangela; Capasso, Cristian; Hirvinen, Mari; Pesonen, Sari; Ranki, Tuuli; Vassilev, Lotta; Cerullo, Vincenzo

    2016-10-15

    Malignant mesothelioma (MM) is a rare cancer type caused mainly by asbestos exposure. The median overall survival time of a mesothelioma cancer patient is less than 1-year from diagnosis. Currently there are no curative treatment modalities for malignant mesothelioma, however treatments such as surgery, chemotherapy and radiotherapy can help to improve patient prognosis and increase life expectancy. Pemetrexed-Cisplatin is the only standard of care (SoC) chemotherapy for malignant mesothelioma, but the median PFS/OS (progression-free survival/overall survival) from the initiation of treatment is only up to 12 months. Therefore, new treatment strategies against malignant mesothelioma are in high demand. ONCOS-102 is a dual targeting, chimeric oncolytic adenovirus, coding for human GM-CSF. The safety and immune activating properties of ONCOS-102 have already been assessed in phase 1 study (NCT01598129). In this preclinical study, we evaluated the antineoplastic activity of combination treatment with SoC chemotherapy (Pemetrexed, Cisplatin, Carboplatin) and ONCOS-102 in xenograft BALB/c model of human malignant mesothelioma. We demonstrated that ONCOS-102 is able to induce immunogenic cell death of human mesothelioma cell lines in vitro and showed anti-tumor activity in the treatment of refractory H226 malignant pleural mesothelioma (MPM) xenograft model. While chemotherapy alone showed no anti-tumor activity in the mesothelioma mouse model, ONCOS-102 was able to slow down tumor growth. Interestingly, a synergistic anti-tumor effect was seen when ONCOS-102 was combined with chemotherapy regimens. These findings give a rationale for the clinical testing of ONCOS-102 in combination with first-line chemotherapy in patients suffering from malignant mesothelioma. PMID:27287512

  7. Pre-analytical and analytical factors influencing Alzheimer's disease cerebrospinal fluid biomarker variability.

    PubMed

    Fourier, Anthony; Portelius, Erik; Zetterberg, Henrik; Blennow, Kaj; Quadrio, Isabelle; Perret-Liaudet, Armand

    2015-09-20

    A panel of cerebrospinal fluid (CSF) biomarkers including total Tau (t-Tau), phosphorylated Tau protein at residue 181 (p-Tau) and β-amyloid peptides (Aβ42 and Aβ40), is frequently used as an aid in Alzheimer's disease (AD) diagnosis for young patients with cognitive impairment, for predicting prodromal AD in mild cognitive impairment (MCI) subjects, for AD discrimination in atypical clinical phenotypes and for inclusion/exclusion and stratification of patients in clinical trials. Due to variability in absolute levels between laboratories, there is no consensus on medical cut-off value for the CSF AD signature. Thus, for full implementation of this core AD biomarker panel in clinical routine, this issue has to be solved. Variability can be explained both by pre-analytical and analytical factors. For example, the plastic tubes used for CSF collection and storage, the lack of reference material and the variability of the analytical protocols were identified as important sources of variability. The aim of this review is to highlight these pre-analytical and analytical factors and describe efforts done to counteract them in order to establish cut-off values for core CSF AD biomarkers. This review will give the current state of recommendations. PMID:26141614

  8. Alzheimer’s Biomarkers are Correlated with Brain Connectivity in Older Adults Differentially during Resting and Task States

    PubMed Central

    Jiang, Yang; Huang, Haiqing; Abner, Erin; Broster, Lucas S.; Jicha, Gregory A.; Schmitt, Frederick A.; Kryscio, Richard; Andersen, Anders; Powell, David; Van Eldik, Linda; Gold, Brian T.; Nelson, Peter T.; Smith, Charles; Ding, Mingzhou

    2016-01-01

    β-amyloid (Aβ) plaques and tau-related neurodegeneration are pathologic hallmarks of Alzheimer’s disease (AD). The utility of AD biomarkers, including those measured in cerebrospinal fluid (CSF), in predicting future AD risk and cognitive decline is still being refined. Here, we explored potential relationships between functional connectivity (FC) patterns within the default-mode network (DMN), age, CSF biomarkers (Aβ42 and pTau181), and cognitive status in older adults. Multiple measures of FC were explored, including a novel time series-based measure [total interdependence (TI)]. In our sample of 27 cognitively normal older adults, no significant associations were found between levels of Aβ42 or pTau181 and cognitive scores or regional brain volumes. However, we observed several novel relationships between these biomarkers and measures of FC in DMN during both resting-state and a short-term memory task. First, increased connectivity between bilateral anterior middle temporal gyri was associated with higher levels of CSF Aβ42 and Aβ42/pTau181 ratio (reflecting lower AD risk) during both rest and task. Second, increased bilateral parietal connectivity during the short-term memory task, but not during rest, was associated with higher levels of CSF pTau181 (reflecting higher AD risk). Third, increased connectivity between left middle temporal and left parietal cortices during the active task was associated with decreased global cognitive status but not CSF biomarkers. Lastly, we found that our new TI method was more sensitive to the CSF Aβ42-connectivity relationship whereas the traditional cross-correlation method was more sensitive to levels of CSF pTau181 and cognitive status. With further refinement, resting-state connectivity and task-driven connectivity measures hold promise as non-invasive neuroimaging markers of Aβ and pTau burden in cognitively normal older adults. PMID:26903858

  9. Limited agreement between biomarkers of neuronal injury at different stages of Alzheimer's disease.

    PubMed

    Alexopoulos, Panagiotis; Kriett, Laura; Haller, Bernhard; Klupp, Elisabeth; Gray, Katherine; Grimmer, Timo; Laskaris, Nikolaos; Förster, Stefan; Perneczky, Robert; Kurz, Alexander; Drzezga, Alexander; Fellgiebel, Andreas; Yakushev, Igor

    2014-11-01

    New diagnostic criteria for Alzheimer's disease (AD) treat different biomarkers of neuronal injury as equivalent. Here, we quantified the degree of agreement between hippocampal volume on structural magnetic resonance imaging, regional glucose metabolism on positron emission tomography, and levels of phosphorylated tau in cerebrospinal fluid (CSF) in 585 subjects from all phases of the AD Neuroimaging Initiative. The overall chance-corrected agreement was poor (Cohen κ, 0.24-0.34), in accord with a high rate of conflicting findings (26%-41%). Neither diagnosis nor APOE ε4 status significantly influenced the distribution of agreement between the biomarkers. The degree of agreement tended to be higher in individuals with abnormal versus normal CSF β-amyloid (Aβ1-42) levels. Prospective diagnostic criteria for AD should address the relative importance of markers of neuronal injury and elaborate a way of dealing with conflicting biomarker findings. PMID:24857233

  10. The cathepsin D rs17571 polymorphism: effects on CSF tau concentrations in Alzheimer disease.

    PubMed

    Riemenschneider, Matthias; Blennow, Kaj; Wagenpfeil, Stefan; Andreasen, Niels; Prince, Jonathan A; Laws, Simon M; Förstl, Hans; Kurz, Alexander

    2006-06-01

    The lysosomal protease cathepsin D (CtsD, EC 3.4.23.5; gene, CTSD) has been associated with Alzheimer disease (AD) due to its cerebral expression being increased early in the course of AD; additionally, a CTSD exon 2 polymorphism (rs17571; NT_009237.17:g.569834T>C) may confer risk to AD. Functionally, it may be implicated in amyloid precursor protein (APP) processing and tau protein degradation. The objective of this study was to determine whether the CTSD exon 2 polymorphism affects cerebrospinal fluid (CSF), concentrations of beta-amyloid (Abeta42) and tau in two independent samples from Germany (n=73) and Sweden (n=66). Patients carrying the CTSD rs17571-T allele had significantly decreased CSF levels of tau (Munich, p=0.003; Swedish, p=0.029; combined sample, p<0.001), whereas no significant effect was observed on Abeta42 concentrations. Likewise, no significant impact was observed on Mini Mental State Examination (MMSE) scores. The data of both independent samples suggest that the CTSD rs17571 polymorphism does not affect APP processing but shows significant effects on tau processing. The result may corroborate the implication of the lysosomal system in the pathogenesis of AD and is of particular importance if CSF tau is used as a diagnostic biomarker. PMID:16652347

  11. Cerebrospinal fluid Alzheimer's biomarker profiles in CNS infections.

    PubMed

    Krut, Jan Jessen; Zetterberg, Henrik; Blennow, Kaj; Cinque, Paola; Hagberg, Lars; Price, Richard W; Studahl, Marie; Gisslén, Magnus

    2013-02-01

    The cerebrospinal fluid (CSF) biomarker profile in Alzheimer's disease (AD) is characterized by decreased beta amyloid (Aβ(1-42)), increased total and hyperphosphorylated tau (t-tau and p-tau, respectively), which is a useful diagnostic tool and gives insight in the pathogenesis of AD. It is of importance to study how these biomarkers react in other CNS diseases; therefore, we decided to analyse amyloid and tau biomarkers in different CNS infections. We also included analysis of soluble amyloid precursor proteins (sAPPα and -β). CSF Aβ(1-42), sAPPα and -β, t-tau and p-tau were analysed in bacterial meningitis (n = 12), Lyme neuroborreliosis (n = 13), herpes simplex virus type 1 (HSV-1) encephalitis (n = 10), HIV-associated dementia (HAD) (n = 21), AD (n = 21) and healthy controls (n = 42). Concurrent with AD, Aβ(1-42) was decreased in all groups except neuroborreliosis compared to controls. HSV-1 encephalitis, bacterial meningitis and HAD showed lower concentrations of sAPPα and -β compared to AD. T-tau was increased in AD and HSV-1 encephalitis compared to all other groups. P-tau was higher in AD and HSV-1 encephalitis compared to bacterial meningitis, HAD and control. Decreased CSF Aβ(1-42), sAPPα and -β in various CNS infections imply an effect of neuroinflammation on amyloid metabolism which is similar in regard to AD concerning Aβ(1-42), but differs concerning sAPPα and -β. These results clearly indicate different pathologic pathways in AD and infectious CNS disease and may provide help in the differential biomarker diagnostics. Increased p-tau in HSV-1 encephalitis probably reflect acute neuronal damage and necrosis. PMID:23052602

  12. Preanalytical Confounding Factors in the Analysis of Cerebrospinal Fluid Biomarkers for Alzheimer’s Disease: The Issue of Diurnal Variation

    PubMed Central

    Cicognola, Claudia; Chiasserini, Davide; Parnetti, Lucilla

    2015-01-01

    Given the growing use of cerebrospinal fluid (CSF) beta-amyloid (Aβ) and tau as biomarkers for early diagnosis of Alzheimer’s disease (AD), it is essential that the diagnostic procedures are standardized and the results comparable across different laboratories. Preanalytical factors are reported to be the cause of at least 50% of the total variability. Among them, diurnal variability is a key issue and may have an impact on the comparability of the values obtained. The available studies on this issue are not conclusive so far. Fluctuations of CSF biomarkers in young healthy volunteers have been previously reported, while subsequent studies have not confirmed those observations in older subjects, the ones most likely to receive this test. The observed differences in circadian rhythms need to be further assessed not only in classical CSF biomarkers but also in novel forthcoming biomarkers. In this review, the existing data on the issue of diurnal variations of CSF classical biomarkers for AD will be analyzed, also evaluating the available data on new possible biomarkers. PMID:26175714

  13. d-serine levels in Alzheimer's disease: implications for novel biomarker development

    PubMed Central

    Madeira, C; Lourenco, M V; Vargas-Lopes, C; Suemoto, C K; Brandão, C O; Reis, T; Leite, R E P; Laks, J; Jacob-Filho, W; Pasqualucci, C A; Grinberg, L T; Ferreira, S T; Panizzutti, R

    2015-01-01

    Alzheimer's disease (AD) is a severe neurodegenerative disorder still in search of effective methods of diagnosis. Altered levels of the NMDA receptor co-agonist, d-serine, have been associated with neurological disorders, including schizophrenia and epilepsy. However, whether d-serine levels are deregulated in AD remains elusive. Here, we first measured D-serine levels in post-mortem hippocampal and cortical samples from nondemented subjects (n=8) and AD patients (n=14). We next determined d-serine levels in experimental models of AD, including wild-type rats and mice that received intracerebroventricular injections of amyloid-β oligomers, and APP/PS1 transgenic mice. Finally, we assessed d-serine levels in the cerebrospinal fluid (CSF) of 21 patients with a diagnosis of probable AD, as compared with patients with normal pressure hydrocephalus (n=9), major depression (n=9) and healthy controls (n=10), and results were contrasted with CSF amyloid-β/tau AD biomarkers. d-serine levels were higher in the hippocampus and parietal cortex of AD patients than in control subjects. Levels of both d-serine and serine racemase, the enzyme responsible for d-serine production, were elevated in experimental models of AD. Significantly, d-serine levels were higher in the CSF of probable AD patients than in non-cognitively impaired subject groups. Combining d-serine levels to the amyloid/tau index remarkably increased the sensitivity and specificity of diagnosis of probable AD in our cohort. Our results show that increased brain and CSF d-serine levels are associated with AD. CSF d-serine levels discriminated between nondemented and AD patients in our cohort and might constitute a novel candidate biomarker for early AD diagnosis. PMID:25942042

  14. Predicting missing biomarker data in a longitudinal study of Alzheimer disease

    PubMed Central

    Jagust, William J.; Aisen, Paul; Jack, Clifford R.; Toga, Arthur W.; Beckett, Laurel; Gamst, Anthony; Soares, Holly; C. Green, Robert; Montine, Tom; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Bandy, Dan; Chen, Kewei; Morris, John; Lee, Virginia M.-Y.; Korecka, Magdalena; Crawford, Karen; Neu, Scott; Harvey, Danielle; Kornak, John; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Buckholtz, Neil; Kaye, Jeffrey; Dolen, Sara; Quinn, Joseph; Schneider, Lon; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Tang, Cheuk; Marzloff, George; Toledo-Morrell, Leylade; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn S.; Pedroso, Julia; Toroney, Jaimie; Rusinek, Henry; de Leon, Mony J; De Santi, Susan M; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Aiello, Marilyn; Clark, Christopher M.; Pham, Cassie; Nunez, Jessica; Smith, Charles D.; Given, Curtis A.; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Ismail, M. Saleem; Brand, Connie; Richard, Jennifer; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Diaz-Arrastia, Ramon; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Laubinger, Mary M.; Bartzokis, George; Silverman, Daniel H.S.; Lu, Po H.; Graff-Radford MBBCH, Neill R; Parfitt, Francine; Johnson, Heather; Farlow, Martin; Herring, Scott; Hake, Ann M.; van Dyck, Christopher H.; MacAvoy, Martha G.; Benincasa, Amanda L.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Graham, Simon; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Wu, Chuang-Kuo; Johnson, Nancy; Mesulam, Marsel; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Scott; Johnson, Kathleen B.; Behan, Kelly E.; Sperling, Reisa A.; Rentz, Dorene M.; Johnson, Keith A.; Rosen, Allyson; Tinklenberg, Jared; Ashford, Wes; Sabbagh, Marwan; Connor, Donald; Jacobson, Sandra; Killiany, Ronald; Norbash, Alexander; Nair, Anil; Obisesan, Thomas O.; Jayam-Trouth, Annapurni; Wang, Paul; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; DeCarli, Charles; Fletcher, Evan; Carmichael, Owen; Kittur, Smita; Mirje, Seema; Borrie, Michael; Lee, T-Y; Bartha, Dr Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Hendin, Barry A.; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Gandy, Sam; Marenberg, Marjorie E.; Rovner, Barry W.; Pearlson, Godfrey; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Englert, Jessica; Williamson, Jeff D.; Sink, Kaycee M.; Watkins, Franklin; Ott, Brian R.; Wu, Chuang-Kuo; Cohen, Ronald; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo

    2012-01-01

    Objective: To investigate predictors of missing data in a longitudinal study of Alzheimer disease (AD). Methods: The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a clinic-based, multicenter, longitudinal study with blood, CSF, PET, and MRI scans repeatedly measured in 229 participants with normal cognition (NC), 397 with mild cognitive impairment (MCI), and 193 with mild AD during 2005–2007. We used univariate and multivariable logistic regression models to examine the associations between baseline demographic/clinical features and loss of biomarker follow-ups in ADNI. Results: CSF studies tended to recruit and retain patients with MCI with more AD-like features, including lower levels of baseline CSF Aβ42. Depression was the major predictor for MCI dropouts, while family history of AD kept more patients with AD enrolled in PET and MRI studies. Poor cognitive performance was associated with loss of follow-up in most biomarker studies, even among NC participants. The presence of vascular risk factors seemed more critical than cognitive function for predicting dropouts in AD. Conclusion: The missing data are not missing completely at random in ADNI and likely conditional on certain features in addition to cognitive function. Missing data predictors vary across biomarkers and even MCI and AD groups do not share the same missing data pattern. Understanding the missing data structure may help in the design of future longitudinal studies and clinical trials in AD. PMID:22491869

  15. An Alzheimer’s Disease-Derived Biomarker Signature Identifies Parkinson’s Disease Patients with Dementia

    PubMed Central

    Berlyand, Yosef; Weintraub, Daniel; Xie, Sharon X.; Mellis, Ian A.; Doshi, Jimit; Rick, Jacqueline; McBride, Jennifer; Davatzikos, Christos; Shaw, Leslie M.; Hurtig, Howard; Trojanowski, John Q.; Chen-Plotkin, Alice S.

    2016-01-01

    Biomarkers from multiple modalities have been shown to correlate with cognition in Parkinson’s disease (PD) and in Alzheimer’s disease (AD). However, the relationships of these markers with each other, and the use of multiple markers in concert to predict an outcome of interest, are areas that are much less explored. Our objectives in this study were (1) to evaluate relationships among 17 biomarkers previously reported to associate with cognition in PD or AD and (2) to test performance of a five-biomarker classifier trained to recognize AD in identifying PD with dementia (PDD). To do this, we evaluated a cross-sectional cohort of PD patients (n = 75) across a spectrum of cognitive abilities. All PD participants had 17 baseline biomarkers from clinical, genetic, biochemical, and imaging modalities measured, and correlations among biomarkers were assessed by Spearman’s rho and by hierarchical clustering. We found that internal correlation among all 17 candidate biomarkers was modest, showing a maximum pairwise correlation coefficient of 0.51. However, a five-marker subset panel derived from AD (CSF total tau, CSF phosphorylated tau, CSF amyloid beta 42, APOE genotype, and SPARE-AD imaging score) discriminated cognitively normal PD patients vs. PDD patients with 80% accuracy, when employed in a classifier originally trained to recognize AD. Thus, an AD-derived biomarker signature may identify PDD patients with moderately high accuracy, suggesting mechanisms shared with AD in some PDD patients. Based on five measures readily obtained during life, this AD-derived signature may prove useful in identifying PDD patients most likely to respond to AD-based crossover therapies. PMID:26812251

  16. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 of the blood sugar level). Note: Normal value ranges may vary slightly ...

  17. CSF total protein

    MedlinePlus

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 mg/dL. Note: mg/dL = ...

  18. Exploring Biomarkers for Alzheimer’s Disease

    PubMed Central

    Singh, Anshika Nikita

    2016-01-01

    Alzheimer’s Disease (AD) is one of the most common form of dementia occurring in elderly population worldwide. Currently Aβ42, tau and p-tau in the cerebrospinal fluid is estimated for confirmation of AD. CSF which is being used as the potent source for biomarker screening is obtained by invasive lumbar punctures. Thus, there is an urgent need of minimal invasive methods for identification of diagnostic markers for early detection of AD. Blood serum and plasma serves as an appropriate source, due to minimal discomfort to the patients, promoting frequent testing, better follow-up and better consent to clinical trials. Hence, the need of the hour demands discovery of diagnostic and prognostic patient specific signature biomarkers by using emerging technologies of mass spectrometry, microarrays and peptidomics. In this review we summarize the present scenario of AD biomarkers such as circulatory biomarkers, blood based amyloid markers, inflammatory markers and oxidative stress markers being investigated and also some of the potent biomarkers which might be able to predict early onset of Alzheimer’s and delay cognitive impairment.

  19. Cerebrospinal Fluid Biomarkers for Dementia with Lewy Bodies

    PubMed Central

    Mukaetova-Ladinska, Elizabeta B.; Monteith, Rachael; Perry, Elaine K.

    2010-01-01

    More than 750,000 of the UK population suffer from some form of cognitive impairment and dementia. Of these, 5–20% will have Dementia with Lewy Bodies (DLB). Clinico-pathological studies have shown that it is the low frequency of DLB clinical core features that makes the DLB diagnosis hardly recognisable during life, and easily misdiagnosed for other forms of dementia. This has an impact on the treatment and long-term care of the affected subjects. Having a biochemical test, based on quantification of a specific DLB biomarker within Cerebrospinal Fluid (CSF) could be an effective diagnostic method to improve the differential diagnosis. Although some of the investigated DLB CSF biomarkers are well within the clinical criteria for sensitivity and specificity (>90%), they all seem to be confounded by the contradictory data for each of the major groups of biomarkers (α-synuclein, tau and amyloid proteins). However, a combination of CSF measures appear to emerge, that may well be able to differentiate DLB from other dementias: α-synuclein reduction in early DLB, a correlation between CSF α-synuclein and Aβ42 measures (characteristic for DLB only), and t-tau and p-tau181 profile (differentiating AD from DLB). PMID:21048932

  20. Cerebrospinal fluid biomarkers for differentiation of frontotemporal lobar degeneration from Alzheimer's disease

    PubMed Central

    Irwin, David J.; Trojanowski, John Q.; Grossman, Murray

    2013-01-01

    Accurate ante mortem diagnosis in frontotemporal lobar degeneration (FTLD) is crucial to the development and implementation of etiology-based therapies. Several neurodegenerative disease-associated proteins, including the major protein constituents of inclusions in Alzheimer's disease (AD) associated with amyloid-beta (Aβ1−42) plaque and tau neurofibrillary tangle pathology, can be measured in cerebrospinal fluid (CSF) for diagnostic applications. Comparative studies using autopsy-confirmed samples suggest that CSF total-tau (t-tau) and Aβ1−42 levels can accurately distinguish FTLD from AD, with a high t-tau to Aβ1−42 ratio diagnostic of AD; however, there is also an urgent need for FTLD-specific biomarkers. These analytes will require validation in large autopsy-confirmed cohorts and face challenges of standardization of within- and between-laboratory sources of error. In addition, CSF biomarkers with prognostic utility and longitudinal study of CSF biomarker levels over the course of disease are also needed. Current goals in the field include identification of analytes that are easily and reliably measured and can be used alone or in a multi-modal approach to provide an accurate prediction of underlying neuropathology for use in clinical trials of disease modifying treatments in FTLD. To achieve these goals it will be of the utmost importance to view neurodegenerative disease, including FTLD, as a clinicopathological entity, rather than exclusively a clinical syndrome. PMID:23440936

  1. Brain ventricular volume and cerebrospinal fluid biomarkers of Alzheimer’s disease

    PubMed Central

    Ott, Brian R.; Cohen, Ronald A.; Gongvatana, Assawin; Okonkwo, Ozioma C.; Johanson, Conrad E.; Stopa, Edward G.; Donahue, John E.; Silverberg, Gerald D.

    2010-01-01

    The frequent co-occurrence of Alzheimer disease (AD) pathology in patients with normal pressure hydrocephalus suggests a possible link between ventricular dilation and AD. If enlarging ventricles serve as a marker of faulty cerebrospinal fluid (CSF) clearance mechanisms, then a relationship may be demonstrable between increasing ventricular volume and decreasing levels of amyloid beta peptide (Aβ) in CSF in preclinical and early AD. CSF biomarker data (Aβ, tau, and phosphorylated tau) as well as direct measurements of whole brain and ventricular volumes were obtained from the Alzheimer's Disease Neuroimaging Initiative dataset. The ratio of ventricular volume to whole brain volume was derived as a secondary independent measure. Baseline data were used for the group analyses of 288 subjects classified as being either normal (n=87), having the syndrome of mild cognitive impairment (n=136), or mild AD (n=65). Linear regression models were derived for each biomarker as the dependent variable, using the MRI volume measures and age as independent variables. For controls, ventricular volume was negatively associated with CSF Aβ in APOE ε4 positive subjects. A different pattern was seen in AD subjects, in whom ventricular volume was negatively associated with tau, but not Aβ in ε4 positive subjects. Increased ventricular volume may be associated with decreased levels of CSF Aβ in preclinical AD. The basis for the apparent effect of APOE ε4 genotype on the relationship of ventricular volume to Aβ and tau levels is unknown, but could involve altered CSF-blood-brain barrier function during the course of disease. PMID:20182051

  2. CSF oligoclonal banding

    MedlinePlus

    ... the cerebrospinal fluid (CSF). CFS is the clear fluid that flows in the space around the spinal cord and brain. Oligoclonal bands are proteins called immunoglobulins. The ... system. Oligoclonal bands may be a sign of multiple sclerosis.

  3. Detection of Soluble Amyloid-β Oligomers and Insoluble High-Molecular-Weight Particles in CSF: Development of Methods with Potential for Diagnosis and Therapy Monitoring of Alzheimer's Disease

    PubMed Central

    Funke, Susanne Aileen

    2011-01-01

    The diagnosis of probable Alzheimer's disease (AD) can be established premortem based on clinical criteria like neuropsychological tests. Post mortem, specific neuropathological changes like amyloid plaques define AD. However, the standard criteria based on medical history and mental status examinations do not take into account the long preclinical features of the disease, and a biomarker for improved diagnosis of AD is urgently needed. In a large number of studies, amyloid-β (Aβ) monomer concentrations in CSF of AD patients are consistently and significantly reduced when compared to healthy controls. Therefore, monomeric Aβ in CSF was suggested to be a helpful biomarker for the diagnosis of preclinical AD. However, not the monomeric form, but Aβ oligomers have been shown to be the toxic species in AD pathology, and their quantification and characterization could facilitate AD diagnosis and therapy monitoring. Here, we review the current status of assay development to reliably and routinely detect Aβ oligomers and high-molecular-weight particles in CSF. PMID:22114742

  4. Multiple Effect of APOE Genotype on Clinical and Neuroimaging Biomarkers Across Alzheimer's Disease Spectrum.

    PubMed

    Liu, Ying; Tan, Lan; Wang, Hui-Fu; Liu, Yong; Hao, Xiao-Ke; Tan, Chen-Chen; Jiang, Teng; Liu, Bing; Zhang, Dao-Qiang; Yu, Jin-Tai

    2016-09-01

    The apolipoprotein E ε4 (APOE ε4) allele is the most important genetic risk factor for Alzheimer's disease (AD); however, the underlying mechanisms responsible for it remain controversial. We used the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to examine the influence of APOE ε4 dose on clinical and neuroimaging biomarkers across the AD spectrum (from cognitive normal to AD patients with severe cognitive impairment). A total of 1718 participants from the ADNI cohort were selected, and we evaluated the impact of ε4 dose on cerebrospinal fluid (CSF) levels' Abeta1-42 (Aβ1-42), tau, and phosphorylated-tau (p-tau); cortical amyloid deposition (Florbetapir-PET-AV45); brain atrophy (MRI); brain metabolism (FDG-PET); hippocampal metabolism; and cognitive declines, through different cognitive subgroups. We found that (1) ε4 was associated with decreased CSF beta-amyloid (Aβ1-42) and increased cerebral Aβ deposition across the AD spectrum; (2) increased CSF tau, P-tau and cerebral hypometabolism, hippocampal atrophy, and cognition decline were all associated with APOE ε4 in prodromal AD stage; (3) increased CSF tau, P-tau and cerebral hypometabolism appear to begin earlier than hippocampal atrophy and cognitive decline. We hypothesized that APOE ε4 increases cerebral amyloid-β (Aβ) deposition in all the stages of AD development, and also influences Aβ-initiated cascade of downstream neurodegenerative effects, thereby increasing the risk of AD. PMID:26298664

  5. CSF neurofilament concentration reflects disease severity in frontotemporal degeneration

    PubMed Central

    Scherling, Carole S.; Hall, Tracey; Berisha, Flora; Klepac, Kristen; Karydas, Anna; Coppola, Giovanni; Kramer, Joel H.; Rabinovici, Gil; Ahlijanian, Michael; Miller, Bruce L.; Seeley, William; Grinberg, Lea T.; Rosen, Howard; Meredith, Jere; Boxer, Adam L.

    2014-01-01

    Objective Cerebrospinal fluid (CSF) neurofilament light chain (NfL) concentration is elevated in neurological disorders including frontotemporal degeneration (FTD). We investigated the clinical correlates of elevated CSF NfL levels in FTD. Methods CSF NfL, amyloid-β42 (Aβ42), tau and phosphorylated tau (ptau) concentrations were compared in 47 normal controls (NC), 8 asymptomatic gene carriers (NC2) of FTD-causing mutations, 79 FTD (45 behavioral variant frontotemporal dementia [bvFTD], 18 progressive nonfluent aphasia [PNFA], 16 semantic dementia [SD]), 22 progressive supranuclear palsy, 50 Alzheimer’s disease, 6 Parkinson’s disease and 17 corticobasal syndrome patients. Correlations between CSF analyte levels were performed with neuropsychological measures and the Clinical Dementia Rating scale sum of boxes (CDRsb). Voxel-based morphometry of structural MR images determined the relationship between brain volume and CSF NfL. Results Mean CSF NfL concentrations were higher in bvFTD, SD and PNFA than other groups. NfL in NC2 was similar to NC. CSF NfL, but not other CSF measures, correlated with CDRsb and neuropsychological measures in FTD, and not in other diagnostic groups. Analyses in two independent FTD cohorts and a group of autopsy verified or biomarker enriched cases confirmed the larger group analysis. In FTD, gray and white matter volume negatively correlated with CSF NfL concentration, such that individuals with highest NfL levels exhibited the most atrophy. Interpretation CSF NfL is elevated in symptomatic FTD and correlates with disease severity. This measurement may be a useful surrogate endpoint of disease severity in FTD clinical trials. Longitudinal studies of CSF NfL in FTD are warranted. PMID:24242746

  6. Practical detection of a definitive biomarker panel for Alzheimer’s disease; comparisons between matched plasma and cerebrospinal fluid

    PubMed Central

    Richens, Joanna L; Vere, Kelly-Ann; Light, Roger A; Soria, Daniele; Garibaldi, Jonathan; Smith, A David; Warden, Donald; Wilcock, Gordon; Bajaj, Nin; Morgan, Kevin; O’Shea, Paul

    2014-01-01

    Previous mass spectrometry analysis of cerebrospinal fluid (CSF) has allowed the identification of a panel of molecular markers that are associated with Alzheimer’s disease (AD). The panel comprises Amyloid beta, Apolipoprotein E, Fibrinogen alpha chain precursor, Keratin type I cytoskeletal 9, Serum albumin precursor, SPARC-like 1 protein and Tetranectin. Here we report the development and implementation of immunoassays to measure the abundance and diagnostic capacity of these putative biomarkers in matched lumbar CSF and blood plasma samples taken in life from individuals confirmed at post-mortem as suffering from AD (n = 10) and from screened ‘cognitively healthy’ subjects (n = 18). The inflammatory components of Alzheimer’s disease were also investigated. Employment of supervised learning techniques permitted examination of the interrelated expression patterns of the putative biomarkers and identified inflammatory components, resulting in biomarker panels with a diagnostic accuracy of 87.5% and 86.7% for the plasma and CSF datasets respectively. This is extremely important as it offers an ideal high-throughput and relatively inexpensive population screening approach. It appears possible to determine the presence or absence of AD based on our biomarker panel and it seems likely that a cheap and rapid blood test for AD is feasible. PMID:24959311

  7. CSF N-glycoproteomics for early diagnosis in Alzheimer's disease.

    PubMed

    Palmigiano, Angelo; Barone, Rita; Sturiale, Luisa; Sanfilippo, Cristina; Bua, Rosaria Ornella; Romeo, Donata Agata; Messina, Angela; Capuana, Maria Luisa; Maci, Tiziana; Le Pira, Francesco; Zappia, Mario; Garozzo, Domenico

    2016-01-10

    This work aims at exploring the human CSF (Cerebrospinal fluid) N-glycome by MALDI MS techniques, in order to assess specific glycosylation pattern(s) in patients with Alzheimer's disease (n:24) and in subjects with mild cognitive impairment (MCI) (n:11), these last as potential AD patients at a pre-dementia stage. For comparison, 21 healthy controls were studied. We identified a group of AD and MCI subjects (about 40-50% of the studied sample) showing significant alteration of CSF N-glycome profiling, consisting of a decrease in the overall sialylation degree and an increase in species bearing bisecting GlcNAc. Noteworthy, all the MCI patients that converted to AD within the clinical follow-up, had an abnormal CSF glycosylation profile. Based on the studied cohort, CSF glycosylation changes may occur before an AD clinical onset. Previous studies specifically focused on the key role of glycosyltransferase GnT-III on AD-pathogenesis, addressing the patho-mechanism to specific sugar modification of BACE-1 glycoprotein with bisecting GlcNAc. Our patients addressed protein N-glycosylation changes at an early phase of the whole biomolecular misregulation on AD, pointing to CSF N-glycome analyses as promising tool to enhance early detection of AD and also suggesting alternative therapeutics target molecules, such as specific glyco-enzymes. PMID:26455811

  8. Biomarkers in Amyloid-β Immunotherapy Trials in Alzheimer's Disease

    PubMed Central

    Blennow, Kaj; Hampel, Harald; Zetterberg, Henrik

    2014-01-01

    Drug candidates directed against amyloid-β (Aβ) are mainstream in Alzheimer's disease (AD) drug development. Active and passive Aβ immunotherapy is the principle that has come furthest, both in number and in stage of clinical trials. However, an increasing number of reports on major difficulties in identifying any clinical benefit in phase II–III clinical trials on this type of anti-Aβ drug candidates have caused concern among researchers, pharmaceutical companies, and other stakeholders. This has provided critics of the amyloid cascade hypothesis with fire for their arguments that Aβ deposition may merely be a bystander, and not the cause, of the disease or that the amyloid hypothesis may only be valid for the familial form of AD. On the other hand, most researchers argue that it is the trial design that will need refinement to allow for identifying a positive clinical effect of anti-Aβ drugs. A consensus in the field is that future trials need to be performed in an earlier stage of the disease and that biomarkers are essential to guide and facilitate drug development. In this context, it is reassuring that, in contrast to most brain disorders, research advances in the AD field have led to both imaging (magnetic resonance imaging (MRI) and PET) and cerebrospinal fluid (CSF) biomarkers for the central pathogenic processes of the disease. AD biomarkers will have a central role in future clinical trials to enable early diagnosis, and Aβ biomarkers (CSF Aβ42 and amyloid PET) may be essential to allow for testing a drug on patients with evidence of brain Aβ pathology. Pharmacodynamic Aβ and amyloid precursor protein biomarkers will be of use to verify target engagement of a drug candidate in humans, thereby bridging the gap between mechanistic data from transgenic AD models (that may not be relevant to the neuropathology of human AD) and large and expensive phase III trials. Last, downstream biomarker evidence (CSF tau proteins and MRI volumetry) that the

  9. The Mediational Effects of FDG Hypometabolism on the Association between Cerebrospinal Fluid Biomarkers and Neurocognitive Function

    PubMed Central

    Dowling, N. Maritza; Johnson, Sterling C.; Gleason, Carey E.; Jagust, William J.

    2014-01-01

    Positive cerebrospinal fluid (CSF) biomarkers of tau and amyloid beta42 suggest possible active underlying Alzheimer’s Disease (AD) including neurometabolic dysfunction and neurodegeneration leading to eventual cognitive decline. But the temporal relationship between CSF, imaging markers of neural function, and cognition has not been described. Using a statistical mediation model, we examined relationships between cerebrospinal fluid (CSF) analytes (hyperphosphorylated tau (p-Tau181p), β-amyloid 1–42 (Aβ1–42), total tau (t-Tau), and their ratios); change in cognitive function; and change in [18F]fluorodeoxyglucose (FDG) uptake using positron emission tomography (PET). We hypothesized that a) abnormal CSF protein values at baseline, result in cognitive declines by decreasing neuronal glucose metabolism across time, and b) the role of altered glucose metabolism in the assumed causal chain varies by brain region and the nature of CSF protein alteration. Data from 412 individuals participating in Alzheimer’s Disease Neuroimaging (ADNI) cohort studies were included in analyses. At baseline, individuals were cognitively normal (N = 82), or impaired: 241 with mild cognitive impairment, and 89 with Alzheimer’s disease. A parallel-process latent growth curve model was used to test mediational effects of changes in regional FDG-PET uptake over time in relation to baseline CSF biomarkers and changes in cognition, measured with the 13-item Alzheimer Disease’s Assessment Scale–cognitive subscale (ADAS-Cog). Findings suggested a causal sequence of events; specifically, FDG hypometabolism acted as a mediator between antecedent CSF biomarker alterations and subsequent cognitive impairment. Higher baseline concentrations of t-Tau, and p-Tau181p were more predictive of decline in cerebral glucose metabolism than lower baseline concentrations of Aβ1–42. FDG-PET changes appeared to mediate t-Tau or t-Tau/Aβ1–42 -associated cognitive change across all brain

  10. The mediational effects of FDG hypometabolism on the association between cerebrospinal fluid biomarkers and neurocognitive function.

    PubMed

    Dowling, N Maritza; Johnson, Sterling C; Gleason, Carey E; Jagust, William J

    2015-01-15

    Positive cerebrospinal fluid (CSF) biomarkers of tau and amyloid beta42 suggest possible active underlying Alzheimer's disease (AD) including neurometabolic dysfunction and neurodegeneration leading to eventual cognitive decline. But the temporal relationship between CSF, imaging markers of neural function, and cognition has not been described. Using a statistical mediation model, we examined relationships between cerebrospinal fluid (CSF) analytes (hyperphosphorylated tau (p-Tau(181p)), β-amyloid peptides 1-42 (Aβ(1-42)), total tau (t-Tau), and their ratios); change in cognitive function; and change in [18F]fluorodeoxyglucose (FDG) uptake using positron emission tomography (PET). We hypothesized that a) abnormal CSF protein values at baseline, result in cognitive declines by decreasing neuronal glucose metabolism across time, and b) the role of altered glucose metabolism in the assumed causal chain varies by brain region and the nature of CSF protein alteration. Data from 412 individuals participating in Alzheimer's Disease Neuroimaging (ADNI) cohort studies were included in analyses. At baseline, individuals were cognitively normal (N = 82), or impaired: 241 with mild cognitive impairment, and 89 with Alzheimer's disease. A parallel-process latent growth curve model was used to test mediational effects of changes in regional FDG-PET uptake over time in relation to baseline CSF biomarkers and changes in cognition, measured with the 13-item Alzheimer Disease's Assessment Scale-cognitive subscale (ADAS-Cog). Findings suggested a causal sequence of events; specifically, FDG hypometabolism acted as a mediator between antecedent CSF biomarker alterations and subsequent cognitive impairment. Higher baseline concentrations of t-Tau, and p-Tau(181p) were more predictive of decline in cerebral glucose metabolism than lower baseline concentrations of Aβ(1-42). FDG-PET changes appeared to mediate t-Tau or t-Tau/Aβ(1-42)-associated cognitive change across all brain

  11. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer's disease.

    PubMed

    Blennow, Kaj; Dubois, Bruno; Fagan, Anne M; Lewczuk, Piotr; de Leon, Mony J; Hampel, Harald

    2015-01-01

    Several potential disease-modifying drugs for Alzheimer's disease (AD) have failed to show any effect on disease progression in clinical trials, conceivably because the AD subjects are already too advanced to derive clinical benefit from treatment and because diagnosis based on clinical criteria alone introduces a high misdiagnosis rate. Thus, well-validated biomarkers for early detection and accurate diagnosis are crucial. Low cerebrospinal fluid (CSF) concentrations of the amyloid-β (Aβ1-42) peptide, in combination with high total tau and phosphorylated tau, are sensitive and specific biomarkers highly predictive of progression to AD dementia in patients with mild cognitive impairment. However, interlaboratory variations in the results seen with currently available immunoassays are of concern. Recent worldwide standardization efforts and quality control programs include standard operating procedures for both preanalytical (e.g., lumbar puncture and sample handling) and analytical (e.g., preparation of calibration curve) procedures. Efforts are also ongoing to develop highly reproducible assays on fully automated instruments. These global standardization and harmonization measures will provide the basis for the generalized international application of CSF biomarkers for both clinical trials and routine clinical diagnosis of AD. PMID:24795085

  12. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease

    PubMed Central

    Blennow, Kaj; Dubois, Bruno; Fagan, Anne M.; Lewczuk, Piotr; de Leon, Mony J.; Hampel, Harald

    2015-01-01

    Several potential disease-modifying drugs for Alzheimer’s disease (AD) have failed to show any effect on disease progression in clinical trials, conceivably because the AD subjects are already too advanced to derive clinical benefit from treatment and because diagnosis based on clinical criteria alone introduces a high misdiagnosis rate. Thus, well-validated biomarkers for early detection and accurate diagnosis are crucial. Low cerebrospinal fluid (CSF) concentrations of the amyloid-β (Aβ1-42) peptide, in combination with high total tau and phosphorylated tau, are sensitive and specific biomarkers highly predictive of progression to AD dementia in patients with mild cognitive impairment. However, interlaboratory variations in the results seen with currently available immunoassays are of concern. Recent worldwide standardization efforts and quality control programs include standard operating procedures for both preanalytical (e.g., lumbar puncture and sample handling) and analytical (e.g., preparation of calibration curve) procedures. Efforts are also ongoing to develop highly reproducible assays on fully automated instruments. These global standardization and harmonization measures will provide the basis for the generalized international application of CSF bio-markers for both clinical trials and routine clinical diagnosis of AD. PMID:24795085

  13. Peptide Fingerprinting of Alzheimer's Disease in Cerebrospinal Fluid: Identification and Prospective Evaluation of New Synaptic Biomarkers

    PubMed Central

    Zürbig, Petra; Raedler, Thomas J.; Arlt, Sönke; Kellmann, Markus; Mullen, William; Eichenlaub, Martin; Mischak, Harald; Wiedemann, Klaus

    2011-01-01

    Background Today, dementias are diagnosed late in the course of disease. Future treatments have to start earlier in the disease process to avoid disability requiring new diagnostic tools. The objective of this study is to develop a new method for the differential diagnosis and identification of new biomarkers of Alzheimer's disease (AD) using capillary-electrophoresis coupled to mass-spectrometry (CE-MS) and to assess the potential of early diagnosis of AD. Methods and Findings Cerebrospinal fluid (CSF) of 159 out-patients of a memory-clinic at a University Hospital suffering from neurodegenerative disorders and 17 cognitively-healthy controls was used to create differential peptide pattern for dementias and prospective blinded-comparison of sensitivity and specificity for AD diagnosis against the Criterion standard in a naturalistic prospective sample of patients. Sensitivity and specificity of the new method compared to standard diagnostic procedures and identification of new putative biomarkers for AD was the main outcome measure. CE-MS was used to reliably detect 1104 low-molecular-weight peptides in CSF. Training-sets of patients with clinically secured sporadic Alzheimer's disease, frontotemporal dementia, and cognitively healthy controls allowed establishing discriminative biomarker pattern for diagnosis of AD. This pattern was already detectable in patients with mild cognitive impairment (MCI). The AD-pattern was tested in a prospective sample of patients (n = 100) and AD was diagnosed with a sensitivity of 87% and a specificity of 83%. Using CSF measurements of beta-amyloid1-42, total-tau, and phospho181-tau, AD-diagnosis had a sensitivity of 88% and a specificity of 67% in the same sample. Sequence analysis of the discriminating biomarkers identified fragments of synaptic proteins like proSAAS, apolipoprotein J, neurosecretory protein VGF, phospholemman, and chromogranin A. Conclusions The method may allow early differential diagnosis of various

  14. Genetic variation modifies risk for neurodegeneration based on biomarker status

    PubMed Central

    Hohman, Timothy J.; Koran, Mary Ellen I.; Thornton-Wells, Tricia A.

    2014-01-01

    Background: While a great deal of work has gone into understanding the relationship between Cerebrospinal fluid (CSF) biomarkers, brain atrophy, and disease progression, less work has attempted to investigate how genetic variation modifies these relationships. The goal of this study was two-fold. First, we sought to identify high-risk vs. low-risk individuals based on their CSF tau and Aβ load and characterize these individuals with regard to brain atrophy in an AD-relevant region of interest. Next, we sought to identify genetic variants that modified the relationship between biomarker classification and neurodegeneration. Methods: Participants were categorized based on established cut-points for biomarker positivity. Mixed model regression was used to quantify longitudinal change in the left inferior lateral ventricle. Interaction analyses between single nucleotide polymorphisms (SNPs) and biomarker group status were performed using a genome wide association study (GWAS) approach. Correction for multiple comparisons was performed using the Bonferroni procedure. Results: One intergenic SNP (rs4866650) and one SNP within the SPTLC1 gene (rs7849530) modified the association between amyloid positivity and neurodegeneration. A transcript variant of WDR11-AS1 gene (rs12261764) modified the association between tau positivity and neurodegeneration. These effects were consistent across the two sub-datasets and explained approximately 3% of variance in ventricular dilation. One additional SNP (rs6887649) modified the association between amyloid positivity and baseline ventricular volume, but was not observed consistently across the sub-datasets. Conclusions: Genetic variation modifies the association between AD biomarkers and neurodegeneration. Genes that regulate the molecular response in the brain to oxidative stress may be particularly relevant to neural vulnerability to the damaging effects of amyloid-β. PMID:25140149

  15. Associations Between Biomarkers and Age in the Presenilin 1 E280A Autosomal Dominant Alzheimer Disease Kindred A Cross-sectional Study

    PubMed Central

    Fleisher, Adam S.; Chen, Kewei; Quiroz, Yakeel T.; Jakimovich, Laura J.; Gomez, Madelyn Gutierrez; Langois, Carolyn M.; Langbaum, Jessica B. S.; Roontiva, Auttawut; Thiyyagura, Pradeep; Lee, Wendy; Ayutyanont, Napatkamon; Lopez, Liliana; Moreno, Sonia; Muñoz, Claudia; Tirado, Victoria; Acosta-Baena, Natalia; Fagan, Anne M.; Giraldo, Margarita; Garcia, Gloria; Huentelman, Matthew J.; Tariot, Pierre N.; Lopera, Francisco; Reiman, Eric M.

    2015-01-01

    IMPORTANCE Age-associated changes in brain imaging and fluid biomarkers are characterized and compared in presenilin 1 (PSEN1) E280A mutation carriers and noncarriers from the world’s largest known autosomal dominant Alzheimer disease (AD) kindred. OBJECTIVE To characterize and compare age-associated changes in brain imaging and fluid biomarkers in PSEN1 E280A mutation carriers and noncarriers. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional measures of 18F-florbetapir positron emission tomography, 18F-fludeoxyglucose positron emission tomography, structural magnetic resonance imaging, cerebrospinal fluid (CSF), and plasma biomarkers of AD were assessed from 54 PSEN1 E280A kindred members (age range, 20-59 years). MAIN OUTCOMES AND MEASURES We used brain mapping algorithms to compare regional cerebral metabolic rates for glucose and gray matter volumes in cognitively unimpaired mutation carriers and noncarriers. We used regression analyses to characterize associations between age and the mean cortical to pontine 18F-florbetapir standard uptake value ratios, precuneus cerebral metabolic rates for glucose, hippocampal gray matter volume, CSF Aβ1-42, total tau and phosphorylated tau181, and plasma Aβ measurements. Age at onset of progressive biomarker changes that distinguish carriers from noncarriers was estimated using best-fitting regression models. RESULTS Compared with noncarriers, cognitively unimpaired mutation carriers had significantly lower precuneus cerebral metabolic rates for glucose, smaller hippocampal volume, lower CSF Aβ1-42, higher CSF total tau and phosphorylated tau181, and higher plasma Aβ1-42 measurements. Sequential changes in biomarkers were seen at age 20 years (95% CI, 14-24 years) for CSF Aβ1-42, age 16 years (95% CI, 11-24 years) for the mean cortical 18F-florbetapir standard uptake value ratio, age 15 years (95% CI, 10-24 years) for precuneus cerebral metabolic rate for glucose, age 15 years (95% CI, 7-20 years) for CSF total tau

  16. Anti-Aβ Autoantibodies in Amyloid Related Imaging Abnormalities (ARIA): Candidate Biomarker for Immunotherapy in Alzheimer’s Disease and Cerebral Amyloid Angiopathy

    PubMed Central

    DiFrancesco, Jacopo C.; Longoni, Martina; Piazza, Fabrizio

    2015-01-01

    Amyloid-related imaging abnormalities (ARIA) represent the major severe side effect of amyloid-beta (Aβ) immunotherapy for Alzheimer’s disease (AD). Early biomarkers of ARIA represent an important challenge to ensure safe and beneficial effects of immunotherapies, given that different promising clinical trials in prodromal and subjects at risk for AD are underway. The recent demonstration that cerebrospinal fluid (CSF) anti-Aβ autoantibodies play a key role in the development of the ARIA-like events characterizing cerebral amyloid angiopathy-related inflammation generated great interest in the field of immunotherapy. Herein, we critically review the growing body of evidence supporting the monitoring of CSF anti-Aβ autoantibody as a promising candidate biomarker for ARIA in clinical trials. PMID:26441825

  17. Idiopathic sphenoid sinus CSF rhinorrhoea.

    PubMed

    Gupta, Manish; Gupta, Monica; Bindra, Gavinder; Singh, Sunder

    2013-01-01

    Cerebrospinal fluid (CSF) rhinorrhoea results from a direct communication between the CSF-containing subarachnoid space and the mucosa-lined space of the nasal cavity and paranasal sinuses. We present a case of 40-year-old woman, presenting with clear, watery discharge through the right nostril spontaneously. The CT cisternography confirmed the diagnosis of sphenoid sinus CSF rhinorrhoea, with no intracranial pathology. The patient was managed by transnasal endoscopic procedure, wherein bath plug technique was followed using temporalis fascia and overlay grafting with fascia lata and fibrin glue. The patient has been symptom free for the last year. PMID:23616328

  18. SORL1 genetic variants and cerebrospinal fluid biomarkers of Alzheimer’s disease.

    PubMed

    Guo, Liang-Hao; Westerteicher, Christine; Wang, Xin-Hui; Kratzer, Martina; Tsolakidou, Amalia; Jiang, Meizi; Grimmer, Timo; Laws, Simon M; Alexopoulos, Panagiotis; Bujo, Hideaki; Kurz, Alexander; Perneczky, Robert

    2012-09-01

    The neuronal sortilin-related receptor with A-type repeats (SORL1, also called LR11 or sorLA) is involved in amyloidogenesis, and the SORL1 gene is a major risk factor for Alzheimer’s disease (AD). We investigated AD-related CSF biomarkers for associations with SORL1 genetic variants in 105 German patients with mild cognitive impairment (MCI) and AD. The homozygous CC-allele of single nucleotide polymorphism (SNP) 4 was associated with increased Tau concentrations in AD, and the minor alleles of SNP8, SNP9, and SNP10 and the haplotype CGT of these SNPs were associated with increased SORL1 concentrations in MCI. SNP22 and SNP23, and the haplotypes TCT of SNP19-21-23, and TTC of SNP22-23-24 were correlated with decreased Ab42 levels in AD. These results strengthen the functional role of SORL1 in AD. PMID:22286501

  19. Cerebrospinal fluid proteomics and protein biomarkers in frontotemporal lobar degeneration: Current status and future perspectives.

    PubMed

    Oeckl, Patrick; Steinacker, Petra; Feneberg, Emily; Otto, Markus

    2015-07-01

    Frontotemporal lobar degeneration (FTLD) comprises a spectrum of rare neurodegenerative diseases with an estimated prevalence of 15-22 cases per 100,000 persons including the behavioral variant of frontotemporal dementia (bvFTD), progressive non-fluent aphasia (PNFA), semantic dementia (SD), FTD with motor neuron disease (FTD-MND), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). The pathogenesis of the diseases is still unclear and clinical diagnosis of FTLD is hampered by overlapping symptoms within the FTLD subtypes and with other neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Intracellular protein aggregates in the brain are a major hallmark of FTLD and implicate alterations in protein metabolism or function in the disease's pathogenesis. Cerebrospinal fluid (CSF) which surrounds the brain can be used to study changes in neurodegenerative diseases and to identify disease-related mechanisms or neurochemical biomarkers for diagnosis. In the present review, we will give an overview of the current literature on proteomic studies in CSF of FTLD patients. Reports of targeted and unbiased proteomic approaches are included and the results are discussed in regard of their informative value about disease pathology and the suitability to be used as diagnostic biomarkers. Finally, we will give some future perspectives on CSF proteomics and a list of candidate biomarkers which might be interesting for validation in further studies. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology. PMID:25526887

  20. CSF coccidioides complement fixation test

    MedlinePlus

    ... test that checks for infection due to the fungus Coccidioides in the cerebrospinal (CSF) fluid. This is ... Antibodies defend your body against bacteria, viruses, and fungi. If the antibodies are present, they stick, or " ...

  1. Cerebral spinal fluid (CSF) collection

    MedlinePlus

    ... tumor, abscess , stroke , or demyelinating disease (such as multiple sclerosis). Red blood cells in the CSF sample may ... levels may be due to diseases such as multiple sclerosis , neurosyphilis , or Guillain-Barré syndrome . Additional conditions under ...

  2. Biomarker Modeling of Alzheimer's Disease

    PubMed Central

    Jack, Clifford R; Holtzman, David M

    2014-01-01

    Alzheimer's disease (AD) is a slowly progressing disorder in which pathophysiological abnormalities, detectable in vivo by biomarkers, precede overt clinical symptoms by many years to decades. Five AD biomarkers are sufficiently validated to have been incorporated into clinical diagnostic criteria and commonly used in therapeutic trials. Current AD biomarkers fall into 2 categories: biomarkers of amyloid-β plaques and of tau-related neurodegeneration. Three of the 5 are imaging measures and two are cerebrospinal fluid analytes. AD biomarkers do not evolve in an identical manner but rather in a sequential but temporally overlapping manner. Models of the temporal evolution of AD biomarkers can take the form of plots of biomarker severity (degree of abnormality) vs. time. In this review we discuss several time-dependent models of AD which take into consideration varying age of onset (early vs. late) and the influence of aging and co-occurring brain pathologies that commonly arise in the elderly. PMID:24360540

  3. Evaluation of HS-SPME and ultrasonic solvent extraction for monitoring of plant flavours added by the bees to herbhoneys: traceability biomarkers.

    PubMed

    Kuś, Piotr Marek; Marijanović, Zvonimir; Jerković, Igor

    2015-01-01

    The volatile composition of 21 herbhoneys (HHs) of 7 different botanical origins was characterised for the first time. Ultrasound solvent extraction (USE) and headspace solid-phase microextraction (HS-SPME) followed by GC-FID/MS were successfully applied as complementary methods for monitoring the volatile plant flavours added by the bees. HHs showed significant compositional variability related to the botanical origin and compounds that could serve as traceability biomarkers were identified. The most important compounds with high abundance were (E,extract; H, headspace): caffeine (up to 68.7%, E) and trans-linalool oxide (up to 26.0%, H) in coffee HH, α-terpineol (up to 8.2%, E; 27.1%, H) and bornyl acetate (up to 3.1, E; 11.9%, H) in pine HH, thymol (up to 3.1%, E; 55.4%, H) in thyme HH. Hawthorn HH was characterised by the presence of herniarin (up to 13.4%, E) and lemon HH contained limonene (up to 1.6%, E; 33.2%, H). Other HHs (nettle and aloe) contained lower amounts of volatiles and their profiles were not specific. In all the HHs, methyl syringate was found and it was most abundant in thyme HH (up to 17.4%, E). The volatile fraction of HHs showed some substantial similarities and differences with the composition of herbs from which they derive. It confirms the selective bee-mediated transfer of phytochemicals, including known flavour-active volatiles into the final product, but also biotransformation of several compounds. Additionally, several similarities to the corresponding natural honeys were observed, but in general HHs exhibited less rich volatile profiles. PMID:26365314

  4. Fine mapping of genetic variants in BIN1, CLU, CR1 and PICALM for association with cerebrospinal fluid biomarkers for Alzheimer's disease.

    PubMed

    Kauwe, John S K; Cruchaga, Carlos; Karch, Celeste M; Sadler, Brooke; Lee, Mo; Mayo, Kevin; Latu, Wayne; Su'a, Manti; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M

    2011-01-01

    Recent genome-wide association studies of Alzheimer's disease (AD) have identified variants in BIN1, CLU, CR1 and PICALM that show replicable association with risk for disease. We have thoroughly sampled common variation in these genes, genotyping 355 variants in over 600 individuals for whom measurements of two AD biomarkers, cerebrospinal fluid (CSF) 42 amino acid amyloid beta fragments (Aβ(42)) and tau phosphorylated at threonine 181 (ptau(181)), have been obtained. Association analyses were performed to determine whether variants in BIN1, CLU, CR1 or PICALM are associated with changes in the CSF levels of these biomarkers. Despite adequate power to detect effects as small as a 1.05 fold difference, we have failed to detect evidence for association between SNPs in these genes and CSF Aβ(42) or ptau(181) levels in our sample. Our results suggest that these variants do not affect risk via a mechanism that results in a strong additive effect on CSF levels of Aβ(42) or ptau(181). PMID:21347408

  5. Crystallization of M-CSF.alpha.

    DOEpatents

    Pandit, Jayvardhan; Jancarik, Jarmila; Kim, Sung-Hou; Koths, Kirston; Halenbeck, Robert; Fear, Anna Lisa; Taylor, Eric; Yamamoto, Ralph; Bohm, Andrew

    1999-01-01

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor (M-CSF) and to a crystalline M-CSF produced thereby. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  6. Tumor-Associated CSF MicroRNAs for the Prediction and Evaluation of CNS Malignancies

    PubMed Central

    Shalaby, Tarek; Grotzer, Michael A.

    2015-01-01

    Cerebrospinal fluid (CSF) is a readily reachable body fluid that is reflective of the underlying pathological state of the central nervous system (CNS). Hence it has been targeted for biomarker discovery for a variety of neurological disorders. CSF is also the major route for seeding metastases of CNS malignancies and its analysis could be informative for diagnosis and risk stratification of brain cancers. Recently, modern high-throughput, microRNAs (miRNAs) measuring technology has enabled sensitive detection of distinct miRNAs that are bio-chemicallystable in the CSF and can distinguish between different types of CNS cancers. Owing to the fact that a CSF specimen can be obtained with relative ease, analysis of CSF miRNAs could be a promising contribution to clinical practice. In this review, we examine the current scientific knowledge on tumor associated CSF miRNAs that could guide diagnosis of different brain cancer types, or could be helpful in predicting disease progression and therapy response. Finally, we highlight their potential applications clinically as biomarkers and discuss limitations. PMID:26690130

  7. Elevated Levels of IFN-γ in CSF and Serum of Patients with Amyotrophic Lateral Sclerosis

    PubMed Central

    Liu, Juan; Gao, Lina; Zang, Dawei

    2015-01-01

    Objectives To explore whether the levels of IFN-γ in cerebral spinal fluid (CSF) and serum are elevated in ALS patients and to analyze the correlations between the IFN-γ levels and disease progression. Methods CSF and serum samples were obtained from 52 ALS patients and 31 non-ALS patients. The levels of IFN-γ in CSF and serum were assessed, and disease progression parameters, including the disease interval (months from onset, MFO), the revised ALS Functional Rating Scale (ALSFRS-r) score and the disease progression rate (DPR) were analyzed by registered neurologists. All samples were measured using a commercial enzyme-linked immunosorbent assay. Statistical analyses were performed using Prism software. Results Compared to the non-ALS patients, the ALS patients displayed significantly increased levels of IFN-γ in both CSF and serum, and these values consistently correlated with disease progression. Conclusions These results demonstrated that IFN-γ in CSF may serve as a biomarker of ALS differentiation and progression. CSF IFN-γ was a more reliable biomarker of disease diagnosis and progression than serum IFN-γ. PMID:26332465

  8. Requiring an amyloid-β1-42 biomarker for prodromal Alzheimer’s disease or mild cognitive impairment does not lead to more efficient clinical trials

    PubMed Central

    Schneider, Lon S.; Kennedy, Richard E.; Cutter, Gary R.

