Sample records for adaptable multivariate calibration

  1. Domain-Invariant Partial-Least-Squares Regression.

    PubMed

    Nikzad-Langerodi, Ramin; Zellinger, Werner; Lughofer, Edwin; Saminger-Platz, Susanne

    2018-05-11

    Multivariate calibration models often fail to extrapolate beyond the calibration samples because of changes associated with the instrumental response, environmental condition, or sample matrix. Most of the current methods used to adapt a source calibration model to a target domain exclusively apply to calibration transfer between similar analytical devices, while generic methods for calibration-model adaptation are largely missing. To fill this gap, we here introduce domain-invariant partial-least-squares (di-PLS) regression, which extends ordinary PLS by a domain regularizer in order to align the source and target distributions in the latent-variable space. We show that a domain-invariant weight vector can be derived in closed form, which allows the integration of (partially) labeled data from the source and target domains as well as entirely unlabeled data from the latter. We test our approach on a simulated data set where the aim is to desensitize a source calibration model to an unknown interfering agent in the target domain (i.e., unsupervised model adaptation). In addition, we demonstrate unsupervised, semisupervised, and supervised model adaptation by di-PLS on two real-world near-infrared (NIR) spectroscopic data sets.

  2. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data

    NASA Astrophysics Data System (ADS)

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-01

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively.

  3. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data.

    PubMed

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-05

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Linear regression analysis and its application to multivariate chromatographic calibration for the quantitative analysis of two-component mixtures.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil

    2005-01-01

    Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.

  5. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression.

    PubMed

    Delwiche, Stephen R; Reeves, James B

    2010-01-01

    In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various types of spectroscopy data.

  6. Measurement of non-sugar solids content in Chinese rice wine using near infrared spectroscopy combined with an efficient characteristic variables selection algorithm.

    PubMed

    Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng

    2015-01-01

    The non-sugar solids (NSS) content is one of the most important nutrition indicators of Chinese rice wine. This study proposed a rapid method for the measurement of NSS content in Chinese rice wine using near infrared (NIR) spectroscopy. We also systemically studied the efficient spectral variables selection algorithms that have to go through modeling. A new algorithm of synergy interval partial least square with competitive adaptive reweighted sampling (Si-CARS-PLS) was proposed for modeling. The performance of the final model was back-evaluated using root mean square error of calibration (RMSEC) and correlation coefficient (Rc) in calibration set and similarly tested by mean square error of prediction (RMSEP) and correlation coefficient (Rp) in prediction set. The optimum model by Si-CARS-PLS algorithm was achieved when 7 PLS factors and 18 variables were included, and the results were as follows: Rc=0.95 and RMSEC=1.12 in the calibration set, Rp=0.95 and RMSEP=1.22 in the prediction set. In addition, Si-CARS-PLS algorithm showed its superiority when compared with the commonly used algorithms in multivariate calibration. This work demonstrated that NIR spectroscopy technique combined with a suitable multivariate calibration algorithm has a high potential in rapid measurement of NSS content in Chinese rice wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Das, Bappa; Sahoo, Rabi N.; Pargal, Sourabh; Krishna, Gopal; Verma, Rakesh; Chinnusamy, Viswanathan; Sehgal, Vinay K.; Gupta, Vinod K.; Dash, Sushanta K.; Swain, Padmini

    2018-03-01

    In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500 nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.

  8. An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.

    2017-01-01

    Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.

  9. Regional vertical total electron content (VTEC) modeling together with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS)

    NASA Astrophysics Data System (ADS)

    Durmaz, Murat; Karslioglu, Mahmut Onur

    2015-04-01

    There are various global and regional methods that have been proposed for the modeling of ionospheric vertical total electron content (VTEC). Global distribution of VTEC is usually modeled by spherical harmonic expansions, while tensor products of compactly supported univariate B-splines can be used for regional modeling. In these empirical parametric models, the coefficients of the basis functions as well as differential code biases (DCBs) of satellites and receivers can be treated as unknown parameters which can be estimated from geometry-free linear combinations of global positioning system observables. In this work we propose a new semi-parametric multivariate adaptive regression B-splines (SP-BMARS) method for the regional modeling of VTEC together with satellite and receiver DCBs, where the parametric part of the model is related to the DCBs as fixed parameters and the non-parametric part adaptively models the spatio-temporal distribution of VTEC. The latter is based on multivariate adaptive regression B-splines which is a non-parametric modeling technique making use of compactly supported B-spline basis functions that are generated from the observations automatically. This algorithm takes advantage of an adaptive scale-by-scale model building strategy that searches for best-fitting B-splines to the data at each scale. The VTEC maps generated from the proposed method are compared numerically and visually with the global ionosphere maps (GIMs) which are provided by the Center for Orbit Determination in Europe (CODE). The VTEC values from SP-BMARS and CODE GIMs are also compared with VTEC values obtained through calibration using local ionospheric model. The estimated satellite and receiver DCBs from the SP-BMARS model are compared with the CODE distributed DCBs. The results show that the SP-BMARS algorithm can be used to estimate satellite and receiver DCBs while adaptively and flexibly modeling the daily regional VTEC.

  10. An adaptive modeling and simulation environment for combined-cycle data reconciliation and degradation estimation

    NASA Astrophysics Data System (ADS)

    Lin, Tsungpo

    Performance engineers face the major challenge in modeling and simulation for the after-market power system due to system degradation and measurement errors. Currently, the majority in power generation industries utilizes the deterministic data matching method to calibrate the model and cascade system degradation, which causes significant calibration uncertainty and also the risk of providing performance guarantees. In this research work, a maximum-likelihood based simultaneous data reconciliation and model calibration (SDRMC) is used for power system modeling and simulation. By replacing the current deterministic data matching with SDRMC one can reduce the calibration uncertainty and mitigate the error propagation to the performance simulation. A modeling and simulation environment for a complex power system with certain degradation has been developed. In this environment multiple data sets are imported when carrying out simultaneous data reconciliation and model calibration. Calibration uncertainties are estimated through error analyses and populated to performance simulation by using principle of error propagation. System degradation is then quantified by performance comparison between the calibrated model and its expected new & clean status. To mitigate smearing effects caused by gross errors, gross error detection (GED) is carried out in two stages. The first stage is a screening stage, in which serious gross errors are eliminated in advance. The GED techniques used in the screening stage are based on multivariate data analysis (MDA), including multivariate data visualization and principal component analysis (PCA). Subtle gross errors are treated at the second stage, in which the serial bias compensation or robust M-estimator is engaged. To achieve a better efficiency in the combined scheme of the least squares based data reconciliation and the GED technique based on hypotheses testing, the Levenberg-Marquardt (LM) algorithm is utilized as the optimizer. To reduce the computation time and stabilize the problem solving for a complex power system such as a combined cycle power plant, meta-modeling using the response surface equation (RSE) and system/process decomposition are incorporated with the simultaneous scheme of SDRMC. The goal of this research work is to reduce the calibration uncertainties and, thus, the risks of providing performance guarantees arisen from uncertainties in performance simulation.

  11. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2004-03-23

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  12. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  13. Application of Fluorescence Spectrometry With Multivariate Calibration to the Enantiomeric Recognition of Fluoxetine in Pharmaceutical Preparations.

    PubMed

    Poláček, Roman; Májek, Pavel; Hroboňová, Katarína; Sádecká, Jana

    2016-04-01

    Fluoxetine is the most prescribed antidepressant chiral drug worldwide. Its enantiomers have a different duration of serotonin inhibition. A novel simple and rapid method for determination of the enantiomeric composition of fluoxetine in pharmaceutical pills is presented. Specifically, emission, excitation, and synchronous fluorescence techniques were employed to obtain the spectral data, which with multivariate calibration methods, namely, principal component regression (PCR) and partial least square (PLS), were investigated. The chiral recognition of fluoxetine enantiomers in the presence of β-cyclodextrin was based on diastereomeric complexes. The results of the multivariate calibration modeling indicated good prediction abilities. The obtained results for tablets were compared with those from chiral HPLC and no significant differences are shown by Fisher's (F) test and Student's t-test. The smallest residuals between reference or nominal values and predicted values were achieved by multivariate calibration of synchronous fluorescence spectral data. This conclusion is supported by calculated values of the figure of merit.

  14. Fresh Biomass Estimation in Heterogeneous Grassland Using Hyperspectral Measurements and Multivariate Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.

    2014-12-01

    Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.

  15. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using themore » leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.« less

  16. Augmented classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2004-02-03

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  17. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2005-07-26

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  18. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2005-01-11

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  19. Bivariate versus multivariate smart spectrophotometric calibration methods for the simultaneous determination of a quaternary mixture of mosapride, pantoprazole and their degradation products.

    PubMed

    Hegazy, M A; Yehia, A M; Moustafa, A A

    2013-05-01

    The ability of bivariate and multivariate spectrophotometric methods was demonstrated in the resolution of a quaternary mixture of mosapride, pantoprazole and their degradation products. The bivariate calibrations include bivariate spectrophotometric method (BSM) and H-point standard addition method (HPSAM), which were able to determine the two drugs, simultaneously, but not in the presence of their degradation products, the results showed that simultaneous determinations could be performed in the concentration ranges of 5.0-50.0 microg/ml for mosapride and 10.0-40.0 microg/ml for pantoprazole by bivariate spectrophotometric method and in the concentration ranges of 5.0-45.0 microg/ml for both drugs by H-point standard addition method. Moreover, the applied multivariate calibration methods were able for the determination of mosapride, pantoprazole and their degradation products using concentration residuals augmented classical least squares (CRACLS) and partial least squares (PLS). The proposed multivariate methods were applied to 17 synthetic samples in the concentration ranges of 3.0-12.0 microg/ml mosapride, 8.0-32.0 microg/ml pantoprazole, 1.5-6.0 microg/ml mosapride degradation products and 2.0-8.0 microg/ml pantoprazole degradation products. The proposed bivariate and multivariate calibration methods were successfully applied to the determination of mosapride and pantoprazole in their pharmaceutical preparations.

  20. Discordance between net analyte signal theory and practical multivariate calibration.

    PubMed

    Brown, Christopher D

    2004-08-01

    Lorber's concept of net analyte signal is reviewed in the context of classical and inverse least-squares approaches to multivariate calibration. It is shown that, in the presence of device measurement error, the classical and inverse calibration procedures have radically different theoretical prediction objectives, and the assertion that the popular inverse least-squares procedures (including partial least squares, principal components regression) approximate Lorber's net analyte signal vector in the limit is disproved. Exact theoretical expressions for the prediction error bias, variance, and mean-squared error are given under general measurement error conditions, which reinforce the very discrepant behavior between these two predictive approaches, and Lorber's net analyte signal theory. Implications for multivariate figures of merit and numerous recently proposed preprocessing treatments involving orthogonal projections are also discussed.

  1. Calibrated Multivariate Regression with Application to Neural Semantic Basis Discovery.

    PubMed

    Liu, Han; Wang, Lie; Zhao, Tuo

    2015-08-01

    We propose a calibrated multivariate regression method named CMR for fitting high dimensional multivariate regression models. Compared with existing methods, CMR calibrates regularization for each regression task with respect to its noise level so that it simultaneously attains improved finite-sample performance and tuning insensitiveness. Theoretically, we provide sufficient conditions under which CMR achieves the optimal rate of convergence in parameter estimation. Computationally, we propose an efficient smoothed proximal gradient algorithm with a worst-case numerical rate of convergence O (1/ ϵ ), where ϵ is a pre-specified accuracy of the objective function value. We conduct thorough numerical simulations to illustrate that CMR consistently outperforms other high dimensional multivariate regression methods. We also apply CMR to solve a brain activity prediction problem and find that it is as competitive as a handcrafted model created by human experts. The R package camel implementing the proposed method is available on the Comprehensive R Archive Network http://cran.r-project.org/web/packages/camel/.

  2. Rainfall Estimation over the Nile Basin using an Adapted Version of the SCaMPR Algorithm

    NASA Astrophysics Data System (ADS)

    Habib, E. H.; Kuligowski, R. J.; Elshamy, M. E.; Ali, M. A.; Haile, A.; Amin, D.; Eldin, A.

    2011-12-01

    Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite-derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). This study reports on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self-Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application over the Nile Basin. The algorithm uses a set of rainfall predictors from multi-spectral Infrared cloud top observations and self-calibrates them to a set of predictands from Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as SSM/I, SSMIS, AMSU, AMSR-E, and TMI. The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real-time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static coefficients that are derived from IR-MW data from past observations. We also compare the SCaMPR algorithm to other global-scale satellite rainfall algorithms (e.g., 'Tropical Rainfall Measuring Mission (TRMM) and other sources' (TRMM-3B42) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA-CPC) CMORPH product. The algorithm has several potential future applications such as: improving the performance accuracy of hydrologic forecasting models over the Nile Basin, and utilizing the enhanced rainfall datasets and better-calibrated hydrologic models to assess the impacts of climate change on the region's water availability.

  3. Determination of thiamine HCl and pyridoxine HCl in pharmaceutical preparations using UV-visible spectrophotometry and genetic algorithm based multivariate calibration methods.

    PubMed

    Ozdemir, Durmus; Dinc, Erdal

    2004-07-01

    Simultaneous determination of binary mixtures pyridoxine hydrochloride and thiamine hydrochloride in a vitamin combination using UV-visible spectrophotometry and classical least squares (CLS) and three newly developed genetic algorithm (GA) based multivariate calibration methods was demonstrated. The three genetic multivariate calibration methods are Genetic Classical Least Squares (GCLS), Genetic Inverse Least Squares (GILS) and Genetic Regression (GR). The sample data set contains the UV-visible spectra of 30 synthetic mixtures (8 to 40 microg/ml) of these vitamins and 10 tablets containing 250 mg from each vitamin. The spectra cover the range from 200 to 330 nm in 0.1 nm intervals. Several calibration models were built with the four methods for the two components. Overall, the standard error of calibration (SEC) and the standard error of prediction (SEP) for the synthetic data were in the range of <0.01 and 0.43 microg/ml for all the four methods. The SEP values for the tablets were in the range of 2.91 and 11.51 mg/tablets. A comparison of genetic algorithm selected wavelengths for each component using GR method was also included.

  4. A GPU-Based Implementation of the Firefly Algorithm for Variable Selection in Multivariate Calibration Problems

    PubMed Central

    de Paula, Lauro C. M.; Soares, Anderson S.; de Lima, Telma W.; Delbem, Alexandre C. B.; Coelho, Clarimar J.; Filho, Arlindo R. G.

    2014-01-01

    Several variable selection algorithms in multivariate calibration can be accelerated using Graphics Processing Units (GPU). Among these algorithms, the Firefly Algorithm (FA) is a recent proposed metaheuristic that may be used for variable selection. This paper presents a GPU-based FA (FA-MLR) with multiobjective formulation for variable selection in multivariate calibration problems and compares it with some traditional sequential algorithms in the literature. The advantage of the proposed implementation is demonstrated in an example involving a relatively large number of variables. The results showed that the FA-MLR, in comparison with the traditional algorithms is a more suitable choice and a relevant contribution for the variable selection problem. Additionally, the results also demonstrated that the FA-MLR performed in a GPU can be five times faster than its sequential implementation. PMID:25493625

  5. A GPU-Based Implementation of the Firefly Algorithm for Variable Selection in Multivariate Calibration Problems.

    PubMed

    de Paula, Lauro C M; Soares, Anderson S; de Lima, Telma W; Delbem, Alexandre C B; Coelho, Clarimar J; Filho, Arlindo R G

    2014-01-01

    Several variable selection algorithms in multivariate calibration can be accelerated using Graphics Processing Units (GPU). Among these algorithms, the Firefly Algorithm (FA) is a recent proposed metaheuristic that may be used for variable selection. This paper presents a GPU-based FA (FA-MLR) with multiobjective formulation for variable selection in multivariate calibration problems and compares it with some traditional sequential algorithms in the literature. The advantage of the proposed implementation is demonstrated in an example involving a relatively large number of variables. The results showed that the FA-MLR, in comparison with the traditional algorithms is a more suitable choice and a relevant contribution for the variable selection problem. Additionally, the results also demonstrated that the FA-MLR performed in a GPU can be five times faster than its sequential implementation.

  6. Multivariate calibration on NIR data: development of a model for the rapid evaluation of ethanol content in bakery products.

    PubMed

    Bello, Alessandra; Bianchi, Federica; Careri, Maria; Giannetto, Marco; Mori, Giovanni; Musci, Marilena

    2007-11-05

    A new NIR method based on multivariate calibration for determination of ethanol in industrially packed wholemeal bread was developed and validated. GC-FID was used as reference method for the determination of actual ethanol concentration of different samples of wholemeal bread with proper content of added ethanol, ranging from 0 to 3.5% (w/w). Stepwise discriminant analysis was carried out on the NIR dataset, in order to reduce the number of original variables by selecting those that were able to discriminate between the samples of different ethanol concentrations. With the so selected variables a multivariate calibration model was then obtained by multiple linear regression. The prediction power of the linear model was optimized by a new "leave one out" method, so that the number of original variables resulted further reduced.

  7. Coping with matrix effects in headspace solid phase microextraction gas chromatography using multivariate calibration strategies.

    PubMed

    Ferreira, Vicente; Herrero, Paula; Zapata, Julián; Escudero, Ana

    2015-08-14

    SPME is extremely sensitive to experimental parameters affecting liquid-gas and gas-solid distribution coefficients. Our aims were to measure the weights of these factors and to design a multivariate strategy based on the addition of a pool of internal standards, to minimize matrix effects. Synthetic but real-like wines containing selected analytes and variable amounts of ethanol, non-volatile constituents and major volatile compounds were prepared following a factorial design. The ANOVA study revealed that even using a strong matrix dilution, matrix effects are important and additive with non-significant interaction effects and that it is the presence of major volatile constituents the most dominant factor. A single internal standard provided a robust calibration for 15 out of 47 analytes. Then, two different multivariate calibration strategies based on Partial Least Square Regression were run in order to build calibration functions based on 13 different internal standards able to cope with matrix effects. The first one is based in the calculation of Multivariate Internal Standards (MIS), linear combinations of the normalized signals of the 13 internal standards, which provide the expected area of a given unit of analyte present in each sample. The second strategy is a direct calibration relating concentration to the 13 relative areas measured in each sample for each analyte. Overall, 47 different compounds can be reliably quantified in a single fully automated method with overall uncertainties better than 15%. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Total anthocyanin content determination in intact açaí (Euterpe oleracea Mart.) and palmitero-juçara (Euterpe edulis Mart.) fruit using near infrared spectroscopy (NIR) and multivariate calibration.

    PubMed

    Inácio, Maria Raquel Cavalcanti; de Lima, Kássio Michell Gomes; Lopes, Valquiria Garcia; Pessoa, José Dalton Cruz; de Almeida Teixeira, Gustavo Henrique

    2013-02-15

    The aim of this study was to evaluate near-infrared reflectance spectroscopy (NIR), and multivariate calibration potential as a rapid method to determinate anthocyanin content in intact fruit (açaí and palmitero-juçara). Several multivariate calibration techniques, including partial least squares (PLS), interval partial least squares, genetic algorithm, successive projections algorithm, and net analyte signal were compared and validated by establishing figures of merit. Suitable results were obtained with the PLS model (four latent variables and 5-point smoothing) with a detection limit of 6.2 g kg(-1), limit of quantification of 20.7 g kg(-1), accuracy estimated as root mean square error of prediction of 4.8 g kg(-1), mean selectivity of 0.79 g kg(-1), sensitivity of 5.04×10(-3) g kg(-1), precision of 27.8 g kg(-1), and signal-to-noise ratio of 1.04×10(-3) g kg(-1). These results suggest NIR spectroscopy and multivariate calibration can be effectively used to determine anthocyanin content in intact açaí and palmitero-juçara fruit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. New robust bilinear least squares method for the analysis of spectral-pH matrix data.

    PubMed

    Goicoechea, Héctor C; Olivieri, Alejandro C

    2005-07-01

    A new second-order multivariate method has been developed for the analysis of spectral-pH matrix data, based on a bilinear least-squares (BLLS) model achieving the second-order advantage and handling multiple calibration standards. A simulated Monte Carlo study of synthetic absorbance-pH data allowed comparison of the newly proposed BLLS methodology with constrained parallel factor analysis (PARAFAC) and with the combination multivariate curve resolution-alternating least-squares (MCR-ALS) technique under different conditions of sample-to-sample pH mismatch and analyte-background ratio. The results indicate an improved prediction ability for the new method. Experimental data generated by measuring absorption spectra of several calibration standards of ascorbic acid and samples of orange juice were subjected to second-order calibration analysis with PARAFAC, MCR-ALS, and the new BLLS method. The results indicate that the latter method provides the best analytical results in regard to analyte recovery in samples of complex composition requiring strict adherence to the second-order advantage. Linear dependencies appear when multivariate data are produced by using the pH or a reaction time as one of the data dimensions, posing a challenge to classical multivariate calibration models. The presently discussed algorithm is useful for these latter systems.

  10. Classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  11. Evaluation of in-line Raman data for end-point determination of a coating process: Comparison of Science-Based Calibration, PLS-regression and univariate data analysis.

    PubMed

    Barimani, Shirin; Kleinebudde, Peter

    2017-10-01

    A multivariate analysis method, Science-Based Calibration (SBC), was used for the first time for endpoint determination of a tablet coating process using Raman data. Two types of tablet cores, placebo and caffeine cores, received a coating suspension comprising a polyvinyl alcohol-polyethylene glycol graft-copolymer and titanium dioxide to a maximum coating thickness of 80µm. Raman spectroscopy was used as in-line PAT tool. The spectra were acquired every minute and correlated to the amount of applied aqueous coating suspension. SBC was compared to another well-known multivariate analysis method, Partial Least Squares-regression (PLS) and a simpler approach, Univariate Data Analysis (UVDA). All developed calibration models had coefficient of determination values (R 2 ) higher than 0.99. The coating endpoints could be predicted with root mean square errors (RMSEP) less than 3.1% of the applied coating suspensions. Compared to PLS and UVDA, SBC proved to be an alternative multivariate calibration method with high predictive power. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Laser ablation molecular isotopic spectroscopy (LAMIS) towards the determination of multivariate LODs via PLS calibration model of 10B and 11B Boric acid mixtures

    NASA Astrophysics Data System (ADS)

    Harris, C. D.; Profeta, Luisa T. M.; Akpovo, Codjo A.; Johnson, Lewis; Stowe, Ashley C.

    2017-05-01

    A calibration model was created to illustrate the detection capabilities of laser ablation molecular isotopic spectroscopy (LAMIS) discrimination in isotopic analysis. The sample set contained boric acid pellets that varied in isotopic concentrations of 10B and 11B. Each sample set was interrogated with a Q-switched Nd:YAG ablation laser operating at 532 nm. A minimum of four band heads of the β system B2∑ -> Χ2∑transitions were identified and verified with previous literature on BO molecular emission lines. Isotopic shifts were observed in the spectra for each transition and used as the predictors in the calibration model. The spectra along with their respective 10/11B isotopic ratios were analyzed using Partial Least Squares Regression (PLSR). An IUPAC novel approach for determining a multivariate Limit of Detection (LOD) interval was used to predict the detection of the desired isotopic ratios. The predicted multivariate LOD is dependent on the variation of the instrumental signal and other composites in the calibration model space.

  13. A Review of Calibration Transfer Practices and Instrument Differences in Spectroscopy.

    PubMed

    Workman, Jerome J

    2018-03-01

    Calibration transfer for use with spectroscopic instruments, particularly for near-infrared, infrared, and Raman analysis, has been the subject of multiple articles, research papers, book chapters, and technical reviews. There has been a myriad of approaches published and claims made for resolving the problems associated with transferring calibrations; however, the capability of attaining identical results over time from two or more instruments using an identical calibration still eludes technologists. Calibration transfer, in a precise definition, refers to a series of analytical approaches or chemometric techniques used to attempt to apply a single spectral database, and the calibration model developed using that database, for two or more instruments, with statistically retained accuracy and precision. Ideally, one would develop a single calibration for any particular application, and move it indiscriminately across instruments and achieve identical analysis or prediction results. There are many technical aspects involved in such precision calibration transfer, related to the measuring instrument reproducibility and repeatability, the reference chemical values used for the calibration, the multivariate mathematics used for calibration, and sample presentation repeatability and reproducibility. Ideally, a multivariate model developed on a single instrument would provide a statistically identical analysis when used on other instruments following transfer. This paper reviews common calibration transfer techniques, mostly related to instrument differences, and the mathematics of the uncertainty between instruments when making spectroscopic measurements of identical samples. It does not specifically address calibration maintenance or reference laboratory differences.

  14. Adaptive Prior Variance Calibration in the Bayesian Continual Reassessment Method

    PubMed Central

    Zhang, Jin; Braun, Thomas M.; Taylor, Jeremy M.G.

    2012-01-01

    Use of the Continual Reassessment Method (CRM) and other model-based approaches to design in Phase I clinical trials has increased due to the ability of the CRM to identify the maximum tolerated dose (MTD) better than the 3+3 method. However, the CRM can be sensitive to the variance selected for the prior distribution of the model parameter, especially when a small number of patients are enrolled. While methods have emerged to adaptively select skeletons and to calibrate the prior variance only at the beginning of a trial, there has not been any approach developed to adaptively calibrate the prior variance throughout a trial. We propose three systematic approaches to adaptively calibrate the prior variance during a trial and compare them via simulation to methods proposed to calibrate the variance at the beginning of a trial. PMID:22987660

  15. Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a 'black box' approach and how to avoid them

    NASA Astrophysics Data System (ADS)

    Safi, A.; Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Ripoll-Seguer, L.; Hidalgo, M.; Palleschi, V.

    2018-06-01

    The introduction of multivariate calibration curve approach in Laser-Induced Breakdown Spectroscopy (LIBS) quantitative analysis has led to a general improvement of the LIBS analytical performances, since a multivariate approach allows to exploit the redundancy of elemental information that are typically present in a LIBS spectrum. Software packages implementing multivariate methods are available in the most diffused commercial and open source analytical programs; in most of the cases, the multivariate algorithms are robust against noise and operate in unsupervised mode. The reverse of the coin of the availability and ease of use of such packages is the (perceived) difficulty in assessing the reliability of the results obtained which often leads to the consideration of the multivariate algorithms as 'black boxes' whose inner mechanism is supposed to remain hidden to the user. In this paper, we will discuss the dangers of a 'black box' approach in LIBS multivariate analysis, and will discuss how to overcome them using the chemical-physical knowledge that is at the base of any LIBS quantitative analysis.

  16. Effects of Calibration Sample Size and Item Bank Size on Ability Estimation in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Sahin, Alper; Weiss, David J.

    2015-01-01

    This study aimed to investigate the effects of calibration sample size and item bank size on examinee ability estimation in computerized adaptive testing (CAT). For this purpose, a 500-item bank pre-calibrated using the three-parameter logistic model with 10,000 examinees was simulated. Calibration samples of varying sizes (150, 250, 350, 500,…

  17. Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model.

    PubMed

    Snell, Kym I E; Hua, Harry; Debray, Thomas P A; Ensor, Joie; Look, Maxime P; Moons, Karel G M; Riley, Richard D

    2016-01-01

    Our aim was to improve meta-analysis methods for summarizing a prediction model's performance when individual participant data are available from multiple studies for external validation. We suggest multivariate meta-analysis for jointly synthesizing calibration and discrimination performance, while accounting for their correlation. The approach estimates a prediction model's average performance, the heterogeneity in performance across populations, and the probability of "good" performance in new populations. This allows different implementation strategies (e.g., recalibration) to be compared. Application is made to a diagnostic model for deep vein thrombosis (DVT) and a prognostic model for breast cancer mortality. In both examples, multivariate meta-analysis reveals that calibration performance is excellent on average but highly heterogeneous across populations unless the model's intercept (baseline hazard) is recalibrated. For the cancer model, the probability of "good" performance (defined by C statistic ≥0.7 and calibration slope between 0.9 and 1.1) in a new population was 0.67 with recalibration but 0.22 without recalibration. For the DVT model, even with recalibration, there was only a 0.03 probability of "good" performance. Multivariate meta-analysis can be used to externally validate a prediction model's calibration and discrimination performance across multiple populations and to evaluate different implementation strategies. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  18. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  19. A Comparative Study of Online Item Calibration Methods in Multidimensional Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Chen, Ping

    2017-01-01

    Calibration of new items online has been an important topic in item replenishment for multidimensional computerized adaptive testing (MCAT). Several online calibration methods have been proposed for MCAT, such as multidimensional "one expectation-maximization (EM) cycle" (M-OEM) and multidimensional "multiple EM cycles"…

  20. A reduced adaptive observer for multivariable systems. [using reduced dynamic ordering

    NASA Technical Reports Server (NTRS)

    Carroll, R. L.; Lindorff, D. P.

    1973-01-01

    An adaptive observer for multivariable systems is presented for which the dynamic order of the observer is reduced, subject to mild restrictions. The observer structure depends directly upon the multivariable structure of the system rather than a transformation to a single-output system. The number of adaptive gains is at most the sum of the order of the system and the number of input parameters being adapted. Moreover, for the relatively frequent specific cases for which the number of required adaptive gains is less than the sum of system order and input parameters, the number of these gains is easily determined by inspection of the system structure. This adaptive observer possesses all the properties ascribed to the single-input single-output adpative observer. Like the other adaptive observers some restriction is required of the allowable system command input to guarantee convergence of the adaptive algorithm, but the restriction is more lenient than that required by the full-order multivariable observer. This reduced observer is not restricted to cycle systems.

  1. [Influence of sample surface roughness on mathematical model of NIR quantitative analysis of wood density].

    PubMed

    Huang, An-Min; Fei, Ben-Hua; Jiang, Ze-Hui; Hse, Chung-Yun

    2007-09-01

    Near infrared spectroscopy is widely used as a quantitative method, and the main multivariate techniques consist of regression methods used to build prediction models, however, the accuracy of analysis results will be affected by many factors. In the present paper, the influence of different sample roughness on the mathematical model of NIR quantitative analysis of wood density was studied. The result of experiments showed that if the roughness of predicted samples was consistent with that of calibrated samples, the result was good, otherwise the error would be much higher. The roughness-mixed model was more flexible and adaptable to different sample roughness. The prediction ability of the roughness-mixed model was much better than that of the single-roughness model.

  2. Determination of rice syrup adulterant concentration in honey using three-dimensional fluorescence spectra and multivariate calibrations

    NASA Astrophysics Data System (ADS)

    Chen, Quansheng; Qi, Shuai; Li, Huanhuan; Han, Xiaoyan; Ouyang, Qin; Zhao, Jiewen

    2014-10-01

    To rapidly and efficiently detect the presence of adulterants in honey, three-dimensional fluorescence spectroscopy (3DFS) technique was employed with the help of multivariate calibration. The data of 3D fluorescence spectra were compressed using characteristic extraction and the principal component analysis (PCA). Then, partial least squares (PLS) and back propagation neural network (BP-ANN) algorithms were used for modeling. The model was optimized by cross validation, and its performance was evaluated according to root mean square error of prediction (RMSEP) and correlation coefficient (R) in prediction set. The results showed that BP-ANN model was superior to PLS models, and the optimum prediction results of the mixed group (sunflower ± longan ± buckwheat ± rape) model were achieved as follow: RMSEP = 0.0235 and R = 0.9787 in the prediction set. The study demonstrated that the 3D fluorescence spectroscopy technique combined with multivariate calibration has high potential in rapid, nondestructive, and accurate quantitative analysis of honey adulteration.

  3. Development of a non-destructive method for determining protein nitrogen in a yellow fever vaccine by near infrared spectroscopy and multivariate calibration.

    PubMed

    Dabkiewicz, Vanessa Emídio; de Mello Pereira Abrantes, Shirley; Cassella, Ricardo Jorgensen

    2018-08-05

    Near infrared spectroscopy (NIR) with diffuse reflectance associated to multivariate calibration has as main advantage the replacement of the physical separation of interferents by the mathematical separation of their signals, rapidly with no need for reagent consumption, chemical waste production or sample manipulation. Seeking to optimize quality control analyses, this spectroscopic analytical method was shown to be a viable alternative to the classical Kjeldahl method for the determination of protein nitrogen in yellow fever vaccine. The most suitable multivariate calibration was achieved by the partial least squares method (PLS) with multiplicative signal correction (MSC) treatment and data mean centering (MC), using a minimum number of latent variables (LV) equal to 1, with the lower value of the square root of the mean squared prediction error (0.00330) associated with the highest percentage value (91%) of samples. Accuracy ranged 95 to 105% recovery in the 4000-5184 cm -1 region. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, X; Elder, E; Roper, J

    2015-06-15

    Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared tomore » EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.« less

  5. Development and validation of multivariate calibration methods for simultaneous estimation of Paracetamol, Enalapril maleate and hydrochlorothiazide in pharmaceutical dosage form

    NASA Astrophysics Data System (ADS)

    Singh, Veena D.; Daharwal, Sanjay J.

    2017-01-01

    Three multivariate calibration spectrophotometric methods were developed for simultaneous estimation of Paracetamol (PARA), Enalapril maleate (ENM) and Hydrochlorothiazide (HCTZ) in tablet dosage form; namely multi-linear regression calibration (MLRC), trilinear regression calibration method (TLRC) and classical least square (CLS) method. The selectivity of the proposed methods were studied by analyzing the laboratory prepared ternary mixture and successfully applied in their combined dosage form. The proposed methods were validated as per ICH guidelines and good accuracy; precision and specificity were confirmed within the concentration range of 5-35 μg mL- 1, 5-40 μg mL- 1 and 5-40 μg mL- 1of PARA, HCTZ and ENM, respectively. The results were statistically compared with reported HPLC method. Thus, the proposed methods can be effectively useful for the routine quality control analysis of these drugs in commercial tablet dosage form.

  6. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2017-01-01

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.

  7. Case-based Reasoning for Automotive Engine Performance Tune-up

    NASA Astrophysics Data System (ADS)

    Vong, C. M.; Huang, H.; Wong, P. K.

    2010-05-01

    The automotive engine performance tune-up is greatly affected by the calibration of its electronic control unit (ECU). The ECU calibration is traditionally done by trial-and-error method. This traditional method consumes a large amount of time and money because of a large number of dynamometer tests. To resolve this problem, case based reasoning (CBR) is employed, so that an existing and effective ECU setup can be adapted to fit another similar class of engines. The adaptation procedure is done through a more sophisticated step called case-based adaptation (CBA) [1, 2]. CBA is an effective knowledge management tool, which can interactively learn the expert adaptation knowledge. The paper briefly reviews the methodologies of CBR and CBA. Then the application to ECU calibration is described via a case study. With CBR and CBA, the efficiency of calibrating an ECU can be enhanced. A prototype system has also been developed to verify the usefulness of CBR in ECU calibration.

  8. Chemometrics resolution and quantification power evaluation: Application on pharmaceutical quaternary mixture of Paracetamol, Guaifenesin, Phenylephrine and p-aminophenol

    NASA Astrophysics Data System (ADS)

    Yehia, Ali M.; Mohamed, Heba M.

    2016-01-01

    Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference.

  9. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2017-01-05

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. An Item-Driven Adaptive Design for Calibrating Pretest Items. Research Report. ETS RR-14-38

    ERIC Educational Resources Information Center

    Ali, Usama S.; Chang, Hua-Hua

    2014-01-01

    Adaptive testing is advantageous in that it provides more efficient ability estimates with fewer items than linear testing does. Item-driven adaptive pretesting may also offer similar advantages, and verification of such a hypothesis about item calibration was the main objective of this study. A suitability index (SI) was introduced to adaptively…

  11. Accuracy enhancement of a multivariate calibration for lead determination in soils by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaytsev, Sergey M.; Krylov, Ivan N.; Popov, Andrey M.; Zorov, Nikita B.; Labutin, Timur A.

    2018-02-01

    We have investigated matrix effects and spectral interferences on example of lead determination in different types of soils by laser induced breakdown spectroscopy (LIBS). Comparison between analytical performances of univariate and multivariate calibrations with the use of different laser wavelength for ablation (532, 355 and 266 nm) have been reported. A set of 17 soil samples (Ca-rich, Fe-rich, lean soils etc., 8.5-280 ppm of Pb) was involved into construction of the calibration models. Spectral interferences from main components (Ca, Fe, Ti, Mg) and trace components (Mn, Nb, Zr) were estimated by spectra modeling, and they were a reason for significant differences between the univariate calibration models obtained for a three different soil types (black, red, gray) separately. Implementation of 3rd harmonic of Nd:YAG laser in combination with multivariate calibration model based on PCR with 3 principal components provided the best analytical results: the RMSEC has been lowered down to 8 ppm. The sufficient improvement of the relative uncertainty (up to 5-10%) in comparison with univariate calibration was observed at the Pb concentration level > 50 ppm, while the problem of accuracy still remains for some samples with Pb concentration at the 20 ppm level. We have also discussed a few possible ways to estimate LOD without a blank sample. The most rigorous criterion has resulted in LOD of Pb in soils being 13 ppm. Finally, a good agreement between the values of lead content predicted by LIBS (46 ± 5 ppm) and XRF (42.1 ± 3.3 ppm) in the unknown soil sample from Lomonosov Moscow State University area was demonstrated.

  12. Enzymatic electrochemical detection coupled to multivariate calibration for the determination of phenolic compounds in environmental samples.

    PubMed

    Hernandez, Silvia R; Kergaravat, Silvina V; Pividori, Maria Isabel

    2013-03-15

    An approach based on the electrochemical detection of the horseradish peroxidase enzymatic reaction by means of square wave voltammetry was developed for the determination of phenolic compounds in environmental samples. First, a systematic optimization procedure of three factors involved in the enzymatic reaction was carried out using response surface methodology through a central composite design. Second, the enzymatic electrochemical detection coupled with a multivariate calibration method based in the partial least-squares technique was optimized for the determination of a mixture of five phenolic compounds, i.e. phenol, p-aminophenol, p-chlorophenol, hydroquinone and pyrocatechol. The calibration and validation sets were built and assessed. In the calibration model, the LODs for phenolic compounds oscillated from 0.6 to 1.4 × 10(-6) mol L(-1). Recoveries for prediction samples were higher than 85%. These compounds were analyzed simultaneously in spiked samples and in water samples collected close to tanneries and landfills. Published by Elsevier B.V.

  13. Multivariate analysis of remote LIBS spectra using partial least squares, principal component analysis, and related techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clegg, Samuel M; Barefield, James E; Wiens, Roger C

    2008-01-01

    Quantitative analysis with LIBS traditionally employs calibration curves that are complicated by the chemical matrix effects. These chemical matrix effects influence the LIBS plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, LIBS calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis (MV A) techniques are employed to analyze the LIBS spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares (PLS) analysis is used to generate a calibration model from whichmore » unknown samples can be analyzed. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are employed to generate a model and predict the rock type of the samples. These MV A techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.« less

  14. Partial Least Squares Calibration Modeling Towards the Multivariate Limit of Detection for Enriched Isotopic Mixtures via Laser Ablation Molecular Isotopic Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Candace; Profeta, Luisa; Akpovo, Codjo

    The psuedo univariate limit of detection was calculated to compare to the multivariate interval. ompared with results from the psuedounivariate LOD, the multivariate LOD includes other factors (i.e. signal uncertainties) and the reveals the significance in creating models that not only use the analyte’s emission line but also its entire molecular spectra.

  15. Noise-shaping gradient descent-based online adaptation algorithms for digital calibration of analog circuits.

    PubMed

    Chakrabartty, Shantanu; Shaga, Ravi K; Aono, Kenji

    2013-04-01

    Analog circuits that are calibrated using digital-to-analog converters (DACs) use a digital signal processor-based algorithm for real-time adaptation and programming of system parameters. In this paper, we first show that this conventional framework for adaptation yields suboptimal calibration properties because of artifacts introduced by quantization noise. We then propose a novel online stochastic optimization algorithm called noise-shaping or ΣΔ gradient descent, which can shape the quantization noise out of the frequency regions spanning the parameter adaptation trajectories. As a result, the proposed algorithms demonstrate superior parameter search properties compared to floating-point gradient methods and better convergence properties than conventional quantized gradient-methods. In the second part of this paper, we apply the ΣΔ gradient descent algorithm to two examples of real-time digital calibration: 1) balancing and tracking of bias currents, and 2) frequency calibration of a band-pass Gm-C biquad filter biased in weak inversion. For each of these examples, the circuits have been prototyped in a 0.5-μm complementary metal-oxide-semiconductor process, and we demonstrate that the proposed algorithm is able to find the optimal solution even in the presence of spurious local minima, which are introduced by the nonlinear and non-monotonic response of calibration DACs.

  16. Adaptive-randomised self-calibration of electro-mechanical shutters for space imaging

    NASA Astrophysics Data System (ADS)

    De Cecco, Mariolino; Debei, Stefano; Zaccariotto, Mirco; Pertile, Marco

    2006-11-01

    This work describes the self-calibration of a high-precision open-loop mechanism. The self-calibration method is applied to a mechanical shutter for space applications, which was launched onboard the ESA-ROSETTA mission (launch: 2 March 2004). It is based on an adaptive 'model reference' and a 'randomised' search method which may be generalised to applications in which high performance and functionality are strongly interconnected. The method makes use of an adaptive 'model-reference' control approach [K.J. Astrom, B. Wittenmark, On self-tuning regulators Automatica 9 (1973) 185-199 [16]; K.J. Astrom, Theory and application of adaptive control, in: Proceedings of the Eighth IFAC World Conference, Kyoto, Japan, 1981 [17]; D.E. Seborg, S.L. Shah, T.F. Edgar, Adaptive control strategies for process control, AIChE Journal 6(32) (1986) 881-895 [18

  17. Simultaneous Determination of Metamizole, Thiamin and Pyridoxin Using UV-Spectroscopy in Combination with Multivariate Calibration

    PubMed Central

    Chotimah, Chusnul; Sudjadi; Riyanto, Sugeng; Rohman, Abdul

    2015-01-01

    Purpose: Analysis of drugs in multicomponent system officially is carried out using chromatographic technique, however, this technique is too laborious and involving sophisticated instrument. Therefore, UV-VIS spectrophotometry coupled with multivariate calibration of partial least square (PLS) for quantitative analysis of metamizole, thiamin and pyridoxin is developed in the presence of cyanocobalamine without any separation step. Methods: The calibration and validation samples are prepared. The calibration model is prepared by developing a series of sample mixture consisting these drugs in certain proportion. Cross validation of calibration sample using leave one out technique is used to identify the smaller set of components that provide the greatest predictive ability. The evaluation of calibration model was based on the coefficient of determination (R2) and root mean square error of calibration (RMSEC). Results: The results showed that the coefficient of determination (R2) for the relationship between actual values and predicted values for all studied drugs was higher than 0.99 indicating good accuracy. The RMSEC values obtained were relatively low, indicating good precision. The accuracy and presision results of developed method showed no significant difference compared to those obtained by official method of HPLC. Conclusion: The developed method (UV-VIS spectrophotometry in combination with PLS) was succesfully used for analysis of metamizole, thiamin and pyridoxin in tablet dosage form. PMID:26819934

  18. Chemometrics resolution and quantification power evaluation: Application on pharmaceutical quaternary mixture of Paracetamol, Guaifenesin, Phenylephrine and p-aminophenol.

    PubMed

    Yehia, Ali M; Mohamed, Heba M

    2016-01-05

    Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Cider fermentation process monitoring by Vis-NIR sensor system and chemometrics.

    PubMed

    Villar, Alberto; Vadillo, Julen; Santos, Jose I; Gorritxategi, Eneko; Mabe, Jon; Arnaiz, Aitor; Fernández, Luis A

    2017-04-15

    Optimization of a multivariate calibration process has been undertaken for a Visible-Near Infrared (400-1100nm) sensor system, applied in the monitoring of the fermentation process of the cider produced in the Basque Country (Spain). The main parameters that were monitored included alcoholic proof, l-lactic acid content, glucose+fructose and acetic acid content. The multivariate calibration was carried out using a combination of different variable selection techniques and the most suitable pre-processing strategies were selected based on the spectra characteristics obtained by the sensor system. The variable selection techniques studied in this work include Martens Uncertainty test, interval Partial Least Square Regression (iPLS) and Genetic Algorithm (GA). This procedure arises from the need to improve the calibration models prediction ability for cider monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Laser Calibration of an Impact Disdrometer

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Kasparis, Takis; Metzger, Philip T.; Jones, W. Linwood

    2014-01-01

    A practical approach to developing an operational low-cost disdrometer hinges on implementing an effective in situ adaptive calibration strategy. This calibration strategy lowers the cost of the device and provides a method to guarantee continued automatic calibration. In previous work, a collocated tipping bucket rain gauge was utilized to provide a calibration signal to the disdrometer's digital signal processing software. Rainfall rate is proportional to the 11/3 moment of the drop size distribution (a 7/2 moment can also be assumed, depending on the choice of terminal velocity relationship). In the previous case, the disdrometer calibration was characterized and weighted to the 11/3 moment of the drop size distribution (DSD). Optical extinction by rainfall is proportional to the 2nd moment of the DSD. Using visible laser light as a means to focus and generate an auxiliary calibration signal, the adaptive calibration processing is significantly improved.

  1. Salting-out assisted liquid-liquid extraction and partial least squares regression to assay low molecular weight polycyclic aromatic hydrocarbons leached from soils and sediments

    NASA Astrophysics Data System (ADS)

    Bressan, Lucas P.; do Nascimento, Paulo Cícero; Schmidt, Marcella E. P.; Faccin, Henrique; de Machado, Leandro Carvalho; Bohrer, Denise

    2017-02-01

    A novel method was developed to determine low molecular weight polycyclic aromatic hydrocarbons in aqueous leachates from soils and sediments using a salting-out assisted liquid-liquid extraction, synchronous fluorescence spectrometry and a multivariate calibration technique. Several experimental parameters were controlled and the optimum conditions were: sodium carbonate as the salting-out agent at concentration of 2 mol L- 1, 3 mL of acetonitrile as extraction solvent, 6 mL of aqueous leachate, vortexing for 5 min and centrifuging at 4000 rpm for 5 min. The partial least squares calibration was optimized to the lowest values of root mean squared error and five latent variables were chosen for each of the targeted compounds. The regression coefficients for the true versus predicted concentrations were higher than 0.99. Figures of merit for the multivariate method were calculated, namely sensitivity, multivariate detection limit and multivariate quantification limit. The selectivity was also evaluated and other polycyclic aromatic hydrocarbons did not interfere in the analysis. Likewise, high performance liquid chromatography was used as a comparative methodology, and the regression analysis between the methods showed no statistical difference (t-test). The proposed methodology was applied to soils and sediments of a Brazilian river and the recoveries ranged from 74.3% to 105.8%. Overall, the proposed methodology was suitable for the targeted compounds, showing that the extraction method can be applied to spectrofluorometric analysis and that the multivariate calibration is also suitable for these compounds in leachates from real samples.

  2. Sustained prediction ability of net analyte preprocessing methods using reduced calibration sets. Theoretical and experimental study involving the spectrophotometric analysis of multicomponent mixtures.

    PubMed

    Goicoechea, H C; Olivieri, A C

    2001-07-01

    A newly developed multivariate method involving net analyte preprocessing (NAP) was tested using central composite calibration designs of progressively decreasing size regarding the multivariate simultaneous spectrophotometric determination of three active components (phenylephrine, diphenhydramine and naphazoline) and one excipient (methylparaben) in nasal solutions. Its performance was evaluated and compared with that of partial least-squares (PLS-1). Minimisation of the calibration predicted error sum of squares (PRESS) as a function of a moving spectral window helped to select appropriate working spectral ranges for both methods. The comparison of NAP and PLS results was carried out using two tests: (1) the elliptical joint confidence region for the slope and intercept of a predicted versus actual concentrations plot for a large validation set of samples and (2) the D-optimality criterion concerning the information content of the calibration data matrix. Extensive simulations and experimental validation showed that, unlike PLS, the NAP method is able to furnish highly satisfactory results when the calibration set is reduced from a full four-component central composite to a fractional central composite, as expected from the modelling requirements of net analyte based methods.

  3. Classical vs. evolved quenching parameters and procedures in scintillation measurements: The importance of ionization quenching

    NASA Astrophysics Data System (ADS)

    Bagán, H.; Tarancón, A.; Rauret, G.; García, J. F.

    2008-07-01

    The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach.

  4. Optimal Bayesian Adaptive Design for Test-Item Calibration.

    PubMed

    van der Linden, Wim J; Ren, Hao

    2015-06-01

    An optimal adaptive design for test-item calibration based on Bayesian optimality criteria is presented. The design adapts the choice of field-test items to the examinees taking an operational adaptive test using both the information in the posterior distributions of their ability parameters and the current posterior distributions of the field-test parameters. Different criteria of optimality based on the two types of posterior distributions are possible. The design can be implemented using an MCMC scheme with alternating stages of sampling from the posterior distributions of the test takers' ability parameters and the parameters of the field-test items while reusing samples from earlier posterior distributions of the other parameters. Results from a simulation study demonstrated the feasibility of the proposed MCMC implementation for operational item calibration. A comparison of performances for different optimality criteria showed faster calibration of substantial numbers of items for the criterion of D-optimality relative to A-optimality, a special case of c-optimality, and random assignment of items to the test takers.

  5. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression

    USDA-ARS?s Scientific Manuscript database

    In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly ...

  6. Calibration of force actuators on an adaptive secondary prototype.

    PubMed

    Ricci, Davide; Riccardi, Armando; Zanotti, Daniela

    2008-07-10

    In the context of the Large Binocular Telescope project, we present the results of force actuator calibrations performed on an adaptive secondary prototype called P45, a thin deformable glass with magnets glued onto its back. Electromagnetic actuators, controlled in a closed loop with a system of internal metrology based on capacitive sensors, continuously deform its shape to correct the distortions of the wavefront. Calibrations of the force actuators are needed because of the differences between driven forces and measured forces. We describe the calibration procedures and the results, obtained with errors of less than 1.5%.

  7. Determination of fragrance content in perfume by Raman spectroscopy and multivariate calibration

    NASA Astrophysics Data System (ADS)

    Godinho, Robson B.; Santos, Mauricio C.; Poppi, Ronei J.

    2016-03-01

    An alternative methodology is herein proposed for determination of fragrance content in perfumes and their classification according to the guidelines established by fine perfume manufacturers. The methodology is based on Raman spectroscopy associated with multivariate calibration, allowing the determination of fragrance content in a fast, nondestructive, and sustainable manner. The results were considered consistent with the conventional method, whose standard error of prediction values was lower than the 1.0%. This result indicates that the proposed technology is a feasible analytical tool for determination of the fragrance content in a hydro-alcoholic solution for use in manufacturing, quality control and regulatory agencies.

  8. Membrane Introduction Mass Spectrometry Combined with an Orthogonal Partial-Least Squares Calibration Model for Mixture Analysis.

    PubMed

    Li, Min; Zhang, Lu; Yao, Xiaolong; Jiang, Xingyu

    2017-01-01

    The emerging membrane introduction mass spectrometry technique has been successfully used to detect benzene, toluene, ethyl benzene and xylene (BTEX), while overlapped spectra have unfortunately hindered its further application to the analysis of mixtures. Multivariate calibration, an efficient method to analyze mixtures, has been widely applied. In this paper, we compared univariate and multivariate analyses for quantification of the individual components of mixture samples. The results showed that the univariate analysis creates poor models with regression coefficients of 0.912, 0.867, 0.440 and 0.351 for BTEX, respectively. For multivariate analysis, a comparison to the partial-least squares (PLS) model shows that the orthogonal partial-least squares (OPLS) regression exhibits an optimal performance with regression coefficients of 0.995, 0.999, 0.980 and 0.976, favorable calibration parameters (RMSEC and RMSECV) and a favorable validation parameter (RMSEP). Furthermore, the OPLS exhibits a good recovery of 73.86 - 122.20% and relative standard deviation (RSD) of the repeatability of 1.14 - 4.87%. Thus, MIMS coupled with the OPLS regression provides an optimal approach for a quantitative BTEX mixture analysis in monitoring and predicting water pollution.

  9. Simultaneous determination of rifampicin, isoniazid and pyrazinamide in tablet preparations by multivariate spectrophotometric calibration.

    PubMed

    Goicoechea, H C; Olivieri, A C

    1999-08-01

    The use of multivariate spectrophotometric calibration is presented for the simultaneous determination of the active components of tablets used in the treatment of pulmonary tuberculosis. The resolution of ternary mixtures of rifampicin, isoniazid and pyrazinamide has been accomplished by using partial least squares (PLS-1) regression analysis. Although the components show an important degree of spectral overlap, they have been simultaneously determined with high accuracy and precision, rapidly and with no need of nonaqueous solvents for dissolving the samples. No interference has been observed from the tablet excipients. A comparison is presented with the related multivariate method of classical least squares (CLS) analysis, which is shown to yield less reliable results due to the severe spectral overlap among the studied compounds. This is highlighted in the case of isoniazid, due to the small absorbances measured for this component.

  10. A novel multivariate approach using science-based calibration for direct coating thickness determination in real-time NIR process monitoring.

    PubMed

    Möltgen, C-V; Herdling, T; Reich, G

    2013-11-01

    This study demonstrates an approach, using science-based calibration (SBC), for direct coating thickness determination on heart-shaped tablets in real-time. Near-Infrared (NIR) spectra were collected during four full industrial pan coating operations. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film up to a film thickness of 28 μm. The application of SBC permits the calibration of the NIR spectral data without using costly determined reference values. This is due to the fact that SBC combines classical methods to estimate the coating signal and statistical methods for the noise estimation. The approach enabled the use of NIR for the measurement of the film thickness increase from around 8 to 28 μm of four independent batches in real-time. The developed model provided a spectroscopic limit of detection for the coating thickness of 0.64 ± 0.03 μm root-mean square (RMS). In the commonly used statistical methods for calibration, such as Partial Least Squares (PLS), sufficiently varying reference values are needed for calibration. For thin non-functional coatings this is a challenge because the quality of the model depends on the accuracy of the selected calibration standards. The obvious and simple approach of SBC eliminates many of the problems associated with the conventional statistical methods and offers an alternative for multivariate calibration. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Application of correlation constrained multivariate curve resolution alternating least-squares methods for determination of compounds of interest in biodiesel blends using NIR and UV-visible spectroscopic data.

    PubMed

    de Oliveira, Rodrigo Rocha; de Lima, Kássio Michell Gomes; Tauler, Romà; de Juan, Anna

    2014-07-01

    This study describes two applications of a variant of the multivariate curve resolution alternating least squares (MCR-ALS) method with a correlation constraint. The first application describes the use of MCR-ALS for the determination of biodiesel concentrations in biodiesel blends using near infrared (NIR) spectroscopic data. In the second application, the proposed method allowed the determination of the synthetic antioxidant N,N'-Di-sec-butyl-p-phenylenediamine (PDA) present in biodiesel mixtures from different vegetable sources using UV-visible spectroscopy. Well established multivariate regression algorithm, partial least squares (PLS), were calculated for comparison of the quantification performance in the models developed in both applications. The correlation constraint has been adapted to handle the presence of batch-to-batch matrix effects due to ageing effects, which might occur when different groups of samples were used to build a calibration model in the first application. Different data set configurations and diverse modes of application of the correlation constraint are explored and guidelines are given to cope with different type of analytical problems, such as the correction of matrix effects among biodiesel samples, where MCR-ALS outperformed PLS reducing the relative error of prediction RE (%) from 9.82% to 4.85% in the first application, or the determination of minor compound with overlapped weak spectroscopic signals, where MCR-ALS gave higher (RE (%)=3.16%) for prediction of PDA compared to PLS (RE (%)=1.99%), but with the advantage of recovering the related pure spectral profile of analytes and interferences. The obtained results show the potential of the MCR-ALS method with correlation constraint to be adapted to diverse data set configurations and analytical problems related to the determination of biodiesel mixtures and added compounds therein. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Adaptation and application of multivariate AMBI (M-AMBI) in US coastal waters.

    PubMed

    Pelletier, Marguerite C; Gillett, David J; Hamilton, Anna; Grayson, Treda; Hansen, Virginia; Leppo, Erik W; Weisberg, Stephan B; Borja, Angel

    2018-06-01

    The multivariate AMBI (M-AMBI) is an extension of the AZTI Marine Biotic Index (AMBI) that has been used extensively in Europe, but not in the United States. In a previous study, we adapted AMBI for use in US coastal waters (US AMBI), but saw biases in salinity and score distribution when compared to locally calibrated indices. In this study we modified M-AMBI for US waters and compared its performance to that of US AMBI. Index performance was evaluated in three ways: 1) concordance with local indices presently being used as management tools in three geographic regions of US coastal waters, 2) classification accuracy for sites defined a priori as good or bad and 3) insensitivity to natural environmental gradients. US M-AMBI was highly correlated with all three local indices and removed the compression in response seen in moderately disturbed sites with US AMBI. US M-AMBI and US AMBI did a similar job correctly classifying sites as good or bad in local validation datasets (83 to 100% accuracy vs. 84 to 95%, respectively). US M-AMBI also removed the salinity bias of US AMBI so that lower salinity sites were not more likely to be incorrectly classified as impaired. The US M-AMBI appears to be an acceptable index for comparing condition across broad-scales such as estuarine and coastal waters surveyed by the US EPA's National Coastal Condition Assessment, and may be applicable to areas of the US coast that do not have a locally derived benthic index.

  13. Machine-Learning Based Co-adaptive Calibration: A Perspective to Fight BCI Illiteracy

    NASA Astrophysics Data System (ADS)

    Vidaurre, Carmen; Sannelli, Claudia; Müller, Klaus-Robert; Blankertz, Benjamin

    "BCI illiteracy" is one of the biggest problems and challenges in BCI research. It means that BCI control cannot be achieved by a non-negligible number of subjects (estimated 20% to 25%). There are two main causes for BCI illiteracy in BCI users: either no SMR idle rhythm is observed over motor areas, or this idle rhythm is not attenuated during motor imagery, resulting in a classification performance lower than 70% (criterion level) already for offline calibration data. In a previous work of the same authors, the concept of machine learning based co-adaptive calibration was introduced. This new type of calibration provided substantially improved performance for a variety of users. Here, we use a similar approach and investigate to what extent co-adapting learning enables substantial BCI control for completely novice users and those who suffered from BCI illiteracy before.

  14. SU-E-J-47: Development of a High-Precision, Image-Guided Radiotherapy, Multi- Purpose Radiation Isocenter Quality-Assurance Calibration and Checking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C; Yan, G; Helmig, R

    2014-06-01

    Purpose: To develop a system that can define the radiation isocenter and correlate this information with couch coordinates, laser alignment, optical distance indicator (ODI) settings, optical tracking system (OTS) calibrations, and mechanical isocenter walkout. Methods: Our team developed a multi-adapter, multi-purpose quality assurance (QA) and calibration device that uses an electronic portal imaging device (EPID) and in-house image-processing software to define the radiation isocenter, thereby allowing linear accelerator (Linac) components to be verified and calibrated. Motivated by the concept that each Linac component related to patient setup for image-guided radiotherapy based on cone-beam CT should be calibrated with respect tomore » the radiation isocenter, we designed multiple concentric adapters of various materials and shapes to meet the needs of MV and KV radiation isocenter definition, laser alignment, and OTS calibration. The phantom's ability to accurately define the radiation isocenter was validated on 4 Elekta Linacs using a commercial ball bearing (BB) phantom as a reference. Radiation isocenter walkout and the accuracy of couch coordinates, ODI, and OTS were then quantified with the device. Results: The device was able to define the radiation isocenter within 0.3 mm. Radiation isocenter walkout was within ±1 mm at 4 cardinal angles. By switching adapters, we identified that the accuracy of the couch position digital readout, ODI, OTS, and mechanical isocenter walkout was within sub-mm. Conclusion: This multi-adapter, multi-purpose isocenter phantom can be used to accurately define the radiation isocenter and represents a potential paradigm shift in Linac QA. Moreover, multiple concentric adapters allowed for sub-mm accuracy for the other relevant components. This intuitive and user-friendly design is currently patent pending.« less

  15. Prospects of second generation artificial intelligence tools in calibration of chemical sensors.

    PubMed

    Braibanti, Antonio; Rao, Rupenaguntla Sambasiva; Ramam, Veluri Anantha; Rao, Gollapalli Nageswara; Rao, Vaddadi Venkata Panakala

    2005-05-01

    Multivariate data driven calibration models with neural networks (NNs) are developed for binary (Cu++ and Ca++) and quaternary (K+, Ca++, NO3- and Cl-) ion-selective electrode (ISE) data. The response profiles of ISEs with concentrations are non-linear and sub-Nernstian. This task represents function approximation of multi-variate, multi-response, correlated, non-linear data with unknown noise structure i.e. multi-component calibration/prediction in chemometric parlance. Radial distribution function (RBF) and Fuzzy-ARTMAP-NN models implemented in the software packages, TRAJAN and Professional II, are employed for the calibration. The optimum NN models reported are based on residuals in concentration space. Being a data driven information technology, NN does not require a model, prior- or posterior- distribution of data or noise structure. Missing information, spikes or newer trends in different concentration ranges can be modeled through novelty detection. Two simulated data sets generated from mathematical functions are modeled as a function of number of data points and network parameters like number of neurons and nearest neighbors. The success of RBF and Fuzzy-ARTMAP-NNs to develop adequate calibration models for experimental data and function approximation models for more complex simulated data sets ensures AI2 (artificial intelligence, 2nd generation) as a promising technology in quantitation.

  16. Multivariate calibration standardization across instruments for the determination of glucose by Fourier transform near-infrared spectrometry.

    PubMed

    Zhang, Lin; Small, Gary W; Arnold, Mark A

    2003-11-01

    The transfer of multivariate calibration models is investigated between a primary (A) and two secondary Fourier transform near-infrared (near-IR) spectrometers (B, C). The application studied in this work is the use of bands in the near-IR combination region of 5000-4000 cm(-)(1) to determine physiological levels of glucose in a buffered aqueous matrix containing varying levels of alanine, ascorbate, lactate, triacetin, and urea. The three spectrometers are used to measure 80 samples produced through a randomized experimental design that minimizes correlations between the component concentrations and between the concentrations of glucose and water. Direct standardization (DS), piecewise direct standardization (PDS), and guided model reoptimization (GMR) are evaluated for use in transferring partial least-squares calibration models developed with the spectra of 64 samples from the primary instrument to the prediction of glucose concentrations in 16 prediction samples measured with each secondary spectrometer. The three algorithms are evaluated as a function of the number of standardization samples used in transferring the calibration models. Performance criteria for judging the success of the calibration transfer are established as the standard error of prediction (SEP) for internal calibration models built with the spectra of the 64 calibration samples collected with each secondary spectrometer. These SEP values are 1.51 and 1.14 mM for spectrometers B and C, respectively. When calibration standardization is applied, the GMR algorithm is observed to outperform DS and PDS. With spectrometer C, the calibration transfer is highly successful, producing an SEP value of 1.07 mM. However, an SEP of 2.96 mM indicates unsuccessful calibration standardization with spectrometer B. This failure is attributed to differences in the variance structure of the spectra collected with spectrometers A and B. Diagnostic procedures are presented for use with the GMR algorithm that forecasts the successful calibration transfer with spectrometer C and the unsatisfactory results with spectrometer B.

  17. Determination of fragrance content in perfume by Raman spectroscopy and multivariate calibration.

    PubMed

    Godinho, Robson B; Santos, Mauricio C; Poppi, Ronei J

    2016-03-15

    An alternative methodology is herein proposed for determination of fragrance content in perfumes and their classification according to the guidelines established by fine perfume manufacturers. The methodology is based on Raman spectroscopy associated with multivariate calibration, allowing the determination of fragrance content in a fast, nondestructive, and sustainable manner. The results were considered consistent with the conventional method, whose standard error of prediction values was lower than the 1.0%. This result indicates that the proposed technology is a feasible analytical tool for determination of the fragrance content in a hydro-alcoholic solution for use in manufacturing, quality control and regulatory agencies. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Positioning system for single or multi-axis sensitive instrument calibration and calibration system for use therewith

    NASA Technical Reports Server (NTRS)

    Finley, Tom D. (Inventor); Parker, Peter A. (Inventor)

    2008-01-01

    A positioning and calibration system are provided for use in calibrating a single or multi axis sensitive instrument, such as an inclinometer. The positioning system includes a positioner that defines six planes of tangential contact. A mounting region within the six planes is adapted to have an inclinometer coupled thereto. The positioning system also includes means for defining first and second flat surfaces that are approximately perpendicular to one another with the first surface adapted to be oriented relative to a local or induced reference field of interest to the instrument being calibrated, such as a gravitational vector. The positioner is positioned such that one of its six planes tangentially rests on the first flat surface and another of its six planes tangentially contacts the second flat surface. A calibration system is formed when the positioning system is used with a data collector and processor.

  19. Assessment of Climate Change Impacts and Evaluation of Adaptation Strategies for Grain Sorghum and Cotton Production in the Texas High Plains

    NASA Astrophysics Data System (ADS)

    Kothari, K.; Ale, S.; Bordovsky, J.; Hoogenboom, G.; Munster, C. L.

    2017-12-01

    The semi-arid Texas High Plains (THP) is one of the most productive agricultural regions in the United States. However, agriculture in the THP is faced with the challenges of rapid groundwater depletion in the underlying Ogallala Aquifer, restrictions on pumping groundwater, recurring droughts, and projected warmer and drier future climatic conditions. Therefore, it is imperative to adopt strategies that enhance climate change resilience of THP agriculture to maintain a sustainable agricultural economy in this region. The overall goal of this study is to assess the impacts of climate change and potential reduction in groundwater availability on production of two major crops in the region, cotton and grain sorghum, and suggest adaptation strategies using the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model. The DSSAT model was calibrated and evaluated using data from the long-term cotton-sorghum rotation experiments conducted at Helms Farm near Halfway in the THP. After achieving a satisfactory calibration for crop yield (RMSE < 1.0 T ha-1 or 14%) and dates of onset of various growth stages, the model was used to simulate historic (1980-2010) and future (2040-2070) cotton and sorghum yields and water use. The Multivariate Adaptive Constructed Analogs (MACA) projected future climate datasets from nine CMIP5 global climate models (GCMs) and two representative concentration pathways (RCP 4.5 and 8.5) were used in this study. Preliminary results indicated a reduction in irrigated grain sorghum yield per hectare by 6% and 8%, and a reduction in dryland sorghum yield per hectare by 9% and 17% under RCP 4.5 and RCP 8.5 scenarios, respectively. Grain sorghum future water use declined by about 2% and 5% under RCP 4.5 and RCP 8.5, respectively. Climate change impacts on cotton production and evaluation of several adaptation strategies such as incorporating heat and drought tolerances in cultivars, early planting, shifting to short season varieties, and deficit irrigation are currently being studied.

  20. Online Calibration Methods for the DINA Model with Independent Attributes in CD-CAT

    ERIC Educational Resources Information Center

    Chen, Ping; Xin, Tao; Wang, Chun; Chang, Hua-Hua

    2012-01-01

    Item replenishing is essential for item bank maintenance in cognitive diagnostic computerized adaptive testing (CD-CAT). In regular CAT, online calibration is commonly used to calibrate the new items continuously. However, until now no reference has publicly become available about online calibration for CD-CAT. Thus, this study investigates the…

  1. Sensitive analytical method for simultaneous analysis of some vasoconstrictors with highly overlapped analytical signals

    NASA Astrophysics Data System (ADS)

    Nikolić, G. S.; Žerajić, S.; Cakić, M.

    2011-10-01

    Multivariate calibration method is a powerful mathematical tool that can be applied in analytical chemistry when the analytical signals are highly overlapped. The method with regression by partial least squares is proposed for the simultaneous spectrophotometric determination of adrenergic vasoconstrictors in decongestive solution containing two active components: phenyleprine hydrochloride and trimazoline hydrochloride. These sympathomimetic agents are that frequently associated in pharmaceutical formulations against the common cold. The proposed method, which is, simple and rapid, offers the advantages of sensitivity and wide range of determinations without the need for extraction of the vasoconstrictors. In order to minimize the optimal factors necessary to obtain the calibration matrix by multivariate calibration, different parameters were evaluated. The adequate selection of the spectral regions proved to be important on the number of factors. In order to simultaneously quantify both hydrochlorides among excipients, the spectral region between 250 and 290 nm was selected. A recovery for the vasoconstrictor was 98-101%. The developed method was applied to assay of two decongestive pharmaceutical preparations.

  2. Adaptive Neural Star Tracker Calibration for Precision Spacecraft Pointing and Tracking

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1996-01-01

    The Star Tracker is an essential sensor for precision pointing and tracking in most 3-axis stabilized spacecraft. In the interest (of) improving pointing performance by taking advantage of dramatic increases in flight computer power and memory anticipated over the next decade, this paper investigates the use of a neural net for adaptive in-flight calibration of the Star Tracker.

  3. A comparison of two adaptive multivariate analysis methods (PLSR and ANN) for winter wheat yield forecasting using Landsat-8 OLI images

    NASA Astrophysics Data System (ADS)

    Chen, Pengfei; Jing, Qi

    2017-02-01

    An assumption that the non-linear method is more reasonable than the linear method when canopy reflectance is used to establish the yield prediction model was proposed and tested in this study. For this purpose, partial least squares regression (PLSR) and artificial neural networks (ANN), represented linear and non-linear analysis method, were applied and compared for wheat yield prediction. Multi-period Landsat-8 OLI images were collected at two different wheat growth stages, and a field campaign was conducted to obtain grain yields at selected sampling sites in 2014. The field data were divided into a calibration database and a testing database. Using calibration data, a cross-validation concept was introduced for the PLSR and ANN model construction to prevent over-fitting. All models were tested using the test data. The ANN yield-prediction model produced R2, RMSE and RMSE% values of 0.61, 979 kg ha-1, and 10.38%, respectively, in the testing phase, performing better than the PLSR yield-prediction model, which produced R2, RMSE, and RMSE% values of 0.39, 1211 kg ha-1, and 12.84%, respectively. Non-linear method was suggested as a better method for yield prediction.

  4. Application of the correlation constrained multivariate curve resolution alternating least-squares method for analyte quantitation in the presence of unexpected interferences using first-order instrumental data.

    PubMed

    Goicoechea, Héctor C; Olivieri, Alejandro C; Tauler, Romà

    2010-03-01

    Correlation constrained multivariate curve resolution-alternating least-squares is shown to be a feasible method for processing first-order instrumental data and achieve analyte quantitation in the presence of unexpected interferences. Both for simulated and experimental data sets, the proposed method could correctly retrieve the analyte and interference spectral profiles and perform accurate estimations of analyte concentrations in test samples. Since no information concerning the interferences was present in calibration samples, the proposed multivariate calibration approach including the correlation constraint facilitates the achievement of the so-called second-order advantage for the analyte of interest, which is known to be present for more complex higher-order richer instrumental data. The proposed method is tested using a simulated data set and two experimental data systems, one for the determination of ascorbic acid in powder juices using UV-visible absorption spectral data, and another for the determination of tetracycline in serum samples using fluorescence emission spectroscopy.

  5. Adaptation and application of multivariate AMBI (M-AMBI) in US coastal waters

    EPA Science Inventory

    The multivariate AMBI (M-AMBI) is an extension of the AZTI Marine Biotic Index (AMBI) that has been used extensively in Europe, but not in the United States. In a previous study, we adapted AMBI for use in US coastal waters (US AMBI), but saw biases in salinity and score distribu...

  6. Study on rapid valid acidity evaluation of apple by fiber optic diffuse reflectance technique

    NASA Astrophysics Data System (ADS)

    Liu, Yande; Ying, Yibin; Fu, Xiaping; Jiang, Xuesong

    2004-03-01

    Some issues related to nondestructive evaluation of valid acidity in intact apples by means of Fourier transform near infrared (FTNIR) (800-2631nm) method were addressed. A relationship was established between the diffuse reflectance spectra recorded with a bifurcated optic fiber and the valid acidity. The data were analyzed by multivariate calibration analysis such as partial least squares (PLS) analysis and principal component regression (PCR) technique. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influence of data preprocessing and different spectra treatments were also investigated. Models based on smoothing spectra were slightly worse than models based on derivative spectra and the best result was obtained when the segment length was 5 and the gap size was 10. Depending on data preprocessing and multivariate calibration technique, the best prediction model had a correlation efficient (0.871), a low RMSEP (0.0677), a low RMSEC (0.056) and a small difference between RMSEP and RMSEC by PLS analysis. The results point out the feasibility of FTNIR spectral analysis to predict the fruit valid acidity non-destructively. The ratio of data standard deviation to the root mean square error of prediction (SDR) is better to be less than 3 in calibration models, however, the results cannot meet the demand of actual application. Therefore, further study is required for better calibration and prediction.

  7. Development and evaluation of a method of calibrating medical displays based on fixed adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sund, Patrik, E-mail: patrik.sund@vgregion.se; Månsson, Lars Gunnar; Båth, Magnus

    2015-04-15

    Purpose: The purpose of this work was to develop and evaluate a new method for calibration of medical displays that includes the effect of fixed adaptation and by using equipment and luminance levels typical for a modern radiology department. Methods: Low contrast sinusoidal test patterns were derived at nine luminance levels from 2 to 600 cd/m{sup 2} and used in a two alternative forced choice observer study, where the adaptation level was fixed at the logarithmic average of 35 cd/m{sup 2}. The contrast sensitivity at each luminance level was derived by establishing a linear relationship between the ten pattern contrastmore » levels used at every luminance level and a detectability index (d′) calculated from the fraction of correct responses. A Gaussian function was fitted to the data and normalized to the adaptation level. The corresponding equation was used in a display calibration method that included the grayscale standard display function (GSDF) but compensated for fixed adaptation. In the evaluation study, the contrast of circular objects with a fixed pixel contrast was displayed using both calibration methods and was rated on a five-grade scale. Results were calculated using a visual grading characteristics method. Error estimations in both observer studies were derived using a bootstrap method. Results: The contrast sensitivities for the darkest and brightest patterns compared to the contrast sensitivity at the adaptation luminance were 37% and 56%, respectively. The obtained Gaussian fit corresponded well with similar studies. The evaluation study showed a higher degree of equally distributed contrast throughout the luminance range with the calibration method compensated for fixed adaptation than for the GSDF. The two lowest scores for the GSDF were obtained for the darkest and brightest patterns. These scores were significantly lower than the lowest score obtained for the compensated GSDF. For the GSDF, the scores for all luminance levels were statistically separated from the average value; three were lower and two were higher. For the compensated GSDF, three of the scores could not be separated from the average value. Conclusions: An observer study using clinically relevant displays and luminance settings has demonstrated that the calibration of displays according to the GSDF causes the perceived contrast to be unevenly distributed when using displays with a high luminance range. As the luminance range increases, the perceived contrast in the dark and bright regions will be significantly lower than the perceived contrast in the middle of the luminance range. A new calibration method that includes the effect of fixed adaptation was developed and evaluated in an observer study and was found to distribute the contrast of the display more evenly throughout the grayscale than the GSDF.« less

  8. Matching pollution with adaptive changes in mangrove plants by multivariate statistics. A case study, Rhizophora mangle from four neotropical mangroves in Brazil.

    PubMed

    Souza, Iara da Costa; Morozesk, Mariana; Duarte, Ian Drumond; Bonomo, Marina Marques; Rocha, Lívia Dorsch; Furlan, Larissa Maria; Arrivabene, Hiulana Pereira; Monferrán, Magdalena Victoria; Matsumoto, Silvia Tamie; Milanez, Camilla Rozindo Dias; Wunderlin, Daniel Alberto; Fernandes, Marisa Narciso

    2014-08-01

    Roots of mangrove trees have an important role in depurating water and sediments by retaining metals that may accumulate in different plant tissues, affecting physiological processes and anatomy. The present study aimed to evaluate adaptive changes in root of Rhizophora mangle in response to different levels of chemical elements (metals/metalloids) in interstitial water and sediments from four neotropical mangroves in Brazil. What sets this study apart from other studies is that we not only investigate adaptive modifications in R. mangle but also changes in environments where this plant grows, evaluating correspondence between physical, chemical and biological issues by a combined set of multivariate statistical methods (pattern recognition). Thus, we looked to match changes in the environment with adaptations in plants. Multivariate statistics highlighted that the lignified periderm and the air gaps are directly related to the environmental contamination. Current results provide new evidences of root anatomical strategies to deal with contaminated environments. Multivariate statistics greatly contributes to extrapolate results from complex data matrixes obtained when analyzing environmental issues, pointing out parameters involved in environmental changes and also evidencing the adaptive response of the exposed biota. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Uncertainty Analysis of Inertial Model Attitude Sensor Calibration and Application with a Recommended New Calibration Method

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.

  10. Adaptive array antenna for satellite cellular and direct broadcast communications

    NASA Technical Reports Server (NTRS)

    Horton, Charles R.; Abend, Kenneth

    1993-01-01

    Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.

  11. Calibration transfer of a Raman spectroscopic quantification method for the assessment of liquid detergent compositions from at-line laboratory to in-line industrial scale.

    PubMed

    Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T

    2018-03-01

    Calibration transfer or standardisation aims at creating a uniform spectral response on different spectroscopic instruments or under varying conditions, without requiring a full recalibration for each situation. In the current study, this strategy is applied to construct at-line multivariate calibration models and consequently employ them in-line in a continuous industrial production line, using the same spectrometer. Firstly, quantitative multivariate models are constructed at-line at laboratory scale for predicting the concentration of two main ingredients in hard surface cleaners. By regressing the Raman spectra of a set of small-scale calibration samples against their reference concentration values, partial least squares (PLS) models are developed to quantify the surfactant levels in the liquid detergent compositions under investigation. After evaluating the models performance with a set of independent validation samples, a univariate slope/bias correction is applied in view of transporting these at-line calibration models to an in-line manufacturing set-up. This standardisation technique allows a fast and easy transfer of the PLS regression models, by simply correcting the model predictions on the in-line set-up, without adjusting anything to the original multivariate calibration models. An extensive statistical analysis is performed in order to assess the predictive quality of the transferred regression models. Before and after transfer, the R 2 and RMSEP of both models is compared for evaluating if their magnitude is similar. T-tests are then performed to investigate whether the slope and intercept of the transferred regression line are not statistically different from 1 and 0, respectively. Furthermore, it is inspected whether no significant bias can be noted. F-tests are executed as well, for assessing the linearity of the transfer regression line and for investigating the statistical coincidence of the transfer and validation regression line. Finally, a paired t-test is performed to compare the original at-line model to the slope/bias corrected in-line model, using interval hypotheses. It is shown that the calibration models of Surfactant 1 and Surfactant 2 yield satisfactory in-line predictions after slope/bias correction. While Surfactant 1 passes seven out of eight statistical tests, the recommended validation parameters are 100% successful for Surfactant 2. It is hence concluded that the proposed strategy for transferring at-line calibration models to an in-line industrial environment via a univariate slope/bias correction of the predicted values offers a successful standardisation approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Quantitative analysis of essential oils in perfume using multivariate curve resolution combined with comprehensive two-dimensional gas chromatography.

    PubMed

    de Godoy, Luiz Antonio Fonseca; Hantao, Leandro Wang; Pedroso, Marcio Pozzobon; Poppi, Ronei Jesus; Augusto, Fabio

    2011-08-05

    The use of multivariate curve resolution (MCR) to build multivariate quantitative models using data obtained from comprehensive two-dimensional gas chromatography with flame ionization detection (GC×GC-FID) is presented and evaluated. The MCR algorithm presents some important features, such as second order advantage and the recovery of the instrumental response for each pure component after optimization by an alternating least squares (ALS) procedure. A model to quantify the essential oil of rosemary was built using a calibration set containing only known concentrations of the essential oil and cereal alcohol as solvent. A calibration curve correlating the concentration of the essential oil of rosemary and the instrumental response obtained from the MCR-ALS algorithm was obtained, and this calibration model was applied to predict the concentration of the oil in complex samples (mixtures of the essential oil, pineapple essence and commercial perfume). The values of the root mean square error of prediction (RMSEP) and of the root mean square error of the percentage deviation (RMSPD) obtained were 0.4% (v/v) and 7.2%, respectively. Additionally, a second model was built and used to evaluate the accuracy of the method. A model to quantify the essential oil of lemon grass was built and its concentration was predicted in the validation set and real perfume samples. The RMSEP and RMSPD obtained were 0.5% (v/v) and 6.9%, respectively, and the concentration of the essential oil of lemon grass in perfume agreed to the value informed by the manufacturer. The result indicates that the MCR algorithm is adequate to resolve the target chromatogram from the complex sample and to build multivariate models of GC×GC-FID data. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Predicting trauma patient mortality: ICD [or ICD-10-AM] versus AIS based approaches.

    PubMed

    Willis, Cameron D; Gabbe, Belinda J; Jolley, Damien; Harrison, James E; Cameron, Peter A

    2010-11-01

    The International Classification of Diseases Injury Severity Score (ICISS) has been proposed as an International Classification of Diseases (ICD)-10-based alternative to mortality prediction tools that use Abbreviated Injury Scale (AIS) data, including the Trauma and Injury Severity Score (TRISS). To date, studies have not examined the performance of ICISS using Australian trauma registry data. This study aimed to compare the performance of ICISS with other mortality prediction tools in an Australian trauma registry. This was a retrospective review of prospectively collected data from the Victorian State Trauma Registry. A training dataset was created for model development and a validation dataset for evaluation. The multiplicative ICISS model was compared with a worst injury ICISS approach, Victorian TRISS (V-TRISS, using local coefficients), maximum AIS severity and a multivariable model including ICD-10-AM codes as predictors. Models were investigated for discrimination (C-statistic) and calibration (Hosmer-Lemeshow statistic). The multivariable approach had the highest level of discrimination (C-statistic 0.90) and calibration (H-L 7.65, P= 0.468). Worst injury ICISS, V-TRISS and maximum AIS had similar performance. The multiplicative ICISS produced the lowest level of discrimination (C-statistic 0.80) and poorest calibration (H-L 50.23, P < 0.001). The performance of ICISS may be affected by the data used to develop estimates, the ICD version employed, the methods for deriving estimates and the inclusion of covariates. In this analysis, a multivariable approach using ICD-10-AM codes was the best-performing method. A multivariable ICISS approach may therefore be a useful alternative to AIS-based methods and may have comparable predictive performance to locally derived TRISS models. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.

  14. Adaptive Calibration of Children's Physiological Responses to Family Stress: The Utility of Evolutionary Developmental Theory--Comment on Del Giudice et al. (2012) and Sturge-Apple et al. (2012)

    ERIC Educational Resources Information Center

    Bugental, Daphne Blunt

    2012-01-01

    Children's physiological reactions to stress are presented from the broader theoretical perspective of adaptive calibration to the environment, as rooted in life history theory. Del Giudice, Hinnant, Ellis, and El-Sheikh (2012) focus on children's physiological responses to a stressful task as a consequence of their history of family stress.…

  15. Comparison of Portable and Bench-Top Spectrometers for Mid-Infrared Diffuse Reflectance Measurements of Soils.

    PubMed

    Hutengs, Christopher; Ludwig, Bernard; Jung, András; Eisele, Andreas; Vohland, Michael

    2018-03-27

    Mid-infrared (MIR) spectroscopy has received widespread interest as a method to complement traditional soil analysis. Recently available portable MIR spectrometers additionally offer potential for on-site applications, given sufficient spectral data quality. We therefore tested the performance of the Agilent 4300 Handheld FTIR (DRIFT spectra) in comparison to a Bruker Tensor 27 bench-top instrument in terms of (i) spectral quality and measurement noise quantified by wavelet analysis; (ii) accuracy of partial least squares (PLS) calibrations for soil organic carbon (SOC), total nitrogen (N), pH, clay and sand content with a repeated cross-validation analysis; and (iii) key spectral regions for these soil properties identified with a Monte Carlo spectral variable selection approach. Measurements and multivariate calibrations with the handheld device were as good as or slightly better than Bruker equipped with a DRIFT accessory, but not as accurate as with directional hemispherical reflectance (DHR) data collected with an integrating sphere. Variations in noise did not markedly affect the accuracy of multivariate PLS calibrations. Identified key spectral regions for PLS calibrations provided a good match between Agilent and Bruker DHR data, especially for SOC and N. Our findings suggest that portable FTIR instruments are a viable alternative for MIR measurements in the laboratory and offer great potential for on-site applications.