    2010-01-01

    Background Low cerebrospinal fluid (CSF) amyloid-β1-42 concentration and high total-tau/Aβ1-42 ratio have been recommended to support the diagnosis of prodromal Alzheimer’s disease (AD) in patients with amnestic mild cognitive impairment (aMCI) and also to select patients for clinical trials. Methods We tested this recommendation with clinical trials simulations using patients from the Alzheimer Disease Neuroimaging Initiative who fulfilled the following entry criteria: (1) aMCI, (2) aMCI with CSF Aβ1-42 ≤192 mg/mL, (3) and aMCI with total-tau/Aβ1-42 >.0.39. For each criterion, we randomly resampled the database obtaining samples for 1000 trials for each trial scenario, planning for 1 or 2 year trials with samples from 50 to 400 patients per treatment or placebo group, with up to 40% dropouts, outcomes after using the AD assessment scale-cognitive subscale and clinical dementia rating scale with effect sizes ranging from 0.15 to 0.75, and calculated statistical power. Findings Approximately 70% to 74% of aMCI patients with CSF measures met biomarker criteria. The addition of the low Aβ1-42 or high tau/Aβ1-42 requirement resulted in minimal or no increase in the power of the trials compared with enrolling aMCI without requiring the biomarker criteria. Slightly larger mean differences between the placebo and treatment groups fulfilling biomarker criteria were offset by increased outcome variability within the groups. Interpretations Although patients with aMCI or patients with prodromal AD meeting CSF biomarkers criteria were slightly more cognitively impaired and showed greater decline than patients with aMCI diagnosed without considering the biomarkers, the requirement of biomarker-positive patients would most likely not result in more efficient clinical trials, and trials would take longer because fewer patients would be available. A CSF Aβ1-42 marker, however, could be useful as an explanatory variable or covariate when warranted by the action of a

  9. Amyloid-β Peptides and Tau Protein as Biomarkers in Cerebrospinal and Interstitial Fluid Following Traumatic Brain Injury: A Review of Experimental and Clinical Studies

    PubMed Central

    Tsitsopoulos, Parmenion P.; Marklund, Niklas

    2013-01-01

    Traumatic brain injury (TBI) survivors frequently suffer from life-long deficits in cognitive functions and a reduced quality of life. Axonal injury, observed in many severe TBI patients, results in accumulation of amyloid precursor protein (APP). Post-injury enzymatic cleavage of APP can generate amyloid-β (Aβ) peptides, a hallmark finding in Alzheimer’s disease (AD). At autopsy, brains of AD and a subset of TBI victims display some similarities including accumulation of Aβ peptides and neurofibrillary tangles of hyperphosphorylated tau proteins. Most epidemiological evidence suggests a link between TBI and AD, implying that TBI has neurodegenerative sequelae. Aβ peptides and tau may be used as biomarkers in interstitial fluid (ISF) using cerebral microdialysis and/or cerebrospinal fluid (CSF) following clinical TBI. In the present review, the available clinical and experimental literature on Aβ peptides and tau as potential biomarkers following TBI is comprehensively analyzed. Elevated CSF and ISF tau protein levels have been observed following severe TBI and suggested to correlate with clinical outcome. Although Aβ peptides are produced by normal neuronal metabolism, high levels of long and/or fibrillary Aβ peptides may be neurotoxic. Increased CSF and/or ISF Aβ levels post-injury may be related to neuronal activity and/or the presence of axonal injury. The heterogeneity of animal models, clinical cohorts, analytical techniques, and the complexity of TBI in the available studies make the clinical value of tau and Aβ as biomarkers uncertain at present. Additionally, the link between early post-injury changes in tau and Aβ peptides and the future risk of developing AD remains unclear. Future studies using methods such as rapid biomarker sampling combined with enhanced analytical techniques and/or novel pharmacological tools could provide additional information on the importance of Aβ peptides and tau protein in both the acute pathophysiology and long

  10. Qualification opinion of novel methodologies in the predementia stage of Alzheimer's disease: cerebro-spinal-fluid related biomarkers for drugs affecting amyloid burden--regulatory considerations by European Medicines Agency focusing in improving benefit/risk in regulatory trials.

    PubMed

    Isaac, Maria; Vamvakas, Spiros; Abadie, Eric; Jonsson, Bertil; Gispen, Christine; Pani, Luca

    2011-11-01

    The European Medicines Agency (EMA) in London is responsible for the Regulatory review of new medicinal products for Marketing Authorisation, through which pharmaceutical companies may obtain first Marketing Authorisation and subsequent Variations valid throughout the EU and EFTA. The qualification opinion of novel methodologies is a new procedure where applicants can obtain scientific advice on new methodologies for regulatory clinical trials of efficacy of new compounds. It will help benefit/risk assessment of the CHMP. The definition of prodromal AD is acceptable. The "Dubois Criteria" as criteria to define the population must be validated in full at the time of the submission of the dossiers. Including a positive CSF biomarker profile is considered predictive for the evaluation of the AD-dementia type. However, although high CSF tau and low CSF Aβ42 are predictive of Alzheimer's disease, the criterion "positive CSF tau/Aβ42 ratio" is not well defined. The qualification of biomarkers in the pre-dementia stage of Alzheimer's disease will allow better inclusion criteria of patients in pre-dementia trials in which the benefit/risk is higher for treatment with these novel compounds. PMID:21903360

  11. The added value of biomarker analysis to the genesis of Plaggic Anthrosols; the identification of stable fillings used for the production of plaggic manure.

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; Wagner, Thomas; de Boer, Geert; Jansen, Boris

    2016-04-01

    Plaggic Anthrosols are the result of historical forms of land management in cultural landscapes on chemically poor sandy substrates. Application of plaggic manure was responsible for the development of the plaggic horizons of these agricultural soils. Pollen diagrams reflect aspects of the environmental development but the interpretation of the pollen spectra is complicated due to the mix of the aeolian pollen influx of crop species and species in the surroundings, and of pollen occurring in the used stable fillings. Pollen diagrams and radiocarbon dates of plaggic Anthrosols suggested a development period of more than a millennium. Calluna is present in almost all the pollen spectra, indicating the presence of heath in the landscape during the whole period of soil development. Optically stimulated luminescence dating of the plaggic horizon made clear that the deposition of plaggic covers started in the 16th century and accelerated in the 18th century. The stable fillings, used for the production of plaggic manure and responsible for the rise of the soil surface, cannot be identified with pollen diagrams alone. Biomarker analyses provide more evidence about the sources of stable fillings. The oldest biomarker spectra of the plaggic horizons of three typical plaggic Anthrosols examined in this study, were dominated by biomarkers of forests species as Quercus and Betula while the spectra of middle part of the plaggic horizons were dominated by biomarkers of stem tissue of crop species as Secale and Avena. Only the youngest spectra of the plaggic horizons were dominated by biomarkers of Calluna. This indicates that the use of heath sods as stable filling was most likely introduced late in the development of the Anthrosols. Before the 18th century the mineral component in plaggic manure cannot be explained by the use of (dry) heath sods. We conclude that other sources of materials, containing mineral grains must have been responsible for the raise of the plaggic

  12. The added value of biomarker analysis to the genesis of plaggic Anthrosols; the identification of stable fillings used for the production of plaggic manure

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan M.; Wagner, Thomas V.; Geert de Boer, J.; Jansen, Boris

    2016-07-01

    Plaggic Anthrosols are the result of historical forms of land management in cultural landscapes on chemically poor sandy substrates. Application of plaggic manure was responsible for the development of the plaggic horizons of these agricultural soils. Pollen diagrams reflect aspects of the environmental development but the interpretation of the pollen spectra is complicated due to the mix of the aeolian pollen influx of crop species and species in the surroundings, and of pollen occurring in the used stable fillings. Pollen diagrams and radiocarbon dates of plaggic Anthrosols suggested a development period of more than a millennium. Calluna is present in almost all the pollen spectra, indicating the presence of heath in the landscape during the whole period of soil development. Optically stimulated luminescence dating of the plaggic horizon made clear that the deposition of plaggic covers started in the 16th century and accelerated in the 18th century. The stable fillings, used for the production of plaggic manure and responsible for the rise of the soil surface, cannot be identified with pollen diagrams alone. Biomarker analyses provide more evidence about the sources of stable fillings. The oldest biomarker spectra of the plaggic horizons of three typical plaggic Anthrosols examined in this study were dominated by biomarkers of forest species such as Quercus and Betula while the spectra of middle part of the plaggic horizons were dominated by biomarkers of stem tissue of crop species such as Secale and Avena. Only the youngest spectra of the plaggic horizons were dominated by biomarkers of Calluna. This indicates that the use of heath sods as stable filling was most likely introduced very late in the development of the Anthrosols. Before the 19th century the mineral component in plaggic manure cannot be explained by the use of heath sods. We conclude that other sources of materials, containing mineral grains must have been responsible for the raise of the plaggic

  13. Tau and Amyloid-β Cerebrospinal Fluid Biomarkers have Differential Relationships with Cognition in Mild Cognitive Impairment.

    PubMed

    Malpas, Charles B; Saling, Michael M; Velakoulis, Dennis; Desmond, Patricia; O'Brien, Terence J

    2015-01-01

    Alzheimer's disease (AD) is characterized by two primary pathologies: tau-related neurofibrillary tangles and the extracellular accumulation of amyloid-β (Aβ). The development of these pathologies is topologically distinct early in the disease, with Aβ beginning to accumulate as a diffuse, neocortical pathology, while tau-related pathology begins to form in mesial temporal regions. This study investigated the hypothesis that, by virtue of this distinction, there exist preferential associations between the primary pathologies and aspects of the cognitive phenotype. We investigated the relationship between cerebrospinal fluid (CSF) biomarkers for tau and Aβ pathologies with neurocognitive measures in 191 patients with mild cognitive impairment (MCI). Participants completed cognitive tests of new learning, information processing speed, and working memory. Separate regression models were computed and then followed up with mediation analyses to examine the predictive status of CSF biomarkers. The effect of Aβ on learning was mediated by phospho-tau (p = 0.008). In contrast, Aβ had a direct effect on information processing speed that was not mediated by phospho-tau (p = 0.59). No predictors were significant for working memory. This study provided evidence for a differential relationship of Aβ and phospho-tau pathologies on the neurocognitive phenotype of MCI. This supports the proposition that these primary AD pathologies maximally affect different aspects of cognition, and has potential implications for cognitive assessments and the use of biomarkers in disease-modifyingtherapeutic trials. PMID:26401775

  14. Perspectives in Molecular Imaging Using Staging Biomarkers and Immunotherapies in Alzheimer's Disease

    PubMed Central

    Leclerc, Benoît; Abulrob, Abedelnasser

    2013-01-01

    Sporadic Alzheimer's disease (AD) is an emerging chronic illness characterized by a progressive pleiotropic pathophysiological mode of actions triggered during the senescence process and affecting the elderly worldwide. The complex molecular mechanisms of AD not only are supported by cholinergic, beta-amyloid, and tau theories but also have a genetic basis that accounts for the difference in symptomatology processes activation among human population which will evolve into divergent neuropathological features underlying cognitive and behaviour alterations. Distinct immune system tolerance could also influence divergent responses among AD patients treated by immunotherapy. The complexity in nature increases when taken together the genetic/immune tolerance with the patient's brain reserve and with neuropathological evolution from early till advance AD clinical stages. The most promising diagnostic strategies in today's world would consist in performing high diagnostic accuracy of combined modality imaging technologies using beta-amyloid 42 peptide-cerebrospinal fluid (CSF) positron emission tomography (PET), Pittsburgh compound B-PET, fluorodeoxyglucose-PET, total and phosphorylated tau-CSF, and volumetric magnetic resonance imaging hippocampus biomarkers for criteria evaluation and validation. Early diagnosis is the challenge task that needs to look first at plausible mechanisms of actions behind therapies, and combining them would allow for the development of efficient AD treatment in a near future. PMID:23476143

  15. The interaction between sleep-disordered breathing and ApoE genotype on cerebrospinal fluid biomarkers for Alzheimer's disease in cognitively normal elderly

    PubMed Central

    Osorio, Ricardo S.; Ayappa, Indu; Mantua, Janna; Gumb, Tyler; Varga, Andrew; Mooney, Anne M.; Burschtin, Omar E.; Taxin, Zachary; During, Emmanuel; Spector, Nicole; Biagioni, Milton; Pirraglia, Elizabeth; Lau, Hiuyan; Zetterberg, Henrik; Blennow, Kaj; Lu, Shou-En; Mosconi, Lisa; Glodzik, Lidia; Rapoport, David M.; de Leon, Mony J.

    2014-01-01

    Background Previous studies have suggested a link between Sleep Disordered Breathing (SDB) and dementia risk. In the present study, we analyzed the relationship between SDB severity, cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers, and the ApoE alleles. Methods 95 cognitively normal elderly participants were analyzed for SDB severity, CSF measures of phosphorylated-tau (P-Tau), total-tau (T-Tau), and amyloid beta 42 (Aβ42), as well as ApoE allele status. Findings In ApoE3+ subjects, significant differences were found between sleep groups for P-Tau (F[df2]=4.3, p=0.017), and T-Tau (F[df2]=3.3, p=0.043). Additionally, among ApoE3+ subjects, the apnea/hypopnea with 4% O2-desaturation index (AHI4%) was positively correlated with P-Tau (r=0.30, p=0.023), T-Tau (r=0.31, p=0.021), and Aβ42 (r=0.31, p=0.021). In ApoE2+ subjects, AHI4% was correlated with lower levels of CSF Aβ42 (r=−0.71, p=0.004), similarly to ApoE4+ subjects where there was also a trend towards lower CSF Aβ42 levels Interpretation Our observations suggest that there is an association between SDB and CSF AD- biomarkers in cognitively normal elderly. Existing therapies for SDB such as CPAP could delay the onset to mild cognitive impairment or dementia in normal elderly. PMID:24439479

  16. Chitotriosidase - a putative biomarker for sporadic amyotrophic lateral sclerosis

    PubMed Central

    2013-01-01

    Background Potential biomarkers to aid diagnosis and therapy need to be identified for Amyotrophic Lateral Sclerosis, a progressive motor neuronal degenerative disorder. The present study was designed to identify the factor(s) which are differentially expressed in the cerebrospinal fluid (CSF) of patients with sporadic amyotrophic lateral sclerosis (SALS; ALS-CSF), and could be associated with the pathogenesis of this disease. Results Quantitative mass spectrometry of ALS-CSF and control-CSF (from orthopaedic surgical patients undergoing spinal anaesthesia) samples showed upregulation of 31 proteins in the ALS-CSF, amongst which a ten-fold increase in the levels of chitotriosidase-1 (CHIT-1) was seen compared to the controls. A seventeen-fold increase in the CHIT-1 levels was detected by ELISA, while a ten-fold elevated enzyme activity was also observed. Both these results confirmed the finding of LC-MS/MS. CHIT-1 was found to be expressed by the Iba-1 immunopositive microglia. Conclusion Elevated CHIT-1 levels in the ALS-CSF suggest a definitive role for the enzyme in the disease pathogenesis. Its synthesis and release from microglia into the CSF may be an aligned event of neurodegeneration. Thus, high levels of CHIT-1 signify enhanced microglial activity which may exacerbate the process of neurodegeneration. In view of the multifold increase observed in ALS-CSF, it can serve as a potential CSF biomarker for the diagnosis of SALS. PMID:24295388

  17. GM-CSF augments the immunosuppressive capacity of neonatal spleen cells in vitro

    SciTech Connect

    Morrissey, P.J.; Ireland, R. )

    1991-09-01

    Addition of exogenous granulocyte-macrophage colony stimulating factor (GM-CSF) to cultures of adult murine spleen cells with sheep red blood cells (SRBC) results in an augmented plaque forming cell (PFC) response. The influence of GM-CSF on the ability of neonatal spleen cells to suppress the anti-SRBC plaque forming response of adult spleen cells was tested by adding GM-CSF to cultures of neonatal and adult spleen cells. The suppressive capacity of the neonatal spleen cells was augmented by exogenous GM-CSF. The augmented suppression of the neonatal spleen cells was dependent on a G-10 adherent population since the addition of GM-CSF to cultures containing G-10 passed neonatal spleen cells resulted in an augmented PFC response and not suppression. Neonatal splenic glass adherent cells were also capable of suppressing the response. Neonatal spleen cells or purified neonatal glass adherent spleen cells cultured in the presence of GM-CSF had markedly increased levels of PGE2 in the culture supernatant. Neonatal spleen cells cultured with GM-CSF had increased numbers of morphologically identifiable macrophages after 48 hr of culture. Both irradiation and G-10 passage of the neonatal spleen diminished the numbers of macrophages formed in response to GM-CSF, and both of these manipulations resulted in reversal of suppression in response to GM-CSF. Thus, the augmented suppressive capacity of neonatal spleen cells in response to GM-CSF is probably mediated by its ability to drive monocyte to macrophage differentiation as well as increase the suppressive capacity of the existing neonatal splenic macrophages by increasing their production of PGE2.

  18. Plasma beta-amyloid as potential biomarker of Alzheimer disease: possibility of diagnostic tool for Alzheimer disease.

    PubMed

    Takeda, Shuko; Sato, Naoyuki; Rakugi, Hiromi; Morishita, Ryuichi

    2010-10-01

    Alzheimer disease (AD), which is characterized by progressive cognitive and behavioral deficit, is the most common form of dementia. The incidence of AD is increasing at an alarming rate, and has become a major public health concern in many countries. It is well known that the onset of AD is preceded by a long preclinical period. It is thus critical to establish diagnostic biomarkers that can predict the risk of developing AD prior to clinical manifestation of dementia, for effective prevention and early intervention. With the emergence of potential promising approaches to treat AD targeting the beta-amyloid (Abeta) pathway, such as gamma-secretase inhibitors and vaccine therapy, there is an urgent need for such diagnostic markers. Although cerebrospinal fluid (CSF) Abeta and tau protein levels are candidate biomarkers for AD, the invasive sampling procedure with associated complications limits their use in routine clinical practice. Plasma Abeta has been suggested as an inexpensive and non-invasive biomarker for AD. Although most previous cross-sectional studies on plasma Abeta level in humans failed to show a significant difference between individuals with AD compared to healthy older adults, many strategies are under investigation to improve the diagnostic potential of plasma Abeta. One promising approach is to modify the plasma Abeta level using some potential modulators. It is possible that a difference in plasma Abeta level might be unmasked by evaluating the response to stimulation by a modulator. Anti-Abeta antibody and Abeta binding proteins have been reported to be such modulators of plasma Abeta. In addition, the glucometabolic or hormonal status appears to modulate the plasma Abeta level. Our recent study has shown the possibility that glucose loading could be a novel simple strategy to modulate the plasma Abeta level, making it better suited for early diagnosis. This review summarizes the utility and limitations of current biomarkers of AD and

  19. Are circulating microRNAs peripheral biomarkers for Alzheimer's disease?

    PubMed

    Kumar, Subodh; Reddy, P Hemachandra

    2016-09-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss, multiple cognitive abnormalities and intellectual impairments. Currently, there are no drugs or agents that can delay and/or prevent the progression of disease in elderly individuals, and there are no peripheral biomarkers that can detect AD early in its pathogenesis. Research has focused on identifying biomarkers for AD so that treatment can be begun as soon as possible in order to restrict or prevent intellectual impairments, memory loss, and other cognitive abnormalities that are associated with the disease. One such potential biomarker is microRNAs that are found in circulatory biofluids, such as blood and blood components, serum and plasma. Blood and blood components are primary sources where miRNAs are released in either cell-free form and then bind to protein components, or are in an encapsulated form with microvesicle particles. Exosomal miRNAs are known to be stable in biofluids and can be detected by high throughput techniques, like microarray and RNA sequencing. In AD brain, enriched miRNAs encapsulated with exosomes crosses the blood brain barrier and secreted in the CSF and blood circulations. This review summarizes recent studies that have identified miRNAs in the blood, serum, plasma, exosomes, cerebral spinal fluids, and extracellular fluids as potential biomarkers of AD. Recent research has revealed only six miRNAs - miR-9, miR-125b, miR-146a, miR-181c, let-7g-5p, and miR-191-5p - that were reported by multiple investigators. Some studies analyzed the diagnostic potential of these six miRNAs through receiver operating curve analysis which indicates the significant area-under-curve values in different biofluid samples. miR-191-5p was found to have the maximum area-under-curve value (0.95) only in plasma and serum samples while smaller area-under-curve values were found for miR-125, miR-181c, miR-191-5p, miR-146a, and miR-9. This article shortlisted the

  20. Neurogranin as a Cerebrospinal Fluid Biomarker for Synaptic Loss in Symptomatic Alzheimer Disease

    PubMed Central

    Kester, Maartje I.; Teunissen, Charlotte E.; Crimmins, Daniel L.; Herries, Elizabeth M.; Ladenson, Jack. H.; Scheltens, Philip; van der Flier, Wiesje M.; Morris, John C.; Holtzman, David M.; Fagan, Anne M.

    2015-01-01

    IMPORTANCE Neurogranin (NGRN) seems to be a promising novel cerebrospinal fluid (CSF) biomarker for synaptic loss; however, clinical, and especially longitudinal, data are sparse. OBJECTIVE To examine the utility of NGRN, with repeated CSF sampling, for diagnosis, prognosis, and monitoring of Alzheimer disease (AD). DESIGN, SETTING, AND PARTICIPANTS Longitudinal study of consecutive patients who underwent 2 lumbar punctures between the beginning of 1995 and the end of 2010 within the memory clinic–based Amsterdam Dementia Cohort. The study included 163 patients: 37 cognitively normal participants (mean [SE] age, 64 [2] years; 38% female; and mean [SE] Mini-Mental State Examination [MMSE] score, 28 [0.3]), 61 patients with mild cognitive impairment (MCI) (mean [SE] age, 68 [1] years; 38% female; and mean [SE] MMSE score, 27 [0.3]), and 65 patients with AD (mean [SE] age, 65 [1] years; 45% female; and mean [SE] MMSE score, 22 [0.7]). The mean (SE) interval between lumbar punctures was 2.0 (0.1) years, and the mean (SE) duration of cognitive follow-up was 3.8 (0.2) years. Measurements of CSF NGRN levels were obtained in January and February 2014. MAIN OUTCOME AND MEASURE Levels of NGRN in CSF samples. RESULTS Baseline CSF levels of NGRN in patients with AD (median level, 2381 pg/mL [interquartile range, 1651-3416 pg/mL]) were higher than in cognitively normal participants (median level, 1712 pg/mL [interquartile range, 1206-2724 pg/mL]) (P = .04). Baseline NGRN levels were highly correlated with total tau and tau phosphorylated at threonine 181 in all patient groups (all P < .001), but not with Aβ42. Baseline CSF levels of NGRN were also higher in patients with MCI who progressed to AD (median level, 2842 pg/mL [interquartile range, 1882-3950 pg/mL]) compared with those with stable MCI (median level, 1752 pg/mL [interquartile range, 1024-2438 pg/mL]) (P = .004), and they were predictive of progression from MCI to AD (hazard ratio, 1.8 [95% CI, 1.1-2.9]; stratified

  1. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection

    PubMed Central

    2009-01-01

    Background Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF) biomarkers related of amyloid and tau metabolism in HIV-infected patients. Methods In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPα and sAPPβ), amyloid beta fragment 1-42 (Aβ1-42), and total and hyperphosphorylated tau (t-tau and p-tau) in CSF of 86 HIV-infected (HIV+) subjects, including 21 with AIDS dementia complex (ADC), 25 with central nervous system (CNS) opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV-) subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease. Results CSF sAPPα and sAPPβ concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Aβ1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections. Conclusions Parallel reductions of CSF sAPPα and sAPPβ in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those of Alzheimer's disease

  2. Longitudinal Cerebrospinal Fluid Biomarker Changes in Preclinical Alzheimer Disease During Middle Age

    PubMed Central

    Sutphen, Courtney L.; Jasielec, Mateusz S.; Shah, Aarti R.; Macy, Elizabeth M.; Xiong, Chengjie; Vlassenko, Andrei G.; Benzinger, Tammie L. S.; Stoops, Erik E. J.; Vanderstichele, Hugo M. J.; Brix, Britta; Darby, Heather D.; Vandijck, Manu L. J.; Ladenson, Jack H.; Morris, John C.; Holtzman, David M.; Fagan, Anne M.

    2015-01-01

    IMPORTANCE Individuals in the presymptomatic stage of Alzheimer disease (AD) are increasingly being targeted for AD secondary prevention trials. How early during the normal life span underlying AD pathologies begin to develop, their patterns of change over time, and their relationship with future cognitive decline remain to be determined. OBJECTIVE To characterize the within-person trajectories of cerebrospinal fluid (CSF) biomarkers of AD over time and their association with changes in brain amyloid deposition and cognitive decline in cognitively normal middle-aged individuals. DESIGN, SETTING, AND PARTICIPANTS As part of a cohort study, cognitively normal (Clinical Dementia Rating [CDR] of 0) middle-aged research volunteers (n = 169) enrolled in the Adult Children Study at Washington University, St Louis, Missouri, had undergone serial CSF collection and longitudinal clinical assessment (mean, 6 years; range, 0.91–11.3 years) at 3-year intervals at the time of analysis, between January 2003 and November 2013. A subset (n = 74) had also undergone longitudinal amyloid positron emission tomographic imaging with Pittsburgh compound B (PiB) in the same period. Serial CSF samples were analyzed for β-amyloid 40 (Aβ40), Aβ42, total tau, tau phosphorylated at threonine 181 (P-tau181), visinin-like protein 1 (VILIP-1), and chitinase-3-like protein 1 (YKL-40). Within-person measures were plotted according to age and AD risk defined by APOE genotype (ε4 carriers vs noncarriers). Linear mixed models were used to compare estimated biomarker slopes among middle-age bins at baseline (early, 45–54 years; mid, 55–64 years; late, 65–74 years) and between risk groups. Within-person changes in CSF biomarkers were also compared with changes in cortical PiB binding and progression to a CDR higher than 0 at follow-up. MAIN OUTCOMES AND MEASURES Changes in Aβ40, Aβ42, total tau, P-tau181, VILIP-1, and YKL-40 and, in a subset of participants, changes in cortical PiB binding

  3. Stromal cell-derived CSF-1 blockade prolongs xenograft survival of CSF-1-negative neuroblastoma

    PubMed Central

    Abraham, Dietmar; Zins, Karin; Sioud, Mouldy; Lucas, Trevor; Schäfer, Romana; Stanley, E. Richard; Aharinejad, Seyedhossein

    2011-01-01

    The molecular mechanisms of tumor–host interactions that render neuroblastoma (NB) cells highly invasive are unclear. Cancer cells upregulate host stromal cell colony-stimulating factor-1 (CSF-1) production to recruit tumor-associated macrophages (TAMs) and accelerate tumor growth by affecting extracellular matrix remodeling and angiogenesis. By coculturing NB with stromal cells in vitro, we showed the importance of host CSF-1 expression for macrophage recruitment to NB cells. To examine this interaction in NB in vivo, mice bearing human CSF-1-expressing SK-N-AS and CSF-1-negative SK-NDZ NB xenografts were treated with intratumoral injections of small interfering RNAs directed against mouse CSF-1. Significant suppression of both SK-N-AS and SK-N-DZ NB growth by these treatments was associated with decreased TAM infiltration, matrix metalloprotease (MMP)-12 levels and angiogenesis compared to controls, while expression of tissue inhibitors of MMPs increased following mouse CSF-1 blockade. Furthermore, Tie-2-positive and -negative TAMs recruited by host CSF-1 were identified in NB tumor tissue by confocal microscopy and flow cytometry. However, host-CSF-1 blockade prolonged survival only in CSF-1-negative SK-N-DZ NB. These studies demonstrated that increased CSF-1 production by host cells enhances TAM recruitment and NB growth and that the CSF-1 phenotype of NB tumor cells adversely affects survival. PMID:19711348

  4. Tensor-Based Morphometry as a Neuroimaging Biomarker for Alzheimer’s Disease: An MRI Study of 676 AD, MCI, and Normal Subjects

    PubMed Central

    Hua, Xue; Leow, Alex D.; Parikshak, Neelroop; Lee, Suh; Chiang, Ming-Chang; Toga, Arthur W.; Jack, Clifford R.; Weiner, Michael W.; Thompson, Paul M.

    2011-01-01

    In one of the largest brain MRI studies to date, we used tensor-based morphometry (TBM) to create 3D maps of structural atrophy in 676 subjects with Alzheimer’s disease (AD), mild cognitive impairment (MCI), and healthy elderly controls, scanned as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Using inverse-consistent 3D non-linear elastic image registration, we warped 676 individual brain MRI volumes to a population mean geometric template. Jacobian determinant maps were created, revealing the 3D profile of local volumetric expansion and compression. We compared the anatomical distribution of atrophy in 165 AD patients (age: 75.6 ± 7.6 years), 330 MCI subjects (74.8 ± 7.5), and 181 controls (75.9 ± 5.1). Brain atrophy in selected regions-of-interest was correlated with clinical measurements - the sum-of-boxes clinical dementia rating (CDR-SB), mini-mental state examination (MMSE), and the logical memory test scores - at voxel level followed by correction for multiple comparisons. Baseline temporal lobe atrophy correlated with current cognitive performance, future cognitive decline, and conversion from MCI to AD over the following year; it predicted future decline even in healthy subjects. Over half of the AD and MCI subjects carried the ApoE4 (apolipoprotein E4) gene, which increases risk for AD; they showed greater hippocampal and temporal lobe deficits than non-carriers. ApoE2 gene carriers - 1/6 of the normal group - showed reduced ventricular expansion, suggesting a protective effect. As an automated image analysis technique, TBM reveals 3D correlations between neuroimaging markers, genes, and future clinical changes, and is highly efficient for large-scale MRI studies. PMID:18691658

  5. Advances in Biomarker Research in Parkinson's Disease.

    PubMed

    Mehta, Shyamal H; Adler, Charles H

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, and the numbers are projected to double in the next two decades with the increase in the aging population. An important focus of current research is to develop interventions to slow the progression of the disease. However, prerequisites to it include the development of reliable biomarkers for early diagnosis which would identify at-risk groups and disease progression. In this review, we present updated evidence of already known clinical biomarkers (such as hyposmia and rapid eye movement (REM) sleep behavior disorder (RBD)) and neuroimaging biomarkers, as well as newer possible markers in the blood, CSF, and other tissues. While several promising candidates and methods to assess these biomarkers are on the horizon, it is becoming increasingly clear that no one candidate will clearly fulfill all the roles as a single biomarker. A multimodal and combinatorial approach to develop a battery of biomarkers will likely be necessary in the future. PMID:26711276

  6. Effects of CX3CR1 and Fractalkine Chemokines in Amyloid Beta Clearance and p-Tau Accumulation in Alzheimer,s Disease (AD) Rodent Models: Is Fractalkine a Systemic Biomarker for AD?

    PubMed

    Merino, José Joaquín; Muñetón-Gómez, Vilma; Alvárez, María-Isabel; Toledano-Díaz, Adolfo

    2016-01-01

    Microglia and astrocytes are the major source of cytokines in Alzheimer,s disease (AD). CX3CR1 is a delta chemokine receptor found in microglia and its neuronal ligand, Fractalkine, has two isoforms: an anchored-membrane isoform, and a soluble isoform. The reduced soluble fractalkine levels found in the brain (cortex/hippocampus) of aged rats, may be a consequence of neuronal loss. This soluble fractalkine maintains microglia in an appropiate state by interacting with CX3CR1. The ablation of the CX3CR1 gene in mice overexpressing human amyloid precursor protein (APP/PS-1) increased cytokine levels, enhanced Tau pathology and worsened behavioural performance in these mice. However, CX3CR1 deficiency resulted in a gene dose-dependent Aβ clearance in the brain, and induced microglial activation. In addition, CX3CR1 deficiency can have benefical effects by preventing neuronal loss in the 3xTg model. In fact, CX3CR1 deficiency increases microglial phagocytosome activity by inducing selective protofibrillar amyloid-beta phagocytosis in microglial cells in transgenic AD models. On the other hand, the fractalkine membrane isoform plays a differential role in amyloid beta clearance and Tau deposition. This anchored membrane FKN signalling might increase amyloid pathology while soluble fractalkine levels could prevent taupathies. However, in human AD, the only published study has reported higher systemic fractalkine levels in AD patients with cognitive impairment. In mouse models, inflammatory activation of microglia accelerates Tau pathology. Studies in transgenic mice with fractalkine null mice suggest that APP/PS-1 mice deficient for the anchored membrane-fractalkine isoform exhibited enhanced neuronal MAPT phosphorylation despite their reduced amyloid burden. The soluble fractalkine overexpression with adenoviral vectors reduced tau pathology and prevented neurodegeneration in a Tg4510 model of taupathy Finally, animals with Aβ (1-42) infused by lentivirus (cortex) or

  7. The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function

    PubMed Central

    Overgaard, Christian E.; Schlingmann, Barbara; Dorsainvil White, StevenClaude; Ward, Christina; Fan, Xian; Swarnakar, Snehasikta; Brown, Lou Ann S.; Guidot, David M.

    2015-01-01

    Lung barrier dysfunction is a cardinal feature of the acute respiratory distress syndrome (ARDS). Alcohol abuse, which increases the risk of ARDS two- to fourfold, induces transforming growth factor (TGF)-β1, which increases epithelial permeability and impairs granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent barrier integrity in experimental models. We hypothesized that the relative balance of GM-CSF and TGF-β1 signaling regulates lung epithelial barrier function. GM-CSF and TGF-β1 were tested separately and simultaneously for their effects on lung epithelial cell barrier function in vitro. TGF-β1 alone caused an ∼25% decrease in transepithelial resistance (TER), increased paracellular flux, and was associated with projections perpendicular to tight junctions (“spikes”) containing claudin-18 that colocalized with F-actin. In contrast, GM-CSF treatment induced an ∼20% increase in TER, decreased paracellular flux, and showed decreased colocalization of spike-associated claudin-18 with F-actin. When simultaneously administered to lung epithelial cells, GM-CSF antagonized the effects of TGF-β1 on epithelial barrier function in cultured cells. Given this, GM-CSF and TGF-β1 levels were measured in bronchoalveolar lavage (BAL) fluid from patients with ventilator-associated pneumonia and correlated with markers for pulmonary edema and patient outcome. In patient BAL fluid, protein markers of lung barrier dysfunction, serum α2-macroglobulin, and IgM levels were increased at lower ratios of GM-CSF/TGF-β1. Critically, patients who survived had significantly higher GM-CSF/TGF-β1 ratios than nonsurviving patients. This study provides experimental and clinical evidence that the relative balance between GM-CSF and TGF-β1 signaling is a key regulator of lung epithelial barrier function. The GM-CSF/TGF-β1 ratio in BAL fluid may provide a concentration-independent biomarker that can predict patient outcomes in ARDS. PMID:25888574

  8. The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function.

    PubMed

    Overgaard, Christian E; Schlingmann, Barbara; Dorsainvil White, StevenClaude; Ward, Christina; Fan, Xian; Swarnakar, Snehasikta; Brown, Lou Ann S; Guidot, David M; Koval, Michael

    2015-06-15

    Lung barrier dysfunction is a cardinal feature of the acute respiratory distress syndrome (ARDS). Alcohol abuse, which increases the risk of ARDS two- to fourfold, induces transforming growth factor (TGF)-β1, which increases epithelial permeability and impairs granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent barrier integrity in experimental models. We hypothesized that the relative balance of GM-CSF and TGF-β1 signaling regulates lung epithelial barrier function. GM-CSF and TGF-β1 were tested separately and simultaneously for their effects on lung epithelial cell barrier function in vitro. TGF-β1 alone caused an ∼ 25% decrease in transepithelial resistance (TER), increased paracellular flux, and was associated with projections perpendicular to tight junctions ("spikes") containing claudin-18 that colocalized with F-actin. In contrast, GM-CSF treatment induced an ∼ 20% increase in TER, decreased paracellular flux, and showed decreased colocalization of spike-associated claudin-18 with F-actin. When simultaneously administered to lung epithelial cells, GM-CSF antagonized the effects of TGF-β1 on epithelial barrier function in cultured cells. Given this, GM-CSF and TGF-β1 levels were measured in bronchoalveolar lavage (BAL) fluid from patients with ventilator-associated pneumonia and correlated with markers for pulmonary edema and patient outcome. In patient BAL fluid, protein markers of lung barrier dysfunction, serum α2-macroglobulin, and IgM levels were increased at lower ratios of GM-CSF/TGF-β1. Critically, patients who survived had significantly higher GM-CSF/TGF-β1 ratios than nonsurviving patients. This study provides experimental and clinical evidence that the relative balance between GM-CSF and TGF-β1 signaling is a key regulator of lung epithelial barrier function. The GM-CSF/TGF-β1 ratio in BAL fluid may provide a concentration-independent biomarker that can predict patient outcomes in ARDS. PMID:25888574

  9. Increased CSF Levels of Phosphorylated Neurofilament Heavy Protein following Bout in Amateur Boxers

    PubMed Central

    Neselius, Sanna; Zetterberg, Henrik; Blennow, Kaj; Marcusson, Jan; Brisby, Helena

    2013-01-01

    Introduction Diagnosis of mild TBI is hampered by the lack of imaging or biochemical measurements for identifying or quantifying mild TBI in a clinical setting. We have previously shown increased biomarker levels of protein reflecting axonal (neurofilament light protein and tau) and glial (GFAP and S-100B) damage in cerebrospinal fluid (CSF) after a boxing bout. The aims of this study were to find other biomarkers of mild TBI, which may help clinicians diagnose and monitor mild TBI, and to calculate the role of APOE ε4 allele genotype which has been associated with poor outcome after TBI. Materials and Methods Thirty amateur boxers with a minimum of 45 bouts and 25 non-boxing matched controls were included in a prospective cohort study. CSF and blood were collected at one occasion between 1 and 6 days after a bout, and after a rest period for at least 14 days (follow up). The controls were tested once. CSF levels of neurofilament heavy (pNFH), amyloid precursor proteins (sAPPα and sAPPβ), ApoE and ApoA1 were analyzed. In blood, plasma levels of Aβ42 and ApoE genotype were analyzed. Results CSF levels of pNFH were significantly increased between 1 and 6 days after boxing as compared with controls (p<0.001). The concentrations decreased at follow up but were still significantly increased compared to controls (p = 0.018). CSF pNFH concentrations correlated with NFL (r =  0.57 after bout and 0.64 at follow up, p<0.001). No significant change was found in the other biomarkers, as compared to controls. Boxers carrying the APOE ε4 allele had similar biomarker concentrations as non-carriers. Conclusions Subconcussive repetitive trauma in amateur boxing causes a mild TBI that may be diagnosed by CSF analysis of pNFH, even without unconsciousness or concussion symptoms. Possession of the APOE ε4 allele was not found to influence biomarker levels after acute TBI. PMID:24260563

  10. CSF-1 Receptor Signaling in Myeloid Cells

    PubMed Central

    Stanley, E. Richard; Chitu, Violeta

    2014-01-01

    The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We review, the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R. PMID:24890514

  11. Antibody-free quantification of seven tau peptides in human CSF using targeted mass spectrometry

    PubMed Central

    Bros, Pauline; Vialaret, Jérôme; Barthelemy, Nicolas; Delatour, Vincent; Gabelle, Audrey; Lehmann, Sylvain; Hirtz, Christophe

    2015-01-01

    Tau protein concentration in cerebrospinal fluid (CSF) is currently used as a sensitive and specific biomarker for Alzheimer's disease. Its detection currently relies on ELISA but the perspective of using mass spectrometry (MS) to detect its different proteoforms represents an interesting alternative. This is however an analytical challenge because of its low concentration in the CSF, a biological fluid collected in small volume by lumbar puncture, and with a high structural heterogeneity. To overcome these issues, instead of using immunocapture as previously done, we rather relied on an original two steps pre-fractionation technique of CSF: perchloric acid (PCA) followed by micro solid phase extraction (μSPE). We could then measure seven tau trypsic peptides by Multiple Reaction Monitoring (MRM) on a triple quadrupole mass spectrometer. Quantification was performed using isotopically labeled 15N- recombinant tau protein as internal standard and validated using CSF pools with low, medium, or high tau concentrations (HTCs). Repeatability, intermediate precision, linearity, limit of quantification (LOQ), and recovery were calculated for the different peptides. This new MRM assay, which allowed for the first time CSF tau protein quantification without immunocapture, has important potential application to follow tau metabolism in both diagnostic and therapeutic research. PMID:26388715

  12. Interleukin-33 stimulates GM-CSF and M-CSF production by human endothelial cells.

    PubMed

    Montanari, Eliana; Stojkovic, Stefan; Kaun, Christoph; Lemberger, Christof E; de Martin, Rainer; Rauscher, Sabine; Gröger, Marion; Maurer, Gerald; Neumayer, Christoph; Huk, Ihor; Huber, Kurt; Demyanets, Svitlana; Wojta, Johann

    2016-08-01

    Interleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in various inflammatory conditions targeting amongst other cells the endothelium. Besides regulating the maturation and functions of myeloid cells, granulocyte macrophage-colony stimulating factor (GM-CSF) and macrophage-CSF (M-CSF) have been shown to play a role in such pathologies too. It was the aim of our study to investigate a possible influence of IL-33 on GM-CSF and M-CSF production by human endothelial cells. IL-33, but not IL-18 or IL-37, stimulated GM-CSF and M-CSF mRNA expression and protein production by human umbilical vein endothelial cells (HUVECs) and human coronary artery ECs (HCAECs) through the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway in an IL-1-independent way. This effect was inhibited by the soluble form of ST2 (sST2), which is known to act as a decoy receptor for IL-33. The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor fluvastatin could also be shown to moderately reduce the IL-33-mediated effect on M-CSF, but not on GM-CSF expression. In addition, IL-33, IL-1β, GM-CSF and M-CSF were detected in endothelial cells of human carotid atherosclerotic plaques using immunofluorescence. Upregulation of GM-CSF and M-CSF production by human endothelial cells, an effect that appears to be mediated by NF-κB and to be independent of IL-1, may be an additional mechanism through which IL-33 contributes to inflammatory activation of the vessel wall. PMID:27173404

  13. Biomarkers for sporadic Creutzfeldt-Jakob disease.

    PubMed

    Soomro, Sanam; Mohan, Chandra

    2016-06-01

    Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare but fatal type of spongiform encephalopathy with unknown cause. Unfortunately, definitive diagnosis of this disease can only be done by examination of postmortem brain tissue. Presumptive diagnosis is done through a combination of clinical manifestations, radiology results, and cerebrospinal fluid (CSF) testing for CSF 14-3-3. Even with these guidelines, premortem diagnosis of sCJD can be unreliable with high rates of misdiagnosis. This calls for more reliable biomarkers of the disease, allowing for better diagnosis as well as understanding the pathogenesis of sCJD. This review compiles potential genetic, protein, biomolecular, and imaging biomarker studies for sCJD since 2010, highlighting the promise of proteins, cytokines, and composite biomarkers for improving the diagnosis as well as understanding the pathogenesis of this mysterious ailment. PMID:27547775

  14. Identification of CSF fistulas by radionuclide counting

    SciTech Connect

    Yamamoto, Y.; Kunishio, K.; Sunami, N.; Yamamoto, Y.; Satoh, T.; Suga, M.; Asari, S. )

    1990-07-01

    A radionuclide counting method, performed with the patient prone and the neck flexed, was used successfully to diagnose CSF rhinorrhea in two patients. A normal radionuclide ratio (radionuclide counts in pledget/radionuclide counts in 1-ml blood sample) was obtained in 11 normal control subjects. Significance was determined to be a ratio greater than 0.37. Use of radionuclide counting method of determining CSF rhinorrhea is recommended when other methods have failed to locate a site of leakage or when posttraumatic meningitis suggests subclinical CSF rhinorrhea.

  15. CSF Levels of Angiopoietin-2 Do Not Differ between Patients with CSF Fluid Leakage Syndrome and Controls

    PubMed Central

    Pul, Refik; Yildiz, Özlem; Morbiducci, Franco; Skripuletz, Thomas; Schwenkenbecher, Philipp; Stangel, Martin; Götz, Friedrich; Berding, Georg; Trebst, Corinna; Donnerstag, Frank

    2015-01-01

    CSF abnormalities have been reported in CSF leakage syndrome. However, the mechanism for these CSF changes is actually unknown and they may indicate impaired CSF flow or blood-CSF barrier. Angiopoietin-2 (Ang-2), a protein which is expressed and released by endothelial cells, has been associated with increased vascular permeability. In the assumption that CSF changes are due to an impaired blood-CSF barrier, we hypothesized that subjects with persistent CSF leakage may have increased CSF Ang-2 levels. We enrolled 10 subjects with a clinically definite diagnosis of persisting CSF leakage syndrome and 10 control subjects. In CSF analyses, CSF to serum albumin ratio (Qalb) was the most frequently increased parameter indicating a disturbed blood-CSF barrier function. Comparison of the mean CSF Ang-2 levels, CSF to serum Ang-2 ratio (QAng-2), and QAng-2/Qalb between the control and CSF leakage patients did not show any significant difference. We suggest that the increase of Qalb results from a low CSF flow. Future studies with phase contrast-MRI in conjunction with CSF analyses before and after epidural blood patch treatment are required to address this question. It would be of particular interest whether Qalb can be used as a marker for successful nontargeted epidural blood patch treatment. PMID:26448679

  16. Amyloid-β-Secondary Structure Distribution in Cerebrospinal Fluid and Blood Measured by an Immuno-Infrared-Sensor: A Biomarker Candidate for Alzheimer's Disease.

    PubMed

    Nabers, Andreas; Ollesch, Julian; Schartner, Jonas; Kötting, Carsten; Genius, Just; Hafermann, Henning; Klafki, Hans; Gerwert, Klaus; Wiltfang, Jens

    2016-03-01

    The misfolding of the Amyloid-beta (Aβ) peptide into β-sheet enriched conformations was proposed as an early event in Alzheimer's Disease (AD). Here, the Aβ peptide secondary structure distribution in cerebrospinal fluid (CSF) and blood plasma of 141 patients was measured with an immuno-infrared-sensor. The sensor detected the amide I band, which reflects the overall secondary structure distribution of all Aβ peptides extracted from the body fluid. We observed a significant downshift of the amide I band frequency of Aβ peptides in Dementia Alzheimer type (DAT) patients, which indicated an overall shift to β-sheet. The secondary structure distribution of all Aβ peptides provides a better marker for DAT detection than a single Aβ misfold or the concentration of a specific oligomer. The discrimination between DAT and disease control patients according to the amide I frequency was in excellent agreement with the clinical diagnosis (accuracy 90% for CSF and 84% for blood). The amide I band maximum above or below the decisive marker frequency appears as a novel spectral biomarker candidate of AD. Additionally, a preliminary proof-of-concept study indicated an amide I band shift below the marker band already in patients with mild cognitive impairment due to AD. The presented immuno-IR-sensor method represents a promising, simple, robust, and label-free diagnostic tool for CSF and blood analysis. PMID:26828829

  17. Semi-supervised multimodal relevance vector regression improves cognitive performance estimation from imaging and biological biomarkers.

    PubMed

    Cheng, Bo; Zhang, Daoqiang; Chen, Songcan; Kaufer, Daniel I; Shen, Dinggang

    2013-07-01

    Accurate estimation of cognitive scores for patients can help track the progress of neurological diseases. In this paper, we present a novel semi-supervised multimodal relevance vector regression (SM-RVR) method for predicting clinical scores of neurological diseases from multimodal imaging and biological biomarker, to help evaluate pathological stage and predict progression of diseases, e.g., Alzheimer's diseases (AD). Unlike most existing methods, we predict clinical scores from multimodal (imaging and biological) biomarkers, including MRI, FDG-PET, and CSF. Considering that the clinical scores of mild cognitive impairment (MCI) subjects are often less stable compared to those of AD and normal control (NC) subjects due to the heterogeneity of MCI, we use only the multimodal data of MCI subjects, but no corresponding clinical scores, to train a semi-supervised model for enhancing the estimation of clinical scores for AD and NC subjects. We also develop a new strategy for selecting the most informative MCI subjects. We evaluate the performance of our approach on 202 subjects with all three modalities of data (MRI, FDG-PET and CSF) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The experimental results show that our SM-RVR method achieves a root-mean-square error (RMSE) of 1.91 and a correlation coefficient (CORR) of 0.80 for estimating the MMSE scores, and also a RMSE of 4.45 and a CORR of 0.78 for estimating the ADAS-Cog scores, demonstrating very promising performances in AD studies. PMID:23504659

  18. Semi-Supervised Multimodal Relevance Vector Regression Improves Cognitive Performance Estimation from Imaging and Biological Biomarkers

    PubMed Central

    Cheng, Bo; Chen, Songcan; Kaufer, Daniel I.

    2013-01-01

    Accurate estimation of cognitive scores for patients can help track the progress of neurological diseases. In this paper, we present a novel semi-supervised multimodal relevance vector regression (SM-RVR) method for predicting clinical scores of neurological diseases from multimodal imaging and biological biomarker, to help evaluate pathological stage and predict progression of diseases, e.g., Alzheimer’s diseases (AD). Unlike most existing methods, we predict clinical scores from multimodal (imaging and biological) biomarkers, including MRI, FDG-PET, and CSF. Considering that the clinical scores of mild cognitive impairment (MCI) subjects are often less stable compared to those of AD and normal control (NC) subjects due to the heterogeneity of MCI, we use only the multimodal data of MCI subjects, but no corresponding clinical scores, to train a semi-supervised model for enhancing the estimation of clinical scores for AD and NC subjects. We also develop a new strategy for selecting the most informative MCI subjects. We evaluate the performance of our approach on 202 subjects with all three modalities of data (MRI, FDG-PET and CSF) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The experimental results show that our SM-RVR method achieves a root-mean-square error (RMSE) of 1.91 and a correlation coefficient (CORR) of 0.80 for estimating the MMSE scores, and also a RMSE of 4.45 and a CORR of 0.78 for estimating the ADAS-Cog scores, demonstrating very promising performances in AD studies. PMID:23504659

  19. IL-33 Promotes DC Development in BM Culture by Triggering GM-CSF Production

    PubMed Central

    Mayuzumi, Nobuyasu; Matsushima, Hironori; Takashima, Akira

    2010-01-01

    Summary Short-term DC cultures generated with GM-CSF and other cytokines have markedly improved our ability to study the immunobiology of DC. Here we tested 65 cytokines individually for their potentials to promote generation of CD11c+ cells in a murine BM culture system. In addition to several cytokines known to promote DC survival and/or growth, IL-33 was found to augment DC development time- and dose-dependently. Although the resulting CD11c+ cells generated in the presence of IL-33 exhibited a typical dendritic morphology, they expressed MHC class II molecules only at modest levels, showed negligible responses to TLR ligands, produced no detectable IL-12 p70, displayed PD-L1 and PD-L2 on the surface, and failed to activate immunologically naïve T cells efficiently. IL-33-induced expansion of CD11c+ cells was completely blocked by anti-GM-CSF mAb, and GM-CSF mRNA and protein expression in BM culture was markedly elevated by added IL-33, indicating that IL-33 promotes in vitro DC generation indirectly by a GM-CSF-dependent manner. With regard to the cellular source, IL-33-dependent GM-CSF production was observed exclusively within the CD45+/FcεRI+ BM population. Not only do our results reinforce the notion that GM-CSF serves as a primary DC growth factor, they also reveal a previously unrecognized mechanism supporting DC development. PMID:19750479

  20. CSF hydrodynamic studies in man. 1. Method of constant pressure CSF infusion.

    PubMed Central

    Ekstedt, J

    1977-01-01

    The constant pressure method for the study of the hydrodynamics of CSF is presented. By infusing artificial CSF at constant pressures and recording the resultant flow, it is possible to obtain information about the hydrodynamic conductance of the CSF outflow pathways. By lowering the infusion pressure below the pressure of the sagittal sinus all CSF produced can be collected and the CSF formation rate may thus be calculated. There is a rectilinear relationship between CSF pressure and the flow necessary to maintain the pressure. It is thus concluded that the arachnoidal villi, when once opened, are not further distended by pressure. This method makes possible indirect calculation of the pressure of the sagittal sinus and the pressure difference between the subarachnoid space and the sagittal sinus. Images PMID:864474

  1. Immunohistochemistry in the Diagnosis of Mucinous Neoplasms Involving the Ovary: The Added Value of SATB2 and Biomarker Discovery Through Protein Expression Database Mining.

    PubMed

    Strickland, Sarah; Wasserman, Jason K; Giassi, Ana; Djordjevic, Bojana; Parra-Herran, Carlos

    2016-05-01

    77.1% sensitivity and 99% specificity, outperforming tumor laterality and size. Second-line markers such as CDX2, MUC2, estrogen receptor, MUC1, and β-catenin increased the sensitivity of immunohistochemistry in excluding lower GI origin. Biomarker search using proteomic databases has a value in diagnostic pathology, as shown with SATB2; however, as seen with POF1B, expression profiles in these databases are not always reproduced in larger cohorts. PMID:26535987

  2. Targeting GM-CSF in rheumatoid arthritis.

    PubMed

    Avci, Ali Berkant; Feist, Eugen; Burmester, Gerd-Rüdiger

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is well-known as a haemopoietic growth factor. However, it is also essential in regulating functions of mature myeloid cells such as macrophages. Preclinical studies and observations of flares of arthritis in patients following GM-CSF treatment supported its important contribution to the pathogenesis of rheumatoid arthritis (RA). As the most advanced compound, mavrilimumab, a monoclonal antibody against GM-CSF receptor, has already completed phase II trials with a long term of follow-up period of 74 weeks. During this exposure period, an acceptable sustained safety and tolerability profile has been observed addressing the concerns of development of cytopenias or pulmonary alveolar proteinosis. Of note, a rapid and sustained efficacy and normalisation of acute phase reactants were consistently shown in studies both targeting GM-CSF and its receptor. Its tumour necrosis factor (TNF) independent mode of action with concurrent blockade of GM-CSF as well as IL-17 signalling reported from preclinical studies supports the assumption that it can be a useful biologic and an alternative agent in TNF inhibitor resistant patients with RA. Therefore, subsequent studies are warranted to investigate the safety and efficacy of GM-CSF blocking agents in different subgroups of RA. PMID:27586802

  3. European multicentre double-blind placebo-controlled trial of Nilvadipine in mild-to-moderate Alzheimer's disease—the substudy protocols: NILVAD frailty; NILVAD blood and genetic biomarkers; NILVAD cerebrospinal fluid biomarkers; NILVAD cerebral blood flow

    PubMed Central

    Meulenbroek, Olga; O'Dwyer, Sarah; de Jong, Daan; van Spijker, Gerrita; Kennelly, Sean; Cregg, Fiona; Olde Rikkert, Marcel; Abdullah, Laila; Wallin, Anders; Walsh, Cathal; Coen, Robert; Kenny, Rose Anne; Daly, Leslie; Segurado, Ricardo; Borjesson-Hanson, Anne; Crawford, Fiona; Mullan, Michael; Lucca, Ugo; Banzi, Rita; Pasquier, Florence; Breuilh, Laetitia; Riepe, Matthias; Kalman, Janos; Tsolaki, Magda; Howard, Robert; Adams, Jessica; Gaynor, Siobhan; Lawlor, Brian

    2016-01-01

    Introduction In conjunction with the NILVAD trial, a European Multicentre Double-Blind Placebo Controlled trial of Nilvadipine in Mild-to-Moderate Alzheimer's disease (AD), there are four NILVAD substudies in which eligible NILVAD patients are also invited to participate. The main NILVAD protocol was previously published in BMJ Open (2014). The objectives of the NILVAD substudies are to determine whether frailty, cerebrospinal fluid (CSF), blood biomarker profile and Apolipoprotein E (APOE) status predict response to Nilvadipine, and to investigate the effect of Nilvadipine on cerebral blood flow and blood biomarkers. Methods and analysis All participants who fulfil criteria for the main NILVAD study are eligible for participation in the NILVAD substudies. Participation is subject to informed consent and whether the substudy is available at a particular NILVAD study site. Each substudy entails extra measurements during the course of the main NILVAD study. For example, in the blood and genetic biomarkers substudy, extra blood (30 mL) will be collected at week 0, week 13, week 52 and week 78, while in the cerebral blood flow substudy, participants will receive an MRI and transcranial Doppler measurements at week 0, week 26 and week 78. In the CSF substudy, 10 mL CSF is collected at week 0 and week 78. Ethics and dissemination All NILVAD substudies and all subsequent amendments have received ethical approval within each participating country, according to national regulations. Each participant provides written consent to participate. All participants remain anonymised throughout and the results of each substudy will be published in an international peer reviewed journal. Trial registration number EUDRACT 2012-002764-27; Pre-results. PMID:27436668

  4. Blood-Based Biomarker Candidates of Cerebral Amyloid Using PiB PET in Non-Demented Elderly.

    PubMed

    Westwood, Sarah; Leoni, Emanuela; Hye, Abdul; Lynham, Steven; Khondoker, Mizanur R; Ashton, Nicholas J; Kiddle, Steven J; Baird, Alison L; Sainz-Fuertes, Ricardo; Leung, Rufina; Graf, John; Hehir, Cristina Tan; Baker, David; Cereda, Cristina; Bazenet, Chantal; Ward, Malcolm; Thambisetty, Madhav; Lovestone, Simon

    2016-03-29

    Increasingly, clinical trials for Alzheimer's disease (AD) are being conducted earlier in the disease phase and with biomarker confirmation using in vivo amyloid PET imaging or CSF tau and Aβ measures to quantify pathology. However, making such a pre-clinical AD diagnosis is relatively costly and the screening failure rate is likely to be high. Having a blood-based marker that would reduce such costs and accelerate clinical trials through identifying potential participants with likely pre-clinical AD would be a substantial advance. In order to seek such a candidate biomarker, discovery phase proteomic analyses using 2DGE and gel-free LC-MS/MS for high and low molecular weight analytes were conducted on longitudinal plasma samples collected over a 12-year period from non-demented older individuals who exhibited a range of 11C-PiB PET measures of amyloid load. We then sought to extend our discovery findings by investigating whether our candidate biomarkers were also associated with brain amyloid burden in disease, in an independent cohort. Seven plasma proteins, including A2M, Apo-A1, and multiple complement proteins, were identified as pre-clinical biomarkers of amyloid burden and were consistent across three time points (p <  0.05). Five of these proteins also correlated with brain amyloid measures at different stages of the disease (q <  0.1). Here we show that it is possible to detect a plasma based biomarker signature indicative of AD pathology at a stage long before the onset of clinical disease manifestation. As in previous studies, acute phase reactants and inflammatory markers dominate this signature. PMID:27031486

  5. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases.

    PubMed

    Bacioglu, Mehtap; Maia, Luis F; Preische, Oliver; Schelle, Juliane; Apel, Anja; Kaeser, Stephan A; Schweighauser, Manuel; Eninger, Timo; Lambert, Marius; Pilotto, Andrea; Shimshek, Derya R; Neumann, Ulf; Kahle, Philipp J; Staufenbiel, Matthias; Neumann, Manuela; Maetzler, Walter; Kuhle, Jens; Jucker, Mathias

    2016-07-01

    A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis. Blood and CSF NfL levels were strongly correlated, and NfL increases coincided with the onset and progression of the corresponding proteopathic lesions in brain. Experimental induction of α-synuclein lesions increased CSF and blood NfL levels, while blocking Aβ lesions attenuated the NfL increase. Consistently, we also found NfL increases in CSF and blood of human α-synucleinopathies, tauopathies, and Alzheimer's disease. Our results suggest that CSF and particularly blood NfL can serve as a reliable and easily accessible biomarker to monitor disease progression and treatment response in mouse models and potentially in human proteopathic neurodegenerative diseases. PMID:27292537

  6. Cognitive performance and cerebrospinal fluid biomarkers of neurodegeneration: a study of patients with bipolar disorder and healthy controls.

    PubMed

    Rolstad, Sindre; Jakobsson, Joel; Sellgren, Carl; Ekman, Carl-Johan; Blennow, Kaj; Zetterberg, Henrik; Pålsson, Erik; Landén, Mikael

    2015-01-01

    The purpose of the present study was to investigate if cerebrospinal fluid (CSF) biomarkers of neurodegeneration are associated with cognition in bipolar disorder and healthy controls, respectively. CSF concentrations of total and phosphorylated tau, amyloid beta (Aβ)1-42, ratios of Aβ42/40 and Aβ42/38, soluble amyloid precursor protein α and β, and neurofilament light chain protein were analyzed in relation to neuropsychological performance in 82 euthymic bipolar disorder patients and 71 healthy controls. Linear regression models were applied to account for performance in five cognitive domains using the CSF biomarkers. In patients, the CSF biomarkers explained a significant proportion of the variance (15-36%, p=.002 - <.0005) in all cognitive domains independently of age, medication, disease status, and bipolar subtype I or II. However, the CSF biomarkers specifically mirroring Alzheimer-type brain changes, i.e., P-tau and Aβ1-42, did not contribute significantly. In healthy controls, CSF biomarkers did not explain the variance in cognitive performance. Selected CSF biomarkers of neurodegenerative processes accounted for cognitive performance in persons with bipolar disorder, but not for healthy controls. Specifically, the ratios of Aβ42/40 and Aβ42/38 were consistently associated with altered cognitive performance. PMID:25954806

  7. Multiplex array proteomics detects increased MMP-8 in CSF after spinal cord injury

    PubMed Central

    2012-01-01

    Introduction A variety of methods have been used to study inflammatory changes in the acutely injured spinal cord. Recently novel multiplex assays have been used in an attempt to overcome limitations in numbers of available targets studied in a single experiment. Other technical challenges in developing pre-clinical rodent models to investigate biomarkers in cerebrospinal fluid (CSF) include relatively small volumes of sample and low concentrations of target proteins. The primary objective of this study was to characterize the inflammatory profile present in CSF at a subacute time point in a clinically relevant rodent model of traumatic spinal cord injury (SCI). Our other aim was to test a microarray proteomics platform specifically for this application. Methods A 34 cytokine sandwich ELISA microarray was used to study inflammatory changes in CSF samples taken 12 days post-cervical SCI in adult rats. The difference between the median foreground signal and the median background signal was measured. Bonferroni and Benjamini-Hochburg multiple testing corrections were applied to limit the False Discovery Rate (FDR), and a linear mixed model was used to account for repeated measures in the array. Results We report a novel subacute SCI biomarker, elevated levels of matrix metalloproteinase-8 protein in CSF, and discuss application of statistical models designed for multiplex testing. Conclusions Major advantages of this assay over conventional methods include high-throughput format, good sensitivity, and reduced sample consumption. This method can be useful for creating comprehensive inflammatory profiles, and biomarkers can be used in the clinic to assess injury severity and to objectively grade response to therapy. PMID:22687332

  8. BIOMARKERS DATABASE

    EPA Science Inventory

    This database was developed by assembling and evaluating the literature relevant to human biomarkers. It catalogues and evaluates the usefulness of biomarkers of exposure, susceptibility and effect which may be relevant for a longitudinal cohort study. In addition to describing ...