  16. Identification and quantification of ciprofloxacin in urine through excitation-emission fluorescence and three-way PARAFAC calibration.

    PubMed

    Ortiz, M C; Sarabia, L A; Sánchez, M S; Giménez, D

    2009-05-29

    Due to the second-order advantage, calibration models based on parallel factor analysis (PARAFAC) decomposition of three-way data are becoming important in routine analysis. This work studies the possibility of fitting PARAFAC models with excitation-emission fluorescence data for the determination of ciprofloxacin in human urine. The finally chosen PARAFAC decomposition is built with calibration samples spiked with ciprofloxacin, and with other series of urine samples that were also spiked. One of the series of samples has also another drug because the patient was taking mesalazine. The mesalazine is a fluorescent substance that interferes with the ciprofloxacin. Finally, the procedure is applied to samples of a patient who was being treated with ciprofloxacin. The trueness has been established by the regression "predicted concentration versus added concentration". The recovery factor is 88.3% for ciprofloxacin in urine, and the mean of the absolute value of the relative errors is 4.2% for 46 test samples. The multivariate sensitivity of the fit calibration model is evaluated by a regression between the loadings of PARAFAC linked to ciprofloxacin versus the true concentration in spiked samples. The multivariate capability of discrimination is near 8 microg L(-1) when the probabilities of false non-compliance and false compliance are fixed at 5%.

  17. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  18. Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water

    USDA-ARS?s Scientific Manuscript database

    Accurate, nonintrusive, and inexpensive techniques are needed to measure energy expenditure (EE) in free-living populations. Our primary aim in this study was to validate cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on observable participant cha...

  19. Uncertainty Analysis of Instrument Calibration and Application

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.

  20. Strategic development of a multivariate calibration model for the uniformity testing of tablets by transmission NIR analysis.

    PubMed

    Sasakura, D; Nakayama, K; Sakamoto, T; Chikuma, T

    2015-05-01

    The use of transmission near infrared spectroscopy (TNIRS) is of particular interest in the pharmaceutical industry. This is because TNIRS does not require sample preparation and can analyze several tens of tablet samples in an hour. It has the capability to measure all relevant information from a tablet, while still on the production line. However, TNIRS has a narrow spectrum range and overtone vibrations often overlap. To perform content uniformity testing in tablets by TNIRS, various properties in the tableting process need to be analyzed by a multivariate prediction model, such as a Partial Least Square Regression modeling. One issue is that typical approaches require several hundred reference samples to act as the basis of the method rather than a strategically designed method. This means that many batches are needed to prepare the reference samples; this requires time and is not cost effective. Our group investigated the concentration dependence of the calibration model with a strategic design. Consequently, we developed a more effective approach to the TNIRS calibration model than the existing methodology.

  1. Variety identification of brown sugar using short-wave near infrared spectroscopy and multivariate calibration

    NASA Astrophysics Data System (ADS)

    Yang, Haiqing; Wu, Di; He, Yong

    2007-11-01

    Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.

  2. Analysis of Lard in Lipstick Formulation Using FTIR Spectroscopy and Multivariate Calibration: A Comparison of Three Extraction Methods.

    PubMed

    Waskitho, Dri; Lukitaningsih, Endang; Sudjadi; Rohman, Abdul

    2016-01-01

    Analysis of lard extracted from lipstick formulation containing castor oil has been performed using FTIR spectroscopic method combined with multivariate calibration. Three different extraction methods were compared, namely saponification method followed by liquid/liquid extraction with hexane/dichlorometane/ethanol/water, saponification method followed by liquid/liquid extraction with dichloromethane/ethanol/water, and Bligh & Dyer method using chloroform/methanol/water as extracting solvent. Qualitative and quantitative analysis of lard were performed using principle component (PCA) and partial least square (PLS) analysis, respectively. The results showed that, in all samples prepared by the three extraction methods, PCA was capable of identifying lard at wavelength region of 1200-800 cm -1 with the best result was obtained by Bligh & Dyer method. Furthermore, PLS analysis at the same wavelength region used for qualification showed that Bligh and Dyer was the most suitable extraction method with the highest determination coefficient (R 2 ) and the lowest root mean square error of calibration (RMSEC) as well as root mean square error of prediction (RMSEP) values.

  3. Versatile robotic probe calibration for position tracking in ultrasound imaging.

    PubMed

    Bø, Lars Eirik; Hofstad, Erlend Fagertun; Lindseth, Frank; Hernes, Toril A N

    2015-05-07

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy.

  4. Versatile robotic probe calibration for position tracking in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Eirik Bø, Lars; Fagertun Hofstad, Erlend; Lindseth, Frank; Hernes, Toril A. N.

    2015-05-01

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy.

  5. Use of partial least squares regression for the multivariate calibration of hazardous air pollutants in open-path FT-IR spectrometry

    NASA Astrophysics Data System (ADS)

    Hart, Brian K.; Griffiths, Peter R.

    1998-06-01

    Partial least squares (PLS) regression has been evaluated as a robust calibration technique for over 100 hazardous air pollutants (HAPs) measured by open path Fourier transform infrared (OP/FT-IR) spectrometry. PLS has the advantage over the current recommended calibration method of classical least squares (CLS), in that it can look at the whole useable spectrum (700-1300 cm-1, 2000-2150 cm-1, and 2400-3000 cm-1), and detect several analytes simultaneously. Up to one hundred HAPs synthetically added to OP/FT-IR backgrounds have been simultaneously calibrated and detected using PLS. PLS also has the advantage in requiring less preprocessing of spectra than that which is required in CLS calibration schemes, allowing PLS to provide user independent real-time analysis of OP/FT-IR spectra.

  6. Algorithm for Lossless Compression of Calibrated Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B.; Klimesh, Matthew A.

    2010-01-01

    A two-stage predictive method was developed for lossless compression of calibrated hyperspectral imagery. The first prediction stage uses a conventional linear predictor intended to exploit spatial and/or spectral dependencies in the data. The compressor tabulates counts of the past values of the difference between this initial prediction and the actual sample value. To form the ultimate predicted value, in the second stage, these counts are combined with an adaptively updated weight function intended to capture information about data regularities introduced by the calibration process. Finally, prediction residuals are losslessly encoded using adaptive arithmetic coding. Algorithms of this type are commonly tested on a readily available collection of images from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imager. On the standard calibrated AVIRIS hyperspectral images that are most widely used for compression benchmarking, the new compressor provides more than 0.5 bits/sample improvement over the previous best compression results. The algorithm has been implemented in Mathematica. The compression algorithm was demonstrated as beneficial on 12-bit calibrated AVIRIS images.

  7. Calibrations for a MCAO Imaging System

    NASA Astrophysics Data System (ADS)

    Hibon, Pascale; B. Neichel; V. Garrel; R. Carrasco

    2017-09-01

    "GeMS, the Gemini Multi conjugate adaptive optics System installed at the Gemini South telescope (Cerro Pachon, Chile) started to deliver science since the beginning of 2013. GeMS is using the Multi Conjugate AdaptiveOptics (MCAO) technique allowing to dramatically increase the corrected field of view (FOV) compared to classical Single Conjugated Adaptive Optics (SCAO) systems. It is the first sodium-based multi-Laser Guide Star (LGS) adaptive optics system. It has been designed to feed two science instruments: GSAOI, a 4k×4k NIR imager covering 85"×85" with 0.02" pixel scale, and Flamingos-2, a NIR multi-object spectrograph. We present here an overview of the calibrations necessary for reducing and analysing the science datasets obtained with GeMS+GSAOI."

  8. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach

    Treesearch

    Michael S. Balshi; A. David McGuire; Paul Duffy; Mike Flannigan; John Walsh; Jerry Melillo

    2009-01-01

    We developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5o (latitude x longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was...

  9. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively.

  10. Assessing Multivariate Constraints to Evolution across Ten Long-Term Avian Studies

    PubMed Central

    Teplitsky, Celine; Tarka, Maja; Møller, Anders P.; Nakagawa, Shinichi; Balbontín, Javier; Burke, Terry A.; Doutrelant, Claire; Gregoire, Arnaud; Hansson, Bengt; Hasselquist, Dennis; Gustafsson, Lars; de Lope, Florentino; Marzal, Alfonso; Mills, James A.; Wheelwright, Nathaniel T.; Yarrall, John W.; Charmantier, Anne

    2014-01-01

    Background In a rapidly changing world, it is of fundamental importance to understand processes constraining or facilitating adaptation through microevolution. As different traits of an organism covary, genetic correlations are expected to affect evolutionary trajectories. However, only limited empirical data are available. Methodology/Principal Findings We investigate the extent to which multivariate constraints affect the rate of adaptation, focusing on four morphological traits often shown to harbour large amounts of genetic variance and considered to be subject to limited evolutionary constraints. Our data set includes unique long-term data for seven bird species and a total of 10 populations. We estimate population-specific matrices of genetic correlations and multivariate selection coefficients to predict evolutionary responses to selection. Using Bayesian methods that facilitate the propagation of errors in estimates, we compare (1) the rate of adaptation based on predicted response to selection when including genetic correlations with predictions from models where these genetic correlations were set to zero and (2) the multivariate evolvability in the direction of current selection to the average evolvability in random directions of the phenotypic space. We show that genetic correlations on average decrease the predicted rate of adaptation by 28%. Multivariate evolvability in the direction of current selection was systematically lower than average evolvability in random directions of space. These significant reductions in the rate of adaptation and reduced evolvability were due to a general nonalignment of selection and genetic variance, notably orthogonality of directional selection with the size axis along which most (60%) of the genetic variance is found. Conclusions These results suggest that genetic correlations can impose significant constraints on the evolution of avian morphology in wild populations. This could have important impacts on evolutionary dynamics and hence population persistence in the face of rapid environmental change. PMID:24608111

  11. Multi-Fault Diagnosis of Rolling Bearings via Adaptive Projection Intrinsically Transformed Multivariate Empirical Mode Decomposition and High Order Singular Value Decomposition

    PubMed Central

    Lv, Yong; Song, Gangbing

    2018-01-01

    Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal. PMID:29659510

  12. Multi-Fault Diagnosis of Rolling Bearings via Adaptive Projection Intrinsically Transformed Multivariate Empirical Mode Decomposition and High Order Singular Value Decomposition.

    PubMed

    Yuan, Rui; Lv, Yong; Song, Gangbing

    2018-04-16

    Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal.

  13. Post-processing of multi-hydrologic model simulations for improved streamflow projections

    NASA Astrophysics Data System (ADS)

    khajehei, sepideh; Ahmadalipour, Ali; Moradkhani, Hamid

    2016-04-01

    Hydrologic model outputs are prone to bias and uncertainty due to knowledge deficiency in model and data. Uncertainty in hydroclimatic projections arises due to uncertainty in hydrologic model as well as the epistemic or aleatory uncertainties in GCM parameterization and development. This study is conducted to: 1) evaluate the recently developed multi-variate post-processing method for historical simulations and 2) assess the effect of post-processing on uncertainty and reliability of future streamflow projections in both high-flow and low-flow conditions. The first objective is performed for historical period of 1970-1999. Future streamflow projections are generated for 10 statistically downscaled GCMs from two widely used downscaling methods: Bias Corrected Statistically Downscaled (BCSD) and Multivariate Adaptive Constructed Analogs (MACA), over the period of 2010-2099 for two representative concentration pathways of RCP4.5 and RCP8.5. Three semi-distributed hydrologic models were employed and calibrated at 1/16 degree latitude-longitude resolution for over 100 points across the Columbia River Basin (CRB) in the pacific northwest USA. Streamflow outputs are post-processed through a Bayesian framework based on copula functions. The post-processing approach is relying on a transfer function developed based on bivariate joint distribution between the observation and simulation in historical period. Results show that application of post-processing technique leads to considerably higher accuracy in historical simulations and also reducing model uncertainty in future streamflow projections.

  14. A generalized multivariate regression model for modelling ocean wave heights

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Feng, Y.; Swail, V. R.

    2012-04-01

    In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.

  15. PyDREAM: high-dimensional parameter inference for biological models in python.

    PubMed

    Shockley, Erin M; Vrugt, Jasper A; Lopez, Carlos F; Valencia, Alfonso

    2018-02-15

    Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM. c.lopez@vanderbilt.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  16. The calibration of a Scanditronix-Wellhöfer thimble chamber for photon dosimetry using the IAEA TRS 277 code of practice.

    PubMed

    Fourie, O L

    2004-03-01

    This note investigates the calibration of a Scanditronix-Wellhöfer type FC65-G ionisation chamber to be used in clinical photon dosimetry. The current Adaptation by the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) of the IAEA TRS 277 dosimetry protocol makes no provision for this type of chamber. The absorbed dose to air calibration coefficient ND was therefore calculated from the air kerma calibration coefficient NK using the formalism of the IAEA TRS 277 protocol and it is shown that the value of the correction factor kmkatt for the FC65-G chamber is identical to that of the NE 2571 chamber. ND was also determined experimentally from a cross calibration against an NE 2571 dosimetry. It was found that there is a good correspondence between the calculated and measured values. To establish to what extent the ACPSEM Adaptation can be used for the FC65-G chamber, values for the ratio of stopping powers in water and air (Sw,air)Q and the perturbation correction factor pQ were calculated using the TRS 277 protocol. From these results it is shown that over the range of beam qualities TPR20,10 = 0.59 to TPR20,10 = 0.78 the Adaptation can be used for the FC65-G chamber.

  17. Optimizing the learning rate for adaptive estimation of neural encoding models

    PubMed Central

    2018-01-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069

  18. Optimizing the learning rate for adaptive estimation of neural encoding models.

    PubMed

    Hsieh, Han-Lin; Shanechi, Maryam M

    2018-05-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.

  19. Multivariate postprocessing techniques for probabilistic hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2016-04-01

    Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both mean and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS; Gneiting et al., 2005) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. These approaches comprise ensemble copula coupling (ECC; Schefzik et al., 2013), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA; Pinson and Girard, 2012), which estimates the temporal correlations from training observations. Both methods are tested in a case study covering three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. The results indicate that both ECC and GCA are suitable for modelling the temporal dependences of probabilistic hydrologic forecasts (Hemri et al., 2015). References Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman (2005), Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133(5), 1098-1118, DOI: 10.1175/MWR2904.1. Hemri, S., D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51(9), 7436-7451, DOI: 10.1002/2014WR016473. Pinson, P., and R. Girard (2012), Evaluating the quality of scenarios of short-term wind power generation, Applied Energy, 96, 12-20, DOI: 10.1016/j.apenergy.2011.11.004. Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting (2013), Uncertainty quantification in complex simulation models using ensemble copula coupling, Statistical Science, 28, 616-640, DOI: 10.1214/13-STS443.

  20. Calibration of an Item Bank for the Assessment of Basque Language Knowledge

    ERIC Educational Resources Information Center

    Lopez-Cuadrado, Javier; Perez, Tomas A.; Vadillo, Jose A.; Gutierrez, Julian

    2010-01-01

    The main requisite for a functional computerized adaptive testing system is the need of a calibrated item bank. This text presents the tasks carried out during the calibration of an item bank for assessing knowledge of Basque language. It has been done in terms of the 3-parameter logistic model provided by the item response theory. Besides, this…

  1. Near Infrared Spectroscopy Detection and Quantification of Herbal Medicines Adulterated with Sibutramine.

    PubMed

    da Silva, Neirivaldo Cavalcante; Honorato, Ricardo Saldanha; Pimentel, Maria Fernanda; Garrigues, Salvador; Cervera, Maria Luisa; de la Guardia, Miguel

    2015-09-01

    There is an increasing demand for herbal medicines in weight loss treatment. Some synthetic chemicals, such as sibutramine (SB), have been detected as adulterants in herbal formulations. In this study, two strategies using near infrared (NIR) spectroscopy have been developed to evaluate potential adulteration of herbal medicines with SB: a qualitative screening approach and a quantitative methodology based on multivariate calibration. Samples were composed by products commercialized as herbal medicines, as well as by laboratory adulterated samples. Spectra were obtained in the range of 14,000-4000 per cm. Using PLS-DA, a correct classification of 100% was achieved for the external validation set. In the quantitative approach, the root mean squares error of prediction (RMSEP), for both PLS and MLR models, was 0.2% w/w. The results prove the potential of NIR spectroscopy and multivariate calibration in quantifying sibutramine in adulterated herbal medicines samples. © 2015 American Academy of Forensic Sciences.

  2. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide.

    PubMed

    Darwish, Hany W; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Improved Quantitative Analysis of Ion Mobility Spectrometry by Chemometric Multivariate Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraga, Carlos G.; Kerr, Dayle; Atkinson, David A.

    2009-09-01

    Traditional peak-area calibration and the multivariate calibration methods of principle component regression (PCR) and partial least squares (PLS), including unfolded PLS (U-PLS) and multi-way PLS (N-PLS), were evaluated for the quantification of 2,4,6-trinitrotoluene (TNT) and cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) in Composition B samples analyzed by temperature step desorption ion mobility spectrometry (TSD-IMS). The true TNT and RDX concentrations of eight Composition B samples were determined by high performance liquid chromatography with UV absorbance detection. Most of the Composition B samples were found to have distinct TNT and RDX concentrations. Applying PCR and PLS on the exact same IMS spectra used for themore » peak-area study improved quantitative accuracy and precision approximately 3 to 5 fold and 2 to 4 fold, respectively. This in turn improved the probability of correctly identifying Composition B samples based upon the estimated RDX and TNT concentrations from 11% with peak area to 44% and 89% with PLS. This improvement increases the potential of obtaining forensic information from IMS analyzers by providing some ability to differentiate or match Composition B samples based on their TNT and RDX concentrations.« less

  4. Improving the accuracy of hyaluronic acid molecular weight estimation by conventional size exclusion chromatography.

    PubMed

    Shanmuga Doss, Sreeja; Bhatt, Nirav Pravinbhai; Jayaraman, Guhan

    2017-08-15

    There is an unreasonably high variation in the literature reports on molecular weight of hyaluronic acid (HA) estimated using conventional size exclusion chromatography (SEC). This variation is most likely due to errors in estimation. Working with commercially available HA molecular weight standards, this work examines the extent of error in molecular weight estimation due to two factors: use of non-HA based calibration and concentration of sample injected into the SEC column. We develop a multivariate regression correlation to correct for concentration effect. Our analysis showed that, SEC calibration based on non-HA standards like polyethylene oxide and pullulan led to approximately 2 and 10 times overestimation, respectively, when compared to HA-based calibration. Further, we found that injected sample concentration has an effect on molecular weight estimation. Even at 1g/l injected sample concentration, HA molecular weight standards of 0.7 and 1.64MDa showed appreciable underestimation of 11-24%. The multivariate correlation developed was found to reduce error in estimations at 1g/l to <4%. The correlation was also successfully applied to accurately estimate the molecular weight of HA produced by a recombinant Lactococcus lactis fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Multichannel-Hadamard calibration of high-order adaptive optics systems.

    PubMed

    Guo, Youming; Rao, Changhui; Bao, Hua; Zhang, Ang; Zhang, Xuejun; Wei, Kai

    2014-06-02

    we present a novel technique of calibrating the interaction matrix for high-order adaptive optics systems, called the multichannel-Hadamard method. In this method, the deformable mirror actuators are firstly divided into a series of channels according to their coupling relationship, and then the voltage-oriented Hadamard method is applied to these channels. Taking the 595-element adaptive optics system as an example, the procedure is described in detail. The optimal channel dividing is discussed and tested by numerical simulation. The proposed method is also compared with the voltage-oriented Hadamard only method and the multichannel only method by experiments. Results show that the multichannel-Hadamard method can produce significant improvement on interaction matrix measurement.

  6. Audio Adapted Assessment Data: Does the Addition of Audio to Written Items Modify the Item Calibration?

    ERIC Educational Resources Information Center

    Snyder, James

    2010-01-01

    This dissertation research examined the changes in item RIT calibration that occurred when adding audio to a set of currently calibrated RIT items and then placing these new items as field test items in the modified assessments on the NWEA MAP test platform. The researcher used test results from over 600 students in the Poway School District in…

  7. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.

    PubMed

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance--competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  8. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller

    NASA Astrophysics Data System (ADS)

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Objective. Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. Approach. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Main results. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance—competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. Significance. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  9. Demonstration of a vectorial optical field generator with adaptive close loop control.

    PubMed

    Chen, Jian; Kong, Lingjiang; Zhan, Qiwen

    2017-12-01

    We experimentally demonstrate a vectorial optical field generator (VOF-Gen) with an adaptive close loop control. The close loop control capability is illustrated with the calibration of polarization modulation of the system. To calibrate the polarization ratio modulation, we generate 45° linearly polarized beam and make it propagate through a linear analyzer whose transmission axis is orthogonal to the incident beam. For the retardation calibration, circularly polarized beam is employed and a circular polarization analyzer with the opposite chirality is placed in front of the CCD as the detector. In both cases, the close loop control automatically changes the value of the corresponding calibration parameters in the pre-set ranges to generate the phase patterns applied to the spatial light modulators and records the intensity distribution of the output beam by the CCD camera. The optimized calibration parameters are determined corresponding to the minimum total intensity in each case. Several typical kinds of vectorial optical beams are created with and without the obtained calibration parameters, and the full Stokes parameter measurements are carried out to quantitatively analyze the polarization distribution of the generated beams. The comparisons among these results clearly show that the obtained calibration parameters could remarkably improve the accuracy of the polarization modulation of the VOF-Gen, especially for generating elliptically polarized beam with large ellipticity, indicating the significance of the presented close loop in enhancing the performance of the VOF-Gen.

  10. Calibration sets and the accuracy of vibrational scaling factors: A case study with the X3LYP hybrid functional

    NASA Astrophysics Data System (ADS)

    Teixeira, Filipe; Melo, André; Cordeiro, M. Natália D. S.

    2010-09-01

    A linear least-squares methodology was used to determine the vibrational scaling factors for the X3LYP density functional. Uncertainties for these scaling factors were calculated according to the method devised by Irikura et al. [J. Phys. Chem. A 109, 8430 (2005)]. The calibration set was systematically partitioned according to several of its descriptors and the scaling factors for X3LYP were recalculated for each subset. The results show that the scaling factors are only significant up to the second digit, irrespective of the calibration set used. Furthermore, multivariate statistical analysis allowed us to conclude that the scaling factors and the associated uncertainties are independent of the size of the calibration set and strongly suggest the practical impossibility of obtaining vibrational scaling factors with more than two significant digits.

  11. Calibration sets and the accuracy of vibrational scaling factors: a case study with the X3LYP hybrid functional.

    PubMed

    Teixeira, Filipe; Melo, André; Cordeiro, M Natália D S

    2010-09-21

    A linear least-squares methodology was used to determine the vibrational scaling factors for the X3LYP density functional. Uncertainties for these scaling factors were calculated according to the method devised by Irikura et al. [J. Phys. Chem. A 109, 8430 (2005)]. The calibration set was systematically partitioned according to several of its descriptors and the scaling factors for X3LYP were recalculated for each subset. The results show that the scaling factors are only significant up to the second digit, irrespective of the calibration set used. Furthermore, multivariate statistical analysis allowed us to conclude that the scaling factors and the associated uncertainties are independent of the size of the calibration set and strongly suggest the practical impossibility of obtaining vibrational scaling factors with more than two significant digits.

  12. Fourier transform infrared spectroscopy for Kona coffee authentication.

    PubMed

    Wang, Jun; Jun, Soojin; Bittenbender, H C; Gautz, Loren; Li, Qing X

    2009-06-01

    Kona coffee, the variety of "Kona typica" grown in the north and south districts of Kona-Island, carries a unique stamp of the region of Big Island of Hawaii, U.S.A. The excellent quality of Kona coffee makes it among the best coffee products in the world. Fourier transform infrared (FTIR) spectroscopy integrated with an attenuated total reflectance (ATR) accessory and multivariate analysis was used for qualitative and quantitative analysis of ground and brewed Kona coffee and blends made with Kona coffee. The calibration set of Kona coffee consisted of 10 different blends of Kona-grown original coffee mixture from 14 different farms in Hawaii and a non-Kona-grown original coffee mixture from 3 different sampling sites in Hawaii. Derivative transformations (1st and 2nd), mathematical enhancements such as mean centering and variance scaling, multivariate regressions by partial least square (PLS), and principal components regression (PCR) were implemented to develop and enhance the calibration model. The calibration model was successfully validated using 9 synthetic blend sets of 100% Kona coffee mixture and its adulterant, 100% non-Kona coffee mixture. There were distinct peak variations of ground and brewed coffee blends in the spectral "fingerprint" region between 800 and 1900 cm(-1). The PLS-2nd derivative calibration model based on brewed Kona coffee with mean centering data processing showed the highest degree of accuracy with the lowest standard error of calibration value of 0.81 and the highest R(2) value of 0.999. The model was further validated by quantitative analysis of commercial Kona coffee blends. Results demonstrate that FTIR can be a rapid alternative to authenticate Kona coffee, which only needs very quick and simple sample preparations.

  13. Robustness of reduced-order multivariable state-space self-tuning controller

    NASA Technical Reports Server (NTRS)

    Yuan, Zhuzhi; Chen, Zengqiang

    1994-01-01

    In this paper, we present a quantitative analysis of the robustness of a reduced-order pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose order of the real process is higher than that of the model used in the controller design. The result of stability analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-loop real system via the reduced-order state-space self-tuner is BIBO stable in the presence of unmodelled dynamics.

  14. Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits.

    PubMed

    van Heerwaarden, Joost; van Zanten, Martijn; Kruijer, Willem

    2015-10-01

    Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation.

  15. Simultaneous calibration of ensemble river flow predictions over an entire range of lead times

    NASA Astrophysics Data System (ADS)

    Hemri, S.; Fundel, F.; Zappa, M.

    2013-10-01

    Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical postprocessing is required. In this work Bayesian model averaging (BMA) is applied to statistically postprocess ensemble runoff raw forecasts for a catchment in Switzerland, at lead times ranging from 1 to 240 h. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the postprocessed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.

  16. The Adaptive Calibration Model of stress responsivity

    PubMed Central

    Ellis, Bruce J.; Shirtcliff, Elizabeth A.

    2010-01-01

    This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism’s allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism’s social and physical environment, mediating the organism’s openness to environmental inputs; and (3) to regulate the organism’s physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. PMID:21145350

  17. Aspects of body self-calibration

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P. A.

    2000-01-01

    The representation of body orientation and configuration is dependent on multiple sources of afferent and efferent information about ongoing and intended patterns of movement and posture. Under normal terrestrial conditions, we feel virtually weightless and we do not perceive the actual forces associated with movement and support of our body. It is during exposure to unusual forces and patterns of sensory feedback during locomotion that computations and mechanisms underlying the ongoing calibration of our body dimensions and movements are revealed. This review discusses the normal mechanisms of our position sense and calibration of our kinaesthetic, visual and auditory sensory systems, and then explores the adaptations that take place to transient Coriolis forces generated during passive body rotation. The latter are very rapid adaptations that allow body movements to become accurate again, even in the absence of visual feedback. Muscle spindle activity interpreted in relation to motor commands and internally modeled reafference is an important component in permitting this adaptation. During voluntary rotary movements of the body, the central nervous system automatically compensates for the Coriolis forces generated by limb movements. This allows accurate control to be maintained without our perceiving the forces generated.

  18. Evaluation of the efficiency of continuous wavelet transform as processing and preprocessing algorithm for resolution of overlapped signals in univariate and multivariate regression analyses; an application to ternary and quaternary mixtures

    NASA Astrophysics Data System (ADS)

    Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-07-01

    Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.

  19. New NIR Calibration Models Speed Biomass Composition and Reactivity Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-01

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. This highlight describes NREL's work to use near-infrared (NIR) spectroscopy and partial least squares multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  20. Simultaneous determination of potassium guaiacolsulfonate, guaifenesin, diphenhydramine HCl and carbetapentane citrate in syrups by using HPLC-DAD coupled with partial least squares multivariate calibration.

    PubMed

    Dönmez, Ozlem Aksu; Aşçi, Bürge; Bozdoğan, Abdürrezzak; Sungur, Sidika

    2011-02-15

    A simple and rapid analytical procedure was proposed for the determination of chromatographic peaks by means of partial least squares multivariate calibration (PLS) of high-performance liquid chromatography with diode array detection (HPLC-DAD). The method is exemplified with analysis of quaternary mixtures of potassium guaiacolsulfonate (PG), guaifenesin (GU), diphenhydramine HCI (DP) and carbetapentane citrate (CP) in syrup preparations. In this method, the area does not need to be directly measured and predictions are more accurate. Though the chromatographic and spectral peaks of the analytes were heavily overlapped and interferents coeluted with the compounds studied, good recoveries of analytes could be obtained with HPLC-DAD coupled with PLS calibration. This method was tested by analyzing the synthetic mixture of PG, GU, DP and CP. As a comparison method, a classsical HPLC method was used. The proposed methods were applied to syrups samples containing four drugs and the obtained results were statistically compared with each other. Finally, the main advantage of HPLC-PLS method over the classical HPLC method tried to emphasized as the using of simple mobile phase, shorter analysis time and no use of internal standard and gradient elution. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert M.

    2013-01-01

    A new regression model search algorithm was developed that may be applied to both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The algorithm is a simplified version of a more complex algorithm that was originally developed for the NASA Ames Balance Calibration Laboratory. The new algorithm performs regression model term reduction to prevent overfitting of data. It has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a regression model search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression model. Therefore, the simplified algorithm is not intended to replace the original algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new search algorithm.

  2. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred

    2013-01-01

    A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.

  3. Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser induced breakdown spectrometry

    NASA Astrophysics Data System (ADS)

    Braga, Jez Willian Batista; Trevizan, Lilian Cristina; Nunes, Lidiane Cristina; Rufini, Iolanda Aparecida; Santos, Dário, Jr.; Krug, Francisco José

    2010-01-01

    The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance, but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation.

  4. State-space self-tuner for on-line adaptive control

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.

    1994-01-01

    Dynamic systems, such as flight vehicles, satellites and space stations, operating in real environments, constantly face parameter and/or structural variations owing to nonlinear behavior of actuators, failure of sensors, changes in operating conditions, disturbances acting on the system, etc. In the past three decades, adaptive control has been shown to be effective in dealing with dynamic systems in the presence of parameter uncertainties, structural perturbations, random disturbances and environmental variations. Among the existing adaptive control methodologies, the state-space self-tuning control methods, initially proposed by us, are shown to be effective in designing advanced adaptive controllers for multivariable systems. In our approaches, we have embedded the standard Kalman state-estimation algorithm into an online parameter estimation algorithm. Thus, the advanced state-feedback controllers can be easily established for digital adaptive control of continuous-time stochastic multivariable systems. A state-space self-tuner for a general multivariable stochastic system has been developed and successfully applied to the space station for on-line adaptive control. Also, a technique for multistage design of an optimal momentum management controller for the space station has been developed and reported in. Moreover, we have successfully developed various digital redesign techniques which can convert a continuous-time controller to an equivalent digital controller. As a result, the expensive and unreliable continuous-time controller can be implemented using low-cost and high performance microprocessors. Recently, we have developed a new hybrid state-space self tuner using a new dual-rate sampling scheme for on-line adaptive control of continuous-time uncertain systems.

  5. Spectral multivariate calibration without laboratory prepared or determined reference analyte values.

    PubMed

    Ottaway, Josh; Farrell, Jeremy A; Kalivas, John H

    2013-02-05

    An essential part to calibration is establishing the analyte calibration reference samples. These samples must characterize the sample matrix and measurement conditions (chemical, physical, instrumental, and environmental) of any sample to be predicted. Calibration usually requires measuring spectra for numerous reference samples in addition to determining the corresponding analyte reference values. Both tasks are typically time-consuming and costly. This paper reports on a method named pure component Tikhonov regularization (PCTR) that does not require laboratory prepared or determined reference values. Instead, an analyte pure component spectrum is used in conjunction with nonanalyte spectra for calibration. Nonanalyte spectra can be from different sources including pure component interference samples, blanks, and constant analyte samples. The approach is also applicable to calibration maintenance when the analyte pure component spectrum is measured in one set of conditions and nonanalyte spectra are measured in new conditions. The PCTR method balances the trade-offs between calibration model shrinkage and the degree of orthogonality to the nonanalyte content (model direction) in order to obtain accurate predictions. Using visible and near-infrared (NIR) spectral data sets, the PCTR results are comparable to those obtained using ridge regression (RR) with reference calibration sets. The flexibility of PCTR also allows including reference samples if such samples are available.

  6. Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations.

    PubMed

    Norris, Scott A; Hathaway, Emily N; Taylor, Jordan A; Thach, W Thomas

    2011-05-01

    Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20-30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation.

  7. Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations

    PubMed Central

    Hathaway, Emily N.; Taylor, Jordan A.; Thach, W. Thomas

    2011-01-01

    Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20–30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation. PMID:21389311

  8. On Restructurable Control System Theory

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1983-01-01

    The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.

  9. Optimal Multicomponent Analysis Using the Generalized Standard Addition Method.

    ERIC Educational Resources Information Center

    Raymond, Margaret; And Others

    1983-01-01

    Describes an experiment on the simultaneous determination of chromium and magnesium by spectophotometry modified to include the Generalized Standard Addition Method computer program, a multivariate calibration method that provides optimal multicomponent analysis in the presence of interference and matrix effects. Provides instructions for…

  10. A stepwise, multi-objective, multi-variable parameter optimization method for the APEX model

    USDA-ARS?s Scientific Manuscript database

    Proper parameterization enables hydrological models to make reliable estimates of non-point source pollution for effective control measures. The automatic calibration of hydrologic models requires significant computational power limiting its application. The study objective was to develop and eval...

  11. Determination of main fruits in adulterated nectars by ATR-FTIR spectroscopy combined with multivariate calibration and variable selection methods.

    PubMed

    Miaw, Carolina Sheng Whei; Assis, Camila; Silva, Alessandro Rangel Carolino Sales; Cunha, Maria Luísa; Sena, Marcelo Martins; de Souza, Scheilla Vitorino Carvalho

    2018-07-15

    Grape, orange, peach and passion fruit nectars were formulated and adulterated by dilution with syrup, apple and cashew juices at 10 levels for each adulterant. Attenuated total reflectance Fourier transform mid infrared (ATR-FTIR) spectra were obtained. Partial least squares (PLS) multivariate calibration models allied to different variable selection methods, such as interval partial least squares (iPLS), ordered predictors selection (OPS) and genetic algorithm (GA), were used to quantify the main fruits. PLS improved by iPLS-OPS variable selection showed the highest predictive capacity to quantify the main fruit contents. The selected variables in the final models varied from 72 to 100; the root mean square errors of prediction were estimated from 0.5 to 2.6%; the correlation coefficients of prediction ranged from 0.948 to 0.990; and, the mean relative errors of prediction varied from 3.0 to 6.7%. All of the developed models were validated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Development of a multivariate calibration model for the determination of dry extract content in Brazilian commercial bee propolis extracts through UV-Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Barbeira, Paulo J. S.; Paganotti, Rosilene S. N.; Ássimos, Ariane A.

    2013-10-01

    This study had the objective of determining the content of dry extract of commercial alcoholic extracts of bee propolis through Partial Least Squares (PLS) multivariate calibration and electronic spectroscopy. The PLS model provided a good prediction of dry extract content in commercial alcoholic extracts of bee propolis in the range of 2.7 a 16.8% (m/v), presenting the advantage of being less laborious and faster than the traditional gravimetric methodology. The PLS model was optimized with outlier detection tests according to the ASTM E 1655-05. In this study it was possible to verify that a centrifugation stage is extremely important in order to avoid the presence of waxes, resulting in a more accurate model. Around 50% of the analyzed samples presented content of dry extract lower than the value established by Brazilian legislation, in most cases, the values found were different from the values claimed in the product's label.

  13. Rainfall Estimation over the Nile Basin using Multi-Spectral, Multi- Instrument Satellite Techniques

    NASA Astrophysics Data System (ADS)

    Habib, E.; Kuligowski, R.; Sazib, N.; Elshamy, M.; Amin, D.; Ahmed, M.

    2012-04-01

    Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite- derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared (IR) algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). In this study, the authors report on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self- Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application by NFC over the Nile Basin. The algorithm uses a set of rainfall predictors that come from multi-spectral Infrared cloud top observations and self-calibrate them to a set of predictands that come from the more accurate, but less frequent, Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels that have become recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as the Special Sensor Microwave/Imager (SSM/I), the Special Sensor Microwave Imager and Sounder (SSMIS), the Advanced Microwave Sounding Unit (AMSU), the Advanced Microwave Scanning Radiometer on EOS (AMSR-E), and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real- time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static coefficients that are derived from IR-MW data from past observations. We also compare the SCaMPR algorithm to other global-scale satellite rainfall algorithms (e.g., 'Tropical Rainfall Measuring Mission (TRMM) and other sources' (TRMM-3B42) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA-CPC) CMORPH product. The algorithm has several potential future applications such as: improving the performance accuracy of hydrologic forecasting models over the Nile Basin, and utilizing the enhanced rainfall datasets and better-calibrated hydrologic models to assess the impacts of climate change on the region's water availability using global circulation models and regional climate models.

  14. Calibrated Methodology for Assessing Adaptation Costs for Urban Drainage Systems

    EPA Science Inventory

    Changes in precipitation patterns associated with climate change may pose significant challenges for storm water management systems across much of the U.S. In particular, adapting these systems to more intense rainfall events will require significant investment. The assessment ...

  15. Thermal regulation in multiple-source arc welding involving material transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doumanidis, C.C.

    1995-06-01

    This article addresses regulation of the thermal field generated during arc welding, as the cause of solidification, heat-affected zone and cooling rate related metallurgical transformations affecting the final microstructure and mechanical properties of various welded materials. This temperature field is described by a dynamic real-time process model, consisting of an analytical composite conduction expression for the solid region, and a lumped-state, double-stream circulation model in the weld pool, integrated with a Gaussian heat input and calibrated experimentally through butt joint GMAW tests on plain steel plates. This model serves as the basis of an in-process thermal control system employing feedbackmore » of part surface temperatures measured by infrared pyrometry; and real-time identification of the model parameters with a multivariable adaptive control strategy. Multiple heat inputs and continuous power distributions are implemented by a single time-multiplexed torch, scanning the weld surface to ensure independent, decoupled control of several thermal characteristics. Their regulation is experimentally obtained in longitudinal GTAW of stainless steel pipes, despite the presence of several geometrical, thermal and process condition disturbances of arc welding.« less

  16. Multicomponent kinetic spectrophotometric determination of pefloxacin and norfloxacin in pharmaceutical preparations and human plasma samples with the aid of chemometrics

    NASA Astrophysics Data System (ADS)

    Ni, Yongnian; Wang, Yong; Kokot, Serge

    2008-10-01

    A spectrophotometric method for the simultaneous determination of the important pharmaceuticals, pefloxacin and its structurally similar metabolite, norfloxacin, is described for the first time. The analysis is based on the monitoring of a kinetic spectrophotometric reaction of the two analytes with potassium permanganate as the oxidant. The measurement of the reaction process followed the absorbance decrease of potassium permanganate at 526 nm, and the accompanying increase of the product, potassium manganate, at 608 nm. It was essential to use multivariate calibrations to overcome severe spectral overlaps and similarities in reaction kinetics. Calibration curves for the individual analytes showed linear relationships over the concentration ranges of 1.0-11.5 mg L -1 at 526 and 608 nm for pefloxacin, and 0.15-1.8 mg L -1 at 526 and 608 nm for norfloxacin. Various multivariate calibration models were applied, at the two analytical wavelengths, for the simultaneous prediction of the two analytes including classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). PLS and PC-RBF-ANN calibrations with the data collected at 526 nm, were the preferred methods—%RPE T ˜ 5, and LODs for pefloxacin and norfloxacin of 0.36 and 0.06 mg L -1, respectively. Then, the proposed method was applied successfully for the simultaneous determination of pefloxacin and norfloxacin present in pharmaceutical and human plasma samples. The results compared well with those from the alternative analysis by HPLC.

  17. A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Co-adaptive training paradigms for event-related desynchronization (ERD) based brain-computer interfaces (BCI) have proven effective for healthy users. As of yet, it is not clear whether co-adaptive training paradigms can also benefit users with severe motor impairment. The primary goal of our paper was to evaluate a novel cue-guided, co-adaptive BCI training paradigm with severely impaired volunteers. The co-adaptive BCI supports a non-control state, which is an important step toward intuitive, self-paced control. A secondary aim was to have the same participants operate a specifically designed self-paced BCI training paradigm based on the auto-calibrated classifier. The co-adaptive BCI analyzed the electroencephalogram from three bipolar derivations (C3, Cz, and C4) online, while the 22 end users alternately performed right hand movement imagery (MI), left hand MI and relax with eyes open (non-control state). After less than five minutes, the BCI auto-calibrated and proceeded to provide visual feedback for the MI task that could be classified better against the non-control state. The BCI continued to regularly recalibrate. In every calibration step, the system performed trial-based outlier rejection and trained a linear discriminant analysis classifier based on one auto-selected logarithmic band-power feature. In 24 minutes of training, the co-adaptive BCI worked significantly (p = 0.01) better than chance for 18 of 22 end users. The self-paced BCI training paradigm worked significantly (p = 0.01) better than chance in 11 of 20 end users. The presented co-adaptive BCI complements existing approaches in that it supports a non-control state, requires very little setup time, requires no BCI expert and works online based on only two electrodes. The preliminary results from the self-paced BCI paradigm compare favorably to previous studies and the collected data will allow to further improve self-paced BCI systems for disabled users. PMID:25014055

  18. Surrogate Based Uni/Multi-Objective Optimization and Distribution Estimation Methods

    NASA Astrophysics Data System (ADS)

    Gong, W.; Duan, Q.; Huo, X.

    2017-12-01

    Parameter calibration has been demonstrated as an effective way to improve the performance of dynamic models, such as hydrological models, land surface models, weather and climate models etc. Traditional optimization algorithms usually cost a huge number of model evaluations, making dynamic model calibration very difficult, or even computationally prohibitive. With the help of a serious of recently developed adaptive surrogate-modelling based optimization methods: uni-objective optimization method ASMO, multi-objective optimization method MO-ASMO, and probability distribution estimation method ASMO-PODE, the number of model evaluations can be significantly reduced to several hundreds, making it possible to calibrate very expensive dynamic models, such as regional high resolution land surface models, weather forecast models such as WRF, and intermediate complexity earth system models such as LOVECLIM. This presentation provides a brief introduction to the common framework of adaptive surrogate-based optimization algorithms of ASMO, MO-ASMO and ASMO-PODE, a case study of Common Land Model (CoLM) calibration in Heihe river basin in Northwest China, and an outlook of the potential applications of the surrogate-based optimization methods.

  19. Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Sen; Li, Chengwei, E-mail: heikuanghit@163.com

    2016-06-15

    The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiationmore » of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.« less

  20. Optical and laser spectroscopic diagnostics for energy applications

    NASA Astrophysics Data System (ADS)

    Tripathi, Markandey Mani

    The continuing need for greater energy security and energy independence has motivated researchers to develop new energy technologies for better energy resource management and efficient energy usage. The focus of this dissertation is the development of optical (spectroscopic) sensing methodologies for various fuels, and energy applications. A fiber-optic NIR sensing methodology was developed for predicting water content in bio-oil. The feasibility of using the designed near infrared (NIR) system for estimating water content in bio-oil was tested by applying multivariate analysis to NIR spectral data. The calibration results demonstrated that the spectral information can successfully predict the bio-oil water content (from 16% to 36%). The effect of ultraviolet (UV) light on the chemical stability of bio-oil was studied by employing laser-induced fluorescence (LIF) spectroscopy. To simulate the UV light exposure, a laser in the UV region (325 nm) was employed for bio-oil excitation. The LIF, as a signature of chemical change, was recorded from bio-oil. From this study, it was concluded that phenols present in the bio-oil show chemical instability, when exposed to UV light. A laser-induced breakdown spectroscopy (LIBS)-based optical sensor was designed, developed, and tested for detection of four important trace impurities in rocket fuel (hydrogen). The sensor can simultaneously measure the concentrations of nitrogen, argon, oxygen, and helium in hydrogen from storage tanks and supply lines. The sensor had estimated lower detection limits of 80 ppm for nitrogen, 97 ppm for argon, 10 ppm for oxygen, and 25 ppm for helium. A chemiluminescence-based spectroscopic diagnostics were performed to measure equivalence ratios in methane-air premixed flames. A partial least-squares regression (PLS-R)-based multivariate sensing methodology was investigated. It was found that the equivalence ratios predicted with the PLS-R-based multivariate calibration model matched with the experimentally measured equivalence ratios within 7 %. A comparative study was performed for equivalence ratios measurement in atmospheric premixed methane-air flames with ungated LIBS and chemiluminescence spectroscopy. It was reported that LIBS-based calibration, which carries spectroscopic information from a "point-like-volume," provides better predictions of equivalence ratios compared to chemiluminescence-based calibration, which is essentially a "line-of-sight" measurement.

  1. Evaluation of a stepwise, multi-objective, multi-variable parameter optimization method for the APEX model

    USDA-ARS?s Scientific Manuscript database

    Hydrologic models are essential tools for environmental assessment of agricultural non-point source pollution. The automatic calibration of hydrologic models, though efficient, demands significant computational power, which can limit its application. The study objective was to investigate a cost e...

  2. Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits

    PubMed Central

    van Zanten, Martijn

    2015-01-01

    Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation. PMID:26496492

  3. A Novel approach to monitor chlorophyll-a concentration using an adaptive model from MODIS data at 250 metres spatial resolution

    NASA Astrophysics Data System (ADS)

    El Alem, A.; Chokmani, K.; Laurion, I.; El Adlouni, S.

    2013-12-01

    Occurrence and extent of Harmful Algal Bloom (HAB) has increased in inland water bodies around the world. The appearance of these blooms reflects the advanced state of eutrophication of several aquatic systems caused by urban, agricultural, and industrial development. Algal blooms, especially those cyanobacterial origins, are capable to produce and release toxins, threatening human and animal health, quality of drinking water, and recreational water bodies. Conventional monitoring networks, based on infrequent sampling in a few fixed monitoring stations, cannot provide the information needed as HABs are spatially and temporally heterogeneous. Remote sensing represents an interesting alternative to provide the required spatial and temporal coverage. The usefulness of air-borne and satellite remote sensing data to detect HABs was demonstrated since three decades ago, and since several empirical and semi-empirical models, using satellite imagery, were developed to estimate chlorophyll-a concentration [Chl-a] as a proxy to detect bloom proliferations. However, most of those models presented several weaknesses that are generally linked to the range of [Chl-a] to be estimated. Indeed, models originally calibrated for high [Chl-a] fail to estimate low concentrations and vice versa. In this study, an adaptive model to estimate [Chl-a], spread over a wide range of concentrations, is developed for optically complex inland water bodies based on combination of water spectral response classification and three developed semi-empirical algorithms using a multivariate regression. Three distinct water types (low, medium, and high [Chl-a]) are first identified using the Classification and Regression Tree (CART) method performed on remote sensing reflectance over a dataset of 44 [Chl-a] samples collected from Lakes over Quebec province. Based on the water classification, a specific multivariate model to each water type is developed using the same dataset and the MODIS data at 250-m spatial resolution. By pre-clustering inland water bodies, the results were very interesting as the determination coefficients as well as the relative RMSE of the cross-validation were of 0.99, 0.98 and 0.95 and of 0.5%, 8% and 17% for high, medium, and low [Chl-a], respectively. On the other hand, the adaptive model reached a global success rate of 92% using an independent, semi-qualitative, [Chl-a] samples collected over more than twenty inland water bodies for the years 2009 and 2010 over the Quebec province.

  4. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  5. Comparative study on ATR-FTIR calibration models for monitoring solution concentration in cooling crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Fangkun; Liu, Tao; Wang, Xue Z.; Liu, Jingxiang; Jiang, Xiaobin

    2017-02-01

    In this paper calibration model building based on using an ATR-FTIR spectroscopy is investigated for in-situ measurement of the solution concentration during a cooling crystallization process. The cooling crystallization of L-glutamic Acid (LGA) as a case is studied here. It was found that using the metastable zone (MSZ) data for model calibration can guarantee the prediction accuracy for monitoring the operating window of cooling crystallization, compared to the usage of undersaturated zone (USZ) spectra for model building as traditionally practiced. Calibration experiments were made for LGA solution under different concentrations. Four candidate calibration models were established using different zone data for comparison, by using a multivariate partial least-squares (PLS) regression algorithm for the collected spectra together with the corresponding temperature values. Experiments under different process conditions including the changes of solution concentration and operating temperature were conducted. The results indicate that using the MSZ spectra for model calibration can give more accurate prediction of the solution concentration during the crystallization process, while maintaining accuracy in changing the operating temperature. The primary reason of prediction error was clarified as spectral nonlinearity for in-situ measurement between USZ and MSZ. In addition, an LGA cooling crystallization experiment was performed to verify the sensitivity of these calibration models for monitoring the crystal growth process.

  6. Calibration-induced uncertainty of the EPIC model to estimate climate change impact on global maize yield

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Skalský, Rastislav; Porter, Cheryl H.; Balkovič, Juraj; Jones, James W.; Yang, Di

    2016-09-01

    Understanding the interactions between agricultural production and climate is necessary for sound decision-making in climate policy. Gridded and high-resolution crop simulation has emerged as a useful tool for building this understanding. Large uncertainty exists in this utilization, obstructing its capacity as a tool to devise adaptation strategies. Increasing focus has been given to sources of uncertainties for climate scenarios, input-data, and model, but uncertainties due to model parameter or calibration are still unknown. Here, we use publicly available geographical data sets as input to the Environmental Policy Integrated Climate model (EPIC) for simulating global-gridded maize yield. Impacts of climate change are assessed up to the year 2099 under a climate scenario generated by HadEM2-ES under RCP 8.5. We apply five strategies by shifting one specific parameter in each simulation to calibrate the model and understand the effects of calibration. Regionalizing crop phenology or harvest index appears effective to calibrate the model for the globe, but using various values of phenology generates pronounced difference in estimated climate impact. However, projected impacts of climate change on global maize production are consistently negative regardless of the parameter being adjusted. Different values of model parameter result in a modest uncertainty at global level, with difference of the global yield change less than 30% by the 2080s. The uncertainty subjects to decrease if applying model calibration or input data quality control. Calibration has a larger effect at local scales, implying the possible types and locations for adaptation.

  7. Applying Multivariate Adaptive Splines to Identify Genes With Expressions Varying After Diagnosis in Microarray Experiments.

    PubMed

    Duan, Fenghai; Xu, Ye

    2017-01-01

    To analyze a microarray experiment to identify the genes with expressions varying after the diagnosis of breast cancer. A total of 44 928 probe sets in an Affymetrix microarray data publicly available on Gene Expression Omnibus from 249 patients with breast cancer were analyzed by the nonparametric multivariate adaptive splines. Then, the identified genes with turning points were grouped by K-means clustering, and their network relationship was subsequently analyzed by the Ingenuity Pathway Analysis. In total, 1640 probe sets (genes) were reliably identified to have turning points along with the age at diagnosis in their expression profiling, of which 927 expressed lower after turning points and 713 expressed higher after the turning points. K-means clustered them into 3 groups with turning points centering at 54, 62.5, and 72, respectively. The pathway analysis showed that the identified genes were actively involved in various cancer-related functions or networks. In this article, we applied the nonparametric multivariate adaptive splines method to a publicly available gene expression data and successfully identified genes with expressions varying before and after breast cancer diagnosis.

  8. A Maximum Likelihood Based Offline Estimation of Student Capabilities and Question Difficulties with Guessing

    ERIC Educational Resources Information Center

    Moothedath, Shana; Chaporkar, Prasanna; Belur, Madhu N.

    2016-01-01

    In recent years, the computerised adaptive test (CAT) has gained popularity over conventional exams in evaluating student capabilities with desired accuracy. However, the key limitation of CAT is that it requires a large pool of pre-calibrated questions. In the absence of such a pre-calibrated question bank, offline exams with uncalibrated…

  9. Career Adaptability Development in Adolescence: Multiple Predictors and Effect on Sense of Power and Life Satisfaction

    ERIC Educational Resources Information Center

    Hirschi, Andreas

    2009-01-01

    This longitudinal panel study investigated predictors of career adaptability development and its effect on development of sense of power and experience of life satisfaction among 330 Swiss eighth graders. A multivariate measure of career adaptability consisting of career choice readiness, planning, exploration, and confidence was applied. Based on…

  10. Adaptation potential of naturally ventilated barns to high temperature extremes: The OptiBarn project

    NASA Astrophysics Data System (ADS)

    Menz, Christoph

    2016-04-01

    Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.

  11. Estimation of soil clay and organic matter using two quantitative methods (PLSR and MARS) based on reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Nawar, Said; Buddenbaum, Henning; Hill, Joachim

    2014-05-01

    A rapid and inexpensive soil analytical technique is needed for soil quality assessment and accurate mapping. This study investigated a method for improved estimation of soil clay (SC) and organic matter (OM) using reflectance spectroscopy. Seventy soil samples were collected from Sinai peninsula in Egypt to estimate the soil clay and organic matter relative to the soil spectra. Soil samples were scanned with an Analytical Spectral Devices (ASD) spectrometer (350-2500 nm). Three spectral formats were used in the calibration models derived from the spectra and the soil properties: (1) original reflectance spectra (OR), (2) first-derivative spectra smoothened using the Savitzky-Golay technique (FD-SG) and (3) continuum-removed reflectance (CR). Partial least-squares regression (PLSR) models using the CR of the 400-2500 nm spectral region resulted in R2 = 0.76 and 0.57, and RPD = 2.1 and 1.5 for estimating SC and OM, respectively, indicating better performance than that obtained using OR and SG. The multivariate adaptive regression splines (MARS) calibration model with the CR spectra resulted in an improved performance (R2 = 0.89 and 0.83, RPD = 3.1 and 2.4) for estimating SC and OM, respectively. The results show that the MARS models have a great potential for estimating SC and OM compared with PLSR models. The results obtained in this study have potential value in the field of soil spectroscopy because they can be applied directly to the mapping of soil properties using remote sensing imagery in arid environment conditions. Key Words: soil clay, organic matter, PLSR, MARS, reflectance spectroscopy.

  12. [Measurement of Water COD Based on UV-Vis Spectroscopy Technology].

    PubMed

    Wang, Xiao-ming; Zhang, Hai-liang; Luo, Wei; Liu, Xue-mei

    2016-01-01

    Ultraviolet/visible (UV/Vis) spectroscopy technology was used to measure water COD. A total of 135 water samples were collected from Zhejiang province. Raw spectra with 3 different pretreatment methods (Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV) and 1st Derivatives were compared to determine the optimal pretreatment method for analysis. Spectral variable selection is an important strategy in spectrum modeling analysis, because it tends to parsimonious data representation and can lead to multivariate models with better performance. In order to simply calibration models, the preprocessed spectra were then used to select sensitive wavelengths by competitive adaptive reweighted sampling (CARS), Random frog and Successive Genetic Algorithm (GA) methods. Different numbers of sensitive wavelengths were selected by different variable selection methods with SNV preprocessing method. Partial least squares (PLS) was used to build models with the full spectra, and Extreme Learning Machine (ELM) was applied to build models with the selected wavelength variables. The overall results showed that ELM model performed better than PLS model, and the ELM model with the selected wavelengths based on CARS obtained the best results with the determination coefficient (R2), RMSEP and RPD were 0.82, 14.48 and 2.34 for prediction set. The results indicated that it was feasible to use UV/Vis with characteristic wavelengths which were obtained by CARS variable selection method, combined with ELM calibration could apply for the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.

  13. Calibration transfer of a Raman spectroscopic quantification method for the assessment of liquid detergent compositions between two at-line instruments installed at two liquid detergent production plants.

    PubMed

    Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T

    2017-09-01

    Calibration transfer of partial least squares (PLS) quantification models is established between two Raman spectrometers located at two liquid detergent production plants. As full recalibration of existing calibration models is time-consuming, labour-intensive and costly, it is investigated whether the use of mathematical correction methods requiring only a handful of standardization samples can overcome the dissimilarities in spectral response observed between both measurement systems. Univariate and multivariate standardization approaches are investigated, ranging from simple slope/bias correction (SBC), local centring (LC) and single wavelength standardization (SWS) to more complex direct standardization (DS) and piecewise direct standardization (PDS). The results of these five calibration transfer methods are compared reciprocally, as well as with regard to a full recalibration. Four PLS quantification models, each predicting the concentration of one of the four main ingredients in the studied liquid detergent composition, are aimed at transferring. Accuracy profiles are established from the original and transferred quantification models for validation purposes. A reliable representation of the calibration models performance before and after transfer is thus established, based on β-expectation tolerance intervals. For each transferred model, it is investigated whether every future measurement that will be performed in routine will be close enough to the unknown true value of the sample. From this validation, it is concluded that instrument standardization is successful for three out of four investigated calibration models using multivariate (DS and PDS) transfer approaches. The fourth transferred PLS model could not be validated over the investigated concentration range, due to a lack of precision of the slave instrument. Comparing these transfer results to a full recalibration on the slave instrument allows comparison of the predictive power of both Raman systems and leads to the formulation of guidelines for further standardization projects. It is concluded that it is essential to evaluate the performance of the slave instrument prior to transfer, even when it is theoretically identical to the master apparatus. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Enhanced ID Pit Sizing Using Multivariate Regression Algorithm

    NASA Astrophysics Data System (ADS)

    Krzywosz, Kenji

    2007-03-01

    EPRI is funding a program to enhance and improve the reliability of inside diameter (ID) pit sizing for balance-of plant heat exchangers, such as condensers and component cooling water heat exchangers. More traditional approaches to ID pit sizing involve the use of frequency-specific amplitude or phase angles. The enhanced multivariate regression algorithm for ID pit depth sizing incorporates three simultaneous input parameters of frequency, amplitude, and phase angle. A set of calibration data sets consisting of machined pits of various rounded and elongated shapes and depths was acquired in the frequency range of 100 kHz to 1 MHz for stainless steel tubing having nominal wall thickness of 0.028 inch. To add noise to the acquired data set, each test sample was rotated and test data acquired at 3, 6, 9, and 12 o'clock positions. The ID pit depths were estimated using a second order and fourth order regression functions by relying on normalized amplitude and phase angle information from multiple frequencies. Due to unique damage morphology associated with the microbiologically-influenced ID pits, it was necessary to modify the elongated calibration standard-based algorithms by relying on the algorithm developed solely from the destructive sectioning results. This paper presents the use of transformed multivariate regression algorithm to estimate ID pit depths and compare the results with the traditional univariate phase angle analysis. Both estimates were then compared with the destructive sectioning results.

  15. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. More efficient evolutionary strategies for model calibration with watershed model for demonstration

    NASA Astrophysics Data System (ADS)

    Baggett, J. S.; Skahill, B. E.

    2008-12-01

    Evolutionary strategies allow automatic calibration of more complex models than traditional gradient based approaches, but they are more computationally intensive. We present several efficiency enhancements for evolution strategies, many of which are not new, but when combined have been shown to dramatically decrease the number of model runs required for calibration of synthetic problems. To reduce the number of expensive model runs we employ a surrogate objective function for an adaptively determined fraction of the population at each generation (Kern et al., 2006). We demonstrate improvements to the adaptive ranking strategy that increase its efficiency while sacrificing little reliability and further reduce the number of model runs required in densely sampled parts of parameter space. Furthermore, we include a gradient individual in each generation that is usually not selected when the search is in a global phase or when the derivatives are poorly approximated, but when selected near a smooth local minimum can dramatically increase convergence speed (Tahk et al., 2007). Finally, the selection of the gradient individual is used to adapt the size of the population near local minima. We show, by incorporating these enhancements into the Covariance Matrix Adaption Evolution Strategy (CMAES; Hansen, 2006), that their synergetic effect is greater than their individual parts. This hybrid evolutionary strategy exploits smooth structure when it is present but degrades to an ordinary evolutionary strategy, at worst, if smoothness is not present. Calibration of 2D-3D synthetic models with the modified CMAES requires approximately 10%-25% of the model runs of ordinary CMAES. Preliminary demonstration of this hybrid strategy will be shown for watershed model calibration problems. Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larrañga, I. Inza and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102, Springer Kern, S., N. Hansen and P. Koumoutsakos (2006). Local Meta-Models for Optimization Using Evolution Strategies. In Ninth International Conference on Parallel Problem Solving from Nature PPSN IX, Proceedings, pp.939-948, Berlin: Springer. Tahk, M., Woo, H., and Park. M, (2007). A hybrid optimization of evolutionary and gradient search. Engineering Optimization, (39), 87-104.

  17. Calibration of an electronic nose for poultry farm

    NASA Astrophysics Data System (ADS)

    Abdullah, A. H.; Shukor, S. A.; Kamis, M. S.; Shakaff, A. Y. M.; Zakaria, A.; Rahim, N. A.; Mamduh, S. M.; Kamarudin, K.; Saad, F. S. A.; Masnan, M. J.; Mustafa, H.

    2017-03-01

    Malodour from the poultry farms could cause air pollution and therefore potentially dangerous to humans' and animals' health. This issue also poses sustainability risk to the poultry industries due to objections from local community. The aim of this paper is to develop and calibrate a cost effective and efficient electronic nose for poultry farm air monitoring. The instrument main components include sensor chamber, array of specific sensors, microcontroller, signal conditioning circuits and wireless sensor networks. The instrument was calibrated to allow classification of different concentrations of main volatile compounds in the poultry farm malodour. The outcome of the process will also confirm the device's reliability prior to being used for poultry farm malodour assessment. The Multivariate Analysis (HCA and KNN) and Artificial Neural Network (ANN) pattern recognition technique was used to process the acquired data. The results show that the instrument is able to calibrate the samples using ANN classification model with high accuracy. The finding verifies the instrument's performance to be used as an effective poultry farm malodour monitoring.

  18. Quantitation of active pharmaceutical ingredients and excipients in powder blends using designed multivariate calibration models by near-infrared spectroscopy.

    PubMed

    Li, Weiyong; Worosila, Gregory D

    2005-05-13

    This research note demonstrates the simultaneous quantitation of a pharmaceutical active ingredient and three excipients in a simulated powder blend containing acetaminophen, Prosolv and Crospovidone. An experimental design approach was used in generating a 5-level (%, w/w) calibration sample set that included 125 samples. The samples were prepared by weighing suitable amount of powders into separate 20-mL scintillation vials and were mixed manually. Partial least squares (PLS) regression was used in calibration model development. The models generated accurate results for quantitation of Crospovidone (at 5%, w/w) and magnesium stearate (at 0.5%, w/w). Further testing of the models demonstrated that the 2-level models were as effective as the 5-level ones, which reduced the calibration sample number to 50. The models had a small bias for quantitation of acetaminophen (at 30%, w/w) and Prosolv (at 64.5%, w/w) in the blend. The implication of the bias is discussed.

  19. Adaptive Patterns of Stress Responsivity: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Del Giudice, Marco; Hinnant, J. Benjamin; Ellis, Bruce J.; El-Sheikh, Mona

    2012-01-01

    The adaptive calibration model (ACM) is an evolutionary-developmental theory of individual differences in stress responsivity. In this article, we tested some key predictions of the ACM in a middle childhood sample (N = 256). Measures of autonomic nervous system activity across the sympathetic and parasympathetic branches validated the 4-pattern…

  20. Determination of glucose in a biological matrix by multivariate analysis of multiple band-pass-filtered Fourier transform near-infrared interferograms.

    PubMed

    Mattu, M J; Small, G W; Arnold, M A

    1997-11-15

    A multivariate calibration method is described in which Fourier transform near-infrared interferogram data are used to determine clinically relevant levels of glucose in an aqueous matrix of bovine serum albumin (BSA) and triacetin. BSA and triacetin are used to model the protein and triglycerides in blood, respectively, and are present in levels spanning the normal human physiological range. A full factorial experimental design is constructed for the data collection, with glucose at 10 levels, BSA at 4 levels, and triacetin at 4 levels. Gaussian-shaped band-pass digital filters are applied to the interferogram data to extract frequencies associated with an absorption band of interest. Separate filters of various widths are positioned on the glucose band at 4400 cm-1, the BSA band at 4606 cm-1, and the triacetin band at 4446 cm-1. Each filter is applied to the raw interferogram, producing one, two, or three filtered interferograms, depending on the number of filters used. Segments of these filtered interferograms are used together in a partial least-squares regression analysis to build glucose calibration models. The optimal calibration model is realized by use of separate segments of interferograms filtered with three filters centered on the glucose, BSA, and triacetin bands. Over the physiological range of 1-20 mM glucose, this 17-term model exhibits values of R2, standard error of calibration, and standard error of prediction of 98.85%, 0.631 mM, and 0.677 mM, respectively. These results are comparable to those obtained in a conventional analysis of spectral data. The interferogram-based method operates without the use of a separate background measurement and employs only a short section of the interferogram.

  1. Evaluation of the efficiency of continuous wavelet transform as processing and preprocessing algorithm for resolution of overlapped signals in univariate and multivariate regression analyses; an application to ternary and quaternary mixtures.

    PubMed

    Hegazy, Maha A; Lotfy, Hayam M; Mowaka, Shereen; Mohamed, Ekram Hany

    2016-07-05

    Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Calibration of the 13- by 13-inch adaptive wall test section for the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Hill, Acquilla S.

    1990-01-01

    A 13 by 13 inch adaptive wall test section was installed in the 0.3 Meter Transonic Cryogenic Tunnel circuit. This new test section is configured for 2-D airfoil testing. It has four solid walls. The top and bottom walls are flexible and movable whereas the sidewalls are rigid and fixed. The wall adaptation strategy employed requires the test section wall shapes associated with uniform test section Mach number distributions. Calibration tests with the test section empty were conducted with the top and bottom walls linearly diverged to approach a uniform Mach number distribution. Pressure distributions were measured in the contraction cone, the test section, and the high speed diffuser at Mach numbers from 0.20 to 0.95 and Reynolds numbers from 10 to 100 x 10 (exp 6)/per foot.

  3. Survey of adaptive control using Liapunov design

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.; Carroll, R. L.

    1973-01-01

    A survey of the literature in which Liapunov's second method is used in determining the control law is presented, with emphasis placed on the model-tracking adaptive control problem. Forty references are listed. Following a brief tutorial exposition of the adaptive control problem, the techniques for treating reduction of order, disturbance and time-varying parameters, multivariable systems, identification, and adaptive observers are discussed. The method is critically evaluated, particularly with respect to possibilities for application.

  4. A New Method for Calibrating Perceptual Salience across Dimensions in Infants: The Case of Color vs. Luminance

    ERIC Educational Resources Information Center

    Kaldy, Zsuzsa; Blaser, Erik A.; Leslie, Alan M.

    2006-01-01

    We report a new method for calibrating differences in perceptual salience across feature dimensions, in infants. The problem of inter-dimensional salience arises in many areas of infant studies, but a general method for addressing the problem has not previously been described. Our method is based on a preferential looking paradigm, adapted to…

  5. Multi-Variable and Multi-Site Calibration and Validation of SWAT for Water Quality in the Kaskaskia River Watershed

    EPA Science Inventory

    The Future Midwest Landscape (FML) project is part of the U.S. Environmental Protection Agency’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes that include crop lands, conservation areas, wetlands, lakes and streams affect ...

  6. ASCAL: A Microcomputer Program for Estimating Logistic IRT Item Parameters.

    ERIC Educational Resources Information Center

    Vale, C. David; Gialluca, Kathleen A.

    ASCAL is a microcomputer-based program for calibrating items according to the three-parameter logistic model of item response theory. It uses a modified multivariate Newton-Raphson procedure for estimating item parameters. This study evaluated this procedure using Monte Carlo Simulation Techniques. The current version of ASCAL was then compared to…

  7. Comparative artificial neural network and partial least squares models for analysis of Metronidazole, Diloxanide, Spiramycin and Cliquinol in pharmaceutical preparations.

    PubMed

    Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M

    2014-09-15

    Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components' mixtures using easy and widely used UV spectrophotometer. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Simultaneous determination of Nifuroxazide and Drotaverine hydrochloride in pharmaceutical preparations by bivariate and multivariate spectral analysis

    NASA Astrophysics Data System (ADS)

    Metwally, Fadia H.

    2008-02-01

    The quantitative predictive abilities of the new and simple bivariate spectrophotometric method are compared with the results obtained by the use of multivariate calibration methods [the classical least squares (CLS), principle component regression (PCR) and partial least squares (PLS)], using the information contained in the absorption spectra of the appropriate solutions. Mixtures of the two drugs Nifuroxazide (NIF) and Drotaverine hydrochloride (DRO) were resolved by application of the bivariate method. The different chemometric approaches were applied also with previous optimization of the calibration matrix, as they are useful in simultaneous inclusion of many spectral wavelengths. The results found by application of the bivariate, CLS, PCR and PLS methods for the simultaneous determinations of mixtures of both components containing 2-12 μg ml -1 of NIF and 2-8 μg ml -1 of DRO are reported. Both approaches were satisfactorily applied to the simultaneous determination of NIF and DRO in pure form and in pharmaceutical formulation. The results were in accordance with those given by the EVA Pharma reference spectrophotometric method.

  9. Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood

    NASA Astrophysics Data System (ADS)

    Simhi, Ronit; Gotshal, Yaron; Bunimovich, David; Katzir, Abraham; Sela, Ben-Ami

    1996-07-01

    A spectral analysis of human blood serum was undertaken by fiber-optic evanescent-wave spectroscopy (FEWS) by the use of a Fourier-transform infrared spectrometer. A special cell for the FEWS measurements was designed and built that incorporates an IR-transmitting silver halide fiber and a means for introducing the blood-serum sample. Further improvements in analysis were obtained by the adoption of multivariate calibration techniques that are already used in clinical chemistry. The partial least-squares algorithm was used to calculate the concentrations of cholesterol, total protein, urea, and uric acid in human blood serum. The estimated prediction errors obtained (in percent from the average value) were 6% for total protein, 15% for cholesterol, 30% for urea, and 30% for uric acid. These results were compared with another independent prediction method that used a neural-network model. This model yielded estimated prediction errors of 8.8% for total protein, 25% for cholesterol, and 21% for uric acid. spectroscopy, fiber-optic evanescent-wave spectroscopy, Fourier-transform infrared spectrometer, blood, multivariate calibration, neural networks.

  10. Multivariate curve resolution-assisted determination of pseudoephedrine and methamphetamine by HPLC-DAD in water samples.

    PubMed

    Vosough, Maryam; Mohamedian, Hadi; Salemi, Amir; Baheri, Tahmineh

    2015-02-01

    In the present study, a simple strategy based on solid-phase extraction (SPE) with a cation exchange sorbent (Finisterre SCX) followed by fast high-performance liquid chromatography (HPLC) with diode array detection coupled with chemometrics tools has been proposed for the determination of methamphetamine and pseudoephedrine in ground water and river water. At first, the HPLC and SPE conditions were optimized and the analytical performance of the method was determined. In the case of ground water, determination of analytes was successfully performed through univariate calibration curves. For river water sample, multivariate curve resolution and alternating least squares was implemented and the second-order advantage was achieved in samples containing uncalibrated interferences and uncorrected background signals. The calibration curves showed good linearity (r(2) > 0.994).The limits of detection for pseudoephedrine and methamphetamine were 0.06 and 0.08 μg/L and the average recovery values were 104.7 and 102.3% in river water, respectively. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Ratio manipulating spectrophotometry versus chemometry as stability indicating methods for cefquinome sulfate determination

    NASA Astrophysics Data System (ADS)

    Yehia, Ali M.; Arafa, Reham M.; Abbas, Samah S.; Amer, Sawsan M.

    2016-01-01

    Spectral resolution of cefquinome sulfate (CFQ) in the presence of its degradation products was studied. Three selective, accurate and rapid spectrophotometric methods were performed for the determination of CFQ in the presence of either its hydrolytic, oxidative or photo-degradation products. The proposed ratio difference, derivative ratio and mean centering are ratio manipulating spectrophotometric methods that were satisfactorily applied for selective determination of CFQ within linear range of 5.0-40.0 μg mL- 1. Concentration Residuals Augmented Classical Least Squares was applied and evaluated for the determination of the cited drug in the presence of its all degradation products. Traditional Partial Least Squares regression was also applied and benchmarked against the proposed advanced multivariate calibration. Experimentally designed 25 synthetic mixtures of three factors at five levels were used to calibrate and validate the multivariate models. Advanced chemometrics succeeded in quantitative and qualitative analyses of CFQ along with its hydrolytic, oxidative and photo-degradation products. The proposed methods were applied successfully for different pharmaceutical formulations analyses. These developed methods were simple and cost-effective compared with the manufacturer's RP-HPLC method.

  12. Detection of Butter Adulteration with Lard by Employing (1)H-NMR Spectroscopy and Multivariate Data Analysis.

    PubMed

    Fadzillah, Nurrulhidayah Ahmad; Man, Yaakob bin Che; Rohman, Abdul; Rosman, Arieff Salleh; Ismail, Amin; Mustafa, Shuhaimi; Khatib, Alfi

    2015-01-01

    The authentication of food products from the presence of non-allowed components for certain religion like lard is very important. In this study, we used proton Nuclear Magnetic Resonance ((1)H-NMR) spectroscopy for the analysis of butter adulterated with lard by simultaneously quantification of all proton bearing compounds, and consequently all relevant sample classes. Since the spectra obtained were too complex to be analyzed visually by the naked eyes, the classification of spectra was carried out.The multivariate calibration of partial least square (PLS) regression was used for modelling the relationship between actual value of lard and predicted value. The model yielded a highest regression coefficient (R(2)) of 0.998 and the lowest root mean square error calibration (RMSEC) of 0.0091% and root mean square error prediction (RMSEP) of 0.0090, respectively. Cross validation testing evaluates the predictive power of the model. PLS model was shown as good models as the intercept of R(2)Y and Q(2)Y were 0.0853 and -0.309, respectively.

  13. Comparative artificial neural network and partial least squares models for analysis of Metronidazole, Diloxanide, Spiramycin and Cliquinol in pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Elkhoudary, Mahmoud M.; Abdel Salam, Randa A.; Hadad, Ghada M.

    2014-09-01

    Metronidazole (MNZ) is a widely used antibacterial and amoebicide drug. Therefore, it is important to develop a rapid and specific analytical method for the determination of MNZ in mixture with Spiramycin (SPY), Diloxanide (DIX) and Cliquinol (CLQ) in pharmaceutical preparations. This work describes simple, sensitive and reliable six multivariate calibration methods, namely linear and nonlinear artificial neural networks preceded by genetic algorithm (GA-ANN) and principle component analysis (PCA-ANN) as well as partial least squares (PLS) either alone or preceded by genetic algorithm (GA-PLS) for UV spectrophotometric determination of MNZ, SPY, DIX and CLQ in pharmaceutical preparations with no interference of pharmaceutical additives. The results manifest the problem of nonlinearity and how models like ANN can handle it. Analytical performance of these methods was statistically validated with respect to linearity, accuracy, precision and specificity. The developed methods indicate the ability of the previously mentioned multivariate calibration models to handle and solve UV spectra of the four components’ mixtures using easy and widely used UV spectrophotometer.

  14. Structural equation models based on multivariate diversity assessment of diploid and tetraploid hulled wheat species

    USDA-ARS?s Scientific Manuscript database

    Hulled wheats are largely untapped genetic resources with >10,000 years of genetic memory and diversity that can be used for wheat quality improvement, development of healthy products, and adaptation to climate change. Multivariate diversity was assessed in the diploid Triticum monococcum L. var mon...

  15. Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics.

    PubMed

    Cheng, Sen; Sabes, Philip N

    2007-04-01

    The sensorimotor calibration of visually guided reaching changes on a trial-to-trial basis in response to random shifts in the visual feedback of the hand. We show that a simple linear dynamical system is sufficient to model the dynamics of this adaptive process. In this model, an internal variable represents the current state of sensorimotor calibration. Changes in this state are driven by error feedback signals, which consist of the visually perceived reach error, the artificial shift in visual feedback, or both. Subjects correct for > or =20% of the error observed on each movement, despite being unaware of the visual shift. The state of adaptation is also driven by internal dynamics, consisting of a decay back to a baseline state and a "state noise" process. State noise includes any source of variability that directly affects the state of adaptation, such as variability in sensory feedback processing, the computations that drive learning, or the maintenance of the state. This noise is accumulated in the state across trials, creating temporal correlations in the sequence of reach errors. These correlations allow us to distinguish state noise from sensorimotor performance noise, which arises independently on each trial from random fluctuations in the sensorimotor pathway. We show that these two noise sources contribute comparably to the overall magnitude of movement variability. Finally, the dynamics of adaptation measured with random feedback shifts generalizes to the case of constant feedback shifts, allowing for a direct comparison of our results with more traditional blocked-exposure experiments.

  16. Beyond allostatic load: rethinking the role of stress in regulating human development.

    PubMed

    Ellis, Bruce J; Del Giudice, Marco

    2014-02-01

    How do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary-developmental theory of stress-health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways.

  17. Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Lu, Dan; Ricciuto, Daniel; Walker, Anthony; Safta, Cosmin; Munger, William

    2017-09-01

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.

  18. Quantification of meat proportions by measuring DNA contents in raw and boiled sausages using matrix-adapted calibrators and multiplex real-time PCR.

    PubMed

    Köppel, René; Eugster, Albert; Ruf, Jürg; Rentsch, Jürg

    2012-01-01

    The quantification of meat proportions in raw and boiled sausage according to the recipe was evaluated using three different calibrators. To measure the DNA contents from beef, pork, sheep (mutton), and horse, a tetraplex real-time PCR method was applied. Nineteen laboratories analyzed four meat products each made of different proportions of beef, pork, sheep, and horse meat. Three kinds of calibrators were used: raw and boiled sausages of known proportions ranging from 1 to 55% of meat, and a dilution series of DNA from muscle tissue. In general, results generated using calibration sausages were more accurate than those resulting from the use of DNA from muscle tissue, and exhibited smaller measurement uncertainties. Although differences between uses of raw and boiled calibration sausages were small, the most precise and accurate results were obtained by calibration with fine-textured boiled reference sausages.

  19. A Consistency Evaluation and Calibration Method for Piezoelectric Transmitters.

    PubMed

    Zhang, Kai; Tan, Baohai; Liu, Xianping

    2017-04-28

    Array transducer and transducer combination technologies are evolving rapidly. While adapting transmitter combination technologies, the parameter consistencies between each transmitter are extremely important because they can determine a combined effort directly. This study presents a consistency evaluation and calibration method for piezoelectric transmitters by using impedance analyzers. Firstly, electronic parameters of transmitters that can be measured by impedance analyzers are introduced. A variety of transmitter acoustic energies that are caused by these parameter differences are then analyzed and certified and, thereafter, transmitter consistency is evaluated. Lastly, based on the evaluations, consistency can be calibrated by changing the corresponding excitation voltage. Acoustic experiments show that this method accurately evaluates and calibrates transducer consistencies, and is easy to realize.

  20. Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Friedrich, Elisabeth V. C.; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Individuals with severe motor impairment can use event-related desynchronization (ERD) based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that users control with motor imagery tasks (“SMR-AdBCI”) have proven effective for healthy users. We aim to find an improved configuration of such an adaptive ERD-based BCI for individuals with severe motor impairment as a result of spinal cord injury (SCI) or stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (“Auto-AdBCI”) could allow for higher control performance than a conventional SMR-AdBCI. To answer this question we performed offline analyses on two sessions (21 data sets total) of cue-guided, five-class electroencephalography (EEG) data recorded from individuals with SCI or stroke. On data from the twelve individuals in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI. We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen data from the nine participants in Session 2 and compared the results. On the unseen data of Session 2 from individuals with SCI or stroke, we found that automatically selecting a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI) significantly (p < 0.01) improved classification performance compared to an adaptive ERD-based BCI that only used motor imagery tasks (SMR-AdBCI; average accuracy of 75.7 vs. 66.3%). PMID:25368546

  1. Calibration of a distributed hydrologic model for six European catchments using remote sensing data

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.

    2017-12-01

    While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.

  2. Analysis of characteristics of Si in blast furnace pig iron and calibration methods in the detection by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Mei, Yaguang; Cheng, Yuxin; Cheng, Shusen; Hao, Zhongqi; Guo, Lianbo; Li, Xiangyou; Zeng, Xiaoyan

    2017-10-01

    During the iron-making process in blast furnace, the Si content in liquid pig iron was usually used to evaluate the quality of liquid iron and thermal state of blast furnace. None effective method was found for rapid detecting the Si concentration of liquid iron. Laser-induced breakdown spectroscopy (LIBS) is a kind of atomic emission spectrometry technology based on laser ablation. Its obvious advantage is realizing rapid, in-situ, online analysis of element concentration in open air without sample pretreatment. The characteristics of Si in liquid iron were analyzed from the aspect of thermodynamic theory and metallurgical technology. The relationship between Si and C, Mn, S, P or other alloy elements were revealed based on thermodynamic calculation. Subsequently, LIBS was applied on rapid detection of Si of pig iron in this work. During LIBS detection process, several groups of standard pig iron samples were employed in this work to calibrate the Si content in pig iron. The calibration methods including linear, quadratic and cubic internal standard calibration, multivariate linear calibration and partial least squares (PLS) were compared with each other. It revealed that the PLS improved by normalization was the best calibration method for Si detection by LIBS.

  3. Applying modern psychometric techniques to melodic discrimination testing: Item response theory, computerised adaptive testing, and automatic item generation.

    PubMed

    Harrison, Peter M C; Collins, Tom; Müllensiefen, Daniel

    2017-06-15

    Modern psychometric theory provides many useful tools for ability testing, such as item response theory, computerised adaptive testing, and automatic item generation. However, these techniques have yet to be integrated into mainstream psychological practice. This is unfortunate, because modern psychometric techniques can bring many benefits, including sophisticated reliability measures, improved construct validity, avoidance of exposure effects, and improved efficiency. In the present research we therefore use these techniques to develop a new test of a well-studied psychological capacity: melodic discrimination, the ability to detect differences between melodies. We calibrate and validate this test in a series of studies. Studies 1 and 2 respectively calibrate and validate an initial test version, while Studies 3 and 4 calibrate and validate an updated test version incorporating additional easy items. The results support the new test's viability, with evidence for strong reliability and construct validity. We discuss how these modern psychometric techniques may also be profitably applied to other areas of music psychology and psychological science in general.

  4. Sr-isotopic, paleomagnetic, and biostratigraphic calibration of horse evolution: Evidence from the Miocene of Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFadden, B.J.; Bryant, J.D.; Mueller, P.A.