  9. Distribution of the hematopoietic growth factor G-CSF and its receptor in the adult human brain with specific reference to Alzheimer's disease.

    PubMed

    Ridwan, Sami; Bauer, Henrike; Frauenknecht, Katrin; Hefti, Kyra; von Pein, Harald; Sommer, Clemens J

    2014-04-01

    The granulocyte colony-stimulating factor (G-CSF), being a member of the hematopoietic growth factor family, is also critically involved in controlling proliferation and differentiation of neural stem cells. Treatment with G-CSF has been shown to result in substantial neuroprotective and neuroregenerative effects in various experimental models of acute and chronic diseases of the central nervous system. Although G-CSF has been tested in a clinical study for treatment of acute ischemic stroke, there is only fragmentary data on the distribution of this cytokine and its receptor in the human brain. Therefore, the present study was focused on the immunohistochemical analysis of the protein expression of G-CSF and its receptor (G-CSF R) in the adult human brain. Since G-CSF has been shown not only to exert neuroprotective effects in animal models of Alzheimer's disease (AD) but also to be a candidate for clinical treatment, we have also placed an emphasis on the regulation of these molecules in this neurodegenerative disease. One major finding is that both G-CSF and G-CSF R were ubiquitously but not uniformly expressed in neurons throughout the CNS. Protein expression of G-CSF and G-CSF R was not restricted to neurons but was also detectable in astrocytes, ependymal cells, and choroid plexus cells. However, the distribution of G-CSF and G-CSF R did not substantially differ between AD brains and control, even in the hippocampus, where early neurodegenerative changes typically occur. PMID:24387791

  10. Absence of systemic oxidative stress and increased CSF prostaglandin F2α in progressive MS

    PubMed Central

    Lam, Magda A.; Maghzal, Ghassan J.; Khademi, Mohsen; Piehl, Fredik; Ratzer, Rikke; Romme Christensen, Jeppe; Sellebjerg, Finn Thorup; Olsson, Tomas

    2016-01-01

    Objective: We aimed to investigate the role of oxidative stress in the progression of multiple sclerosis (MS). Methods: We determined by liquid chromatography–tandem mass spectrometry nonenzymatic (F2-isoprostanes) and enzymatic oxidation products of arachidonic acid (prostaglandin F2α [PGF2α]) in plasma and CSF of 45 controls (other neurologic disease [OND] with no signs of inflammation) and 62 patients with MS. Oxidation products were correlated with disease severity and validated biomarkers of inflammation (chemokine ligand 13; matrix metalloproteinase-9; osteopontin) and axonal damage (neurofilament light protein). Results: Compared with OND controls, plasma concentrations of F2-isoprostanes and PGF2α were significantly lower in patients with progressive disease, and decreased with increasing disability score (Expanded Disability Status Scale). In contrast, CSF concentrations of PGF2α, but not F2-isoprostanes, were significantly higher in patients with progressive disease than OND controls (p < 0.01). The content of PGF2α in CSF increased with disease severity (p = 0.044) and patient age (p = 0.022), although this increase could not be explained by age. CSF PGF2α decreased with natalizumab and methylprednisolone treatment and was unaffected by the use of nonsteroidal anti-inflammatory drug in secondary progressive MS. CSF PGF2α did not associate with validated CSF markers of inflammation and axonal damage that themselves did not associate with the Expanded Disability Status Scale. Conclusions: Our data suggest that MS progression is associated with low systemic oxidative activity. This may contribute to immune dysregulation with CNS inflammation accompanied by increased local cyclooxygenase-dependent lipid oxidation. PMID:27386506

  11. Fluid biomarkers in multiple system atrophy: A review of the MSA Biomarker Initiative.

    PubMed

    Laurens, Brice; Constantinescu, Radu; Freeman, Roy; Gerhard, Alexander; Jellinger, Kurt; Jeromin, Andreas; Krismer, Florian; Mollenhauer, Brit; Schlossmacher, Michael G; Shaw, Leslie M; Verbeek, Marcel M; Wenning, Gregor K; Winge, Kristian; Zhang, Jing; Meissner, Wassilios G

    2015-08-01

    Despite growing research efforts, no reliable biomarker currently exists for the diagnosis and prognosis of multiple system atrophy (MSA). Such biomarkers are urgently needed to improve diagnostic accuracy, prognostic guidance and also to serve as efficacy measures or surrogates of target engagement for future clinical trials. We here review candidate fluid biomarkers for MSA and provide considerations for further developments and harmonization of standard operating procedures. A PubMed search was performed until April 24, 2015 to review the literature with regard to candidate blood and cerebrospinal fluid (CSF) biomarkers for MSA. Abstracts of 1760 studies were retrieved and screened for eligibility. The final list included 60 studies assessing fluid biomarkers in patients with MSA. Most studies have focused on alpha-synuclein, markers of axonal degeneration or catecholamines. Their results suggest that combining several CSF fluid biomarkers may be more successful than using single markers, at least for the diagnosis. Currently, the clinically most useful markers may comprise a combination of the light chain of neurofilament (which is consistently elevated in MSA compared to controls and Parkinson's disease), metabolites of the catecholamine pathway and proteins such as α-synuclein, DJ-1 and total-tau. Beyond future efforts in biomarker discovery, the harmonization of standard operating procedures will be crucial for future success. PMID:25982836

  12. miRNAs as Circulating Biomarkers for Alzheimer's Disease and Parkinson's Disease.

    PubMed

    Mushtaq, Gohar; Greig, Nigel H; Anwar, Firoz; Zamzami, Mazin A; Choudhry, Hani; Shaik, Munvar M; Tamargo, Ian A; Kamal, Mohammad A

    2016-01-01

    Detection of biomarkers for neurodegenerative disorders (NDDs) within brain tissues of Alzheimer's disease (AD) and Parkinson's disease (PD) patients has always been hampered by our inability to access and biopsy tissue of key brain regions implicated in disease occurrence and progression. Currently, diagnosis of NDDs is principally based on clinical observations of symptoms that present at later stages of disease progression, followed by neuroimaging and, possibly, CSF evaluation. One way to potentially detect and diagnose NDDs at a far earlier stage is to screen for abnormal levels of specific disease markers within the peripheral circulation of patients with NDDs. Increasing evidence suggests that there is dysregulation of microRNAs (miRNAs) in NDDs. Peripheral blood mononuclear cells, as well as biofluids, such as plasma, serum, urine and cerebrospinal fluid, contain miRNAs that can be identified and quantified. Circulating miRNAs within blood and other biofluids may thus be characterized and used as non-invasive, diagnostic biomarkers that facilitate the early detection of disease and potentially the continual monitoring of disease progression for NDDs such as AD and PD. Plainly, such a screen is only possible with a clear understanding of which miRNAs change with disease, and when these changes occur during the progression of AD and PD. Such information is becoming increasingly available and, in the near future, may not only support disease diagnosis, but provide the opportunity to evaluate therapeutic interventions earlier in the disease process. PMID:26527155

  13. New Developments in Biomarkers for Atopic Dermatitis

    PubMed Central

    Thijs, Judith L.; van Seggelen, Wouter; Bruijnzeel-Koomen, Carla; de Bruin-Weller, Marjolein; Hijnen, DirkJan

    2015-01-01

    The application of biomarkers in medicine is evolving. Biomarkers do not only give us a better understanding of pathogenesis, but also increase treatment efficacy and safety, further enabling more precise clinical care. This paper focuses on the current use of biomarkers in atopic dermatitis, new developments and future perspectives. Biomarkers can be used for many different purposes, including the objective determination of disease severity, confirmation of clinical diagnosis, and to predict response to treatment. In atopic dermatitis, many biomarkers have been investigated as a marker for disease severity. Currently serum thymus and activation-regulated chemokine (TARC) is the superior biomarker for assessing disease severity. However, we have recently shown that the use of a panel of serum biomarkers is more suitable for assessing disease severity than an individual biomarker. In this overview, we will discuss alternative sources for biomarkers, such as saliva and capillary blood, which can increase the user friendliness of biomarkers in atopic dermatitis (AD). Both methods offer simple, non-invasive and cost effective alternatives to venous blood. This provides great translational and clinical potential. Biomarkers will play an increasingly important role in AD research and personalized medicine. The use of biomarkers will enhance the efficacy of AD treatment by facilitating the individualization of therapy targeting the patients’ specific biological signature and also by providing tools for predicting and monitoring of therapeutic response. PMID:26239250

  14. [Overview of guidelines for proper use of the G-CSF(2013 edition)].

    PubMed

    Kiura, Katsuyuki

    2014-06-01

    Guidelines for proper use of the G-CSF(2001 edition)by the Japan Society of Clinical Oncology have been revised the first time in 12 years. The differences between the first edition and the new one are as follows: The new guidelines(2013 edition) adopted the clinical question format, and used the level of evidence and recommendation grades, along with the Handbook of Clinical Guidelines of Minds(2007 edition). There are relatively few evidence-based randomized controlled trials(RCTs) that can inform G-CSF use in Japan at present. Thus, we had to select the evidence from RCTs conducted in Europe and the USA when setting the recommendation level. Guidelines from Europe and the USA were also referred to; however, because the incidence of febrile neutropenia(FN)is presumed to differ between Japan and the USA/Europe, the clinical trials conducted in Japan were investigated as much as possible. New chapters on topics such as biosimilars, pegfilgrastim(domestic non-release), and the dosage and method of G-CSF administration(medical insurance in Japan)were added. The chemotherapy regimen-specific incidence of FN in Japan for primary prophylactic G-CSF administration and G-CSF use in hematological malignancy were described in detail. Nurses, pharmacists, and medical doctors participated in guideline steering committee, because the new guidelines are directed at a wide range of health care workers. PMID:25129080

  15. Driving change: kidney proximal tubule CSF-1 polarizes macrophages

    PubMed Central

    Perry, Heather M.; Okusa, Mark D.

    2016-01-01

    Macrophage colony-stimulating factor (CSF-1 or M-CSF) is important for kidney repair after acute kidney injury (AKI). CSF-1 is upregulated in tubule epithelial cells in response to kidney injury stimuli and binds to its sole receptor, CSF1R, in an autocrine and paracrine manner. Wang and colleagues used a genetic approach to constitutively delete Csf1 in proximal tubules to establish that proximal tubule production of CSF-1 is important for polarizing and skewing macrophages toward an M2 phenotype, and for recovery from AKI. PMID:26649657

  16. Trends in the Canadian Surgery Forum (CSF): analysis of the CSF program over the past decade

    PubMed Central

    Ball, Chad G.; Eberle, Tammy L.; Dixon, Elijah; Boland, Cassandre

    2015-01-01

    Summary Numerous clinical and basic science–related innovations have been presented at the Canadian Surgery Forum (CSF). We sought to define changes in both the content and methodology of the CSF scientific program over the past decade. While the total volume of CSF abstract presentations has increased dramatically, the methodological quality has remained static, with few randomized trials and minimal prospective work. Although the majority of the scientific content is associated with urban university centres, the program also encourages content from community practices. Surgical education, hepatopancreatobiliary and bariatric content have increased substantially, but remain secondary to colorectal diseases. PMID:26424689

  17. An MRI-Derived Definition of MCI-to-AD Conversion for Long-Term, Automatic Prognosis of MCI Patients

    PubMed Central

    Aksu, Yaman; Miller, David J.; Kesidis, George; Bigler, Don C.; Yang, Qing X.

    2011-01-01

    Alzheimer's disease (AD) and mild cognitive impairment (MCI) are of great current research interest. While there is no consensus on whether MCIs actually “convert” to AD, this concept is widely applied. Thus, the more important question is not whether MCIs convert, but what is the best such definition. We focus on automatic prognostication, nominally using only a baseline brain image, of whether an MCI will convert within a multi-year period following the initial clinical visit. This is not a traditional supervised learning problem since, in ADNI, there are no definitive labeled conversion examples. It is not unsupervised, either, since there are (labeled) ADs and Controls, as well as cognitive scores for MCIs. Prior works have defined MCI subclasses based on whether or not clinical scores significantly change from baseline. There are concerns with these definitions, however, since, e.g., most MCIs (and ADs) do not change from a baseline CDR = 0.5 at any subsequent visit in ADNI, even while physiological changes may be occurring. These works ignore rich phenotypical information in an MCI patient's brain scan and labeled AD and Control examples, in defining conversion. We propose an innovative definition, wherein an MCI is a converter if any of the patient's brain scans are classified “AD” by a Control-AD classifier. This definition bootstraps design of a second classifier, specifically trained to predict whether or not MCIs will convert. We thus predict whether an AD-Control classifier will predict that a patient has AD. Our results demonstrate that this definition leads not only to much higher prognostic accuracy than by-CDR conversion, but also to subpopulations more consistent with known AD biomarkers (including CSF markers). We also identify key prognostic brain region biomarkers. PMID:22022375

  18. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson's disease and control subjects.

    PubMed

    Wuolikainen, Anna; Jonsson, Pär; Ahnlund, Maria; Antti, Henrik; Marklund, Stefan L; Moritz, Thomas; Forsgren, Lars; Andersen, Peter M; Trupp, Miles

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) are protein-aggregation diseases that lack clear molecular etiologies. Biomarkers could aid in diagnosis, prognosis, planning of care, drug target identification and stratification of patients into clinical trials. We sought to characterize shared and unique metabolite perturbations between ALS and PD and matched controls selected from patients with other diagnoses, including differential diagnoses to ALS or PD that visited our clinic for a lumbar puncture. Cerebrospinal fluid (CSF) and plasma from rigorously age-, sex- and sampling-date matched patients were analyzed on multiple platforms using gas chromatography (GC) and liquid chromatography (LC)-mass spectrometry (MS). We applied constrained randomization of run orders and orthogonal partial least squares projection to latent structure-effect projections (OPLS-EP) to capitalize upon the study design. The combined platforms identified 144 CSF and 196 plasma metabolites with diverse molecular properties. Creatine was found to be increased and creatinine decreased in CSF of ALS patients compared to matched controls. Glucose was increased in CSF of ALS patients and α-hydroxybutyrate was increased in CSF and plasma of ALS patients compared to matched controls. Leucine, isoleucine and ketoleucine were increased in CSF of both ALS and PD. Together, these studies, in conjunction with earlier studies, suggest alterations in energy utilization pathways and have identified and further validated perturbed metabolites to be used in panels of biomarkers for the diagnosis of ALS and PD. PMID:26883206

  19. Cerebrospinal fluid biomarkers in Alzheimer's and Parkinson's diseases-From pathophysiology to clinical practice.

    PubMed

    Blennow, Kaj; Biscetti, Leonardo; Eusebi, Paolo; Parnetti, Lucilla

    2016-06-01

    This review provides an update on the role, development, and validation of CSF biomarkers in the diagnosis and prognosis of Alzheimer's disease and PD. Some recent developments on novel biomarkers are also discussed. We also give an overview of methodological/technical factors still hampering the global validation and standardization of CSF Alzheimer's disease and PD biomarkers. CSF biomarkers have the potential to improve the diagnostic accuracy at the early stages not only for Alzheimer's disease but also for PD. This step is essential in view of the availability of disease-modifying treatments. Our vision for the future is that analyzing biomarker panels on a minute amount of CSF could provide important information on the whole spectrum of the molecular pathogenic events characterizing these neurodegenerative disorders. CSF core biomarkers have already been included in the diagnostic criteria for Alzheimer's disease, and they are also under consideration as tools to monitor the effects of disease-modifying drugs. With respect to PD, their potential for improving diagnostic accuracy in early diagnosis is under intense research, resembling the same path followed for Alzheimer's disease. © 2016 International Parkinson and Movement Disorder Society. PMID:27145480

  20. Differentially charged isoforms of apolipoprotein E from human blood are potential biomarkers of Alzheimer’s disease

    PubMed Central

    2014-01-01

    Introduction Alzheimer’s disease (AD) is the major cause of dementia among the elderly. Finding blood-based biomarkers for disease diagnosis and prognosis is urgently needed. Methods We studied protein distributions in brain tissues, cerebrospinal fluid (CSF), and blood of AD patients by using proteomics and a new proteomic method that we call “2D multiplexed Western blot” (2D mxWd). This method allows us to determine in multiple samples the electrophoretic patterns of protein isoforms with different isoelectric points. Results Apolipoprotein E (ApoE) displays a unique distribution of electrophoretic isoforms in the presence of AD and also a unique pattern specific to the APOE genotype. Conclusions The isoelectric distribution of differentially charged ApoE isoforms was used to determine the presence of AD in a small group of samples. Further studies are needed to validate their use as predictors of disease onset and progression, and as biomarkers for determining the efficacy of therapeutic treatments. PMID:25478016

  1. Retinal vascular biomarkers for early detection and monitoring of Alzheimer's disease

    PubMed Central

    Frost, S; Kanagasingam, Y; Sohrabi, H; Vignarajan, J; Bourgeat, P; Salvado, O; Villemagne, V; Rowe, C C; Lance Macaulay, S; Szoeke, C; Ellis, K A; Ames, D; Masters, C L; Rainey-Smith, S; Martins, R N

    2013-01-01

    The earliest detectable change in Alzheimer's disease (AD) is the buildup of amyloid plaque in the brain. Early detection of AD, prior to irreversible neurological damage, is important for the efficacy of current interventions as well as for the development of new treatments. Although PiB-PET imaging and CSF amyloid are the gold standards for early AD diagnosis, there are practical limitations for population screening. AD-related pathology occurs primarily in the brain, but some of the hallmarks of the disease have also been shown to occur in other tissues, including the retina, which is more accessible for imaging. Retinal vascular changes and degeneration have previously been reported in AD using optical coherence tomography and laser Doppler techniques. This report presents results from analysis of retinal photographs from AD and healthy control participants from the Australian Imaging, Biomarkers and Lifestyle (AIBL) Flagship Study of Ageing. This is the first study to investigate retinal blood vessel changes with respect to amyloid plaque burden in the brain. We demonstrate relationships between retinal vascular parameters, neocortical brain amyloid plaque burden and AD. A number of RVPs were found to be different in AD. Two of these RVPs, venular branching asymmetry factor and arteriolar length-to-diameter ratio, were also higher in healthy individuals with high plaque burden (P=0.01 and P=0.02 respectively, after false discovery rate adjustment). Retinal photographic analysis shows potential as an adjunct for early detection of AD or monitoring of AD-progression or response to treatments. PMID:23443359

  2. Identification of M-CSF agonists and antagonists

    DOEpatents

    Pandit, Jayvardhan; Jancarik, Jarmila; Kim, Sung-Hou; Koths, Kirston; Halenbeck, Robert; Fear, Anna Lisa; Taylor, Eric; Yamamoto, Ralph; Bohm, Andrew

    2000-02-15

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  3. Biomarkers in Parkinson's disease (recent update).

    PubMed

    Sharma, Sushil; Moon, Carolyn Seungyoun; Khogali, Azza; Haidous, Ali; Chabenne, Anthony; Ojo, Comfort; Jelebinkov, Miriana; Kurdi, Yousef; Ebadi, Manuchair

    2013-09-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder mostly affecting the aging population over sixty. Cardinal symptoms including, tremors, muscle rigidity, drooping posture, drooling, walking difficulty, and autonomic symptoms appear when a significant number of nigrostriatal dopaminergic neurons are already destroyed. Hence we need early, sensitive, specific, and economical peripheral and/or central biomarker(s) for the differential diagnosis, prognosis, and treatment of PD. These can be classified as clinical, biochemical, genetic, proteomic, and neuroimaging biomarkers. Novel discoveries of genetic as well as nongenetic biomarkers may be utilized for the personalized treatment of PD during preclinical (premotor) and clinical (motor) stages. Premotor biomarkers including hyper-echogenicity of substantia nigra, olfactory and autonomic dysfunction, depression, hyposmia, deafness, REM sleep disorder, and impulsive behavior may be noticed during preclinical stage. Neuroimaging biomarkers (PET, SPECT, MRI), and neuropsychological deficits can facilitate differential diagnosis. Single-cell profiling of dopaminergic neurons has identified pyridoxal kinase and lysosomal ATPase as biomarker genes for PD prognosis. Promising biomarkers include: fluid biomarkers, neuromelanin antibodies, pathological forms of α-Syn, DJ-1, amyloid β and tau in the CSF, patterns of gene expression, metabolomics, urate, as well as protein profiling in the blood and CSF samples. Reduced brain regional N-acetyl-aspartate is a biomarker for the in vivo assessment of neuronal loss using magnetic resonance spectroscopy and T2 relaxation time with MRI. To confirm PD diagnosis, the PET biomarkers include [(18)F]-DOPA for estimating dopaminergic neurotransmission, [(18)F]dG for mitochondrial bioenergetics, [(18)F]BMS for mitochondrial complex-1, [(11)C](R)-PK11195 for microglial activation, SPECT imaging with (123)Iflupane and βCIT for dopamine transporter, and urinary

  4. Different Cholinesterase Inhibitor Effects on CSF Cholinesterases in Alzheimer Patients

    PubMed Central

    Nordberg, Agneta; Darreh-Shori, Taher; Peskind, Elaine; Soininen, Hilkka; Mousavi, Malahat; Eagle, Gina; Lane, Roger

    2014-01-01

    Background The current study aimed to compare the effects of different cholinesterase inhibitors on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and protein levels, in the cerebrospinal fluid (CSF) of Alzheimer disease (AD) patients. Methods and Findings AD patients aged 50–85 years were randomized to open-label treatment with oral rivastigmine, donepezil or galantamine for 13 weeks. AChE and BuChE activities were assayed by Ellman’s colorimetric method. Protein levels were assessed by enzyme-linked immunosorbent assay (ELISA). Primary analyses were based on the Completer population (randomized patients who completed Week 13 assessments). 63 patients were randomized to treatment. Rivastigmine was associated with decreased AChE activity by 42.6% and decreased AChE protein levels by 9.3%, and decreased BuChE activity by 45.6% and decreased BuChE protein levels by 21.8%. Galantamine decreased AChE activity by 2.1% and BuChE activity by 0.5%, but increased AChE protein levels by 51.2% and BuChE protein levels by10.5%. Donepezil increased AChE and BuChE activities by 11.8% and 2.8%, respectively. Donepezil caused a 215.2%increase in AChE and 0.4% increase in BuChE protein levels. Changes in mean AChE-Readthrough/Synaptic ratios, which might reflect underlying neurodegenerative processes, were 1.4, 0.6, and 0.4 for rivastigmine, donepezil and galantamine, respectively. Conclusion The findings suggest pharmacologically-induced differences between rivastigmine, donepezil and galantamine. Rivastigmine provides sustained inhibition of AChE and BuChE, while donepezil and galantamine do not inhibit BuChE and are associated with increases in CSF AChE protein levels. The clinical implications require evaluation. PMID:19199870

  5. Neurofilament light in CSF and serum is a sensitive marker for axonal white matter injury in MS

    PubMed Central

    Bergman, Joakim; Dring, Ann; Zetterberg, Henrik; Blennow, Kaj; Norgren, Niklas; Gilthorpe, Jonathan; Bergenheim, Tommy

    2016-01-01

    Objective: In an ongoing, open-label, phase 1b study on the intrathecal administration of rituximab for progressive multiple sclerosis, an intraventricular catheter was inserted for drug delivery. The objective of this study was to characterize the limited white matter axonal injury evoked by catheter insertion by analyzing a panel of markers for tissue damage in CSF and serum. Methods: Lumbar CSF and serum were collected before catheter insertion and at regular intervals during the follow-up period of 1 year. Levels of neurofilament light polypeptide (NF-L), glial fibrillary acidic protein, microtubule-associated protein tau, and S100 calcium binding protein B were measured in the CSF, and NF-L was also quantified in serum at each time point. Results: One month after neurosurgical trauma, there was a distinct peak in NF-L concentration in both CSF and serum. In contrast, the biomarkers S100 calcium binding protein B, glial fibrillary acidic protein, and microtubule-associated protein tau did not show any significant changes. NF-L levels in both CSF and serum peaked at 1 month post surgery, returning to baseline after 6 to 9 months. A strong correlation was observed between the concentrations of NF-L in CSF and serum. Conclusions: The NF-L level, in CSF and serum, appears to be both a sensitive and specific marker for white matter axonal injury. This makes NF-L a valuable tool with which to evaluate acute white matter axonal damage in a clinical setting. Serum analysis of NF-L may become a convenient way to follow white matter axonal damage longitudinally. ClinicalTrials.gov identifier: NCT01719159. PMID:27536708

  6. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis.

    PubMed

    Kubota, Yoshiaki; Takubo, Keiyo; Shimizu, Takatsune; Ohno, Hiroaki; Kishi, Kazuo; Shibuya, Masabumi; Saya, Hideyuki; Suda, Toshio

    2009-05-11

    Antiangiogenic therapy for the treatment of cancer and other neovascular diseases is desired to be selective for pathological angiogenesis and lymphangiogenesis. Macrophage colony-stimulating factor (M-CSF), a cytokine required for the differentiation of monocyte lineage cells, promotes the formation of high-density vessel networks in tumors and therefore possesses therapeutic potential as an M-CSF inhibitor. However, the physiological role of M-CSF in vascular and lymphatic development, as well as the precise mechanisms underlying the antiangiogenic effects of M-CSF inhibition, remains unclear. Moreover, therapeutic potential of M-CSF inhibition in other neovascular diseases has not yet been evaluated. We used osteopetrotic (op/op) mice to demonstrate that M-CSF deficiency reduces the abundance of LYVE-1(+) and LYVE1(-) macrophages, resulting in defects in vascular and lymphatic development. In ischemic retinopathy, M-CSF was required for pathological neovascularization but was not required for the recovery of normal vasculature. In mouse osteosarcoma, M-CSF inhibition effectively suppressed tumor angiogenesis and lymphangiogenesis, and it disorganized extracellular matrices. In contrast to VEGF blockade, interruption of M-CSF inhibition did not promote rapid vascular regrowth. Continuous M-CSF inhibition did not affect healthy vascular and lymphatic systems outside tumors. These results suggest that M-CSF-targeted therapy is an ideal strategy for treating ocular neovascular diseases and cancer. PMID:19398755

  7. CSF markers of Alzheimer’s pathology and microglial activation are associated with altered white matter microstructure in asymptomatic adults at risk for Alzheimer’s disease

    PubMed Central

    Melah, Kelsey E; Lu, Sharon Yuan-Fu; Hoscheidt, Siobhan M; Alexander, Andrew L; Adluru, Nagesh; Destiche, Daniel J; Carlsson, Cynthia M; Zetterberg, Henrik; Blennow, Kaj; Okonkwo, Ozioma C; Gleason, Carey E; Dowling, N Maritza; Bratzke, Lisa C; Rowley, Howard A; Sager, Mark A; Asthana, Sanjay; Johnson, Sterling C; Bendlin, Barbara B

    2015-01-01

    Background The immune response in Alzheimer’s disease (AD) involves activation of microglia which may remove β-amyloid. However, overproduction of inflammatory compounds may exacerbate neural damage in Alzheimer’s disease. AD pathology accumulates years before diagnosis, yet the extent to which neuroinflammation is involved in the earliest disease stages is unknown. Objective To determine whether neuroinflammation exacerbates neural damage in preclinical AD. Methods We utilized cerebrospinal fluid (CSF) and magnetic resonance imaging collected in 192 asymptomatic late-middle-aged adults (mean age=60.98 years). Neuroinflammatory markers chitinase-3-like protein 1 (YKL-40) and monocyte chemoattractant protein-1 (MCP-1) in CSF were utilized as markers of neuroinflammation. Neural cell damage was assessed using CSF neurofilament light chain protein (NFL), CSF total tau (T-Tau), and neural microstructure assessed with diffusion tensor imaging (DTI). With regard to AD pathology, CSF Aβ42 and tau phosphorylated at threonine 181 (P-Tau181) were used as markers of amyloid and tau pathology, respectively. We hypothesized that higher YKL-40 and MCP-1 in the presence of AD pathology would be associated with higher NFL, T-Tau, and altered microstructure on DTI. Results Neuroinflammation was associated with markers of neural damage. Higher CSF YKL-40 was associated with both higher CSF NFL and T-Tau. Inflammation interacted with AD pathology, such that greater MCP-1 and lower Aβ42 was associated with altered microstructure in bilateral frontal and right temporal lobe and that greater MCP-1 and greater P-Tau181 was associated with altered microstructure in precuneus. Conclusion Inflammation may play a role in neural damage in preclinical AD. PMID:26836182

  8. GM-CSF modulates pulmonary resistance to influenza A infection

    PubMed Central

    Sever-Chroneos, Zvjezdana; Murthy, Aditi; Davis, Jeremy; Florence, Jon Matthew; Kurdowska, Anna; Krupa, Agnieszka; Tichelaar, Jay W.; White, Mitchell R.; Hartshorn, Kevan L.; Kobzik, Lester; Whitsett, Jeffrey A.; Chroneos, Zissis C.

    2016-01-01

    Alveolar type II epithelial or other pulmonary cells secrete GM-CSF that regulates surfactant catabolism and mucosal host defense through its capacity to modulate the maturation and activation of alveolar macrophages. GM-CSF enhances expression of scavenger receptors MARCO and SR-A. The alveolar macrophage SP-R210 receptor binds the surfactant collectin SP-A mediating clearance of respiratory pathogens. The current study determined the effects of epithelial-derived GM-CSF in host resistance to influenza A pneumonia. The results demonstrate that GM-CSF enhanced resistance to infection with 1.9 × 104 ffc of the mouse-adapted influenza A/Puerto Rico/8/34 (PR8) H1N1 strain, as indicated by significant differences in mortality and mean survival of GM-CSF-deficient (GM−/−) mice compared to GM−/− mice in which GM-CSF is expressed at increased levels. Protective effects of GM-CSF were observed both in mice with constitutive and inducible GM-CSF expression under the control of the pulmonary-specific SFTPC or SCGB1A1 promoters, respectively. Mice that continuously secrete high levels of GM-CSF developed desquamative interstitial pneumonia that impaired long-term recovery from influenza. Conditional expression of optimal GM-CSF levels at the time of infection, however, resulted in alveolar macrophage proliferation and focal lymphocytic inflammation of distal airways. GM-CSF enhanced alveolar macrophage activity as indicated by increased expression of SP-R210 and CD11c. Infection of mice lacking the GM-CSF-regulated SR-A and MARCO receptors revealed that MARCO decreases resistance to influenza in association with increased levels of SP-R210 in MARCO−/− alveolar macrophages. In conclusion, GM-CSF enhances early host resistance to influenza. Targeting of MARCO may reinforce GM-CSF-mediated host defense against pathogenic influenza. PMID:21925209

  9. Utility of CSF Cytokine/Chemokines as Markers of Active Intrathecal Inflammation: Comparison of Demyelinating, Anti-NMDAR and Enteroviral Encephalitis

    PubMed Central

    Kothur, Kavitha; Wienholt, Louise; Mohammad, Shekeeb S.; Tantsis, Esther M.; Pillai, Sekhar; Britton, Philip N.; Jones, Cheryl A.; Angiti, Rajeshwar R.; Barnes, Elizabeth H.; Schlub, Timothy; Bandodkar, Sushil; Brilot, Fabienne; Dale, Russell C.

    2016-01-01

    Background Despite the discovery of CSF and serum diagnostic autoantibodies in autoimmune encephalitis, there are still very limited CSF biomarkers for diagnostic and monitoring purposes in children with inflammatory or autoimmune brain disease. The cause of encephalitis is unknown in up to a third of encephalitis cohorts, and it is important to differentiate infective from autoimmune encephalitis given the therapeutic implications. Aim To study CSF cytokines and chemokines as diagnostic biomarkers of active neuroinflammation, and assess their role in differentiating demyelinating, autoimmune, and viral encephalitis. Methods We measured and compared 32 cytokine/chemokines using multiplex immunoassay and APRIL and BAFF using ELISA in CSF collected prior to commencing treatment from paediatric patients with confirmed acute disseminated encephalomyelitis (ADEM, n = 16), anti-NMDAR encephalitis (anti-NMDAR E, n = 11), and enteroviral encephalitis (EVE, n = 16). We generated normative data using CSF from 20 non-inflammatory neurological controls. The sensitivity of CSF cytokine/chemokines to diagnose encephalitis cases was calculated using 95th centile of control values as cut off. We correlated CSF cytokine/chemokines with disease severity and follow up outcome based on modified Rankin scale. One-way hierarchical correlational cluster analysis of molecules was performed in different encephalitis and outcome groups. Results In descending order, CSF TNF-α, IL-10, IFN-α, IL-6, CXCL13 and CXCL10 had the best sensitivity (>79.1%) when all encephalitis patients were included. The combination of IL-6 and IFN-α was most predictive of inflammation on multiple logistic regression with area under the ROC curve 0.99 (CI 0.97–1.00). There were no differences in CSF cytokine concentrations between EVE and anti-NMDAR E, whereas ADEM showed more pronounced elevation of Th17 related (IL-17, IL-21) and Th2 (IL-4, CCL17) related cytokine/chemokines. Unlike EVE, heat map analysis

  10. Cerebrospinal fluid biomarkers mirror rate of cognitive decline.

    PubMed

    Rolstad, Sindre; Berg, Anne Ingeborg; Bjerke, Maria; Johansson, Boo; Zetterberg, Henrik; Wallin, Anders

    2013-01-01

    The ability to predict future decline in cognitive systems using the cerebrospinal fluid (CSF) biomarkers 42 amino acid form of amyloid-β (Aβ42) and total tau (T-tau) is not fully understood. In a clinical sample ranging from cognitively healthy to dementia (n = 326), linear regression models were performed in order to investigate the ability of CSF biomarkers to predict cognitive decline in all cognitive domains from baseline to 2-year follow-up. Gender, age, and years of education were included as covariates. In patients with subjective cognitive impairment, T-tau had a small impact on executive functions (r2 = 0.07). T-tau had a small to moderate influence (r2 = 0.06-0.11) on all cognitive functions with the exception of visuospatial functions in patients with mild cognitive impairment (MCI). In patients with dementia, the impact of T-tau was large (r2 = 0.29) on semantic memory. Aβ42 had a small effect (r2 = 0.07) on speed and executive functions in MCI. In patients with dementia, Aβ42 had a moderate influence (r2 = 0.13-0.24) on semantic and verbal working memory/fluency. Our results speak in favor of the notion that CSF biomarkers reflect the rate of cognitive decline across the continuum of cognitive impairment from healthy to dementia. CSF predicted subsequent decline in more cognitive domains among MCI cases, but the impact was most pronounced in patients with dementia. PMID:23313924

  11. Biomarkers of Guillain-Barré Syndrome: Some Recent Progress, More Still to Be Explored

    PubMed Central

    Wang, Ying; Sun, Shuang; Zhu, Jie; Cui, Li; Zhang, Hong-Liang

    2015-01-01

    Guillain-Barré syndrome (GBS), the axonal subtype of which is mainly triggered by C. jejuni with ganglioside-mimicking lipooligosaccharides (LOS), is an immune-mediated disorder in the peripheral nervous system (PNS) accompanied by the disruption of the blood-nerve barrier (BNB) and the blood-cerebrospinal fluid barrier (B-CSF-B). Biomarkers of GBS have been extensively explored and some of them are proved to assist in the clinical diagnosis and in monitoring disease progression as well as in assessing the efficacy of immunotherapy. Herein, we systemically review the literature on biomarkers of GBS, including infection-/immune-/BNB, B-CSF-B, and PNS damage-associated biomarkers, aiming at providing an overview of GBS biomarkers and guiding further investigations. Furthermore, we point out further directions for studies on GBS biomarkers. PMID:26451079

  12. CSF cytology versus immunocytochemistry in meningeal carcinomatosis.

    PubMed Central

    Boogerd, W; Vroom, T M; van Heerde, P; Brutel de la Rivière, G; Peterse, J L; van der Sande, J J

    1988-01-01

    CSF immunocytochemistry with monoclonal antibodies was compared with conventional cytology to determine its sensitivity in detecting malignant cells in patients with meningeal carcinomatosis. One hundred and eighteen samples were investigated. Cytology was tumour positive in 83 samples and immunocytochemistry in 85. Dissimilar results between the two diagnostic methods were noted in 12 specimens, invariably occurring in samples with a low cell count and obtained from treated patients. Combined use of the two methods led to a 9% increase of sensitivity in detecting malignant cells compared with cytology alone. It is concluded that immunocytochemistry is of minor help in the problem of false-negative cytology in meningeal carcinomatosis. PMID:2832546

  13. Pivotal Roles of GM-CSF in Autoimmunity and Inflammation

    PubMed Central

    Shiomi, Aoi; Usui, Takashi

    2015-01-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review. PMID:25838639

  14. Characterization of lipoproteins in human and canine cerebrospinal fluid (CSF)

    SciTech Connect

    Pitas, R.E.; Weisgraber, K.H.; Boyles, J.K.; Lee, S.; Mahley, R.W.

    1986-03-01

    Previously the authors demonstrated that rat brain astrocytes in vitro synthesize and secrete apo-E and possess apo-B,E(LDL) receptors. The apo-E secreted by astrocytes and apo-E in rat brain extracts differed from serum apo-E in two respects. Brain apo-E had a higher apparent molecular weight and a higher percentage of more acidic isoforms. To characterize further the apo-E within the central nervous system, apo-E in human and canine CSF was investigated. Compared to plasma apo-E, CSF apo-E had a higher apparent M/sub r/ and a higher percentage of acidic isoforms which were sialylated, as shown by neuraminidase digestion. The apo-E in human CSF was approx.5-10% of the plasma level. In CSF 60-80% of the apo-E was in lipoproteins with d = 1.09-1.15. The remainder of the apo-E was in the d > 1.21 fraction. Human CSF lipoproteins were primarily spherical (110-190 A) while canine CSF lipoproteins were a mixture of discs (205 x 65 A) while canine CSF lipoproteins were a mixture of discs (205 x 65 A) and spheres (100-150 A). The CSF also contained apo-AI in the d = 1.09-1.15 g/ml fraction. Human CSF lipoproteins containing both apo-E and apo-AI were isolated on an anti-apo-E affinity column, suggesting that apo-E and AI occurred in the same particles. The CSF apo-E-containing lipoproteins competed for binding of /sup 125/I-LDL to the apo-B,E(LDL) receptor. There was no detectable apo-B in CSF. These data suggest that CSF lipoproteins might transport lipid and regulate lipid homeostasis within the brain.

  15. Characterization of pathogenic human monoclonal autoantibodies against GM-CSF

    PubMed Central

    Wang, Yanni; Thomson, Christy A.; Allan, Lenka L.; Jackson, Linda M.; Olson, Melanie; Hercus, Timothy R.; Nero, Tracy L.; Turner, Amanda; Parker, Michael W.; Lopez, Angel L.; Waddell, Thomas K.; Anderson, Gary P.; Hamilton, John A.; Schrader, John W.

    2013-01-01

    The origin of pathogenic autoantibodies remains unknown. Idiopathic pulmonary alveolar proteinosis is caused by autoantibodies against granulocyte–macrophage colony-stimulating factor (GM-CSF). We generated 19 monoclonal autoantibodies against GM-CSF from six patients with idiopathic pulmonary alveolar proteinosis. The autoantibodies used multiple V genes, excluding preferred V-gene use as an etiology, and targeted at least four nonoverlapping epitopes on GM-CSF, suggesting that GM-CSF is driving the autoantibodies and not a B-cell epitope on a pathogen cross-reacting with GM-CSF. The number of somatic mutations in the autoantibodies suggests that the memory B cells have been helped by T cells and re-entered germinal centers. All autoantibodies neutralized GM-CSF bioactivity, with general correlations to affinity and off-rate. The binding of certain autoantibodies was changed by point mutations in GM-CSF that reduced binding to the GM-CSF receptor. Those monoclonal autoantibodies that potently neutralize GM-CSF may be useful in treating inflammatory disease, such as rheumatoid arthritis and multiple sclerosis, cancer, and pain. PMID:23620516

  16. Synthesis of membrane-bound colony-stimulating factor 1 (CSF-1) and downmodulation of CSF-1 receptors in NIH 3T3 cells transformed by cotransfection of the human CSF-1 and c-fms (CSF-1 receptor) genes.

    PubMed Central

    Rettenmier, C W; Roussel, M F; Ashmun, R A; Ralph, P; Price, K; Sherr, C J

    1987-01-01

    NIH 3T3 cells cotransfected with the human c-fms proto-oncogene together with a 1.6-kilobase cDNA clone encoding a 256-amino-acid precursor of the human mononuclear phagocyte colony-stimulating factor CSF-1 (M-CSF) undergo transformation by an autocrine mechanism. The number of CSF-1 receptors on the surface of transformed cells was regulated by ligand-induced receptor degradation and was inversely proportional to the quantity of CSF-1 produced. A tyrosine-to-phenylalanine mutation at position 969 near the receptor carboxyl terminus potentiated its transforming efficiency in cells cotransfected by the CSF-1 gene but did not affect receptor downmodulation. CSF-1 was synthesized as an integral transmembrane glycoprotein that was rapidly dimerized through disulfide bonds. The homodimer was externalized at the cell surface, where it underwent proteolysis to yield the soluble growth factor. Trypsin treatment of viable cells cleaved the plasma membrane form of CSF-1 to molecules of a size indistinguishable from that of the extracellular growth factor, suggesting that trypsinlike proteases regulate the rate of CSF-1 release from transformed cells. The data raise the possibility that this form of membrane-bound CSF-1 might stimulate receptors on adjacent cells through direct cell-cell interactions. Images PMID:3039346

  17. Inspiration is the major regulator of human CSF flow.

    PubMed

    Dreha-Kulaczewski, Steffi; Joseph, Arun A; Merboldt, Klaus-Dietmar; Ludwig, Hans-Christoph; Gärtner, Jutta; Frahm, Jens

    2015-02-11

    The mechanisms behind CSF flow in humans are still not fully known. CSF circulates from its primary production sites at the choroid plexus through the brain ventricles to reach the outer surface of the brain in the subarachnoid spaces from where it drains into venous bloodstream and cervical lymphatics. According to a recent concept of brain fluid transport, established in rodents, CSF from the brain surface also enters the brain tissue along para-arterial routes and exits through paravenous spaces again into subarachnoid compartments. This unidirectional flow is mainly driven by arterial pulsation. To investigate how CSF flow is regulated in humans, we applied a novel real-time magnetic resonance imaging technique at high spatial (0.75 mm) and temporal (50 ms) resolution in healthy human subjects. We observed significant CSF flow exclusively with inspiration. In particular, during forced breathing, high CSF flow was elicited during every inspiration, whereas breath holding suppressed it. Only a minor flow component could be ascribed to cardiac pulsation. The present results unambiguously identify inspiration as the most important driving force for CSF flow in humans. Inspiratory thoracic pressure reduction is expected to directly modulate the hydrostatic pressure conditions for the low-resistance paravenous, venous, and lymphatic clearance routes of CSF. Furthermore, the experimental approach opens new clinical opportunities to study the pathophysiology of various forms of hydrocephalus and to design therapeutic strategies in relation to CSF flow alterations. PMID:25673843

  18. Matrix metalloproteinase-9 (MMP-9) in human cerebrospinal fluid (CSF): elevated levels are primarily related to CSF cell count.

    PubMed

    Yushchenko, M; Weber, F; Mäder, M; Schöll, U; Maliszewska, M; Tumani, H; Felgenhauer, K; Beuche, W

    2000-10-01

    Matrix metalloproteinase-9 (MMP-9) was investigated by enzyme-linked immunosorbent assay (ELISA) and zymography in 111 paired CSF and serum samples from patients with various neurological disorders. In 20 patients with blood-brain barrier (BBB) impairment but normal CSF cell count, elevated levels of MMP-9 were not observed by ELISA measurement. Another 11 patients characterized in the same way, exhibited only slightly increased MMP-9 levels. In contrast, in 12 patients with intact BBB but elevated CSF cell count, MMP-9 was increased too. It was shown by the more sensitive zymography that MMP-9 increased if CSF cell count exceeded five cells per microl. Spearman rank statistics revealed that MMP-9 concentration in CSF correlated with CSF cell count (r=0.755; P<0.0001), but not with CSF/serum albumin ratio (Q(Alb)) (r=0.212; P=0.057), a measure for BBB impairment. Moreover, the CSF/serum MMP-9 ratio (Q(MMP-9)) did not correlate with Q(Alb)(r=0.192; P=0.100). By use of a Boyden chamber, in which granulocytes migrated through a reconstituted basement membrane, it was demonstrated that the MMP-9 concentration in the lower chamber correlated very significantly with the number of accumulated cells (r(2)=0.7692; P<0.0001). The meaning of the increase of MMP-9 in CSF is critically discussed. PMID:11024556

  19. Imaging Biomarkers or Biomarker Imaging?

    PubMed Central

    Mitterhauser, Markus; Wadsak, Wolfgang

    2014-01-01

    Since biomarker imaging is traditionally understood as imaging of molecular probes, we highly recommend to avoid any confusion with the previously defined term “imaging biomarkers” and, therefore, only use “molecular probe imaging (MPI)” in that context. Molecular probes (MPs) comprise all kinds of molecules administered to an organism which inherently carry a signalling moiety. This review highlights the basic concepts and differences of molecular probe imaging using specific biomarkers. In particular, PET radiopharmaceuticals are discussed in more detail. Specific radiochemical and radiopharmacological aspects as well as some legal issues are presented. PMID:24967536

  20. Proteomic Analysis of Cerebrospinal Fluid in Pneumococcal Meningitis Reveals Potential Biomarkers Associated with Survival

    PubMed Central

    Goonetilleke, Upali R.; Scarborough, Matthew; Ward, Stephen A.; Gordon, Stephen B.

    2016-01-01

    Background Patients with pneumococcal meningitis often die or have severe neurological damage despite optimal antibiotic therapy. New or improved therapy is required. The delivery of new interventions will require an improved understanding of the disease pathogenesis. Our objective was to learn more about the pathophysiology of severe meningitis through the interpretation of differences in the proteomic profile of cerebrospinal fluid (CSF) from patients with meningitis. Methods Two-dimensional polyacrylamide gel electrophoresis of CSF from normal subjects (controls, n = 10) and patients with pneumococcal meningitis (n = 20) was analyzed. Spot differences were compared and identified between controls, nonsurvivors (n = 9), and survivors (n = 11). Results Protein concentration in CSF of patients with meningitis was 4-fold higher than in CSF of control subjects (7.0 mg/mL vs 0.23 mg/mL; P < .01). A mean of 2466 discrete protein spots was present in CSF of patients with meningitis. Thirty-four protein spots were differentially expressed in CSF of nonsurvivors, compared with survivors. None of these protein spots were observed in CSF of control subjects. Conclusions Proteomic screening of CSF yields potential biomarkers capable of differentiating control subjects from nonsurvivors and survivors of meningitis. Proteins involved in the inflammatory process and central metabolism were represented in the differentially expressed protein repertoire. PMID:20608875

  1. Value Added?

    ERIC Educational Resources Information Center

    UCLA IDEA, 2012

    2012-01-01

    Value added measures (VAM) uses changes in student test scores to determine how much "value" an individual teacher has "added" to student growth during the school year. Some policymakers, school districts, and educational advocates have applauded VAM as a straightforward measure of teacher effectiveness: the better a teacher, the better students…

  2. Unruptured translabyrinthine meningocele without CSF otorrhea.

    PubMed

    Kong, Won Kyoung; Lee, Chang Ho; Eunhye, Yoo; Shin, Seung-Ho

    2014-03-01

    Labyrinthine meningocele can be classified into translabyrinthine and perilabyrinthine type. We describe a case of rare unruptured translabyrinthine meningocele (TLM). It is rare to encounter an unruptured TLM because it is usually diagnosed after rupture as a labyrinthine fistula, cerebral spinal fluid otorrhea, and subsequent meningitis. We provide for the first time an intraoperative photo and video of a case of an unruptured TLM that developed through an inner ear malformation in a single-side deaf child, which was preoperatively misdiagnosed as congenital cholesteatoma in preoperative temporal bone computed tomography. TLM without CSF otorrhea in an unruptured state merit attention because of its importance during the workup of congenital cholesteatoma or cochlear implantation in spite of its rarity of reports. PMID:24480122

  3. CSF 5-HIAA Predicts Suicide Risk after Attempted Suicide.

    ERIC Educational Resources Information Center

    Nordstrom, Peter; And Others

    1994-01-01

    Studied suicide risk after attempted suicide, as predicted by cerebrospinal fluid (CSF) monoamine metabolite concentrations, in 92 psychiatric mood disorder inpatients admitted shortly after attempting suicide. Results revealed that low CSF 5-hydroxyindoleacetic acid (5-HIAA) predicted short-range suicide risk after attempted suicide in mood…

  4. Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma.

    PubMed

    Baraniskin, Alexander; Kuhnhenn, Jan; Schlegel, Uwe; Maghnouj, Abdelouahid; Zöllner, Hannah; Schmiegel, Wolf; Hahn, Stephan; Schroers, Roland

    2012-01-01

    Malignant gliomas are the most common and lethal primary intracranial tumors. To date, no reliable biomarkers for the detection and risk stratification of gliomas have been identified. Recently, we demonstrated significant levels of microRNAs (miRNAs) to be present in cerebrospinal fluid (CSF) samples from patients with primary CNS lymphoma. Because of the involvement of miRNA in carcinogenesis, miRNAs in CSF may serve as unique biomarkers for minimally invasive diagnosis of glioma. The objective of this pilot study was to identify differentially expressed microRNAs in CSF samples from patients with glioma as potential novel glioma biomarkers. With use of a candidate approach of miRNA quantification by reverse-transcriptase polymerase chain reaction (qRT-PCR), miRNAs with significant levels in CSF samples from patients with gliomas were identified. MiR-15b and miR-21 were differentially expressed in CSF samples from patients with gliomas, compared to control subjects with various neurologic disorders, including patients with primary CNS lymphoma and carcinomatous brain metastases. Receiver-operating characteristic analysis of miR-15b level revealed an area under the curve of 0.96 in discriminating patients with glioma from patients without glioma. Moreover, inclusion of miR-15b and miR-21 in combined expression analyses resulted in an increased diagnostic accuracy with 90% sensitivity and 100% specificity to distinguish patients with glioma from control subjects and patients with primary CNS lymphoma. In conclusion, the results of this pilot study demonstrate that miR-15b and miR-21 are markers for gliomas, which can be assessed in the CSF by means of qRT-PCR. Accordingly, miRNAs in the CSF have the potential to serve as novel biomarkers for the detection of gliomas. PMID:21937590

  5. Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma

    PubMed Central

    Baraniskin, Alexander; Kuhnhenn, Jan; Schlegel, Uwe; Maghnouj, Abdelouahid; Zöllner, Hannah; Schmiegel, Wolf; Hahn, Stephan; Schroers, Roland

    2012-01-01

    Malignant gliomas are the most common and lethal primary intracranial tumors. To date, no reliable biomarkers for the detection and risk stratification of gliomas have been identified. Recently, we demonstrated significant levels of microRNAs (miRNAs) to be present in cerebrospinal fluid (CSF) samples from patients with primary CNS lymphoma. Because of the involvement of miRNA in carcinogenesis, miRNAs in CSF may serve as unique biomarkers for minimally invasive diagnosis of glioma. The objective of this pilot study was to identify differentially expressed microRNAs in CSF samples from patients with glioma as potential novel glioma biomarkers. With use of a candidate approach of miRNA quantification by reverse-transcriptase polymerase chain reaction (qRT-PCR), miRNAs with significant levels in CSF samples from patients with gliomas were identified. MiR-15b and miR-21 were differentially expressed in CSF samples from patients with gliomas, compared to control subjects with various neurologic disorders, including patients with primary CNS lymphoma and carcinomatous brain metastases. Receiver-operating characteristic analysis of miR-15b level revealed an area under the curve of 0.96 in discriminating patients with glioma from patients without glioma. Moreover, inclusion of miR-15b and miR-21 in combined expression analyses resulted in an increased diagnostic accuracy with 90% sensitivity and 100% specificity to distinguish patients with glioma from control subjects and patients with primary CNS lymphoma. In conclusion, the results of this pilot study demonstrate that miR-15b and miR-21 are markers for gliomas, which can be assessed in the CSF by means of qRT-PCR. Accordingly, miRNAs in the CSF have the potential to serve as novel biomarkers for the detection of gliomas. PMID:21937590

  6. The association of angiotensin-converting enzyme with biomarkers for Alzheimer’s disease

    PubMed Central

    2014-01-01

    Introduction Lower angiotensin-converting enzyme (ACE) activity could increase the risk of Alzheimer’s disease (AD) as ACE functions to degrade amyloid-β (Aβ). Therefore, we investigated whether ACE protein and activity levels in cerebrospinal fluid (CSF) and serum were associated with CSF Aβ, total tau (tau) and tau phosphorylated at threonine 181 (ptau). Methods We included 118 subjects from our memory clinic-based Amsterdam Dementia Cohort (mean age 66 ± 8 years) with subjective memory complaints (n = 40) or AD (n = 78), who did not use antihypertensive drugs. We measured ACE protein levels (ng/ml) and activity (RFU) in CSF and serum, and amyloid β1–42, tau and ptau (pg/ml) in CSF. Results Cross-sectional regression analyses showed that ACE protein level and activity in CSF and serum were lower in patients with AD compared to controls. Lower CSF ACE protein level, and to a lesser extent serum ACE protein level and CSF ACE activity, were associated with lower CSF Aβ, indicating more brain Aβ pathology; adjusted regression coefficients (B) (95% CI) per SD increase were 0.09 (0.04; 0.15), 0.06 (0.00; 0.12) and 0.05 (0.00; 0.11), respectively. Further, lower CSF ACE protein level was associated with lower CSF tau and ptau levels; adjusted B’s (95% CI) per SD increase were 0.15 (0.06; 0.25) and 0.17 (0.10; 0.25), respectively. Conclusions These results strengthen the hypothesis that ACE degrades Aβ. This could suggest that lowering ACE levels by for example ACE-inhibitors might have adverse consequences for patients with, or at risk for AD. PMID:24987467

  7. Stem Cell Mobilization with G-CSF versus Cyclophosphamide plus G-CSF in Mexican Children.

    PubMed

    Meraz, José Eugenio Vázquez; Arellano-Galindo, José; Avalos, Armando Martínez; Mendoza-García, Emma; Jiménez-Hernández, Elva

    2016-01-01

    Fifty-six aphaereses were performed in 23 pediatric patients with malignant hematological and solid tumors, following three different protocols for PBPC mobilization and distributed as follows: A: seventeen mobilized with 4 g/m(2) of cyclophosphamide (CFA) and 10 μg/kg/day of granulocyte colony stimulating factor (G-CSF), B: nineteen with CFA + G-CSF, and C: twenty only with G-CSF when the WBC count exceeded 10 × 10(9)/L. The average number of MNC/kg body weight (BW)/aphaeresis was 0.4 × 10(8) (0.1-1.4), 2.25 × 10(8) (0.56-6.28), and 1.02 × 10(8) (0.34-2.5) whereas the average number of CD34+ cells/kg BW/aphaeresis was 0.18 × 10(6)/kg (0.09-0.34), 1.04 × 10(6) (0.19-9.3), and 0.59 × 10(6) (0.17-0.87) and the count of CFU/kg BW/aphaeresis was 1.11 × 10(5) (0.31-2.12), 1.16 × 10(5) (0.64-2.97), and 1.12 × 10(5) (0.3-6.63) in groups A, B, and C, respectively. The collection was better in group B versus group A (p = 0.007 and p = 0.05, resp.) and in group C versus group A (p = 0.08 and p = 0.05, resp.). The collection of PBPCs was more effective in the group mobilized with CFM + G-CSF when the WBC exceeded 10 × 10(3)/μL in terms of MNC and CD34+ cells and there was no toxicity of the chemotherapy. PMID:26880960

  8. Stem Cell Mobilization with G-CSF versus Cyclophosphamide plus G-CSF in Mexican Children

    PubMed Central

    Meraz, José Eugenio Vázquez; Arellano-Galindo, José; Avalos, Armando Martínez; Mendoza-García, Emma; Jiménez-Hernández, Elva

    2016-01-01

    Fifty-six aphaereses were performed in 23 pediatric patients with malignant hematological and solid tumors, following three different protocols for PBPC mobilization and distributed as follows: A: seventeen mobilized with 4 g/m2 of cyclophosphamide (CFA) and 10 μg/kg/day of granulocyte colony stimulating factor (G-CSF), B: nineteen with CFA + G-CSF, and C: twenty only with G-CSF when the WBC count exceeded 10 × 109/L. The average number of MNC/kg body weight (BW)/aphaeresis was 0.4 × 108 (0.1–1.4), 2.25 × 108 (0.56–6.28), and 1.02 × 108 (0.34–2.5) whereas the average number of CD34+ cells/kg BW/aphaeresis was 0.18 × 106/kg (0.09–0.34), 1.04 × 106 (0.19–9.3), and 0.59 × 106 (0.17–0.87) and the count of CFU/kg BW/aphaeresis was 1.11 × 105 (0.31–2.12), 1.16 × 105 (0.64–2.97), and 1.12 × 105 (0.3–6.63) in groups A, B, and C, respectively. The collection was better in group B versus group A (p = 0.007 and p = 0.05, resp.) and in group C versus group A (p = 0.08 and p = 0.05, resp.). The collection of PBPCs was more effective in the group mobilized with CFM + G-CSF when the WBC exceeded 10 × 103/μL in terms of MNC and CD34+ cells and there was no toxicity of the chemotherapy. PMID:26880960

  9. Progranulin protein levels are differently regulated in plasma and CSF

    PubMed Central

    Nicholson, Alexandra M.; Finch, NiCole A.; Thomas, Colleen S.; Wojtas, Aleksandra; Rutherford, Nicola J.; Mielke, Michelle M.; Roberts, Rosebud O.; Boeve, Bradley F.; Knopman, David S.; Petersen, Ronald C.

    2014-01-01

    Objective: We aimed to investigate the relationship between plasma and CSF progranulin (PGRN) levels. Methods: Plasma and CSF PGRN were measured in a cohort of 345 subjects from the Mayo Clinic Study of Aging by ELISA. Single nucleotide polymorphism genotyping was performed using TaqMan assays. Associations between PGRN and sex, age at sample collection, diagnosis, single nucleotide polymorphism genotypes (GRN, SORT1, and APOE), and Pittsburgh compound B score were explored separately in CSF and plasma using single variable linear regression models. Pearson partial correlation coefficient was used to estimate the correlation of PGRN in CSF and plasma. Results: Plasma (p = 0.0031) and CSF (p = 0.0044) PGRN significantly increased with age, whereas plasma PGRN levels were 7% lower (p = 0.0025) and CSF PGRN levels 5% higher (p = 0.0024) in male compared with female participants. Correcting for age and sex, higher plasma PGRN was associated with higher CSF PGRN (partial r = 0.17, p = 0.004). In plasma, both rs5848 (GRN; p = 0.002) and rs646776 (SORT1; p = 3.56E-7) were associated with PGRN, while only rs5848 showed highly significant association in CSF (p = 5.59E-14). Age, sex, rs5848 genotype, and plasma PGRN together accounted for only 18% of the variability observed in CSF PGRN. Conclusions: While some correlation exists between plasma and CSF PGRN, age, sex, and genetic factors differently affect PGRN levels. Therefore, caution should be taken when using plasma PGRN to predict PGRN changes in the brain. These findings further highlight that plasma PGRN levels may not accurately predict clinical features or response to future frontotemporal lobar degeneration therapies. PMID:24771538

  10. Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome.