    1991-03-01

    During the middle Miocene an explosive adaptive radiation resulted in the advent of grazing horses with high-crowned teeth in North America. New Sr isotopic, paleomagnetic, and biostratigrahic evidence from the Miocene marine and nonmarine sequence of the Florida panhandle calibrates the base of this adaptive radiation. The transition from the primitive outgroup species 'Parahippus' leonensis to the most primitive high-crowned horse, 'Merychippus' gunteri occured after about 17.7 Ma. After this event, the lowest known stratigraphic level at which diversification (i.e., presence of two or more sympatric species) of grazing merychippine horses occurs is about 16.2 Ma, or within the earlymore » part of Chron C5BR. Although this currently is the only sequence where the parahippine-merychippine transition is directly calibrated, biochronologic evidence from other important, contemporaneous localities in Texas, Nebraska, and California indicate that diversification occured rapidly throughout North America between 15 and 16 Ma.« less

  5. Development of a calibration equipment for spectrometer qualification

    NASA Astrophysics Data System (ADS)

    Michel, C.; Borguet, B.; Boueé, A.; Blain, P.; Deep, A.; Moreau, V.; François, M.; Maresi, L.; Myszkowiak, A.; Taccola, M.; Versluys, J.; Stockman, Y.

    2017-09-01

    With the development of new spectrometer concepts, it is required to adapt the calibration facilities to characterize correctly their performances. These spectro-imaging performances are mainly Modulation Transfer Function, spectral response, resolution and registration; polarization, straylight and radiometric calibration. The challenge of this calibration development is to achieve better performance than the item under test using mostly standard items. Because only the subsystem spectrometer needs to be calibrated, the calibration facility needs to simulate the geometrical "behaviours" of the imaging system. A trade-off study indicates that no commercial devices are able to fulfil completely all the requirements so that it was necessary to opt for an in home telecentric achromatic design. The proposed concept is based on an Offner design. This allows mainly to use simple spherical mirrors and to cover the spectral range. The spectral range is covered with a monochromator. Because of the large number of parameters to record the calibration facility is fully automatized. The performances of the calibration system have been verified by analysis and experimentally. Results achieved recently on a free-form grating Offner spectrometer demonstrate the capacities of this new calibration facility. In this paper, a full calibration facility is described, developed specifically for a new free-form spectro-imager.

  6. Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass.

    PubMed

    Dabros, Michal; Dennewald, Danielle; Currie, David J; Lee, Mark H; Todd, Robert W; Marison, Ian W; von Stockar, Urs

    2009-02-01

    This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole-Cole and PLS models, the latter technique giving more satisfactory results.

  7. Information theoretic methods for image processing algorithm optimization

    NASA Astrophysics Data System (ADS)

    Prokushkin, Sergey F.; Galil, Erez

    2015-01-01

    Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).

  8. Measuring coronary calcium on CT images adjusted for attenuation differences.

    PubMed

    Nelson, Jennifer Clark; Kronmal, Richard A; Carr, J Jeffrey; McNitt-Gray, Michael F; Wong, Nathan D; Loria, Catherine M; Goldin, Jonathan G; Williams, O Dale; Detrano, Robert

    2005-05-01

    To quantify scanner and participant variability in attenuation values for computed tomographic (CT) images assessed for coronary calcium and define a method for standardizing attenuation values and calibrating calcium measurements. Institutional review board approval and participant informed consent were obtained at all study sites. An image attenuation adjustment method involving the use of available calibration phantom data to define standard attenuation values was developed. The method was applied to images from two population-based multicenter studies: the Coronary Artery Risk Development in Young Adults study (3041 participants) and the Multi-Ethnic Study of Atherosclerosis (6814 participants). To quantify the variability in attenuation, analysis of variance techniques were used to compare the CT numbers of standardized torso phantom regions across study sites, and multivariate linear regression models of participant-specific calibration phantom attenuation values that included participant age, race, sex, body mass index (BMI), smoking status, and site as covariates were developed. To assess the effect of the calibration method on calcium measurements, Pearson correlation coefficients between unadjusted and attenuation-adjusted calcium measurements were computed. Multivariate models were used to examine the effect of sex, race, BMI, smoking status, unadjusted score, and site on Agatston score adjustments. Mean attenuation values (CT numbers) of a standard calibration phantom scanned beneath participants varied significantly according to scanner and participant BMI (P < .001 for both). Values were lowest for Siemens multi-detector row CT scanners (110.0 HU), followed by GE-Imatron electron-beam (116.0 HU) and GE LightSpeed multi-detector row scanners (121.5 HU). Values were also lower for morbidly obese (BMI, > or =40.0 kg/m(2)) participants (108.9 HU), followed by obese (BMI, 30.0-39.9 kg/m(2)) (114.8 HU), overweight (BMI, 25.0-29.9 kg/m(2)) (118.5 HU), and normal-weight or underweight (BMI, <25.0 kg/m(2)) (120.1 HU) participants. Agatston score calibration adjustments ranged from -650 to 1071 (mean, -8 +/- 50 [standard deviation]) and increased with Agatston score (P < .001). The direction and magnitude of adjustment varied significantly according to scanner and BMI (P < .001 for both) and were consistent with phantom attenuation results in that calibration resulted in score decreases for images with higher phantom attenuation values. Image attenuation values vary by scanner and participant body size, producing calcium score differences that are not due to true calcium burden disparities. Use of calibration phantoms to adjust attenuation values and calibrate calcium measurements in research studies and clinical practice may improve the comparability of such measurements between persons scanned with different scanners and within persons over time.

  9. Germanium resistance thermometer calibration at superfluid helium temperatures

    NASA Technical Reports Server (NTRS)

    Mason, F. C.

    1985-01-01

    The rapid increase in resistance of high purity semi-conducting germanium with decreasing temperature in the superfluid helium range of temperatures makes this material highly adaptable as a very sensitive thermometer. Also, a germanium thermometer exhibits a highly reproducible resistance versus temperature characteristic curve upon cycling between liquid helium temperatures and room temperature. These two factors combine to make germanium thermometers ideally suited for measuring temperatures in many cryogenic studies at superfluid helium temperatures. One disadvantage, however, is the relatively high cost of calibrated germanium thermometers. In space helium cryogenic systems, many such thermometers are often required, leading to a high cost for calibrated thermometers. The construction of a thermometer calibration cryostat and probe which will allow for calibrating six germanium thermometers at one time, thus effecting substantial savings in the purchase of thermometers is considered.

  10. Calibration for single multi-mode fiber digital scanning microscopy imaging system

    NASA Astrophysics Data System (ADS)

    Yin, Zhe; Liu, Guodong; Liu, Bingguo; Gan, Yu; Zhuang, Zhitao; Chen, Fengdong

    2015-11-01

    Single multimode fiber (MMF) digital scanning imaging system is a development tendency of modern endoscope. We concentrate on the calibration method of the imaging system. Calibration method comprises two processes, forming scanning focused spots and calibrating the couple factors varied with positions. Adaptive parallel coordinate algorithm (APC) is adopted to form the focused spots at the multimode fiber (MMF) output. Compare with other algorithm, APC contains many merits, i.e. rapid speed, small amount calculations and no iterations. The ratio of the optics power captured by MMF to the intensity of the focused spots is called couple factor. We setup the calibration experimental system to form the scanning focused spots and calculate the couple factors for different object positions. The experimental result the couple factor is higher in the center than the edge.

  11. Neurodevelopmental Status and Adaptive Behaviors in Preschool Children with Chronic Kidney Disease

    ERIC Educational Resources Information Center

    Duquette, Peter J.; Hooper, Stephen R.; Icard, Phil F.; Hower, Sarah J.; Mamak, Eva G.; Wetherington, Crista E.; Gipson, Debbie S.

    2009-01-01

    This study examines the early neurodevelopmental function of infants and preschool children who have chronic kidney disease (CKD). Fifteen patients with CKD are compared to a healthy control group using the "Mullen Scales of Early Learning" (MSEL) and the "Vineland Adaptive Behavior Scale" (VABS). Multivariate analysis reveals…

  12. Adaptive Control Of Remote Manipulator

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Robotic control system causes remote manipulator to follow closely reference trajectory in Cartesian reference frame in work space, without resort to computationally intensive mathematical model of robot dynamics and without knowledge of robot and load parameters. System, derived from linear multivariable theory, uses relatively simple feedforward and feedback controllers with model-reference adaptive control.

  13. Gamma/Hadron Separation for the HAWC Observatory

    NASA Astrophysics Data System (ADS)

    Gerhardt, Michael J.

    The High-Altitude Water Cherenkov (HAWC) Observatory is a gamma-ray observatory sensitive to gamma rays from 100 GeV to 100 TeV with an instantaneous field of view of ˜2 sr. It is located on the Sierra Negra plateau in Mexico at an elevation of 4,100 m and began full operation in March 2015. The purpose of the detector is to study relativistic particles that are produced by interstellar and intergalactic objects such as: pulsars, supernova remnants, molecular clouds, black holes and more. To achieve optimal angular resolution, energy reconstruction and cosmic ray background suppression for the extensive air showers detected by HAWC, good timing and charge calibration are crucial, as well as optimization of quality cuts on background suppression variables. Additions to the HAWC timing calibration, in particular automating the calibration quality checks and a new method for background suppression using a multivariate analysis are presented in this thesis.

  14. Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.

    PubMed

    Mehdizadeh, Hamidreza; Lauri, David; Karry, Krizia M; Moshgbar, Mojgan; Procopio-Melino, Renee; Drapeau, Denis

    2015-01-01

    Raman-based multivariate calibration models have been developed for real-time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO-based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration. © 2015 American Institute of Chemical Engineers.

  15. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    This is the presentation to follow conference paper of the same name. The adaptive compliant trailing edge (ACTE) flap experiment safety of flight requires that the flap to wing interface loads be sensed and monitored in real time to ensure that the wing structural load limits are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces will be monitored and each contains four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty one applied test load cases were developed using the predicted in-flight loads for the ACTE experiment.

  16. VIIRS On-Orbit Calibration for Ocean Color Data Processing

    NASA Technical Reports Server (NTRS)

    Eplee, Robert E., Jr.; Turpie, Kevin R.; Fireman, Gwyn F.; Meister, Gerhard; Stone, Thomas C.; Patt, Frederick S.; Franz, Bryan; Bailey, Sean W.; Robinson, Wayne D.; McClain, Charles R.

    2012-01-01

    The NASA VIIRS Ocean Science Team (VOST) has the task of evaluating Suomi NPP VIIRS ocean color data for the continuity of the NASA ocean color climate data records. The generation of science quality ocean color data products requires an instrument calibration that is stable over time. Since the VIIRS NIR Degradation Anomaly directly impacts the bands used for atmospheric correction of the ocean color data (Bands M6 and M7), the VOST has adapted the VIIRS on-orbit calibration approach to meet the ocean science requirements. The solar diffuser calibration time series and the solar diffuser stability monitor time series have been used to derive changes in the instrument response and diffuser reflectance over time for bands M1-M11.

  17. Tunable laser techniques for improving the precision of observational astronomy

    NASA Astrophysics Data System (ADS)

    Cramer, Claire E.; Brown, Steven W.; Lykke, Keith R.; Woodward, John T.; Bailey, Stephen; Schlegel, David J.; Bolton, Adam S.; Brownstein, Joel; Doherty, Peter E.; Stubbs, Christopher W.; Vaz, Amali; Szentgyorgyi, Andrew

    2012-09-01

    Improving the precision of observational astronomy requires not only new telescopes and instrumentation, but also advances in observing protocols, calibrations and data analysis. The Laser Applications Group at the National Institute of Standards and Technology in Gaithersburg, Maryland has been applying advances in detector metrology and tunable laser calibrations to problems in astronomy since 2007. Using similar measurement techniques, we have addressed a number of seemingly disparate issues: precision flux calibration for broad-band imaging, precision wavelength calibration for high-resolution spectroscopy, and precision PSF mapping for fiber spectrographs of any resolution. In each case, we rely on robust, commercially-available laboratory technology that is readily adapted to use at an observatory. In this paper, we give an overview of these techniques.

  18. A Consistency Evaluation and Calibration Method for Piezoelectric Transmitters

    PubMed Central

    Zhang, Kai; Tan, Baohai; Liu, Xianping

    2017-01-01

    Array transducer and transducer combination technologies are evolving rapidly. While adapting transmitter combination technologies, the parameter consistencies between each transmitter are extremely important because they can determine a combined effort directly. This study presents a consistency evaluation and calibration method for piezoelectric transmitters by using impedance analyzers. Firstly, electronic parameters of transmitters that can be measured by impedance analyzers are introduced. A variety of transmitter acoustic energies that are caused by these parameter differences are then analyzed and certified and, thereafter, transmitter consistency is evaluated. Lastly, based on the evaluations, consistency can be calibrated by changing the corresponding excitation voltage. Acoustic experiments show that this method accurately evaluates and calibrates transducer consistencies, and is easy to realize. PMID:28452947

  19. The Influence of Item Calibration Error on Variable-Length Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi

    2013-01-01

    Variable-length computerized adaptive testing (VL-CAT) allows both items and test length to be "tailored" to examinees, thereby achieving the measurement goal (e.g., scoring precision or classification) with as few items as possible. Several popular test termination rules depend on the standard error of the ability estimate, which in turn depends…

  20. Survey of adaptive control using Liapunov design

    NASA Technical Reports Server (NTRS)

    Lindorff, D. P.; Carroll, R. L.

    1972-01-01

    A survey was made of the literature devoted to the synthesis of model-tracking adaptive systems based on application of Liapunov's second method. The basic synthesis procedure is introduced and a critical review of extensions made to the theory since 1966 is made. The extensions relate to design for relative stability, reduction of order techniques, design with disturbance, design with time variable parameters, multivariable systems, identification, and an adaptive observer.

  1. Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dan; Ricciuto, Daniel M.; Walker, Anthony P.

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results inmore » a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. Here, the result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.« less

  2. Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

    DOE PAGES

    Lu, Dan; Ricciuto, Daniel M.; Walker, Anthony P.; ...

    2017-09-27

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results inmore » a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. Here, the result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.« less

  3. Estimating Skin Cancer Risk: Evaluating Mobile Computer-Adaptive Testing.

    PubMed

    Djaja, Ngadiman; Janda, Monika; Olsen, Catherine M; Whiteman, David C; Chien, Tsair-Wei

    2016-01-22

    Response burden is a major detriment to questionnaire completion rates. Computer adaptive testing may offer advantages over non-adaptive testing, including reduction of numbers of items required for precise measurement. Our aim was to compare the efficiency of non-adaptive (NAT) and computer adaptive testing (CAT) facilitated by Partial Credit Model (PCM)-derived calibration to estimate skin cancer risk. We used a random sample from a population-based Australian cohort study of skin cancer risk (N=43,794). All 30 items of the skin cancer risk scale were calibrated with the Rasch PCM. A total of 1000 cases generated following a normal distribution (mean [SD] 0 [1]) were simulated using three Rasch models with three fixed-item (dichotomous, rating scale, and partial credit) scenarios, respectively. We calculated the comparative efficiency and precision of CAT and NAT (shortening of questionnaire length and the count difference number ratio less than 5% using independent t tests). We found that use of CAT led to smaller person standard error of the estimated measure than NAT, with substantially higher efficiency but no loss of precision, reducing response burden by 48%, 66%, and 66% for dichotomous, Rating Scale Model, and PCM models, respectively. CAT-based administrations of the skin cancer risk scale could substantially reduce participant burden without compromising measurement precision. A mobile computer adaptive test was developed to help people efficiently assess their skin cancer risk.

  4. The Impact of T Cell Intrinsic Antigen Adaptation on Peripheral Immune Tolerance

    PubMed Central

    Singh, Nevil J; Chen, Chuan; Schwartz, Ronald H

    2006-01-01

    Overlapping roles have been ascribed for T cell anergy, clonal deletion, and regulation in the maintenance of peripheral immunological tolerance. A measurement of the individual and additive impacts of each of these processes on systemic tolerance is often lacking. In this report we have used adoptive transfer strategies to tease out the unique contribution of T cell intrinsic receptor calibration (adaptation) in the maintenance of tolerance to a systemic self-antigen. Adoptively transferred naïve T cells stably calibrated their responsiveness to a persistent self-antigen in both lymphopenic and T cell–replete hosts. In the former, this state was not accompanied by deletion or suppression, allowing us to examine the unique contribution of adaptation to systemic tolerance. Surprisingly, adapting T cells could chronically help antigen-expressing B cells, leading to polyclonal hypergammaglobulinemia and pathology, in the form of mild arthritis. The helper activity mediated by CD40L and cytokines was evident even if the B cells were introduced after extended adaptation of the T cells. In contrast, in the T cell–replete host, neither arthritis nor autoantibodies were induced. The containment of systemic pathology required host T cell–mediated extrinsic regulatory mechanisms to synergize with the cell intrinsic adaptation process. These extrinsic mechanisms prevented the effector differentiation of the autoreactive T cells and reduced their precursor frequency, in vivo. PMID:17048986

  5. Prognostic nomogram and score to predict overall survival in locally advanced untreated pancreatic cancer (PROLAP)

    PubMed Central

    Vernerey, Dewi; Huguet, Florence; Vienot, Angélique; Goldstein, David; Paget-Bailly, Sophie; Van Laethem, Jean-Luc; Glimelius, Bengt; Artru, Pascal; Moore, Malcolm J; André, Thierry; Mineur, Laurent; Chibaudel, Benoist; Benetkiewicz, Magdalena; Louvet, Christophe; Hammel, Pascal; Bonnetain, Franck

    2016-01-01

    Background: The management of locally advanced pancreatic cancer (LAPC) patients remains controversial. Better discrimination for overall survival (OS) at diagnosis is needed. We address this issue by developing and validating a prognostic nomogram and a score for OS in LAPC (PROLAP). Methods: Analyses were derived from 442 LAPC patients enrolled in the LAP07 trial. The prognostic ability of 30 baseline parameters was evaluated using univariate and multivariate Cox regression analyses. Performance assessment and internal validation of the final model were done with Harrell's C-index, calibration plot and bootstrap sample procedures. On the basis of the final model, a prognostic nomogram and a score were developed, and externally validated in 106 consecutive LAPC patients treated in Besançon Hospital, France. Results: Age, pain, tumour size, albumin and CA 19-9 were independent prognostic factors for OS. The final model had good calibration, acceptable discrimination (C-index=0.60) and robust internal validity. The PROLAP score has the potential to delineate three different prognosis groups with median OS of 15.4, 11.7 and 8.5 months (log-rank P<0.0001). The score ability to discriminate OS was externally confirmed in 63 (59%) patients with complete clinical data derived from a data set of 106 consecutive LAPC patients; median OS of 18.3, 14.1 and 7.6 months for the three groups (log-rank P<0.0001). Conclusions: The PROLAP nomogram and score can accurately predict OS before initiation of induction chemotherapy in LAPC-untreated patients. They may help to optimise clinical trials design and might offer the opportunity to define risk-adapted strategies for LAPC management in the future. PMID:27404456

  6. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability

    NASA Astrophysics Data System (ADS)

    Herman, Matthew R.; Nejadhashemi, A. Pouyan; Abouali, Mohammad; Hernandez-Suarez, Juan Sebastian; Daneshvar, Fariborz; Zhang, Zhen; Anderson, Martha C.; Sadeghi, Ali M.; Hain, Christopher R.; Sharifi, Amirreza

    2018-01-01

    As the global demands for the use of freshwater resources continues to rise, it has become increasingly important to insure the sustainability of this resources. This is accomplished through the use of management strategies that often utilize monitoring and the use of hydrological models. However, monitoring at large scales is not feasible and therefore model applications are becoming challenging, especially when spatially distributed datasets, such as evapotranspiration, are needed to understand the model performances. Due to these limitations, most of the hydrological models are only calibrated for data obtained from site/point observations, such as streamflow. Therefore, the main focus of this paper is to examine whether the incorporation of remotely sensed and spatially distributed datasets can improve the overall performance of the model. In this study, actual evapotranspiration (ETa) data was obtained from the two different sets of satellite based remote sensing data. One dataset estimates ETa based on the Simplified Surface Energy Balance (SSEBop) model while the other one estimates ETa based on the Atmosphere-Land Exchange Inverse (ALEXI) model. The hydrological model used in this study is the Soil and Water Assessment Tool (SWAT), which was calibrated against spatially distributed ETa and single point streamflow records for the Honeyoey Creek-Pine Creek Watershed, located in Michigan, USA. Two different techniques, multi-variable and genetic algorithm, were used to calibrate the SWAT model. Using the aforementioned datasets, the performance of the hydrological model in estimating ETa was improved using both calibration techniques by achieving Nash-Sutcliffe efficiency (NSE) values >0.5 (0.73-0.85), percent bias (PBIAS) values within ±25% (±21.73%), and root mean squared error - observations standard deviation ratio (RSR) values <0.7 (0.39-0.52). However, the genetic algorithm technique was more effective with the ETa calibration while significantly reducing the model performance for estimating the streamflow (NSE: 0.32-0.52, PBIAS: ±32.73%, and RSR: 0.63-0.82). Meanwhile, using the multi-variable technique, the model performance for estimating the streamflow was maintained with a high level of accuracy (NSE: 0.59-0.61, PBIAS: ±13.70%, and RSR: 0.63-0.64) while the evapotranspiration estimations were improved. Results from this assessment shows that incorporation of remotely sensed and spatially distributed data can improve the hydrological model performance if it is coupled with a right calibration technique.

  7. Minimizing calibration time using inter-subject information of single-trial recognition of error potentials in brain-computer interfaces.

    PubMed

    Iturrate, Iñaki; Montesano, Luis; Chavarriaga, Ricardo; del R Millán, Jose; Minguez, Javier

    2011-01-01

    One of the main problems of both synchronous and asynchronous EEG-based BCIs is the need of an initial calibration phase before the system can be used. This phase is necessary due to the high non-stationarity of the EEG, since it changes between sessions and users. The calibration process limits the BCI systems to scenarios where the outputs are very controlled, and makes these systems non-friendly and exhausting for the users. Although it has been studied how to reduce calibration time for asynchronous signals, it is still an open issue for event-related potentials. Here, we propose the minimization of the calibration time on single-trial error potentials by using classifiers based on inter-subject information. The results show that it is possible to have a classifier with a high performance from the beginning of the experiment, and which is able to adapt itself making the calibration phase shorter and transparent to the user.

  8. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    The safety-of-flight parameters for the Adaptive Compliant Trailing Edge (ACTE) flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces were monitored; each contained four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty-one applied test load cases were developed using the predicted in-flight loads. Pre-test predictions of strain gage responses were produced using finite element method models of the interface fittings. Predicted and measured test strains are presented. A load testing rig and three hydraulic jacks were used to apply combinations of shear, bending, and axial loads to the interface fittings. Hardware deflections under load were measured using photogrammetry and transducers. Due to deflections in the interface fitting hardware and test rig, finite element model techniques were used to calculate the reaction loads throughout the applied load range, taking into account the elastically-deformed geometry. The primary load equations were selected based on multiple calibration metrics. An independent set of validation cases was used to validate each derived equation. The 2-sigma residual errors for the shear loads were less than eight percent of the full-scale calibration load; the 2-sigma residual errors for the bending moment loads were less than three percent of the full-scale calibration load. The derived load equations for shear, bending, and axial loads are presented, with the calculated errors for both the calibration cases and the independent validation load cases.

  9. Thermal sensation and climate: a comparison of UTCI and PET thresholds in different climates

    NASA Astrophysics Data System (ADS)

    Pantavou, Katerina; Lykoudis, Spyridon; Nikolopoulou, Marialena; Tsiros, Ioannis X.

    2018-06-01

    The influence of physiological acclimatization and psychological adaptation on thermal perception is well documented and has revealed the importance of thermal experience and expectation in the evaluation of environmental stimuli. Seasonal patterns of thermal perception have been studied, and calibrated thermal indices' scales have been proposed to obtain meaningful interpretations of thermal sensation indices in different climate regions. The current work attempts to quantify the contribution of climate to the long-term thermal adaptation by examining the relationship between climate normal annual air temperature (1971-2000) and such climate-calibrated thermal indices' assessment scales. The thermal sensation ranges of two thermal indices, the Universal Thermal Climate Index (UTCI) and the Physiological Equivalent Temperature Index (PET), were calibrated for three warm temperate climate contexts (Cfa, Cfb, Csa), against the subjective evaluation of the thermal environment indicated by interviewees during field surveys conducted at seven European cities: Athens (GR), Thessaloniki (GR), Milan (IT), Fribourg (CH), Kassel (DE), Cambridge (UK), and Sheffield (UK), under the same research protocol. Then, calibrated scales for other climate contexts were added from the literature, and the relationship between the respective scales' thresholds and climate normal annual air temperature was examined. To maintain the maximum possible comparability, three methods were applied for the calibration, namely linear, ordinal, and probit regression. The results indicated that the calibrated UTCI and PET thresholds increase with the climate normal annual air temperature of the survey city. To investigate further climates, we also included in the analysis results of previous studies presenting only thresholds for neutral thermal sensation. The average increase of the respective thresholds in the case of neutral thermal sensation was about 0.6 °C for each 1 °C increase of the normal annual air temperature for both indices, statistically significant only for PET though.

  10. Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees.

    PubMed

    Hübner, David; Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan

    2017-01-01

    Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP.

  11. Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees

    PubMed Central

    Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan

    2017-01-01

    Objective Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. Method We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Results Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. Significance The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP. PMID:28407016

  12. Online C-arm calibration using a marked guide wire for 3D reconstruction of pulmonary arteries

    NASA Astrophysics Data System (ADS)

    Vachon, Étienne; Miró, Joaquim; Duong, Luc

    2017-03-01

    3D reconstruction of vessels from 2D X-ray angiography is highly relevant to improve the visualization and the assessment of vascular structures such as pulmonary arteries by interventional cardiologists. However, to ensure a robust and accurate reconstruction, C-arm gantry parameters must be properly calibrated to provide clinically acceptable results. Calibration procedures often rely on calibration objects and complex protocol which is not adapted to an intervention context. In this study, a novel calibration algorithm for C-arm gantry is presented using the instrumentation such as catheters and guide wire. This ensures the availability of a minimum set of correspondences and implies minimal changes to the clinical workflow. The method was evaluated on simulated data and on retrospective patient datasets. Experimental results on simulated datasets demonstrate a calibration that allows a 3D reconstruction of the guide wire up to a geometric transformation. Experiments with patients datasets show a significant decrease of the retro projection error to 0.17 mm 2D RMS. Consequently, such procedure might contribute to identify any calibration drift during the intervention.

  13. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAEmore » 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.« less

  14. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    and Ben Polly, Joseph Robertson; Polly, Ben; Collis, Jon

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAEmore » 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.« less

  15. Measurement of pH in whole blood by near-infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, M. Kathleen; Maynard, John D.; Robinson, M. Ries

    1999-03-01

    Whole blood pH has been determined {ital in vitro} by using near-infrared spectroscopy over the wavelength range of 1500 to 1785 nm with multivariate calibration modeling of the spectral data obtained from two different sample sets. In the first sample set, the pH of whole blood was varied without controlling cell size and oxygen saturation (O{sub 2} Sat) variation. The result was that the red blood cell (RBC) size and O{sub 2} Sat correlated with pH. Although the partial least-squares (PLS) multivariate calibration of these data produced a good pH prediction cross-validation standard error of prediction (CVSEP)=0.046, R{sup 2}=0.982, themore » spectral data were dominated by scattering changes due to changing RBC size that correlated with the pH changes. A second experiment was carried out where the RBC size and O{sub 2} Sat were varied orthogonally to the pH variation. A PLS calibration of the spectral data obtained from these samples produced a pH prediction with an R{sup 2} of 0.954 and a cross-validated standard error of prediction of 0.064 pH units. The robustness of the PLS calibration models was tested by predicting the data obtained from the other sets. The predicted pH values obtained from both data sets yielded R{sup 2} values greater than 0.9 once the data were corrected for differences in hemoglobin concentration. For example, with the use of the calibration produced from the second sample set, the pH values from the first sample set were predicted with an R{sup 2} of 0.92 after the predictions were corrected for bias and slope. It is shown that spectral information specific to pH-induced chemical changes in the hemoglobin molecule is contained within the PLS loading vectors developed for both the first and second data sets. It is this pH specific information that allows the spectra dominated by pH-correlated scattering changes to provide robust pH predictive ability in the uncorrelated data, and visa versa. {copyright} {ital 1999} {ital Society for Applied Spectroscopy}« less

  16. Transverse Pupil Shifts for Adaptive Optics Non-Common Path Calibration

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2011-01-01

    A simple new way of obtaining absolute wavefront measurements with a laboratory Fizeau interferometer was recently devised. In that case, the observed wavefront map is the difference of two cavity surfaces, those of the mirror under test and of an unknown reference surface on the Fizeau s transmission flat. The absolute surface of each can be determined by applying standard wavefront reconstruction techniques to two grids of absolute surface height differences of the mirror under test, obtained from pairs of measurements made with slight transverse shifts in X and Y. Adaptive optics systems typically provide an actuated periscope between wavefront sensor (WFS) and commonmode optics, used for lateral registration of deformable mirror (DM) to WFS. This periscope permits independent adjustment of either pupil or focal spot incident on the WFS. It would be used to give the required lateral pupil motion between common and non-common segments, analogous to the lateral shifts of the two phase contributions in the lab Fizeau. The technique is based on a completely new approach to calibration of phase. It offers unusual flexibility with regard to the transverse spatial frequency scales probed, and will give results quite quickly, making use of no auxiliary equipment other than that built into the adaptive optics system. The new technique may be applied to provide novel calibration information about other optical systems in which the beam may be shifted transversely in a controlled way.

  17. Item usage in a multidimensional computerized adaptive test (MCAT) measuring health-related quality of life.

    PubMed

    Paap, Muirne C S; Kroeze, Karel A; Terwee, Caroline B; van der Palen, Job; Veldkamp, Bernard P

    2017-11-01

    Examining item usage is an important step in evaluating the performance of a computerized adaptive test (CAT). We study item usage for a newly developed multidimensional CAT which draws items from three PROMIS domains, as well as a disease-specific one. The multidimensional item bank used in the current study contained 194 items from four domains: the PROMIS domains fatigue, physical function, and ability to participate in social roles and activities, and a disease-specific domain (the COPD-SIB). The item bank was calibrated using the multidimensional graded response model and data of 795 patients with chronic obstructive pulmonary disease. To evaluate the item usage rates of all individual items in our item bank, CAT simulations were performed on responses generated based on a multivariate uniform distribution. The outcome variables included active bank size and item overuse (usage rate larger than the expected item usage rate). For average θ-values, the overall active bank size was 9-10%; this number quickly increased as θ-values became more extreme. For values of -2 and +2, the overall active bank size equaled 39-40%. There was 78% overlap between overused items and active bank size for average θ-values. For more extreme θ-values, the overused items made up a much smaller part of the active bank size: here the overlap was only 35%. Our results strengthen the claim that relatively short item banks may suffice when using polytomous items (and no content constraints/exposure control mechanisms), especially when using MCAT.

  18. Experimental Design, Near-Infrared Spectroscopy, and Multivariate Calibration: An Advanced Project in a Chemometrics Course

    ERIC Educational Resources Information Center

    de Oliveira, Rodrigo R.; das Neves, Luiz S.; de Lima, Kassio M. G.

    2012-01-01

    A chemometrics course is offered to students in their fifth semester of the chemistry undergraduate program that includes an in-depth project. Students carry out the project over five weeks (three 8-h sessions per week) and conduct it in parallel to other courses or other practical work. The students conduct a literature search, carry out…

  19. Application of Multivariable Analysis and FTIR-ATR Spectroscopy to the Prediction of Properties in Campeche Honey

    PubMed Central

    Pat, Lucio; Ali, Bassam; Guerrero, Armando; Córdova, Atl V.; Garduza, José P.

    2016-01-01

    Attenuated total reflectance-Fourier transform infrared spectrometry and chemometrics model was used for determination of physicochemical properties (pH, redox potential, free acidity, electrical conductivity, moisture, total soluble solids (TSS), ash, and HMF) in honey samples. The reference values of 189 honey samples of different botanical origin were determined using Association Official Analytical Chemists, (AOAC), 1990; Codex Alimentarius, 2001, International Honey Commission, 2002, methods. Multivariate calibration models were built using partial least squares (PLS) for the measurands studied. The developed models were validated using cross-validation and external validation; several statistical parameters were obtained to determine the robustness of the calibration models: (PCs) optimum number of components principal, (SECV) standard error of cross-validation, (R 2 cal) coefficient of determination of cross-validation, (SEP) standard error of validation, and (R 2 val) coefficient of determination for external validation and coefficient of variation (CV). The prediction accuracy for pH, redox potential, electrical conductivity, moisture, TSS, and ash was good, while for free acidity and HMF it was poor. The results demonstrate that attenuated total reflectance-Fourier transform infrared spectrometry is a valuable, rapid, and nondestructive tool for the quantification of physicochemical properties of honey. PMID:28070445

  20. Determination of alcohol and extract concentration in beer samples using a combined method of near-infrared (NIR) spectroscopy and refractometry.

    PubMed

    Castritius, Stefan; Kron, Alexander; Schäfer, Thomas; Rädle, Matthias; Harms, Diedrich

    2010-12-22

    A new approach of combination of near-infrared (NIR) spectroscopy and refractometry was developed in this work to determine the concentration of alcohol and real extract in various beer samples. A partial least-squares (PLS) regression, as multivariate calibration method, was used to evaluate the correlation between the data of spectroscopy/refractometry and alcohol/extract concentration. This multivariate combination of spectroscopy and refractometry enhanced the precision in the determination of alcohol, compared to single spectroscopy measurements, due to the effect of high extract concentration on the spectral data, especially of nonalcoholic beer samples. For NIR calibration, two mathematical pretreatments (first-order derivation and linear baseline correction) were applied to eliminate light scattering effects. A sample grouping of the refractometry data was also applied to increase the accuracy of the determined concentration. The root mean squared errors of validation (RMSEV) of the validation process concerning alcohol and extract concentration were 0.23 Mas% (method A), 0.12 Mas% (method B), and 0.19 Mas% (method C) and 0.11 Mas% (method A), 0.11 Mas% (method B), and 0.11 Mas% (method C), respectively.

  1. Multivariate analysis applied to the study of spatial distributions found in drug-eluting stent coatings by confocal Raman microscopy.

    PubMed

    Balss, Karin M; Long, Frederick H; Veselov, Vladimir; Orana, Argjenta; Akerman-Revis, Eugena; Papandreou, George; Maryanoff, Cynthia A

    2008-07-01

    Multivariate data analysis was applied to confocal Raman measurements on stents coated with the polymers and drug used in the CYPHER Sirolimus-eluting Coronary Stents. Partial least-squares (PLS) regression was used to establish three independent calibration curves for the coating constituents: sirolimus, poly(n-butyl methacrylate) [PBMA], and poly(ethylene-co-vinyl acetate) [PEVA]. The PLS calibrations were based on average spectra generated from each spatial location profiled. The PLS models were tested on six unknown stent samples to assess accuracy and precision. The wt % difference between PLS predictions and laboratory assay values for sirolimus was less than 1 wt % for the composite of the six unknowns, while the polymer models were estimated to be less than 0.5 wt % difference for the combined samples. The linearity and specificity of the three PLS models were also demonstrated with the three PLS models. In contrast to earlier univariate models, the PLS models achieved mass balance with better accuracy. This analysis was extended to evaluate the spatial distribution of the three constituents. Quantitative bitmap images of drug-eluting stent coatings are presented for the first time to assess the local distribution of components.

  2. A novel second-order standard addition analytical method based on data processing with multidimensional partial least-squares and residual bilinearization.

    PubMed

    Lozano, Valeria A; Ibañez, Gabriela A; Olivieri, Alejandro C

    2009-10-05

    In the presence of analyte-background interactions and a significant background signal, both second-order multivariate calibration and standard addition are required for successful analyte quantitation achieving the second-order advantage. This report discusses a modified second-order standard addition method, in which the test data matrix is subtracted from the standard addition matrices, and quantitation proceeds via the classical external calibration procedure. It is shown that this novel data processing method allows one to apply not only parallel factor analysis (PARAFAC) and multivariate curve resolution-alternating least-squares (MCR-ALS), but also the recently introduced and more flexible partial least-squares (PLS) models coupled to residual bilinearization (RBL). In particular, the multidimensional variant N-PLS/RBL is shown to produce the best analytical results. The comparison is carried out with the aid of a set of simulated data, as well as two experimental data sets: one aimed at the determination of salicylate in human serum in the presence of naproxen as an additional interferent, and the second one devoted to the analysis of danofloxacin in human serum in the presence of salicylate.

  3. Evaluation of multivariate calibration models with different pre-processing and processing algorithms for a novel resolution and quantitation of spectrally overlapped quaternary mixture in syrup

    NASA Astrophysics Data System (ADS)

    Moustafa, Azza A.; Hegazy, Maha A.; Mohamed, Dalia; Ali, Omnia

    2016-02-01

    A novel approach for the resolution and quantitation of severely overlapped quaternary mixture of carbinoxamine maleate (CAR), pholcodine (PHL), ephedrine hydrochloride (EPH) and sunset yellow (SUN) in syrup was demonstrated utilizing different spectrophotometric assisted multivariate calibration methods. The applied methods have used different processing and pre-processing algorithms. The proposed methods were partial least squares (PLS), concentration residuals augmented classical least squares (CRACLS), and a novel method; continuous wavelet transforms coupled with partial least squares (CWT-PLS). These methods were applied to a training set in the concentration ranges of 40-100 μg/mL, 40-160 μg/mL, 100-500 μg/mL and 8-24 μg/mL for the four components, respectively. The utilized methods have not required any preliminary separation step or chemical pretreatment. The validity of the methods was evaluated by an external validation set. The selectivity of the developed methods was demonstrated by analyzing the drugs in their combined pharmaceutical formulation without any interference from additives. The obtained results were statistically compared with the official and reported methods where no significant difference was observed regarding both accuracy and precision.

  4. Ratio manipulating spectrophotometry versus chemometry as stability indicating methods for cefquinome sulfate determination.

    PubMed

    Yehia, Ali M; Arafa, Reham M; Abbas, Samah S; Amer, Sawsan M

    2016-01-15

    Spectral resolution of cefquinome sulfate (CFQ) in the presence of its degradation products was studied. Three selective, accurate and rapid spectrophotometric methods were performed for the determination of CFQ in the presence of either its hydrolytic, oxidative or photo-degradation products. The proposed ratio difference, derivative ratio and mean centering are ratio manipulating spectrophotometric methods that were satisfactorily applied for selective determination of CFQ within linear range of 5.0-40.0 μg mL(-1). Concentration Residuals Augmented Classical Least Squares was applied and evaluated for the determination of the cited drug in the presence of its all degradation products. Traditional Partial Least Squares regression was also applied and benchmarked against the proposed advanced multivariate calibration. Experimentally designed 25 synthetic mixtures of three factors at five levels were used to calibrate and validate the multivariate models. Advanced chemometrics succeeded in quantitative and qualitative analyses of CFQ along with its hydrolytic, oxidative and photo-degradation products. The proposed methods were applied successfully for different pharmaceutical formulations analyses. These developed methods were simple and cost-effective compared with the manufacturer's RP-HPLC method. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Face adaptation improves gender discrimination.

    PubMed

    Yang, Hua; Shen, Jianhong; Chen, Juan; Fang, Fang

    2011-01-01

    Adaptation to a visual pattern can alter the sensitivities of neuronal populations encoding the pattern. However, the functional roles of adaptation, especially in high-level vision, are still equivocal. In the present study, we performed three experiments to investigate if face gender adaptation could affect gender discrimination. Experiments 1 and 2 revealed that adapting to a male/female face could selectively enhance discrimination for male/female faces. Experiment 3 showed that the discrimination enhancement induced by face adaptation could transfer across a substantial change in three-dimensional face viewpoint. These results provide further evidence suggesting that, similar to low-level vision, adaptation in high-level vision could calibrate the visual system to current inputs of complex shapes (i.e. face) and improve discrimination at the adapted characteristic. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Model of aircraft noise adaptation

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  7. Multivariate adaptive regression splines analysis to predict biomarkers of spontaneous preterm birth.

    PubMed

    Menon, Ramkumar; Bhat, Geeta; Saade, George R; Spratt, Heidi

    2014-04-01

    To develop classification models of demographic/clinical factors and biomarker data from spontaneous preterm birth in African Americans and Caucasians. Secondary analysis of biomarker data using multivariate adaptive regression splines (MARS), a supervised machine learning algorithm method. Analysis of data on 36 biomarkers from 191 women was reduced by MARS to develop predictive models for preterm birth in African Americans and Caucasians. Maternal plasma, cord plasma collected at admission for preterm or term labor and amniotic fluid at delivery. Data were partitioned into training and testing sets. Variable importance, a relative indicator (0-100%) and area under the receiver operating characteristic curve (AUC) characterized results. Multivariate adaptive regression splines generated models for combined and racially stratified biomarker data. Clinical and demographic data did not contribute to the model. Racial stratification of data produced distinct models in all three compartments. In African Americans maternal plasma samples IL-1RA, TNF-α, angiopoietin 2, TNFRI, IL-5, MIP1α, IL-1β and TGF-α modeled preterm birth (AUC train: 0.98, AUC test: 0.86). In Caucasians TNFR1, ICAM-1 and IL-1RA contributed to the model (AUC train: 0.84, AUC test: 0.68). African Americans cord plasma samples produced IL-12P70, IL-8 (AUC train: 0.82, AUC test: 0.66). Cord plasma in Caucasians modeled IGFII, PDGFBB, TGF-β1 , IL-12P70, and TIMP1 (AUC train: 0.99, AUC test: 0.82). Amniotic fluid in African Americans modeled FasL, TNFRII, RANTES, KGF, IGFI (AUC train: 0.95, AUC test: 0.89) and in Caucasians, TNF-α, MCP3, TGF-β3 , TNFR1 and angiopoietin 2 (AUC train: 0.94 AUC test: 0.79). Multivariate adaptive regression splines models multiple biomarkers associated with preterm birth and demonstrated racial disparity. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  8. Computerized Adaptive Testing for Polytomous Motivation Items: Administration Mode Effects and a Comparison with Short Forms

    ERIC Educational Resources Information Center

    Hol, A. Michiel; Vorst, Harrie C. M.; Mellenbergh, Gideon J.