    PubMed

    Kumar, R G; Diamond, M L; Boles, J A; Berger, R P; Tisherman, S A; Kochanek, P M; Wagner, A K

    2015-03-01

    Traumatic brain injury (TBI) results in a significant inflammatory burden that perpetuates the production of inflammatory mediators and biomarkers. Interleukin-6 (IL-6) is a pro-inflammatory cytokine known to be elevated after trauma, and a major contributor to the inflammatory response following TBI. Previous studies have investigated associations between IL-6 and outcome following TBI, but to date, studies have been inconsistent in their conclusions. We hypothesized that cohort heterogeneity, temporal inflammatory profiles, and concurrent inflammatory marker associations are critical to characterize when targeting subpopulations for anti-inflammatory therapies. Toward this objective, we used serial cerebrospinal fluid (CSF) samples to generate temporal acute IL-6 trajectory (TRAJ) profiles in a prospective cohort of adults with severe TBI (n=114). We examined the impact of injury type on IL-6 profiles, and how IL-6 profiles impact sub-acute (2weeks-3months) serum inflammatory marker load and long-term global outcome 6-12months post-injury. There were two distinct acute CSF IL-6 profiles, a high and low TRAJ group. Individuals in the high TRAJ had increased odds of unfavorable Glasgow Outcome Scale (GOS) scores at 6months (adjusted OR=3.436, 95% CI: 1.259, 9.380). Individuals in the high TRAJ also had higher mean acute CSF inflammatory load compared to individuals in the low TRAJ (p⩽0.05). The two groups did not differ with respect acute serum profiles; however, individuals in the high CSF IL-6 TRAJ also had higher mean sub-acute serum IL-1β and IL-6 levels compared with the low TRAJ group (p⩽0.05). Lastly, injury type (isolated TBI vs. TBI+polytrauma) was associated with IL-6 TRAJ group (χ(2)=5.31, p=0.02). Specifically, there was 70% concordance between those with TBI+polytrauma and the low TRAJ; in contrast, isolated TBI was similarly distributed between TRAJ groups. These data provide evidence that sustained, elevated levels of CSF IL-6 are associated

  11. Response of CFU-GM to increasing doses of rhGM-CSF in patients with aplastic anemia.

    PubMed

    Bacigalupo, A; Piaggio, G; Figari, O; Tong, J; Sogno, G; Tedone, E; Sette, A; Ratto, M R; Caciagli, P; Badolati, G

    1991-09-01

    The aim of this study was to test whether large amounts of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) are capable of promoting the growth of hemopoietic progenitors from patients with marrow failure. For this purpose 0.1, 100, 1000, 10,000 and 20,000 ng/ml of rhGM-CSF were added to 10(5) light-density (adherent cell-depleted) bone marrow cells from 9 normal controls and from 52 patients with aplastic anemia, 25 cases of which were transfusion-dependent (Tx-D) aplastic anemia (AA) and 27 of which were transfusion-independent (Tx-I) aplastic anemia (AA). A dose-dependent increase of granulocyte-macrophage colony-forming units (CFU-GM) was observed in healthy donors, from 81 to 247 colonies at 0.1 and 1000 ng/ml of rhGM-CSF, with a plateau thereafter. Tx-I AA patients showed the best increase of CFU-GM in response to colony-stimulating factor, from 0.1 to 32.7 mean colonies at 0.1 and 20,000 ng/ml of rhGM-CSF, and the increment was greater when compared to controls. The ratio of CFU-GM grown from these patients and controls was 1:810 at 0.1 ng/ml of rhGM-CSF and 1:7.9 at 20,000 ng/ml. Eleven patients were studied at diagnosis; there was no in vitro response to rhGM-CSF (0 and 1.8 mean colonies/10(5) cells at 0.1 and 10,000 ng/ml). Overall, Tx-D AA patients showed minimal increments of CFU-GM growth at very high doses of rhGM-CSF. Two suggestions come from this study: 1) maturation of CFU-GM from recovering AA patients appears to require larger doses of GM-CSF than normal controls, and 2) very high doses of rhGM-CSF have little or no effect on CFU-GM growth in AA patients. This may be relevant for clinical studies designed to improve hemopoiesis in patients with marrow failure. PMID:1868897

  12. Molecular biomarkers in cerebrospinal fluid of multiple sclerosis patients.

    PubMed

    Fitzner, Brit; Hecker, Michael; Zettl, Uwe Klaus

    2015-10-01

    Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system, usually occurring in young adults and leading to disability. Despite the progress in technology and intensive research work of the last years, diagnosing MS can still be challenging. A heterogenic and complex pathophysiology with various types of disease courses makes MS unique for each patient. There is an urgent need to identify markers facilitating rapid and accurate diagnosis and prognostic assessments with regard to optimal therapy for each MS patient. Cerebrospinal fluid (CSF) is an outstanding source of specific markers related to MS pathology. Molecules reflecting specific pathological processes, such as inflammation, cellular damage, and loss of blood-brain-barrier integrity, are detectable in CSF. Clinically used biomarkers of CSF are oligoclonal bands, IgG-index, measles-rubella-zoster-reaction, anti-aquaporin 4 antibodies, and antibodies against John Cunningham virus. Many other potential biomarkers have been proposed in recent years. In this review we examine the current scientific knowledge on CSF molecular markers that could guide diagnosis and discrimination of different MS forms, support treatment decisions, or be helpful in monitoring and predicting disease progression, therapy response, and complications such as opportunistic infections. PMID:26071103

  13. CSF Flow in Chiari I and Syringomyelia from the Perspective of Computational Fluid Dynamics.

    PubMed

    Støverud, K-H; Mardal, K-A; Haughton, V; Langtangen, H P

    2011-03-29

    Phase contrast MR in patients with the Chiari I malformation demonstrates abnormal CSF flow in the foramen magnum and upper cervical spinal canal, related to abnormal pressure gradients. The purpose of this study was to analyze the role of CSF pressure in the pathogenesis of syringomyelia, with computational models. The spinal cord was modeled as a cylindrical poro-elastic structure with homogenous and isotropic permeability. The permeability was then made heterogeneous and anisotropic to represent the different properties of the central canal, gray and white matter. Fluid with a defined pressure, varying both in time and space, was prescribed in the SAS. Simulations were performed to quantify deformations and fluid movement within the cord. In the simulations with uniform permeability fluid moved into the cord in regions of higher pressure and out of the cord in regions of lower pressure. With permeability differences simulating gray and white matter the pattern was more complex, but similar. Adding the central spinal canal, fluid moved into the cord as in the previous case. However, preferential flow along the central canal hindered fluid from flowing back into the SAS. Pressure gradients in the SAS produce movement of fluid in the spinal cord. Assuming different relative permeability in gray matter, white matter and the central spinal canal, abnormal CSF gradients lead to accumulation of fluid within and adjacent to the spinal cord central canal. PMID:24059568

  14. Improved multimodal biomarkers for Alzheimer's disease and mild cognitive impairment diagnosis: data from ADNI

    NASA Astrophysics Data System (ADS)

    Martinez-Torteya, Antonio; Treviño-Alvarado, Víctor; Tamez-Peña, José

    2013-02-01

    The accurate diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) confers many clinical research and patient care benefits. Studies have shown that multimodal biomarkers provide better diagnosis accuracy of AD and MCI than unimodal biomarkers, but their construction has been based on traditional statistical approaches. The objective of this work was the creation of accurate AD and MCI diagnostic multimodal biomarkers using advanced bioinformatics tools. The biomarkers were created by exploring multimodal combinations of features using machine learning techniques. Data was obtained from the ADNI database. The baseline information (e.g. MRI analyses, PET analyses and laboratory essays) from AD, MCI and healthy control (HC) subjects with available diagnosis up to June 2012 was mined for case/controls candidates. The data mining yielded 47 HC, 83 MCI and 43 AD subjects for biomarker creation. Each subject was characterized by at least 980 ADNI features. A genetic algorithm feature selection strategy was used to obtain compact and accurate cross-validated nearest centroid biomarkers. The biomarkers achieved training classification accuracies of 0.983, 0.871 and 0.917 for HC vs. AD, HC vs. MCI and MCI vs. AD respectively. The constructed biomarkers were relatively compact: from 5 to 11 features. Those multimodal biomarkers included several widely accepted univariate biomarkers and novel image and biochemical features. Multimodal biomarkers constructed from previously and non-previously AD associated features showed improved diagnostic performance when compared to those based solely on previously AD associated features.

  15. Developmental and functional significance of the CSF-1 proteoglycan chondroitin sulfate chain

    PubMed Central

    Nandi, Sayan; Akhter, Mohammed P.; Seifert, Mark F.; Dai, Xu-Ming; Stanley, E. Richard

    2006-01-01

    The primary macrophage growth factor, colony-stimulating factor-1 (CSF-1), is homodimeric and exists in 3 biologically active isoforms: a membrane-spanning, cell-surface glycoprotein (csCSF-1) and secreted glycoprotein (sgCSF-1) and proteoglycan (spCSF-1) isoforms. To investigate the in vivo role of the chondroitin sulfate glycosaminoglycan (GAG) chain of spCSF-1, we created mice that exclusively express, in a normal tissue-specific and developmental manner, either the secreted precursor of spCSF-1 or the corresponding precursor in which the GAG addition site was mutated. The reproductive, hematopoietic tooth eruption and tissue macrophage defects of CSF-1-deficient, osteopetrotic Csf1op/Csf1op mice were corrected by transgenic expression of the precursors of either sgCSF-1 or spCSF-1. Furthermore, in contrast to the transgene encoding csCSF-1, both failed to completely correct growth retardation, suggesting a role for csCSF-1 in the regulation of body weight. However, spCSF-1, in contrast to sgCSF-1, completely resolved the osteopetrotic phenotype. Furthermore, in transgenic lines expressing different concentrations of sgCSF-1 or spCSF-1, spCSF-1 more efficiently corrected Csf1op/Csf1op defects of tooth eruption, eyelid opening, macrophage morphology, and B-cell deficiency than sgCSF-1. These results indicate an important role of the CSF-1 chondroitin sulfate proteoglycan in in vivo signaling by secreted CSF-1. (Blood. 2006;107:786-795) PMID:16210339

  16. Cerebrospinal fluid biochemical studies in patients with Parkinson's disease: toward a potential search for biomarkers for this disease

    PubMed Central

    Jiménez-Jiménez, Félix J.; Alonso-Navarro, Hortensia; García-Martín, Elena; Agúndez, José A. G.

    2014-01-01

    The blood-brain barrier supplies brain tissues with nutrients and filters certain compounds from the brain back to the bloodstream. In several neurodegenerative diseases, including Parkinson's disease (PD), there are disruptions of the blood-brain barrier. Cerebrospinal fluid (CSF) has been widely investigated in PD and in other parkinsonian syndromes with the aim of establishing useful biomarkers for an accurate differential diagnosis among these syndromes. This review article summarizes the studies reported on CSF levels of many potential biomarkers of PD. The most consistent findings are: (a) the possible role of CSF urate on the progression of the disease; (b) the possible relations of CSF total tau and phosphotau protein with the progression of PD and with the preservation of cognitive function in PD patients; (c) the possible value of CSF beta-amyloid 1-42 as a useful marker of further cognitive decline in PD patients, and (d) the potential usefulness of CSF neurofilament (NFL) protein levels in the differential diagnosis between PD and other parkinsonian syndromes. Future multicentric, longitudinal, prospective studies with long-term follow-up and neuropathological confirmation would be useful in establishing appropriate biomarkers for PD. PMID:25426023

  17. Cerebrospinal fluid biomarkers for prognosis of long-term cognitive treatment outcomes in patients with idiopathic normal pressure hydrocephalus.

    PubMed

    Nakajima, Madoka; Miyajima, Masakazu; Ogino, Ikuko; Akiba, Chihiro; Sugano, Hidenori; Hara, Takeshi; Fusegi, Keiko; Karagiozov, Kostadin; Arai, Hajime

    2015-10-15

    The prognosis of cognitive improvement after cerebrospinal fluid (CSF) shunting in idiopathic normal pressure hydrocephalus (iNPH) remains uncertain, with no reports on CSF biomarkers related to long-term cognitive prognosis. We performed a preliminary study of CSF biomarker protein levels for cognitive outcome prognostication of two-year outcomes after shunt treated iNPH in 36 patients (13 women) with a median age of 75years (IQR 69-78). CSF biomarkers included soluble amyloid precursor proteins (sAPP, sAPPα, sAPPβ), amyloid β (Aβ)1-38, Aβ1-42 and phosphorylated tau (p-tau), lipocalin-type prostaglandin D synthase (L-PGDS)/β-trace, and cystatin C. The results clearly showed that p-tau levels (sensitivity of 71.4%, specificity of 77.8%, cut-off value of 22.0pg/mL), Aβ1-38/Aβ1-42 ratio (77.8%, 81%, 3.58), and the Aβ1-42/p-tau ratio (76%, 72.7%, 14.6) in preoperative CSF have the potential to determine postoperative prognosis. Improved cognition may be associated with the improvement in CSF circulation after LPS, which likely induces cystatin C and L-PGDS and switches synthesis from Aβ1-42 to Aβ1-38. PMID:26169158

  18. Plasma Exosomal miRNAs in Persons with and without Alzheimer Disease: Altered Expression and Prospects for Biomarkers

    PubMed Central

    Bennett, David A.; Shah, Raj C.; Fields, Christopher J.; Hernandez, Alvaro G.; Smalheiser, Neil R.

    2015-01-01

    To assess the value of exosomal miRNAs as biomarkers for Alzheimer disease (AD), the expression of microRNAs was measured in a plasma fraction enriched in exosomes by differential centrifugation, using Illumina deep sequencing. Samples from 35 persons with a clinical diagnosis of AD dementia were compared to 35 age and sex matched controls. Although these samples contained less than 0.1 microgram of total RNA, deep sequencing gave reliable and informative results. Twenty miRNAs showed significant differences in the AD group in initial screening (miR-23b-3p, miR-24-3p, miR-29b-3p, miR-125b-5p, miR-138-5p, miR-139-5p, miR-141-3p, miR-150-5p, miR-152-3p, miR-185-5p, miR-338-3p, miR-342-3p, miR-342-5p, miR-548at-5p, miR-659-5p, miR-3065-5p, miR-3613-3p, miR-3916, miR-4772-3p, miR-5001-3p), many of which satisfied additional biological and statistical criteria, and among which a panel of seven miRNAs were highly informative in a machine learning model for predicting AD status of individual samples with 83–89% accuracy. This performance is not due to over-fitting, because a) we used separate samples for training and testing, and b) similar performance was achieved when tested on technical replicate data. Perhaps the most interesting single miRNA was miR-342-3p, which was a) expressed in the AD group at about 60% of control levels, b) highly correlated with several of the other miRNAs that were significantly down-regulated in AD, and c) was also reported to be down-regulated in AD in two previous studies. The findings warrant replication and follow-up with a larger cohort of patients and controls who have been carefully characterized in terms of cognitive and imaging data, other biomarkers (e.g., CSF amyloid and tau levels) and risk factors (e.g., apoE4 status), and who are sampled repeatedly over time. Integrating miRNA expression data with other data is likely to provide informative and robust biomarkers in Alzheimer disease. PMID:26426747

  19. Biomarkers of Central Nervous System Inflammation in Infantile and Juvenile Gangliosidoses

    PubMed Central

    Utz, Jeanine R.; Crutcher, Thomas; Schneider, Joseph; Sorgen, Patrick; Whitley, Chester B.

    2015-01-01

    Background The gangliosidoses (Tay-Sachs disease, Sandhoff disease and GM1-gangliosidosis) are progressive neurodegenerative diseases caused by lysosomal enzyme activity deficiencies and consequent accumulation of gangliosides in the central nervous system (CNS). The infantile forms are distinguished from the juvenile forms by age of onset, rate of disease progression and age of death. There are no approved treatments for the gangliosidoses. In search of potential biomarkers of disease, we quantified 188 analytes in CSF and serum from living human patients with longitudinal (serial) measurements. Notably, several associated with inflammation were elevated in the CSF of infantile gangliosidosis patients, and less so in more slowly progressing forms of juvenile gangliosidosis, but not in MPS disease. Thirteen CSF and two serum biomarker candidates were identified. Five candidate biomarkers were distinguished by persistent elevation in the CSF of patients with the severe infantile phenotype: ENA-78, MCP-1, MIP-1α, MIP-1β, TNFR2. Correspondence of abnormal elevation with other variables of disease --- i.e., severity of clinical phenotype, differentiation from changes in serum, and lack of abnormality in other neurodegenerative lysosomal diseases ---identifies these analytes as biomarkers of neuropathology specific to the gangliosidosis diseases. PMID:25557439

  20. Adding Value.

    ERIC Educational Resources Information Center

    Orsini, Larry L.; Hudack, Lawrence R.; Zekan, Donald L.

    1999-01-01

    The value-added statement (VAS), relatively unknown in the United States, is used in financial reports by many European companies. Saint Bonaventure University (New York) has adapted a VAS to make it appropriate for not-for-profit universities by identifying stakeholder groups (students, faculty, administrators/support personnel, creditors, the…

  1. Angiotensin-converting enzyme levels and activity in Alzheimer's disease: differences in brain and CSF ACE and association with ACE1 genotypes

    PubMed Central

    Miners, Scott; Ashby, Emma; Baig, Shabnam; Harrison, Rachel; Tayler, Hannah; Speedy, Elizabeth; Prince, Jonathan A; Love, Seth; Kehoe, Patrick G

    2009-01-01

    Angiotensin-converting enzyme (ACE) has been implicated in Alzheimer's disease (AD): ACE1 variations influence plasma ACE and risk of AD, and ACE is increased in AD brain. We measured frontal ACE level and activity in 89 AD and 51 control brains, and post-mortem CSF from 101 cases and 19 controls. Neuron-specific enolase (NSE) level and Braak stage were used to indicate neuronal preservation and disease progression. We genotyped the common ACE insertion/deletion polymorphism, rs4343, rs1800764 and rs4921. ACE activity was elevated in AD and correlated with Braak stage. Crude ACE levels were unchanged but adjustment for NSE suggested increased neuronal ACE production with Braak stage. Exposing SH-SY-5Y neurons to oligomeric Aβ1-42 increased ACE level and activity, suggesting Aβ may upregulate ACE in AD. In CSF, ACE level but not activity was reduced in AD. ACE1 genotype did not predict ACE level or activity in brain or CSF. ACE activity and neuronal production increase in AD brain, possibly in response to Aβ. Peripheral measurements do not reflect ACE activity in the brain. PMID:19956428

  2. Differential utilization of Ras signaling pathways by macrophage colony-stimulating factor (CSF) and granulocyte-macrophage CSF receptors during macrophage differentiation.

    PubMed

    Guidez, F; Li, A C; Horvai, A; Welch, J S; Glass, C K

    1998-07-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) independently stimulate the proliferation and differentiation of macrophages from bone marrow progenitor cells. Although the GM-CSF and M-CSF receptors are unrelated, both couple to Ras-dependent signal transduction pathways, suggesting that these pathways might account for common actions of GM-CSF and M-CSF on the expression of macrophage-specific genes. To test this hypothesis, we have investigated the mechanisms by which GM-CSF and M-CSF regulate the expression of the macrophage scavenger receptor A (SR-A) gene. We demonstrate that induction of the SR-A gene by M-CSF is dependent on AP-1 and cooperating Ets domain transcription factors that bind to sites in an M-CSF-dependent enhancer located 4.1 to 4.5 kb upstream of the transcriptional start site. In contrast, regulation by GM-CSF requires a separate enhancer located 4.5 to 4.8 kb upstream of the transcriptional start site that confers both immediate-early and sustained transcriptional responses. Results of a combination of DNA binding experiments and functional assays suggest that immediate transcriptional responses are mediated by DNA binding proteins that are constitutively bound to the GM-CSF enhancer and are activated by Ras. At 12 to 24 h after GM-CSF treatment, the GM-CSF enhancer becomes further occupied by additional DNA binding proteins that may contribute to sustained transcriptional responses. In concert, these studies indicate that GM-CSF and M-CSF differentially utilize Ras-dependent signal transduction pathways to regulate scavenger receptor gene expression, consistent with the distinct functional properties of M-CSF- and GM-CSF-derived macrophages. PMID:9632769

  3. Biomarkers in Japanese Encephalitis: A Review

    PubMed Central

    Kant Upadhyay, Ravi

    2013-01-01

    JE is a flavivirus generated dreadful CNS disease which causes high mortality in various pediatric groups. JE disease is currently diagnosed by measuring the level of viral antigens and virus neutralization IgM antibodies in blood serum and CSF by ELISA. However, it is not possible to measure various disease-identifying molecules, structural and molecular changes occurred in tissues, and cells by using such routine methods. However, few important biomarkers such as cerebrospinal fluid, plasma, neuro-imaging, brain mapping, immunotyping, expression of nonstructural viral proteins, systematic mRNA profiling, DNA and protein microarrays, active caspase-3 activity, reactive oxygen species and reactive nitrogen species, levels of stress-associated signaling molecules, and proinflammatory cytokines could be used to confirm the disease at an earlier stage. These biomarkers may also help to diagnose mutant based environment specific alterations in JEV genotypes causing high pathogenesis and have immense future applications in diagnostics. There is an utmost need for the development of new more authentic, appropriate, and reliable physiological, immunological, biochemical, biophysical, molecular, and therapeutic biomarkers to confirm the disease well in time to start the clinical aid to the patients. Hence, the present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of JE disease and its related disorders in the future. PMID:24455705

  4. Biomarkers in Japanese encephalitis: a review.

    PubMed

    Kant Upadhyay, Ravi

    2013-01-01

    JE is a flavivirus generated dreadful CNS disease which causes high mortality in various pediatric groups. JE disease is currently diagnosed by measuring the level of viral antigens and virus neutralization IgM antibodies in blood serum and CSF by ELISA. However, it is not possible to measure various disease-identifying molecules, structural and molecular changes occurred in tissues, and cells by using such routine methods. However, few important biomarkers such as cerebrospinal fluid, plasma, neuro-imaging, brain mapping, immunotyping, expression of nonstructural viral proteins, systematic mRNA profiling, DNA and protein microarrays, active caspase-3 activity, reactive oxygen species and reactive nitrogen species, levels of stress-associated signaling molecules, and proinflammatory cytokines could be used to confirm the disease at an earlier stage. These biomarkers may also help to diagnose mutant based environment specific alterations in JEV genotypes causing high pathogenesis and have immense future applications in diagnostics. There is an utmost need for the development of new more authentic, appropriate, and reliable physiological, immunological, biochemical, biophysical, molecular, and therapeutic biomarkers to confirm the disease well in time to start the clinical aid to the patients. Hence, the present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of JE disease and its related disorders in the future. PMID:24455705

  5. DIS in AdS

    NASA Astrophysics Data System (ADS)

    Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios

    2009-03-01

    We calculate the total cross section for the scattering of a quark-anti-quark dipole on a large nucleus at high energy for a strongly coupled N = 4 super Yang-Mills theory using AdS/CFT correspondence. We model the nucleus by a metric of a shock wave in AdS5. We then calculate the expectation value of the Wilson loop (the dipole) by finding the extrema of the Nambu-Goto action for an open string attached to the quark and antiquark lines of the loop in the background of an AdS5 shock wave. We find two physically meaningful extremal string configurations. For both solutions we obtain the forward scattering amplitude N for the quark dipole-nucleus scattering. We study the onset of unitarity with increasing center-of-mass energy and transverse size of the dipole: we observe that for both solutions the saturation scale Qs is independent of energy/Bjorken-x and depends on the atomic number of the nucleus as Qs˜A1/3. Finally we observe that while one of the solutions we found corresponds to the pomeron intercept of αP = 2 found earlier in the literature, when extended to higher energy or larger dipole sizes it violates the black disk limit. The other solution we found respects the black disk limit and yields the pomeron intercept of αP = 1.5. We thus conjecture that the right pomeron intercept in gauge theories at strong coupling may be αP = 1.5.

  6. Upfront plerixafor plus G-CSF versus cyclophosphamide plus G-CSF for stem cell mobilization in multiple myeloma: efficacy and cost analysis study.

    PubMed

    Afifi, S; Adel, N G; Devlin, S; Duck, E; Vanak, J; Landau, H; Chung, D J; Lendvai, N; Lesokhin, A; Korde, N; Reich, L; Landgren, O; Giralt, S; Hassoun, H

    2016-04-01

    Cyclophosphamide plus G-CSF (C+G-CSF) is one of the most widely used stem cell (SC) mobilization regimens for patients with multiple myeloma (MM). Plerixafor plus G-CSF (P+G-CSF) has demonstrated superior SC mobilization efficacy when compared with G-CSF alone and has been shown to rescue patients who fail mobilization with G-CSF or C+G-CSF. Despite the proven efficacy of P+G-CSF in upfront SC mobilization, its use has been limited, mostly due to concerns of high price of the drug. However, a comprehensive comparison of the efficacy and cost effectiveness of SC mobilization using C+G-CSF versus P+G-CSF is not available. In this study, we compared 111 patients receiving C+G-CSF to 112 patients receiving P+G-CSF. The use of P+G-CSF was associated with a higher success rate of SC collection defined as ⩾5 × 10(6) CD34+ cells/kg (94 versus 83%, P=0.013) and less toxicities. Thirteen patients in the C+G-CSF arm were hospitalized owing to complications while none in the P+G-CSF group. C+G-CSF was associated with higher financial burden as assessed using institutional-specific costs and charges (P<0.001) as well as using Medicare reimbursement rates (P=0.27). Higher rate of hospitalization, increased need for salvage mobilization, and increased G-CSF use account for these differences. PMID:26726942

  7. CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth.

    PubMed

    Mathsyaraja, H; Thies, K; Taffany, D A; Deighan, C; Liu, T; Yu, L; Fernandez, S A; Shapiro, C; Otero, J; Timmers, C; Lustberg, M B; Chalmers, J; Leone, G; Ostrowski, M C

    2015-07-01

    Metastasis of solid tumors is associated with poor prognosis and bleak survival rates. Tumor-infiltrating myeloid cells (TIMs) are known to promote metastasis, but the mechanisms underlying their collaboration with tumor cells remain unknown. Here, we report an oncogenic role for microRNA (miR) in driving M2 reprogramming in TIMs, characterized by the acquisition of pro-tumor and pro-angiogenic properties. The expression of miR-21, miR-29a, miR-142-3p and miR-223 increased in myeloid cells during tumor progression in mouse models of breast cancer and melanoma metastasis. Further, we show that these miRs are regulated by the CSF1-ETS2 pathway in macrophages. A loss-of-function approach utilizing selective depletion of the miR-processing enzyme Dicer in mature myeloid cells blocks angiogenesis and metastatic tumor growth. Ectopic expression of miR-21 and miR-29a promotes angiogenesis and tumor cell proliferation through the downregulation of anti-angiogenic genes such as Col4a2, Spry1 and Timp3, whereas knockdown of the miRs impedes these processes. miR-21 and miR-29a are expressed in Csf1r+ myeloid cells associated with human metastatic breast cancer, and levels of these miRs in CD115+ non-classical monocytes correlates with metastatic tumor burden in patients. Taken together, our results suggest that miR-21 and miR-29a are essential for the pro-tumor functions of myeloid cells and the CSF1-ETS2 pathway upstream of the miRs serves as an attractive therapeutic target for the inhibition of M2 remodeling of macrophages during malignancy. In addition, miR-21 and miR-29a in circulating myeloid cells may potentially serve as biomarkers to measure therapeutic efficacy of targeted therapies for CSF1 signaling. PMID:25241894

  8. Body fluid biomarkers in Alzheimer's disease.

    PubMed

    Lu, Huan; Zhu, Xi-Chen; Jiang, Teng; Yu, Jin-Tai; Tan, Lan

    2015-04-01

    A heterogeneous and slowly progressive disease with extracellular amyloid-β (Aβ) deposits and intracellular hyperphosphorylated tau protein aggregates, Alzheimer's disease (AD) is already a hard nut to crack, featured with cognitive decline and memory lapse. Body fluid biomarkers are proved to be useful in exploring further study of AD, might benefit for a full comprehension of the etiopathogenesis, an improved precision of the prognosis and diagnosis, and a positive response of treatments. The cerebrospinal fluid biomarkers Aβ, total tau, and hyperphosphorylated tau reflect the main pathologic changes of AD. We also review data from several novel biomarkers, such as, β-site APP cleaving enzyme 1, soluble amyloid precursor proteins α and β, soluble Aβ oligomers and so on, which are associated with the occurrence and deterioration of this disease and couldn't be ignored. The rationale for the clinical use of those biomarkers, the challenges faced with and the properties of the most appropriate biomarkers are also summarized in the paper. We aim to find several ideal biomarkers to improve the diagnosis and optimize the treatment respectively. PMID:25992369

  9. Biomarkers of basic activities of daily living in Alzheimer's disease.

    PubMed

    Hall, James R; Johnson, Leigh A; Barber, Robert C; Vo, Hoa T; Winter, A Scott; O'Bryant, Sid E

    2012-01-01

    Functional impairment is common in Alzheimer's disease (AD) and related to increased caregiver burden and institutionalization. There is a dearth of research investigating the relationship between specific biomarkers and basic activities of daily living (BADLs) such as toileting, feeding, dressing, grooming, bathing, and ambulating. The present study examined the relationship between serum based biomarkers and specific ADLs in a sample of AD patients. Data were collected from 196 participants enrolled in the Texas Alzheimer's Research and Care Consortium Project and diagnosed with AD. BADLs were measured using the Lawton-Brody Physical Self-Maintenance Scale. A panel of 22 biomarkers previously found to be related to AD pathology was used for the analysis. Stepwise regression modeling was used to assess the link between the biomarkers and BADLs. Results were also examined by gender. Nine of the 22 biomarkers were significantly related to BADLs. When stratified by gender, the biomarkers accounted for 32% of the variance in the males and 27% in females. The pattern of significant biomarkers differed by gender with IL 7 and Tenascin C significantly related to BADLs for females and IL 15 significantly related to BADLs for males. The results of this study indicated that a small number of serum based biomarkers are related to BADLs, and these biomarkers differed by gender. PMID:22571981

  10. Cerebrospinal Fluid Calbindin D Concentration as a Biomarker of Cerebellar Disease Progression in Niemann-Pick Type C1 Disease

    PubMed Central

    Bagel, Jessica; Sampson, Maureen; Farhat, Nicole; Ding, Wenge; Swain, Gary; Prociuk, Maria; O’Donnell, Patricia; Drobatz, Kenneth; Gurda, Brittney; Wassif, Christopher; Remaley, Alan; Porter, Forbes; Vite, Charles

    2016-01-01

    Niemann-Pick type C (NPC) 1 disease is a rare, inherited, neurodegenerative disease. Clear evidence of the therapeutic efficacy of 2-hydroxypropyl-β-cyclodextrin (HPβCD) in animal models resulted in the initiation of a phase I/IIa clinical trial in 2013 and a phase IIb/III trial in 2015. With clinical trials ongoing, validation of a biomarker to track disease progression and serve as a supporting outcome measure of therapeutic efficacy has become compulsory. In this study, we evaluated calcium-binding protein calbindin D-28K (calbindin) concentrations in the cerebrospinal fluid (CSF) as a biomarker of NPC1 disease. In the naturally occurring feline model, CSF calbindin was significantly elevated at 3 weeks of age, prior to the onset of cerebellar dysfunction, and steadily increased to >10-fold over normal at end-stage disease. Biweekly intrathecal administration of HPβCD initiated prior to the onset of neurologic dysfunction completely normalized CSF calbindin in NPC1 cats at all time points analyzed when followed up to 78 weeks of age. Initiation of HPβCD after the onset of clinical signs (16 weeks of age) resulted in a delayed reduction of calbindin levels in the CSF. Evaluation of CSF from patients with NPC1 revealed that calbindin concentrations were significantly elevated compared with CSF samples collected from unaffected patients. Off-label treatment of patients with NPC1 with miglustat, an inhibitor of glycosphingolipid biosynthesis, significantly decreased CSF calbindin compared with pretreatment concentrations. These data suggest that the CSF calbindin concentration is a sensitive biomarker of NPC1 disease that could be instrumental as an outcome measure of therapeutic efficacy in ongoing clinical trials. PMID:27307499

  11. Cerebrospinal Fluid Calbindin D Concentration as a Biomarker of Cerebellar Disease Progression in Niemann-Pick Type C1 Disease.

    PubMed

    Bradbury, Allison; Bagel, Jessica; Sampson, Maureen; Farhat, Nicole; Ding, Wenge; Swain, Gary; Prociuk, Maria; O'Donnell, Patricia; Drobatz, Kenneth; Gurda, Brittney; Wassif, Christopher; Remaley, Alan; Porter, Forbes; Vite, Charles

    2016-08-01

    Niemann-Pick type C (NPC) 1 disease is a rare, inherited, neurodegenerative disease. Clear evidence of the therapeutic efficacy of 2-hydroxypropyl-β-cyclodextrin (HPβCD) in animal models resulted in the initiation of a phase I/IIa clinical trial in 2013 and a phase IIb/III trial in 2015. With clinical trials ongoing, validation of a biomarker to track disease progression and serve as a supporting outcome measure of therapeutic efficacy has become compulsory. In this study, we evaluated calcium-binding protein calbindin D-28K (calbindin) concentrations in the cerebrospinal fluid (CSF) as a biomarker of NPC1 disease. In the naturally occurring feline model, CSF calbindin was significantly elevated at 3 weeks of age, prior to the onset of cerebellar dysfunction, and steadily increased to >10-fold over normal at end-stage disease. Biweekly intrathecal administration of HPβCD initiated prior to the onset of neurologic dysfunction completely normalized CSF calbindin in NPC1 cats at all time points analyzed when followed up to 78 weeks of age. Initiation of HPβCD after the onset of clinical signs (16 weeks of age) resulted in a delayed reduction of calbindin levels in the CSF. Evaluation of CSF from patients with NPC1 revealed that calbindin concentrations were significantly elevated compared with CSF samples collected from unaffected patients. Off-label treatment of patients with NPC1 with miglustat, an inhibitor of glycosphingolipid biosynthesis, significantly decreased CSF calbindin compared with pretreatment concentrations. These data suggest that the CSF calbindin concentration is a sensitive biomarker of NPC1 disease that could be instrumental as an outcome measure of therapeutic efficacy in ongoing clinical trials. PMID:27307499

  12. CSF sphingolipids, β-amyloid, and tau in adults at risk for Alzheimer's disease

    PubMed Central

    Mielke, Michelle M.; Haughey, Norman J.; Bandaru, V.V.R.; Zetterberg, Henrik; Blennow, Kaj; Andreasson, Ulf; Johnson, Sterling C.; Gleason, Carey E.; Blazel, Hanna M.; Puglielli, Luigi; Sager, Mark A.; Asthana, Sanjay; Carlsson, Cynthia M.

    2014-01-01

    Cellular studies suggest sphingolipids may cause or accelerate amyloid-beta (Aβ) and tau pathology but in vivo human studies are lacking. We determined cerebrospinal fluid (CSF) levels of sphingolipids (ceramides, sphingomyelins), amyloid-beta (Aβ1–42, AβX-38, AβX-40, AβX-42) and tau (T-tau, p-tau181) in 91 cognitively normal individuals, aged 36–69 years, with a parental history of Alzheimer's disease (AD). The 18-carbon acyl chain length ceramide species was associated with AβX-38 (r = 0.312, p = 0.003), AβX-40 (r = 0.327, p = 0.002), and T-tau (r = 0.313, p = 0.003) but not with AβX-42 (r = 0.171, p = 0.106) or p-tau (r = 0.086, p = 0.418). All sphingomyelin species correlated (most p < 0.001) with all Aβ species and T-tau; many also correlated with p-tau. Results remained in regression models after controlling for age and APOE genotype. These results suggest in vivo relationships between CSF ceramides and sphingomyelins and Aβ and tau levels in cognitively normal individuals at increased risk for AD, indicating these sphingolipids may be associated with early pathogenesis. PMID:24952994

  13. Using biomarkers to improve detection of Alzheimer’s disease

    PubMed Central

    Biagioni, Milton C; Galvin, James E

    2011-01-01

    SUMMARY Disease-modifying approaches for Alzheimer’s disease (AD) might be most effective when initiated very early in the course, before the pathologic burden and neuronal and synaptic degeneration make it unlikely that halting disease progression would have a significant impact on patient outcomes. Biomarkers of disease may provide important avenues of research to enhance the diagnosis of individuals with early AD and could assist in the identification of those individuals at risk for developing AD. However, for such biomarkers to become clinically useful, long-term follow-up studies are necessary to evaluate the relevance of cross-sectional biomarker changes to the longitudinal course of the disease. The objective of this article is to review recent progress in AD biomarkers for the early diagnosis, classification, progression and prediction of AD and their usefulness in new treatment trials. PMID:22076127

  14. Development of the choroid plexus and blood-CSF barrier

    PubMed Central

    Liddelow, Shane A.

    2015-01-01

    Well-known as one of the main sources of cerebrospinal fluid (CSF), the choroid plexuses have been, and still remain, a relatively understudied tissue in neuroscience. The choroid plexus and CSF (along with the blood-brain barrier proper) are recognized to provide a robust protective effort for the brain: a physical barrier to impede entrance of toxic metabolites to the brain; a “biochemical” barrier that facilitates removal of moieties that circumvent this physical barrier; and buoyant physical protection by CSF itself. In addition, the choroid plexus-CSF system has been shown to be integral for normal brain development, central nervous system (CNS) homeostasis, and repair after disease and trauma. It has been suggested to provide a stem-cell like repository for neuronal and astrocyte glial cell progenitors. By far, the most widely recognized choroid plexus role is as the site of the blood-CSF barrier, controller of the internal CNS microenvironment. Mechanisms involved combine structural diffusion restraint from tight junctions between plexus epithelial cells (physical barrier) and specific exchange mechanisms across the interface (enzymatic barrier). The current hypothesis states that early in development this interface is functional and more specific than in the adult, with differences historically termed as “immaturity” actually correctly reflecting developmental specialization. The advanced knowledge of the choroid plexus-CSF system proves itself imperative to understand a range of neurological diseases, from those caused by plexus or CSF drainage dysfunction (e.g., hydrocephalus) to more complicated late-stage diseases (e.g., Alzheimer's) and failure of CNS regeneration. This review will focus on choroid plexus development, outlining how early specializations may be exploited clinically. PMID:25784848

  15. Biomarkers in Frontotemporal Lobar Degenerations – Progress and Challenges

    PubMed Central

    Hu, William T.; Trojanowski, John Q.; Shaw, Leslie M.

    2011-01-01

    Neuronal and glial changes associated with tau, TAR DNA binding protein of ~43 kD (TDP-43), and fused in sarcoma (FUS) together constitute the pathologic spectrum of frontotemporal lobar degeneration (FTLD). Most patients with FTLD present with prominent behavior or language changes, sometimes accompanied by extrapyramidal symptoms or motor neuron disease. Identification of FTLD patients with mutations in genes for tau, TDP-43, and FUS lends strong support for their pathogenic roles in FTLD, and elucidation of their dysfunction will pave the way for development of substrate specific therapy. However, there remains no reliable biomarker for early detection of FTLD or prediction of underlying FTLD pathologic change. Clinical syndromes usually reflects the earliest affected brain regions where atrophy can be visualized on structural MRI, but neither clinical nor structural imaging-based biomarkers has been accurately correlated with underlying pathology on the individual patient level. Biochemical markers in the cerebrospinal fluid (CSF) have also been investigated in FTLD and related disorders, including amyotrophic lateral sclerosis (ALS) and progressive supranuclear palsy (PSP). However, their accuracy and pathologic significance need to be confirmed in future multi-center studies. Here we review the progress made in FTLD biomarkers, including clinical phenotype/feature characterization, neuropsychological analysis, CSF and plasma analytes, and patterns of brain atrophy and network dysfunction detectable on brain imaging. Given the pathologic overlap of FTLD with ALS and PSP, collaboration with specialists in those fields will be essential in the translation of promising FTLD biomarkers into clinical practice. PMID:21554923

  16. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis

    PubMed Central

    Ranganathan, Srikanth; Williams, Eric; Ganchev, Philip; Gopalakrishnan, Vanathi; Lacomis, David; Urbinelli, Leo; Newhall, Kristyn; Cudkowicz, Merit E.; Brown, Robert H.; Bowser, Robert

    2006-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons. We tested the hypothesis that proteomic analysis will identify protein biomarkers that provide insight into disease pathogenesis and are diagnostically useful. To identify ALS specific biomarkers, we compared the proteomic profile of cerebrospinal fluid (CSF) from ALS and control subjects using surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF-MS). We identified 30 mass ion peaks with statistically significant (p < 0.01) differences between control and ALS subjects. Initial analysis with a rule-learning algorithm yielded biomarker panels with diagnostic predictive value as subsequently assessed using an independent set of coded test subjects. Three biomarkers were identified that are either decreased (transthyretin, cystatin C) or increased (carboxy-terminal fragment of neuroendocrine protein 7B2) in ALS CSF. We validated the SELDI-TOF-MS results for transthyretin and cystatin C by immunoblot and immunohistochemistry using commercially available antibodies. These findings identify a panel of CSF protein biomarkers for ALS. PMID:16313519

  17. MicroRNA-384 regulates both amyloid precursor protein and β-secretase expression and is a potential biomarker for Alzheimer's disease.

    PubMed

    Liu, Chen-Geng; Wang, Jin-Ling; Li, Lei; Wang, Pei-Chang

    2014-07-01

    Amyloid precursor protein (APP) and β-site APP cleaving enzyme (BACE-1) play important roles in the pathogenesis of Alzheimer's disease (AD). In this study, using bioinformatics analysis, we demonstrate that miR-384 is a microRNA (miRNA or miR) predicted to potentially target the 3' untranslated regions (3'-UTRs) of both APP and BACE-1. SH-SY5Y cells were transfected with miR-384 mimic oligonucleotide, miR-384 inhibitor oligonucleotide, or a non-specific control siRNA. We found that the overexpression of miR-384 suppressed the mRNA and protein expression of both APP and BACE-1. The miR-384 inhibitor oligonucleotide induced the upregulation of APP and BACE-1. The activity of BACE-1 was altered following the change in its protein expression. The binding sites of miR-384 on the 3'-UTRs of APP and BACE-1 were identified by luciferase assay. Furthermore, cells were treasted with amyloid-β (Aβ)42. Aβ42 downregulated miR-384 expression, leading to the continuous reduction in miR-384 expression. In addition, using a mouse model of AD, as well as patients with mild cognitive impairment (MCI) and dementia of Alzheimer's type (DAT), we examined the levels of miR-384 in cerebral spinal fluid (CSF) and serum. Patients with MCI and DAT had lower blood miR-384 levels compared with the controls. In addition, patients with DAT had lower blood miR-384 levels in blood compared with the MCI group. We also found decreased miR-384 expression in the several cerebral spinal fluid (CSF) of the patients with DAT. Negative correlations were observed between miR-384 and Aβ42 in the serum and CSF from patients with AD. In conclusion, these findings demonstrate that miR-384 may plays a role in the development of AD and may be a potential non-invasive biomarker for the diagnosis of AD. PMID:24827165

  18. DIS in AdS

    SciTech Connect

    Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios

    2009-03-23

    We calculate the total cross section for the scattering of a quark-anti-quark dipole on a large nucleus at high energy for a strongly coupled N = 4 super Yang-Mills theory using AdS/CFT correspondence. We model the nucleus by a metric of a shock wave in AdS{sub 5}. We then calculate the expectation value of the Wilson loop (the dipole) by finding the extrema of the Nambu-Goto action for an open string attached to the quark and antiquark lines of the loop in the background of an AdS{sub 5} shock wave. We find two physically meaningful extremal string configurations. For both solutions we obtain the forward scattering amplitude N for the quark dipole-nucleus scattering. We study the onset of unitarity with increasing center-of-mass energy and transverse size of the dipole: we observe that for both solutions the saturation scale Q{sub s} is independent of energy/Bjorken-x and depends on the atomic number of the nucleus as Q{sub s}{approx}A{sup 1/3}. Finally we observe that while one of the solutions we found corresponds to the pomeron intercept of {alpha}{sub P} = 2 found earlier in the literature, when extended to higher energy or larger dipole sizes it violates the black disk limit. The other solution we found respects the black disk limit and yields the pomeron intercept of {alpha}{sub P} = 1.5. We thus conjecture that the right pomeron intercept in gauge theories at strong coupling may be {alpha}{sub P} = 1.5.

  19. Bubbling AdS3

    NASA Astrophysics Data System (ADS)

    Martelli, Dario; Morales, Jose F.

    2005-02-01

    In the light of the recent Lin, Lunin, Maldacena (LLM) results, we investigate 1/2-BPS geometries in minimal (and next to minimal) supergravity in D = 6 dimensions. In the case of minimal supergravity, solutions are given by fibrations of a two-torus T2 specified by two harmonic functions. For a rectangular torus the two functions are related by a non-linear equation with rare solutions: AdS3 × S3, the pp-wave and the multi-center string. ``Bubbling'', i.e. superpositions of droplets, is accommodated by allowing the complex structure of the T2 to vary over the base. The analysis is repeated in the presence of a tensor multiplet and similar conclusions are reached, with generic solutions describing D1D5 (or their dual fundamental string-momentum) systems. In this framework, the profile of the dual fundamental string-momentum system is identified with the boundaries of the droplets in a two-dimensional plane.

  20. MicroRNAs in cerebrospinal fluid as biomarker for disease course monitoring in primary central nervous system lymphoma.

    PubMed

    Baraniskin, Alexander; Kuhnhenn, Jan; Schlegel, Uwe; Schmiegel, Wolf; Hahn, Stephan; Schroers, Roland

    2012-09-01

    Diagnosis of primary lymphomas of the central nervous system (PCNSL) largely depends on histopathology of tumor biopsies. Recently, we identified miRNAs detected in the CSF of PCNSL patients as novel non-invasive biomarkers for this disease. In combined analyses of miR-21, miR-19b, and miR-92 CSF levels, it was possible to differentiate PCNSL from other neurological disorders. In the current study, we first confirmed our previous findings in an enlarged PCNSL cohort (n = 39; sensitivity 97.4 %). Also, we sought to establish the potential role of CSF miRNAs as biomarkers for disease course monitoring. In sequential miRNA measurements in CSF derived from nine patients with different disease courses, an intriguing correlation of miRNA levels and PCNSL status during treatment and/or disease follow-up was demonstrated. Finally, we demonstrated that miRNA levels in serum of PCNSL patients (n = 14) were not elevated as compared to controls. In summary, this study provides the first evidence that CSF miRNAs have the potential as biomarkers for treatment monitoring and disease follow-up of patients with PCNSL. PMID:22729947

  1. Analysis of pralidoxime in serum, brain and CSF of rats.

    PubMed

    Kalász, Huba; Szöko, Eva; Tábi, Tamás; Petroianu, Georg A; Lorke, Dietrich E; Omar, Abdulrab; Alafifi, Salem; Jasem, Almerri; Tekes, Kornélia

    2009-05-01

    After administration of various amounts of pralidoxime to rats, the levels in serum, brain and cerebrospinal fluid (CSF) were measured using capillary zone electrophoresis (CZE). The calibration curves were established using spiked samples. The calibration covers the ranges from 0.3 - 200 microg/mL, 0.3 - 7 microg/mL and 0.1 - 7 microg/mL for serum, brain and CSF, respectively. The CZE measurement opens the way to the fast and reliable determination of pyridinium aldoxime concentrations in serum, cerebrospinal fluid and brain, thereby monitoring blood-brain and blood-CSF penetration of pyridinium aldoxime-type antidotes clinically used in organophosphate poisoning. PMID:19442213

  2. The role of G-CSF and IL-6 in the granulopoiesis-stimulating activity of murine blood serum induced by perorally administered ultrafiltered pig leukocyte extract, IMUNOR.

    PubMed

    Vacek, Antonín; Hofer, Michal; Holá, Jirina; Weiterová, Lenka; Streitová, Denisa; Svoboda, Jaroslav

    2007-05-01

    IMUNOR, a low-molecular weight (< 12 kD) ultrafiltered pig leukocyte extract, has been previously found to have significant stimulatory effects on murine hematopoiesis supressed by ionizing radiation or cytotoxic drugs. This communication shows data on the mechanisms of these effects. Using ELISA assay, significantly increased levels of granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were observed. On the contrary, no detectable levels of granulocyte-macrophage colony-stimulating factor (GM-CFC) and interleukin-3 (IL-3) have been found in blood serum of IMUNOR-treated mice. Incubation of the serum from IMUNOR-treated mice with antibodies against G-CSF caused abrogation of the ability of the sera to stimulate in vitro growth of colonies originating from granulocyte-macrophage progenitor cells (GM-CFC). In contrast, incubation of the serum with antibodies against IL-6 did not change its colony-stimulating activity. It may be inferred from these findings that G-CSF is probably the main cytokine responsible for the granulopoiesis-stimulating effects of IMUNOR. When the serum from IMUNOR-treated mice with G-CSF inactivated by anti-G-CSF antibodies (but with elevated IL-6) was added to cultures of bone marrow cells together with a suboptimum concentration of IL-3, a significant increase in the numbers of GM-CFC colonies was found. Moreover, conjoint inactivation of G-CSF and IL-6 significantly decreased the numbers of GM-CFC colonies in comparison with those observed when only G-CSF was inactivated. This observation strongly suggests that though IMUNOR-induced IL-6 is not able to induce the growth of GM-CFC colonies alone, it is able to potentiate the hematopoiesis-stimulating effect of IL-3. These findings represent a new knowledge concerning the hematopoiesis-stimulating action of IMUNOR, a promising immunomodulatory agent. PMID:17386413

  3. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer's disease and associate with neuronal injury markers.

    PubMed

    Suárez-Calvet, Marc; Kleinberger, Gernot; Araque Caballero, Miguel Ángel; Brendel, Matthias; Rominger, Axel; Alcolea, Daniel; Fortea, Juan; Lleó, Alberto; Blesa, Rafael; Gispert, Juan Domingo; Sánchez-Valle, Raquel; Antonell, Anna; Rami, Lorena; Molinuevo, José L; Brosseron, Frederic; Traschütz, Andreas; Heneka, Michael T; Struyfs, Hanne; Engelborghs, Sebastiaan; Sleegers, Kristel; Van Broeckhoven, Christine; Zetterberg, Henrik; Nellgård, Bengt; Blennow, Kaj; Crispin, Alexander; Ewers, Michael; Haass, Christian

    2016-01-01

    TREM2 is an innate immune receptor expressed on the surface of microglia. Loss-of-function mutations of TREM2 are associated with increased risk of Alzheimer's disease (AD). TREM2 is a type-1 protein with an ectodomain that is proteolytically cleaved and released into the extracellular space as a soluble variant (sTREM2), which can be measured in the cerebrospinal fluid (CSF). In this cross-sectional multicenter study, we investigated whether CSF levels of sTREM2 are changed during the clinical course of AD, and in cognitively normal individuals with suspected non-AD pathology (SNAP). CSF sTREM2 levels were higher in mild cognitive impairment due to AD than in all other AD groups and controls. SNAP individuals also had significantly increased CSF sTREM2 compared to controls. Moreover, increased CSF sTREM2 levels were associated with higher CSF total tau and phospho-tau181P, which are markers of neuronal degeneration and tau pathology. Our data demonstrate that CSF sTREM2 levels are increased in the early symptomatic phase of AD, probably reflecting a corresponding change of the microglia activation status in response to neuronal degeneration. PMID:26941262

  4. Effects of inhibitors on chloride outflux from CSF

    SciTech Connect

    Nishimura, M.; Johnson, D.C.; Pappagianopoulos, P.; Kazemi, H.

    1986-03-05

    The regulation of the CSF (Cl/sup -/) plays a key role in CNS acid-base homeostasis. The authors have shown in previous studies that chloride influx from blood to CSF is largely dependent upon sodium-coupled carrier mediated movement. Therefore, the mechanism of chloride outflux from CSF to brain was evaluated in anesthetized dogs using ventricular-cisternal perfusion (VCP) with the short-lived isotope /sup 38/Cl/sup -/ and dextran. The outflux of /sup 38/Cl/sup -/ from CSF was determined from the different movements between /sup 38/Cl/sup -/ and dextran using a one compartment model. VCP was performed at a rate of 1.4 ml/min for 14 min, and then slowed to 0.28 ml/min. The /sup 38/Cl/sup -/ activity decreased to a steady state level about 12% lower than that of dextran within 40-50 minutes. Under control conditions (19 runs in 7 dogs), the rate of chloride outflux was 0.059 +/- 0.004 min/sup -1/ (mean +/- SE). It was not significantly changed after the inclusion of bumetanide (10/sup -5/ molar) in the VCP fluid (n=6), which inhibits sodium-coupled Cl/sup -/ transport, or with acetazolamide 4.5 x 10/sup -3/ molar (n=4) which inhibits carbonic anhydrase. The authors conclude that chloride outflux from CSF is not dependent upon sodium-coupled carrier mediated movement, which is in contrast with chloride influx from blood to CSF, nor is it dependent upon carbonic anhydrase activity.

  5. Endoscopic Repair of CSF Rhinorrhea: An Institutional Experience

    PubMed Central

    Mishra, Sarita Kumari; Mathew, George Ani; Paul, Roshna Rose; Asif, Syed Kamran; John, Mary; Varghese, Ajoy Mathew; Kurien, Mary

    2016-01-01

    Introduction: Endoscopic repair is considered the treatment of choice in cerebrospinal fluid (CSF) rhinorrhea. The aim of our study was to analyze the etiopathogenesis of CSF rhinorrhea, the outcome of treatment and the causes of failure in a developing-country setting. Materials and Methods: A retrospective review of patients treated with endoscopic repair for CSF rhinorrhea at a tertiary care hospital in southern India from January 2002 to December 2009 identified 36 patients, the majority of them being women. The defects were closed in three layers using fat, fascia lata and nasal mucosa along with a fibrin sealant in the majority of the patients. Per-operatively, a subarachnoid drain was placed in all patients. Patients were followed up for 1 year. Results: Spontaneous onset of CSF rhinorrhea was noted in 61% of patients. The most common site of leak was found to be the left cribriform plate area. Hence the most common cause of CSF rhinorrhea in our study was spontaneous and the second most common was post-traumatic. Our success rate on the first attempt at endoscopic repair was 100%, with a recurrence rate of 6%. A large defect, failure of localization of the defect, or other co-morbid conditions such as chronic cough may be the most likely causes of recurrence of leak. Conclusion: Accurate localization of the site of lesion using a high-resolution computed tomography (CT) scan with magnetic resonance imaging (MRI) and confirmation of the site of leak by intraoperative Valsalva maneuver along with multilayered closure of the dural defect and post-operative lumbar drain appear to be essential for the successful endoscopic repair of CSF rhinorrhea. PMID:26878002

  6. Plasma Proteomics Biomarkers in Alzheimer's Disease: Latest Advances and Challenges.

    PubMed

    Perneczky, Robert; Guo, Liang-Hao

    2016-01-01

    The recent paradigm shift towards a more biologically oriented definition of Alzheimer's disease (AD) in clinical settings increases the need for sensitive biomarkers that can be applied in population-based settings. Blood plasma is easily accessible and contains a large number of proteins related to cerebral processes. It is therefore an ideal candidate for AD biomarker discovery. The present chapter provides an overview of the current research landscape in relation to blood-based AD biomarkers. Both clinical and methodological issues are covered. A brief summary is given on two relevant laboratory techniques to ascertain blood biomarker changes due to AD; methodological and clinical challenges in the field are also discussed. PMID:26235089

  7. Tau/Amyloid Beta 42 Peptide Test (Alzheimer Biomarkers)

    MedlinePlus

    ... page: Was this page helpful? Also known as: Alzheimer Biomarkers Formal name: Tau Protein and Amyloid Beta ... supplemental tests to help establish a diagnosis of Alzheimer disease and to distinguish between AD and other ...

  8. A review of neuroimaging biomarkers of Alzheimer’s disease

    PubMed Central

    Varghese, Tinu; Sheelakumari, R; James, Jija S; Mathuranath, PS

    2014-01-01

    Neuroimaging biomarkers have potential role in the early diagnosis as well as periodic follow-up of neurodegenerative diseases such as Alzheimer’s disease (AD). Structural imaging biomarkers can be used to predict those who are at risk or in preclinical stages of AD. It could possibly be useful even in predicting the conversion of Mild Cognitive Impairment (MCI) an early stage of AD to AD. In addition there has been a lot of progress in molecular imaging in AD. This article presents a review of recent progress in selected imaging biomarkers for early diagnosis, classification, and progression, of AD. A comprehensive integrative strategy initiated early in the cognitive decline is perhaps the most effective method of controlling progression to Alzheimer’s disease. PMID:25431627

  9. Cyclic AMP-elevating agents down-regulate the oxidative burst induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) in adherent neutrophils.

    PubMed

    Ottonello, L; Morone, M P; Dapino, P; Dallegri, F

    1995-09-01

    Human neutrophils, plated on fibronectin-precoated wells, were found to release large quantities of superoxide anion (O2-) in response to GM-CSF. O2- production was reduced by prostaglandin E2 (PGE2) and the phosphodiesterase type IV (PDE IV) inhibitor RO 20-1724. Both agents are known to increase intracellular cyclic AMP (cAMP) levels by inducing its production (PGE2) or blocking its catabolism (RO 20-1724). When added in combination, PGE2 and RO 20-1724 had a marked synergistic inhibitory effect, which was reproduced by replacing PGE2 with a direct activator of adenylate cyclase, i.e. forskolin (FK). Moreover, the neutrophil response to GM-CSF was inhibited by a membrane-permeable analogue of cAMP in a dose-dependent manner. As GM-CSF and PGE2 are known to be generated at tissue sites of inflammation, the results suggest the existence of a PGE2-dependent regulatory pathway potentially capable of controlling the neutrophil response to GM-CSF, in turn limiting the risk of local oxidative tissue injury. Moreover, owing to its susceptibility to amplification by RO 20-1724, the PGE2-dependent pathway and in particular PDE-IV may represent a pharmacological target to reduce the generation of histotoxic oxidants by GM-CSF-responding neutrophils. PMID:7664497

  10. Cyclic AMP-elevating agents down-regulate the oxidative burst induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) in adherent neutrophils.

    PubMed Central

    Ottonello, L; Morone, M P; Dapino, P; Dallegri, F

    1995-01-01

    Human neutrophils, plated on fibronectin-precoated wells, were found to release large quantities of superoxide anion (O2-) in response to GM-CSF. O2- production was reduced by prostaglandin E2 (PGE2) and the phosphodiesterase type IV (PDE IV) inhibitor RO 20-1724. Both agents are known to increase intracellular cyclic AMP (cAMP) levels by inducing its production (PGE2) or blocking its catabolism (RO 20-1724). When added in combination, PGE2 and RO 20-1724 had a marked synergistic inhibitory effect, which was reproduced by replacing PGE2 with a direct activator of adenylate cyclase, i.e. forskolin (FK). Moreover, the neutrophil response to GM-CSF was inhibited by a membrane-permeable analogue of cAMP in a dose-dependent manner. As GM-CSF and PGE2 are known to be generated at tissue sites of inflammation, the results suggest the existence of a PGE2-dependent regulatory pathway potentially capable of controlling the neutrophil response to GM-CSF, in turn limiting the risk of local oxidative tissue injury. Moreover, owing to its susceptibility to amplification by RO 20-1724, the PGE2-dependent pathway and in particular PDE-IV may represent a pharmacological target to reduce the generation of histotoxic oxidants by GM-CSF-responding neutrophils. PMID:7664497

  11. Evaluation of neprilysin sequence variation in relation to CSF β-Amyloid levels and Alzheimer disease risk

    PubMed Central

    Blomqvist, Mia E; McCarthy, Shane; Blennow, Kaj; Andersson, Björn; Prince, Jonathan A

    2010-01-01

    Neprilysin (NEP) is a principal peptidase involved in the degradation of β-amyloid (Aβ), and as such its encoding gene (MME) has been the target of numerous genetic association studies on Alzheimer disease. Here, in order to attempt replication of previous findings we have investigated several single nucleotide polymorphisms (SNPs) that have been claimed to be associated with AD. A key feature of the present study is the complementary investigation of both AD risk and quantitative measures of AD severity, including cerebrospinal (CSF) fluid levels of AP1-42. In contrast to the effects of APOE, none of these measures are detectably influenced by genetic polymorphism in the MME region. We thus, fail to find support for previous results suggesting that MME impacts AD. PMID:21537452

  12. Utile or futile: biomarkers in the ICU.

    PubMed

    Balmelli, Cathrin; Drexler, Beatrice; Mueller, Christian

    2011-01-01

    Biomarkers complement other clinical information by proving quantitative data regarding a pathophysiological mechanism that can be used for the early diagnosis of a specific disease, to monitor and guide treatment, and to predict the risk of death or other adverse events. The stronger the link between the information provided by the biomarker and the immediate clinical course of action that we physicians take in response, the higher the clinical utility of the biomarker. This link is weakest for prognostic biomarkers applied in patients with a wide variety of diseases, such as in unselected intensive care unit (ICU) patients. Although the added value on top of current ICU mortality scores seems to be too low to justify clinical use, the observation that hemodynamic cardiac stress and inflammation are present in multiple conditions provides important insights into the pathophysiology of common disorders in the ICU. PMID:21457515

  13. Biomarkers of Brain Damage: S100B and NSE Concentrations in Cerebrospinal Fluid—A Normative Study

    PubMed Central

    Hajduková, Lenka; Sobek, Ondřej; Prchalová, Darina; Bílková, Zuzana; Koudelková, Martina; Lukášková, Jiřina; Matuchová, Inka

    2015-01-01

    NSE and S100B belong among the so-called structural proteins of the central nervous system (CNS). Lately, this group of structural proteins has been profusely used as specific biomarkers of CNS tissue damage. So far, the majority of the research papers have focused predominantly on the concentrations of these proteins in blood in relation to CNS damage of various origins. Considering the close anatomic and functional relationship between the brain or spinal cord and cerebrospinal fluid (CSF), in case of a CNS injury, a rapid and pronounced increase of the concentrations of structural proteins specifically in CSF takes place. This study inquires into the physiological concentrations of NSE and S100B proteins in CSF, carried out on a sufficiently large group of 601 patients. The detected values can be used for determination of a normal reference range in CSF in a clinical laboratory diagnostics. PMID:26421286

  14. Effect of LXR/RXR agonism on brain and CSF Aβ40 levels in rats

    PubMed Central

    Wang, Songli; Wen, Paul; Wood, Stephen

    2016-01-01

    Alzheimer's disease (AD) is characterized pathologically by the presence of amyloid plaques and neurofibrillary tangles. The amyloid hypothesis contends that the abnormal accumulation of Aβ, the principal component of amyloid plaques, plays an essential role in initiating the disease. Impaired clearance of soluble Aβ from the brain, a process facilitated by apolipoprotein E (APOE), is believed to be a contributing factor in plaque formation. APOE expression is transcriptionally regulated through the action of a family of nuclear receptors including the peroxisome proliferator-activated receptor gamma and liver X receptors (LXRs) in coordination with retinoid X receptors (RXRs). It has been previously reported that various agonists of this receptor family can influence brain Aβ levels in rodents. In this study we investigated the effects of LXR/RXR agonism on brain and cerebrospinal fluid (CSF) levels of Aβ40 in naïve rats. Treatment of rats for 3 days or 7 days with the LXR agonist, T0901317 or the RXR agonist, bexarotene did not result in significant changes in brain or CSF Aβ40 levels. PMID:27239272

  15. BIOMARKERS OF REPRODUCTIVE TOXICITY

    EPA Science Inventory

    Identification and verification of anatomical, endocrine, cellular and molecular biomarkers is crucial for successful clinical diagnosis and treatment of toxicity and disease, as well as basic toxicological, epidemiological and other research. Various in situ biomarkers of repro...

  16. Biomarkers in Computational Toxicology

    EPA Science Inventory

    Biomarkers are a means to evaluate chemical exposure and/or the subsequent impacts on toxicity pathways that lead to adverse health outcomes. Computational toxicology can integrate biomarker data with knowledge of exposure, chemistry, biology, pharmacokinetics, toxicology, and e...

  17. CSF B-Endorphin Levels in Patients with Infantile Autism.

    ERIC Educational Resources Information Center

    Nagamitsu, Shinichiro; And Others

    1997-01-01

    A Japanese study measured CSF (cerebrospinal fluid) levels of beta-endorphin in 19 children (ages 4-6) with infantile autism and in 3 children (ages 10-14) with Rett syndrome. In infantile autism, levels did not differ significantly from control participants (n=23). However, levels were significantly higher in those with Rett syndrome. (Author/CR)

  18. Inherited biallelic CSF3R mutations in severe congenital neutropenia

    PubMed Central

    Triot, Alexa; Järvinen, Päivi M.; Arostegui, Juan I.; Murugan, Dhaarini; Kohistani, Naschla; Dapena Díaz, José Luis; Racek, Tomas; Puchałka, Jacek; Gertz, E. Michael; Schäffer, Alejandro A.; Kotlarz, Daniel; Pfeifer, Dietmar; Díaz de Heredia Rubio, Cristina; Ozdemir, Mehmet Akif; Patiroglu, Turkan; Karakukcu, Musa; Sánchez de Toledo Codina, José; Yagüe, Jordi; Touw, Ivo P.; Unal, Ekrem

    2014-01-01

    Severe congenital neutropenia (SCN) is characterized by low numbers of peripheral neutrophil granulocytes and a predisposition to life-threatening bacterial infections. We describe a novel genetic SCN type in 2 unrelated families associated with recessively inherited loss-of-function mutations in CSF3R, encoding the granulocyte colony-stimulating factor (G-CSF) receptor. Family A, with 3 affected children, carried a homozygous missense mutation (NM_000760.3:c.922C>T, NP_000751.1:p.Arg308Cys), which resulted in perturbed N-glycosylation and aberrant localization to the cell surface. Family B, with 1 affected infant, carried compound heterozygous deletions provoking frameshifts and premature stop codons (NM_000760.3:c.948_963del, NP_000751.1:p.Gly316fsTer322 and NM_000760.3:c.1245del, NP_000751.1:p.Gly415fsTer432). Despite peripheral SCN, all patients had morphologic evidence of full myeloid cell maturation in bone marrow. None of the patients responded to treatment with recombinant human G-CSF. Our study highlights the genetic and morphologic SCN variability and provides evidence both for functional importance and redundancy of G-CSF receptor-mediated signaling in human granulopoiesis. PMID:24753537

  19. G-CSF Intrauterine for Thin Endometrium, and Pregnancy Outcome

    PubMed Central

    Tehraninejad, Ensieh; Davari Tanha, Fateme; Asadi, Ebrahim; Kamali, Koorosh; Aziminikoo, Elham; Rezayof, Elahe

    2015-01-01

    Objective: To evaluate effects of G-CSF on a cancelled ART cycle due to thin endometrium. Materials and methods: In a nonrandomized clinical trial from January 2011 to January 2013 in two tertiary university based hospitals fifteen patients undergoing embryo transfer and with the history of cycle cancellation due to thin endometrium were studied. Intrauterine infusion of G-CSF was done on the day of oocyte pick-up or 5 days before embryo transfer. The primary outcome to be measured was an endometrium thickened to at least 6 mm and the secondary outcome was clinical pregnancy rate and consequently take-home baby. All previous cycles were considered as control for each patient. Results: The G-CSF was infused at the day of oocyte retrieval or 5 days before embryo transfer. The endometrial thickness reached from 3.593±0.251 mm to 7.120 ± 0.84 mm. The mean age, gravidity, parity, and FSH were 35.13± 9.531 years, 3, 1 and 32.78 ± 31.10 mIU/ml, respectively. The clinical pregnancy rate was 20%, and there was one missed abortion, a mother death at 34 weeks, and a preterm labor at 30 weeks due to PROM. Conclusion: G-CSF may increase endometrial thickness in the small group of patients who had no choice except cycle cancellation or surrogacy. PMID:26622308

  20. CSF Amino Acids, Pterins and Mechanism of the Ketogenic Diet.

    PubMed

    Millichap, J Gordon

    2015-10-01

    Investigators from Hospital Sant Joan de Deu, Barcelona, Spain, studied the relationship between the etiology of refractory childhood epilepsy, CSF neurotransmitters, pterins, and amino acids, and response to a ketogenic diet in 60 patients with refractory epilepsy, 83% focal and 52% idiopathic. PMID:26933537

  1. Increased CSF Homocysteine in Pathological Gamblers Compared with Healthy Controls

    ERIC Educational Resources Information Center

    Nordin, Conny; Sjodin, Ingemar

    2009-01-01

    Neurocognitive disturbances suggesting a frontal lobe dysfunction have been observed in pathological gamblers and alcohol dependents. Given that a high homocysteine level has been suggested to be a mediating factor in alcohol-related cognitive decline, we have determined homocysteine and cobalamine in cerebrospinal fluid (CSF) obtained from 11…

  2. Multiplexed MRM with Internal Standards for Cerebrospinal Fluid Candidate Protein Biomarker Quantitation.

    PubMed

    Percy, Andrew J; Yang, Juncong; Chambers, Andrew G; Simon, Romain; Hardie, Darryl B; Borchers, Christoph H

    2014-06-30

    Multiplexed quantitation is essential for discovering, verifying, and validating biomarkers for risk stratification, disease prognostication, and therapeutic monitoring. The most promising strategy for quantifying unverified protein biomarkers in biofluids relies on selected/multiple reaction monitoring (SRM or MRM) technology with isotopically labeled standards employed within a bottom-up proteomic workflow. Since cerebrospinal fluid (CSF) is an important fluid for studying central nervous system (CNS) related diseases, we sought to develop a rapid, antibody- and fractionation-free MRM-based approach with a complex mixture of peptide standards to quantify a highly multiplexed panel of candidate protein biomarkers in human CSF. Development involved peptide transition optimization, denaturation/digestion protocol evaluation, transition interference screening, and protein quantitation via peptide standard curves. The final method exhibited excellent reproducibility (average coefficient of variation of <1% for retention time and <6% for signal) and breadth of quantitation (130 proteins from 311 interference-free peptides) in a single 43-min run. These proteins are of high-to-low abundance with determined concentrations from 118 μg/mL (serum albumin) to 550 pg/mL (apolipoprotein C-I). Overall, the method consists of the most highly multiplexed and broadest panel of candidate protein biomarkers in human CSF reported thus far and is well suited for subsequent verification studies on patient samples. PMID:24911472

  3. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage.

    PubMed

    Ushach, Irina; Zlotnik, Albert

    2016-09-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  4. Proinflammatory cytokines and matrix metalloproteinases in CSF of patients with VZV vasculopathy

    PubMed Central

    Jones, Dallas; Alvarez, Enrique; Selva, Sean; Gilden, Don

    2016-01-01

    Objective: To determine the levels of proinflammatory cytokines and matrix metalloproteinases (MMPs) in the CSF of patients with virologically verified varicella zoster virus (VZV) vasculopathy. Methods: CSF from 30 patients with virologically verified VZV vasculopathy was analyzed for levels of proinflammatory cytokines and MMPs using the Meso Scale Discovery multiplex ELISA platform. Positive CNS inflammatory disease controls were provided by CSF from 30 patients with multiple sclerosis. Negative controls were provided by CSF from 20 healthy controls. Results: Compared to multiple sclerosis CSF and CSF from healthy controls, levels of interleukin (IL)-8, IL-6, and MMP-2 were significantly elevated in VZV vasculopathy CSF. Conclusions: CSF of patients with VZV vasculopathy revealed a unique profile of elevated proinflammatory cytokines, IL-8 and IL-6, along with elevated MMP-2. The relevance of these cytokines to the pathogenesis of VZV vasculopathy requires further study. PMID:27340684

  5. Emerging Roles for CSF-1 Receptor and its Ligands in the Nervous System.

    PubMed

    Chitu, Violeta; Gokhan, Şölen; Nandi, Sayan; Mehler, Mark F; Stanley, E Richard

    2016-06-01

    The colony-stimulating factor-1 receptor (CSF-1R) kinase regulates tissue macrophage homeostasis, osteoclastogenesis, and Paneth cell development. However, recent studies in mice have revealed that CSF-1R signaling directly controls the development and maintenance of microglia, and cell autonomously regulates neuronal differentiation and survival. While the CSF-1R-cognate ligands, CSF-1 and interleukin-34 (IL-34) compete for binding to the CSF-1R, they are expressed in a largely non-overlapping manner by mature neurons. The recent identification of a dominantly inherited, adult-onset, progressive dementia associated with inactivating mutations in the CSF-1R highlights the importance of CSF-1R signaling in the brain. We review the roles of the CSF-1R and its ligands in microglial and neural development and function, and their relevance to our understanding of neurodegenerative disease. PMID:27083478

  6. Alpha-Synuclein as a Biomarker for Parkinson's Disease.

    PubMed

    Atik, Anzari; Stewart, Tessandra; Zhang, Jing

    2016-05-01

    Parkinson's disease (PD) is a common neurodegenerative disorder, characterized pathologically by the presence of α-synuclein (α-syn)-rich Lewy bodies. As clinical diagnosis of PD is challenging, misdiagnosis is common, highlighting the need for disease-specific and early stage biomarkers. Both early diagnosis of PD and adequate tracking of disease progression could significantly improve outcomes for patients, particularly in regard to existing and future disease modifying treatments. Given its critical roles in PD pathogenesis, α-syn may be useful as a biomarker of PD. The aim of this review is, therefore, to summarize the efficacy of tissue and body fluid α-syn measurements in the detection of PD as well as monitoring disease progression. In comparison to solid tissue specimens and biopsies, biofluid α-syn levels may be the most promising candidates in PD diagnosis and progression based on specificity, sensitivity and availability. Although α-syn has been tested most extensively in cerebrospinal fluid (CSF), the relatively invasive procedure for collecting CSF is not suitable in most clinical settings, leading to investigation of plasma, blood and saliva as alternatives. The exploration of combined biomarkers, along with α-syn, to improve diagnostic accuracy is also likely required. PMID:26940058

  7. Genome-Wide Association Study of CSF Levels of 59 Alzheimer's Disease Candidate Proteins: Significant Associations with Proteins Involved in Amyloid Processing and Inflammation

    PubMed Central

    Kauwe, John S. K.; Bailey, Matthew H.; Ridge, Perry G.; Perry, Rachel; Wadsworth, Mark E.; Hoyt, Kaitlyn L.; Staley, Lyndsay A.; Karch, Celeste M.; Harari, Oscar; Cruchaga, Carlos; Ainscough, Benjamin J.; Bales, Kelly; Pickering, Eve H.; Bertelsen, Sarah; Fagan, Anne M.; Holtzman, David M.; Morris, John C.; Goate, Alison M.

    2014-01-01

    Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (p<1.46×10−10) and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal

  8. Quick method of multimeric protein production for biologically active substances such as human GM-CSF (hGM-CSF).

    PubMed

    Shinya, Eiji; Owaki, Atsuko; Norose, Yoshihiko; Sato, Shigeru; Takahashi, Hidemi

    2009-08-14

    The C-terminal fragment of C4b-binding protein (C4BP)-based multimerizing system was applied to hGM-CSF to induce dendritic cells (DCs) from peripheral blood monocytes (PBMCs), to see whether the C4BP could stimulate immature DCs, since DCs, equipped with pattern recognition receptors such as toll-like receptors (TLRs), are hypersensitive to various immunologically active molecules like LPS. hGM-CSF gene was merged to the 3'-terminal region of the C4BPalpha-chain gene, and the transfected human 293FT cells produced sufficient amount of octameric hGM-CSF, which resulted in iDCs with the same phenotype and the same response to a TRL4 ligand, LPS and a TLR3 ligand, poly I:C, as those induced with authentic monomeric hGM-CSF. These results suggest that the C4BP-based multimerizing system could facilitate the design of self-associating multimeric recombinant proteins without stimulating iDCs, which might be seen with the other multimerizing systems such as that using Fc fragment of IgM. PMID:19497303

  9. Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA.

    PubMed

    Suzuki, Takuji; Sakagami, Takuro; Rubin, Bruce K; Nogee, Lawrence M; Wood, Robert E; Zimmerman, Sarah L; Smolarek, Teresa; Dishop, Megan K; Wert, Susan E; Whitsett, Jeffrey A; Grabowski, Gregory; Carey, Brenna C; Stevens, Carrie; van der Loo, Johannes C M; Trapnell, Bruce C

    2008-11-24

    Primary pulmonary alveolar proteinosis (PAP) is a rare syndrome characterized by accumulation of surfactant in the lungs that is presumed to be mediated by disruption of granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling based on studies in genetically modified mice. The effects of GM-CSF are mediated by heterologous receptors composed of GM-CSF binding (GM-CSF-Ralpha) and nonbinding affinity-enhancing (GM-CSF-Rbeta) subunits. We describe PAP, failure to thrive, and increased GM-CSF levels in two sisters aged 6 and 8 yr with abnormalities of both GM-CSF-Ralpha-encoding alleles (CSF2RA). One was a 1.6-Mb deletion in the pseudoautosomal region of one maternal X chromosome encompassing CSF2RA. The other, a point mutation in the paternal X chromosome allele encoding a G174R substitution, altered an N-linked glycosylation site within the cytokine binding domain and glycosylation of GM-CSF-Ralpha, severely reducing GM-CSF binding, receptor signaling, and GM-CSF-dependent functions in primary myeloid cells. Transfection of cloned cDNAs faithfully reproduced the signaling defect at physiological GM-CSF concentrations. Interestingly, at high GM-CSF concentrations similar to those observed in the index patient, signaling was partially rescued, thereby providing a molecular explanation for the slow progression of disease in these children. These results establish that GM-CSF signaling is critical for surfactant homeostasis in humans and demonstrate that mutations in CSF2RA cause familial PAP. PMID:18955570

  10. Comparative antitumor effect among GM-CSF, IL-12 and GM-CSF+IL-12 genetically modified tumor cell vaccines.

    PubMed

    Miguel, A; Herrero, M J; Sendra, L; Botella, R; Algás, R; Sánchez, M; Aliño, S F

    2013-10-01

    Genetically modified cells have been shown to be one of the most effective cancer vaccine strategies. An evaluation is made of the efficacy of both preventive and therapeutic antitumor vaccines against murine melanoma, using C57BL/6 mice and irradiated B16 tumor cells expressing granulocyte and macrophage colony-stimulating factor (GM-CSF), interleukin-12 (IL-12) or both. Tumor was transplanted by the injection of wild-type B16 cells. Tumor growth and survival were measured to evaluate the efficacy of vaccination. Specific humoral response and immunoglobulin G (IgG) switch were evaluated measuring total IgG and IgG1 and IgG2a subtypes against tumor membrane proteins of B16 cells. In preventive vaccination, all treated groups showed delayed tumor growth. In addition, the group vaccinated to express only GM-CSF achieved 100% animal survival (P<0.005). Vaccination with GM-CSF+IL-12-producing B16 cells yielded lesser results (60% survival, P<0.005). Furthermore, all surviving animals remained disease-free after second tumor implantation 1 year later. The therapeutic vaccination strategies resulted in significantly delayed tumor growth, mainly using B16 cells producing GM-CSF+IL-12 cytokines, with 70% tumor growth inhibition (P<0.001)-although none of the animals reached overall survival. The results obtained suggest that the GM-CSF+IL-12 combination only increases the efficacy of therapeutic vaccines. No differences in classical regulatory T cells were found among the different groups. PMID:23969885

  11. Cancer biomarkers - current perspectives.

    PubMed

    Bhatt, Anant Narayan; Mathur, Rohit; Farooque, Abdullah; Verma, Amit; Dwarakanath, B S

    2010-08-01

    In the recent years, knowledge about cancer biomarkers has increased tremendously providing great opportunities for improving the management of cancer patients by enhancing the efficiency of detection and efficacy of treatment. Recent technological advancement has enabled the examination of many potential biomarkers and renewed interest in developing new biomarkers. Biomarkers of cancer could include a broad range of biochemical entities, such as nucleic acids, proteins, sugars, lipids, and small metabolites, cytogenetic and cytokinetic parameters as well as whole tumour cells found in the body fluid. A comprehensive understanding of the relevance of each biomarker will be very important not only for diagnosing the disease reliably, but also help in the choice of multiple therapeutic alternatives currently available that is likely to benefit the patients. This review provides a brief account on various biomarkers for diagnosis, prognosis and therapeutic purposes, which include markers already in clinical practice as well as various upcoming biomarkers. PMID:20716813

  12. Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA

    PubMed Central

    Suzuki, Takuji; Sakagami, Takuro; Rubin, Bruce K.; Nogee, Lawrence M.; Wood, Robert E.; Zimmerman, Sarah L.; Smolarek, Teresa; Dishop, Megan K.; Wert, Susan E.; Whitsett, Jeffrey A.; Grabowski, Gregory; Carey, Brenna C.; Stevens, Carrie; van der Loo, Johannes C.M.; Trapnell, Bruce C.

    2008-01-01

    Primary pulmonary alveolar proteinosis (PAP) is a rare syndrome characterized by accumulation of surfactant in the lungs that is presumed to be mediated by disruption of granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling based on studies in genetically modified mice. The effects of GM-CSF are mediated by heterologous receptors composed of GM-CSF binding (GM-CSF-Rα) and nonbinding affinity-enhancing (GM-CSF-Rβ) subunits. We describe PAP, failure to thrive, and increased GM-CSF levels in two sisters aged 6 and 8 yr with abnormalities of both GM-CSF-Rα–encoding alleles (CSF2RA). One was a 1.6-Mb deletion in the pseudoautosomal region of one maternal X chromosome encompassing CSF2RA. The other, a point mutation in the paternal X chromosome allele encoding a G174R substitution, altered an N-linked glycosylation site within the cytokine binding domain and glycosylation of GM-CSF-Rα, severely reducing GM-CSF binding, receptor signaling, and GM-CSF–dependent functions in primary myeloid cells. Transfection of cloned cDNAs faithfully reproduced the signaling defect at physiological GM-CSF concentrations. Interestingly, at high GM-CSF concentrations similar to those observed in the index patient, signaling was partially rescued, thereby providing a molecular explanation for the slow progression of disease in these children. These results establish that GM-CSF signaling is critical for surfactant homeostasis in humans and demonstrate that mutations in CSF2RA cause familial PAP. PMID:18955570

  13. Biomarkers for Microglial Activation in Alzheimer's Disease

    PubMed Central

    Lautner, Ronald; Mattsson, Niklas; Schöll, Michael; Augutis, Kristin; Blennow, Kaj; Olsson, Bob; Zetterberg, Henrik

    2011-01-01

    Intensive research over the last decades has provided increasing evidence for neuroinflammation as an integral part in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Inflammatory responses in the central nervous system (CNS) are initiated by activated microglia, representing the first line of the innate immune defence of the brain. Therefore, biochemical markers of microglial activation may help us understand the underlying mechanisms of neuroinflammation in AD as well as the double-sided qualities of microglia, namely, neuroprotection and neurotoxicity. In this paper we summarize candidate biomarkers of microglial activation in AD along with a survey of recent neuroimaging techniques. PMID:22114747

  14. Biomarkers for Alzheimer's disease therapeutic trials.

    PubMed

    Hampel, Harald; Wilcock, Gordon; Andrieu, Sandrine; Aisen, Paul; Blennow, Kaj; Broich, K; Carrillo, Maria; Fox, Nick C; Frisoni, Giovanni B; Isaac, Maria; Lovestone, Simon; Nordberg, Agneta; Prvulovic, David; Sampaio, Christina; Scheltens, Philip; Weiner, Michael; Winblad, Bengt; Coley, Nicola; Vellas, Bruno

    2011-12-01

    The development of disease-modifying treatments for Alzheimer's disease requires innovative trials with large numbers of subjects and long observation periods. The use of blood, cerebrospinal fluid or neuroimaging biomarkers is critical for the demonstration of disease-modifying therapy effects on the brain. Suitable biomarkers are those which reflect the progression of AD related molecular mechanisms and neuropathology, including amyloidogenic processing and aggregation, hyperphosphorylation, accumulation of tau and neurofibrillary tangles, progressive functional, metabolic and structural decline, leading to neurodegeneration, loss of brain tissue and cognitive symptoms. Biomarkers should be used throughout clinical trial phases I-III of AD drug development. They can be used to enhance inclusion and exclusion criteria, or as baseline predictors to increase the statistical power of trials. Validated and qualified biomarkers may be used as outcome measures to detect treatment effects in pivotal clinical trials. Finally, biomarkers can be used to identify adverse effects. Questions regarding which biomarkers should be used in clinical trials, and how, are currently far from resolved. The Oxford Task Force continues and expands the work of our previous international expert task forces on disease-modifying trials and on endpoints for Alzheimer's disease clinical trials. The aim of this initiative was to bring together a selected number of key international opinion leaders and experts from academia, regulatory agencies and industry to condense the current knowledge and state of the art regarding the best use of biological markers in Alzheimer's disease therapy trials and to propose practical recommendations for the planning of future AD trials. PMID:21130138

  15. Nucleolin mediates microRNA-directed CSF-1 mRNA deadenylation but increases translation of CSF-1 mRNA.

    PubMed

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K

    2013-06-01

    CSF-1 mRNA 3'UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3'UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3'UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  16. Osteopontin in cerebrospinal fluid as diagnostic biomarker for central nervous system lymphoma.

    PubMed

    Strehlow, Felicitas; Bauer, Sandra; Martus, Peter; Weller, Michael; Roth, Patrick; Schlegel, Uwe; Seidel, Sabine; Scheibenbogen, Carmen; Korfel, Agnieszka; Kreher, Stephan

    2016-08-01

    Central nervous system lymphoma (CNSL) is diagnostically challenging. The identification of reliable and easy to measure biomarkers is desirable to facilitate diagnosis. Here, we evaluated the value of cerebrospinal fluid (CSF) osteopontin (OPN) as a diagnostic biomarker for CNSL. OPN concentrations in CSF from 37 patients with CNSL (29 with primary CNSL and 8 with secondary CNS involvement of systemic lymphoma) and 36 controls [6 patients with inflammatory CNS disease other than multiple sclerosis (MS), 8 with MS, 9 with glioblastoma (GBM) and 13 healthy controls] were determined using an enzyme-linked immunosorbent assay. Non-parametric tests and receiver operating characteristic (ROC) curves were performed for determination of diagnostic accuracy. Median CSF OPN level in all CNSL patients was 620 ng/mL and higher than in patients with inflammatory CNS disease (356 ng/mL); P < .05, MS (163 ng/mL); P < .01, GBM (41 ng/mL); P < .01, or healthy controls (319 ng/mL); P < .01. The area under the ROC curve was 0.865 [95 % confidence interval (CI) 0.745-0.985] for differentiating CNSL and patients with inflammatory CNS disease; 0.956 (95 % CI 0.898-1.000) for CNSL and MS patients; 0.988 (95 % CI 0.964-1.000) for CNSL and GBM patients, and 0.915 (95 % CI 0.834-0.996) for CNSL patients and healthy controls. In multivariate analysis, high CSF OPN level was associated with shorter progression-free (HR 1.61, 95 % CI 1.13-2.31; P = .009) and overall survival (HR 1.52, 95 % CI 1.04-2.21; P = .029). CSF OPN is a potential biomarker in CNSL. PMID:27294357

  17. Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage

    PubMed Central

    Poil, Simon-Shlomo; de Haan, Willem; van der Flier, Wiesje M.; Mansvelder, Huibert D.; Scheltens, Philip; Linkenkaer-Hansen, Klaus

    2013-01-01

    Alzheimer's disease (AD) is a devastating disorder of increasing prevalence in modern society. Mild cognitive impairment (MCI) is considered a transitional stage between normal aging and AD; however, not all subjects with MCI progress to AD. Prediction of conversion to AD at an early stage would enable an earlier, and potentially more effective, treatment of AD. Electroencephalography (EEG) biomarkers would provide a non-invasive and relatively cheap screening tool to predict conversion to AD; however, traditional EEG biomarkers have not been considered accurate enough to be useful in clinical practice. Here, we aim to combine the information from multiple EEG biomarkers into a diagnostic classification index in order to improve the accuracy of predicting conversion from MCI to AD within a 2-year period. We followed 86 patients initially diagnosed with MCI for 2 years during which 25 patients converted to AD. We show that multiple EEG biomarkers mainly related to activity in the beta-frequency range (13–30 Hz) can predict conversion from MCI to AD. Importantly, by integrating six EEG biomarkers into a diagnostic index using logistic regression the prediction improved compared with the classification using the individual biomarkers, with a sensitivity of 88% and specificity of 82%, compared with a sensitivity of 64% and specificity of 62% of the best individual biomarker in this index. In order to identify this diagnostic index we developed a data mining approach implemented in the Neurophysiological Biomarker Toolbox (http://www.nbtwiki.net/). We suggest that this approach can be used to identify optimal combinations of biomarkers (integrative biomarkers) also in other modalities. Potentially, these integrative biomarkers could be more sensitive to disease progression and response to therapeutic intervention. PMID:24106478

  18. CSF-dynamics in syringomyelia: intracranial pressure and resistance to outflow.

    PubMed

    Kruse, A; Rasmussen, G; Børgesen, S E

    1987-01-01

    The several theories on the pathogenesis of syringomyelia have not resulted in the satisfactory selection of those patients who can be treated by CSF diversion. In the present paper three types of syringomyelia are described by case studies. The classification is made by investigation of CSF-dynamics, a measurement of CSF pressure and resistance to outflow of CSF. It is proposed that in a subgroup of patients with syringomyelia the cause is defective CSF resorption and that this group may be selected out and treated accordingly. PMID:3268144

  19. Headache arising from idiopathic changes in CSF pressure.

    PubMed

    Ducros, Anne; Biousse, Valérie

    2015-06-01

    New onset of sudden or progressive headache can have various causes, including disorders of intracranial pressure (ICP). Headache is the most common-and often the presenting-symptom of both intracranial hypertension and intracranial hypotension syndromes, which can be symptomatic or idiopathic. Despite the widespread availability of diagnostic tests, including ocular ophthalmoscopy, neuroimaging, and measurement of CSF pressure, delays in diagnosis or misdiagnosis of idiopathic intracranial hypertension and spontaneous intracranial hypotension remain common. If left untreated, idiopathic intracranial hypertension and spontaneous intracranial hypotension produce highly disabling headaches, and threaten vision, hearing, and in rare cases, brain function and life. To improve the diagnosis of idiopathic intracranial hypertension and spontaneous intracranial hypotension, changes in the overall diagnostic strategy for headaches will be necessary in most care centres. Improved understanding of CSF physiology and the mechanisms of idiopathic intracranial hypertension and spontaneous intracranial hypotension will guide the development of new treatments. PMID:25987284

  20. Fatal cerebral edema associated with serine deficiency in CSF.

    PubMed

    Keularts, Irene M L W; Leroy, Piet L J M; Rubio-Gozalbo, Estela M; Spaapen, Leo J M; Weber, Biene; Dorland, Bert; de Koning, Tom J; Verhoeven-Duif, Nanda M

    2010-12-01

    Two young girls without a notable medical history except for asthma presented with an acute toxic encephalopathy with very low serine concentrations both in plasma and cerebrospinal fluid (CSF) comparable to patients with 3-phosphoglycerate dehydrogenase (3-PGDH) deficiency. Clinical symptoms and enzyme measurement (in one patient) excluded 3-PGDH deficiency. Deficiencies in other serine biosynthesis enzymes were highly unlikely on clinical grounds. On basis of the fasting state, ketone bodies and lactate in plasma, urine and CSF, we speculate that reduced serine levels were due to its use as gluconeogenic substrate, conversion to pyruvate by brain serine racemase or decreased L-serine production because of a lack of glucose. These are the first strikingly similar cases of patients with a clear secondary serine deficiency associated with a toxic encephalopathy. PMID:20300853

  1. Endoscopic endonasal multilayer repair of traumatic CSF rhinorrhea.

    PubMed

    Ibrahim, Ahmed Aly; Okasha, Mohamed; Elwany, Samy

    2016-04-01

    The incidence of traumatic CSF has increased in recent years due to increased incidence of road traffic accidents (RTA) as well the increasing number of endoscopic sinus surgeries (ESS). The objective of this study is to present our experience in management of traumatic CSF leaks using the endoscopic multilayer repair technique. Forty-two patients (aged 10-75 years, 30 males and 12 females) presenting with confirmed post-traumatic CSF rhinorrhea were operated upon between January 2007 and December 2013. The endoscopic multilayer technique was used in all cases. Electromagnetic navigation was used in some cases. All cases presented with intermittent watery rhinorrhea. The duration of the rhinorrhea ranged from 3 days to 1 year before repair. One case presented after 10 years from the causative trauma. Ten cases had a history of meningitis. Nine cases had more than one defect. Iatrogenic defects were larger than defects following accidental trauma. Two cases, following RTA, developed pseudo-aneurysm of internal carotid artery. Ten cases had associated pneumocephalus. The mean duration of postoperative hospitalization was 6 days (range 4-8 days). The mean follow-up duration was 31.2 +/- 11.4 months (range 16-48 months). None of our patient developed serious intra- or postoperative complications. Only one case required another surgery to repair a missed second defect. Post-traumatic CSF leaks can be successfully managed via the endonasal endoscopic route using the multilayer repair technique. It is important to look for multiple defects in these cases. CT angiography is recommended for traumatic leaks involving the lateral wall of the sphenoid sinus to diagnose or exclude the development of pseudo-aneurysm of the internal carotid artery. PMID:26048356

  2. Catecholamine-Based Treatment in AD Patients: Expectations and Delusions

    PubMed Central

    Stefani, Alessandro; Olivola, Enrica; Liguori, Claudio; Hainsworth, Atticus H.; Saviozzi, Valentina; Angileri, Giacoma; D’Angelo, Vincenza; Galati, Salvatore; Pierantozzi, Mariangela

    2015-01-01

    In Alzheimer disease, the gap between excellence of diagnostics and efficacy of therapy is wide. Despite sophisticated imaging and biochemical markers, the efficacy of available therapeutic options is limited. Here we examine the possibility that assessment of endogenous catecholamine levels in cerebrospinal fluid (CSF) may fuel new therapeutic strategies. In reviewing the available literature, we consider the effects of levodopa, monoamine oxidase inhibitors, and noradrenaline (NE) modulators, showing disparate results. We present a preliminary assessment of CSF concentrations of dopamine (DA) and NE, determined by HPLC, in a small dementia cohort of either Alzheimer’s disease (AD) or frontotemporal dementia patients, compared to control subjects. Our data reveal detectable levels of DA, NE in CSF, though we found no significant alterations in the dementia population as a whole. AD patients exhibit a small impairment of the DA axis and a larger increase of NE concentration, likely to represent a compensatory mechanism. While waiting for preventive strategies, a pragmatic approach to AD may re-evaluate catecholamine modulation, possibly stratified to dementia subtypes, as part of the therapeutic armamentarium. PMID:25999852

  3. Diagnostic utility of CSF α-synuclein species in Parkinson's disease: protocol for a systematic review and meta-analysis

    PubMed Central

    Eusebi, Paolo; Giannandrea, David; Biscetti, Leonardo; Abraha, Iosief; Chiasserini, Davide; Orso, Massimiliano; Calabresi, Paolo; Parnetti, Lucilla

    2016-01-01

    Introduction The diagnostic criteria currently used for Parkinson's disease (PD) are mainly based on clinical motor symptoms. For these reasons many biomarkers are under investigation to support the diagnosis at the early stage. The neuropathological hallmark of PD is represented by Lewy bodies (LBs), which are intracytoplasmic inclusions in substantia nigra neurons. The major component of LBs, α-synuclein (α-syn), has been implicated in the pathogenesis of PD and in other ‘synucleinopathies’ such as multisystem atrophy (MSA) and dementia with LBs (DLBs). Several studies have investigated this presynaptic protein as a potential biomarker of PD. The aim of our meta-analysis is to determine the ability of cerebrospinal fluid (CSF) concentrations of total α-syn, oligomeric α-syn and phosphorylated α-syn to discriminate patients with PD from healthy participants, non-degenerative neurological controls and patients suffering from parkinsonism and or synucleinopathies. Methods and analysis This systematic review protocol has been developed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses Protocol (PRISMA-P) 2015 statement and was registered on PROSPERO (CRD42016013217). We will search Cochrane Library, Web of Science, MEDLINE (via PubMed) and EMBASE from inception, using appropriate search strategies. Two independent reviewers will screen titles, abstracts and full-text articles, and will complete data abstraction. We will include studies that involved patients with PD, DLB, MSA, progressive supranuclear palsy, corticobasal disease and vascular PD, and in which at least one between total α-syn, oligomeric α-syn and phosphorylated α-syn was measured in CSF. To evaluate the risk of bias and applicability of primary diagnostic accuracy studies, we will use QUADAS-2. Ethics and dissemination Our study will not include confidential data, and no intervention will be involved, so ethical approval is not required. The results of the

  4. G-CSF promotes neuroblastoma tumorigenicity and metastasis via STAT3-dependent cancer stem cell activation

    PubMed Central

    Agarwal, Saurabh; Lakoma, Anna; Chen, Zaowen; Hicks, John; Metelitsa, Leonid S.; Kim, Eugene S.; Shohet, Jason M.

    2015-01-01

    Increasing evidence suggests that inflammatory cytokines play a critical role in tumor initiation and progression. We previously isolated a Cancer Stem Cell-like (CSC) subpopulation in neuroblastoma based on differential expression of the receptor for G-CSF (Granulocyte-Colony Stimulating Factor). Here we demonstrate that G-CSF selectively activates signal transducer and activator of transcription 3 (STAT3) within neuroblastoma CSC subpopulations, promoting their expansion in vitro and in vivo. Exogenous G-CSF enhances tumor growth and metastasis in human xenograft and murine neuroblastoma tumor models. In response to G-CSF, STAT3 transcriptionally activates the G-CSF receptor (encoded by CSF3R), creating a CSC sustaining positive-feedback loop. Blockade of G-CSF/STAT3 signaling loop with either anti-G-CSF antibody or STAT3 inhibitor depletes the CSC subpopulation within tumors, driving correlated tumor regression, blocking metastasis and increasing chemosensitivity. Taken together, these data define G-CSF as a tumorigenic growth factor for neuroblastoma and suggest a comprehensive re-evaluation of the clinical use of G-CSF in these patients. Our data also demonstrate that direct targeting of the G-CSF/STAT3 signaling represents a novel therapeutic approach for neuroblastoma. PMID:25908586

  5. CSF1 over-expression has pleiotropic effects on microglia in vivo

    PubMed Central

    De, Ishani; Nikodemova, Maria; Steffen, Megan D.; Sokn, Emily; Maklakova, Vilena I.; Watters, Jyoti J.; Collier, Lara S.

    2014-01-01

    Macrophage colony stimulating factor (CSF1) is a cytokine that is upregulated in several diseases of the central nervous system (CNS). To examine the effects of CSF1 over-expression on microglia, transgenic mice that over-express CSF1 in the glial fibrillary acidic protein (GFAP) compartment were generated. CSF1 over-expressing mice have increased microglial proliferation and increased microglial numbers compared to controls. Treatment with PLX3397, a small molecule inhibitor of the CSF1 receptor CSF1R and related kinases, decreases microglial numbers by promoting microglial apoptosis in both CSF1 over-expressing and control mice. Microglia in CSF1 over-expressing mice exhibit gene expression profiles indicating that they are not basally M1 or M2 polarized, but they do have defects in inducing expression of certain genes in response to the inflammatory stimulus lipopolysaccharide (LPS). These results indicate that the CSF1 over-expression observed in CNS pathologies likely has pleiotropic influences on microglia. Furthermore, small molecule inhibition of CSF1R has the potential to reverse CSF1-driven microglial accumulation that is frequently observed in CNS pathologies, but can also promote apoptosis of normal microglia. PMID:25042473

  6. PET measurements of cerebral metabolism corrected for CSF contributions

    SciTech Connect

    Chawluk, J.; Alavi, A.; Dann, R.; Kushner, M.J.; Hurtig, H.; Zimmerman, R.A.; Reivich, M.

    1984-01-01

    Thirty-three subjects have been studied with PET and anatomic imaging (proton-NMR and/or CT) in order to determine the effect of cerebral atrophy on calculations of metabolic rates. Subgroups of neurologic disease investigated include stroke, brain tumor, epilepsy, psychosis, and dementia. Anatomic images were digitized through a Vidicon camera and analyzed volumetrically. Relative areas for ventricles, sulci, and brain tissue were calculated. Preliminary analysis suggests that ventricular volumes as determined by NMR and CT are similar, while sulcal volumes are larger on NMR scans. Metabolic rates (18F-FDG) were calculated before and after correction for CSF spaces, with initial focus upon dementia and normal aging. Correction for atrophy led to a greater increase (%) in global metabolic rates in demented individuals (18.2 +- 5.3) compared to elderly controls (8.3 +- 3.0,p < .05). A trend towards significantly lower glucose metabolism in demented subjects before CSF correction was not seen following correction for atrophy. These data suggest that volumetric analysis of NMR images may more accurately reflect the degree of cerebral atrophy, since NMR does not suffer from beam hardening artifact due to bone-parenchyma juxtapositions. Furthermore, appropriate correction for CSF spaces should be employed if current resolution PET scanners are to accurately measure residual brain tissue metabolism in various pathological states.

  7. Characteristic CSF prion seeding efficiency in humans with prion diseases.

    PubMed

    Cramm, Maria; Schmitz, Matthias; Karch, André; Zafar, Saima; Varges, Daniela; Mitrova, Eva; Schroeder, Bjoern; Raeber, Alex; Kuhn, Franziska; Zerr, Inga

    2015-02-01

    The development of in vitro amplification systems allows detecting femtomolar amounts of prion protein scrapie (PrP(Sc)) in human cerebrospinal fluid (CSF). We performed a CSF study to determine the effects of prion disease type, codon 129 genotype, PrP(Sc) type, and other disease-related factors on the real-time quaking-induced conversion (RT-QuIC) response. We analyzed times to 10,000 relative fluorescence units, areas under the curve and the signal maximum of RT-QuIC response as seeding parameters of interest. Interestingly, type of prion disease (sporadic vs. genetic) and the PRNP mutation (E200K vs. V210I and FFI), codon 129 genotype, and PrP(Sc) type affected RT-QuIC response. In genetic forms, type of mutation showed the strongest effect on the observed outcome variables. In sporadic CJD, MM1 patients displayed a higher RT-QuIC signal maximum compared to MV1 and VV1. Age and gender were not associated with RT-QuIC signal, but patients with a short disease course showed a higher seeding efficiency of the RT-QuIC response. This study demonstrated that PrP(Sc) characteristics in the CSF of human prion disease patients are associated with disease subtypes and rate of decline as defined by disease duration. PMID:24809690

  8. Protective effects of GM-CSF in experimental neonatal hypothyroidism.

    PubMed

    Ahmed, R G; Abdel-Latif, M; Ahmed, F

    2015-12-01

    Hypothyroidism induced by methimazole (MMI), has a negative impact on the postnatal development. Neonatal Granulocyte Macrophage-Colony Stimulating Factor [GM-CSF; 50μg/kg, intramuscular injection at postnatal day (PND) 17] had been tested to ameliorate the effects of MMI [0.05%, (weight per volume; w/v), intraperitoneal injection at PND 15]-induced hypothyroidism in Wistar rats. The hypothyroid conditions due to the administration of MMI produced inhibitory effects on neonatal serum thyroxine (T4), 3,5,3'-triiodothyronine (T3), neutrophil count in bone marrow and blood, cerebellar glutathione (GSH) and acetylcholinesterase (AchE), although it induced stimulatory actions on serum thyrotropin (TSH), growth hormone (GH), insulin growth factor-II (IGF-II), tumor necrosis factor alpha (TNF-α), and cerebellar malondialdehyde (MDA) at PND 19. The treatment with GM-CSF could reverse the depressing and stimulating effects of MMI on these markers except for cerebellar AchE where its enhancement was non-significant (P>0.05) at tested PND. Thus, neonatal GM-CSF may be responsible for suppressing autoimmune responses and preventing hypothyroidism. PMID:26453507

  9. The influence of CSF on EEG sensitivity distributions of multilayered head models.

    PubMed

    Wendel, K; Narra, N G; Hannula, M; Kauppinen, P; Malmivuo, J

    2008-04-01

    We examined how the cerebrospinal fluid (CSF) affects the distribution of electroencephalogram (EEG) measurement sensitivity. We used concentric spheres and realistic head models to investigate the difference between computed-tomography (CT) and magnetic resonance image (MRI) models that exclude the CSF layer. The cortical EEG sensitivity distributions support these phenomena and show that the CSF layer significantly influences them, thus identifying the importance of including the CSF layer inside the head volume conductor models. The results show that the highly conductive CSF channels the current, thus decreasing the maximum cortical current density relative to models that do not include the CSF. We found that the MRI and CT models yielded HSV results 20% and 45%, respectively, too small when compared with CSF-inclusive models. PMID:18390339

  10. Scedosporium apiospermum infections and the role of combination antifungal therapy and GM-CSF: A case report and review of the literature

    PubMed Central

    Goldman, Chloe; Akiyama, Mathew J.; Torres, Julian; Louie, Eddie; Meehan, Shane A.

    2016-01-01

    Scedosporium apiospermum, a ubiquitous environmental mold, is increasingly reported as causing invasive fungal disease in immunocompromised hosts. It poses a therapeutic challenge due to its intrinsic resistance to traditional antifungals and ability to recur despite demonstrating susceptibility. We present an immunocompromised patient with a cutaneous S. apiospermum infection that disseminated despite treatment with voriconazole, the drug of choice. Adding echinocandins and GM-CSF provided partial recovery, indicating a potential synergistic role of dual-antifungal and immunotherapeutic agents. PMID:27182483

  11. Scedosporium apiospermum infections and the role of combination antifungal therapy and GM-CSF: A case report and review of the literature.

    PubMed

    Goldman, Chloe; Akiyama, Mathew J; Torres, Julian; Louie, Eddie; Meehan, Shane A

    2016-03-01

    Scedosporium apiospermum, a ubiquitous environmental mold, is increasingly reported as causing invasive fungal disease in immunocompromised hosts. It poses a therapeutic challenge due to its intrinsic resistance to traditional antifungals and ability to recur despite demonstrating susceptibility. We present an immunocompromised patient with a cutaneous S. apiospermum infection that disseminated despite treatment with voriconazole, the drug of choice. Adding echinocandins and GM-CSF provided partial recovery, indicating a potential synergistic role of dual-antifungal and immunotherapeutic agents. PMID:27182483

  12. Nondestructive biomarkers in ecotoxicology.

    PubMed Central

    Fossi, M C

    1994-01-01

    The aim of this article is to attempt a concise review of the state of the art of the nondestructive biomarkers approach in vertebrates, establishing a consensus on the most useful and sensitive nondestructive biomarker techniques, and proposing research priorities for the development and validation of this promising methodology. The following topics are discussed: the advantages of the use of nondestructive strategies in biomonitoring programs and the research fields in which nondestructive biomarkers can be applied; the biological materials suitable for nondestructive biomarkers and residue analysis in vertebrates; which biomarkers lend themselves to noninvasive techniques; and the validation and implementation strategy of the nondestructive biomarker approach. Examples of applications of this methodology in the hazard assessment of endangered species are also presented. Images Figure 1. C PMID:7713034

  13. Circulating glioma biomarkers

    PubMed Central

    Kros, Johan M.; Mustafa, Dana M.; Dekker, Lennard J.M.; Sillevis Smitt, Peter A.E.; Luider, Theo M.; Zheng, Ping-Pin

    2015-01-01

    Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers. PMID:25253418

  14. Biomarker in archaeological soils

    NASA Astrophysics Data System (ADS)

    Wiedner, Katja; Glaser, Bruno; Schneeweiß, Jens

    2015-04-01

    The use of biomarkers in an archaeological context allow deeper insights into the understanding of anthropogenic (dark) earth formation and from an archaeological point of view, a completely new perspective on cultivation practices in the historic past. During an archaeological excavation of a Slavic settlement (10th/11th C. A.D.) in Brünkendorf (Wendland region in Northern Germany), a thick black soil (Nordic Dark Earth) was discovered that resembled the famous terra preta phenomenon. For the humid tropics, terra preta could act as model for sustainable agricultural practices and as example for long-term CO2-sequestration into terrestrial ecosystems. The question was whether this Nordic Dark Earth had similar properties and genesis as the famous Amazonian Dark Earth in order to find a model for sustainable agricultural practices and long term CO2-sequestration in temperate zones. For this purpose, a multi-analytical approach was used to characterize the sandy-textured Nordic Dark Earth in comparison to less anthropogenically influenced soils in the adjacent area in respect of ecological conditions (e.g. amino sugar), input materials (faeces) and the presence of stable soil organic matter (black carbon). Amino sugar analyses showed that Nordic Dark Earth contained higher amounts of microbial residues being dominated by soil fungi. Faecal biomarkers such as stanols and bile acids indicated animal manure from omnivores and herbivores but also human excrements. Black carbon content of about 30 Mg ha-1 in the Nordic Dark Earth was about four times higher compared to the adjacent soil and in the same order of magnitude compared to terra preta. Our data strongly suggest parallels to anthropogenic soil formation in Amazonia and in Europe by input of organic wastes, faecal material and charred organic matter. An obvious difference was that in terra preta input of human-derived faecal material dominated while in NDE human-derived faecal material played only a minor role

  15. Overview of use of G-CSF and GM-CSF in the treatment of acute radiation injury.

    PubMed

    Reeves, Glen

    2014-06-01

    Depression of hematopoietic elements due to significant levels of whole-body or partial-body irradiation due to radiation-induced suppression of mitosis in the stem and progenitor cells can result in life-threatening injury. Successful administration of intensive care of patients experiencing acute radiation sickness (ARS; also called acute radiation syndrome) is dependent upon the ability to stimulate the recovery of surviving hematopoietic stem cells (HSC), assuming the non-hematopoietic injuries are also survivable with treatment. To date, there have been a number of studies involving radiation accidents where patients were treated with cytokines. Although the data overall seem to indicate that the period of neutropenia is shortened and survival prolonged, so far there is no statistically significant proof that cytokine administration actually decreases mortality in radiation-injured humans. Some studies have shown no improved survival when used in a mouse model; however, studies in canines and primates have shown improved survival. CSF therapy is considered a valuable adjunct to treatment with antibiotics and strict hygiene controls in certain irradiated patients. It appears that these drugs do shorten the periods of neutropenia in irradiated patients and must be considered part of the therapeutic armamentarium in the treatment of ARS in a mass casualty situation. Based on review of the human experience with G-CSF and GM-CSF, as well as some animal studies, current consensus opinions support the prompt administration of these materials to patients suffering significant bone marrow depression from exposure to ionizing radiation. PMID:24776902

  16. Polarised black holes in AdS

    NASA Astrophysics Data System (ADS)

    Costa, Miguel S.; Greenspan, Lauren; Oliveira, Miguel; Penedones, João; Santos, Jorge E.

    2016-06-01

    We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global AdS 4 with conformal boundary {S}2× {{{R}}}t. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic AdS behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an AdS soliton that includes the full backreaction of the electric field on the AdS geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both AdS soliton and black hole phases. The corresponding phase diagram generalizes the Hawking-Page phase transition. The AdS soliton dominates the low temperature phase and the black hole the high temperature phase, with a critical temperature that decreases as the external electric field increases. Finally, we consider the simple case of a free charged scalar field on {S}2× {{{R}}}t with conformal coupling. For a field in the SU(N ) adjoint representation we compare the phase diagram with the above gravitational system.

  17. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral particles as a non-transmissible bivalent marker vaccine candidate against CSF and JE infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A trans-complemented CSF- JE chimeric viral replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The E2 gene of CSFV Alfort/187 strain was deleted and the resultant plasmid pA187delE2 was inserted by a fragment containing the region coding for a truncate...

  18. A CONCISE PANEL OF BIOMARKERS IDENTIFIES NEUROCOGNITIVE FUNCTIONING CHANGES IN HIV-INFECTED INDIVIDUALS

    PubMed Central

    Marcotte, Thomas D.; Deutsch, Reena; Michael, Benedict Daniel; Franklin, Donald; Cookson, Debra Rosario; Bharti, Ajay R.; Grant, Igor; Letendre, Scott L.

    2013-01-01

    Background Neurocognitive (NC) impairment (NCI) occurs commonly in people living with HIV. Despite substantial effort, no biomarkers have been sufficiently validated for diagnosis and prognosis of NCI in the clinic. The goal of this project was to identify diagnostic or prognostic biomarkers for NCI in a comprehensively characterized HIV cohort. Methods Multidisciplinary case review selected 98 HIV-infected individuals and categorized them into four NC groups using normative data: stably normal (SN), stably impaired (SI), worsening (Wo), or improving (Im). All subjects underwent comprehensive NC testing, phlebotomy, and lumbar puncture at two timepoints separated by a median of 6.2 months. Eight biomarkers were measured in CSF and blood by immunoassay. Results were analyzed using mixed model linear regression and staged recursive partitioning. Results At the first visit, subjects were mostly middle-aged (median 45) white (58%) men (84%) who had AIDS (70%). Of the 73% who took antiretroviral therapy (ART), 54% had HIV RNA levels below 50 c/mL in plasma. Mixed model linear regression identified that only MCP-1 in CSF was associated with neurocognitive change group. Recursive partitioning models aimed at diagnosis (i.e., correctly classifying neurocognitive status at the first visit) were complex and required most biomarkers to achieve misclassification limits. In contrast, prognostic models were more efficient. A combination of three biomarkers (sCD14, MCP-1, SDF-1α) correctly classified 82% of Wo and SN subjects, including 88% of SN subjects. A combination of two biomarkers (MCP-1, TNF-α) correctly classified 81% of Im and SI subjects, including 100% of SI subjects. Conclusions This analysis of well-characterized individuals identified concise panels of biomarkers associated with NC change. Across all analyses, the two most frequently identified biomarkers were sCD14 and MCP-1, indicators of monocyte/macrophage activation. While the panels differed depending on

  19. Translational Biomarkers of Neurotoxicity: A Health and Environmental Sciences Institute Perspective on the Way Forward

    PubMed Central

    Roberts, Ruth A.; Aschner, Michael; Calligaro, David; Guilarte, Tomas R.; Hanig, Joseph P.; Herr, David W.; Hudzik, Thomas J.; Jeromin, Andreas; Kallman, Mary J.; Liachenko, Serguei; Lynch, James J.; Miller, Diane B.; Moser, Virginia C.; O’Callaghan, James P.; Slikker, William; Paule, Merle G.

    2015-01-01

    Neurotoxicity has been linked to a number of common drugs and chemicals, yet efficient and accurate methods to detect it are lacking. There is a need for more sensitive and specific biomarkers of neurotoxicity that can help diagnose and predict neurotoxicity that are relevant across animal models and translational from nonclinical to clinical data. Fluid-based biomarkers such as those found in serum, plasma, urine, and cerebrospinal fluid (CSF) have great potential due to the relative ease of sampling compared with tissues. Increasing evidence supports the potential utility of fluid-based biomarkers of neurotoxicity such as microRNAs, F2-isoprostanes, translocator protein, glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1, myelin basic protein, microtubule-associated protein-2, and total tau. However, some of these biomarkers such as those in CSF require invasive sampling or are specific to one disease such as Alzheimer’s, while others require further validation. Additionally, neuroimaging methodologies, including magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, may also serve as potential biomarkers and have several advantages including being minimally invasive. The development of biomarkers of neurotoxicity is a goal shared by scientists across academia, government, and industry and is an ideal topic to be addressed via the Health and Environmental Sciences Institute (HESI) framework which provides a forum to collaborate on key challenging scientific topics. Here we utilize the HESI framework to propose a consensus on the relative potential of currently described biomarkers of neurotoxicity to assess utility of the selected biomarkers using a nonclinical model. PMID:26609132

  20. IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor

    SciTech Connect

    Taketazu, F.; Chiba, S.; Shibuya, K.; Kuwaki, T.; Tsumura, H.; Miyazono, K.; Miyagawa, K.; Takaku, F. )

    1991-02-01

    The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF binding to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.

  1. Post craniotomy extra-ventricular drain (EVD) associated nosocomial meningitis: CSF diagnostic criteria.

    PubMed

    Muñoz-Gómez, Sigridh; Wirkowski, Elizabeth; Cunha, Burke A

    2015-01-01

    Because external ventricular drains (EVDs) provide access to cerebrospinal fluid (CSF), there is potential for EVD associated acute bacterial meningitis (EVD-AM). Post-craniotomy, in patients with EVDs, one or more CSF abnormalities are commonly present making the diagnosis of EVD-AM problematic. EVD-AM was defined as elevated CSF lactic acid (>6 nmol/L), plus CSF marked pleocytosis (>50 WBCs/mm(3)), plus a positive Gram stain (same morphology as CSF isolate), plus a positive CSF culture of neuropathogen (same morphology as Gram stained organism). We reviewed 22 adults with EVDs to determine if our four CSF parameters combined accurately identified EVD-AM. No single or combination of <4 CSF parameters correctly diagnosed or ruled out EVD-AM. Combined our four CSF parameters clearly differentiated EVD-AM from one case of pseudomeningitis due to E. cloacae. We conclude that our four CSF criteria combined are useful in diagnosing EVD-AM in adults. PMID:25659927

  2. Injured sensory neuron-derived CSF1 induces microglia proliferation and DAP12-dependent pain

    PubMed Central

    Guan, Zhonghui; Kuhn, Julia A.; Wang, Xidao; Colquitt, Bradley; Solorzano, Carlos; Vaman, Smitha; Guan, Andrew K.; Evans-Reinsch, Zoe; Braz, Joao; Devor, Marshall; Abboud-Werner, Sherry L.; Lanier, Lewis L.; Lomvardas, Stavros; Basbaum, Allan I.

    2015-01-01

    SUMMARY Although microglia are implicated in nerve injury-induced neuropathic pain, how injured sensory neurons engage microglia is unclear. Here we demonstrate that peripheral nerve injury induces de novo expression of colony-stimulating factor 1 (CSF1) in injured sensory neurons. The CSF1 is transported to the spinal cord where it targets the microglial CSF1 receptor (CSF1R). Cre-mediated sensory neuron deletion of Csf1 completely prevented nerve injury-induced mechanical hypersensitivity and reduced microglia activation and proliferation. In contrast, intrathecal injection of CSF1 induces mechanical hypersensitivity and microglial proliferation. Nerve injury also upregulated CSF1 in motoneurons, where it is required for ventral horn microglial activation and proliferation. Downstream of CSF1R, we found that the microglial membrane adapter protein DAP12 is required for both nerve injury- and intrathecal CSF1-induced upregulation of pain-related microglial genes and the ensuing pain, but not for microglia proliferation. Thus, both CSF1 and DAP12 are potential targets for the pharmacotherapy of neuropathic pain. PMID:26642091

  3. G-CSF and Neutrophils Are Nonredundant Mediators of Murine Experimental Autoimmune Uveoretinitis.

    PubMed

    Goldberg, Gabrielle L; Cornish, Ann L; Murphy, Jane; Pang, Ee Shan; Lim, Lyndell L; Campbell, Ian K; Scalzo-Inguanti, Karen; Chen, Xiangting; McMenamin, Paul G; Maraskovsky, Eugene; McKenzie, Brent S; Wicks, Ian P

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a regulator of neutrophil production, function, and survival. Herein, we investigated the role of G-CSF in a murine model of human uveitis-experimental autoimmune uveoretinitis. Experimental autoimmune uveoretinitis was dramatically reduced in G-CSF-deficient mice and in anti-G-CSF monoclonal antibody-treated, wild-type (WT) mice. Flow cytometric analysis of the ocular infiltrate in WT mice with experimental autoimmune uveoretinitis showed a mixed population, comprising neutrophils, macrophages, and T cells. The eyes of G-CSF-deficient and anti-G-CSF monoclonal antibody-treated WT mice had minimal neutrophil infiltrate, but no change in other myeloid-derived inflammatory cells. Antigen-specific T-cell responses were maintained, but the differentiation of pathogenic type 17 helper T cells in experimental autoimmune uveoretinitis was reduced with G-CSF deficiency. We show that G-CSF controls the ocular neutrophil infiltrate by modulating the expression of C-X-C chemokine receptors 2 and 4 on peripheral blood neutrophils, as well as actin polymerization and migration. These data reveal an integral role for G-CSF-driven neutrophil responses in ocular autoimmunity, operating within and outside of the bone marrow, and also identify G-CSF as a potential therapeutic target in the treatment of human uveoretinitis. PMID:26718978

  4. Macrophage Proliferation Is Regulated through CSF-1 Receptor Tyrosines 544, 559, and 807*

    PubMed Central

    Yu, Wenfeng; Chen, Jian; Xiong, Ying; Pixley, Fiona J.; Yeung, Yee-Guide; Stanley, E. Richard

    2012-01-01

    Colony-stimulating factor-1 (CSF-1)-stimulated CSF-1 receptor (CSF-1R) tyrosine phosphorylation initiates survival, proliferation, and differentiation signaling pathways in macrophages. Either activation loop Y807F or juxtamembrane domain (JMD) Y559F mutations severely compromise CSF-1-regulated proliferation and differentiation. YEF, a CSF-1R in which all eight tyrosines phosphorylated in the activated receptor were mutated to phenylalanine, lacks in vitro kinase activity and in vivo CSF-1-regulated tyrosine phosphorylation. The addition of Tyr-807 alone to the YEF backbone (Y807AB) led to CSF-1-independent but receptor kinase-dependent proliferation, without detectable activation loop Tyr-807 phosphorylation. The addition of Tyr-559 alone (Y559AB) supported a low level of CSF-1-independent proliferation that was slightly enhanced by CSF-1, indicating that Tyr-559 has a positive Tyr-807-independent effect. Consistent with the postulated autoinhibitory role of the JMD Tyr-559 and its relief by ligand-induced Tyr-559 phosphorylation, the addition of Tyr-559 to the Y807AB background suppressed proliferation in the absence of CSF-1, but restored most of the CSF-1-stimulated proliferation. Full restoration of kinase activation and proliferation required the additional add back of JMD Tyr-544. Inhibitor experiments indicate that the constitutive proliferation of Y807AB macrophages is mediated by the phosphatidylinositol 3-kinase (PI3K) and ERK1/2 pathways, whereas proliferation of WT and Y559,807AB macrophages is, in addition, contributed to by Src family kinase (SFK)-dependent pathways. Thus Tyr-807 confers sufficient kinase activity for strong CSF-1-independent proliferation, whereas Tyr-559 maintains the receptor in an inactive state. Tyr-559 phosphorylation releases this restraint and may also contribute to the CSF-1-regulated proliferative response by activating Src family kinase. PMID:22375015

  5. Biomarkers present in asphaltenes

    SciTech Connect

    Philp, R.P.

    1985-01-01

    The significance and distribution of biomarkers in sediments, source rocks and crude oils are well documented in the literature. Little attention has been directed towards the biomarkers that are present in the asphaltene fractions of crude oils and source rock extracts. Asphaltene fractions by definition are insoluble in certain solvents and consist of high molecular components which makes them difficult to analyze by techniques commonly used to characterize the soluble extracts. Asphaltenes are ideally suited for analysis by microscale pyrolysis techniques (py) combined with gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Utilization of the multiple ion detection technique in conjunction with the py-GC-MS analyses permits the distribution of the steranes, triterpanes and other biomarker produced by pyrolysis of the asphaltenes to be easily determined. It is proposed in this paper to discuss the pyrolysis of asphaltene from a variety of source rocks and analysis of the biomarkers, released by the pyrolysis. These biomarkers distributions can be used to obtain information on source and maturity of the organic matter in a similar manner to using the soluble biomarkers. It is proposed to discuss the asphaltene biomarker distributions and also to speculate as to why certain biomarkers are present only in the extracts and asphaltenes and not produced by pyrolysis of the kerogens.

  6. Cerebrospinal Fluid Biomarkers in Spinocerebellar Ataxia: A Pilot Study.

    PubMed

    Brouillette, Ashley M; Öz, Gülin; Gomez, Christopher M

    2015-01-01

    Neurodegenerative diseases, including the spinocerebellar ataxias (SCA), would benefit from the identification of reliable biomarkers that could serve as disease subtype-specific and stage-specific indicators for the development and monitoring of treatments. We analyzed the cerebrospinal fluid (CSF) level of tau, α-synuclein, DJ-1, and glial fibrillary acidic protein (GFAP), proteins previously associated with neurodegenerative processes, in patients with the autosomal dominant SCA1, SCA2, and SCA6, and the sporadic disease multiple system atrophy, cerebellar type (MSA-C), compared with age-matched controls. We estimated disease severity using the Scale for the Assessment and Rating of Ataxia (SARA). Most proteins measured trended higher in disease versus control group yet did not reach statistical significance. We found the levels of tau in both SCA2 and MSA-C patients were significantly higher than control. We found that α-synuclein levels were lower with higher SARA scores in SCA1 and tau levels were higher with greater SARA in MSA-C, although this final correlation did not reach statistical significance after post hoc correction. Additional studies with larger sample sizes are needed to improve the power of these studies and validate the use of CSF biomarkers in SCA and MSA-C. PMID:26265793

  7. Cerebrospinal Fluid Biomarkers in Spinocerebellar Ataxia: A Pilot Study

    PubMed Central

    Brouillette, Ashley M.; Öz, Gülin; Gomez, Christopher M.