    2007-01-01

    In a randomized experiment (n = 515), a computerized and a computerized adaptive test (CAT) are compared. The item pool consists of 24 polytomous motivation items. Although items are carefully selected, calibration data show that Samejima's graded response model did not fit the data optimally. A simulation study is done to assess possible…

  9. On the Origin and Trigger of the Notothenioid Adaptive Radiation

    PubMed Central

    Matschiner, Michael; Hanel, Reinhold; Salzburger, Walter

    2011-01-01

    Adaptive radiation is usually triggered by ecological opportunity, arising through (i) the colonization of a new habitat by its progenitor; (ii) the extinction of competitors; or (iii) the emergence of an evolutionary key innovation in the ancestral lineage. Support for the key innovation hypothesis is scarce, however, even in textbook examples of adaptive radiation. Antifreeze glycoproteins (AFGPs) have been proposed as putative key innovation for the adaptive radiation of notothenioid fishes in the ice-cold waters of Antarctica. A crucial prerequisite for this assumption is the concurrence of the notothenioid radiation with the onset of Antarctic sea ice conditions. Here, we use a fossil-calibrated multi-marker phylogeny of nothothenioid and related acanthomorph fishes to date AFGP emergence and the notothenioid radiation. All time-constraints are cross-validated to assess their reliability resulting in six powerful calibration points. We find that the notothenioid radiation began near the Oligocene-Miocene transition, which coincides with the increasing presence of Antarctic sea ice. Divergence dates of notothenioids are thus consistent with the key innovation hypothesis of AFGP. Early notothenioid divergences are furthermore congruent with vicariant speciation and the breakup of Gondwana. PMID:21533117

  10. Biaxial Anisotropic Material Development and Characterization using Rectangular to Square Waveguide

    DTIC Science & Technology

    2015-03-26

    holder 68 Figure 29. Measurement Setup with Test port cables and Network Analyzer VNA and the waveguide adapters are torqued to specification with...calibrated torque wrenches and waveguide flanges are aligned using precision alignment pins. A TRL calibration is performed prior to measuring the sample as...set to 0.0001. This enables the Frequency domain solver to refine the mesh until the tolerance is achieved. Tightening the error tolerance results in

  11. A method of camera calibration with adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Yan, Shu-hua; Wang, Guo-chao; Zhou, Chun-lei

    2009-07-01

    In order to calculate the parameters of the camera correctly, we must figure out the accurate coordinates of the certain points in the image plane. Corners are the important features in the 2D images. Generally speaking, they are the points that have high curvature and lie in the junction of different brightness regions of images. So corners detection has already widely used in many fields. In this paper we use the pinhole camera model and SUSAN corner detection algorithm to calibrate the camera. When using the SUSAN corner detection algorithm, we propose an approach to retrieve the gray difference threshold, adaptively. That makes it possible to pick up the right chessboard inner comers in all kinds of gray contrast. The experiment result based on this method was proved to be feasible.

  12. Multivariate estimation of the limit of detection by orthogonal partial least squares in temperature-modulated MOX sensors.

    PubMed

    Burgués, Javier; Marco, Santiago

    2018-08-17

    Metal oxide semiconductor (MOX) sensors are usually temperature-modulated and calibrated with multivariate models such as partial least squares (PLS) to increase the inherent low selectivity of this technology. The multivariate sensor response patterns exhibit heteroscedastic and correlated noise, which suggests that maximum likelihood methods should outperform PLS. One contribution of this paper is the comparison between PLS and maximum likelihood principal components regression (MLPCR) in MOX sensors. PLS is often criticized by the lack of interpretability when the model complexity increases beyond the chemical rank of the problem. This happens in MOX sensors due to cross-sensitivities to interferences, such as temperature or humidity and non-linearity. Additionally, the estimation of fundamental figures of merit, such as the limit of detection (LOD), is still not standardized in multivariate models. Orthogonalization methods, such as orthogonal projection to latent structures (O-PLS), have been successfully applied in other fields to reduce the complexity of PLS models. In this work, we propose a LOD estimation method based on applying the well-accepted univariate LOD formulas to the scores of the first component of an orthogonal PLS model. The resulting LOD is compared to the multivariate LOD range derived from error-propagation. The methodology is applied to data extracted from temperature-modulated MOX sensors (FIS SB-500-12 and Figaro TGS 3870-A04), aiming at the detection of low concentrations of carbon monoxide in the presence of uncontrolled humidity (chemical noise). We found that PLS models were simpler and more accurate than MLPCR models. Average LOD values of 0.79 ppm (FIS) and 1.06 ppm (Figaro) were found using the approach described in this paper. These values were contained within the LOD ranges obtained with the error-propagation approach. The mean LOD increased to 1.13 ppm (FIS) and 1.59 ppm (Figaro) when considering validation samples collected two weeks after calibration, which represents a 43% and 46% degradation, respectively. The orthogonal score-plot was a very convenient tool to visualize MOX sensor data and to validate the LOD estimates. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. An Investigation of Multivariate Adaptive Regression Splines for Modeling and Analysis of Univariate and Semi-Multivariate Time Series Systems

    DTIC Science & Technology

    1991-09-01

    However, there is no guarantee that this would work; for instance if the data were generated by an ARCH model (Tong, 1990 pp. 116-117) then a simple...Hill, R., Griffiths, W., Lutkepohl, H., and Lee, T., Introduction to the Theory and Practice of Econometrics , 2th ed., Wiley, 1985. Kendall, M., Stuart

  14. Multivariate Quantitative Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.; Capezza, Mary

    1995-01-01

    Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.

  15. Multivariable Control Law Design for the AFTI/F-16 with a Failed Control Surface Using a Parameter-Adaptive Controller.

    DTIC Science & Technology

    1987-12-01

    Appendix D: Macro Listings D-1 Appendix E: MATRIXx Simulation E-1 Bibiliography Vita iv e List of Figures Figure Page 1-1 Self -Tuning Regulator 6 2-1 AFTI...Command 59 4-25 Yaw Rate Command - Three Pulses 60 4-26 Adaptive Yaw Rate Respose - Three Pulses 61 4-27 Adaptive Pitch Angle Response - Three Pulses 62 4...several types of adaptive controllers (regulators). Three of the simplest controllers are gain scheduling, model reference, and self -tuning

  16. Multivariate analysis of organic acids in fermented food from reversed-phase high-performance liquid chromatography data.

    PubMed

    Mortera, Pablo; Zuljan, Federico A; Magni, Christian; Bortolato, Santiago A; Alarcón, Sergio H

    2018-02-01

    Multivariate calibration coupled to RP-HPLC with diode array detection (HPLC-DAD) was applied to the identification and the quantitative evaluation of the short chain organic acids (malic, oxalic, formic, lactic, acetic, citric, pyruvic, succinic, tartaric, propionic and α-cetoglutaric) in fermented food. The goal of the present study was to get the successful resolution of a system in the combined occurrence of strongly coeluting peaks, of distortions in the time sensors among chromatograms, and of the presence of unexpected compounds not included in the calibration step. Second-order HPLC-DAD data matrices were obtained in a short time (10min) on a C18 column with a chromatographic system operating in isocratic mode (mobile phase was 20mmolL -1 phosphate buffer at pH 2.20) and a flow-rate of 1.0mLmin -1 at room temperature. Parallel factor analysis (PARAFAC) and unfolded partial least-squares combined with residual bilinearization (U-PLS/RBL) were the second-order calibration algorithms select for data processing. The performance of the analytical parameters was good with an outstanding limit of detection (LODs) for acids ranging from 0.15 to 10.0mmolL -1 in the validation samples. The improved method was applied to the analysis of many dairy products (yoghurt, cultured milk and cheese) and wine. The method was shown as an effective means for determining and following acid contents in fermented food and was characterized by reducibility with simple, high resolution and rapid procedure without derivatization of analytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A Smart Sensor Web for Ocean Observation: Integrated Acoustics, Satellite Networking, and Predictive Modeling

    NASA Astrophysics Data System (ADS)

    Arabshahi, P.; Chao, Y.; Chien, S.; Gray, A.; Howe, B. M.; Roy, S.

    2008-12-01

    In many areas of Earth science, including climate change research, there is a need for near real-time integration of data from heterogeneous and spatially distributed sensors, in particular in-situ and space- based sensors. The data integration, as provided by a smart sensor web, enables numerous improvements, namely, 1) adaptive sampling for more efficient use of expensive space-based sensing assets, 2) higher fidelity information gathering from data sources through integration of complementary data sets, and 3) improved sensor calibration. The specific purpose of the smart sensor web development presented here is to provide for adaptive sampling and calibration of space-based data via in-situ data. Our ocean-observing smart sensor web presented herein is composed of both mobile and fixed underwater in-situ ocean sensing assets and Earth Observing System (EOS) satellite sensors providing larger-scale sensing. An acoustic communications network forms a critical link in the web between the in-situ and space-based sensors and facilitates adaptive sampling and calibration. After an overview of primary design challenges, we report on the development of various elements of the smart sensor web. These include (a) a cable-connected mooring system with a profiler under real-time control with inductive battery charging; (b) a glider with integrated acoustic communications and broadband receiving capability; (c) satellite sensor elements; (d) an integrated acoustic navigation and communication network; and (e) a predictive model via the Regional Ocean Modeling System (ROMS). Results from field experiments, including an upcoming one in Monterey Bay (October 2008) using live data from NASA's EO-1 mission in a semi closed-loop system, together with ocean models from ROMS, are described. Plans for future adaptive sampling demonstrations using the smart sensor web are also presented.

  18. Body proportions of circumpolar peoples as evidenced from skeletal data: Ipiutak and Tigara (Point Hope) versus Kodiak Island Inuit.

    PubMed

    Holliday, Trenton W; Hilton, Charles E

    2010-06-01

    Given the well-documented fact that human body proportions covary with climate (presumably due to the action of selection), one would expect that the Ipiutak and Tigara Inuit samples from Point Hope, Alaska, would be characterized by an extremely cold-adapted body shape. Comparison of the Point Hope Inuit samples to a large (n > 900) sample of European and European-derived, African and African-derived, and Native American skeletons (including Koniag Inuit from Kodiak Island, Alaska) confirms that the Point Hope Inuit evince a cold-adapted body form, but analyses also reveal some unexpected results. For example, one might suspect that the Point Hope samples would show a more cold-adapted body form than the Koniag, given their more extreme environment, but this is not the case. Additionally, univariate analyses seldom show the Inuit samples to be more cold-adapted in body shape than Europeans, and multivariate cluster analyses that include a myriad of body shape variables such as femoral head diameter, bi-iliac breadth, and limb segment lengths fail to effectively separate the Inuit samples from Europeans. In fact, in terms of body shape, the European and the Inuit samples tend to be cold-adapted and tend to be separated in multivariate space from the more tropically adapted Africans, especially those groups from south of the Sahara. Copyright 2009 Wiley-Liss, Inc.

  19. Digital filtering and model updating methods for improving the robustness of near-infrared multivariate calibrations.

    PubMed

    Kramer, Kirsten E; Small, Gary W

    2009-02-01

    Fourier transform near-infrared (NIR) transmission spectra are used for quantitative analysis of glucose for 17 sets of prediction data sampled as much as six months outside the timeframe of the corresponding calibration data. Aqueous samples containing physiological levels of glucose in a matrix of bovine serum albumin and triacetin are used to simulate clinical samples such as blood plasma. Background spectra of a single analyte-free matrix sample acquired during the instrumental warm-up period on the prediction day are used for calibration updating and for determining the optimal frequency response of a preprocessing infinite impulse response time-domain digital filter. By tuning the filter and the calibration model to the specific instrumental response associated with the prediction day, the calibration model is given enhanced ability to operate over time. This methodology is demonstrated in conjunction with partial least squares calibration models built with a spectral range of 4700-4300 cm(-1). By using a subset of the background spectra to evaluate the prediction performance of the updated model, projections can be made regarding the success of subsequent glucose predictions. If a threshold standard error of prediction (SEP) of 1.5 mM is used to establish successful model performance with the glucose samples, the corresponding threshold for the SEP of the background spectra is found to be 1.3 mM. For calibration updating in conjunction with digital filtering, SEP values of all 17 prediction sets collected over 3-178 days displaced from the calibration data are below 1.5 mM. In addition, the diagnostic based on the background spectra correctly assesses the prediction performance in 16 of the 17 cases.

  20. Bayesian calibration of terrestrial ecosystem models: A study of advanced Markov chain Monte Carlo methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dan; Ricciuto, Daniel; Walker, Anthony

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this study, a Differential Evolution Adaptive Metropolis (DREAM) algorithm was used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The DREAM is a multi-chainmore » method and uses differential evolution technique for chain movement, allowing it to be efficiently applied to high-dimensional problems, and can reliably estimate heavy-tailed and multimodal distributions that are difficult for single-chain schemes using a Gaussian proposal distribution. The results were evaluated against the popular Adaptive Metropolis (AM) scheme. DREAM indicated that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identified one mode. The calibration of DREAM resulted in a better model fit and predictive performance compared to the AM. DREAM provides means for a good exploration of the posterior distributions of model parameters. Lastly, it reduces the risk of false convergence to a local optimum and potentially improves the predictive performance of the calibrated model.« less

  1. Towards Zero Training for Brain-Computer Interfacing

    PubMed Central

    Krauledat, Matthias; Tangermann, Michael; Blankertz, Benjamin; Müller, Klaus-Robert

    2008-01-01

    Electroencephalogram (EEG) signals are highly subject-specific and vary considerably even between recording sessions of the same user within the same experimental paradigm. This challenges a stable operation of Brain-Computer Interface (BCI) systems. The classical approach is to train users by neurofeedback to produce fixed stereotypical patterns of brain activity. In the machine learning approach, a widely adapted method for dealing with those variances is to record a so called calibration measurement on the beginning of each session in order to optimize spatial filters and classifiers specifically for each subject and each day. This adaptation of the system to the individual brain signature of each user relieves from the need of extensive user training. In this paper we suggest a new method that overcomes the requirement of these time-consuming calibration recordings for long-term BCI users. The method takes advantage of knowledge collected in previous sessions: By a novel technique, prototypical spatial filters are determined which have better generalization properties compared to single-session filters. In particular, they can be used in follow-up sessions without the need to recalibrate the system. This way the calibration periods can be dramatically shortened or even completely omitted for these ‘experienced’ BCI users. The feasibility of our novel approach is demonstrated with a series of online BCI experiments. Although performed without any calibration measurement at all, no loss of classification performance was observed. PMID:18698427

  2. Bayesian calibration of terrestrial ecosystem models: A study of advanced Markov chain Monte Carlo methods

    DOE PAGES

    Lu, Dan; Ricciuto, Daniel; Walker, Anthony; ...

    2017-02-22

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this study, a Differential Evolution Adaptive Metropolis (DREAM) algorithm was used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The DREAM is a multi-chainmore » method and uses differential evolution technique for chain movement, allowing it to be efficiently applied to high-dimensional problems, and can reliably estimate heavy-tailed and multimodal distributions that are difficult for single-chain schemes using a Gaussian proposal distribution. The results were evaluated against the popular Adaptive Metropolis (AM) scheme. DREAM indicated that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identified one mode. The calibration of DREAM resulted in a better model fit and predictive performance compared to the AM. DREAM provides means for a good exploration of the posterior distributions of model parameters. Lastly, it reduces the risk of false convergence to a local optimum and potentially improves the predictive performance of the calibrated model.« less

  3. A Personalized Predictive Framework for Multivariate Clinical Time Series via Adaptive Model Selection.

    PubMed

    Liu, Zitao; Hauskrecht, Milos

    2017-11-01

    Building of an accurate predictive model of clinical time series for a patient is critical for understanding of the patient condition, its dynamics, and optimal patient management. Unfortunately, this process is not straightforward. First, patient-specific variations are typically large and population-based models derived or learned from many different patients are often unable to support accurate predictions for each individual patient. Moreover, time series observed for one patient at any point in time may be too short and insufficient to learn a high-quality patient-specific model just from the patient's own data. To address these problems we propose, develop and experiment with a new adaptive forecasting framework for building multivariate clinical time series models for a patient and for supporting patient-specific predictions. The framework relies on the adaptive model switching approach that at any point in time selects the most promising time series model out of the pool of many possible models, and consequently, combines advantages of the population, patient-specific and short-term individualized predictive models. We demonstrate that the adaptive model switching framework is very promising approach to support personalized time series prediction, and that it is able to outperform predictions based on pure population and patient-specific models, as well as, other patient-specific model adaptation strategies.

  4. Variability of annoyance response due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Cawthorn, J. M.

    1979-01-01

    An investigation was conducted to study the variability in the response of subjects participating in noise experiments. This paper presents a description of a model developed to include this variability which incorporates an aircraft-noise adaptation level or an annoyance calibration for each individual. The results indicate that the use of an aircraft-noise adaption level improved prediction accuracy of annoyance responses (and simultaneously reduced response variation).

  5. Method for predicting dry mechanical properties from wet wood and standing trees

    DOEpatents

    Meglen, Robert R.; Kelley, Stephen S.

    2003-08-12

    A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.

  6. Calibrating the interaction matrix for the LINC-NIRVANA high layer wavefront sensor.

    PubMed

    Zhang, Xianyu; Arcidiacono, Carmelo; Conrad, Albert R; Herbst, Thomas M; Gaessler, Wolfgang; Bertram, Thomas; Ragazzoni, Roberto; Schreiber, Laura; Diolaiti, Emiliano; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan

    2012-03-26

    LINC-NIRVANA is a near-infrared Fizeau interferometric imager that will operate at the Large Binocular Telescope. In preparation for the commissioning of this instrument, we conducted experiments for calibrating the high-layer wavefront sensor of the layer-oriented multi-conjugate adaptive optics system. For calibrating the multi-pyramid wavefront sensor, four light sources were used to simulate guide stars. Using this setup, we developed the push-pull method for calibrating the interaction matrix. The benefits of this method over the traditional push-only method are quantified, and also the effects of varying the number of push-pull frames over which aberrations are averaged is reported. Finally, we discuss a method for measuring mis-conjugation between the deformable mirror and the wavefront sensor, and the proper positioning of the wavefront sensor detector with respect to the four pupil positions.

  7. Online Calibration of Polytomous Items Under the Generalized Partial Credit Model

    PubMed Central

    Zheng, Yi

    2016-01-01

    Online calibration is a technology-enhanced architecture for item calibration in computerized adaptive tests (CATs). Many CATs are administered continuously over a long term and rely on large item banks. To ensure test validity, these item banks need to be frequently replenished with new items, and these new items need to be pretested before being used operationally. Online calibration dynamically embeds pretest items in operational tests and calibrates their parameters as response data are gradually obtained through the continuous test administration. This study extends existing formulas, procedures, and algorithms for dichotomous item response theory models to the generalized partial credit model, a popular model for items scored in more than two categories. A simulation study was conducted to investigate the developed algorithms and procedures under a variety of conditions, including two estimation algorithms, three pretest item selection methods, three seeding locations, two numbers of score categories, and three calibration sample sizes. Results demonstrated acceptable estimation accuracy of the two estimation algorithms in some of the simulated conditions. A variety of findings were also revealed for the interacted effects of included factors, and recommendations were made respectively. PMID:29881063

  8. Gridded Calibration of Ensemble Wind Vector Forecasts Using Ensemble Model Output Statistics

    NASA Astrophysics Data System (ADS)

    Lazarus, S. M.; Holman, B. P.; Splitt, M. E.

    2017-12-01

    A computationally efficient method is developed that performs gridded post processing of ensemble wind vector forecasts. An expansive set of idealized WRF model simulations are generated to provide physically consistent high resolution winds over a coastal domain characterized by an intricate land / water mask. Ensemble model output statistics (EMOS) is used to calibrate the ensemble wind vector forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled WRF winds. Using data withdrawal and 28 east central Florida stations, the method is applied to one year of 24 h wind forecasts from the Global Ensemble Forecast System (GEFS). Compared to the raw GEFS, the approach improves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms indicate the post processed forecasts are calibrated. Two downscaling case studies are presented, a quiescent easterly flow event and a frontal passage. Strengths and weaknesses of the approach are presented and discussed.

  9. Two Analyte Calibration From The Transient Response Of Potentiometric Sensors Employed With The SIA Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartas, Raul; Mimendia, Aitor; Valle, Manel del

    2009-05-23

    Calibration models for multi-analyte electronic tongues have been commonly built using a set of sensors, at least one per analyte under study. Complex signals recorded with these systems are formed by the sensors' responses to the analytes of interest plus interferents, from which a multivariate response model is then developed. This work describes a data treatment method for the simultaneous quantification of two species in solution employing the signal from a single sensor. The approach used here takes advantage of the complex information recorded with one electrode's transient after insertion of sample for building the calibration models for both analytes.more » The departure information from the electrode was firstly processed by discrete wavelet for transforming the signals to extract useful information and reduce its length, and then by artificial neural networks for fitting a model. Two different potentiometric sensors were used as study case for simultaneously corroborating the effectiveness of the approach.« less

  10. Rapid analysis of glucose, fructose, sucrose, and maltose in honeys from different geographic regions using fourier transform infrared spectroscopy and multivariate analysis.

    PubMed

    Wang, Jun; Kliks, Michael M; Jun, Soojin; Jackson, Mel; Li, Qing X

    2010-03-01

    Quantitative analysis of glucose, fructose, sucrose, and maltose in different geographic origin honey samples in the world using the Fourier transform infrared (FTIR) spectroscopy and chemometrics such as partial least squares (PLS) and principal component regression was studied. The calibration series consisted of 45 standard mixtures, which were made up of glucose, fructose, sucrose, and maltose. There were distinct peak variations of all sugar mixtures in the spectral "fingerprint" region between 1500 and 800 cm(-1). The calibration model was successfully validated using 7 synthetic blend sets of sugars. The PLS 2nd-derivative model showed the highest degree of prediction accuracy with a highest R(2) value of 0.999. Along with the canonical variate analysis, the calibration model further validated by high-performance liquid chromatography measurements for commercial honey samples demonstrates that FTIR can qualitatively and quantitatively determine the presence of glucose, fructose, sucrose, and maltose in multiple regional honey samples.

  11. Adaptive functioning and its associated factors among girl children residing in slum areas of Bhubaneswar, India.

    PubMed

    Panigrahi, Ansuman; Das, Sai C; Sahoo, Prabhudarsan

    2018-01-01

    Adaptive functioning develops throughout early childhood, and its limitation is a reflection that the child has developmental or emotional problems or even mental retardation. Little is known about the adaptive functioning or developmental status of slum children. The present cross-sectional study was undertaken during the year 2014 to assess the status of adaptive functioning among girl children aged between 3 and 9 years residing in slum areas of Bhubaneswar and to explore the factors associated with poor adaptive functioning. Stratified multi-stage cluster random sampling technique was used to select the study population; 256 mother-child pairs from 256 households in selected slum areas were studied. Demographic information was collected, and adaptive functioning was assessed using the modified Vineland Social Maturity Scale. Univariate and multivariate analyses was carried out using Statistical Package for Social Sciences (SPSS) version 21. One-fifth (54, 21%) of the girls sampled had poor adaptive functioning, and 44 (17%) had poor cognitive functioning. Multivariate analysis revealed that the age of the child, parents' education, presence of stunting in children and attending school/early childhood centre were strong predictors of adaptive functioning in slum children. One-fifth of girls from slums are developmentally vulnerable; parental education, stunting and early childhood education or exposure to schooling are modifiable factors influencing children's adaptive functioning. Health, education and welfare sectors need to be aware of this so that a multi-pronged approach can be planned to properly address this issue in one of the most disadvantaged sections of the society. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  12. On using summary statistics from an external calibration sample to correct for covariate measurement error.

    PubMed

    Guo, Ying; Little, Roderick J; McConnell, Daniel S

    2012-01-01

    Covariate measurement error is common in epidemiologic studies. Current methods for correcting measurement error with information from external calibration samples are insufficient to provide valid adjusted inferences. We consider the problem of estimating the regression of an outcome Y on covariates X and Z, where Y and Z are observed, X is unobserved, but a variable W that measures X with error is observed. Information about measurement error is provided in an external calibration sample where data on X and W (but not Y and Z) are recorded. We describe a method that uses summary statistics from the calibration sample to create multiple imputations of the missing values of X in the regression sample, so that the regression coefficients of Y on X and Z and associated standard errors can be estimated using simple multiple imputation combining rules, yielding valid statistical inferences under the assumption of a multivariate normal distribution. The proposed method is shown by simulation to provide better inferences than existing methods, namely the naive method, classical calibration, and regression calibration, particularly for correction for bias and achieving nominal confidence levels. We also illustrate our method with an example using linear regression to examine the relation between serum reproductive hormone concentrations and bone mineral density loss in midlife women in the Michigan Bone Health and Metabolism Study. Existing methods fail to adjust appropriately for bias due to measurement error in the regression setting, particularly when measurement error is substantial. The proposed method corrects this deficiency.

  13. Adaptive optics for confocal laser scanning microscopy with adjustable pinhole

    NASA Astrophysics Data System (ADS)

    Yoo, Han Woong; van Royen, Martin E.; van Cappellen, Wiggert A.; Houtsmuller, Adriaan B.; Verhaegen, Michel; Schitter, Georg

    2016-04-01

    The pinhole plays an important role in confocal laser scanning microscopy (CLSM) for adaptive optics (AO) as well as in imaging, where the size of the pinhole denotes a trade-off between out-of-focus rejection and wavefront distortion. This contribution proposes an AO system for a commercial CLSM with an adjustable square pinhole to cope with such a trade-off. The proposed adjustable pinhole enables to calibrate the AO system and to evaluate the imaging performance. Experimental results with fluorescence beads on the coverslip and at a depth of 40 μm in the human hepatocellular carcinoma cell spheroid demonstrate that the proposed AO system can improve the image quality by the proposed calibration method. The proposed pinhole intensity ratio also indicates the image improvement by the AO correction in intensity as well as resolution.

  14. Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy.

    PubMed

    Liu, Yan-De; Ying, Yi-Bin; Fu, Xia-Ping

    2005-03-01

    To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way.

  15. Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy*

    PubMed Central

    Liu, Yan-de; Ying, Yi-bin; Fu, Xia-ping

    2005-01-01

    To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibration techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r 2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way. PMID:15682498

  16. Calibrating Charisma: The many-facet Rasch model for leader measurement and automated coaching

    NASA Astrophysics Data System (ADS)

    Barney, Matt

    2016-11-01

    No one is a leader unless others follow. Consequently, leadership is fundamentally a social judgment construct, and may be best measured via a Many Facet Rasch Model designed for this purpose. Uniquely, the MFRM allows for objective, accurate and precise estimation of leader attributes, along with identification of rater biases and other distortions of the available information. This presentation will outline a mobile computer-adaptive measurement system that measures and develops charisma, among others. Uniquely, the approach calibrates and mass-personalizes artificially intelligent, Rasch-calibrated electronic coaching that is neither too hard nor too easy but “just right” to help each unique leader develop improved charisma.

  17. Adaptive hyperspectral imager: design, modeling, and control

    NASA Astrophysics Data System (ADS)

    McGregor, Scot; Lacroix, Simon; Monmayrant, Antoine

    2015-08-01

    An adaptive, hyperspectral imager is presented. We propose a system with easily adaptable spectral resolution, adjustable acquisition time, and high spatial resolution which is independent of spectral resolution. The system yields the possibility to define a variety of acquisition schemes, and in particular near snapshot acquisitions that may be used to measure the spectral content of given or automatically detected regions of interest. The proposed system is modelled and simulated, and tests on a first prototype validate the approach to achieve near snapshot spectral acquisitions without resorting to any computationally heavy post-processing, nor cumbersome calibration

  18. Thickness measurement of nontransparent free films by double-side white-light interferometry: Calibration and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poilane, C.; Sandoz, P.; Departement d'Optique PM Duffieux, Institut FEMTO-ST, UMR CNRS 6174, Universite de Franche-Comte, 25030 Besancon, Cedex

    2006-05-15

    A double-side optical profilometer based on white-light interferometry was developed for thickness measurement of nontransparent films. The profile of the sample is measured simultaneously on both sides of the film. The resulting data allow the computation of the roughness, the flatness and the parallelism of the sides of the film, and the average thickness of the film. The key point is the apparatus calibration, i.e., the accurate determination of the distance between the reference mirrors of the complementary interferometers. Specific samples were processed for that calibration. The system is adaptable to various thickness scales as long as calibration can bemore » made accurately. A thickness accuracy better than 30 nm for films thinner than 200 {mu}m is reported with the experimental material used. In this article, we present the principle of the method as well as the calibration methodology. Limitation and accuracy of the method are discussed. Experimental results are presented.« less

  19. Computerized tomography calibrator

    NASA Technical Reports Server (NTRS)

    Engel, Herbert P. (Inventor)

    1991-01-01

    A set of interchangeable pieces comprising a computerized tomography calibrator, and a method of use thereof, permits focusing of a computerized tomographic (CT) system. The interchangeable pieces include a plurality of nestable, generally planar mother rings, adapted for the receipt of planar inserts of predetermined sizes, and of predetermined material densities. The inserts further define openings therein for receipt of plural sub-inserts. All pieces are of known sizes and densities, permitting the assembling of different configurations of materials of known sizes and combinations of densities, for calibration (i.e., focusing) of a computerized tomographic system through variation of operating variables thereof. Rather than serving as a phanton, which is intended to be representative of a particular workpiece to be tested, the set of interchangeable pieces permits simple and easy standardized calibration of a CT system. The calibrator and its related method of use further includes use of air or of particular fluids for filling various openings, as part of a selected configuration of the set of pieces.

  20. Multivariate Dynamical Modeling to Investigate Human Adaptation to Space Flight: Initial Concepts

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Mindock, Jennifer; Zeffiro, Tom; Krakauer, David; Paloski, William H.; Lumpkins, Sarah

    2014-01-01

    The array of physiological changes that occur when humans venture into space for long periods presents a challenge to future exploration. The changes are conventionally investigated independently, but a complete understanding of adaptation requires a conceptual basis founded in intergrative physiology, aided by appropriate mathematical modeling. NASA is in the early stages of developing such an approach.

  1. Multivariate Dynamic Modeling to Investigate Human Adaptation to Space Flight: Initial Concepts

    NASA Technical Reports Server (NTRS)

    Shelhamer, Mark; Mindock, Jennifer; Zeffiro, Tom; Krakauer, David; Paloski, William H.; Lumpkins, Sarah

    2014-01-01

    The array of physiological changes that occur when humans venture into space for long periods presents a challenge to future exploration. The changes are conventionally investigated independently, but a complete understanding of adaptation requires a conceptual basis founded in integrative physiology, aided by appropriate mathematical modeling. NASA is in the early stages of developing such an approach.

  2. Dry calibration of electromagnetic flowmeters based on numerical models combining multiple physical phenomena (multiphysics)

    NASA Astrophysics Data System (ADS)

    Fu, X.; Hu, L.; Lee, K. M.; Zou, J.; Ruan, X. D.; Yang, H. Y.

    2010-10-01

    This paper presents a method for dry calibration of an electromagnetic flowmeter (EMF). This method, which determines the voltage induced in the EMF as conductive liquid flows through a magnetic field, numerically solves a coupled set of multiphysical equations with measured boundary conditions for the magnetic, electric, and flow fields in the measuring pipe of the flowmeter. Specifically, this paper details the formulation of dry calibration and an efficient algorithm (that adaptively minimizes the number of measurements and requires only the normal component of the magnetic flux density as boundary conditions on the pipe surface to reconstruct the magnetic field involved) for computing the sensitivity of EMF. Along with an in-depth discussion on factors that could significantly affect the final precision of a dry calibrated EMF, the effects of flow disturbance on measuring errors have been experimentally studied by installing a baffle at the inflow port of the EMF. Results of the dry calibration on an actual EMF were compared against flow-rig calibration; excellent agreements (within 0.3%) between dry calibration and flow-rig tests verify the multiphysical computation of the fields and the robustness of the method. As requiring no actual flow, the dry calibration is particularly useful for calibrating large-diameter EMFs where conventional flow-rig methods are often costly and difficult to implement.

  3. Artificial Incoherent Speckles Enable Precision Astrometry and Photometry in High-contrast Imaging

    NASA Astrophysics Data System (ADS)

    Jovanovic, N.; Guyon, O.; Martinache, F.; Pathak, P.; Hagelberg, J.; Kudo, T.

    2015-11-01

    State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments are constantly improving the contrast detection limit for companions at ever-closer separations from the host star. In order to constrain their properties and, ultimately, compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post-coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system of the Subaru Coronagraphic Extreme Adaptive Optics system to generate a field of speckles for the purposes of calibration. Speckles can be placed up to 22.5 λ/D from the star, with any position angle, brightness, and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between 0 and π, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitatively show for the first time that this incoherence, in turn, increases the robustness and stability of the adaptive speckles, which will improve the precision of astrometric and photometric calibration procedures. This technique will be valuable for high-contrast imaging observations with imagers and integral field spectrographs alike.

  4. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.

    PubMed

    Spüler, Martin; Rosenstiel, Wolfgang; Bogdan, Martin

    2012-01-01

    The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.

  5. Fully probabilistic control design in an adaptive critic framework.

    PubMed

    Herzallah, Randa; Kárný, Miroslav

    2011-12-01

    Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Liquid chromatography with diode array detection and multivariate curve resolution for the selective and sensitive quantification of estrogens in natural waters.

    PubMed

    Pérez, Rocío L; Escandar, Graciela M

    2014-07-04

    Following the green analytical chemistry principles, an efficient strategy involving second-order data provided by liquid chromatography (LC) with diode array detection (DAD) was applied for the simultaneous determination of estriol, 17β-estradiol, 17α-ethinylestradiol and estrone in natural water samples. After a simple pre-concentration step, LC-DAD matrix data were rapidly obtained (in less than 5 min) with a chromatographic system operating isocratically. Applying a second-order calibration algorithm based on multivariate curve resolution with alternating least-squares (MCR-ALS), successful resolution was achieved in the presence of sample constituents that strongly coelute with the analytes. The flexibility of this multivariate model allowed the quantification of the four estrogens in tap, mineral, underground and river water samples. Limits of detection in the range between 3 and 13 ng L(-1), and relative prediction errors from 2 to 11% were achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. [Validity and reliability of the Culture of Quality Health Services questionnaire in Mexico].

    PubMed

    Herrera-Kiengelher, L; Zepeda-Zaragoza, J; Austria-Corrales, F; Vázquez-Zarate, V M

    2013-01-01

    Patient Safety is a major public health problem worldwide and is responsibility of all those involved in health care. Establishing a Safety Culture has proved to be a factor that favors the integration of work teams, communication and construction of clear procedures in various organizations. Promote a culture of safety depends on several factors, such as organization, work unit and staff. Objective assessment of these factors will help to identify areas for improvement and establish strategic lines of action. [corrected] To adapt, validate and calibrate the questionnaire Culture of Quality in Health Services (CQHS) in Mexican population. A cross with a stratified representative sample of 522 health workers. The questionnaire was translated and adapted from Singer's. Content was validated by experts, internal consistency, confirmatory factorial validity and item calibration with Samejima's Graded Response Model. Convergent and divergent construct validity was confirmed from the CQHS, item calibration showed that the questionnaire is able to discriminate between patients and represent different levels of the hypothesized dimensions with greater accuracy and lower standard error. The CQHS is a valid and reliable instrument to assess patient safety culture in hospitals in Mexico. Copyright © 2013 SECA. Published by Elsevier Espana. All rights reserved.

  8. Self-adaptive calibration for staring infrared sensors

    NASA Astrophysics Data System (ADS)

    Kendall, William B.; Stocker, Alan D.

    1993-10-01

    This paper presents a new, self-adaptive technique for the correlation of non-uniformities (fixed-pattern noise) in high-density infrared focal-plane detector arrays. We have developed a new approach to non-uniformity correction in which we use multiple image frames of the scene itself, and take advantage of the aim-point wander caused by jitter, residual tracking errors, or deliberately induced motion. Such wander causes each detector in the array to view multiple scene elements, and each scene element to be viewed by multiple detectors. It is therefore possible to formulate (and solve) a set of simultaneous equations from which correction parameters can be computed for the detectors. We have tested our approach with actual images collected by the ARPA-sponsored MUSIC infrared sensor. For these tests we employed a 60-frame (0.75-second) sequence of terrain images for which an out-of-date calibration was deliberately used. The sensor was aimed at a point on the ground via an operator-assisted tracking system having a maximum aim point wander on the order of ten pixels. With these data, we were able to improve the calibration accuracy by a factor of approximately 100.

  9. Evaluation of the Tropical Pacific Observing System from the Data Assimilation Perspective

    DTIC Science & Technology

    2014-01-01

    hereafter, SIDA systems) have the capacity to assimilate salinity profiles imposing a multivariate (mainly T-S) balance relationship (summarized in...Fujii et al., 2011). Current SIDA systems in operational centers generally use Ocean General Circulation Models (OGCM) with resolution typically 1...long-term (typically 20-30 years) ocean DA runs are often performed with SIDA systems in operational centers for validation and calibration of SI

  10. Nomogram Prediction of Overall Survival After Curative Irradiation for Uterine Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, YoungSeok; Yoo, Seong Yul; Kim, Mi-Sook

    Purpose: The purpose of this study was to develop a nomogram capable of predicting the probability of 5-year survival after radical radiotherapy (RT) without chemotherapy for uterine cervical cancer. Methods and Materials: We retrospectively analyzed 549 patients that underwent radical RT for uterine cervical cancer between March 1994 and April 2002 at our institution. Multivariate analysis using Cox proportional hazards regression was performed and this Cox model was used as the basis for the devised nomogram. The model was internally validated for discrimination and calibration by bootstrap resampling. Results: By multivariate regression analysis, the model showed that age, hemoglobin levelmore » before RT, Federation Internationale de Gynecologie Obstetrique (FIGO) stage, maximal tumor diameter, lymph node status, and RT dose at Point A significantly predicted overall survival. The survival prediction model demonstrated good calibration and discrimination. The bootstrap-corrected concordance index was 0.67. The predictive ability of the nomogram proved to be superior to FIGO stage (p = 0.01). Conclusions: The devised nomogram offers a significantly better level of discrimination than the FIGO staging system. In particular, it improves predictions of survival probability and could be useful for counseling patients, choosing treatment modalities and schedules, and designing clinical trials. However, before this nomogram is used clinically, it should be externally validated.« less

  11. Comparative study between univariate spectrophotometry and multivariate calibration as analytical tools for quantitation of Benazepril alone and in combination with Amlodipine.

    PubMed

    Farouk, M; Elaziz, Omar Abd; Tawakkol, Shereen M; Hemdan, A; Shehata, Mostafa A

    2014-04-05

    Four simple, accurate, reproducible, and selective methods have been developed and subsequently validated for the determination of Benazepril (BENZ) alone and in combination with Amlodipine (AML) in pharmaceutical dosage form. The first method is pH induced difference spectrophotometry, where BENZ can be measured in presence of AML as it showed maximum absorption at 237nm and 241nm in 0.1N HCl and 0.1N NaOH, respectively, while AML has no wavelength shift in both solvents. The second method is the new Extended Ratio Subtraction Method (EXRSM) coupled to Ratio Subtraction Method (RSM) for determination of both drugs in commercial dosage form. The third and fourth methods are multivariate calibration which include Principal Component Regression (PCR) and Partial Least Squares (PLSs). A detailed validation of the methods was performed following the ICH guidelines and the standard curves were found to be linear in the range of 2-30μg/mL for BENZ in difference and extended ratio subtraction spectrophotometric method, and 5-30 for AML in EXRSM method, with well accepted mean correlation coefficient for each analyte. The intra-day and inter-day precision and accuracy results were well within the acceptable limits. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Simultaneous chemometric determination of pyridoxine hydrochloride and isoniazid in tablets by multivariate regression methods.

    PubMed

    Dinç, Erdal; Ustündağ, Ozgür; Baleanu, Dumitru

    2010-08-01

    The sole use of pyridoxine hydrochloride during treatment of tuberculosis gives rise to pyridoxine deficiency. Therefore, a combination of pyridoxine hydrochloride and isoniazid is used in pharmaceutical dosage form in tuberculosis treatment to reduce this side effect. In this study, two chemometric methods, partial least squares (PLS) and principal component regression (PCR), were applied to the simultaneous determination of pyridoxine (PYR) and isoniazid (ISO) in their tablets. A concentration training set comprising binary mixtures of PYR and ISO consisting of 20 different combinations were randomly prepared in 0.1 M HCl. Both multivariate calibration models were constructed using the relationships between the concentration data set (concentration data matrix) and absorbance data matrix in the spectral region 200-330 nm. The accuracy and the precision of the proposed chemometric methods were validated by analyzing synthetic mixtures containing the investigated drugs. The recovery results obtained by applying PCR and PLS calibrations to the artificial mixtures were found between 100.0 and 100.7%. Satisfactory results obtained by applying the PLS and PCR methods to both artificial and commercial samples were obtained. The results obtained in this manuscript strongly encourage us to use them for the quality control and the routine analysis of the marketing tablets containing PYR and ISO drugs. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics.

    PubMed

    Alamar, Priscila D; Caramês, Elem T S; Poppi, Ronei J; Pallone, Juliana A L

    2016-07-01

    The present study investigated the application of near infrared spectroscopy as a green, quick, and efficient alternative to analytical methods currently used to evaluate the quality (moisture, total sugars, acidity, soluble solids, pH and ascorbic acid) of frozen guava and passion fruit pulps. Fifty samples were analyzed by near infrared spectroscopy (NIR) and reference methods. Partial least square regression (PLSR) was used to develop calibration models to relate the NIR spectra and the reference values. Reference methods indicated adulteration by water addition in 58% of guava pulp samples and 44% of yellow passion fruit pulp samples. The PLS models produced lower values of root mean squares error of calibration (RMSEC), root mean squares error of prediction (RMSEP), and coefficient of determination above 0.7. Moisture and total sugars presented the best calibration models (RMSEP of 0.240 and 0.269, respectively, for guava pulp; RMSEP of 0.401 and 0.413, respectively, for passion fruit pulp) which enables the application of these models to determine adulteration in guava and yellow passion fruit pulp by water or sugar addition. The models constructed for calibration of quality parameters of frozen fruit pulps in this study indicate that NIR spectroscopy coupled with the multivariate calibration technique could be applied to determine the quality of guava and yellow passion fruit pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Maximizing effectiveness of adaptation action in Pacific Island communities using coastal wave attenuation models

    NASA Astrophysics Data System (ADS)

    Jung, H.; Carruthers, T.; Allison, M. A.; Weathers, D.; Moss, L.; Timmermans, H.