    2015-01-01

    Neurodegenerative diseases, including the spinocerebellar ataxias (SCA), would benefit from the identification of reliable biomarkers that could serve as disease subtype-specific and stage-specific indicators for the development and monitoring of treatments. We analyzed the cerebrospinal fluid (CSF) level of tau, α-synuclein, DJ-1, and glial fibrillary acidic protein (GFAP), proteins previously associated with neurodegenerative processes, in patients with the autosomal dominant SCA1, SCA2, and SCA6, and the sporadic disease multiple system atrophy, cerebellar type (MSA-C), compared with age-matched controls. We estimated disease severity using the Scale for the Assessment and Rating of Ataxia (SARA). Most proteins measured trended higher in disease versus control group yet did not reach statistical significance. We found the levels of tau in both SCA2 and MSA-C patients were significantly higher than control. We found that α-synuclein levels were lower with higher SARA scores in SCA1 and tau levels were higher with greater SARA in MSA-C, although this final correlation did not reach statistical significance after post hoc correction. Additional studies with larger sample sizes are needed to improve the power of these studies and validate the use of CSF biomarkers in SCA and MSA-C. PMID:26265793

  8. Biomarkers in Autism

    PubMed Central

    Goldani, Andre A. S.; Downs, Susan R.; Widjaja, Felicia; Lawton, Brittany; Hendren, Robert L.

    2014-01-01

    Autism spectrum disorders (ASDs) are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression, and measures of the body’s metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers. PMID:25161627

  9. Biomarkers and infection in the emergency unit.

    PubMed

    Hausfater, P

    2014-04-01

    The emergency unit is one of the main places for acute medical care and therefore, has a pivotal role in determining a diagnosis of bacterial infection and initiating antibiotic therapy. There is an unquestionable and growing interest for infection biomarkers because of the polymorphism of septic state presentations in the emergency unit and the lack of accuracy of available biological tools. The C Reactive protein (CRP) is a biomarker of inflammation, not of infection. CRP is highly sensitive but lacks specificity. Moreover, there are few interventional studies evaluating its true added diagnostic value in the emergency unit, therefore preventing using CRP as a biomarker of infection. Serum procalcitonin (PCT) dosage is more specific for the diagnosis of bacterial infection. PCT levels do not increase or only slightly in non-bacterial inflammatory syndromes. PCT also provides prognostic information and risk stratification assessment in the emergency unit. Moreover, many authors of interventional studies have validated the contribution of PCT in decision taking for antibiotic therapy when suspecting low respiratory tract infection. It is currently the first-line biomarker of infection in the emergency unit. Other biomarkers such as presepsin (sCD14) may be contributive for the diagnosis and prognosis. PMID:24556451

  10. Wastewater renovation using constructed soil filter (CSF): a novel approach.

    PubMed

    Nemade, P D; Kadam, A M; Shankar, H S

    2009-10-30

    Constructed soil filter (CSF) also known as Soil Biotechnology (SBT) is a process for water renovation which makes use of formulated media with culture of soil macro- and microorganisms. CSF combines sedimentation, infiltration and biodegradation processes to remove oxidizable organics and inorganics of wastewater in a single facility. Operating experience shows hydraulic loading in the range of 0.05-0.25 m(3)/m(2) h and organic loading up to 200-680 g/m(2) d. The results show increase in dissolved oxygen levels, COD removal (from 352 mg/l to 20 mg/l); BOD removal (from 211 mg/l to 7.0 mg/l); suspended solids removal (from 293 mg/l to 16 mg/l); turbidity reduction (from 145 NTU to 5.3 NTU); iron (from 5 mg/l to 0.3 mg/l); arsenic (from 500 microg/l to 10 microg/l); total coliform and fecal coliform removal (from 145 x 10(5) to 55 CFU/100 mL and 150 x 10(8) to 110 CFU/100 mL respectively), with desired pathogen levels as per WHO standards, i.e. < or =10(3) CFU/100 mL. CSF reveals advantages such as low HRT (0.5-2.0 h), low energy requirement (0.04 kWh/m(3)), no pre-treatment, high dissolved oxygen levels in the effluent, no biosludge production, no mechanical aeration and no odor, fish compatible water quality and evergreen ambience. PMID:19501460

  11. A Review of GM-CSF Therapy in Sepsis.

    PubMed

    Mathias, Brittany; Szpila, Benjamin E; Moore, Frederick A; Efron, Philip A; Moldawer, Lyle L

    2015-12-01

    Determine what clinical role, if any, GM-CSF may have in the clinical treatment of sepsis in the adult patient. Advancements in the management of sepsis have led to significant decreases in early mortality; however, sepsis remains a significant source of long-term mortality and disability which places strain on healthcare resources with a substantial growing economic impact. Historically, early multiple organ failure (MOF) and death in patients with severe sepsis was thought to result from an exaggerated proinflammatory response called the systemic inflammatory response syndrome (SIRS). Numerous prospective randomized controlled trials (PRCTs) tested therapies aimed at decreasing the organ injury associated with an exaggerated inflammatory response. With few exceptions, the results from these PRCTs have been disappointing, and currently no specific therapeutic agent is approved to counteract the early SIRS response in patients with severe sepsis. It has long been recognized that there is a delayed immunosuppressive state that contributes to long-term morbidity. However, recent findings now support a concurrent proinflammatory and anti-inflammatory response present throughout sepsis. Multiple immunomodulating agents have been studied to combat the immunosuppressive phase of sepsis with the goal of decreasing secondary infection, reducing organ dysfunction, decreasing ICU stays, and improving survival. Granulocyte-macrophage colony stimulating factor (GM-CSF), a myelopoietic growth factor currently used in patients with neutropenia secondary to chemotherapy-induced myelosuppression, has been studied as a potential immune-activating agent. The applicability of GM-CSF as a standard therapy for generalized sepsis is still largely understudied; however, small-scale studies available have demonstrated some improved recovery from infection, decreased hospital length of stay, decreased days requiring mechanical ventilation, and decreased medical costs. PMID:26683913

  12. Prediagnostic serum levels of inflammatory biomarkers are correlated with future development of lung and esophageal cancer.

    PubMed

    Keeley, Brieze R; Islami, Farhad; Pourshams, Akram; Poustchi, Hossein; Pak, Jamie S; Brennan, Paul; Khademi, Hooman; Genden, Eric M; Abnet, Christian C; Dawsey, Sanford M; Boffetta, Paolo; Malekzadeh, Reza; Sikora, Andrew G

    2014-09-01

    This study tests the hypothesis that prediagnostic serum levels of 20 cancer-associated inflammatory biomarkers correlate directly with future development of head and neck, esophageal, and lung cancers in a high-risk prospective cohort. This is a nested case-control pilot study of subjects enrolled in the Golestan Cohort Study, an ongoing epidemiologic project assessing cancer trends in Golestan, Iran. We measured a panel of 20 21 cytokines, chemokines, and inflammatory molecules using Luminex technology in serum samples collected 2 or more years before cancer diagnosis in 78 aerodigestive cancer cases and 81 controls. Data was analyzed using Wilcoxon rank sum test, odds ratios, receiver operating characteristic areas of discrimination, and multivariate analysis. Biomarkers were profoundly and globally elevated in future esophageal and lung cancer patients compared to controls. Odds ratios were significant for association between several biomarkers and future development of esophageal cancer, including interleukin-1Rα (IL-1Ra; 35.9), interferon α2 (IFN-a2; 34.0), fibroblast growth factor-2 (FGF-2; 17.4), and granulocyte/macrophage colony-stimulating factor (GM-CSF; 17.4). The same pattern was observed among future lung cancer cases for G-CSF (27.7), GM-CSF (13.3), and tumor necrosis factor-α (TNF-a; 8.6). By contrast, the majority of biomarkers studied showed no significant correlation with future head and neck cancer development. This study provides the first direct evidence that multiple inflammatory biomarkers are coordinately elevated in future lung and esophageal cancer patients 2 or more years before cancer diagnosis. PMID:25040886

  13. Prediagnostic serum levels of inflammatory biomarkers are correlated with future development of lung and esophageal cancer

    PubMed Central

    Keeley, Brieze R; Islami, Farhad; Pourshams, Akram; Poustchi, Hossein; Pak, Jamie S; Brennan, Paul; Khademi, Hooman; Genden, Eric M; Abnet, Christian C; Dawsey, Sanford M; Boffetta, Paolo; Malekzadeh, Reza; Sikora, Andrew G

    2014-01-01

    This study tests the hypothesis that prediagnostic serum levels of 20 cancer-associated inflammatory biomarkers correlate directly with future development of head and neck, esophageal, and lung cancers in a high-risk prospective cohort. This is a nested case–control pilot study of subjects enrolled in the Golestan Cohort Study, an ongoing epidemiologic project assessing cancer trends in Golestan, Iran. We measured a panel of 20 21cytokines, chemokines, and inflammatory molecules using Luminex technology in serum samples collected 2 or more years before cancer diagnosis in 78 aerodigestive cancer cases and 81 controls. Data was analyzed using Wilcoxon rank sum test, odds ratios, receiver operating characteristic areas of discrimination, and multivariate analysis. Biomarkers were profoundly and globally elevated in future esophageal and lung cancer patients compared to controls. Odds ratios were significant for association between several biomarkers and future development of esophageal cancer, including interleukin-1Rα (IL-1Ra; 35.9), interferon α2 (IFN-a2; 34.0), fibroblast growth factor-2 (FGF-2; 17.4), and granulocyte/macrophage colony-stimulating factor (GM-CSF; 17.4). The same pattern was observed among future lung cancer cases for G-CSF (27.7), GM-CSF (13.3), and tumor necrosis factor-α (TNF-a; 8.6). By contrast, the majority of biomarkers studied showed no significant correlation with future head and neck cancer development. This study provides the first direct evidence that multiple inflammatory biomarkers are coordinately elevated in future lung and esophageal cancer patients 2 or more years before cancer diagnosis. PMID:25040886

  14. Development of an ultra-rapid diagnostic method based on heart-type fatty acid binding protein levels in the CSF of CJD patients.

    PubMed

    Matsui, Yuki; Satoh, Katsuya; Mutsukura, Kazuo; Watanabe, Takuya; Nishida, Noriyuki; Matsuda, Hideo; Sugino, Masaichi; Shirabe, Susumu; Eguchi, Katsumi; Kataoka, Yasufumi

    2010-10-01

    Creutzfeldt-Jakob disease (CJD) is a transmissible, fatal, neurodegenerative disease in humans. Recently, various drugs have been reported to be useful in the treatment of CJD; however, for such treatments to be useful it is essential to rapidly and accurately diagnose CJD. 124 CJD patients and 87 with other diseases causing rapid progressive dementia were examined. Cerebral spinal fluid (CSF) from CJD patients was analyzed by 2D-PAGE and the protein expression pattern was compared with that from healthy subjects. One of three CJD-specific spots was found to be fatty acid binding protein (FABP), and heart-type FABP (H-FABP) was analyzed as a new biochemical marker for CJD. H-FABP ELISA results were compared between CJD patients and patients with other diseases (n = 211). Visual readout accuracy of the Rapicheck(®) H-FABP test panel for CSF was analyzed using an independent measure of CSF H-FABP concentration. The distribution of H-FABP in the brains of CJD patients was examined by immunohistochemistry. ELISA sensitivity and specificity were 90.3% and 92.9%, respectively, and Rapicheck(®) H-FABP sensitivity and specificity were 87.9% and 96.0%, respectively. ELISA and Rapicheck(®) H-FABP assays provided comparable results for 14-3-3 protein and total tau protein. Elevated H-FABP levels were associated with an accumulation of abnormal prion protein, astrocytic gliosis, and neuronal loss in the cerebral cortices of CJD patients. In conclusion, Rapicheck(®) H-FABP of CSF specimens enabled quick and frequent diagnosis of CJD. H-FABP represents a new biomarker for CJD distinct from 14-3-3 protein and total tau protein. PMID:20499272

  15. CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function

    NASA Astrophysics Data System (ADS)

    Pridans, Clare; Sauter, Kristin A.; Baer, Kristin; Kissel, Holger; Hume, David A.

    2013-10-01

    Hereditary diffuse leukoencephalopathy with spheroids (HDLS) in humans is a rare autosomal dominant disease characterized by giant neuroaxonal swellings (spheroids) within the CNS white matter. Symptoms are variable and can include personality and behavioural changes. Patients with this disease have mutations in the protein kinase domain of the colony-stimulating factor 1 receptor (CSF1R) which is a tyrosine kinase receptor essential for microglia development. We investigated the effects of these mutations on Csf1r signalling using a factor dependent cell line. Corresponding mutant forms of murine Csf1r were expressed on the cell surface at normal levels, and bound CSF1, but were not able to sustain cell proliferation. Since Csf1r signaling requires receptor dimerization initiated by CSF1 binding, the data suggest a mechanism for phenotypic dominance of the mutant allele in HDLS.

  16. CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function

    PubMed Central

    Pridans, Clare; Sauter, Kristin A.; Baer, Kristin; Kissel, Holger; Hume, David A.

    2013-01-01

    Hereditary diffuse leukoencephalopathy with spheroids (HDLS) in humans is a rare autosomal dominant disease characterized by giant neuroaxonal swellings (spheroids) within the CNS white matter. Symptoms are variable and can include personality and behavioural changes. Patients with this disease have mutations in the protein kinase domain of the colony-stimulating factor 1 receptor (CSF1R) which is a tyrosine kinase receptor essential for microglia development. We investigated the effects of these mutations on Csf1r signalling using a factor dependent cell line. Corresponding mutant forms of murine Csf1r were expressed on the cell surface at normal levels, and bound CSF1, but were not able to sustain cell proliferation. Since Csf1r signaling requires receptor dimerization initiated by CSF1 binding, the data suggest a mechanism for phenotypic dominance of the mutant allele in HDLS. PMID:24145216

  17. The Effects of Rm-CSF and Ril-6 Therapy on Immunosuppressed Antiorthostatically Suspended Mice

    NASA Technical Reports Server (NTRS)

    Armstong, Jason W.; Kirby-Dobbels, Kathy; Chapes, Steven K.

    1995-01-01

    Antiorthostatically suspended mice had suppressed macrophage development in both unloaded and loaded bones, indicating a systemic effect. Bone marrow cells from those mice secreted less macrophage colony-stimulating factor (M-CSF) and interleukin-6 (IL-6) than did control mice. Because M-CSF and IL-6 are important to bone marrow macrophage maturation, we formulated the hypothesis that suppressed macrophage development occurred as a result of the depressed levels of either M-CSF or IL-6. To test the hypothesis, mice were administered recombinant M-CSF or IL-6 intraperitoneally. We showed that recombinant M-CSF therapy, but not recombinant IL-6 therapy, reversed the suppressive effects of orthostatic suspension on macrophage development. These data suggest that bone marrow cells that produce M-CSF are affected by antiorthostatic suspension and may contribute to the inhibited maturation of bone marrow macrophage progenitors.

  18. A Csf1r-EGFP Transgene Provides a Novel Marker for Monocyte Subsets in Sheep

    PubMed Central

    Pridans, Clare; Davis, Gemma M.; Sauter, Kristin A.; Lisowski, Zofia M.; Corripio-Miyar, Yolanda; Raper, Anna; Lefevre, Lucas; Young, Rachel; McCulloch, Mary E.; Lillico, Simon; Milne, Elspeth; Whitelaw, Bruce

    2016-01-01

    Expression of Csf1r in adults is restricted to cells of the macrophage lineage. Transgenic reporters based upon the Csf1r locus require inclusion of the highly conserved Fms-intronic regulatory element for expression. We have created Csf1r-EGFP transgenic sheep via lentiviral transgenesis of a construct containing elements of the mouse Fms-intronic regulatory element and Csf1r promoter. Committed bone marrow macrophage precursors and blood monocytes express EGFP in these animals. Sheep monocytes were divided into three populations, similar to classical, intermediate, and nonclassical monocytes in humans, based upon CD14 and CD16 expression. All expressed EGFP, with increased levels in the nonclassical subset. Because Csf1r expression coincides with the earliest commitment to the macrophage lineage, Csf1r-EGFP bone marrow provides a tool for studying the earliest events in myelopoiesis using the sheep as a model. PMID:27521343

  19. Biomarkers for dementia and mild cognitive impairment in Parkinson's disease.

    PubMed

    Delgado-Alvarado, Manuel; Gago, Belén; Navalpotro-Gomez, Irene; Jiménez-Urbieta, Haritz; Rodriguez-Oroz, María C

    2016-06-01

    Cognitive decline is one of the most frequent and disabling nonmotor features of Parkinson's disease. Around 30% of patients with Parkinson's disease experience mild cognitive impairment, a well-established risk factor for the development of dementia. However, mild cognitive impairment in patients with Parkinson's disease is a heterogeneous entity that involves different types and extents of cognitive deficits. Because it is not currently known which type of mild cognitive impairment confers a higher risk of progression to dementia, it would be useful to define biomarkers that could identify these patients to better study disease progression and possible interventions. In this sense, the identification among patients with Parkinson's disease and mild cognitive impairment of biomarkers associated with dementia would allow the early detection of this process. This review summarizes studies from the past 25 years that have assessed the potential biomarkers of dementia and mild cognitive impairment in Parkinson's disease patients. Despite the potential importance, no biomarker has as yet been validated. However, features such as low levels of epidermal and insulin-like growth factors or uric acid in plasma/serum and of Aß in CSF, reduction of cerebral cholinergic innervation and metabolism measured by PET mainly in posterior areas, and hippocampal atrophy in MRI might be indicative of distinct deficits with a distinct risk of dementia in subgroups of patients. Longitudinal studies combining the existing techniques and new approaches are needed to identify patients at higher risk of dementia. © 2016 International Parkinson and Movement Disorder Society. PMID:27193487

  20. Evaluating the performance of the quick CSF method in detecting contrast sensitivity function changes.

    PubMed

    Hou, Fang; Lesmes, Luis Andres; Kim, Woojae; Gu, Hairong; Pitt, Mark A; Myung, Jay I; Lu, Zhong-Lin

    2016-01-01

    The contrast sensitivity function (CSF) has shown promise as a functional vision endpoint for monitoring the changes in functional vision that accompany eye disease or its treatment. However, detecting CSF changes with precision and efficiency at both the individual and group levels is very challenging. By exploiting the Bayesian foundation of the quick CSF method (Lesmes, Lu, Baek, & Albright, 2010), we developed and evaluated metrics for detecting CSF changes at both the individual and group levels. A 10-letter identification task was used to assess the systematic changes in the CSF measured in three luminance conditions in 112 naïve normal observers. The data from the large sample allowed us to estimate the test-retest reliability of the quick CSF procedure and evaluate its performance in detecting CSF changes at both the individual and group levels. The test-retest reliability reached 0.974 with 50 trials. In 50 trials, the quick CSF method can detect a medium 0.30 log unit area under log CSF change with 94.0% accuracy at the individual observer level. At the group level, a power analysis based on the empirical distribution of CSF changes from the large sample showed that a very small area under log CSF change (0.025 log unit) could be detected by the quick CSF method with 112 observers and 50 trials. These results make it plausible to apply the method to monitor the progression of visual diseases or treatment effects on individual patients and greatly reduce the time, sample size, and costs in clinical trials at the group level. PMID:27120074

  1. Evaluating the performance of the quick CSF method in detecting contrast sensitivity function changes

    PubMed Central

    Hou, Fang; Lesmes, Luis Andres; Kim, Woojae; Gu, Hairong; Pitt, Mark A.; Myung, Jay I.; Lu, Zhong-Lin

    2016-01-01

    The contrast sensitivity function (CSF) has shown promise as a functional vision endpoint for monitoring the changes in functional vision that accompany eye disease or its treatment. However, detecting CSF changes with precision and efficiency at both the individual and group levels is very challenging. By exploiting the Bayesian foundation of the quick CSF method (Lesmes, Lu, Baek, & Albright, 2010), we developed and evaluated metrics for detecting CSF changes at both the individual and group levels. A 10-letter identification task was used to assess the systematic changes in the CSF measured in three luminance conditions in 112 naïve normal observers. The data from the large sample allowed us to estimate the test–retest reliability of the quick CSF procedure and evaluate its performance in detecting CSF changes at both the individual and group levels. The test–retest reliability reached 0.974 with 50 trials. In 50 trials, the quick CSF method can detect a medium 0.30 log unit area under log CSF change with 94.0% accuracy at the individual observer level. At the group level, a power analysis based on the empirical distribution of CSF changes from the large sample showed that a very small area under log CSF change (0.025 log unit) could be detected by the quick CSF method with 112 observers and 50 trials. These results make it plausible to apply the method to monitor the progression of visual diseases or treatment effects on individual patients and greatly reduce the time, sample size, and costs in clinical trials at the group level. PMID:27120074

  2. IL-34 and M-CSF form a novel heteromeric cytokine and regulate the M-CSF receptor activation and localization.

    PubMed

    Ségaliny, Aude I; Brion, Régis; Brulin, Bénédicte; Maillasson, Mike; Charrier, Céline; Téletchéa, Stéphane; Heymann, Dominique

    2015-12-01

    Interleukin-34 (IL-34) is a newly-discovered homodimeric cytokine that regulates, like Macrophage Colony-Stimulating Factor (M-CSF), the differentiation of the myeloid lineage through M-CSF receptor (M-CSFR) signaling pathways. To date, both cytokines have been considered as competitive cytokines with regard to the M-CSFR. The aim of the present work was to study the functional relationships of these cytokines on cells expressing the M-CSFR. We demonstrate that simultaneous addition of M-CSF and IL-34 led to a specific activation pattern on the M-CSFR, with higher phosphorylation of the tyrosine residues at low concentrations. Similarly, both cytokines showed an additive effect on cellular proliferation or viability. In addition, BIAcore experiments demonstrated that M-CSF binds to IL-34, and molecular docking studies predicted the formation of a heteromeric M-CSF/IL-34 cytokine. A proximity ligation assay confirmed this interaction between the cytokines. Finally, co-expression of the M-CSFR and its ligands differentially regulated M-CSFR trafficking into the cell. This study establishes a new foundation for the understanding of the functional relationship between IL-34 and M-CSF, and gives a new vision for the development of therapeutic approaches targeting the IL-34/M-CSF/M-CSFR axis. PMID:26095744

  3. Biomarkers in sepsis.

    PubMed

    Walley, Keith R

    2013-10-01

    There is much enthusiasm and interest in sepsis biomarkers, particularly because sepsis is a highly lethal condition, its diagnosis is challenging, and even simple treatment with antibiotics has led to serious adverse consequences such as emergence of resistant pathogens. Yet development of a sepsis biomarker requires many more steps than simply finding an association between a particular molecule and a clinical state or outcome. Demonstration of improvement of therapeutic practice using receiver-operating characteristic and other analyses is important. Validation in independent, prospective and, preferably, multicenter trials is essential. Many promising candidate sepsis biomarkers have recently been proposed. While procalcitonin (PCT) is currently the most studied sepsis biomarker, evidence of potential value has been found for a wide array of blood biomarkers including proteins, mRNA expression in whole blood or leukocytes, micro-RNAs (miRNA), pathogen and host DNA, pathogen and host genetic variants and metabolomic panels, and even in the novel use of currently available clinical data. While the most common early reports link putative sepsis biomarker levels to severity of illness and outcome (prognostic), this is not anticipated to be their primary use. More important is the distinction between infection and noninfectious inflammatory responses (diagnostic) and the use of sepsis biomarkers to direct therapy (predictive). PMID:23975686

  4. Body fluid biomarkers in Alzheimer’s disease

    PubMed Central

    Lu, Huan; Zhu, Xi-Chen; Jiang, Teng

    2015-01-01

    A heterogeneous and slowly progressive disease with extracellular amyloid-β (Aβ) deposits and intracellular hyperphosphorylated tau protein aggregates, Alzheimer’s disease (AD) is already a hard nut to crack, featured with cognitive decline and memory lapse. Body fluid biomarkers are proved to be useful in exploring further study of AD, might benefit for a full comprehension of the etiopathogenesis, an improved precision of the prognosis and diagnosis, and a positive response of treatments. The cerebrospinal fluid biomarkers Aβ, total tau, and hyperphosphorylated tau reflect the main pathologic changes of AD. We also review data from several novel biomarkers, such as, β-site APP cleaving enzyme 1, soluble amyloid precursor proteins α and β, soluble Aβ oligomers and so on, which are associated with the occurrence and deterioration of this disease and couldn’t be ignored. The rationale for the clinical use of those biomarkers, the challenges faced with and the properties of the most appropriate biomarkers are also summarized in the paper. We aim to find several ideal biomarkers to improve the diagnosis and optimize the treatment respectively. PMID:25992369

  5. Chimaeric Lym-1 monoclonal antibody-mediated cytolysis by neutrophils from G-CSF-treated patients: stimulation by GM-CSF and role of Fc gamma -receptors.

    PubMed

    Ottonello, L; Epstein, A L; Mancini, M; Tortolina, G; Dapino, P; Dallegri, F

    2001-08-01

    Chimaeric Lym-1 (chLym-1) is a monoclonal antibody generated by fusing the variable region genes of murine Lym-1 to human gamma1 and kappa constant regions. Owing to its selectivity and avidity for human malignant B cells, it is an attractive candidate for developing immune-interventions in B-lymphomas. In the attempt to identify rational bases for optimizing potential chLym-1 related therapeutic approaches, we studied the ability of this ch-mAb to trigger neutrophil-mediated Raji cell cytolysis in cooperation with two neutrophil-related cytokines, G-CSF and GM-CSF. ChLym-1 triggered low levels of cytolysis by normal neutrophils but induced consistent cytolysis in neutrophils from individuals treated with G-CSF. When exposed to GM-CSF, neutrophils from subjects treated with G-CSF became potent effectors, also leading to 75% lysis. By using mAbs specific for distinct FcgammaRs, normal neutrophils were inhibited by mAb IV.3, suggesting the intervention of FcgammaRII, constitutively expressed on the cells. On the other hand, neutrophils from patients treated with G-CSF were inhibited by mAb IV.3 plus mAb 197, a finding consistent with a cooperative intervention of FCgammaRII and G-CSF-induced FcgammaRI. The anti-FcgammaRIII mAb 3G8 promoted significant enhancement of the neutrophil cytolytic efficiency. Therefore, neutrophil FcgammaRIII behaves as a down-regulator of the cytolytic potential. The present findings suggest new attempts to develop mAb-based and G-CSF/GM-CSF combined immune-interventions in B lymphomas. PMID:11487281

  6. Chimaeric Lym-1 monoclonal antibody-mediated cytolysis by neutrophils from G-CSF-treated patients: stimulation by GM-CSF and role of Fcγ-receptors

    PubMed Central

    Ottonello, L; Epstein, A L; Mancini, M; Tortolina, G; Dapino, P; Dallegri, F

    2001-01-01

    Chimaeric Lym-1 (chLym-1) is a monoclonal antibody generated by fusing the variable region genes of murine Lym-1 to human γ1 and κ constant regions. Owing to its selectivity and avidity for human malignant B cells, it is an attractive candidate for developing immune-interventions in B-lymphomas. In the attempt to identify rational bases for optimizing potential chLym-1 related therapeutic approaches, we studied the ability of this ch-mAb to trigger neutrophil-mediated Raji cell cytolysis in cooperation with two neutrophil-related cytokines, G-CSF and GM-CSF. ChLym-1 triggered low levels of cytolysis by normal neutrophils but induced consistent cytolysis in neutrophils from individuals treated with G-CSF. When exposed to GM-CSF, neutrophils from subjects treated with G-CSF became potent effectors, also leading to 75% lysis. By using mAbs specific for distinct FcγRs, normal neutrophils were inhibited by mAb IV.3, suggesting the intervention of FcγRII, constitutively expressed on the cells. On the other hand, neutrophils from patients treated with G-CSF were inhibited by mAb IV.3 plus mAb 197, a finding consistent with a cooperative intervention of FCγRII and G-CSF-induced FcγRI. The anti-FcγRIII mAb 3G8 promoted significant enhancement of the neutrophil cytolytic efficiency. Therefore, neutrophil FcγRIII behaves as a down-regulator of the cytolytic potential. The present findings suggest new attempts to develop mAb-based and G-CSF/GM-CSF combined immune-interventions in B lymphomas. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11487281

  7. Myeloid cell kinetics in mice treated with recombinant interleukin-3, granulocyte colony-stimulating factor (CSF), or granulocyte-macrophage CSF in vivo

    SciTech Connect

    Lord, B.I.; Molineux, G.; Pojda, Z.; Souza, L.M.; Mermod, J.J.; Dexter, T.M. )

    1991-05-15

    Myeloid cell kinetics in mice treated with pure hematopoietic growth factors have been investigated using tritiated thymidine labeling and autoradiography. Mice were injected subcutaneously with 125 micrograms/kg granulocyte colony-stimulating factor (G-CSF) (in some cases 5 micrograms/kg), or 10 micrograms/kg of granulocyte-macrophage CSF (GM-CSF), or interleukin-3 (IL-3) every 12 hours for 84 hours. {sup 3}HTdR labeling was performed in vivo after 3 days of treatment. G-CSF increased the peripheral neutrophil count 14-fold and increased the proportion and proliferation rate of neutrophilic cells in the marrow, suppressing erythropoiesis at the same time. Newly produced mature cells were released into the circulation within 24 hours of labeling, compared with a normal appearance time of about 96 hours. By contrast, GM-CSF and IL-3 had little effect on either marrow cell kinetics or on the rate of release of mature cells, although GM-CSF did stimulate a 50% increase in peripheral neutrophils. Monocyte production was also increased about eightfold by G-CSF and 1.5-fold by GM-CSF, but their peak release was only slightly accelerated. While the peripheral half-lives of the neutrophilic granulocytes were normal, those of the monocytes were dramatically reduced, perhaps due to sequestration in the tissues for functional purposes. The stimulated monocyte production in the case of G-CSF required an additional five cell cycles, a level that might have repercussions on the progenitor compartments.

  8. Pharmacologic manipulation of the flushing action of cerebrospinal fluid. Effect on CSF diatrizoate levels.

    PubMed

    Harnish, P P; Samuel, K

    1988-12-01

    The continual production and absorption of cerebrospinal fluid (CSF) provides for the dilution and removal of potentially toxic substances from the central nervous system (CNS). This study quantified changes in the CSF concentration of diatrizoate following pretreatment with various drugs that alter CSF production. Adult rats, pretreated with one of ten drugs or normal saline (control) and anesthetized, received sodium diatrizoate (2 mL/kg, IV). Blood and CSF were sampled 2 hours later, and the diatrizoate concentrations were measured. Serum diatrizoate levels in the control group averaged 144.3 micrograms/mL. There were no significant differences in serum levels between control and pretreated groups. The CSF diatrizoate concentration in the control group averaged 10.8 micrograms/mL. Pretreatment with acetazolamide, ritodrine, or probenecid resulted in a significant increase in the CSF concentration, to 24.7 micrograms/mL or 228% of control in the case of acetazolamide. Pretreatment with salicylate, carbachol, or aminophylline resulted in significantly lower CSF diatrizoate levels than control; 3.2 micrograms/mL (30% of control) for carbachol. Digoxin, furosemide, dibutyryl cAMP, or dexamethasone pretreatments had no significant effect on CSF diatrizoate concentrations. Thus, a wide range of drugs may significantly alter the concentration of diatrizoate in the CNS. Drug-induced changes in the rate of CSF production may be responsible for this action. PMID:2849595

  9. Functional changes in CSF volume estimated using measurement of water T2 relaxation.

    PubMed

    Piechnik, S K; Evans, J; Bary, L H; Wise, R G; Jezzard, P

    2009-03-01

    Cerebrospinal fluid (CSF) provides hydraulic suspension for the brain. The general concept of bulk CSF production, circulation, and reabsorption is well established, but the mechanisms of momentary CSF volume variation corresponding to vasoreactive changes are far less understood. Nine individuals were studied in a 3T MR scanner with a protocol that included visual stimulation using a 10-Hz reversing checkerboard and administration of a 5% CO(2) mix in air. We acquired PRESS-localized spin-echoes (TR = 12 sec, TE = 26 ms to 1.5 sec) from an 8-mL voxel located in the visual cortex. Echo amplitudes were fitted to a two-compartmental model of relaxation to estimate the partial volume of CSF and the T(2) relaxation times of the tissues. CSF signal contributed 10.7 +/- 3% of the total, with T(2,csf) = 503.0 +/- 64.3 [ms], T(2,brain) = 61.0 +/- 2 [ms]. The relaxation time of tissue increased during physiological stimulation, while the fraction of signal contributed by CSF decreased significantly by 5-6% with visual stimulation (P < 0.03) and by 3% under CO(2) inhalation (P < 0.08). The CSF signal fraction is shown to represent well the volume changes under viable physiological scenarios. In conclusion, CSF plays a significant role in buffering the changes in cerebral blood volume, especially during rapid functional stimuli. PMID:19132756

  10. Correlation Between Decreased CSF α-Synuclein and Aβ1-42 in Parkinson Disease

    PubMed Central

    Buddhala, Chandana; Campbell, Meghan C.; Perlmutter, Joel S.; Kotzbauer, Paul T.

    2014-01-01

    Accumulation of misfolded α-synuclein (α-syn) protein in Lewy bodies and neurites is the cardinal pathologic feature of Parkinson disease (PD), but abnormal deposition of other proteins may also play a role. Cerebrospinal fluid (CSF) levels of proteins known to accumulate in PD may provide insight into disease-associated changes in protein metabolism and their relationship to disease progression. We measured CSF α-syn, Aβ1-42 and tau from seventy-seven non-demented PD and thirty control participants. CSF α-syn and Aβ1-42 were significantly lower in PD compared to controls. In contrast to increased CSF tau in Alzheimer disease, CSF tau did not significantly differ between PD and controls. CSF protein levels did not significantly correlate with ratings of motor function or performance on neuropsychological testing. As expected, CSF Aβ1-42 inversely correlated with [11C]-Pittsburgh Compound B (PiB) mean cortical binding potential, with PiB+ PD participants having lower CSF Aβ1-42 compared to PiB− PD participants. Furthermore, CSF α-syn positively correlated with Aβ1-42 in PD participants but not in controls, suggesting a pathophysiologic connection between the metabolisms of these proteins in PD. PMID:25212463

  11. Diabetes Limits Stem Cell Mobilization Following G-CSF but Not Plerixafor

    PubMed Central

    Fiala, Mark; Cappellari, Roberta; Danna, Marianna; Park, Soo; Poncina, Nicol; Menegazzo, Lisa; Albiero, Mattia; DiPersio, John; Stockerl-Goldstein, Keith; Avogaro, Angelo

    2015-01-01

    Previous studies suggest that diabetes impairs hematopoietic stem cell (HSC) mobilization in response to granulocyte colony-stimulating factor (G-CSF). In this study, we tested whether the CXCR4 antagonist plerixafor, differently from G-CSF, is effective in mobilizing HSCs in patients with diabetes. In a prospective study, individuals with and without diabetes (n = 10/group) were administered plerixafor to compare CD34+ HSC mobilization; plerixafor was equally able to mobilize CD34+ HSCs in the two groups, whereas in historical data, G-CSF was less effective in patients with diabetes. In a retrospective autologous transplantation study conducted on 706 patients, diabetes was associated with poorer mobilization in patients who received G-CSF with/without chemotherapy, whereas it was not in patients who received G-CSF plus plerixafor. Similarly in an allogeneic transplantation study (n = 335), diabetes was associated with poorer mobilization in patients who received G-CSF. Patients with diabetes who received G-CSF without plerixafor had a lower probability of reaching >50/μL CD34+ HSCs, independent from confounding variables. In conclusion, diabetes negatively impacted HSC mobilization after G-CSF with or without chemotherapy but had no effect on mobilization induced by G-CSF with plerixafor. This finding has major implications for the care of patients with diabetes undergoing stem cell mobilization and transplantation and for the vascular regenerative potential of bone marrow stem cells. PMID:25804941

  12. CSF Flow in the Brain in the Context of Normal Pressure Hydrocephalus.

    PubMed

    Bradley, W G

    2015-05-01

    CSF normally flows back and forth through the aqueduct during the cardiac cycle. During systole, the brain and intracranial vasculature expand and compress the lateral and third ventricles, forcing CSF craniocaudad. During diastole, they contract and flow through the aqueduct reverses. Hyperdynamic CSF flow through the aqueduct is seen when there is ventricular enlargement without cerebral atrophy. Therefore, patients presenting with clinical normal pressure hydrocephalus who have hyperdynamic CSF flow have been found to respond better to ventriculoperitoneal shunting than those with normal or decreased CSF flow. Patients with normal pressure hydrocephalus have also been found to have larger intracranial volumes than sex-matched controls, suggesting that they may have had benign external hydrocephalus as infants. While their arachnoidal granulations clearly have decreased CSF resorptive capacity, it now appears that this is fixed and that the arachnoidal granulations are not merely immature. Such patients appear to develop a parallel pathway for CSF to exit the ventricles through the extracellular space of the brain and the venous side of the glymphatic system. This pathway remains functional until late adulthood when the patient develops deep white matter ischemia, which is characterized histologically by myelin pallor (ie, loss of lipid). The attraction between the bare myelin protein and the CSF increases resistance to the extracellular outflow of CSF, causing it to back up, resulting in hydrocephalus. Thus idiopathic normal pressure hydrocephalus appears to be a "2 hit" disease: benign external hydrocephalus in infancy followed by deep white matter ischemia in late adulthood. PMID:25355813

  13. Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks.

    PubMed

    Sherif, Fayroz F; Zayed, Nourhan; Fakhr, Mahmoud

    2015-01-01

    Single nucleotide polymorphisms (SNPs) contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer's disease (AD). Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in whole genome sequencing (WGS) data for detecting the causal AD SNPs and gene-SNP interactions. We focused on polymorphisms in the top ten genes associated with AD and identified by genome-wide association (GWA) studies. New SNP biomarkers were observed to be significantly associated with Alzheimer's disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429, rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong association with AD disease and achieves better performance than both naïve Bayes and tree augmented naïve Bayes. Minimal augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in naïve Bayes, respectively. PMID:26366461

  14. Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks

    PubMed Central

    Sherif, Fayroz F.; Zayed, Nourhan; Fakhr, Mahmoud

    2015-01-01

    Single nucleotide polymorphisms (SNPs) contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer's disease (AD). Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in whole genome sequencing (WGS) data for detecting the causal AD SNPs and gene-SNP interactions. We focused on polymorphisms in the top ten genes associated with AD and identified by genome-wide association (GWA) studies. New SNP biomarkers were observed to be significantly associated with Alzheimer's disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429, rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong association with AD disease and achieves better performance than both naïve Bayes and tree augmented naïve Bayes. Minimal augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in naïve Bayes, respectively. PMID:26366461

  15. Metabolic products as biomarkers

    USGS Publications Warehouse

    Melancon, M.J.; Alscher, R.; Benson, W.; Kruzynski, G.; Lee, R.F.; Sikka, H.C.; Spies, R.B.

    1992-01-01

    Ideally, endogenous biomarkers would indicate both exposure and environmental effects of toxic chemicals; however, such comprehensive biochemical and physiological indices are currently being developed and, at the present time, are unavailable for use in environmental monitoring programs. Continued work is required to validate the use of biochemical and physiological stress indices as useful components of monitoring programs. Of the compounds discussed only phytochelatins and porphyrins are currently in biomarkers in a useful state; however, glutathione,metallothioneins, stress ethylene, and polyamines are promising as biomarkers in environmental monitoring.

  16. Biomarkers in Severe Asthma.

    PubMed

    Wan, Xiao Chloe; Woodruff, Prescott G

    2016-08-01

    Biomarkers have been critical for studies of disease pathogenesis and the development of new therapies in severe asthma. In particular, biomarkers of type 2 inflammation have proven valuable for endotyping and targeting new biological agents. Because of these successes in understanding and marking type 2 inflammation, lack of knowledge regarding non-type 2 inflammatory mechanisms in asthma will soon be the major obstacle to the development of new treatments and management strategies in severe asthma. Biomarkers can play a role in these investigations as well by providing insight into the underlying biology in human studies of patients with severe asthma. PMID:27401625

  17. Smeared antibranes polarise in AdS

    NASA Astrophysics Data System (ADS)

    Gautason, Fridrik Freyr; Truijen, Brecht; Van Riet, Thomas

    2015-07-01

    In the recent literature it has been questioned whether the local backreaction of antibranes in flux throats can induce a perturbative brane-flux decay. Most evidence for this can be gathered for D6 branes and D p branes smeared over 6 - p compact directions, in line with the absence of finite temperature solutions for these cases. The solutions in the literature have flat worldvolume geometries and non-compact transversal spaces. In this paper we consider what happens when the worldvolume is AdS and the transversal space is compact. We show that in these circumstances brane polarisation smoothens out the flux singularity, which is an indication that brane-flux decay is prevented. This is consistent with the fact that the cosmological constant would be less negative after brane-flux decay. Our results extend recent results on AdS7 solutions from D6 branes to AdS p+1 solutions from D p branes. We show that supersymmetry of the AdS solutions depend on p non-trivially.

  18. Biomarkers of aggression in dementia.

    PubMed

    Gotovac, Kristina; Nikolac Perković, Matea; Pivac, Nela; Borovečki, Fran

    2016-08-01

    Dementia is a clinical syndrome defined by progressive global impairment of acquired cognitive abilities. It can be caused by a number of underlying conditions. The most common types of dementia are Alzheimer's disease (AD), frontotemporal dementia (FTD), vascular cognitive impairment (VCI) and dementia with Lewy bodies (DLB). Despite the fact that cognitive impairment is central to the dementia, noncognitive symptoms, most commonly described nowadays as neuropsychiatric symptoms (NPS) exist almost always at certain point of the illness. Aggression as one of the NPS represents danger both for patients and caregivers and the rate of aggression correlates with the loss of independence, cognitive decline and poor outcome. Therefore, biomarkers of aggression in dementia patients would be of a great importance. Studies have shown that different genetic factors, including monoamine signaling and processing, can be associated with various NPS including aggression. There have been significant and multiple neurotransmitter changes identified in the brains of patients with dementia and some of these changes have been involved in the etiology of NPS. Aggression specific changes have also been observed in neuropathological studies. The current consensus is that the best approach for development of such biomarkers may be incorporation of genetics (polymorphisms), neurobiology (neurotransmitters and neuropathology) and neuroimaging techniques. PMID:26952705

  19. AdS orbifolds and Penrose limits

    SciTech Connect

    Alishahiha, Mohsen; Sheikh-Jabbari, Mohammad M.; Tatar, Radu

    2002-12-09

    In this paper we study the Penrose limit of AdS{sub 5} orbifolds. The orbifold can be either in the pure spatial directions or space and time directions. For the AdS{sub 5}/{Lambda} x S{sup 5} spatial orbifold we observe that after the Penrose limit we obtain the same result as the Penrose limit of AdS{sub 5} x S{sup 5}/{Lambda}. We identify the corresponding BMN operators in terms of operators of the gauge theory on R x S{sup 3}/{Lambda}. The semi-classical description of rotating strings in these backgrounds have also been studied. For the spatial AdS orbifold we show that in the quadratic order the obtained action for the fluctuations is the same as that in S{sup 5} orbifold, however, the higher loop correction can distinguish between two cases.

  20. Biomarkers of Parkinson's disease: present and future.

    PubMed

    Miller, Diane B; O'Callaghan, James P

    2015-03-01

    Sporadic or idiopathic Parkinson's disease (PD) is an age-related neurodegenerative disorder of unknown origin that ranks only second behind Alzheimer's disease (AD) in prevalence and its consequent social and economic burden. PD neuropathology is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta; however, more widespread involvement of other CNS structures and peripheral tissues now is widely documented. The onset of molecular and cellular neuropathology of PD likely occurs decades before the onset of the motor symptoms characteristic of PD. The hallmark symptoms of PD, resting tremors, rigidity and postural disabilities, are related to dopamine (DA) deficiency. Current therapies treat these symptoms by replacing or boosting existing DA. All current interventions have limited therapeutic benefit for disease progression because damage likely has progressed over an estimated period of ~5 to 15years to a loss of 60%-80% of the nigral DA neurons, before symptoms emerge. There is no accepted definitive biomarker of PD. An urgent need exists to develop early diagnostic biomarkers for two reasons: (1) to intervene at the onset of disease and (2) to monitor the progress of therapeutic interventions that may slow or stop the course of the disease. In the context of disease development, one of the promises of personalized medicine is the ability to predict, on an individual basis, factors contributing to the susceptibility for the development of a given disease. Recent advances in our understanding of genetic factors underlying or contributing to PD offer the potential for monitoring susceptibility biomarkers that can be used to identify at-risk individuals and possibly prevent the onset of disease through treatment. Finally, the exposome concept is new in the biomarker discovery arena and it is suggested as a way to move forward in identifying biomarkers of neurological diseases. It is a two-stage scheme involving a first stage

  1. Biomarker time out.

    PubMed

    Petzold, Axel; Bowser, Robert; Calabresi, Paolo; Zetterberg, Henrik; Uitdehaag, Bernard M J

    2014-10-01

    The advancement of knowledge relies on scientific investigations. The timing between asking a question and data collection defines if a study is prospective or retrospective. Prospective studies look forward from a point in time, are less prone to bias and are considered superior to retrospective studies. This conceptual framework conflicts with the nature of biomarker research. New candidate biomarkers are discovered in a retrospective manner. There are neither resources nor time for prospective testing in all cases. Relevant sources for bias are not covered. Ethical questions arise through the time penalty of an overly dogmatic concept. The timing of sample collection can be separated from testing biomarkers. Therefore the moment of formulating a hypothesis may be after sample collection was completed. A conceptual framework permissive to asking research questions without the obligation to bow to the human concept of calendar time would simplify biomarker research, but will require new safeguards against bias. PMID:24557857

  2. Studies of oral neutrophil levels in patients receiving G-CSF after autologous marrow transplantation.

    PubMed

    Lieschke, G J; Ramenghi, U; O'Connor, M P; Sheridan, W; Szer, J; Morstyn, G

    1992-11-01

    Patients are at risk of mucositis and infections in the oral cavity during the neutropenic period after chemotherapy, which are significant causes of morbidity. In phase I/II studies with the haemopoietic growth factor granulocyte colony stimulating factor (G-CSF), a reduction in post-chemotherapy mucositis has been observed in addition to haematologic effects. To understand this phenomenon better in patients receiving G-CSF following high-dose chemotherapy with autologous bone marrow transplantation (ABMT), we studied the effects of G-CSF on levels of neutrophils recoverable from the oral cavity using a quantitative mouthrinse assay. In normal subjects, mouthrinses contained 472 +/- 329 x 10(3) neutrophils/mouthrinse. After chemotherapy followed by ABMT, mouthrinse neutrophil levels decreased to undetectable levels during the neutropenic period, but recovered 1-2 and 3-9 d before circulating neutrophil levels reached 0.1 and 1 x 10(9)/l respectively, whether or not patients received G-CSF. In patients who received G-CSF, the mean cumulative mucositis score was reduced from 35 +/- 9 to 21 +/- 12 (P < 0.05), and the maximum mean daily mucositis score was reduced from 2.8 +/- 0.5 to 1.7 +/- 0.9 (P < 0.01), compared to patients who did not receive G-CSF after ABMT. These studies provide in vivo evidence that neutrophils produced during G-CSF therapy are available to leave the circulation and enter tissues where their function is required for host defence. Since the usual temporal relationship between oral and peripheral blood neutrophil recovery was preserved during G-CSF administration after ABMT, these data support the hypothesis that the reduction in post-ABMT mucositis observed with G-CSF therapy may reflect a beneficial effect of G-CSF on the kinetics of oral mucosal neutrophil recovery in addition to the effect of G-CSF to accelerate peripheral blood neutrophil recovery. PMID:1283080

  3. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia

    SciTech Connect

    Koshida, Ryusuke Oishi, Hisashi Hamada, Michito; Takahashi, Satoru

    2015-07-17

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB by analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia.

  4. G-CSF enhances resolution of Staphylococcus aureus wound infection in an age-dependent manner.

    PubMed

    Brubaker, Aleah L; Kovacs, Elizabeth J

    2013-10-01

    This study tested the hypothesis that heightened bacterial colonization and delayed wound closure in aged mice could be attenuated by granulocyte colony-stimulating factor (G-CSF) treatment. Previously, we reported that aged mice had elevated bacterial levels, protracted wound closure, and reduced wound neutrophil accumulation after Staphylococcus aureus wound infection relative to young mice. In aseptic wound models, G-CSF treatment improved wound closure in aged mice to rates observed in young mice. Given these data, our objective was to determine if G-CSF could restore age-associated differences in wound bacterial burden and closure by increasing wound neutrophil recruitment. Young (3- to 4-month) and aged (18- to 20-month) BALB/c mice received three dorsal subcutaneous injections of G-CSF (250 ng/50 μL per injection) or saline control (50 μL per injection) 30 min after wound infection. Mice were killed at days 3 and 7 after wound infection, and bacterial colonization, wound size, wound leukocyte accumulation, and peripheral blood were evaluated. At days 3 and 7 after wound infection, bacterial colonization was significantly reduced in G-CSF-treated aged mice to levels observed in saline-treated young animals. Wound size was reduced in G-CSF-treated aged animals, with no effect on wound size in G-CSF-treated young mice. Local G-CSF treatment significantly enhanced neutrophil wound accumulation in aged mice, whereas there was no G-CSF-induced change in young mice. These data demonstrate that G-CSF enhances bacterial clearance and wound closure in an age-dependent manner. Moreover, G-CSF may be of therapeutic potential in the setting of postoperative wound infection or chronic nonhealing wounds in elderly patients. PMID:23856924

  5. Biomarkers in ALH84001???

    NASA Technical Reports Server (NTRS)

    Treiman, Allen H.

    1999-01-01

    D. McKay and colleagues suggested that four sets of features in ALH84001 were biomarkers, signs of an ancient martian biota that once inhabited the meteorite. Subsequent work has not validated their hypothesis; each suggested biomarker has been found to be ambiguous or immaterial. Nor has their hypothesis been disproved. Rather, it is now one of many hypotheses about the alteration of ALH84001. Additional information is contained in the original extended abstract.

  6. Meloxicam, an inhibitor of cyclooxygenase-2, increases the level of serum G-CSF and might be usable as an auxiliary means in G-CSF therapy.

    PubMed

    Hofer, M; Pospísil, M; Znojil, V; Holá, J; Vacek, A; Streitová, D

    2008-01-01

    Hematopoiesis-modulating action of meloxicam, a cyclooxyge-nase-2 inhibitor, has been evaluated in mice. Increased serum level of granulocyte colony-stimulating factor (G-CSF) after meloxicam administration has been found in sublethally gamma-irradiated animals. In further experiments hematopoiesis-stimulating effects of meloxicam and G-CSF given alone or in combination have been investigated. Granulocyte/macrophage progenitor cells counts were used to monitor these effects. Meloxicam and exogenous G-CSF did not act synergistically when given in combination, but could be mutually substituted during their repeated administration. The results suggest a promising possibility of using meloxicam as an auxiliary drug reducing the high costs of G-CSF therapy of myelosuppression. PMID:17552878

  7. A Multiplex Protein Panel Applied to Cerebrospinal Fluid Reveals Three New Biomarker Candidates in ALS but None in Neuropathic Pain Patients

    PubMed Central

    Freyhult, Eva; Bodolea, Constantin; Ekegren, Titti; Larsson, Anders; Gustafsson, Mats G.; Katila, Lenka; Bergquist, Jonas; Gordh, Torsten; Landegren, Ulf; Kamali-Moghaddam, Masood

    2016-01-01

    The objective of this study was to develop and apply a novel multiplex panel of solid-phase proximity ligation assays (SP-PLA) requiring only 20 μL of samples, as a tool for discovering protein biomarkers for neurological disease and treatment thereof in cerebrospinal fluid (CSF). We applied the SP-PLA to samples from two sets of patients with poorly understood nervous system pathologies amyotrophic lateral sclerosis (ALS) and neuropathic pain, where patients were treated with spinal cord stimulation (SCS). Forty-seven inflammatory and neurotrophic proteins were measured in samples from 20 ALS patients and 15 neuropathic pain patients, and compared to normal concentrations in CSF from control individuals. Nineteen of the 47 proteins were detectable in more than 95% of the 72 controls. None of the 21 proteins detectable in CSF from neuropathic pain patients were significantly altered by SCS. The levels of the three proteins, follistatin, interleukin-1 alpha, and kallikrein-5 were all significantly reduced in the ALS group compared to age-matched controls. These results demonstrate the utility of purpose designed multiplex SP-PLA panels in CSF biomarker research for understanding neuropathological and neurotherapeutic mechanisms. The protein changes found in the CSF of ALS patients may be of diagnostic interest. PMID:26914813

  8. Macrophage production during murine listeriosis: colony-stimulating factor 1 (CSF-1) and CSF-1-binding cells in genetically resistant and susceptible mice.

    PubMed Central

    Cheers, C; Stanley, E R

    1988-01-01

    The concentration of the macrophage-specific colony-stimulating factor (CSF-1) and the numbers of bone marrow and spleen cells with specific receptors for that factor have been investigated in a number of mouse strains under normal conditions and after infection with the facultative intracellular bacterium Listeria monocytogenes. The CSF-1 concentration in serum and tissue was markedly elevated in infected mice, the degree of stimulation reflecting the dose of L. monocytogenes. The CSF-1 titer did not correlate with genetic resistance or susceptibility of the mice to L. monocytogenes. In contrast to the effect of lipopolysaccharide, Listeria infection was able to increase the level of CSF-1 in the lipopolysaccharide nonresponder strain C3H/HeJ. In line with earlier findings on colony-forming cells, cells bearing receptors for CSF-1 in uninfected susceptible BALB/cJ mice were only half those in resistant C57BL/6J mice. After infection the majority of these cells disappeared from the bone marrow and spleen cells of both resistant and susceptible mice. The number of CSF-1 receptor-bearing cells in the normal bone marrow may determine the degree of resistance to L. monocytogenes. PMID:3262588

  9. Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis.

    PubMed

    Piccoli, Luca; Campo, Ilaria; Fregni, Chiara Silacci; Rodriguez, Blanca Maria Fernandez; Minola, Andrea; Sallusto, Federica; Luisetti, Maurizio; Corti, Davide; Lanzavecchia, Antonio

    2015-01-01

    Pulmonary alveolar proteinosis (PAP) is a severe autoimmune disease caused by autoantibodies that neutralize GM-CSF resulting in impaired function of alveolar macrophages. In this study, we characterize 21 GM-CSF autoantibodies from PAP patients and find that somatic mutations critically determine their specificity for the self-antigen. Individual antibodies only partially neutralize GM-CSF activity using an in vitro bioassay, depending on the experimental conditions, while, when injected in mice together with human GM-CSF, they lead to the accumulation of a large pool of circulating GM-CSF that remains partially bioavailable. In contrast, a combination of three non-cross-competing antibodies completely neutralizes GM-CSF activity in vitro by sequestering the cytokine in high-molecular-weight complexes, and in vivo promotes the rapid degradation of GM-CSF-containing immune complexes in an Fc-dependent manner. Taken together, these findings provide a plausible explanation for the severe phenotype of PAP patients and for the safety of treatments based on single anti-GM-CSF monoclonal antibodies. PMID:26077231

  10. Exploring Erythropoietin and G-CSF Combination Therapy in Chronic Stroke Patients.

    PubMed

    Shin, Yoon-Kyum; Cho, Sung-Rae

    2016-01-01

    Erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) are known to have neuroprotective actions. Based on previous reports showing the synergistic effects of EPO+G-CSF combination therapy in experimental models, we investigated the safety of EPO+G-CSF combination therapy in patients with chronic stroke. In a pilot study, 3 patients were treated with EPO and G-CSF for 5 consecutive days, with follow-up on day 30. In an exploratory double-blind study, 6 patients were allocated to treatment with either EPO+G-CSF or placebo. Treatment was applied once a day for 5 days per month over 3 months. Participants were followed up for 6 months. To substantiate safety, vital signs, adverse events, and hematological values were measured on days 0, 5, and 30 in each cycle and on day 180. Functional outcomes were determined on day 0 and 180. In the laboratory measurements, EPO+G-CSF combination therapy significantly elevated erythropoietin, CD34⁺ hematopoietic stem cells, white blood cells, and neutrophils on day 5 of each cycle. There were no observations of serious adverse events. In the functional outcomes, the grip power of the dominant hand was increased in the EPO+G-CSF treatment group. In conclusion, this exploratory study suggests a novel strategy of EPO+G-CSF combination therapy for stroke patients. PMID:27043535

  11. Bayesian adaptive estimation of the contrast sensitivity function: The quick CSF method

    PubMed Central

    Lesmes, Luis Andres; Lu, Zhong-Lin; Baek, Jongsoo; Albright, Thomas D.

    2015-01-01

    The contrast sensitivity function (CSF) predicts functional vision better than acuity, but long testing times prevent its psychophysical assessment in clinical and practical applications. This study presents the quick CSF (qCSF) method, a Bayesian adaptive procedure that applies a strategy developed to estimate multiple parameters of the psychometric function (A. B. Cobo-Lewis, 1996; L. L. Kontsevich & C. W. Tyler, 1999). Before each trial, a one-step-ahead search finds the grating stimulus (defined by frequency and contrast) that maximizes the expected information gain (J. V. Kujala & T. J. Lukka, 2006; L. A. Lesmes et al., 2006), about four CSF parameters. By directly estimating CSF parameters, data collected at one spatial frequency improves sensitivity estimates across all frequencies. A psychophysical study validated that CSFs obtained with 100 qCSF trials (~10 min) exhibited good precision across spatial frequencies (SD < 2–3 dB) and excellent agreement with CSFs obtained independently (mean RMSE = 0.86 dB). To estimate the broad sensitivity metric provided by the area under the log CSF (AULCSF), only 25 trials were needed to achieve a coefficient of variation of 15–20%. The current study demonstrates the method’s value for basic and clinical investigations. Further studies, applying the qCSF to measure wider ranges of normal and abnormal vision, will determine how its efficiency translates to clinical assessment. PMID:20377294

  12. CSF-1R inhibition alters macrophage polarization and blocks glioma progression.

    PubMed

    Pyonteck, Stephanie M; Akkari, Leila; Schuhmacher, Alberto J; Bowman, Robert L; Sevenich, Lisa; Quail, Daniela F; Olson, Oakley C; Quick, Marsha L; Huse, Jason T; Teijeiro, Virginia; Setty, Manu; Leslie, Christina S; Oei, Yoko; Pedraza, Alicia; Zhang, Jianan; Brennan, Cameron W; Sutton, James C; Holland, Eric C; Daniel, Dylan; Joyce, Johanna A

    2013-10-01

    Glioblastoma multiforme (GBM) comprises several molecular subtypes, including proneural GBM. Most therapeutic approaches targeting glioma cells have failed. An alternative strategy is to target cells in the glioma microenvironment, such as tumor-associated macrophages and microglia (TAMs). Macrophages depend on colony stimulating factor-1 (CSF-1) for differentiation and survival. We used an inhibitor of the CSF-1 receptor (CSF-1R) to target TAMs in a mouse proneural GBM model, which significantly increased survival and regressed established tumors. CSF-1R blockade additionally slowed intracranial growth of patient-derived glioma xenografts. Surprisingly, TAMs were not depleted in treated mice. Instead, glioma-secreted factors, including granulocyte-macrophage CSF (GM-CSF) and interferon-γ (IFN-γ), facilitated TAM survival in the context of CSF-1R inhibition. Expression of alternatively activated M2 markers decreased in surviving TAMs, which is consistent with impaired tumor-promoting functions. These gene signatures were associated with enhanced survival in patients with proneural GBM. Our results identify TAMs as a promising therapeutic target for proneural gliomas and establish the translational potential of CSF-1R inhibition for GBM. PMID:24056773

  13. Using 10AFC to further improve the efficiency of the quick CSF method.

    PubMed

    Hou, Fang; Lesmes, Luis; Bex, Peter; Dorr, Michael; Lu, Zhong-Lin

    2015-01-01

    The contrast sensitivity function (CSF) provides a fundamental characterization of spatial vision, important for basic and clinical applications, but its long testing times have prevented easy, widespread assessment. The original quick CSF method was developed using a two-alternative forced choice (2AFC) grating orientation identification task (Lesmes, Lu, Baek, & Albright, 2010), and obtained precise CSF assessments while reducing the testing burden to only 50 trials. In this study, we attempt to further improve the efficiency of the quick CSF method by exploiting the properties of psychometric functions in multiple-alternative forced choice (m-AFC) tasks. A simulation study evaluated the effect of the number of alternatives m on the efficiency of the sensitivity measurement by the quick CSF method, and a psychophysical study validated the quick CS method in a 10AFC task. We found that increasing the number of alternatives of the forced-choice task greatly improved the efficiency of CSF assessment in both simulation and psychophysical studies. The quick CSF method based on a 10-letter identification task can assess the CSF with an averaged standard deviation of 0.10 decimal log unit in less than 2 minutes. PMID:26161631

  14. Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method.