    2017-12-01

    Pacific Island communities are highly vulnerable to the effects of climate change, specifically accelerating rates of sea level rise, changes to storm intensity and associated rainfall patterns resulting in flooding and shoreline erosion. Nature-based adaptation is being planned not only to reduce the risk from shoreline erosion, but also to support benefits of a healthy ecosystem (e.g., supporting fisheries or coral reefs). In order to assess potential effectiveness of the nature-based actions to dissipate wave energy, two-dimensional X-Beach models were developed to predict the wave attenuation effect of coastal adaptation actions at the pilot sites—the villages of Naselesele and Somosomo on Taveuni island, Fiji. Both sites are experiencing serious shoreline erosion due to sea level rise and storm wave. The water depth (single-beam bathymetry), land elevation (truck-based LiDAR), and vegetation data including stem density and height were collected in both locations in a June 2017 field experiment. Wave height and water velocity were also measured for the model setup and calibration using a series of bottom-mounted instruments deployed in the 0-15 m water depth portions of the study grid. The calibrated model will be used to evaluate a range of possible adaptation actions identified by the community members of Naselesele and Somosomo. Particularly, multiple storm scenario runs with management-relevant shoreline restoration/adaptation options will be implemented to evaluate efficiencies of each adaptation action (e.g., no action, with additional planted trees, with sand mining, with seawalls constructed with natural materials, etc.). These model results will help to better understand how proposed adaption actions may influence future shoreline change and maximize benefits to communities in island nations across the SW Pacific.

  15. Thermal sensation and climate: a comparison of UTCI and PET thresholds in different climates.

    PubMed

    Pantavou, Katerina; Lykoudis, Spyridon; Nikolopoulou, Marialena; Tsiros, Ioannis X

    2018-06-07

    The influence of physiological acclimatization and psychological adaptation on thermal perception is well documented and has revealed the importance of thermal experience and expectation in the evaluation of environmental stimuli. Seasonal patterns of thermal perception have been studied, and calibrated thermal indices' scales have been proposed to obtain meaningful interpretations of thermal sensation indices in different climate regions. The current work attempts to quantify the contribution of climate to the long-term thermal adaptation by examining the relationship between climate normal annual air temperature (1971-2000) and such climate-calibrated thermal indices' assessment scales. The thermal sensation ranges of two thermal indices, the Universal Thermal Climate Index (UTCI) and the Physiological Equivalent Temperature Index (PET), were calibrated for three warm temperate climate contexts (Cfa, Cfb, Csa), against the subjective evaluation of the thermal environment indicated by interviewees during field surveys conducted at seven European cities: Athens (GR), Thessaloniki (GR), Milan (IT), Fribourg (CH), Kassel (DE), Cambridge (UK), and Sheffield (UK), under the same research protocol. Then, calibrated scales for other climate contexts were added from the literature, and the relationship between the respective scales' thresholds and climate normal annual air temperature was examined. To maintain the maximum possible comparability, three methods were applied for the calibration, namely linear, ordinal, and probit regression. The results indicated that the calibrated UTCI and PET thresholds increase with the climate normal annual air temperature of the survey city. To investigate further climates, we also included in the analysis results of previous studies presenting only thresholds for neutral thermal sensation. The average increase of the respective thresholds in the case of neutral thermal sensation was about 0.6 °C for each 1 °C increase of the normal annual air temperature for both indices, statistically significant only for PET though.

  16. Prediction models for clustered data: comparison of a random intercept and standard regression model

    PubMed Central

    2013-01-01

    Background When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Methods Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. Results The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. Conclusion The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. PMID:23414436

  17. Prediction models for clustered data: comparison of a random intercept and standard regression model.

    PubMed

    Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne

    2013-02-15

    When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters.

  18. Assessing Principal Component Regression Prediction of Neurochemicals Detected with Fast-Scan Cyclic Voltammetry

    PubMed Central

    2011-01-01

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586

  19. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry.

    PubMed

    Keithley, Richard B; Wightman, R Mark

    2011-06-07

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.

  20. Calibration of decadal ensemble predictions

    NASA Astrophysics Data System (ADS)

    Pasternack, Alexander; Rust, Henning W.; Bhend, Jonas; Liniger, Mark; Grieger, Jens; Müller, Wolfgang; Ulbrich, Uwe

    2017-04-01

    Decadal climate predictions are of great socio-economic interest due to the corresponding planning horizons of several political and economic decisions. Due to uncertainties of weather and climate, forecasts (e.g. due to initial condition uncertainty), they are issued in a probabilistic way. One issue frequently observed for probabilistic forecasts is that they tend to be not reliable, i.e. the forecasted probabilities are not consistent with the relative frequency of the associated observed events. Thus, these kind of forecasts need to be re-calibrated. While re-calibration methods for seasonal time scales are available and frequently applied, these methods still have to be adapted for decadal time scales and its characteristic problems like climate trend and lead time dependent bias. Regarding this, we propose a method to re-calibrate decadal ensemble predictions that takes the above mentioned characteristics into account. Finally, this method will be applied and validated to decadal forecasts from the MiKlip system (Germany's initiative for decadal prediction).

  1. A curve fitting method for extrinsic camera calibration from a single image of a cylindrical object

    NASA Astrophysics Data System (ADS)

    Winkler, A. W.; Zagar, B. G.

    2013-08-01

    An important step in the process of optical steel coil quality assurance is to measure the proportions of width and radius of steel coils as well as the relative position and orientation of the camera. This work attempts to estimate these extrinsic parameters from single images by using the cylindrical coil itself as the calibration target. Therefore, an adaptive least-squares algorithm is applied to fit parametrized curves to the detected true coil outline in the acquisition. The employed model allows for strictly separating the intrinsic and the extrinsic parameters. Thus, the intrinsic camera parameters can be calibrated beforehand using available calibration software. Furthermore, a way to segment the true coil outline in the acquired images is motivated. The proposed optimization method yields highly accurate results and can be generalized even to measure other solids which cannot be characterized by the identification of simple geometric primitives.

  2. Method and apparatus for calibrating multi-axis load cells in a dexterous robot

    NASA Technical Reports Server (NTRS)

    Wampler, II, Charles W. (Inventor); Platt, Jr., Robert J. (Inventor)

    2012-01-01

    A robotic system includes a dexterous robot having robotic joints, angle sensors adapted for measuring joint angles at a corresponding one of the joints, load cells for measuring a set of strain values imparted to a corresponding one of the load cells during a predetermined pose of the robot, and a host machine. The host machine is electrically connected to the load cells and angle sensors, and receives the joint angle values and strain values during the predetermined pose. The robot presses together mating pairs of load cells to form the poses. The host machine executes an algorithm to process the joint angles and strain values, and from the set of all calibration matrices that minimize error in force balance equations, selects the set of calibration matrices that is closest in a value to a pre-specified value. A method for calibrating the load cells via the algorithm is also provided.

  3. Predicting microbiologically defined infection in febrile neutropenic episodes in children: global individual participant data multivariable meta-analysis

    PubMed Central

    Phillips, Robert S; Sung, Lillian; Amman, Roland A; Riley, Richard D; Castagnola, Elio; Haeusler, Gabrielle M; Klaassen, Robert; Tissing, Wim J E; Lehrnbecher, Thomas; Chisholm, Julia; Hakim, Hana; Ranasinghe, Neil; Paesmans, Marianne; Hann, Ian M; Stewart, Lesley A

    2016-01-01

    Background: Risk-stratified management of fever with neutropenia (FN), allows intensive management of high-risk cases and early discharge of low-risk cases. No single, internationally validated, prediction model of the risk of adverse outcomes exists for children and young people. An individual patient data (IPD) meta-analysis was undertaken to devise one. Methods: The ‘Predicting Infectious Complications in Children with Cancer' (PICNICC) collaboration was formed by parent representatives, international clinical and methodological experts. Univariable and multivariable analyses, using random effects logistic regression, were undertaken to derive and internally validate a risk-prediction model for outcomes of episodes of FN based on clinical and laboratory data at presentation. Results: Data came from 22 different study groups from 15 countries, of 5127 episodes of FN in 3504 patients. There were 1070 episodes in 616 patients from seven studies available for multivariable analysis. Univariable analyses showed associations with microbiologically defined infection (MDI) in many items, including higher temperature, lower white cell counts and acute myeloid leukaemia, but not age. Patients with osteosarcoma/Ewings sarcoma and those with more severe mucositis were associated with a decreased risk of MDI. The predictive model included: malignancy type, temperature, clinically ‘severely unwell', haemoglobin, white cell count and absolute monocyte count. It showed moderate discrimination (AUROC 0.723, 95% confidence interval 0.711–0.759) and good calibration (calibration slope 0.95). The model was robust to bootstrap and cross-validation sensitivity analyses. Conclusions: This new prediction model for risk of MDI appears accurate. It requires prospective studies assessing implementation to assist clinicians and parents/patients in individualised decision making. PMID:26954719

  4. Correlation of porous and functional properties of food materials by NMR relaxometry and multivariate analysis.

    PubMed

    Haiduc, Adrian Marius; van Duynhoven, John

    2005-02-01

    The porous properties of food materials are known to determine important macroscopic parameters such as water-holding capacity and texture. In conventional approaches, understanding is built from a long process of establishing macrostructure-property relations in a rational manner. Only recently, multivariate approaches were introduced for the same purpose. The model systems used here are oil-in-water emulsions, stabilised by protein, and form complex structures, consisting of fat droplets dispersed in a porous protein phase. NMR time-domain decay curves were recorded for emulsions with varied levels of fat, protein and water. Hardness, dry matter content and water drainage were determined by classical means and analysed for correlation with the NMR data with multivariate techniques. Partial least squares can calibrate and predict these properties directly from the continuous NMR exponential decays and yields regression coefficients higher than 82%. However, the calibration coefficients themselves belong to the continuous exponential domain and do little to explain the connection between NMR data and emulsion properties. Transformation of the NMR decays into a discreet domain with non-negative least squares permits the use of multilinear regression (MLR) on the resulting amplitudes as predictors and hardness or water drainage as responses. The MLR coefficients show that hardness is highly correlated with the components that have T2 distributions of about 20 and 200 ms whereas water drainage is correlated with components that have T2 distributions around 400 and 1800 ms. These T2 distributions very likely correlate with water populations present in pores with different sizes and/or wall mobility. The results for the emulsions studied demonstrate that NMR time-domain decays can be employed to predict properties and to provide insight in the underlying microstructural features.

  5. PM10 modeling in the Oviedo urban area (Northern Spain) by using multivariate adaptive regression splines

    NASA Astrophysics Data System (ADS)

    Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza

    2014-10-01

    The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of these numerical calculations, using the multivariate adaptive regression splines (MARS) technique, conclusions of this research work are exposed.

  6. Enhanced attention amplifies face adaptation.

    PubMed

    Rhodes, Gillian; Jeffery, Linda; Evangelista, Emma; Ewing, Louise; Peters, Marianne; Taylor, Libby

    2011-08-15

    Perceptual adaptation not only produces striking perceptual aftereffects, but also enhances coding efficiency and discrimination by calibrating coding mechanisms to prevailing inputs. Attention to simple stimuli increases adaptation, potentially enhancing its functional benefits. Here we show that attention also increases adaptation to faces. In Experiment 1, face identity aftereffects increased when attention to adapting faces was increased using a change detection task. In Experiment 2, figural (distortion) face aftereffects increased when attention was increased using a snap game (detecting immediate repeats) during adaptation. Both were large effects. Contributions of low-level adaptation were reduced using free viewing (both experiments) and a size change between adapt and test faces (Experiment 2). We suggest that attention may enhance adaptation throughout the entire cortical visual pathway, with functional benefits well beyond the immediate advantages of selective processing of potentially important stimuli. These results highlight the potential to facilitate adaptive updating of face-coding mechanisms by strategic deployment of attentional resources. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Atmospheric turbulence characterization with the Keck adaptive optics systems. I. Open-loop data.

    PubMed

    Schöck, Matthias; Le Mignant, David; Chanan, Gary A; Wizinowich, Peter L; van Dam, Marcos A

    2003-07-01

    We present a detailed investigation of different methods of the characterization of atmospheric turbulence with the adaptive optics systems of the W. M. Keck Observatory. The main problems of such a characterization are the separation of instrumental and atmospheric effects and the accurate calibration of the devices involved. Therefore we mostly describe the practical issues of the analysis. We show that two methods, the analysis of differential image motion structure functions and the Zernike decomposition of the wave-front phase, produce values of the atmospheric coherence length r0 that are in excellent agreement with results from long-exposure images. The main error source is the calibration of the wave-front sensor. Values determined for the outer scale L0 are consistent between the methods and with typical L0 values found at other sites, that is, of the order of tens of meters.

  8. An attempt at predicting blood β-hydroxybutyrate from Fourier-transform mid-infrared spectra of milk using multivariate mixed models in Polish dairy cattle.

    PubMed

    Belay, T K; Dagnachew, B S; Kowalski, Z M; Ådnøy, T

    2017-08-01

    Fourier transform mid-infrared (FT-MIR) spectra of milk are commonly used for phenotyping of traits of interest through links developed between the traits and milk FT-MIR spectra. Predicted traits are then used in genetic analysis for ultimate phenotypic prediction using a single-trait mixed model that account for cows' circumstances at a given test day. Here, this approach is referred to as indirect prediction (IP). Alternatively, FT-MIR spectral variable can be kept multivariate in the form of factor scores in REML and BLUP analyses. These BLUP predictions, including phenotype (predicted factor scores), were converted to single-trait through calibration outputs; this method is referred to as direct prediction (DP). The main aim of this study was to verify whether mixed modeling of milk spectra in the form of factors scores (DP) gives better prediction of blood β-hydroxybutyrate (BHB) than the univariate approach (IP). Models to predict blood BHB from milk spectra were also developed. Two data sets that contained milk FT-MIR spectra and other information on Polish dairy cattle were used in this study. Data set 1 (n = 826) also contained BHB measured in blood samples, whereas data set 2 (n = 158,028) did not contain measured blood values. Part of data set 1 was used to calibrate a prediction model (n = 496) and the remaining part of data set 1 (n = 330) was used to validate the calibration models, as well as to evaluate the DP and IP approaches. Dimensions of FT-MIR spectra in data set 2 were reduced either into 5 or 10 factor scores (DP) or into a single trait (IP) with calibration outputs. The REML estimates for these factor scores were found using WOMBAT. The BLUP values and predicted BHB for observations in the validation set were computed using the REML estimates. Blood BHB predicted from milk FT-MIR spectra by both approaches were regressed on reference blood BHB that had not been used in the model development. Coefficients of determination in cross-validation for untransformed blood BHB were from 0.21 to 0.32, whereas that for the log-transformed BHB were from 0.31 to 0.38. The corresponding estimates in validation were from 0.29 to 0.37 and 0.21 to 0.43, respectively, for untransformed and logarithmic BHB. Contrary to expectation, slightly better predictions of BHB were found when univariate variance structure was used (IP) than when multivariate covariance structures were used (DP). Conclusive remarks on the importance of keeping spectral data in multivariate form for prediction of phenotypes may be found in data sets where the trait of interest has strong relationships with spectral variables. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  9. An evaluation of computerized adaptive testing for general psychological distress: combining GHQ-12 and Affectometer-2 in an item bank for public mental health research.

    PubMed

    Stochl, Jan; Böhnke, Jan R; Pickett, Kate E; Croudace, Tim J

    2016-05-20

    Recent developments in psychometric modeling and technology allow pooling well-validated items from existing instruments into larger item banks and their deployment through methods of computerized adaptive testing (CAT). Use of item response theory-based bifactor methods and integrative data analysis overcomes barriers in cross-instrument comparison. This paper presents the joint calibration of an item bank for researchers keen to investigate population variations in general psychological distress (GPD). Multidimensional item response theory was used on existing health survey data from the Scottish Health Education Population Survey (n = 766) to calibrate an item bank consisting of pooled items from the short common mental disorder screen (GHQ-12) and the Affectometer-2 (a measure of "general happiness"). Computer simulation was used to evaluate usefulness and efficacy of its adaptive administration. A bifactor model capturing variation across a continuum of population distress (while controlling for artefacts due to item wording) was supported. The numbers of items for different required reliabilities in adaptive administration demonstrated promising efficacy of the proposed item bank. Psychometric modeling of the common dimension captured by more than one instrument offers the potential of adaptive testing for GPD using individually sequenced combinations of existing survey items. The potential for linking other item sets with alternative candidate measures of positive mental health is discussed since an optimal item bank may require even more items than these.

  10. Method of predicting mechanical properties of decayed wood

    DOEpatents

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  11. Calibration of the AVHRR visible and near IR channels using radiances measured over remote ocean areas

    NASA Technical Reports Server (NTRS)

    Vermote, Eric F.; Vassiliou, George D.; Kaufman, Yoram J.; Holben, Brent N.

    1992-01-01

    An inflight absolute calibration method has been adapted and applied to channel 1 of the AVHRR. The approach is based on AVHRR observations in channels 1, 2 and 4. A rigorous cloud screening is performed, based on the homogeneity of the data in channel 1 and 2 and on the temperature in channel 4. In a combined approach, the off-nadir view satellite count in channel 2 is used to detect the aerosol optical thickness and loading and the count of channel 1 is used to calibrate this channel, based on the predictable Rayleigh scattering component. Water vapor data are used, and the channels are intercalibrated using the ratio between channels 1 and 2 over the glint region.

  12. An accurate on-site calibration system for electronic voltage transformers using a standard capacitor

    NASA Astrophysics Data System (ADS)

    Hu, Chen; Chen, Mian-zhou; Li, Hong-bin; Zhang, Zhu; Jiao, Yang; Shao, Haiming

    2018-05-01

    Ordinarily electronic voltage transformers (EVTs) are calibrated off-line and the calibration procedure requires complex switching operations, which will influence the reliability of the power grid and induce large economic losses. To overcome this problem, this paper investigates a 110 kV on-site calibration system for EVTs, including a standard channel, a calibrated channel and a PC equipped with the LabView environment. The standard channel employs a standard capacitor and an analogue integrating circuit to reconstruct the primary voltage signal. Moreover, an adaptive full-phase discrete Fourier transform (DFT) algorithm is proposed to extract electrical parameters. The algorithm involves the process of extracting the frequency of the grid, adjusting the operation points, and calculating the results using DFT. In addition, an insulated automatic lifting device is designed to realize the live connection of the standard capacitor, which is driven by a wireless remote controller. A performance test of the capacitor verifies the accurateness of the standard capacitor. A system calibration test shows that the system ratio error is less than 0.04% and the phase error is below 2‧, which meets the requirement of the 0.2 accuracy class. Finally, the developed calibration system was used in a substation, and the field test data validates the availability of the system.

  13. Reporting and Methodology of Multivariable Analyses in Prognostic Observational Studies Published in 4 Anesthesiology Journals: A Methodological Descriptive Review.

    PubMed

    Guglielminotti, Jean; Dechartres, Agnès; Mentré, France; Montravers, Philippe; Longrois, Dan; Laouénan, Cedric

    2015-10-01

    Prognostic research studies in anesthesiology aim to identify risk factors for an outcome (explanatory studies) or calculate the risk of this outcome on the basis of patients' risk factors (predictive studies). Multivariable models express the relationship between predictors and an outcome and are used in both explanatory and predictive studies. Model development demands a strict methodology and a clear reporting to assess its reliability. In this methodological descriptive review, we critically assessed the reporting and methodology of multivariable analysis used in observational prognostic studies published in anesthesiology journals. A systematic search was conducted on Medline through Web of Knowledge, PubMed, and journal websites to identify observational prognostic studies with multivariable analysis published in Anesthesiology, Anesthesia & Analgesia, British Journal of Anaesthesia, and Anaesthesia in 2010 and 2011. Data were extracted by 2 independent readers. First, studies were analyzed with respect to reporting of outcomes, design, size, methods of analysis, model performance (discrimination and calibration), model validation, clinical usefulness, and STROBE (i.e., Strengthening the Reporting of Observational Studies in Epidemiology) checklist. A reporting rate was calculated on the basis of 21 items of the aforementioned points. Second, they were analyzed with respect to some predefined methodological points. Eighty-six studies were included: 87.2% were explanatory and 80.2% investigated a postoperative event. The reporting was fairly good, with a median reporting rate of 79% (75% in explanatory studies and 100% in predictive studies). Six items had a reporting rate <36% (i.e., the 25th percentile), with some of them not identified in the STROBE checklist: blinded evaluation of the outcome (11.9%), reason for sample size (15.1%), handling of missing data (36.0%), assessment of colinearity (17.4%), assessment of interactions (13.9%), and calibration (34.9%). When reported, a few methodological shortcomings were observed, both in explanatory and predictive studies, such as an insufficient number of events of the outcome (44.6%), exclusion of cases with missing data (93.6%), or categorization of continuous variables (65.1%.). The reporting of multivariable analysis was fairly good and could be further improved by checking reporting guidelines and EQUATOR Network website. Limiting the number of candidate variables, including cases with missing data, and not arbitrarily categorizing continuous variables should be encouraged.

  14. Understanding adaptive gait in lower-limb amputees: insights from multivariate analyses

    PubMed Central

    2013-01-01

    Background In this paper we use multivariate statistical techniques to gain insights into how adaptive gait involving obstacle crossing is regulated in lower-limb amputees compared to able-bodied controls, with the aim of identifying underlying characteristics that differ between the two groups and consequently highlighting gait deficits in the amputees. Methods Eight unilateral trans-tibial amputees and twelve able-bodied controls completed adaptive gait trials involving negotiating various height obstacles; with amputees leading with their prosthetic limb. Spatiotemporal variables that are regularly used to quantify how gait is adapted when crossing obstacles were determined and subsequently analysed using multivariate statistical techniques. Results and discussion There were fundamental differences in the adaptive gait between the two groups. Compared to controls, amputees had a reduced approach velocity, reduced foot placement distance before and after the obstacle and reduced foot clearance over it, and reduced lead-limb knee flexion during the step following crossing. Logistic regression analysis highlighted the variables that best distinguished between the gait of the two groups and multiple regression analysis (with approach velocity as a controlling factor) helped identify what gait adaptations were driving the differences seen in these variables. Getting closer to the obstacle before crossing it appeared to be a strategy to ensure the heel of the lead-limb foot passed over the obstacle prior to the foot being lowered to the ground. Despite adopting such a heel clearance strategy, the lead-foot was positioned closer to the obstacle following crossing, which was likely a result of a desire to attain a limb/foot angle and orientation at instant of landing that minimised loads on the residuum (as evidenced by the reduced lead-limb knee flexion during the step following crossing). These changes in foot placement meant the foot was in a different part of swing at point of crossing and this explains why foot clearance was considerably reduced in amputees. Conclusions These results highlight that trans-tibial amputees use quite different gait adaptations to cross obstacles compared with controls (at least when leading with their prosthetic limb), indicating they are governed by different constraints; seemingly related to how they land on/load their prosthesis after crossing the obstacle. PMID:23958032

  15. Modelling lecturer performance index of private university in Tulungagung by using survival analysis with multivariate adaptive regression spline

    NASA Astrophysics Data System (ADS)

    Hasyim, M.; Prastyo, D. D.

    2018-03-01

    Survival analysis performs relationship between independent variables and survival time as dependent variable. In fact, not all survival data can be recorded completely by any reasons. In such situation, the data is called censored data. Moreover, several model for survival analysis requires assumptions. One of the approaches in survival analysis is nonparametric that gives more relax assumption. In this research, the nonparametric approach that is employed is Multivariate Regression Adaptive Spline (MARS). This study is aimed to measure the performance of private university’s lecturer. The survival time in this study is duration needed by lecturer to obtain their professional certificate. The results show that research activities is a significant factor along with developing courses material, good publication in international or national journal, and activities in research collaboration.

  16. An adaptive Cartesian control scheme for manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    A adaptive control scheme for direct control of manipulator end-effectors to achieve trajectory tracking in Cartesian space is developed. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for online implementation with high sampling rates.

  17. Improved Radial Velocity Precision with a Tunable Laser Calibrator

    NASA Astrophysics Data System (ADS)

    Cramer, Claire; Brown, S.; Dupree, A. K.; Lykke, K. R.; Smith, A.; Szentgyorgyi, A.

    2010-01-01

    We present radial velocities obtained using a novel laser-based wavelength calibration technique. We have built a prototype laser calibrator for the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method makes use of spectra from thorium-argon hollow cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator solves these problems. The laser is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order to generate a calibration spectrum, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We present these results as well as an application of tunable laser calibration to stellar radial velocities determined with the infrared Ca triplet in globular clusters M15 and NGC 7492. We also suggest how the tunable laser could be useful for other instruments, including single-object, cross-dispersed echelle spectrographs, and adapted for infrared spectroscopy.

  18. A stoichiometric calibration method for dual energy computed tomography

    NASA Astrophysics Data System (ADS)

    Bourque, Alexandra E.; Carrier, Jean-François; Bouchard, Hugo

    2014-04-01

    The accuracy of radiotherapy dose calculation relies crucially on patient composition data. The computed tomography (CT) calibration methods based on the stoichiometric calibration of Schneider et al (1996 Phys. Med. Biol. 41 111-24) are the most reliable to determine electron density (ED) with commercial single energy CT scanners. Along with the recent developments in dual energy CT (DECT) commercial scanners, several methods were published to determine ED and the effective atomic number (EAN) for polyenergetic beams without the need for CT calibration curves. This paper intends to show that with a rigorous definition of the EAN, the stoichiometric calibration method can be successfully adapted to DECT with significant accuracy improvements with respect to the literature without the need for spectrum measurements or empirical beam hardening corrections. Using a theoretical framework of ICRP human tissue compositions and the XCOM photon cross sections database, the revised stoichiometric calibration method yields Hounsfield unit (HU) predictions within less than ±1.3 HU of the theoretical HU calculated from XCOM data averaged over the spectra used (e.g., 80 kVp, 100 kVp, 140 kVp and 140/Sn kVp). A fit of mean excitation energy (I-value) data as a function of EAN is provided in order to determine the ion stopping power of human tissues from ED-EAN measurements. Analysis of the calibration phantom measurements with the Siemens SOMATOM Definition Flash dual source CT scanner shows that the present formalism yields mean absolute errors of (0.3 ± 0.4)% and (1.6 ± 2.0)% on ED and EAN, respectively. For ion therapy, the mean absolute errors for calibrated I-values and proton stopping powers (216 MeV) are (4.1 ± 2.7)% and (0.5 ± 0.4)%, respectively. In all clinical situations studied, the uncertainties in ion ranges in water for therapeutic energies are found to be less than 1.3 mm, 0.7 mm and 0.5 mm for protons, helium and carbon ions respectively, using a generic reconstruction algorithm (filtered back projection). With a more advanced method (sinogram affirmed iterative technique), the values become 1.0 mm, 0.5 mm and 0.4 mm for protons, helium and carbon ions, respectively. These results allow one to conclude that the present adaptation of the stoichiometric calibration yields a highly accurate method for characterizing tissue with DECT for ion beam therapy and potentially for photon beam therapy.

  19. Novel hyperspectral prediction method and apparatus

    NASA Astrophysics Data System (ADS)

    Kemeny, Gabor J.; Crothers, Natalie A.; Groth, Gard A.; Speck, Kathy A.; Marbach, Ralf

    2009-05-01

    Both the power and the challenge of hyperspectral technologies is the very large amount of data produced by spectral cameras. While off-line methodologies allow the collection of gigabytes of data, extended data analysis sessions are required to convert the data into useful information. In contrast, real-time monitoring, such as on-line process control, requires that compression of spectral data and analysis occur at a sustained full camera data rate. Efficient, high-speed practical methods for calibration and prediction are therefore sought to optimize the value of hyperspectral imaging. A novel method of matched filtering known as science based multivariate calibration (SBC) was developed for hyperspectral calibration. Classical (MLR) and inverse (PLS, PCR) methods are combined by spectroscopically measuring the spectral "signal" and by statistically estimating the spectral "noise." The accuracy of the inverse model is thus combined with the easy interpretability of the classical model. The SBC method is optimized for hyperspectral data in the Hyper-CalTM software used for the present work. The prediction algorithms can then be downloaded into a dedicated FPGA based High-Speed Prediction EngineTM module. Spectral pretreatments and calibration coefficients are stored on interchangeable SD memory cards, and predicted compositions are produced on a USB interface at real-time camera output rates. Applications include minerals, pharmaceuticals, food processing and remote sensing.

  20. Simultaneous determination of specific alpha and beta emitters by LSC-PLS in water samples.

    PubMed

    Fons-Castells, J; Tent-Petrus, J; Llauradó, M

    2017-01-01

    Liquid scintillation counting (LSC) is a commonly used technique for the determination of alpha and beta emitters. However, LSC has poor resolution and the continuous spectra for beta emitters hinder the simultaneous determination of several alpha and beta emitters from the same spectrum. In this paper, the feasibility of multivariate calibration by partial least squares (PLS) models for the determination of several alpha ( nat U, 241 Am and 226 Ra) and beta emitters ( 40 K, 60 Co, 90 Sr/ 90 Y, 134 Cs and 137 Cs) in water samples is reported. A set of alpha and beta spectra from radionuclide calibration standards were used to construct three PLS models. Experimentally mixed radionuclides and intercomparision materials were used to validate the models. The results had a maximum relative bias of 25% when all the radionuclides in the sample were included in the calibration set; otherwise the relative bias was over 100% for some radionuclides. The results obtained show that LSC-PLS is a useful approach for the simultaneous determination of alpha and beta emitters in multi-radionuclide samples. However, to obtain useful results, it is important to include all the radionuclides expected in the studied scenario in the calibration set. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Spectrophotometric determination of ternary mixtures of thiamin, riboflavin and pyridoxal in pharmaceutical and human plasma by least-squares support vector machines.

    PubMed

    Niazi, Ali; Zolgharnein, Javad; Afiuni-Zadeh, Somaie

    2007-11-01

    Ternary mixtures of thiamin, riboflavin and pyridoxal have been simultaneously determined in synthetic and real samples by applications of spectrophotometric and least-squares support vector machines. The calibration graphs were linear in the ranges of 1.0 - 20.0, 1.0 - 10.0 and 1.0 - 20.0 microg ml(-1) with detection limits of 0.6, 0.5 and 0.7 microg ml(-1) for thiamin, riboflavin and pyridoxal, respectively. The experimental calibration matrix was designed with 21 mixtures of these chemicals. The concentrations were varied between calibration graph concentrations of vitamins. The simultaneous determination of these vitamin mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. The partial least squares (PLS) modeling and least-squares support vector machines were used for the multivariate calibration of the spectrophotometric data. An excellent model was built using LS-SVM, with low prediction errors and superior performance in relation to PLS. The root mean square errors of prediction (RMSEP) for thiamin, riboflavin and pyridoxal with PLS and LS-SVM were 0.6926, 0.3755, 0.4322 and 0.0421, 0.0318, 0.0457, respectively. The proposed method was satisfactorily applied to the rapid simultaneous determination of thiamin, riboflavin and pyridoxal in commercial pharmaceutical preparations and human plasma samples.

  2. Development and external multicenter validation of Chinese Prostate Cancer Consortium prostate cancer risk calculator for initial prostate biopsy.

    PubMed

    Chen, Rui; Xie, Liping; Xue, Wei; Ye, Zhangqun; Ma, Lulin; Gao, Xu; Ren, Shancheng; Wang, Fubo; Zhao, Lin; Xu, Chuanliang; Sun, Yinghao

    2016-09-01

    Substantial differences exist in the relationship of prostate cancer (PCa) detection rate and prostate-specific antigen (PSA) level between Western and Asian populations. Classic Western risk calculators, European Randomized Study for Screening of Prostate Cancer Risk Calculator, and Prostate Cancer Prevention Trial Risk Calculator, were shown to be not applicable in Asian populations. We aimed to develop and validate a risk calculator for predicting the probability of PCa and high-grade PCa (defined as Gleason Score sum 7 or higher) at initial prostate biopsy in Chinese men. Urology outpatients who underwent initial prostate biopsy according to the inclusion criteria were included. The multivariate logistic regression-based Chinese Prostate Cancer Consortium Risk Calculator (CPCC-RC) was constructed with cases from 2 hospitals in Shanghai. Discriminative ability, calibration and decision curve analysis were externally validated in 3 CPCC member hospitals. Of the 1,835 patients involved, PCa was identified in 338/924 (36.6%) and 294/911 (32.3%) men in the development and validation cohort, respectively. Multivariate logistic regression analyses showed that 5 predictors (age, logPSA, logPV, free PSA ratio, and digital rectal examination) were associated with PCa (Model 1) or high-grade PCa (Model 2), respectively. The area under the curve of Model 1 and Model 2 was 0.801 (95% CI: 0.771-0.831) and 0.826 (95% CI: 0.796-0.857), respectively. Both models illustrated good calibration and substantial improvement in decision curve analyses than any single predictors at all threshold probabilities. Higher predicting accuracy, better calibration, and greater clinical benefit were achieved by CPCC-RC, compared with European Randomized Study for Screening of Prostate Cancer Risk Calculator and Prostate Cancer Prevention Trial Risk Calculator in predicting PCa. CPCC-RC performed well in discrimination and calibration and decision curve analysis in external validation compared with Western risk calculators. CPCC-RC may aid in decision-making of prostate biopsy in Chinese or in other Asian populations with similar genetic and environmental backgrounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A simplified approach to quasi-linear viscoelastic modeling

    PubMed Central

    Nekouzadeh, Ali; Pryse, Kenneth M.; Elson, Elliot L.; Genin, Guy M.

    2007-01-01

    The fitting of quasi-linear viscoelastic (QLV) constitutive models to material data often involves somewhat cumbersome numerical convolution. A new approach to treating quasi-linearity in one dimension is described and applied to characterize the behavior of reconstituted collagen. This approach is based on a new principle for including nonlinearity and requires considerably less computation than other comparable models for both model calibration and response prediction, especially for smoothly applied stretching. Additionally, the approach allows relaxation to adapt with the strain history. The modeling approach is demonstrated through tests on pure reconstituted collagen. Sequences of “ramp-and-hold” stretching tests were applied to rectangular collagen specimens. The relaxation force data from the “hold” was used to calibrate a new “adaptive QLV model” and several models from literature, and the force data from the “ramp” was used to check the accuracy of model predictions. Additionally, the ability of the models to predict the force response on a reloading of the specimen was assessed. The “adaptive QLV model” based on this new approach predicts collagen behavior comparably to or better than existing models, with much less computation. PMID:17499254

  4. LaPlace Transform1 Adaptive Control Law in Support of Large Flight Envelope Modeling Work

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are in support of nonlinear aerodynamic modeling and instrumentation calibration.

  5. Device for determining frost depth and density

    NASA Technical Reports Server (NTRS)

    Huneidi, F.

    1983-01-01

    A hand held device having a forward open window portion adapted to be pushed downwardly into the frost on a surface, and a rear container portion adapted to receive the frost removed from the window area are described. A graph on a side of the container enables an observer to determine the density of the frost from certain measurements noted. The depth of the frost is noted from calibrated lines on the sides of the open window portion.

  6. Rapid quantification of multi-components in alcohol precipitation liquid of Codonopsis Radix using near infrared spectroscopy (NIRS).

    PubMed

    Luo, Yu; Li, Wen-Long; Huang, Wen-Hua; Liu, Xue-Hua; Song, Yan-Gang; Qu, Hai-Bin

    2017-05-01

    A near infrared spectroscopy (NIRS) approach was established for quality control of the alcohol precipitation liquid in the manufacture of Codonopsis Radix. By applying NIRS with multivariate analysis, it was possible to build variation into the calibration sample set, and the Plackett-Burman design, Box-Behnken design, and a concentrating-diluting method were used to obtain the sample set covered with sufficient fluctuation of process parameters and extended concentration information. NIR data were calibrated to predict the four quality indicators using partial least squares regression (PLSR). In the four calibration models, the root mean squares errors of prediction (RMSEPs) were 1.22 μg/ml, 10.5 μg/ml, 1.43 μg/ml, and 0.433% for lobetyolin, total flavonoids, pigments, and total solid contents, respectively. The results indicated that multi-components quantification of the alcohol precipitation liquid of Codonopsis Radix could be achieved with an NIRS-based method, which offers a useful tool for real-time release testing (RTRT) of intermediates in the manufacture of Codonopsis Radix.

  7. Psychophysica: Mathematica notebooks for psychophysical experiments (cinematica--psychometrica--quest)

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Solomon, J. A.

    1997-01-01

    Psychophysica is a set of software tools for psychophysical research. Functions are provided for calibrated visual displays, for fitting and plotting of psychometric functions, and for the QUEST adaptive staircase procedure. The functions are written in the Mathematica programming language.

  8. Wavelet Analysis Used for Spectral Background Removal in the Determination of Glucose from Near-Infrared Single-Beam Spectra

    PubMed Central

    Wan, Boyong; Small, Gary W.

    2010-01-01

    Wavelet analysis is developed as a preprocessing tool for use in removing background information from near-infrared (near-IR) single-beam spectra before the construction of multivariate calibration models. Three data sets collected with three different near-IR spectrometers are investigated that involve the determination of physiological levels of glucose (1-30 mM) in a simulated biological matrix containing alanine, ascorbate, lactate, triacetin, and urea in phosphate buffer. A factorial design is employed to optimize the specific wavelet function used and the level of decomposition applied, in addition to the spectral range and number of latent variables associated with a partial least-squares calibration model. The prediction performance of the computed models is studied with separate data acquired after the collection of the calibration spectra. This evaluation includes one data set collected over a period of more than six months. Preprocessing with wavelet analysis is also compared to the calculation of second-derivative spectra. Over the three data sets evaluated, wavelet analysis is observed to produce better-performing calibration models, with improvements in concentration predictions on the order of 30% being realized relative to models based on either second-derivative spectra or spectra preprocessed with simple additive and multiplicative scaling correction. This methodology allows the construction of stable calibrations directly with single-beam spectra, thereby eliminating the need for the collection of a separate background or reference spectrum. PMID:21035604

  9. Wavelet analysis used for spectral background removal in the determination of glucose from near-infrared single-beam spectra.

    PubMed

    Wan, Boyong; Small, Gary W

    2010-11-29

    Wavelet analysis is developed as a preprocessing tool for use in removing background information from near-infrared (near-IR) single-beam spectra before the construction of multivariate calibration models. Three data sets collected with three different near-IR spectrometers are investigated that involve the determination of physiological levels of glucose (1-30 mM) in a simulated biological matrix containing alanine, ascorbate, lactate, triacetin, and urea in phosphate buffer. A factorial design is employed to optimize the specific wavelet function used and the level of decomposition applied, in addition to the spectral range and number of latent variables associated with a partial least-squares calibration model. The prediction performance of the computed models is studied with separate data acquired after the collection of the calibration spectra. This evaluation includes one data set collected over a period of more than 6 months. Preprocessing with wavelet analysis is also compared to the calculation of second-derivative spectra. Over the three data sets evaluated, wavelet analysis is observed to produce better-performing calibration models, with improvements in concentration predictions on the order of 30% being realized relative to models based on either second-derivative spectra or spectra preprocessed with simple additive and multiplicative scaling correction. This methodology allows the construction of stable calibrations directly with single-beam spectra, thereby eliminating the need for the collection of a separate background or reference spectrum. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Calibration of Multiple In Silico Tools for Predicting Pathogenicity of Mismatch Repair Gene Missense Substitutions

    PubMed Central

    Thompson, Bryony A.; Greenblatt, Marc S.; Vallee, Maxime P.; Herkert, Johanna C.; Tessereau, Chloe; Young, Erin L.; Adzhubey, Ivan A.; Li, Biao; Bell, Russell; Feng, Bingjian; Mooney, Sean D.; Radivojac, Predrag; Sunyaev, Shamil R.; Frebourg, Thierry; Hofstra, Robert M.W.; Sijmons, Rolf H.; Boucher, Ken; Thomas, Alun; Goldgar, David E.; Spurdle, Amanda B.; Tavtigian, Sean V.

    2015-01-01

    Classification of rare missense substitutions observed during genetic testing for patient management is a considerable problem in clinical genetics. The Bayesian integrated evaluation of unclassified variants is a solution originally developed for BRCA1/2. Here, we take a step toward an analogous system for the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) that confer colon cancer susceptibility in Lynch syndrome by calibrating in silico tools to estimate prior probabilities of pathogenicity for MMR gene missense substitutions. A qualitative five-class classification system was developed and applied to 143 MMR missense variants. This identified 74 missense substitutions suitable for calibration. These substitutions were scored using six different in silico tools (Align-Grantham Variation Grantham Deviation, multivariate analysis of protein polymorphisms [MAPP], Mut-Pred, PolyPhen-2.1, Sorting Intolerant From Tolerant, and Xvar), using curated MMR multiple sequence alignments where possible. The output from each tool was calibrated by regression against the classifications of the 74 missense substitutions; these calibrated outputs are interpretable as prior probabilities of pathogenicity. MAPP was the most accurate tool and MAPP + PolyPhen-2.1 provided the best-combined model (R2 = 0.62 and area under receiver operating characteristic = 0.93). The MAPP + PolyPhen-2.1 output is sufficiently predictive to feed as a continuous variable into the quantitative Bayesian integrated evaluation for clinical classification of MMR gene missense substitutions. PMID:22949387

  11. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities.

    PubMed

    Gurarie, David; Karl, Stephan; Zimmerman, Peter A; King, Charles H; St Pierre, Timothy G; Davis, Timothy M E

    2012-01-01

    Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.