    PubMed

    Lesmes, Luis Andres; Lu, Zhong-Lin; Baek, Jongsoo; Albright, Thomas D

    2010-01-01

    The contrast sensitivity function (CSF) predicts functional vision better than acuity, but long testing times prevent its psychophysical assessment in clinical and practical applications. This study presents the quick CSF (qCSF) method, a Bayesian adaptive procedure that applies a strategy developed to estimate multiple parameters of the psychometric function (A. B. Cobo-Lewis, 1996; L. L. Kontsevich & C. W. Tyler, 1999). Before each trial, a one-step-ahead search finds the grating stimulus (defined by frequency and contrast) that maximizes the expected information gain (J. V. Kujala & T. J. Lukka, 2006; L. A. Lesmes et al., 2006), about four CSF parameters. By directly estimating CSF parameters, data collected at one spatial frequency improves sensitivity estimates across all frequencies. A psychophysical study validated that CSFs obtained with 100 qCSF trials ( approximately 10 min) exhibited good precision across spatial frequencies (SD < 2-3 dB) and excellent agreement with CSFs obtained independently (mean RMSE = 0.86 dB). To estimate the broad sensitivity metric provided by the area under the log CSF (AULCSF), only 25 trials were needed to achieve a coefficient of variation of 15-20%. The current study demonstrates the method's value for basic and clinical investigations. Further studies, applying the qCSF to measure wider ranges of normal and abnormal vision, will determine how its efficiency translates to clinical assessment. PMID:20377294

  15. Exploring Erythropoietin and G-CSF Combination Therapy in Chronic Stroke Patients

    PubMed Central

    Shin, Yoon-Kyum; Cho, Sung-Rae

    2016-01-01

    Erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) are known to have neuroprotective actions. Based on previous reports showing the synergistic effects of EPO+G-CSF combination therapy in experimental models, we investigated the safety of EPO+G-CSF combination therapy in patients with chronic stroke. In a pilot study, 3 patients were treated with EPO and G-CSF for 5 consecutive days, with follow-up on day 30. In an exploratory double-blind study, 6 patients were allocated to treatment with either EPO+G-CSF or placebo. Treatment was applied once a day for 5 days per month over 3 months. Participants were followed up for 6 months. To substantiate safety, vital signs, adverse events, and hematological values were measured on days 0, 5, and 30 in each cycle and on day 180. Functional outcomes were determined on day 0 and 180. In the laboratory measurements, EPO+G-CSF combination therapy significantly elevated erythropoietin, CD34+ hematopoietic stem cells, white blood cells, and neutrophils on day 5 of each cycle. There were no observations of serious adverse events. In the functional outcomes, the grip power of the dominant hand was increased in the EPO+G-CSF treatment group. In conclusion, this exploratory study suggests a novel strategy of EPO+G-CSF combination therapy for stroke patients. PMID:27043535

  16. Using 10AFC to further improve the efficiency of the quick CSF method

    PubMed Central

    Hou, Fang; Lesmes, Luis; Bex, Peter; Dorr, Michael; Lu, Zhong-Lin

    2015-01-01

    The contrast sensitivity function (CSF) provides a fundamental characterization of spatial vision, important for basic and clinical applications, but its long testing times have prevented easy, widespread assessment. The original quick CSF method was developed using a two-alternative forced choice (2AFC) grating orientation identification task (Lesmes, Lu, Baek, & Albright, 2010), and obtained precise CSF assessments while reducing the testing burden to only 50 trials. In this study, we attempt to further improve the efficiency of the quick CSF method by exploiting the properties of psychometric functions in multiple-alternative forced choice (m-AFC) tasks. A simulation study evaluated the effect of the number of alternatives m on the efficiency of the sensitivity measurement by the quick CSF method, and a psychophysical study validated the quick CS method in a 10AFC task. We found that increasing the number of alternatives of the forced-choice task greatly improved the efficiency of CSF assessment in both simulation and psychophysical studies. The quick CSF method based on a 10-letter identification task can assess the CSF with an averaged standard deviation of 0.10 decimal log unit in less than 2 minutes. PMID:26161631

  17. Mucus-secreting 'signet-ring' cells in CSF revealing the site of primary cancer.

    PubMed Central

    Agnelli, G.; Gresele, P.

    1980-01-01

    A case is reported of leptomeningeal carcinomatosis in which identification of mucus-secreting 'signet-ring' carcinoma cells in the CSF allowed diagnosis of an otherwise asymptomatic gastric cancer. When lumbar puncture is performed, careful cytological examination of the CSF should be carried out in any undiagnosed patient with neurological symptoms and signs. Images Fig. 1 Fig. 2 PMID:6267573

  18. Sunlight triggers cutaneous lupus through a CSF-1-dependent mechanism in MRL-Fas(lpr) mice.

    PubMed

    Menke, Julia; Hsu, Mei-Yu; Byrne, Katelyn T; Lucas, Julie A; Rabacal, Whitney A; Croker, Byron P; Zong, Xiao-Hua; Stanley, E Richard; Kelley, Vicki R

    2008-11-15

    Sunlight (UVB) triggers cutaneous lupus erythematosus (CLE) and systemic lupus through an unknown mechanism. We tested the hypothesis that UVB triggers CLE through a CSF-1-dependent, macrophage (Mø)-mediated mechanism in MRL-Fas(lpr) mice. By constructing mutant MRL-Fas(lpr) strains expressing varying levels of CSF-1 (high, intermediate, none), and use of an ex vivo gene transfer to deliver CSF-1 intradermally, we determined that CSF-1 induces CLE in lupus-susceptible MRL-Fas(lpr) mice, but not in lupus-resistant BALB/c mice. UVB incites an increase in Møs, apoptosis in the skin, and CLE in MRL-Fas(lpr), but not in CSF-1-deficient MRL-Fas(lpr) mice. Furthermore, UVB did not induce CLE in BALB/c mice. Probing further, UVB stimulates CSF-1 expression by keratinocytes leading to recruitment and activation of Møs that, in turn, release mediators, which induce apoptosis in keratinocytes. Thus, sunlight triggers a CSF-1-dependent, Mø-mediated destructive inflammation in the skin leading to CLE in lupus-susceptible MRL-Fas(lpr) but not lupus-resistant BALB/c mice. Taken together, CSF-1 is envisioned as the match and lupus susceptibility as the tinder leading to CLE. PMID:18981160

  19. Biomarkers of Traumatic Injury Are Transported from Brain to Blood via the Glymphatic System

    PubMed Central

    Plog, Benjamin A.; Dashnaw, Matthew L.; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid

    2015-01-01

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. PMID:25589747

  20. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system.

    PubMed

    Plog, Benjamin A; Dashnaw, Matthew L; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid; Nedergaard, Maiken

    2015-01-14

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. PMID:25589747

  1. Biomarkers for antipsychotic therapies.

    PubMed

    Pich, Emilio Merlo; Vargas, Gabriel; Domenici, Enrico

    2012-01-01

    Molecular biomarkers for antipsychotic treatments have been conceptually linked to the measurements of dopamine functions, mostly D(2) receptor occupancy, either by imaging using selective PET/SPECT radioactive tracers or by assessing plasma prolactin levels. A quest for novel biomarkers was recently proposed by various academic, health service, and industrial institutions driven by the need for better treatments of psychoses. In this review we conceptualize biomarkers within the Translational Medicine paradigm whose goal was to provide support to critical decision-making in drug discovery. At first we focused on biomarkers as outcome measure of clinical studies by searching into the database clinicaltrial.gov. The results were somewhat disappointing, showing that out of 1,659 antipsychotic trials only 18 used a biomarker as an outcome measure. Several of these trials targeted plasma lipids as sentinel marker for metabolic adverse effects associated with the use of atypical antipsychotics, while only few studies were aimed to new disease specific biological markers. As an example of a mechanistic biomarker, we described the work done to progress the novel class of glycine transporter inhibitors as putative treatment for negative symptoms of schizophrenia. We also review how large-scale multiplex biological assays were applied to samples from tissues of psychiatric patients, so to learn from changes of numerous analytes (metabolic products, lipids, proteins, RNA transcripts) about the substrates involved in the disease. We concluded that a stringent implementation of these techniques could contribute to the endophenotypic characterization of patients, helping in the identification of key biomarkers to drive personalized medicine and new treatment development. PMID:23129338

  2. Biomarkers and heart disease.

    PubMed

    Sun, R-R; Lu, L; Liu, M; Cao, Y; Li, X-C; Liu, H; Wang, J; Zhang, P-Y

    2014-10-01

    Heart failure (HF) results from the impaired ability of heart to fill or pump out blood. HF is a common health problem with a multitude of causes and affects ~30 million people worldwide. Since ageing is a major risk factor for HF and as several treatment options are currently available to prolong the patients' survival, the number of affected patients is expected to grow. Even though traditional methods of assessment have been in use for managing HF, these are limited by time consuming and costly subjective interpretation and also by their invasive nature. Comparatively, biomarkers offer an objective and biologically relevant information that in conjunction with the patients' clinical findings provides optimal picture regarding the status of the HF patient and thus helps in diagnosis and prognosis. The current gold standard biomarkers for the diagnosis and prognosis of HF are B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP). Additional novel biomarkers (e.g., mid-regional pro atrial natriuretic peptide (MR-proANP), mid-regional pro adrenomedullin (MR-proADM), troponins, soluble ST2 (sST2), growth differentiation factor (GDF)-15 and galectin-3) can potentially identify different pathophysiological processes such as myocardial insult, inflammation and remodeling as the causes for the development and progression of HF. Different biomarkers of HF not only reflect the underlying mechanisms/pathways of HF and also its progression and also point specific therapy options. A multi-biomarker approach for personalized medical care is not too far fetched and such approach can greatly enhance diagnosis, prognostication, and therapy guidance for HF. In this review we describe the current status of HF biomarkers in clinical use and in laboratory research and the efforts aimed at the identification of novel biomarkers for HF. PMID:25339488

  3. Human granulocyte colony stimulating factor (G-CSF) produced in the filamentous fungus Aspergillus niger.

    PubMed

    Kraševec, Nada; Milunović, Tatjana; Lasnik, Marija Anžur; Lukančič, Irena; Komel, Radovan; Porekar, Vladka Gaberc

    2014-01-01

    For the first time, a fungal production system is described for expression and secretion of the medically important human protein G-CSF, in Aspergillus niger. A reliable strategy was chosen with in-frame fusion of G-CSF behind a KEX2 cleavage site downstream of the coding region of the highly secreted homologous glucoamylase. This provided secretion levels of 5-10 mg/l culture medium of correctly processed G-CSF, although the majority of the protein (>90%) was biologically inactive. Following denaturation/ concentration and chromatographic separation/ renaturation, the G-CSF proliferation activity increased considerably, and analytical immobilised metal affinity chromatography confirmed the monomeric and correctly folded protein. These data suggest that this human secretory protein secreted into the medium of A. niger was not correctly folded, and that it escaped the endoplasmic reticulum folding control systems. This is compared to the folding of G-CSF produced in bacteria and yeast. PMID:25551710

  4. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas.

    PubMed

    Quail, Daniela F; Bowman, Robert L; Akkari, Leila; Quick, Marsha L; Schuhmacher, Alberto J; Huse, Jason T; Holland, Eric C; Sutton, James C; Joyce, Johanna A

    2016-05-20

    Macrophages accumulate with glioblastoma multiforme (GBM) progression and can be targeted via inhibition of colony-stimulating factor-1 receptor (CSF-1R) to regress high-grade tumors in animal models of this cancer. However, whether and how resistance emerges in response to sustained CSF-1R blockade is unknown. We show that although overall survival is significantly prolonged, tumors recur in >50% of mice. Gliomas reestablish sensitivity to CSF-1R inhibition upon transplantation, indicating that resistance is tumor microenvironment-driven. Phosphatidylinositol 3-kinase (PI3K) pathway activity was elevated in recurrent GBM, driven by macrophage-derived insulin-like growth factor-1 (IGF-1) and tumor cell IGF-1 receptor (IGF-1R). Combining IGF-1R or PI3K blockade with CSF-1R inhibition in recurrent tumors significantly prolonged overall survival. Our findings thus reveal a potential therapeutic approach for treating resistance to CSF-1R inhibitors. PMID:27199435

  5. Low brain serotonin turnover rate (low CSF 5-HIAA) and impulsive violence.

    PubMed Central

    Virkkunen, M; Goldman, D; Nielsen, D A; Linnoila, M

    1995-01-01

    The findings of a series of studies by the authors support the idea that most impulsive offenders who have a tendency to behave aggressively while intoxicated have a low brain serotonin turnover rate. The impulsive violent offenders with the lowest CSF 5-HIAA concentrations have diurnal activity rhythm disturbances, and are also prone to hypoglycemia after an oral glucose challenge. Low CSF 5-HIAA combined with hyoglycemic tendency also predicts future violence under the influence of alcohol. Sons of alcoholic fathers, who have committed violent crimes, have very low CSF 5-HIAA concentrations. Vagal tone does not correlate significantly with CSF 5-HIAA but correlates with enhanced insulin secretion, which is most prominent in subjects with intermittent explosive disorder. A polymorphism of tryptophan hydroxylase (TPH) gene is associated with low CSF 5-HIAA and a history of suicide attempts. PMID:7544158

  6. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia

    PubMed Central

    Pylayeva-Gupta, Yuliya; Lee, Kyoung Eun; Hajdu, Cristina H.; Miller, George; Bar-Sagi, Dafna

    2013-01-01

    Summary Stromal responses elicited by early stage neoplastic lesions can promote tumor growth. However, the molecular mechanisms that underlie the early recruitment of stromal cells to sites of neoplasia remain poorly understood. Here we demonstrate an oncogenic KrasG12D-dependent upregulation of GM-CSF in mouse pancreatic ductal epithelial cells (PDEC). An enhanced GM-CSF production is also observed in human PanIN lesions. KrasG12D-dependent production of GM-CSF in vivo is required for the recruitment of Gr1+CD11b+ myeloid cells. The suppression of GM-CSF production inhibits the in vivo growth of KrasG12D-PDECs and, consistent with the role of GM-CSF in Gr1+CD11b+ mobilization, this effect is mediated by CD8+ T cells. These results identify a pathway that links oncogenic activation to the evasion of anti-tumor immunity. PMID:22698407

  7. 74 FR 51869 - ODS Nutrient Biomarkers Analytical Methodology: Vitamin D Workshop; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2009-10-08

    ... HUMAN SERVICES National Institutes of Health ODS Nutrient Biomarkers Analytical Methodology: Vitamin D... Supplements (ODS) Nutrient Biomarkers Analytical Methodology: Vitamin D Workshop to be held Wednesday.... Summary: Vitamin D is a fat-soluble vitamin that is naturally present in very few foods, added to...

  8. Expanding the Repertoire of Biomarkers for Alzheimer’s Disease: Targeted and Non-targeted Approaches

    PubMed Central

    Galasko, Douglas

    2015-01-01

    The first biofluid markers developed for Alzheimer’s disease (AD) used targeted approaches for discovery. These initial biomarkers were directed at key protein constituents of the hallmark brain lesions in AD. Biomarkers for plaques targeted the amyloid beta protein (Aβ) and for tangles, the microtubule-associated protein tau. Cerebrospinal fluid levels of Aβ and tau have excellent diagnostic utility and can be used to monitor aspects of therapeutic development. Recent research has extended our current concepts of AD, which now include a slow buildup of pathology during a long pre-symptomatic period, a complex cascade of pathological pathways in the brain that may accelerate once symptoms develop, the potential of aggregated proteins to spread across brain pathways, and interactions with vascular and other age-associated brain pathologies. There are many potential roles for biomarkers within this landscape. A more diverse set of biomarkers would provide a better picture of the staging and state of pathological events in the brain across the stages of AD. The aim of this review is to focus on methods of biomarker discovery that may help to expand the currently accepted biomarkers. Opportunities and approaches for targeted and non-targeted (or −omic) biomarker discovery are highlighted, with examples from recent studies. How biomarker discoveries can be developed and integrated to become useful tools in diagnostic and therapeutic efforts is discussed. PMID:26733934

  9. Digital subtraction myelography for the identification of spontaneous spinal CSF-venous fistulas.

    PubMed

    Schievink, Wouter I; Moser, Franklin G; Maya, M Marcel; Prasad, Ravi S

    2016-06-01

    OBJECTIVE In most patients with spontaneous intracranial hypotension, a spinal CSF leak can be found, but occasionally, no leak can be demonstrated despite extensive spinal imaging. Failure to localize a CSF leak limits treatment options. The authors recently reported the discovery of CSF-venous fistulas in patients with spontaneous intracranial hypotension and now report on the use of digital subtraction myelography in patients with spontaneous intracranial hypotension but no CSF leak identifiable on conventional spinal imaging (i.e., non-digital subtraction myelography). METHODS The patient population consisted of 53 consecutive patients with spontaneous intracranial hypotension who underwent digital subtraction myelography but in whom no spinal CSF leak (i.e., presence of extradural CSF) was identifiable on conventional spinal imaging. RESULTS The mean age of the 33 women and 20 men was 53.4 years (range 29-71 years). A CSF-venous fistula was demonstrated in 10 (19%) of the 53 patients. A CSF-venous fistula was found in 9 (27%) of the 33 women and in 1 (5%) of the 20 men (p = 0.0697). One patient was treated successfully with percutaneous injection of fibrin sealant. Nine patients underwent surgery for the fistula. Surgery resulted in complete resolution of symptoms in 8 patients (follow-up 7-25 months), and in 1 patient, symptoms recurred after 4 months. CONCLUSIONS In this study, the authors found a CSF-venous fistula in approximately one-fifth of the patients with recalcitrant spontaneous intracranial hypotension but no CSF leak identifiable on conventional spinal imaging. The authors suggest that digital subtraction myelography be considered in this patient population. PMID:26849709

  10. CSF-1–dependant donor-derived macrophages mediate chronic graft-versus-host disease

    PubMed Central

    Alexander, Kylie A.; Flynn, Ryan; Lineburg, Katie E.; Kuns, Rachel D.; Teal, Bianca E.; Olver, Stuart D.; Lor, Mary; Raffelt, Neil C.; Koyama, Motoko; Leveque, Lucie; Le Texier, Laetitia; Melino, Michelle; Markey, Kate A.; Varelias, Antiopi; Engwerda, Christian; Serody, Jonathan S.; Janela, Baptiste; Ginhoux, Florent; Clouston, Andrew D.; Blazar, Bruce R.; Hill, Geoffrey R.; MacDonald, Kelli P.A.

    2014-01-01

    Chronic GVHD (cGVHD) is the major cause of late, nonrelapse death following stem cell transplantation and characteristically develops in organs such as skin and lung. Here, we used multiple murine models of cGVHD to investigate the contribution of macrophage populations in the development of cGVHD. Using an established IL-17–dependent sclerodermatous cGVHD model, we confirmed that macrophages infiltrating the skin are derived from donor bone marrow (F4/80+CSF-1R+CD206+iNOS–). Cutaneous cGVHD developed in a CSF-1/CSF-1R–dependent manner, as treatment of recipients after transplantation with CSF-1 exacerbated macrophage infiltration and cutaneous pathology. Additionally, recipients of grafts from Csf1r–/– mice had substantially less macrophage infiltration and cutaneous pathology as compared with those receiving wild-type grafts. Neither CCL2/CCR2 nor GM-CSF/GM-CSFR signaling pathways were required for macrophage infiltration or development of cGVHD. In a different cGVHD model, in which bronchiolitis obliterans is a prominent manifestation, F4/80+ macrophage infiltration was similarly noted in the lungs of recipients after transplantation, and lung cGVHD was also IL-17 and CSF-1/CSF-1R dependent. Importantly, depletion of macrophages using an anti–CSF-1R mAb markedly reduced cutaneous and pulmonary cGVHD. Taken together, these data indicate that donor macrophages mediate the development of cGVHD and suggest that targeting CSF-1 signaling after transplantation may prevent and treat cGVHD. PMID:25157821

  11. GM-CSF deficiency delays neointima formation in a normolipidemic mouse model of endoluminal endothelial damage.

    PubMed

    Harris, Angie K; Shen, Jie; Radford, Jane; Bao, Shisan; Hambly, Brett D

    2009-02-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been implicated in atherogenesis and has been shown to have both pro- and antiatherogenic properties. Neointimal thickening is a prominent feature of early atherogenesis. This study aimed to examine the role of GM-CSF in neointimal formation induced by endothelial injury using a GM-CSF(-/-) mouse model. Neointimal thickening was induced by endothelial damage in the common iliac arteries of normolipidemic C57Bl/6 (wild-type) and GM-CSF(-/-) mice. Arteries were collected weekly for 3-7 weeks following surgery. A significant delay in neointimal formation in the GM-CSF(-/-) compared with wild-type mice was detected by morphometric analysis of the intimal area. Neointimal size was approximately 10% smaller in GM-CSF(-/-) mice at 4-6 weeks post-surgery, compared with wild-type mice. The neointima was composed predominantly of smooth muscle cells and there was no difference in the extent of endothelial cell coverage between the wild-type and GM-CSF(-/-) mice. Using immunohistochemistry, reduced macrophages (F4/80(+) cells), proliferating cells (proliferating cell nuclear antigen (PCNA)(+) cells) and platelet-derived growth factor-B were detected within the arteries of GM-CSF(-/-) mice compared with wild types at 4 weeks post-surgery. GM-CSF(-/-) mice had reduced connective tissue within the neointima compared with wild types at 5 weeks post-surgery, determined by trichrome staining. We conclude that GM-CSF deficiency reduces neointimal formation in a normolipidemic model, primarily due to reduced macrophage recruitment. PMID:18839015

  12. CSF/serum quotient graphs for the evaluation of intrathecal C4 synthesis

    PubMed Central

    Padilla-Docal, Barbara; Dorta-Contreras, Alberto J; Bu-Coifiu-Fanego, Raisa; Rey, Alexis Rodriguez

    2009-01-01

    Background Cerebrospinal fluid (CSF)/serum quotient graphs have been used previously to determine local synthesis in brain of immunoglobulins and C3 complement component. The aim of this study was to use the same technique to construct quotient graphs, or Reibergrams, for the beta globulin C4 and to evaluate the method for assessing intrathecal synthesis in neurological disease. Methods The constants in the previously-defined Reibergram for immunoglobulin IgA were used to calculate the CSF/serum quotient for C4. CSF and serum were analyzed for C4, IgA and albumin from a total of 12 patients with meningoencephalitis caused by encapsulated microorganisms and 10 subjects without infections or inflammatory neurological disease, some of which had dysfunction of the blood-CSF barrier, Results The formula and C4 Reibergram with the constants previously found for IgA, determined the intrathecal C4 synthesis in CSF. The intrathecal C4 fraction in CSF (C4 loc in mg/l) was compared to the C4-Index (fraction of CSF: serum for C 4/fraction of CSF: serum for albumin). There was a significant correlation between the two formulae. The CSF/Serum quotient graph was superior for detecting intrathecal synthesis of C4 under variable conditions of blood-CSF barrier permeability. Conclusion The C4 Reibergram can be used to quantify the intrathecal synthesis of this component of the complement system in different infectious diseases of the central nervous system and is especially useful for patients with blood-brain barrier dysfunction. PMID:19573230

  13. Targeted Expression of csCSF-1 in op/op Mice Ameliorates Tooth Defects

    PubMed Central

    Werner, S. Abboud; Gluhak-Heinrich, J.; Woodruff, K.; Wittrant, Y.; Cardenas, L.; Roudier, M.; MacDougall, M.

    2007-01-01

    Objective The aim of this study was to characterize the tooth phenotype of CSF-1-deficient op/op mice and determine whether expression of csCSF-1 in these mice has a role in primary tooth matrix formation. Design Ameloblasts and odontoblasts, isolated from wt/wt frozen sections using laser capture microdissection, were analyzed for csCSF-1, sCSF-1 and CSF-1R mRNA by RT-PCR. Mandibles, excised from 8 day op/op and wt/wt littermates, were examined for tooth morphology as well as amelogenin and DMP1 expression using in situ hybridization. Op/opCS transgenic mice, expressing csCSF-1 in teeth and bone using the osteocalcin promoter, were generated. Skeletal x-rays and histomorphometry were performed; teeth were analyzed for morphology and matrix proteins. Results Normal dental cells in vivo express both CSF-1 isoforms and CSF-1R. Compared to wt/wt, op/op teeth prior to eruption showed altered dental cell morphology and dramatic reduction in DMP1 transcripts. Op/opCS mice showed marked resolution of osteopetrosis, tooth eruption and teeth that resembled amelogenesis imperfecta-like phenotype. At 3 weeks, op/op teeth showed severe enamel and dentin defects and barely detectable amelogenin and DMP1. In op/opCS mice, DMP1 in odontoblasts increased to near normal and dentin morphology was restored; amelogenin also increased. Enamel integrity improved in op/opCS, although it was thinner than wt enamel. Conclusions Results demonstrate that ameloblasts and odontoblasts are a source and potential target of CSF-1 isoforms in vivo. Expression of csCSF-1 within the tooth microenvironment is essential for normal tooth morphogenesis and may provide a mechanism for coordinating the process of tooth eruption with endogenous matrix formation. PMID:17126805

  14. G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses

    PubMed Central

    2013-01-01

    Background Administration of recombinant G-CSF following cytoreductive therapy enhances the recovery of myeloid cells, minimizing the risk of opportunistic infection. Free G-CSF, however, is expensive, exhibits a short half-life, and has poor biological activity in vivo. Methods We evaluated whether the biological activity of G-CSF could be improved by pre-association with anti-G-CSF mAb prior to injection into mice. Results We find that the efficacy of G-CSF therapy can be enhanced more than 100-fold by pre-association of G-CSF with an anti-G-CSF monoclonal antibody (mAb). Compared with G-CSF alone, administration of G-CSF/anti-G-CSF mAb complexes induced the potent expansion of CD11b+Gr-1+ myeloid cells in mice with or without concomitant cytoreductive treatment including radiation or chemotherapy. Despite driving the dramatic expansion of myeloid cells, in vivo antigen-specific CD8+ T cell immune responses were not compromised. Furthermore, injection of G-CSF/anti-G-CSF mAb complexes heightened protective immunity to bacterial infection. As a measure of clinical value, we also found that antibody complexes improved G-CSF biological activity much more significantly than pegylation. Conclusions Our findings provide the first evidence that antibody cytokine complexes can effectively expand myeloid cells, and furthermore, that G-CSF/anti-G-CSF mAb complexes may provide an improved method for the administration of recombinant G-CSF. PMID:24279871

  15. Mass spectrometry for biomarker development

    SciTech Connect

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel; Rodland, Karin D.; Smith, Richard D.

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  16. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Moorman, Anthony V

    2016-04-01

    Acute lymphoblastic leukemia (ALL) is a heterogeneous disease at the genetic level. Chromosomal abnormalities are used as diagnostic, prognostic and predictive biomarkers to provide subtype, outcome and drug response information. t(12;21)/ETV6-RUNX1 and high hyper-diploidy are good-risk prognostic biomarkers whereas KMT2A(MLL) translocations, t(17;19)/TCF3-HLF, haploidy or low hypodiploidy are high-risk biomarkers. t(9;22)/BCR-ABL1 patients require targeted treatment (imatinib/dasatinib), whereas iAMP21 patients achieve better outcomes when treated intensively. High-risk genetic biomarkers are four times more prevalent in adults compared to children. The application of genomic technologies to cases without an established abnormality (B-other) reveals copy number alterations which can be used either individually or in combination as prognostic biomarkers. Transcriptome sequencing studies have identified a network of fusion genes involving kinase genes -ABL1,ABL2,PDGFRB,CSF1R,CRLF2,JAK2 and EPOR in-vitro and in-vivo studies along with emerging clinical observations indicate that patients with a kinase-activating aberration may respond to treatment with small molecular inhibitors like imatinib/dasatinib and ruxolitinib. Further work is required to determine the true frequency of these abnormalities across the age spectrum and the optimal way to incorporate such inhibitors into protocols. In conclusion, genetic biomarkers are playing an increasingly important role in the management of patients with ALL. PMID:27033238

  17. On comparing heterogeneity across biomarkers

    PubMed Central

    Steininger, Robert J.; Rajaram, Satwik; Girard, Luc; Minna, John D.; Wu, Lani F.; Altschuler, Steven J.

    2015-01-01

    Microscopy reveals complex patterns of cellular heterogeneity that can be biologically informative. However, a limitation of microscopy is that only a small number of biomarkers can typically be monitored simultaneously. Thus, a natural question is whether additional biomarkers provide a deeper characterization of the distribution of cellular states in a population. How much information about a cell’s phenotypic state in one biomarker is gained by knowing its state in another biomarker? Here, we describe a framework for comparing phenotypic states across biomarkers. Our approach overcomes the current limitation of microscopy by not requiring co-staining biomarkers on the same cells; instead we require staining of biomarkers (possibly separately) on a common collection of phenotypically diverse cell lines. We evaluate our approach on two image datasets: 33 oncogenically diverse lung cancer cell lines stained with 7 biomarkers, and 49 less diverse subclones of one lung cancer cell line stained with 12 biomarkers. We first validate our method by comparing it to the “gold standard” of co-staining. We then apply our approach to all pairs of biomarkers and use it to identify biomarkers that yield similar patterns of heterogeneity. The results presented in this work suggest that many biomarkers provide redundant information about heterogeneity. Thus, our approach provides a practical guide for selecting independently informative biomarkers and, more generally, will yield insights into both the connectivity of biological networks and the complexity of the state space of biological systems. PMID:25425168

  18. Biomarkers for prostate cancer.

    PubMed

    Schiffer, Eric

    2007-12-01

    Novel biomarkers for prostate cancer (PCa) are currently being assessed for utility in PCa diagnosis. This article aims to provide concise information on the current findings that impact prostate cancer research. Results of enzyme-linked immunosorbent assays (ELISA) for single biomarkers, quantitative polymerase chain reaction (PCR)-based assays for DNA/RNA markers will be reviewed in addition to high-throughput proteomic profiling of PCa specimens. The advantages/disadvantages of tissue, blood, urine or seminal plasma as sources for potential biomarkers are discussed emphasizing the consequences for PCa diagnosis. In summary, the majority of promising marker candidates available today needs further validation. Some of the identified markers have the potential to yield novel prognostic tools for PCa, provide novel insights into its pathophysiology, and contribute to the establishment of novel treatment strategies. PMID:17690889

  19. Lamins as cancer biomarkers.

    PubMed

    Foster, Clare R; Przyborski, Stefan A; Wilson, Robert G; Hutchison, Christopher J

    2010-02-01

    Lamins are multifunctional proteins that are often aberrantly expressed or localized in tumours. Here, we endeavour to assess their uses as cancer biomarkers: to diagnose tumours, analyse cancer characteristics and predict patient survival. It appears that the nature of lamin function in cancer is very complex. Lamin expression can be variable between and even within cancer subtypes, which limits their uses as diagnostic biomarkers. Expression of A-type lamins is a marker of differentiated tumour cells and has been shown to be a marker of good or poor patient survival depending on tumour subtype. Further research into the functions of lamins in cancer cells and the mechanisms that determine its patterns of expression may provide more potential uses of lamins as cancer biomarkers. PMID:20074078

  20. The AdS particle [rapid communication

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir

    2005-09-01

    In this Letter we have considered a relativistic Nambu-Goto model for a particle in AdS metric. With appropriate gauge choice to fix the reparameterization invariance, we recover the previously discussed [S. Ghosh, P. Pal, Phys. Lett. B 618 (2005) 243, arxiv:hep-th/0502192] "exotic oscillator". The Snyder algebra and subsequently the κ-Minkowski spacetime are also derived. Lastly we comment on the impossibility of constructing a non-commutative spacetime in the context of open string where only a curved target space is introduced.

  1. Biomarkers of xenobiotic exposures

    SciTech Connect

    Brewster, M.A.

    1988-07-01

    Direct measurement of xenobiotic (foreign) chemicals is not always feasible as an exposure assessment,--owing to rapid metabolism, sequestration into fatty tissues, or lack of suitable assay methods. Furthermore, suspect exposures often involve complex mixtures of organics. In these circumstances, indirect biomarkers of exposure can be most helpful. This paper reviews four urinary parameters that hold promise as biomarkers of exposure in occupational and environmental settings: glucaric acid (end-product of the glucuronidation pathway), thioethers (end-product of glutathione reaction with electrophilic or alkylating agents), porphyrin pattern (altered with disruption in heme biosynthesis), and the Ames mutagenicity test. 112 references.

  2. Probing crunching AdS cosmologies

    NASA Astrophysics Data System (ADS)

    Kumar, S. Prem; Vaganov, Vladislav

    2016-02-01

    Holographic gravity duals of deformations of CFTs formulated on de Sitter spacetime contain FRW geometries behind a horizon, with cosmological big crunch singularities. Using a specific analytically tractable solution within a particular single scalar truncation of {N}=8 supergravity on AdS4, we first probe such crunching cosmologies with spacelike radial geodesics that compute spatially antipodal correlators of large dimension boundary operators. At late times, the geodesics lie on the FRW slice of maximal expansion behind the horizon. The late time two-point functions factorise, and when transformed to the Einstein static universe, they exhibit a temporal non-analyticity determined by the maximal value of the scale factor ã max. Radial geodesics connecting antipodal points necessarily have de Sitter energy Ɛ ≲ ã max, while geodesics with Ɛ > ã max terminate at the crunch, the two categories of geodesics being separated by the maximal expansion slice. The spacelike crunch singularity is curved "outward" in the Penrose diagram for the deformed AdS backgrounds, and thus geodesic limits of the antipodal correlators do not directly probe the crunch. Beyond the geodesic limit, we point out that the scalar wave equation, analytically continued into the FRW patch, has a potential which is singular at the crunch along with complex WKB turning points in the vicinity of the FRW crunch. We then argue that the frequency space Green's function has a branch point determined by ã max which corresponds to the lowest quasinormal frequency.

  3. Decreased Rate of CSF Leakage Associated with Complete Reconstruction of Suboccipital Cranial Defects

    PubMed Central

    Stoker, Michael A.; Forbes, Jonathan A.; Hanif, Rimal; Cooper, Calvin; Nian, Hui; Konrad, Peter E.; Neimat, Joseph S.

    2012-01-01

    Background Cerebrospinal fluid (CSF) leakage represents a major source of morbidity following microvascular decompression (MVD) surgery. The objective of this study was to retrospectively assess whether complete versus incomplete reconstruction of the suboccipital cranial defect influences the incidence of CSF leakage following MVD. Methods We reviewed the charts of 100 patients who consecutively underwent MVD for trigeminal neuralgia by two attending neurosurgeons between July 2004 and April 2010. Operative variables including incomplete or complete calvarial reconstruction, primary dural closure or dural closure with adjunct, and use of lumbar drainage were recorded. The effect of complete calvarial reconstruction on the incidence of postoperative CSF leakage was examined using a multivariate logistic regression model. Results Of the 36 patients whose wound closure was reconstructed with a complete cranioplasty, 2 (5.6%) patients experienced a postoperative CSF leak. Of the 64 patients whose wound closure was augmented with an incomplete cranioplasty, 15 (23.4%) experienced a postoperative CSF leak. There was suggestive but inconclusive evidence that the risk of CSF leakage following MVD was smaller with complete reconstruction of calvarial defect than with incomplete reconstruction (two-sided p value = 0.059), after accounting for age, dural closure method, use of lumbar drainage, and previous MVD. Conclusion Complete reconstruction of the suboccipital cranial defect decreases the risk of CSF leakage. PMID:23905005

  4. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types

    PubMed Central

    Hong, In-Sun

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications. PMID:27364892

  5. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types.

    PubMed

    Hong, In-Sun

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a 'danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications. PMID:27364892

  6. Changes in Gene Expression during G-CSF-Induced Emergency Granulopoiesis in Humans.

    PubMed

    Pedersen, Corinna C; Borup, Rehannah; Fischer-Nielsen, Anne; Mora-Jensen, Helena; Fossum, Anna; Cowland, Jack B; Borregaard, Niels

    2016-09-01

    Emergency granulopoiesis refers to the increased production of neutrophils in bone marrow and their release into circulation induced by severe infection. Several studies point to a critical role for G-CSF as the main mediator of emergency granulopoiesis. However, the consequences of G-CSF stimulation on the transcriptome of neutrophils and their precursors have not yet been investigated in humans. In this work, we examine the changes in mRNA expression induced by administration of G-CSF in vivo, as a model of emergency granulopoiesis in humans. Blood samples were collected from healthy individuals after 5 d of G-CSF administration. Neutrophil precursors were sorted into discrete stages of maturation by flow cytometry, and RNA was subjected to microarray analysis. mRNA levels were compared with previously published expression levels in corresponding populations of neutrophil precursors isolated from bone marrow of untreated, healthy individuals. One thousand one hundred and ten mRNAs were differentially expressed >2-fold throughout terminal granulopoiesis. Major changes were seen in pathways involved in apoptosis, cytokine signaling, and TLR pathways. In addition, G-CSF treatment reduced the levels of four of five measured granule proteins in mature neutrophils, including the proantibacterial protein hCAP-18, which was completely deficient in neutrophils from G-CSF-treated donors. These results indicate that multiple biological processes are altered to satisfy the increased demand for neutrophils during G-CSF-induced emergency granulopoiesis in humans. PMID:27481851

  7. Acetylcholinesterase activity in CSF in schizophrenia, depression, Alzheimer's disease and normals.

    PubMed

    Deutsch, S I; Mohs, R C; Levy, M I; Rothpearl, A B; Stockton, D; Horvath, T; Coco, A; Davis, K L

    1983-12-01

    Acetylcholinesterase (AChE) activity and protein were measured in the CSF of patients with Alzheimer's disease, depression, schizophrenia with and without tardive dyskinesia, and control subjects. AChE activity was assayed by a radioenzymatic method involving the direct extraction of hydrolyzed 3H-acetate into a toluene-based scintillation fluid followed by liquid scintillation spectrometry. AChE activity was proportional to the amount of CSF protein. Greater than 90% of AChE activity in CSF could be inhibited by 10(-3) M eserine. In addition, activity remained stable despite repeated freeze-thawing in an acetone-dry ice bath. Age was found to be positively correlated with CSF protein and AChE activity expressed per volume CSF, but not with AChE measured per milligram protein. No differences between diagnostic groups were found on either measure of AChE when the extraneous factors of age and CSF protein concentrations were controlled, nor were any differences found between groups for CSF protein when age was controlled. PMID:6661467

  8. GM-CSF: modulation of biochemical and cytotoxic effects of tiazofurin in HL-60 cells.

    PubMed

    Fritzer, M; Gharehbaghi, K; Pillwein, K; Chiba, P; Goldenberg, H; Szekeres, T

    1993-07-01

    Cytokines, such as granulocyte macrophage colony stimulating factor (GM-CSF) or interleukin-3 (IL-3) recruit quiescent cells into the cell cycle and sensitize these cells towards cell cycle specific chemotherapeutic agents. We examined the in vitro effects of GM-CSF on HL-60 cells and tested its modulatory influence on biochemical and cytotoxic effects seen with tiazofurin, a potent and specific inhibitor of IMP dehydrogenase. Incubation of HL-60 cells with 500 U/ml GM-CSF for 4 d enhanced cell proliferation, which was accompanied by a significant increase in IMP dehydrogenase activity (from 2.22 in control cells to 3.70 nmol/mg/h in cells pretreated with GM-CSF). When HL-60 cells were incubated with 100 microM tiazofurin for 2 h, intracellular GTP decreased to 46% of untreated control cells. In HL-60 cells pretreated with GM-CSF, GTP pools decreased to 38% of control after incubation with tiazofurin which is 69% of the predicted value for additive effect. The MTT chemosensitivity assay yielded significantly decreased IC50 values for tiazofurin in HL-60 cells, preincubated with GM-CSF (IC50 decreased from 13 microM to 10 microM). Therefore our results suggest that combination therapy with GM-CSF and tiazofurin may be beneficial for the treatment of refractory leukaemia patients. PMID:8105873

  9. CSF Tau proteins reduce misdiagnosis of sporadic Creutzfeldt-Jakob disease suspected cases with inconclusive 14-3-3 result.

    PubMed

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-09-01

    Cerebrospinal fluid (CSF) 14-3-3 protein supports sporadic Creutzfeldt-Jakob (sCJD) diagnosis, but often leads to weak-positive results and lacks standardization. In this study, we explored the added diagnostic value of Total Tau (t-Tau) and phosphorylated Tau (p-Tau) in sCJD diagnosis, particularly in the cases with inconclusive 14-3-3 result. 95 definite sCJD and 287 patients without prion disease (non-CJD) were included in this study. CSF samples were collected in routine clinical diagnosis and analysed for 14-3-3 detection by Western blot (WB). CSF t-Tau and p-Tau were quantified by commercial ELISA kits and PRNP and APOE genotyping assessed by PCR-RFLP. In a regression analysis of the whole cohort, 14-3-3 protein revealed an overall accuracy of 82 % (sensitivity = 96.7 %; specificity = 75.6 %) for sCJD. Regarding 14-3-3 clear positive results, we observed no added value either of t-Tau alone or p-Tau/t-Tau ratio in the model. On the other hand, considering 14-3-3 weak-positive cases, t-Tau protein increased the overall accuracy of 14-3-3 alone from 91 to 94 % and specificity from 74 to 93 % (p < 0.05), with no sensitivity improvement. However, inclusion of p-Tau/t-Tau ratio did not significantly improve the first model (p = 0.0595). Globally, t-Tau protein allowed a further discrimination of 65 % within 14-3-3 inconclusive results. Furthermore, PRNP MV genotype showed a trend to decrease 14-3-3 sensitivity (p = 0.051), but such effect was not seen on t-Tau protein. In light of these results, we suggest that t-Tau protein assay is of significant importance as a second marker in identifying 14-3-3 false-positive results among sCJD probable cases. PMID:27357003

  10. Biomarkers in Barrett's esophagus.

    PubMed

    Reid, Brian J; Blount, Patricia L; Rabinovitch, Peter S

    2003-04-01

    This article provides a framework for clinicians who are attempting the difficult task of interpreting the Barrett's biomarker literature with the goal of improving care for their patients. Although many articles. including more that 60 proposed biomarkers, have been published on this subject, only a few describe phase 3 and 4 studies that are of interest to the clinical gastroenterologist (Table 1). For year, dysplasia grade has been the sole means of risk stratification for patients with BE, and it likely will continue to be used in the foreseeable future. The current authors believe that dysplasia classification can be valuable using the team management approach and quality controls described previously. Significant problems, however, have emerged in phase 2 through 4 studies of dysplasia that make it imperative for the Barrett's field to incorporate additional biomarkers as they are validated. These problems include poor reproducibility of dysplasia interpretations, poor predictive value for negative, indefinite, and low-grade dysplasia, and inconsistent results for HGD in different centers, all of which makes it virtually impossible to develop national guidelines for surveillance. Some studies have even suggested that endoscopic biopsy surveillance using dysplasia may not be worthwhile. Currently, flow cytometric tetraploidy and aneuploidy have progressed furthest in biomarker validation (see Table 1). With proper handling, endoscopic biopsy specimens can be shipped to reference laboratories that have the instruments, computer analytic methods, and expertise to reproducibly detect tetraploidy and aneuploidy. The results of phase 4 studies indicate that flow cytometry appears to be useful in detecting a subset of patients who do not have HGD and yet have an increased risk of progression to cancer that cannot be identified by dysplasia grade. For many reasons, the authors anticipate that the number of validated biomarkers will increase substantially in the

  11. Industry perspectives on biomarker qualification.

    PubMed

    Lavezzari, G; Womack, A W

    2016-02-01

    Biomarkers have the potential to expedite drug development, increase patient safety, and optimize clinical response. Yet few have achieved regulatory qualification. A survey was conducted to clarify industry's perspective on biomarker qualification and identify the most promising biomarkers for drug development. The results across toxicities/clinical areas highlight challenges in regulatory qualification, although early prioritization and alignment on an evidentiary standard framework are key factors in facilitating biomarker development and qualification. PMID:26378777

  12. Efavirenz concentrations in CSF exceed IC50 for wild-type HIV

    PubMed Central

    Best, Brookie M.; Koopmans, Peter P.; Letendre, Scott L.; Capparelli, Edmund V.; Rossi, Steven S.; Clifford, David B.; Collier, Ann C.; Gelman, Benjamin B.; Mbeo, Gilbert; McCutchan, J. Allen; Simpson, David M.; Haubrich, Richard; Ellis, Ronald; Grant, Igor; Grant, Igor; McCutchan, J. Allen; Ellis, Ronald J.; Marcotte, Thomas D.; Franklin, Donald; Ellis, Ronald J.; McCutchan, J. Allen; Alexander, Terry; Letendre, Scott; Capparelli, Edmund; Heaton, Robert K.; Atkinson, J. Hampton; Woods, Steven Paul; Dawson, Matthew; Wong, Joseph K.; Fennema-Notestine, Christine; Taylor, Michael J.; Theilmann, Rebecca; Gamst, Anthony C.; Cushman, Clint; Abramson, Ian; Vaida, Florin; Marcotte, Thomas D.; von Jaeger, Rodney; McArthur, Justin; Smith, Mary; Morgello, Susan; Simpson, David; Mintz, Letty; McCutchan, J. Allen; Toperoff, Will; Collier, Ann; Marra, Christina; Jones, Trudy; Gelman, Benjamin; Head, Eleanor; Clifford, David; Al-Lozi, Muhammad; Teshome, Mengesha

    2011-01-01

    Objectives HIV-associated neurocognitive disorders remain common despite use of potent antiretroviral therapy (ART). Ongoing viral replication due to poor distribution of antivirals into the CNS may increase risk for HIV-associated neurocognitive disorders. This study's objective was to determine penetration of a commonly prescribed antiretroviral drug, efavirenz, into CSF. Methods CHARTER is an ongoing, North American, multicentre, observational study to determine the effects of ART on HIV-associated neurological disease. Single random plasma and CSF samples were drawn within 1 h of each other from subjects taking efavirenz between September 2003 and July 2007. Samples were assayed by HPLC or HPLC/mass spectrometry with detection limits of 39 ng/mL (plasma) and <0.1 ng/mL (CSF). Results Eighty participants (age 44 ± 8 years; 79 ± 15 kg; 20 females) had samples drawn 12.5 ± 5.4 h post-dose. The median efavirenz concentrations after a median of 7 months [interquartile range (IQR) 2–17] of therapy were 2145 ng/mL in plasma (IQR 1384–4423) and 13.9 ng/mL in CSF (IQR 4.1–21.2). The CSF/plasma concentration ratio from paired samples drawn within 1 h of each other was 0.005 (IQR 0.0026–0.0076; n = 69). The CSF/IC50 ratio was 26 (IQR 8–41) using the published IC50 for wild-type HIV (0.51 ng/mL). Two CSF samples had concentrations below the efavirenz IC50 for wild-type HIV. Conclusions Efavirenz concentrations in the CSF are only 0.5% of plasma concentrations but exceed the wild-type IC50 in nearly all individuals. Since CSF drug concentrations reflect those in brain interstitial fluids, efavirenz reaches therapeutic concentrations in brain tissue. PMID:21098541

  13. Ubiquitin fusion expression and tissue-dependent targeting of hG-CSF in transgenic tobacco

    PubMed Central

    2011-01-01

    Background Human granulocyte colony-stimulating factor (hG-CSF) is an important human cytokine which has been widely used in oncology and infection protection. To satisfy clinical needs, expression of recombinant hG-CSF has been studied in several organisms, including rice cell suspension culture and transient expression in tobacco leaves, but there was no published report on its expression in stably transformed plants which can serve as a more economical expression platform with potential industrial application. Results In this study, hG-CSF expression was investigated in transgenic tobacco leaves and seeds in which the accumulation of hG-CSF could be enhanced through fusion with ubiquitin by up to 7 fold in leaves and 2 fold in seeds, leading to an accumulation level of 2.5 mg/g total soluble protein (TSP) in leaves and 1.3 mg/g TSP in seeds, relative to hG-CSF expressed without a fusion partner. Immunoblot analysis showed that ubiquitin was processed from the final protein product, and ubiquitination was up-regulated in all transgenic plants analyzed. Driven by CaMV 35S promoter and phaseolin signal peptide, hG-CSF was observed to be secreted into apoplast in leaves but deposited in protein storage vacuole (PSV) in seeds, indicating that targeting of the hG-CSF was tissue-dependent in transgenic tobacco. Bioactivity assay showed that hG-CSF expressed in both seeds and leaves was bioactive to support the proliferation of NFS-60 cells. Conclusions In this study, the expression of bioactive hG-CSF in transgenic plants was improved through ubiquitin fusion strategy, demonstrating that protein expression can be enhanced in both plant leaves and seeds through fusion with ubiquitin and providing a typical case of tissue-dependent expression of recombinant protein in transgenic plants. PMID:21985646

  14. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice

    PubMed Central

    Sauter, Kristin A.; Pridans, Clare; Sehgal, Anuj; Tsai, Yi Ting; Bradford, Barry M.; Raza, Sobia; Moffat, Lindsey; Gow, Deborah J.; Beard, Philippa M.; Mabbott, Neil A.; Smith, Lee B.; Hume, David A.

    2014-01-01

    We investigated the role of CSF1R signaling in adult mice using prolonged treatment with anti-CSF1R antibody. Mutation of the CSF1 gene in the op/op mouse produces numerous developmental abnormalities. Mutation of the CSF1R has an even more penetrant phenotype, including perinatal lethality, because of the existence of a second ligand, IL-34. These effects on development provide limited insight into functions of CSF1R signaling in adult homeostasis. The carcass weight and weight of several organs (spleen, kidney, and liver) were reduced in the treated mice, but overall body weight gain was increased. Despite the complete loss of Kupffer cells, there was no effect on liver gene expression. The treatment ablated OCL, increased bone density and trabecular volume, and prevented the decline in bone mass seen in female mice with age. The op/op mouse has a deficiency in pancreatic β cells and in Paneth cells in the gut wall. Only the latter was reproduced by the antibody treatment and was associated with increased goblet cell number but no change in villus architecture. Male op/op mice are infertile as a result of testosterone insufficiency. Anti-CSF1R treatment ablated interstitial macrophages in the testis, but there was no sustained effect on testosterone or LH. The results indicate an ongoing requirement for CSF1R signaling in macrophage and OCL homeostasis but indicate that most effects of CSF1 and CSF1R mutations are due to effects on development. PMID:24652541

  15. Identification of biomarkers in Lewy-body disorders.

    PubMed

    Warr, L; Walker, Z

    2012-02-01

    Dementia with Lewy bodies (DLB) may account for up to 30% of all dementia cases. The symptoms of DLB can be difficult to disentangle from other dementia subtypes, particularly Alzheimer's disease (AD). AD and DLB pathologies often overlap within individuals. Like DLB, Parkinson's disease dementia (PDD) also shares common features with DLB. Currently, whether an individual is diagnosed with PDD or DLB depends solely on the timing of symptom onset. Early, accurate diagnosis is needed for optimal management and treatment. It is hoped that the development of existing and new Lewy body disorders biomarkers will facilitate more accurate diagnosis. Reduced dopamine transporter levels in DLB as shown with [123I]FP-CIT-SPECT currently appears to be the most reliable and valid biomarker, although other (predominantly imaging-based) methods also appear to have the high sensitivity and specificity required for a good biomarker. This includes (in DLB compared to AD) reduced cardiac 123I-MIBG uptake, occipital hypometabolism on FDG-PET and preservation of medial temporal lobe structures on CT/MRI. Perfusion SPECT, cerebrospinal fluid protein levels (amyloid, tau and α-synuclein), electroencephalography, saccadic eye movement tracking and 11C-PiB amyloid imaging also hold promise as biomarkers in terms of differentiating DLB, AD, PDD and other neurodegenerative disorders, although findings are less consistent. Studies utilising a combination approach in which two or more potential biomarkers are compared seem to provide very good sensitivity and specificity. In general, longitudinal studies, pathological confirmation of diagnosis and the combined approach may hold the most promise for the identification of biomarkers. PMID:22460159

  16. Polyamines: Predictive Biomarker for HIV-Associated Neurocognitive Disorders

    PubMed Central

    Merali, Salim; Barrero, Carlos A.; Sacktor, Ned C.; Haughey, Norman J.; Datta, Prasun K.; Langford, Dianne; Khalili, Kamel

    2014-01-01

    Objectives Spermidine/spermine-N1-acetytransferase (SSAT) is the key enzyme in the catabolism of polyamines that are involved in regulating NMDA functioning. Over expression of SSAT leads to abnormal metabolic cycling and may disrupt NMDA receptor signaling. In fact, the HIV protein Tat induces neurotoxicity involving polyamine/NMDA receptor interactions. Thus, we investigated abnormal polyamine cycling in HIV+ participants with varying degrees of HIV-associated neurocognitive disorders. Methods Acetyl-polyamine (SSAT products) levels were assessed by HPLC in CSF from 99 HIV-infected participants (no cognitive impairment (NCI, n=25), asymptomatic neurocognitive impairment (ANI, n=25), mild cognitive and motor disorders (MCMD, n=24), and HIV-associated dementia (HAD, n=25)). Polyamine levels in brain tissues from a subset of participants (uninfected (n=3), NCI (n=3), and MNCD (n=3)) were also assessed. Human primary astrocytes expressing HIV Tat were assessed for levels of the SSAT activity. Results Activation of the polyamine catabolic enzyme, SSAT increases polyamine flux in brain and CSF of HIV infected individuals with HIV-associated neurocognitive disorders. CSF levels of acetylated polyamine increase with the degree of HAND severity as indicated by significantly increased acetylpolyamine levels in HAD participants compared to NCI and ANI (p<0.0001) and between MCMD and NCI and ANI (p<0.0001). In vitro studies suggest that the HIV protein Tat may be responsible in part for astrocyte-derived acetyl polyamine release. Interpretation Our data suggest that polyamine metabolism may play a pivotal role in the neurodegeneration process among HAND patients. Changes in polyamine flux may serve as a potential predictive diagnostic biomarker for different severities of HAND. PMID:25893137

  17. Cataplexy with Normal Sleep Studies and Normal CSF Hypocretin: An Explanation?

    PubMed

    Drakatos, Panagis; Leschziner, Guy

    2016-03-01

    Patients with narcolepsy usually develop excessive daytime sleepiness (EDS) before or coincide with the occurrence of cataplexy, with the latter most commonly associated with low cerebrospinal fluid (CSF) hypocretin-1 levels. Cataplexy preceding the development of other features of narcolepsy is a rare phenomenon. We describe a case of isolated cataplexy in the context of two non-diagnostic multiple sleep latency tests and normal CSF-hypocretin-1 levels (217 pg/mL) who gradually developed EDS and low CSF-hypocretin-1 (< 110 pg/mL). PMID:26564387

  18. Methimazole-Induced Agranulocytosis and Quick Recovery with G-CSF.

    PubMed

    Calabrò, L; Alonci, A; Bellomo, G; D'Angelo, A; Di Giacomo, V; Musolino, C

    2001-01-01

    A 51-year old female, treated for hyperthyroidism with methimazole, developed agranulocytosis in the third month of therapy. After discontinuing the drug, a broad spectrum antibiotic regimen plus recombinant human granulocyte colony-stimulating factor (G-CSF) were started. Her granulocyte count returned to normal with the 4(°) dose of G-CSF. We think that in patients with methimazole-induced agranulocytosis, G-CSF may reduce the risk and severity of infection and in some cases should be accepted as a part of the standard therapy. PMID:27419352

  19. A case of pulmonary toxicity associated with G-CSF and doxorubicin administration.

    PubMed

    Eisenbeis, C F; Winn, D; Poelman, S; Polsky, C V; Rubenstein, J H; Olopade, O I

    2001-02-01

    The cytokine growth factor, G-CSF (granulocyte colony-stimulating factor), is commonly used in oncologic practice and is generally believed to be a safe agent to administer. We describe here a case of pulmonary toxicity associated with the concurrent administration of G-CSF and doxorubicin. We contend that G-CSF contributed to the life-threatening lung injury in our patient, and discuss additional reports in the literature of pulmonary toxicity associated with the use of this agent. PMID:11261324

  20. Biomarkers of cell senescence

    DOEpatents

    Dimri, G.P.; Campisi, J.; Peacocke, M.

    1998-08-18

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo. 1 fig.

  1. Biomarkers of cell senescence

    DOEpatents

    Dirmi, G.P.; Campisi, J.; Peacocke, M.

    1996-02-13

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo. 1 fig.

  2. Biomarkers of apoptosis

    PubMed Central

    Ward, T H; Cummings, J; Dean, E; Greystoke, A; Hou, J M; Backen, A; Ranson, M; Dive, C

    2008-01-01

    Within the era of molecularly targeted anticancer agents, it has become increasingly important to provide proof of mechanism as early on as possible in the drug development cycle, especially in the clinic. Selective activation of apoptosis is often cited as one of the major goals of cancer chemotherapy. Thus, the present minireview focuses on a discussion of the pros and cons of a variety of methodological approaches to detect different components of the apoptotic cascade as potential biomarkers of programmed cell death. The bulk of the discussion centres on serological assays utilising the technique of ELISA, since here there is an obvious advantage of sampling multiple time points. Potential biomarkers of apoptosis including circulating tumour cells, cytokeratins and DNA nucleosomes are discussed at length. However, accepting that a single biomarker may not have the power to predict proof of concept and patient outcome, it is clear that in the future more emphasis will be placed on technologies that can analyse panels of biomarkers in small volumes of samples. To this end the increased throughput afforded by multiplex ELISA technologies is discussed. PMID:19238626

  3. Biomarkers of cell senescence

    DOEpatents

    Dirmi, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1996-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo.

  4. Biomarkers of cell senescence

    DOEpatents

    Dimri, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1998-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo.

  5. Biomarkers for disease progression and AAV therapeutic efficacy in feline Sandhoff disease

    PubMed Central

    Bradbury, Allison M; Gray-Edwards, Heather L; Shirley, Jamie L; McCurdy, Victoria J; Colaco, Alexandria N; Randle, Ashley N; Christopherson, Pete W; Bird, Allison C; Johnson, Aime K; Wilson, Diane U; Hudson, Judith A; De Pompa, Nicholas L; Sorjonen, Donald C; Brunson, Brandon L; Jeyakumar, Mylvaganam; Platt, Frances M; Baker, Henry J; Cox, Nancy R; Sena-Esteves, Miguel; Martin, Douglas R

    2014-01-01

    The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are progressive neurodegenerative disorders that are caused by a mutation in the enzyme β-N-acetylhexosaminidase (Hex). Due to the recent emergence of novel experimental treatments, biomarker development has become particularly relevant in GM2 gangliosidosis as an objective means to measure therapeutic efficacy. Here we describe blood, cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), and electrodiagnostic methods for evaluating disease progression in the feline SD model and application of these approaches to assess AAV-mediated gene therapy. SD cats were treated by intracranial injections of the thalami combined with either the deep cerebellar nuclei or a single lateral ventricle using AAVrh8 vectors encoding feline Hex. Significantly altered in untreated SD cats, blood and CSF based biomarkers were normalized after AAV gene therapy. Also reduced after treatment were expansion of the lysosomal compartment in peripheral blood mononuclear cells and elevated activity of secondary lysosomal enzymes. MRI changes characteristic of the gangliosidoses were documented in SD cats and normalized after AAV gene therapy. The minimally invasive biomarkers reported herein should be useful to assess disease progression of untreated GM2 patients and those in future clinical trials. PMID:25284324

  6. Biomarkers for disease progression and AAV therapeutic efficacy in feline Sandhoff disease.

    PubMed

    Bradbury, Allison M; Gray-Edwards, Heather L; Shirley, Jamie L; McCurdy, Victoria J; Colaco, Alexandria N; Randle, Ashley N; Christopherson, Pete W; Bird, Allison C; Johnson, Aime K; Wilson, Diane U; Hudson, Judith A; De Pompa, Nicholas L; Sorjonen, Donald C; Brunson, Brandon L; Jeyakumar, Mylvaganam; Platt, Frances M; Baker, Henry J; Cox, Nancy R; Sena-Esteves, Miguel; Martin, Douglas R

    2015-01-01

    The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are progressive neurodegenerative disorders that are caused by a mutation in the enzyme β-N-acetylhexosaminidase (Hex). Due to the recent emergence of novel experimental treatments, biomarker development has become particularly relevant in GM2 gangliosidosis as an objective means to measure therapeutic efficacy. Here we describe blood, cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), and electrodiagnostic methods for evaluating disease progression in the feline SD model and application of these approaches to assess AAV-mediated gene therapy. SD cats were treated by intracranial injections of the thalami combined with either the deep cerebellar nuclei or a single lateral ventricle using AAVrh8 vectors encoding feline Hex. Significantly altered in untreated SD cats, blood and CSF based biomarkers were largely normalized after AAV gene therapy. Also reduced after treatment were expansion of the lysosomal compartment in peripheral blood mononuclear cells and elevated activity of secondary lysosomal enzymes. MRI changes characteristic of the gangliosidoses were documented in SD cats and normalized after AAV gene therapy. The minimally invasive biomarkers reported herein should be useful to assess disease progression of untreated SD patients and those in future clinical trials. PMID:25284324

  7. Asthma outcomes: Biomarkers

    PubMed Central

    Szefler, Stanley J.; Wenzel, Sally; Brown, Robert; Erzurum, Serpil C.; Fahy, John V.; Hamilton, Robert G.; Hunt, John F.; Kita, Hirohito; Liu, Andrew H.; Panettieri, Reynold A.; Schleimer, Robert P.; Minnicozzi, Michael

    2012-01-01

    Background Measurement of biomarkers has been incorporated within clinical research studies of asthma to characterize the population and associate the disease with environmental and therapeutic effects. Objective National Institutes of Health institutes and federal agencies convened an expert group to propose which biomarkers should be assessed as standardized asthma outcomes in future clinical research studies. Methods We conducted a comprehensive search of the literature to identify studies that developed and/or tested asthma biomarkers. We identified biomarkers relevant to the underlying disease process progression and response to treatment. We classified the biomarkers as either core (required in future studies), supplemental (used according to study aims and standardized), or emerging (requiring validation and standardization). This work was discussed at an National Institutes of Health–organized workshop convened in March 2010 and finalized in September 2011. Results Ten measures were identified; only 1, multiallergen screening to define atopy, is recommended as a core asthma outcome. Complete blood counts to measure total eosinophils, fractional exhaled nitric oxide (Feno), sputum eosinophils, urinary leukotrienes, and total and allergen-specific IgE are recommended as supplemental measures. Measurement of sputum polymorphonuclear leukocytes and other analytes, cortisol measures, airway imaging, breath markers, and system-wide studies (eg, genomics, proteomics) are considered as emerging outcome measures. Conclusion The working group participants propose the use of multiallergen screening in all asthma clinical trials to characterize study populations with respect to atopic status. Blood, sputum, and urine specimens should be stored in biobanks, and standard procedures should be developed to harmonize sample collection for clinical trial biorepositories. PMID:22386512

  8. AdS3: the NHEK generation

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Heurtier, Lucien; Puhm, Andrea

    2016-05-01

    It was argued in [1] that the five-dimensional near-horizon extremal Kerr (NHEK) geometry can be embedded in String Theory as the infrared region of an infinite family of non-supersymmetric geometries that have D1, D5, momentum and KK monopole charges. We show that there exists a method to embed these geometries into asymptotically- {AdS}_3× {S}^3/{{Z}}_N solutions, and hence to obtain infinite families of flows whose infrared is NHEK. This indicates that the CFT dual to the NHEK geometry is the IR fixed point of a Renormalization Group flow from a known local UV CFT and opens the door to its explicit construction.

  9. Shadows, currents, and AdS fields

    SciTech Connect

    Metsaev, R. R.

    2008-11-15

    Conformal totally symmetric arbitrary spin currents and shadow fields in flat space-time of dimension greater than or equal to four are studied. A gauge invariant formulation for such currents and shadow fields is developed. Gauge symmetries are realized by involving the Stueckelberg fields. A realization of global conformal boost symmetries is obtained. Gauge invariant differential constraints for currents and shadow fields are obtained. AdS/CFT correspondence for currents and shadow fields and the respective normalizable and non-normalizable solutions of massless totally symmetric arbitrary spin AdS fields are studied. The bulk fields are considered in a modified de Donder gauge that leads to decoupled equations of motion. We demonstrate that leftover on shell gauge symmetries of bulk fields correspond to gauge symmetries of boundary currents and shadow fields, while the modified de Donder gauge conditions for bulk fields correspond to differential constraints for boundary conformal currents and shadow fields. Breaking conformal symmetries, we find interrelations between the gauge invariant formulation of the currents and shadow fields, and the gauge invariant formulation of massive fields.

  10. Effects of recombinant granulocyte colony-stimulating factor (rG-CSF) and recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) on acute radiation hematopoietic injury in mice

    SciTech Connect

    Tanikawa, S.; Nakao, I.; Tsuneoka, K.; Nara, N. )

    1989-09-01

    We have attempted to evaluate in vivo effects of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) on acute radiation hematopoietic injury in mice. BDF1 mice, irradiated with 7.5-Gy x-rays, were injected i.p. twice daily for 10 days with 10(5) U recombinant human G-CSF, 3.75 x 10(5) U recombinant murine GM-CSF, or a combination of both. G-CSF significantly enhanced the recovery of not only peripheral leukocytes but also platelets and hematocrit on days 14 and 21 after irradiation. GM-CSF significantly enhanced the recovery of platelets on day 14 and peripheral leukocytes on day 21. G-CSF markedly enhanced the recovery of spleen colony-forming units (CFU-S), colony-forming units in culture (CFU-C), erythroid burst-forming units (BFU-E), and megakaryocyte colony-forming units (CFU-Meg) both in bone marrow and in the spleen. GM-CSF significantly enhanced the recovery of CFU-Meg in bone marrow on day 14. We found synergistic effects between G-CSF and GM-CSF on CFU-S, CFU-C, and CFU-Meg in the spleen on day 14, although we found antagonistic effects between G-CSF and GM-CSF on CFU-S and CFU-C in bone marrow on day 7, and on platelet counts on day 7. These results indicate that the administration of recombinant G-CSF and GM-CSF may be useful in accelerating hematopoietic recovery in patients with acute radiation hematopoietic injuries.

  11. Extracellular complexes of the hematopoietic human and mouse CSF-1 receptor are driven by common assembly principles

    PubMed Central

    Elegheert, Jonathan; Desfosses, Ambroise; Shkumatov, Alexander V.; Wu, Xiongwu; Bracke, Nathalie; Verstraete, Kenneth; Van Craenenbroeck, Kathleen; Brooks, Bernard R.; Svergun, Dmitri I.; Vergauwen, Bjorn; Gutsche, Irina; Savvides, Savvas N.

    2011-01-01

    SUMMARY The hematopoietic Colony Stimulating Factor-1 receptor (CSF-1R or FMS) is essential for the development of diverse cell types central to the immune system. Here we report a structural and mechanistic consensus for the assembly of hematopoietic human and mouse CSF-1:CSF-1R complexes. The EM structure of the complete extracellular assembly of the human CSF-1:CSF-1R complex reveals how receptor dimerization by CSF-1 invokes a ternary complex featuring extensive homotypic receptor contacts that contribute 15-fold to the affinity of the complex, and striking structural plasticity at the extremities of the complex. Small-angle X-ray scattering analysis of unliganded hCSF-1R points to large domain rearrangements upon CSF-1 binding, and provides structural evidence for the relevance of receptor predimerization at the cell-surface. Comparative structural and binding studies of human and mouse CSF-1R complexes, including a quantification of the CSF-1/CSF-1R species cross-reactivity, show that bivalent cytokine binding to receptor is a common denominator in complex formation independent of receptor homotypic interactions. PMID:22153499

  12. Colony-Stimulating Factor 2 (CSF-2) Improves Development and Posttransfer Survival of Bovine Embryos Produced in Vitro

    PubMed Central

    Loureiro, Bárbara; Bonilla, Luciano; Block, Jeremy; Fear, Justin M.; Bonilla, Aline Q. S.; Hansen, Peter J.

    2009-01-01

    In this study, we tested the role of colony-stimulating factor 2 (CSF2) as one of the regulatory molecules that mediate maternal effects on embryonic development during the preimplantation period. Our objective was to verify effects of CSF2 on blastocyst yield, determine posttransfer survival, and evaluate properties of the blastocyst formed after CSF2 treatment. In vitro, CSF2 increased the percentage of oocytes that became morulae and blastocysts. Blastocysts that were treated with CSF2 tended to have a greater number of inner cell mass cells and had a higher ratio of inner cell mass to trophectoderm cells. There was no effect of CSF2 on the incidence of apoptosis. Treatment with CSF2 from d 5 to 7 after insemination increased embryonic survival as indicated by improved pregnancy rate at d 30–35 of gestation. Moreover, treatment with CSF2 from either d 1–7 or 5–7 after insemination reduced pregnancy loss after d 30–35. Results indicate that treatment with CSF2 can affect embryonic development and enhance embryo competence for posttransfer survival. The fact that treatment with CSF2 during such a narrow window of development altered embryonic function much later in pregnancy suggests that CSF2 may exert epigenetic effects on the developing embryo that result in persistent changes in function during the embryonic and fetal periods of development. PMID:19797121

  13. Extending the Serum Half-Life of G-CSF via Fusion with the Domain III of Human Serum Albumin

    PubMed Central

    Zhao, Shuqiang; Zhang, Yu; Tian, Hong; Chen, Xiaofei; Cai, Di; Yao, Wenbing; Gao, Xiangdong

    2013-01-01

    Protein fusion technology is one of the most commonly used methods to extend the half-life of therapeutic proteins. In this study, in order to prolong the half-life of Granulocyte colony stimulating factor (G-CSF), the domain III of human serum albumin (3DHSA) was genetically fused to the N-terminal of G-CSF. The 3DHSA-G-CSF fusion gene was cloned into pPICZαA along with the open reading frame of the α-factor signal under the control of the AOX1 promoter. The recombinant expression vector was transformed into Pichia pastoris GS115, and the recombinant strains were screened by SDS-PAGE. As expected, the 3DHSA-G-CSF showed high binding affinity with HSA antibody and G-CSF antibody, and the natural N-terminal of 3DHSA was detected by N-terminal sequencing. The bioactivity and pharmacokinetic studies of 3DHSA-G-CSF were respectively determined using neutropenia model mice and human G-CSF ELISA kit. The results demonstrated that 3DHSA-G-CSF has the ability to increase the peripheral white blood cell (WBC) counts of neutropenia model mice, and the half-life of 3DHSA-G-CSF is longer than that of native G-CSF. In conclusion, 3DHSA can be used to extend the half-life of G-CSF. PMID:24151579

  14. High titer autoantibodies to GM-CSF in patients with AML, CML and MDS are associated with active disease

    PubMed Central

    Sergeeva, A; Ono, Y; Rios, R; Molldrem, JJ

    2012-01-01

    Antibodies to granulocyte-macrophage colony-stimulating factor (GM-CSF) can be induced when GM-CSF is used as an adjuvant to solid tumor vaccination. Neutralizing anti-GM-CSF IgG has been associated with pulmonary alveolar proteinosis (PAP), and secondary PAP has been linked to myeloid leukemia. We studied 69 patients with acute myeloid leukemia, chronic myeloid leukemia and myelodysplastic syndrome, including 19 patients who received GM-CSF with peptide antigen and incomplete Freund's adjuvant in a vaccine trial for the presence or induction of anti-GM-CSF antibodies. Anti-GM-CSF IgG were present in 36 (52%) patients with myeloid leukemia compared to only 1 of 33 (3%) healthy subjects (P=0.008) and in none of 6 patients with lymphoid leukemia (P=0.0001). Antibody titers were unaffected by vaccination. Anti-GM-CSF IgA and IgM were found in 33 and 20% of patients, respectively; IgA from two patients neutralized GM-CSF. Strikingly, while anti-GM-CSF IgG titers were higher in patients with active disease (n=52) versus those in complete remission (n=14, P=0.0009), GM-CSF expression was not increased in either group. These data are first to show that anti-GM-CSF antibodies of multiple isotypes are present in patients with active myeloid leukemia without PAP and may be useful markers of disease activity. PMID:18216869

  15. Systematic Review of Clinical Studies Examining Biomarkers of Brain Injury in Athletes after Sports-Related Concussion

    PubMed Central

    Ramia, Michelle M.; Edwards, Damyan; Johnson, Brian D.; Slobounov, Semyon M.

    2015-01-01

    Abstract The aim of this study was to systematically review clinical studies examining biofluid biomarkers of brain injury for concussion in athletes. Data sources included PubMed®, MEDLINE®, and the Cochrane Database from 1966 to October 2013. Studies were included if they recruited athletes participating in organized sports who experienced concussion or head injury during a sports-related activity and had brain injury biomarkers measured. Acceptable research designs included experimental, observational, and case-control studies. Review articles, opinion papers, and editorials were excluded. After title and abstract screening of potential articles, full texts were independently reviewed to identify articles that met inclusion criteria. A composite evidentiary table was then constructed and documented the study title, design, population, methods, sample size, outcome measures, and results. The search identified 52 publications, of which 13 were selected and critically reviewed. All of the included studies were prospective and were published either in or after the year 2000. Sports included boxing (six studies), soccer (five studies), running/jogging (two studies), hockey (one study), basketball (one study), cycling (one study), and swimming (one study). The majority of studies (92%) had fewer than 100 patients. Three studies (23%) evaluated biomarkers in cerebrospinal fluid (CSF), one in both serum and CSF, and 10 (77%) in serum exclusively. There were 11 different biomarkers assessed, including S100β, glial fibrillary acidic protein, neuron-specific enolase, tau, neurofilament light protein, amyloid beta, brain-derived neurotrophic factor, creatine kinase and heart-type fatty acid binding protein, prolactin, cortisol, and albumin. A handful of biomarkers showed a correlation with number of hits to the head (soccer), acceleration/deceleration forces (jumps, collisions, and falls), postconcussive symptoms, trauma to the body versus the head, and dynamics of

  16. Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion.

    PubMed

    Papa, Linda; Ramia, Michelle M; Edwards, Damyan; Johnson, Brian D; Slobounov, Semyon M

    2015-05-15

    The aim of this study was to systematically review clinical studies examining biofluid biomarkers of brain injury for concussion in athletes. Data sources included PubMed, MEDLINE, and the Cochrane Database from 1966 to October 2013. Studies were included if they recruited athletes participating in organized sports who experienced concussion or head injury during a sports-related activity and had brain injury biomarkers measured. Acceptable research designs included experimental, observational, and case-control studies. Review articles, opinion papers, and editorials were excluded. After title and abstract screening of potential articles, full texts were independently reviewed to identify articles that met inclusion criteria. A composite evidentiary table was then constructed and documented the study title, design, population, methods, sample size, outcome measures, and results. The search identified 52 publications, of which 13 were selected and critically reviewed. All of the included studies were prospective and were published either in or after the year 2000. Sports included boxing (six studies), soccer (five studies), running/jogging (two studies), hockey (one study), basketball (one study), cycling (one study), and swimming (one study). The majority of studies (92%) had fewer than 100 patients. Three studies (23%) evaluated biomarkers in cerebrospinal fluid (CSF), one in both serum and CSF, and 10 (77%) in serum exclusively. There were 11 different biomarkers assessed, including S100β, glial fibrillary acidic protein, neuron-specific enolase, tau, neurofilament light protein, amyloid beta, brain-derived neurotrophic factor, creatine kinase and heart-type fatty acid binding protein, prolactin, cortisol, and albumin. A handful of biomarkers showed a correlation with number of hits to the head (soccer), acceleration/deceleration forces (jumps, collisions, and falls), postconcussive symptoms, trauma to the body versus the head, and dynamics of different sports

  17. GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells

    PubMed Central

    Greter, Melanie; Helft, Julie; Chow, Andrew; Hashimoto, Daigo; Mortha, Arthur; Agudo-Cantero, Judith; Bogunovic, Milena; Gautier, Emmanuel L.; Miller, Jennifer; Leboeuf, Marylene; Lu, Geming; Aloman, Costica; Brown, Brian D.; Pollard, Jeffrey W.; Xiong, Huabao; Randolph, Gwendalyn J.; Chipuk, Jerry E.; Frenette, Paul S.; Merad, Miriam

    2012-01-01

    SUMMARY GM-CSF (Csf-2) is a critical cytokine for the in vitro generation of dendritic cells (DCs) and is thought to control the development of inflammatory DCs and resident CD103+ DCs in some tissues. Here we showed that in contrast to the current understanding, Csf-2 receptor acts in the steady state to promote the survival and homeostasis of nonlymphoid tissue-resident CD103+ and CD11b+ DCs. Absence of Csf-2 receptor on lung DCs abrogated the induction of CD8+ T cell immunity after immunization with particulate antigens. In contrast, Csf-2 receptor was dispensable for the differentiation and innate function of inflammatory DCs during acute injuries. Instead, inflammatory DCs required Csf-1 receptor for their development. Thus, Csf-2 is important in vaccine-induced CD8+ T cell immunity through the regulation of nonlymphoid tissue DC homeostasis rather than control of inflammatory DCs in vivo. PMID:22749353

  18. CSF1 Receptor Targeting In Prostate Cancer Reverses Macrophage-Mediated Resistance To Androgen Blockade Therapy

    PubMed Central

    Escamilla, Jemima; Schokrpur, Shiruyeh; Liu, Connie; Priceman, Saul J.; Moughon, Diana; Jiang, Ziyue; Pouliot, Frederic; Magyar, Clara; Sung, James L.; Xu, Jingying; Deng, Gang; West, Brian L.; Bollag, Gideon; Fradet, Yves; Lacombe, Louis; Jung, Michael E.; Huang, Jiaoti; Wu, Lily

    2015-01-01

    Growing evidence suggests that tumor-associated macrophages (TAMs) promote cancer progression and therapeutic resistance by enhancing angiogenesis, matrix-remodeling and immunosuppression. In this study prostate cancer (PCa) under androgen blockade therapy (ABT) was investigated, demonstrating that TAMs contribute to PCa disease recurrence through paracrine signaling processes. ABT induced the tumor cells to express macrophage colony-stimulating factor 1 (M-CSF-1 or CSF-1) and other cytokines that recruit and modulate macrophages, causing a significant increase in TAM infiltration. Inhibitors of CSF-1 signaling through its receptor, CSF-1R, were tested in combination with ABT, demonstrating that blockade of TAM influx in this setting disrupts tumor promotion and sustains a more durable therapeutic response compared to ABT alone. PMID:25736687

  19. 3-amido-4-anilinocinnolines as a novel class of CSF-1R inhibitor.

    PubMed

    Scott, David A; Dakin, Les A; Del Valle, David J; Diebold, R Bruce; Drew, Lisa; Gero, Thomas W; Ogoe, Claude A; Omer, Charles A; Repik, Galina; Thakur, Kumar; Ye, Qing; Zheng, Xiaolan

    2011-03-01

    3-Amido-4-anilinocinnolines have been identified as potent and highly selective inhibitors of CSF-1R. The synthesis and SAR of these compounds is reported, along with some physical property, pharmacokinetic and kinase selectivity data. PMID:21295474

  20. G-CSF: From granulopoietic stimulant to bone marrow stem cell mobilizing agent.

    PubMed

    Bendall, Linda J; Bradstock, Kenneth F

    2014-08-01

    G-CSF was among the first cytokines to be identified and rapidly transitioned into clinical medicine. Initially used to promote the production of neutrophils in patients with chemotherapy-induced neutropenia it helped to revolutionize the delivery of cancer therapy. Its ability to mobilize hematopoietic stem cells from the bone marrow into the blood was subsequently exploited, changing the face of hematopoietic stem cell transplantation. Today the knowledge gained in unraveling the mechanisms of stem cell mobilization by G-CSF is being explored as a means to increase chemosensitivity in hematological malignancies. This review provides a brief history of G-CSF and then focuses on recent advances in our understanding of G-CSF-induced stem cell mobilization and the potential clinical application of this knowledge in chemo-sensitization. PMID:25131807

  1. CSF1R mutations link POLD and HDLS as a single disease entity

    PubMed Central

    Nicholson, Alexandra M.; Baker, Matt C.; Finch, NiCole A.; Rutherford, Nicola J.; Wider, Christian; Graff-Radford, Neill R.; Nelson, Peter T.; Clark, H. Brent; Wszolek, Zbigniew K.; Dickson, Dennis W.; Knopman, David S.

    2013-01-01

    Objective: Pigmented orthochromatic leukodystrophy (POLD) and hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) are rare neurodegenerative disorders characterized by cerebral white matter abnormalities, myelin loss, and axonal swellings. The striking overlap of clinical and pathologic features of these disorders suggested a common pathogenesis; however, no genetic or mechanistic link between POLD and HDLS has been established. Recently, we reported that mutations in the colony-stimulating factor 1 receptor (CSF1R) gene cause HDLS. In this study, we determined whether CSF1R mutations are also a cause of POLD. Methods: We performed sequencing of CSF1R in 2 pathologically confirmed POLD families. For the largest family (FTD368), a detailed case report was provided and brain samples from 2 affected family members previously diagnosed with POLD were re-evaluated to determine whether they had HDLS features. In vitro functional characterization of wild-type and mutant CSF1R was also performed. Results: We identified CSF1R mutations in both POLD families: in family 5901, we found c.2297T>C (p.M766T), previously reported by us in HDLS family CA1, and in family FTD368, we identified c.2345G>A (p.R782H), recently reported in a biopsy-proven HDLS case. Immunohistochemical examination in family FTD368 showed the typical neuronal and glial findings of HDLS. Functional analyses of CSF1R mutant p.R782H (identified in this study) and p.M875T (previously observed in HDLS), showed a similar loss of CSF1R autophosphorylation of selected tyrosine residues in the kinase domain for both mutations when compared with wild-type CSF1R. Conclusions: We provide the first genetic and mechanistic evidence that POLD and HDLS are a single clinicopathologic entity. PMID:23408870

  2. G-CSF Predicts Cardiovascular Events in Patients with Stable Coronary Artery Disease

    PubMed Central

    Katsaros, Katharina M.; Speidl, Walter S; Demyanets, Svitlana; Kastl, Stefan P.; Krychtiuk, Konstantin A.; Wonnerth, Anna; Zorn, Gerlinde; Tentzeris, Ioannis; Farhan, Serdar; Maurer, Gerald; Wojta, Johann; Huber, Kurt

    2015-01-01

    Granulocyte-colony-stimulating-factor (G-CSF) induces mobilization of progenitor cells but may also exert pro-inflammatory and pro-thrombotic effects. Treatment with recombinant G-CSF after acute myocardial infarction is currently under examination and has been associated with in-stent restenosis. However, it is not known whether plasma levels of endogenous G-CSF are also associated with an increased cardiovascular risk. Therefore we included 280 patients with angiographically proven stable coronary artery disease. G-CSF was measured by specific ELISA and patients were followed for a median of 30 months for the occurrence of major adverse cardiovascular events (MACE: death, myocardial infarction, re-hospitalization). Those with cardiac events during follow-up showed significant higher G-CSF levels (32.3 pg/mL IQR 21.4–40.5 pg/mL vs. 24.6 pg/mL IQR 16.4–34.9 pg/mL; p<0.05) at baseline. Patients with G-CSF plasma levels above the median had a 2-fold increased risk for MACE (p<0.05). This was independent from established cardiovascular risk factors. In addition, G-CSF above the median was a predictor of clinical in-stent restenosis after implantation of bare-metal stents (6.6% vs. 19.4%; p<0.05) but not of drug-eluting stents (7.7% vs. 7.6%; p = 0.98). This data suggests that endogenous plasma levels of G-CSF predict cardiovascular events independently from established cardiac risk factors and are associated with increased in-stent restenosis rates after implantation of bare metal stents. PMID:26555480

  3. Improved Diagnostic Multimodal Biomarkers for Alzheimer's Disease and Mild Cognitive Impairment

    PubMed Central

    Martínez-Torteya, Antonio; Treviño, Víctor; Tamez-Peña, José G.

    2015-01-01

    The early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) is very important for treatment research and patient care purposes. Few biomarkers are currently considered in clinical settings, and their use is still optional. The objective of this work was to determine whether multimodal and nonpreviously AD associated features could improve the classification accuracy between AD, MCI, and healthy controls, which may impact future AD biomarkers. For this, Alzheimer's Disease Neuroimaging Initiative database was mined for case-control candidates. At least 652 baseline features extracted from MRI and PET analyses, biological samples, and clinical data up to February 2014 were used. A feature selection methodology that includes a genetic algorithm search coupled to a logistic regression classifier and forward and backward selection strategies was used to explore combinations of features. This generated diagnostic models with sizes ranging from 3 to 8, including well documented AD biomarkers, as well as unexplored image, biochemical, and clinical features. Accuracies of 0.85, 0.79, and 0.80 were achieved for HC-AD, HC-MCI, and MCI-AD classifications, respectively, when evaluated using a blind test set. In conclusion, a set of features provided additional and independent information to well-established AD biomarkers, aiding in the classification of MCI and AD. PMID:26106620

  4. Biomarkers of Alzheimer’s Disease Risk in Peripheral Tissues; Focus on Buccal Cells

    PubMed Central

    François, Maxime; Leifert, Wayne; Martins, Ralph; Thomas, Philip; Fenech, Michael

    2014-01-01

    Alzheimer’s disease (AD) is a progressive degenerative disorder of the brain and is the most common form of dementia. To-date no simple, inexpensive and minimally invasive procedure is available to confirm with certainty the early diagnosis of AD prior to the manifestations of symptoms characteristic of the disease. Therefore, if population screening of individuals is to be performed, more suitable, easily accessible tissues would need to be used for a diagnostic test that would identify those who exhibit cellular pathology indicative of mild cognitive impairment (MCI) and AD risk so that they can be prioritized for primary prevention. This need for minimally invasive tests could be achieved by targeting surrogate tissues, since it is now well recognized that AD is not only a disorder restricted to pathology and biomarkers within the brain. Human buccal cells for instance are accessible in a minimally invasive manner, and exhibit cytological and nuclear morphologies that may be indicative of accelerated ageing or neurodegenerative disorders such as AD. However, to our knowledge there is no review available in the literature covering the biology of buccal cells and their applications in AD biomarker research. Therefore, the aim of this review is to summarize some of the main findings of biomarkers reported for AD in peripheral tissues, with a further focus on the rationale for the use of the buccal mucosa (BM) for biomarkers of AD and the evidence to date of changes exhibited in buccal cells with AD. PMID:24938500

  5. Pharmacological inhibition of EGFR signaling enhances G-CSF-induced hematopoietic stem cell mobilization.

    PubMed

    Ryan, Marnie A; Nattamai, Kalpana J; Xing, Ellen; Schleimer, David; Daria, Deidre; Sengupta, Amitava; Köhler, Anja; Liu, Wei; Gunzer, Matthias; Jansen, Michael; Ratner, Nancy; Le Cras, Timothy D; Waterstrat, Amanda; Van Zant, Gary; Cancelas, Jose A; Zheng, Yi; Geiger, Hartmut

    2010-10-01

    Mobilization of hematopoietic stem and progenitor cells (HSPCs) from bone marrow into peripheral blood by the cytokine granulocyte colony-stimulating factor (G-CSF) has become the preferred source of HSPCs for stem cell transplants. However, G-CSF fails to mobilize sufficient numbers of stem cells in up to 10% of donors, precluding autologous transplantation in those donors or substantially delaying transplant recovery time. Consequently, new regimens are needed to increase the number of stem cells in peripheral blood upon mobilization. Using a forward genetic approach in mice, we mapped the gene encoding the epidermal growth factor receptor (Egfr) to a genetic region modifying G-CSF-mediated HSPC mobilization. Amounts of EGFR in HSPCs inversely correlated with the cells' ability to be mobilized by G-CSF, implying a negative role for EGFR signaling in mobilization. In combination with G-CSF treatment, genetic reduction of EGFR activity in HSPCs (in waved-2 mutant mice) or treatment with the EGFR inhibitor erlotinib increased mobilization. Increased mobilization due to suppression of EGFR activity correlated with reduced activity of cell division control protein-42 (Cdc42), and genetic Cdc42 deficiency in vivo also enhanced G-CSF-induced mobilization. Our findings reveal a previously unknown signaling pathway regulating stem cell mobilization and provide a new pharmacological approach for improving HSPC mobilization and thereby transplantation outcomes. PMID:20871610

  6. Hepatocyte growth factor can substitute for M-CSF to support osteoclastogenesis

    SciTech Connect

    Adamopoulos, Iannis E. . E-mail: iadamopoulos@path.wustl.edu; Xia Zhidao; Lau, Y.S.; Athanasou, Nicholas A.

    2006-11-17

    Osteopetrotic mice lacking functional macrophage-colony stimulating factor (M-CSF) recover with ageing, suggesting that alternative osteoclastogenesis pathways exist. Hepatocyte growth factor (HGF) and M-CSF signal through tyrosine kinase receptors and phosphorylate common transducers and effectors such as Src, Grb2, and PI3-Kinase. HGF is known to play a role in osteoclast formation, and in this study we have determined whether HGF could replace M-CSF to support human osteoclastogenesis. We found that the HGF receptor, c-Met, is expressed by the CD14{sup +} monocyte fraction of human peripheral blood mononuclear cells (PBMC). HGF was able to support monocyte-osteoclast differentiation in the presence of receptor activator for nuclear factor {kappa}B ligand as evidenced by the formation of numerous multinucleated tartrate-resistant acid phosphatase and vitronectin receptor positive cells which formed F-actin rings and were capable of lacunar resorption. The addition of a neutralising antibody to M-CSF did not inhibit osteoclast differentiation. HGF is a well-established survival factor and viability assays and live/dead staining showed that it promoted the survival and proliferation of monocytes and osteoclasts in a manner similar to M-CSF. Our findings indicate that HGF can substitute for M-CSF to support human osteoclast formation.

  7. [Emergency therapy with granulocyte-macrophage colony-stimulating factor (GM-CSF)].

    PubMed

    Gratwohl, A; Dazzi, H; Tichelli, A; Stebler, C; Wernli, M; Thomssen, C; Kim, I; Dieterle, A; Obrist, R; Stern, A

    1991-03-23

    Granulocyte-macrophage colony stimulating factor (GM-CSF) has been tested for tolerability and efficacy on a compassionate need case basis in 17 patients (5 females, 12 males aged 4-72 years, median 35 years). GM-CSF was given at the rate of 3.5-32 micrograms/kg for 2-64 days as a continuous infusion for the following indications: impending rejection following bone marrow transplantation (5 patients), severe neutropenia secondary to chemotherapy in tumor patients (5), severe aplastic anemia (3), immune granulocytopenia (2) and accidental overdose with cytostatic agents (2 patients). Tolerance of GM-CSF was good in regard to doses of up to 16 micrograms/kg. Fever, myalgia and eosinophilia were the most frequent side effects. The patient treated with 32 micrograms/kg developed thrombosis of the vena cava. Efficacy is more difficult to assess in this heterogenous population, but 11 of 17 patients showed increased granulocyte counts and 3 patients clearly recovered from severe neutropenia. The role of GM-CSF in this recovery, however, cannot be proven. The results further indicate that GM-CSF cannot reverse ongoing rejection following allogenic BMT and cannot correct immune neutropenia. The value of GM-CSF therapy in patients with severe aplastic anemia and in the context of chemotherapy still needs to be defined. It is certainly indicated in patients with an accidental overdose of chemotherapeutic agents. PMID:2028244

  8. Repairing the Brain by SCF+G-CSF Treatment at 6 Months Postexperimental Stroke

    PubMed Central

    Cui, Lili; Wang, Dandan; McGillis, Sandra; Kyle, Michele

    2016-01-01

    Stroke, a leading cause of adult disability in the world, is a severe medical condition with limited treatment. Physical therapy, the only treatment available for stroke rehabilitation, appears to be effective within 6 months post-stroke. Here, we have mechanistically determined the efficacy of combined two hematopoietic growth factors, stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF; SCF + G-CSF), in brain repair 6 months after cortical infarct induction in the transgenic mice carrying yellow fluorescent protein in Layer V pyramidal neurons (Thy1-YFP-H). Using a combination of live brain imaging, whole brain imaging, molecular manipulation, synaptic and vascular assessments, and motor function examination, we found that SCF + G-CSF promoted mushroom spine formation, enlarged postsynaptic membrane size, and increased postsynaptic density-95 accumulation and blood vessel density in the peri-infarct cavity cortex; and that SCF + G-CSF treatment improved motor functional recovery. The SCF + G-CSF-enhanced motor functional recovery was dependent on the synaptic and vascular regeneration in the peri-infarct cavity cortex. These data suggest that a stroke-damaged brain is repairable by SCF + G-CSF even 6 months after the lesion occurs. This study provides novel insights into the development of new restorative strategies for stroke recovery. PMID:27511907

  9. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs

    PubMed Central

    Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F.

    2015-01-01

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs. PMID:26436700

  10. Isolated abdominal aortitis following administration of granulocyte colony stimulating factor (G-CSF).

    PubMed

    Miller, Edward B; Grosu, Roy; Landau, Zvi

    2016-06-01

    G-CSF is a myeloid growth factor produced by monocytes, macrophages, fibroblasts, and endothelial cells. Clinical uses of G-CSF includes mobilization of peripheral blood progenitor cells from healthy donors before hematopoietic stem cell transplantation, acceleration of neutrophil recovery following chemotherapy, and in the management of neutropenia due to other causes including AIDS and genetic disorders of granulocyte production. G-CSF is well tolerated and reports to be safe in healthy donors, although follow-up studies are limited in duration (D'Souza et al. in Transfus Med Rev 22(4):280-290, 2008).Isolated abdominal aortitis (IAA) is a rare disorder most commonly caused by the large-vessel vasculitides giant cell arteritis (GCA) and Takayasu arteritis, although it may also be associated with several other rheumatologic diseases and infections (Gornik and Creager in Circulation 117:3039-3051, 2008). To our knowledge, there only two cases have been published of IAA occurring in patients who had received G-CSF therapy (Dariea et al. in Rev Med Interne 25(3):225-229, 2004; Adiga et al. in Clin Drug Investig 29:821-825, 2009).We describe a case of a 55-year-old male, with peripheral vascular disease who after receiving Neupogen (G-CSF) developed a latent case of IAA. After further investigation and exclusion of other possible causative factors, we conclude that the most probable etiology is induction by G-CSF. PMID:27094941

  11. CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits

    PubMed Central

    Böhm, Urs Lucas; Prendergast, Andrew; Djenoune, Lydia; Nunes Figueiredo, Sophie; Gomez, Johanna; Stokes, Caleb; Kaiser, Sonya; Suster, Maximilliano; Kawakami, Koichi; Charpentier, Marine; Concordet, Jean-Paul; Rio, Jean-Paul; Del Bene, Filippo; Wyart, Claire

    2016-01-01

    Throughout vertebrates, cerebrospinal fluid-contacting neurons (CSF-cNs) are ciliated cells surrounding the central canal in the ventral spinal cord. Their contribution to modulate locomotion remains undetermined. Recently, we have shown CSF-cNs modulate locomotion by directly projecting onto the locomotor central pattern generators (CPGs), but the sensory modality these cells convey to spinal circuits and their relevance to innate locomotion remain elusive. Here, we demonstrate in vivo that CSF-cNs form an intraspinal mechanosensory organ that detects spinal bending. By performing calcium imaging in moving animals, we show that CSF-cNs respond to both passive and active bending of the spinal cord. In mutants for the channel Pkd2l1, CSF-cNs lose their response to bending and animals show a selective reduction of tail beat frequency, confirming the central role of this feedback loop for optimizing locomotion. Altogether, our study reveals that CSF-cNs constitute a mechanosensory organ operating during locomotion to modulate spinal CPGs. PMID:26946992

  12. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    PubMed

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs. PMID:26436700

  13. CSF proteins and resting-state functional connectivity in Parkinson disease

    PubMed Central

    Koller, Jonathan M.; Snyder, Abraham Z.; Buddhala, Chandana; Kotzbauer, Paul T.; Perlmutter, Joel S.

    2015-01-01

    Objective: The purpose of this study was to investigate the relationship between disruption of MRI-measured resting-state functional connectivity (rs-fcMRI) brain networks and CSF levels of potentially pathogenic proteins that reflect brain pathology in Parkinson disease (PD). Methods: PD participants without dementia (n = 43) and age-matched controls (n = 22) had lumbar punctures to measure CSF protein levels, Pittsburgh compound B (PiB)–PET imaging, and rs-fcMRI while off medication. Imaging analyses focused on 5 major resting-state networks as well as the striatum. Results: Participants with PD had significantly reduced sensorimotor functional connectivity, which correlated with reduced CSF levels of α-synuclein. The PD group also had significantly stronger default mode network functional connectivity that did not correlate with CSF β-amyloid (Aβ)42 or PiB uptake. In contrast, default mode network functional connectivity in the control group did correlate with CSF Aβ42 levels. Functional connectivity was similar between groups in the dorsal attention, control, and salience networks. Conclusion: These results suggest that abnormal α-synuclein accumulation, but not Aβ, contributes to the disruption of motor-related functional connectivity in PD. Furthermore, correlating CSF protein measures with the strength of resting-state networks provides a direct link between abnormal α-synuclein metabolism and disrupted brain function in PD. PMID:25979701

  14. Genomic pneumococcal load and CSF cytokines are not related to outcome in Malawian adults with meningitis

    PubMed Central

    Wall, Emma C.; Gritzfeld, Jenna F.; Scarborough, Matthew; Ajdukiewicz, Katherine M.B.; Mukaka, Mavuto; Corless, Caroline; Lalloo, David G.; Gordon, Stephen B.

    2014-01-01

    Summary Objective Bacterial meningitis in sub-Saharan Africa is predominantly caused by Streptococcus pneumoniae, is often associated with HIV co-infection and mortality rates are double those seen in better resourced settings. Methods To investigate the cause of this excessive mortality we quantified the pneumococcal DNA load and six common pro-inflammatory cytokines in the cerebrospinal fluid (CSF) of Malawian adults with culture proven pneumococcal meningitis and correlated the results to clinical parameters and outcome. There are currently no published data relating bacterial load to outcome in adults with pneumococcal meningitis. Results The mean age of patients was 32 years, 82% were HIV infected and 49% had died by day 40. CSF bacterial loads were high (median 6.5 × 105 copies/ml CSF) and there was no significant variation in bacterial load between survivors and non-survivors. All pro-inflammatory CSF cytokines were elevated in the CSF, with no clinically important differences between survivors and non-survivors. HIV status did not affect the CSF bacterial load or cytokine response. Conclusion Mortality from pneumococcal meningitis in adults in sub-Saharan Africa is not related to pneumococcal bacterial load. More research is needed to understand the very high mortality from meningitis in this region. PMID:24975177

  15. Human Granulocyte Colony-Stimulating Factor (hG-CSF) Expression in Plastids of Lactuca sativa

    PubMed Central

    Sharifi Tabar, Mehdi; Habashi, Ali Akbar; Rajabi Memari, Hamid

    2013-01-01

    Background: Human granulocyte colony-stimulating factor (hG-CSF) can serve as valuable biopharmaceutical for research and treatment of the human blood cancer. Transplastomic plants have been emerged as a new and high potential candidate for production of recombinant biopharmaceutical proteins in comparison with transgenic plants due to extremely high level expression, biosafety and many other advantages. Methods: hG-CSF gene was cloned into pCL vector between prrn16S promoter and TpsbA terminator. The recombinant vector was coated on nanogold particles and transformed to lettuce chloroplasts through biolistic method. Callogenesis and regeneration of cotyledonary explants were obtained by Murashige and Skoog media containing 6-benzylaminopurine and 1-naphthaleneacetic acid hormones. The presence of hG-CSF gene in plastome was studied with four specific PCR primers and expression by Western immunoblotting. Results: hG-CSF gene cloning was confirmed by digestion and sequencing. Transplastomic lettuce lines were regenerated and subjected to molecular analysis. The presence of hG-CSF in plastome was confirmed by PCR using specific primers designed from the plastid genome. Western immunoblotting of extracted protein from transplastomic plants showed a 20-kDa band, which verified the expression of recombinant protein in lettuce chloroplasts. Conclusions: This study is the first report that successfully express hG-CSF gene in lettuce chloroplast. The lettuce plastome can provide a cheap and safe expression platform for producing valuable biopharmaceuticals for research and treatment. PMID:23748895

  16. CSF-1R inhibition alters macrophage polarization and blocks glioma progression

    PubMed Central

    Pyonteck, Stephanie M.; Akkari, Leila; Schuhmacher, Alberto J.; Bowman, Robert L.; Sevenich, Lisa; Quail, Daniela F.; Olson, Oakley C.; Quick, Marsha L.; Huse, Jason T.; Teijeiro, Virginia; Setty, Manu; Leslie, Christina S.; Oei, Yoko; Pedraza, Alicia; Zhang, Jianan; Brennan, Cameron W.; Sutton, James C.; Holland, Eric C.; Daniel, Dylan; Joyce, Johanna A.

    2013-01-01

    Glioblastoma multiforme (GBM) comprises several molecular subtypes including proneural GBM. Most therapeutic approaches targeting glioma cells have failed. An alternative strategy is to target cells in the glioma microenvironment, such as tumor-associated macrophages and microglia (TAMs). Macrophages depend upon colony stimulating factor (CSF)-1 for differentiation and survival. A CSF-1R inhibitor was used to target TAMs in a mouse proneural GBM model, which dramatically increased survival, and regressed established tumors. CSF-1R blockade additionally slowed intracranial growth of patient-derived glioma xenografts. Surprisingly, TAMs were not depleted in treated mice. Instead, glioma-secreted factors including GM-CSF and IFN-γ facilitated TAM survival in the context of CSF-1R inhibition. Alternatively activated/ M2 macrophage markers decreased in surviving TAMs, consistent with impaired tumor-promoting functions. These gene signatures were associated with enhanced survival in proneural GBM patients. Our results identify TAMs as a promising therapeutic target for proneural gliomas, and establish the translational potential of CSF-1R inhibition for GBM. PMID:24056773

  17. Cerebrospinal fluid analysis for HIV replication and biomarkers of immune activation and neurodegeneration in long-term atazanavir/ritonavir monotherapy treated patients

    PubMed Central

    Ferretti, Francesca; Bigoloni, Alba; Passeri, Laura; Galli, Laura; Longo, Valeria; Gerevini, Simonetta; Spagnuolo, Vincenzo; Gisslen, Magnus; Zetterberg, Henrik; Fuchs, Dietmar; Cattaneo, Dario; Caramatti, Giada; Lazzarin, Adriano; Cinque, Paola; Castagna, Antonella

    2016-01-01

    Abstract Background: Cerebrospinal fluid (CSF) viral escape is a concern in ritonavir-boosted protease inhibitors monotherapy. The aim was to assess HIV-RNA, biomarkers of immune activation and neurodegeneration, and atazanavir concentrations in CSF of patients on successful long-term atazanavir/ritonavir (ATV/r) monotherapy. Methods: This is a substudy of the multicentric, randomized, open-label, noninferiority trial monotherapy once a day with atazanavir/ritonavir (NCT01511809), comparing the ongoing ATV/r along with 2 nucleoside retrotranscriptase inhibitors (NRTIs) regimen to a simplified ATV/r monotherapy. Patients with plasma HIV-RNA < 50 copies/mL after at least 96 study weeks were eligible. We assessed HIV-RNA, soluble (s)CD14, sCD163, CCL2, CXCL10, interleukin-6, and YKL40 by enzyme-linked immunosorbent assay; neopterin, tryptophan, kynurenine, and neurofilament by immunoassays; and ATV concentrations by liquid chromatography–mass spectrometry in paired plasma and CSF samples. Variables were compared with Wilcoxon rank-sum or Fisher exact test, as appropriate. Results: HIV-RNA was detected in the CSF of 1/11 patients on ATV/r monotherapy (114 copies/mL), without neurological symptoms, who was successfully reintensified with his previous 2NRTIs, and in none of the 12 patients on ATV/r + 2NRTIs. CSF biomarkers and ATV concentrations did not differ between the 2 arms. Conclusions: CSF escape was uncommon in patients on long-term ATV/r monotherapy and was controlled with reintensification. PMID:27428202

  18. Biomarkers for Hepatocellular Carcinoma

    PubMed Central

    Behne, Tara; Copur, M. Sitki

    2012-01-01

    The hepatocellular carcinoma (HCC) is one of the most common malignant tumors and carries a poor survival rate. The management of patients at risk for developing HCC remains challenging. Increased understanding of cancer biology and technological advances have enabled identification of a multitude of pathological, genetic, and molecular events that drive hepatocarcinogenesis leading to discovery of numerous potential biomarkers in this disease. They are currently being aggressively evaluated to establish their value in early diagnosis, optimization of therapy, reducing the emergence of new tumors, and preventing the recurrence after surgical resection or liver transplantation. These markers not only help in prediction of prognosis or recurrence but may also assist in deciding appropriate modality of therapy and may represent novel potential targets for therapeutic interventions. In this paper, a summary of most relevant available data from published papers reporting various tissue and serum biomarkers involved in hepatocellular carcinoma was presented. PMID:22655201

  19. Biomarkers for hepatocellular carcinoma.

    PubMed

    Behne, Tara; Copur, M Sitki

    2012-01-01

    The hepatocellular carcinoma (HCC) is one of the most common malignant tumors and carries a poor survival rate. The management of patients at risk for developing HCC remains challenging. Increased understanding of cancer biology and technological advances have enabled identification of a multitude of pathological, genetic, and molecular events that drive hepatocarcinogenesis leading to discovery of numerous potential biomarkers in this disease. They are currently being aggressively evaluated to establish their value in early diagnosis, optimization of therapy, reducing the emergence of new tumors, and preventing the recurrence after surgical resection or liver transplantation. These markers not only help in prediction of prognosis or recurrence but may also assist in deciding appropriate modality of therapy and may represent novel potential targets for therapeutic interventions. In this paper, a summary of most relevant available data from published papers reporting various tissue and serum biomarkers involved in hepatocellular carcinoma was presented. PMID:22655201

  20. Genetic biomarkers of depression

    PubMed Central

    Tamatam, Anand; Khanum, Farhath; Bawa, Amarinder Singh

    2012-01-01

    Depression is a term that has been used to describe a variety of ailments, ranging from minor to incapacitating. Clinically significant depression, termed as major depression, is a serious condition characterized not only by depressed mood but also by a cluster of somatic, cognitive, and motivational symptoms. Significant research efforts are aimed to understand the neurobiological as well as psychiatric disorders, and the evaluation of treatment of these disorders is still based solely on the assessment of symptoms. In order to identify the biological markers for depression, we have focused on gathering information on different factors responsible for depression including stress, genetic variations, neurotransmitters, and cytokines and chemokines previously suggested to be involved in the pathophysiology of depression. The present review illustrates the potential of biomarker profiling for psychiatric disorders, when conducted in large collections. The review highlighted the biomarker signatures for depression, warranting further investigation. PMID:22754217

  1. Imaging biomarkers in tauopathies.

    PubMed

    Dani, Melanie; Edison, Paul; Brooks, David J

    2016-01-01

    Abnormally aggregated tau protein is central to the pathophysiology of Alzheimer's disease, frontotemporal dementia variants, progressive supranuclear palsy, corticobasal degeneration and chronic traumatic encephalopathy. The post-mortem cortical density of hyperphosphorylated tau tangles correlates with pre-morbid cognitive dysfunction and neuron loss. Selective PET ligands including [18F]THK5117, [18F]THK5351, [18F]AV1451 (T807) and [11C]PBB3 now provide in vivo imaging information about the timing and distribution of tau in the early phases of neurodegenerative diseases. They are potential imaging biomarkers for both supporting diagnosis and tracking disease progression. Here, we discuss the challenges posed in developing selective tau ligands as biomarkers, their state of development and the new clinical information that has been revealed. PMID:26299160

  2. Tear biomarkers for keratoconus.

    PubMed

    Nishtala, Krishnatej; Pahuja, Natasha; Shetty, Rohit; Nuijts, Rudy M M A; Ghosh, Arkasubhra

    2016-01-01

    Keratoconus is a progressive corneal thinning, ectatic condition, which affects vision. Recent advances in corneal topography measurements has helped advance proper diagnosis of this condition and increased research and clinical interests in the disease etiopathogenesis. Considerable progress has been achieved in understanding the progression of the disease and tear fluid has played a major role in the progress. This review discusses the importance of tear fluid as a source of biomarker for keratoconus and how advances in technology have helped map the complexity of tears and thereby molecular readouts of the disease. Expanding knowledge of the tear proteome, lipidome and metabolome opened up new avenues to study keratoconus and to identify probable prognostic or diagnostic biomarkers for the disease. A multidimensional approach of analyzing tear fluid of patients layering on proteomics, lipidomics and metabolomics is necessary in effectively decoding keratoconus and thereby identifying targets for its treatment. PMID:27493978

  3. Interrelations between CSF soluble AβPPβ, amyloid-β 1-42, SORL1, and tau levels in Alzheimer's disease.

    PubMed

    Alexopoulos, Panagiotis; Guo, Liang-Hao; Tsolakidou, Amalia; Kratzer, Martina; Grimmer, Timo; Westerteicher, Christine; Jiang, Meizi; Bujo, Hideaki; Diehl-Schmid, Janine; Kurz, Alexander; Perneczky, Robert

    2012-01-01

    Recently, light has been shed on possible interrelations between the two most important pathological hallmarks of Alzheimer's disease (AD): the amyloid cascade and axonal degeneration. In this study, we investigated associations between sβAPPβ, a product of the cleavage of the amyloid-β protein precursor (AβPP) by β-secretase, amyloid-β 1-42 (Aβ42), soluble SORL1 (also called LR11 or SORLA), a receptor that is involved in AβPP processing, and the marker of axonal degeneration tau in the cerebrospinal fluid (CSF) of 76 patients with mild cognitive impairment (MCI), 61 patients with AD, and 17 patients with frontotemporal dementia, which neuropathologically is not related to the amyloid pathology. In the AD group, significant associations between sAβPPβ, tau (p < 0.001), and soluble SORL1 (p < 0.001) were detected according to linear regression models. In patients with MCI, sAβPPβ correlated significantly with tau (p < 0.001) and soluble SORL1 (p = 0.003). In the FTD group, only SORL1 (p = 0.011) was associated with sAβPPβ and not tau. Aβ42 was found to be significantly related to tau levels in CSF in the MCI group (p < 0.001) and they tended to be associated in the AD group (p = 0.05). Our results provide further evidence for a link between the two facets of AD pathology, which is likely to be mediated by the binding of Aβ oligomers to specifically targeted neurons, resulting in stimulating tau hyperphosphorylation and neurodegeneration. PMID:22045485

  4. Biomarkers of Selenium Status

    PubMed Central

    Combs, Gerald F.

    2015-01-01

    The essential trace element, selenium (Se), has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potential; and very high Se intakes can produce adverse effects. This hierarchy of biological activities calls for biomarkers informative at different levels of Se exposure. Some Se-biomarkers, such as the selenoproteins and particularly GPX3 and SEPP1, provide information about function directly and are of value in identifying nutritional Se deficiency and tracking responses of deficient individuals to Se-treatment. They are useful under conditions of Se intake within the range of regulated selenoprotein expression, e.g., for humans <55 μg/day and for animals <20 μg/kg diet. Other Se-biomarkers provide information indirectly through inferences based on Se levels of foods, tissues, urine or feces. They can indicate the likelihood of deficiency or adverse effects, but they do not provide direct evidence of either condition. Their value is in providing information about Se status over a wide range of Se intake, particularly from food forms. There is need for additional Se biomarkers particularly for assessing Se status in non-deficient individuals for whom the prospects of cancer risk reduction and adverse effects risk are the primary health considerations. This would include determining whether supranutritional intakes of Se may be required for maximal selenoprotein expression in immune surveillance cells. It would also include developing methods to determine low molecular weight Se-metabolites, i.e., selenoamino acids and methylated Se-metabolites, which to date have not been detectable in biological specimens. Recent analytical advances using tandem liquid chromatography-mass spectrometry suggest prospects for detecting these metabolites. PMID:25835046

  5. Protein biomarkers in Parkinson's disease: Focus on cerebrospinal fluid markers and synaptic proteins.

    PubMed

    Halbgebauer, Steffen; Öckl, Patrick; Wirth, Katharina; Steinacker, Petra; Otto, Markus

    2016-06-01

    Despite extensive research, to date, no validated biomarkers for PD have been found. This review seeks to summarize studies approaching the detection of biomarker candidates for PD and introduce promising ones in more detail, with special attention to synaptic proteins. To this end, we performed a PubMed search and included studies using proteomic tools (2-dimensional difference in gel electrophoresis and/or mass spectrometry) for the comparison of samples from PD and control patients. We found 27 studies reporting more than 500 differentially expressed proteins in which a total of 28 were detected in 2 and 17 in 3 or more independent studies, including posttranslationally modified proteins. In addition, of these 500 proteins, 25 were found to be brain specific, and 14 were enriched in synapses. Special attention was given to the applicability of the biomarker regarding sampling procedures, that is, using CSF/serum material for diagnosis. Furthermore, presynaptic proteins involved in vesicle membrane fusion seem to be interesting candidates for future analyses. Nonetheless, even though such promising biomarker candidates for PD exist, validation of these biomarkers in large-scale clinical studies is necessary to evaluate the diagnostic potential. © 2016 International Parkinson and Movement Disorder Society. PMID:27134134

  6. Septoclast Deficiency Accompanies Postnatal Growth Plate Chondrodysplasia in the Toothless (tl) Osteopetrotic, Colony-Stimulating Factor-1 (CSF-1)-Deficient Rat and Is Partially Responsive to CSF-1 Injections

    PubMed Central

    Gartland, Alison; Mason-Savas, April; Yang, Meiheng; MacKay, Carole A.; Birnbaum, Mark J.; Odgren, Paul R.

    2009-01-01

    The septoclast is a specialized, cathepsin B-rich, perivascular cell type that accompanies invading capillaries on the metaphyseal side of the growth plate during endochondral bone growth. The putative role of septoclasts is to break down the terminal transverse septum of growth plate cartilage and permit capillaries to bud into the lower hypertrophic zone. This process fails in osteoclast-deficient, osteopetrotic animal models, resulting in a progressive growth plate dysplasia. The toothless rat is severely osteopetrotic because of a frameshift mutation in the colony-stimulating factor-1 (CSF-1) gene (Csf1tl). Whereas CSF-1 injections quickly restore endosteal osteoclast populations, they do not improve the chondrodysplasia. We therefore investigated septoclast populations in Csf1tl/Csf1tl rats and wild-type littermates, with and without CSF-1 treatment, at 2 weeks, before the dysplasia is pronounced, and at 4 weeks, by which time it is severe. Tibial sections were immunolabeled for cathepsin B and septoclasts were counted. Csf1tl/Csf1tl mutants had significant reductions in septoclasts at both times, although they were more pronounced at 4 weeks. CSF-1 injections increased counts in wild-type and mutant animals at both times, restoring mutants to normal levels at 2 weeks. In all of the mutants, septoclasts seemed misoriented and had abnormal ultrastructure. We conclude that CSF-1 promotes angiogenesis at the chondroosseous junction, but that, in Csf1tl/Csf1tl rats, septoclasts are unable to direct their degradative activity appropriately, implying a capillary guidance role for locally supplied CSF-1. PMID:19893052

  7. A concise panel of biomarkers identifies neurocognitive functioning changes in HIV-infected individuals.

    PubMed

    Marcotte, Thomas D; Deutsch, Reena; Michael, Benedict Daniel; Franklin, Donald; Cookson, Debra Rosario; Bharti, Ajay R; Grant, Igor; Letendre, Scott L

    2013-12-01

    Neurocognitive (NC) impairment (NCI) occurs commonly in people living with HIV. Despite substantial effort, no biomarkers have been sufficiently validated for diagnosis and prognosis of NCI in the clinic. The goal of this project was to identify diagnostic or prognostic biomarkers for NCI in a comprehensively characterized HIV cohort. Multidisciplinary case review selected 98 HIV-infected individuals and categorized them into four NC groups using normative data: stably normal (SN), stably impaired (SI), worsening (Wo), or improving (Im). All subjects underwent comprehensive NC testing, phlebotomy, and lumbar puncture at two timepoints separated by a median of 6.2 months. Eight biomarkers were measured in CSF and blood by immunoassay. Results were analyzed using mixed model linear regression and staged recursive partitioning. At the first visit, subjects were mostly middle-aged (median 45) white (58 %) men (84 %) who had AIDS (70 %). Of the 73 % who took antiretroviral therapy (ART), 54 % had HIV RNA levels below 50 c/mL in plasma. Mixed model linear regression identified that only MCP-1 in CSF was associated with neurocognitive change group. Recursive partitioning models aimed at diagnosis (i.e., correctly classifying neurocognitive status at the first visit) were complex and required most biomarkers to achieve misclassification limits. In contrast, prognostic models were more efficient. A combination of three biomarkers (sCD14, MCP-1, SDF-1α) correctly classified 82 % of Wo and SN subjects, including 88 % of SN subjects. A combination of two biomarkers (MCP-1, TNF-α) correctly classified 81 % of Im and SI subjects, including 100 % of SI subjects. This analysis of well-characterized individuals identified concise panels of biomarkers associated with NC change. Across all analyses, the two most frequently identified biomarkers were sCD14 and MCP-1, indicators of monocyte/macrophage activation. While the panels differed depending on the outcome and on the

  8. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice

    PubMed Central

    Christopher, Matthew J.; Rao, Mahil; Liu, Fulu; Woloszynek, Jill R.

    2011-01-01

    Granulocyte colony-stimulating factor (G-CSF), the prototypical mobilizing cytokine, induces hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow in a cell-nonautonomous fashion. This process is mediated, in part, through suppression of osteoblasts and disruption of CXCR4/CXCL12 signaling. The cellular targets of G-CSF that initiate the mobilization cascade have not been identified. We use mixed G-CSF receptor (G-CSFR)–deficient bone marrow chimeras to show that G-CSF–induced mobilization of HSPCs correlates poorly with the number of wild-type neutrophils. We generated transgenic mice in which expression of the G-CSFR is restricted to cells of the monocytic lineage. G-CSF–induced HSPC mobilization, osteoblast suppression, and inhibition of CXCL12 expression in the bone marrow of these transgenic mice are intact, demonstrating that G-CSFR signals in monocytic cells are sufficient to induce HSPC mobilization. Moreover, G-CSF treatment of wild-type mice is associated with marked loss of monocytic cells in the bone marrow. Finally, we show that bone marrow macrophages produce factors that support the growth and/or survival of osteoblasts in vitro. Together, these data suggest a model in which G-CSFR signals in bone marrow monocytic cells inhibit the production of trophic factors required for osteoblast lineage cell maintenance, ultimately leading to HSPC mobilization. PMID:21282380

  9. Genetic and Pharmacological Targeting of CSF-1/CSF-1R Inhibits Tumor-Associated Macrophages and Impairs BRAF-Induced Thyroid Cancer Progression

    PubMed Central

    Ryder, Mabel; Gild, Matti; Hohl, Tobias M.; Pamer, Eric; Knauf, Jeff; Ghossein, Ronald; Joyce, Johanna A.; Fagin, James A.

    2013-01-01

    Advanced human thyroid cancers are densely infiltrated with tumor-associated macrophages (TAMs) and this correlates with a poor prognosis. We used BRAF-induced papillary thyroid cancer (PTC) mouse models to examine the role of TAMs in PTC progression. Following conditional activation of BRAFV600E in murine thyroids there is an increased expression of the TAM chemoattractants Csf-1 and Ccl-2. This is followed by the development of PTCs that are densely infiltrated with TAMs that express Csf-1r and Ccr2. Targeting CCR2-expressing cells during BRAF-induction reduced TAM density and impaired PTC development. This strategy also induced smaller tumors, decreased proliferation and restored a thyroid follicular architecture in established PTCs. In PTCs from mice that lacked CSF-1 or that received a c-FMS/CSF-1R kinase inhibitor, TAM recruitment and PTC progression was impaired, recapitulating the effects of targeting CCR2-expressing cells. Our data demonstrate that TAMs are pro-tumorigenic in advanced PTCs and that they can be targeted pharmacologically, which may be potentially useful for patients with advanced thyroid cancers. PMID:23372702

  10. M-CSF and GM-CSF Receptor Signaling Differentially Regulate Monocyte Maturation and Macrophage Polarization in the Tumor Microenvironment.

    PubMed

    Van Overmeire, Eva; Stijlemans, Benoît; Heymann, Felix; Keirsse, Jiri; Morias, Yannick; Elkrim, Yvon; Brys, Lea; Abels, Chloé; Lahmar, Qods; Ergen, Can; Vereecke, Lars; Tacke, Frank; De Baetselier, Patrick; Van Ginderachter, Jo A; Laoui, Damya

    2016-01-01

    Tumors contain a heterogeneous myeloid fraction comprised of discrete MHC-II(hi) and MHC-II(lo) tumor-associated macrophage (TAM) subpopulations that originate from Ly6C(hi) monocytes. However, the mechanisms regulating the abundance and phenotype of distinct TAM subsets remain unknown. Here, we investigated the role of macrophage colony-stimulating factor (M-CSF) in TAM differentiation and polarization in different mouse tumor models. We demonstrate that treatment of tumor-bearing mice with a blocking anti-M-CSFR monoclonal antibody resulted in a reduction of mature TAMs due to impaired recruitment, extravasation, proliferation, and maturation of their Ly6C(hi) monocytic precursors. M-CSFR signaling blockade shifted the MHC-II(lo)/MHC-II(hi) TAM balance in favor of the latter as observed by the preferential differentiation of Ly6C(hi) monocytes into MHC-II(hi) TAMs. In addition, the genetic and functional signatures of MHC-II(lo) TAMs were downregulated upon M-CSFR blockade, indicating that M-CSFR signaling shapes the MHC-II(lo) TAM phenotype. Conversely, granulocyte macrophage (GM)-CSFR had no effect on the mononuclear tumor infiltrate or relative abundance of TAM subsets. However, GM-CSFR signaling played an important role in fine-tuning the MHC-II(hi) phenotype. Overall, our data uncover the multifaceted and opposing roles of M-CSFR and GM-CSFR signaling in governing the phenotype of macrophage subsets in tumors, and provide new insight into the mechanism of action underlying M-CSFR blockade. PMID:26573801

  11. Biomarkers in Diabetic Retinopathy.

    PubMed

    Jenkins, Alicia J; Joglekar, Mugdha V; Hardikar, Anandwardhan A; Keech, Anthony C; O'Neal, David N; Januszewski, Andrzej S

    2015-01-01

    There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat

  12. [Understanding of cerebrospinal fluid hydrodynamics in idiopathic hydrocephalus (A) Visualization of CSF bulk flow with MRI time-spatial labeling pulse method (time-SLIP)].

    PubMed

    Yamada, Shinya; Goto, Tadateru

    2010-11-01

    Cerebrospinal fluids (CSF) hydrodynamics in normal and hydrocephalic brain was observed noninvasively using a time-spatial labeling inversion pulse (SLIP) technique. A time-SLIP technique applied label to CSF in the region of interest so that CSF became internal CSF tracer. CSF hydrodynamics even in normal brain appeared to be much different from