  12. Elemental analysis of soils using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) with multivariate discrimination: tape mounting as an alternative to pellets for small forensic transfer specimens.

    PubMed

    Jantzi, Sarah C; Almirall, José R

    2014-01-01

    Elemental analysis of soil is a useful application of both laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) in geological, agricultural, environmental, archeological, planetary, and forensic sciences. In forensic science, the question to be answered is often whether soil specimens found on objects (e.g., shoes, tires, or tools) originated from the crime scene or other location of interest. Elemental analysis of the soil from the object and the locations of interest results in a characteristic elemental profile of each specimen, consisting of the amount of each element present. Because multiple elements are measured, multivariate statistics can be used to compare the elemental profiles in order to determine whether the specimen from the object is similar to one of the locations of interest. Previous work involved milling and pressing 0.5 g of soil into pellets before analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer techniques that require smaller samples, are less time consuming, and are less destructive, allowing for future analysis by other techniques. An alternative sample introduction method was developed to meet these needs while still providing quantitative results suitable for multivariate comparisons. The tape-mounting method involved deposition of a thin layer of soil onto double-sided adhesive tape. A comparison of tape-mounting and pellet method performance is reported for both LA-ICP-MS and LIBS. Calibration standards and reference materials, prepared using the tape method, were analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration curves were achieved with the tape method, as well as good precision and low bias. Soil specimens from Miami-Dade County were prepared by both the pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal components analysis and linear discriminant analysis were applied to the multivariate data. Results from both the tape method and the pellet method were nearly identical, with clear groupings and correct classification rates of >94%.

  13. Langley Wind Tunnel Data Quality Assurance-Check Standard Results

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Grubb, John P.; Krieger, William B.; Cler, Daniel L.

    2000-01-01

    A framework for statistical evaluation, control and improvement of wind funnel measurement processes is presented The methodology is adapted from elements of the Measurement Assurance Plans developed by the National Bureau of Standards (now the National Institute of Standards and Technology) for standards and calibration laboratories. The present methodology is based on the notions of statistical quality control (SQC) together with check standard testing and a small number of customer repeat-run sets. The results of check standard and customer repeat-run -sets are analyzed using the statistical control chart-methods of Walter A. Shewhart long familiar to the SQC community. Control chart results are presented for. various measurement processes in five facilities at Langley Research Center. The processes include test section calibration, force and moment measurements with a balance, and instrument calibration.

  14. Spectrometer calibration for spectroscopic Fourier domain optical coherence tomography

    PubMed Central

    Szkulmowski, Maciej; Tamborski, Szymon; Wojtkowski, Maciej

    2016-01-01

    We propose a simple and robust procedure for Fourier domain optical coherence tomography (FdOCT) that allows to linearize the detected FdOCT spectra to wavenumber domain and, at the same time, to determine the wavelength of light for each point of detected spectrum. We show that in this approach it is possible to use any measurable physical quantity that has linear dependency on wavenumber and can be extracted from spectral fringes. The actual values of the measured quantity have no importance for the algorithm and do not need to be known at any stage of the procedure. As example we calibrate a spectral OCT spectrometer using Doppler frequency. The technique of spectral calibration can be in principle adapted to of all kind of Fourier domain OCT devices. PMID:28018723

  15. Seizure-Onset Mapping Based on Time-Variant Multivariate Functional Connectivity Analysis of High-Dimensional Intracranial EEG: A Kalman Filter Approach.

    PubMed

    Lie, Octavian V; van Mierlo, Pieter

    2017-01-01

    The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (<60). The aim of this study was to test two Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.

  16. Effects of Forecasted Climate Change on Stream Temperatures in the Nooksack River Basin

    NASA Astrophysics Data System (ADS)

    Truitt, S. E.; Mitchell, R. J.; Yearsley, J. R.; Grah, O. J.

    2017-12-01

    The Nooksack River in northwest Washington State provides valuable habitat for endangered salmon species, as such it is critical to understand how stream temperatures will be affected by forecasted climate change. The Middle and North Forks basins of the Nooksack are high-relief and glaciated, whereas the South Fork is a lower relief rain and snow dominated basin. Due to a moderate Pacific maritime climate, snowpack in the basins is sensitive to temperature increases. Previous modeling studies in the upper Nooksack basins indicate a reduction in snowpack and spring runoff, and a recession of glaciers into the 21st century. How stream temperatures will respond to these changes is unknown. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) coupled with a glacier dynamics model and the River Basin Model (RBM) to simulate hydrology and stream temperature from present to the year 2100. We calibrate the DHSVM and RBM to the three forks in the upper 1550 km2 of the Nooksack basin, which contain an estimated 3400 hectares of glacial ice. We employ observed stream-temperature data collected over the past decade and hydrologic data from the four USGS streamflow monitoring sites within the basin and observed gridded climate data developed by Linveh et al. (2013). Field work was conducted in the summer of 2016 to determine stream morphology, discharge, and stream temperatures at a number of stream segments for the RBM calibration. We simulate forecast climate change impacts, using gridded daily downscaled data from global climate models of the CMIP5 with RCP4.5 and RCP8.5 forcing scenarios developed using the multivariate adaptive constructed analogs method (MACA; Abatzoglou and Brown, 2011). Simulation results project a trending increase in stream temperature as a result of lower snowmelt and higher air temperatures into the 21st century, especially in the lower relief, unglaciated South Fork basin.

  17. A custom-built PET phantom design for quantitative imaging of printed distributions.

    PubMed

    Markiewicz, P J; Angelis, G I; Kotasidis, F; Green, M; Lionheart, W R; Reader, A J; Matthews, J C

    2011-11-07

    This note presents a practical approach to a custom-made design of PET phantoms enabling the use of digital radioactive distributions with high quantitative accuracy and spatial resolution. The phantom design allows planar sources of any radioactivity distribution to be imaged in transaxial and axial (sagittal or coronal) planes. Although the design presented here is specially adapted to the high-resolution research tomograph (HRRT), the presented methods can be adapted to almost any PET scanner. Although the presented phantom design has many advantages, a number of practical issues had to be overcome such as positioning of the printed source, calibration, uniformity and reproducibility of printing. A well counter (WC) was used in the calibration procedure to find the nonlinear relationship between digital voxel intensities and the actual measured radioactive concentrations. Repeated printing together with WC measurements and computed radiography (CR) using phosphor imaging plates (IP) were used to evaluate the reproducibility and uniformity of such printing. Results show satisfactory printing uniformity and reproducibility; however, calibration is dependent on the printing mode and the physical state of the cartridge. As a demonstration of the utility of using printed phantoms, the image resolution and quantitative accuracy of reconstructed HRRT images are assessed. There is very good quantitative agreement in the calibration procedure between HRRT, CR and WC measurements. However, the high resolution of CR and its quantitative accuracy supported by WC measurements made it possible to show the degraded resolution of HRRT brain images caused by the partial-volume effect and the limits of iterative image reconstruction.

  18. Direct adaptive control of manipulators in Cartesian space

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.

  19. Risk prediction models for major adverse cardiac event (MACE) following percutaneous coronary intervention (PCI): A review

    NASA Astrophysics Data System (ADS)

    Manan, Norhafizah A.; Abidin, Basir

    2015-02-01

    Five percent of patients who went through Percutaneous Coronary Intervention (PCI) experienced Major Adverse Cardiac Events (MACE) after PCI procedure. Risk prediction of MACE following a PCI procedure therefore is helpful. This work describes a review of such prediction models currently in use. Literature search was done on PubMed and SCOPUS database. Thirty literatures were found but only 4 studies were chosen based on the data used, design, and outcome of the study. Particular emphasis was given and commented on the study design, population, sample size, modeling method, predictors, outcomes, discrimination and calibration of the model. All the models had acceptable discrimination ability (C-statistics >0.7) and good calibration (Hosmer-Lameshow P-value >0.05). Most common model used was multivariate logistic regression and most popular predictor was age.

  20. Fluorescence of the Flavin group in choline oxidase. Insights and analytical applications for the determination of choline and betaine aldehyde.

    PubMed

    Ortega, E; de Marcos, S; Sanz-Vicente, I; Ubide, C; Ostra, M; Vidal, M; Galbán, J

    2016-01-15

    Choline oxidase (ChOx) is a flavoenzyme catalysing the oxidation of choline (Ch) to betaine aldehyde (BA) and glycine betaine (GB). In this paper a fundamental study of the intrinsic fluorescence properties of ChOx due to Flavin Adenine Dinucleotide (FAD) is presented and some analytical applications are studied in detail. Firstly, an unusual alteration in the excitation spectra, in comparison with the absorption spectra, has been observed as a function of the pH. This is ascribed to a change of polarity in the excited state. Secondly, the evolution of the fluorescence spectra during the reaction seems to indicate that the reaction takes place in two consecutive, but partially overlapped, steps and each of them follows a different mechanism. Thirdly, the chemical system can be used to determine the Ch concentration in the range from 5×10(-6)M to 5×10(-5)M (univariate and multivariate calibration) in the presence of BA as interference, and the joint Ch+BA concentration in the range 5×10(-6)-5×10(-4)M (multivariate calibration) with mean errors under 10%; a semiquantitative determination of the BA concentration can be deduced by difference. Finally, Ch has been successfully determined in an infant milk sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Laser-Induced Breakdown Spectroscopy (LIBS) Measurement of Uranium in Molten Salt.

    PubMed

    Williams, Ammon; Phongikaroon, Supathorn

    2018-01-01

    In this current study, the molten salt aerosol-laser-induced breakdown spectroscopy (LIBS) system was used to measure the uranium (U) content in a ternary UCl 3 -LiCl-KCl salt to investigate and assess a near real-time analytical approach for material safeguards and accountability. Experiments were conducted using five different U concentrations to determine the analytical figures of merit for the system with respect to U. In the analysis, three U lines were used to develop univariate calibration curves at the 367.01 nm, 385.96 nm, and 387.10 nm lines. The 367.01 nm line had the lowest limit of detection (LOD) of 0.065 wt% U. The 385.96 nm line had the best root mean square error of cross-validation (RMSECV) of 0.20 wt% U. In addition to the univariate calibration approach, a multivariate partial least squares (PLS) model was developed to further analyze the data. Using partial least squares (PLS) modeling, an RMSECV of 0.085 wt% U was determined. The RMSECV from the multivariate approach was significantly better than the univariate case and the PLS model is recommended for future LIBS analysis. Overall, the aerosol-LIBS system performed well in monitoring the U concentration and it is expected that the system could be used to quantitatively determine the U compositions within the normal operational concentrations of U in pyroprocessing molten salts.

  2. Determination of Leaf Water Content by Visible and Near-Infrared Spectrometry and Multivariate Calibration in Miscanthus

    DOE PAGES

    Jin, Xiaoli; Shi, Chunhai; Yu, Chang Yeon; ...

    2017-05-19

    Leaf water content is one of the most common physiological parameters limiting efficiency of photosynthesis and biomass productivity in plants including Miscanthus. Therefore, it is of great significance to determine or predict the water content quickly and non-destructively. In this study, we explored the relationship between leaf water content and diffuse reflectance spectra in Miscanthus. Three multivariate calibrations including partial least squares (PLS), least squares support vector machine regression (LSSVR), and radial basis function (RBF) neural network (NN) were developed for the models of leaf water content determination. The non-linear models including RBF_LSSVR and RBF_NN showed higher accuracy than themore » PLS and Lin_LSSVR models. Moreover, 75 sensitive wavelengths were identified to be closely associated with the leaf water content in Miscanthus. The RBF_LSSVR and RBF_NN models for predicting leaf water content, based on 75 characteristic wavelengths, obtained the high determination coefficients of 0.9838 and 0.9899, respectively. The results indicated the non-linear models were more accurate than the linear models using both wavelength intervals. These results demonstrated that visible and near-infrared (VIS/NIR) spectroscopy combined with RBF_LSSVR or RBF_NN is a useful, non-destructive tool for determinations of the leaf water content in Miscanthus, and thus very helpful for development of drought-resistant varieties in Miscanthus.« less

  3. Determination of Leaf Water Content by Visible and Near-Infrared Spectrometry and Multivariate Calibration in Miscanthus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xiaoli; Shi, Chunhai; Yu, Chang Yeon

    Leaf water content is one of the most common physiological parameters limiting efficiency of photosynthesis and biomass productivity in plants including Miscanthus. Therefore, it is of great significance to determine or predict the water content quickly and non-destructively. In this study, we explored the relationship between leaf water content and diffuse reflectance spectra in Miscanthus. Three multivariate calibrations including partial least squares (PLS), least squares support vector machine regression (LSSVR), and radial basis function (RBF) neural network (NN) were developed for the models of leaf water content determination. The non-linear models including RBF_LSSVR and RBF_NN showed higher accuracy than themore » PLS and Lin_LSSVR models. Moreover, 75 sensitive wavelengths were identified to be closely associated with the leaf water content in Miscanthus. The RBF_LSSVR and RBF_NN models for predicting leaf water content, based on 75 characteristic wavelengths, obtained the high determination coefficients of 0.9838 and 0.9899, respectively. The results indicated the non-linear models were more accurate than the linear models using both wavelength intervals. These results demonstrated that visible and near-infrared (VIS/NIR) spectroscopy combined with RBF_LSSVR or RBF_NN is a useful, non-destructive tool for determinations of the leaf water content in Miscanthus, and thus very helpful for development of drought-resistant varieties in Miscanthus.« less

  4. Application of near-infrared spectroscopy for the rapid quality assessment of Radix Paeoniae Rubra

    NASA Astrophysics Data System (ADS)

    Zhan, Hao; Fang, Jing; Tang, Liying; Yang, Hongjun; Li, Hua; Wang, Zhuju; Yang, Bin; Wu, Hongwei; Fu, Meihong

    2017-08-01

    Near-infrared (NIR) spectroscopy with multivariate analysis was used to quantify gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra, and the feasibility to classify the samples originating from different areas was investigated. A new high-performance liquid chromatography method was developed and validated to analyze gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra as the reference. Partial least squares (PLS), principal component regression (PCR), and stepwise multivariate linear regression (SMLR) were performed to calibrate the regression model. Different data pretreatments such as derivatives (1st and 2nd), multiplicative scatter correction, standard normal variate, Savitzky-Golay filter, and Norris derivative filter were applied to remove the systematic errors. The performance of the model was evaluated according to the root mean square of calibration (RMSEC), root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV), and correlation coefficient (r). The results show that compared to PCR and SMLR, PLS had a lower RMSEC, RMSECV, and RMSEP and higher r for all the four analytes. PLS coupled with proper pretreatments showed good performance in both the fitting and predicting results. Furthermore, the original areas of Radix Paeoniae Rubra samples were partly distinguished by principal component analysis. This study shows that NIR with PLS is a reliable, inexpensive, and rapid tool for the quality assessment of Radix Paeoniae Rubra.

  5. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    USGS Publications Warehouse

    Anderson, Ryan; Clegg, Samuel M.; Frydenvang, Jens; Wiens, Roger C.; McLennan, Scott M.; Morris, Richard V.; Ehlmann, Bethany L.; Dyar, M. Darby

    2017-01-01

    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.

  6. SU-E-J-135: Feasibility of Using Quantitative Cone Beam CT for Proton Adaptive Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jingqian, W; Wang, Q; Zhang, X

    2015-06-15

    Purpose: To investigate the feasibility of using scatter corrected cone beam CT (CBCT) for proton adaptive planning. Methods: Phantom study was used to evaluate the CT number difference between the planning CT (pCT), quantitative CBCT (qCBCT) with scatter correction and calibrated Hounsfield units using adaptive scatter kernel superposition (ASKS) technique, and raw CBCT (rCBCT). After confirming the CT number accuracy, prostate patients, each with a pCT and several sets of weekly CBCT, were investigated for this study. Spot scanning proton treatment plans were independently generated on pCT, qCBCT and rCBCT. The treatment plans were then recalculated on all images. Dose-volume-histogrammore » (DVH) parameters and gamma analysis were used to compare between dose distributions. Results: Phantom study suggested that Hounsfield unit accuracy for different materials are within 20 HU for qCBCT and over 250 HU for rCBCT. For prostate patients, proton dose could be calculated accurately on qCBCT but not on rCBCT. When the original plan was recalculated on qCBCT, tumor coverage was maintained when anatomy was consistent with pCT. However, large dose variance was observed when patient anatomy change. Adaptive plan using qCBCT was able to recover tumor coverage and reduce dose to normal tissue. Conclusion: It is feasible to use qu antitative CBCT (qCBCT) with scatter correction and calibrated Hounsfield units for proton dose calculation and adaptive planning in proton therapy. Partly supported by Varian Medical Systems.« less

  7. Gaussian Mixture Models of Between-Source Variation for Likelihood Ratio Computation from Multivariate Data

    PubMed Central

    Franco-Pedroso, Javier; Ramos, Daniel; Gonzalez-Rodriguez, Joaquin

    2016-01-01

    In forensic science, trace evidence found at a crime scene and on suspect has to be evaluated from the measurements performed on them, usually in the form of multivariate data (for example, several chemical compound or physical characteristics). In order to assess the strength of that evidence, the likelihood ratio framework is being increasingly adopted. Several methods have been derived in order to obtain likelihood ratios directly from univariate or multivariate data by modelling both the variation appearing between observations (or features) coming from the same source (within-source variation) and that appearing between observations coming from different sources (between-source variation). In the widely used multivariate kernel likelihood-ratio, the within-source distribution is assumed to be normally distributed and constant among different sources and the between-source variation is modelled through a kernel density function (KDF). In order to better fit the observed distribution of the between-source variation, this paper presents a different approach in which a Gaussian mixture model (GMM) is used instead of a KDF. As it will be shown, this approach provides better-calibrated likelihood ratios as measured by the log-likelihood ratio cost (Cllr) in experiments performed on freely available forensic datasets involving different trace evidences: inks, glass fragments and car paints. PMID:26901680

  8. Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain-computer interface applications.

    PubMed

    Hemakom, Apit; Goverdovsky, Valentin; Looney, David; Mandic, Danilo P

    2016-04-13

    An extension to multivariate empirical mode decomposition (MEMD), termed adaptive-projection intrinsically transformed MEMD (APIT-MEMD), is proposed to cater for power imbalances and inter-channel correlations in real-world multichannel data. It is shown that the APIT-MEMD exhibits similar or better performance than MEMD for a large number of projection vectors, whereas it outperforms MEMD for the critical case of a small number of projection vectors within the sifting algorithm. We also employ the noise-assisted APIT-MEMD within our proposed intrinsic multiscale analysis framework and illustrate the advantages of such an approach in notoriously noise-dominated cooperative brain-computer interface (BCI) based on the steady-state visual evoked potentials and the P300 responses. Finally, we show that for a joint cognitive BCI task, the proposed intrinsic multiscale analysis framework improves system performance in terms of the information transfer rate. © 2016 The Author(s).

  9. [Multivariate Adaptive Regression Splines (MARS), an alternative for the analysis of time series].

    PubMed

    Vanegas, Jairo; Vásquez, Fabián

    Multivariate Adaptive Regression Splines (MARS) is a non-parametric modelling method that extends the linear model, incorporating nonlinearities and interactions between variables. It is a flexible tool that automates the construction of predictive models: selecting relevant variables, transforming the predictor variables, processing missing values and preventing overshooting using a self-test. It is also able to predict, taking into account structural factors that might influence the outcome variable, thereby generating hypothetical models. The end result could identify relevant cut-off points in data series. It is rarely used in health, so it is proposed as a tool for the evaluation of relevant public health indicators. For demonstrative purposes, data series regarding the mortality of children under 5 years of age in Costa Rica were used, comprising the period 1978-2008. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains

    PubMed Central

    Krumin, Michael; Shoham, Shy

    2010-01-01

    Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705

  11. Calibration of multivariate scatter plots for exploratory analysis of relations within and between sets of variables in genomic research.

    PubMed

    Graffelman, Jan; van Eeuwijk, Fred

    2005-12-01

    The scatter plot is a well known and easily applicable graphical tool to explore relationships between two quantitative variables. For the exploration of relations between multiple variables, generalisations of the scatter plot are useful. We present an overview of multivariate scatter plots focussing on the following situations. Firstly, we look at a scatter plot for portraying relations between quantitative variables within one data matrix. Secondly, we discuss a similar plot for the case of qualitative variables. Thirdly, we describe scatter plots for the relationships between two sets of variables where we focus on correlations. Finally, we treat plots of the relationships between multiple response and predictor variables, focussing on the matrix of regression coefficients. We will present both known and new results, where an important original contribution concerns a procedure for the inclusion of scales for the variables in multivariate scatter plots. We provide software for drawing such scales. We illustrate the construction and interpretation of the plots by means of examples on data collected in a genomic research program on taste in tomato.

  12. A Comparison of Multivariate and Pre-Processing Methods for Quantitative Laser-Induced Breakdown Spectroscopy of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Anderson, R. B.; Morris, R. V.; Clegg, S. M.; Bell, J. F., III; Humphries, S. D.; Wiens, R. C.

    2011-01-01

    The ChemCam instrument selected for the Curiosity rover is capable of remote laser-induced breakdown spectroscopy (LIBS).[1] We used a remote LIBS instrument similar to ChemCam to analyze 197 geologic slab samples and 32 pressed-powder geostandards. The slab samples are well-characterized and have been used to validate the calibration of previous instruments on Mars missions, including CRISM [2], OMEGA [3], the MER Pancam [4], Mini-TES [5], and Moessbauer [6] instruments and the Phoenix SSI [7]. The resulting dataset was used to compare multivariate methods for quantitative LIBS and to determine the effect of grain size on calculations. Three multivariate methods - partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs - were used to generate models and extract the quantitative composition of unknown samples. PLS can be used to predict one element (PLS1) or multiple elements (PLS2) at a time, as can the neural network methods. Although MLP and CC ANNs were successful in some cases, PLS generally produced the most accurate and precise results.

  13. Validation of a deformable image registration technique for cone beam CT-based dose verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moteabbed, M., E-mail: mmoteabbed@partners.org; Sharp, G. C.; Wang, Y.

    2015-01-15

    Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformedmore » CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and it’s suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector field lengths decreased from 10.1 to 2.5 mm when CBCT was calibrated prior to registration. The results showed no dependence on the level of bladder filling. In comparison with the dose calculated on the primary deformed CT, differences in mean dose averaged over all organs were 0.2% and 3.9% for dose calculated on the secondary deformed CT with and without CBCT calibration, respectively, and 0.5% for dose calculated directly on the calibrated CBCT, for the full-bladder scenario. Gamma analysis for the distance to agreement of 2 mm and 2% of prescribed dose indicated a pass rate of 100% for both cases involving calibrated CBCT and on average 86% without CBCT calibration. Conclusions: Using deformable registration on the planning CT images to evaluate the IMRT dose based on daily CBCTs was found feasible. The proposed method will provide an accurate dose distribution using planning CT and pretreatment CBCT data, avoiding the additional uncertainties introduced by CBCT inhomogeneity and artifacts. This is a necessary initial step toward future image-guided adaptive radiotherapy of the prostate.« less

  14. Calibration of the head direction network: a role for symmetric angular head velocity cells.

    PubMed

    Stratton, Peter; Wyeth, Gordon; Wiles, Janet

    2010-06-01

    Continuous attractor networks require calibration. Computational models of the head direction (HD) system of the rat usually assume that the connections that maintain HD neuron activity are pre-wired and static. Ongoing activity in these models relies on precise continuous attractor dynamics. It is currently unknown how such connections could be so precisely wired, and how accurate calibration is maintained in the face of ongoing noise and perturbation. Our adaptive attractor model of the HD system that uses symmetric angular head velocity (AHV) cells as a training signal shows that the HD system can learn to support stable firing patterns from poorly-performing, unstable starting conditions. The proposed calibration mechanism suggests a requirement for symmetric AHV cells, the existence of which has previously been unexplained, and predicts that symmetric and asymmetric AHV cells should be distinctly different (in morphology, synaptic targets and/or methods of action on postsynaptic HD cells) due to their distinctly different functions.

  15. Hyperspectral Remote Sensing of the Coastal Ocean: Adaptive Sampling and Forecasting of In situ Optical Properties

    DTIC Science & Technology

    2003-09-30

    We are developing an integrated rapid environmental assessment capability that will be used to feed an ocean nowcast/forecast system. The goal is to develop a capacity for predicting the dynamics in inherent optical properties in coastal waters. This is being accomplished by developing an integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to calibrate hyperspectral remote sensing sensors in optically complex nearshore coastal waters.

  16. Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy

    PubMed Central

    Dingari, Narahara Chari; Barman, Ishan; Kang, Jeon Woong; Kong, Chae-Ryon; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    While Raman spectroscopy provides a powerful tool for noninvasive and real time diagnostics of biological samples, its translation to the clinical setting has been impeded by the lack of robustness of spectroscopic calibration models and the size and cumbersome nature of conventional laboratory Raman systems. Linear multivariate calibration models employing full spectrum analysis are often misled by spurious correlations, such as system drift and covariations among constituents. In addition, such calibration schemes are prone to overfitting, especially in the presence of external interferences that may create nonlinearities in the spectra-concentration relationship. To address both of these issues we incorporate residue error plot-based wavelength selection and nonlinear support vector regression (SVR). Wavelength selection is used to eliminate uninformative regions of the spectrum, while SVR is used to model the curved effects such as those created by tissue turbidity and temperature fluctuations. Using glucose detection in tissue phantoms as a representative example, we show that even a substantial reduction in the number of wavelengths analyzed using SVR lead to calibration models of equivalent prediction accuracy as linear full spectrum analysis. Further, with clinical datasets obtained from human subject studies, we also demonstrate the prospective applicability of the selected wavelength subsets without sacrificing prediction accuracy, which has extensive implications for calibration maintenance and transfer. Additionally, such wavelength selection could substantially reduce the collection time of serial Raman acquisition systems. Given the reduced footprint of serial Raman systems in relation to conventional dispersive Raman spectrometers, we anticipate that the incorporation of wavelength selection in such hardware designs will enhance the possibility of miniaturized clinical systems for disease diagnosis in the near future. PMID:21895336

  17. Calibration development strategies for the Daniel K. Inouye Solar Telescope (DKIST) data center

    NASA Astrophysics Data System (ADS)

    Watson, Fraser T.; Berukoff, Steven J.; Hays, Tony; Reardon, Kevin; Speiss, Daniel J.; Wiant, Scott

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST), currently under construction on Haleakalā, in Maui, Hawai'i will be the largest solar telescope in the world and will use adaptive optics to provide the highest resolution view of the Sun to date. It is expected that DKIST data will enable significant and transformative discoveries that will dramatically increase our understanding of the Sun and its effects on the Sun-Earth environment. As a result of this, it is a priority of the DKIST Data Center team at the National Solar Observatory (NSO) to be able to deliver timely and accurately calibrated data to the astronomical community for further analysis. This will require a process which allows the Data Center to develop calibration pipelines for all of the facility instruments, taking advantage of similarities between them, as well as similarities to current generation instruments. There will also be a challenges which are addressed in this article, such as the large volume of data expected, and the importance of supporting both manual and automated calibrations. This paper will detail the current calibration development strategies being used by the Data Center team at the National Solar Observatory to manage this calibration effort, so as to ensure delivery of high quality scientific data routinely to users.

  18. Calibrating a tensor magnetic gradiometer using spin data

    USGS Publications Warehouse

    Bracken, Robert E.; Smith, David V.; Brown, Philip J.

    2005-01-01

    Scalar magnetic data are often acquired to discern characteristics of geologic source materials and buried objects. It is evident that a great deal can be done with scalar data, but there are significant advantages to direct measurement of the magnetic gradient tensor in applications with nearby sources, such as unexploded ordnance (UXO). To explore these advantages, we adapted a prototype tensor magnetic gradiometer system (TMGS) and successfully implemented a data-reduction procedure. One of several critical reduction issues is the precise determination of a large group of calibration coefficients for the sensors and sensor array. To resolve these coefficients, we devised a spin calibration method, after similar methods of calibrating space-based magnetometers (Snare, 2001). The spin calibration procedure consists of three parts: (1) collecting data by slowly revolving the sensor array in the Earth?s magnetic field, (2) deriving a comprehensive set of coefficients from the spin data, and (3) applying the coefficients to the survey data. To show that the TMGS functions as a tensor gradiometer, we conducted an experimental survey that verified that the reduction procedure was effective (Bracken and Brown, in press). Therefore, because it was an integral part of the reduction, it can be concluded that the spin calibration was correctly formulated with acceptably small errors.

  19. On Inertial Body Tracking in the Presence of Model Calibration Errors

    PubMed Central

    Miezal, Markus; Taetz, Bertram; Bleser, Gabriele

    2016-01-01

    In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266

  20. Use of Two-Part Regression Calibration Model to Correct for Measurement Error in Episodically Consumed Foods in a Single-Replicate Study Design: EPIC Case Study

    PubMed Central

    Agogo, George O.; van der Voet, Hilko; Veer, Pieter van’t; Ferrari, Pietro; Leenders, Max; Muller, David C.; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A.; Boshuizen, Hendriek

    2014-01-01

    In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted two-part regression calibration model, initially developed for multiple replicates of reference measurements per individual to a single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach, how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with the generalized additive modeling (GAM) and the empirical logit approaches, and how to select covariates in the calibration model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC) study. In the EPIC, reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately, correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate inclusion in specifying the calibration model. PMID:25402487

  1. A design of an on-orbit radiometric calibration device for high dynamic range infrared remote sensors

    NASA Astrophysics Data System (ADS)

    Sheng, Yicheng; Jin, Weiqi; Dun, Xiong; Zhou, Feng; Xiao, Si

    2017-10-01

    With the demand of quantitative remote sensing technology growing, high reliability as well as high accuracy radiometric calibration technology, especially the on-orbit radiometric calibration device has become an essential orientation in term of quantitative remote sensing technology. In recent years, global launches of remote sensing satellites are equipped with innovative on-orbit radiometric calibration devices. In order to meet the requirements of covering a very wide dynamic range and no-shielding radiometric calibration system, we designed a projection-type radiometric calibration device for high dynamic range sensors based on the Schmidt telescope system. In this internal radiometric calibration device, we select the EF-8530 light source as the calibration blackbody. EF-8530 is a high emittance Nichrome (Ni-Cr) reference source. It can operate in steady or pulsed state mode at a peak temperature of 973K. The irradiance from the source was projected to the IRFPA. The irradiance needs to ensure that the IRFPA can obtain different amplitude of the uniform irradiance through the narrow IR passbands and cover the very wide dynamic range. Combining the internal on-orbit radiometric calibration device with the specially designed adaptive radiometric calibration algorithms, an on-orbit dynamic non-uniformity correction can be accomplished without blocking the optical beam from outside the telescope. The design optimizes optics, source design, and power supply electronics for irradiance accuracy and uniformity. The internal on-orbit radiometric calibration device not only satisfies a series of indexes such as stability, accuracy, large dynamic range and uniformity of irradiance, but also has the advantages of short heating and cooling time, small volume, lightweight, low power consumption and many other features. It can realize the fast and efficient relative radiometric calibration without shielding the field of view. The device can applied to the design and manufacture of the scanning infrared imaging system, the infrared remote sensing system, the infrared early-warning satellite, and so on.

  2. A Polyhedral Outer-approximation, Dynamic-discretization optimization solver, 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Rusell; Nagarajan, Harsha; Sundar, Kaarthik

    2017-09-25

    In this software, we implement an adaptive, multivariate partitioning algorithm for solving mixed-integer nonlinear programs (MINLP) to global optimality. The algorithm combines ideas that exploit the structure of convex relaxations to MINLPs and bound tightening procedures

  3. COBE ground segment gyro calibration

    NASA Technical Reports Server (NTRS)

    Freedman, I.; Kumar, V. K.; Rae, A.; Venkataraman, R.; Patt, F. S.; Wright, E. L.

    1991-01-01

    Discussed here is the calibration of the scale factors and rate biases for the Cosmic Background Explorer (COBE) spacecraft gyroscopes, with the emphasis on the adaptation for COBE of an algorithm previously developed for the Solar Maximum Mission. Detailed choice of parameters, convergence, verification, and use of the algorithm in an environment where the reference attitudes are determined form the Sun, Earth, and star observations (via the Diffuse Infrared Background Experiment (DIRBE) are considered. Results of some recent experiments are given. These include tests where the gyro rate data are corrected for the effect of the gyro baseplate temperature on the spacecraft electronics.

  4. Fiber optic medical pressure-sensing system employing intelligent self-calibration

    NASA Astrophysics Data System (ADS)

    He, Gang

    1996-01-01

    In this article, we describe a fiber-optic catheter-type pressure-sensing system that has been successfully introduced for medical diagnostic applications. We present overall sensors and optoelectronics designs, and highlight product development efforts that lead to a reliable and accurate disposable pressure-sensing system. In particular, the incorporation of an intelligent on-site self-calibration approach allows limited sensor reuses for reducing end-user costs and for system adaptation to wide sensor variabilities associated with low-cost manufacturing processes. We demonstrate that fiber-optic sensors can be cost-effectively produced to satisfy needs of certain medical market segments.

  5. Behavior driven testing in ALMA telescope calibration software

    NASA Astrophysics Data System (ADS)

    Gil, Juan P.; Garces, Mario; Broguiere, Dominique; Shen, Tzu-Chiang

    2016-07-01

    ALMA software development cycle includes well defined testing stages that involves developers, testers and scientists. We adapted Behavior Driven Development (BDD) to testing activities applied to Telescope Calibration (TELCAL) software. BDD is an agile technique that encourages communication between roles by defining test cases using natural language to specify features and scenarios, what allows participants to share a common language and provides a high level set of automated tests. This work describes how we implemented and maintain BDD testing for TELCAL, the infrastructure needed to support it and proposals to expand this technique to other subsystems.

  6. Comparison between a model-based and a conventional pyramid sensor reconstructor.

    PubMed

    Korkiakoski, Visa; Vérinaud, Christophe; Le Louarn, Miska; Conan, Rodolphe

    2007-08-20

    A model of a non-modulated pyramid wavefront sensor (P-WFS) based on Fourier optics has been presented. Linearizations of the model represented as Jacobian matrices are used to improve the P-WFS phase estimates. It has been shown in simulations that a linear approximation of the P-WFS is sufficient in closed-loop adaptive optics. Also a method to compute model-based synthetic P-WFS command matrices is shown, and its performance is compared to the conventional calibration. It was observed that in poor visibility the new calibration is better than the conventional.

  7. Next-generation smart traffic signals : RHODES with Intellidrive, the self-taught traffic control system.

    DOT National Transportation Integrated Search

    2009-01-01

    Can a self-calibrating signal control system lead to wider adoption of adaptive traffic control systems? The focus of Next Generation of Smart Traffic Signals, an Exploratory Advanced Research (EAR) Program project, is a system that-with lit...

  8. Adaptive optics self-calibration using differential OTF (dOTF)

    NASA Astrophysics Data System (ADS)

    Rodack, Alexander T.; Knight, Justin M.; Codona, Johanan L.; Miller, Kelsey L.; Guyon, Olivier

    2015-09-01

    We demonstrate self-calibration of an adaptive optical system using differential OTF [Codona, JL; Opt. Eng. 0001; 52(9):097105-097105. doi:10.1117/1.OE.52.9.097105]. We use a deformable mirror (DM) along with science camera focal plane images to implement a closed-loop servo that both flattens the DM and corrects for non-common-path aberrations within the telescope. The pupil field modification required for dOTF measurement is introduced by displacing actuators near the edge of the illuminated pupil. Simulations were used to develop methods to retrieve the phase from the complex amplitude dOTF measurements for both segmented and continuous sheet MEMS DMs and tests were performed using a Boston Micromachines continuous sheet DM for verification. We compute the actuator correction updates directly from the phase of the dOTF measurements, reading out displacements and/or slopes at segment and actuator positions. Through simulation, we also explore the effectiveness of these techniques for a variety of photons collected in each dOTF exposure pair.

  9. Adversity, Adaptive Calibration, and Health: The Case of Disadvantaged Families.

    PubMed

    de Baca, Tomás Cabeza; Wahl, Richard A; Barnett, Melissa A; Figueredo, Aurelio José; Ellis, Bruce J

    2016-06-01

    Epidemiologists and medical researchers often employ an allostatic load model that focuses on environmental and lifestyle factors, together with biological vulnerabilities, to explain the deterioration of human physiological systems and chronic degenerative disease. Although this perspective has informed medicine and public health, it is agnostic toward the functional significance of pathophysiology and health deterioration. Drawing on Life History (LH) theory, the current paper reviews the literature on disadvantaged families to serve as a conceptual model of stress-health relationships in which the allocation of reproductive effort is instantiated in the LH strategies of individuals and reflects the bioenergetic and material resource tradeoffs . We propose that researchers interested in health disparities reframe chronic degenerative diseases as outcomes resulting from strategic calibration of physiological systems to best adapt, survive, and reproduce in response to demands of specific developmental contexts. These effects of adversity on later-age degenerative disease are mediated, in part, by socioemotional and cognitive mechanisms expressed in different life history strategies.

  10. Adversity, Adaptive Calibration, and Health: The Case of Disadvantaged Families

    PubMed Central

    de Baca, Tomás Cabeza; Wahl, Richard A.; Barnett, Melissa A.; Figueredo, Aurelio José; Ellis, Bruce J.

    2016-01-01

    Epidemiologists and medical researchers often employ an allostatic load model that focuses on environmental and lifestyle factors, together with biological vulnerabilities, to explain the deterioration of human physiological systems and chronic degenerative disease. Although this perspective has informed medicine and public health, it is agnostic toward the functional significance of pathophysiology and health deterioration. Drawing on Life History (LH) theory, the current paper reviews the literature on disadvantaged families to serve as a conceptual model of stress-health relationships in which the allocation of reproductive effort is instantiated in the LH strategies of individuals and reflects the bioenergetic and material resource tradeoffs. We propose that researchers interested in health disparities reframe chronic degenerative diseases as outcomes resulting from strategic calibration of physiological systems to best adapt, survive, and reproduce in response to demands of specific developmental contexts. These effects of adversity on later-age degenerative disease are mediated, in part, by socioemotional and cognitive mechanisms expressed in different life history strategies. PMID:27175327

  11. Assessment and Reduction of Model Parametric Uncertainties: A Case Study with A Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    Gan, Y.; Liang, X. Z.; Duan, Q.; Xu, J.; Zhao, P.; Hong, Y.

    2017-12-01

    The uncertainties associated with the parameters of a hydrological model need to be quantified and reduced for it to be useful for operational hydrological forecasting and decision support. An uncertainty quantification framework is presented to facilitate practical assessment and reduction of model parametric uncertainties. A case study, using the distributed hydrological model CREST for daily streamflow simulation during the period 2008-2010 over ten watershed, was used to demonstrate the performance of this new framework. Model behaviors across watersheds were analyzed by a two-stage stepwise sensitivity analysis procedure, using LH-OAT method for screening out insensitive parameters, followed by MARS-based Sobol' sensitivity indices for quantifying each parameter's contribution to the response variance due to its first-order and higher-order effects. Pareto optimal sets of the influential parameters were then found by the adaptive surrogate-based multi-objective optimization procedure, using MARS model for approximating the parameter-response relationship and SCE-UA algorithm for searching the optimal parameter sets of the adaptively updated surrogate model. The final optimal parameter sets were validated against the daily streamflow simulation of the same watersheds during the period 2011-2012. The stepwise sensitivity analysis procedure efficiently reduced the number of parameters that need to be calibrated from twelve to seven, which helps to limit the dimensionality of calibration problem and serves to enhance the efficiency of parameter calibration. The adaptive MARS-based multi-objective calibration exercise provided satisfactory solutions to the reproduction of the observed streamflow for all watersheds. The final optimal solutions showed significant improvement when compared to the default solutions, with about 65-90% reduction in 1-NSE and 60-95% reduction in |RB|. The validation exercise indicated a large improvement in model performance with about 40-85% reduction in 1-NSE, and 35-90% reduction in |RB|. Overall, this uncertainty quantification framework is robust, effective and efficient for parametric uncertainty analysis, the results of which provide useful information that helps to understand the model behaviors and improve the model simulations.

  12. An approach to predict water quality in data-sparse catchments using hydrological catchment similarity

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Glendell, Miriam; Stutter, Marc I.; Helliwell, Rachel C.

    2017-04-01

    An understanding of catchment response to climate and land use change at a regional scale is necessary for the assessment of mitigation and adaptation options addressing diffuse nutrient pollution. It is well documented that the physicochemical properties of a river ecosystem respond to change in a non-linear fashion. This is particularly important when threshold water concentrations, relevant to national and EU legislation, are exceeded. Large scale (regional) model assessments required for regulatory purposes must represent the key processes and mechanisms that are more readily understood in catchments with water quantity and water quality data monitored at high spatial and temporal resolution. While daily discharge data are available for most catchments in Scotland, nitrate and phosphorus are mostly available on a monthly basis only, as typified by regulatory monitoring. However, high resolution (hourly to daily) water quantity and water quality data exist for a limited number of research catchments. To successfully implement adaptation measures across Scotland, an upscaling from data-rich to data-sparse catchments is required. In addition, the widespread availability of spatial datasets affecting hydrological and biogeochemical responses (e.g. soils, topography/geomorphology, land use, vegetation etc.) provide an opportunity to transfer predictions between data-rich and data-sparse areas by linking processes and responses to catchment attributes. Here, we develop a framework of catchment typologies as a prerequisite for transferring information from data-rich to data-sparse catchments by focusing on how hydrological catchment similarity can be used as an indicator of grouped behaviours in water quality response. As indicators of hydrological catchment similarity we use flow indices derived from observed discharge data across Scotland as well as hydrological model parameters. For the latter, we calibrated the lumped rainfall-runoff model TUWModel using multiple objective functions. The relationships between indicators of hydrological catchment similarity, physical catchment characteristics and nitrate and phosphorus concentrations in rivers are then investigated using multivariate statistics. This understanding of the relationship between catchment characteristics, hydrological processes and water quality will allow us to implement more efficient regulatory water quality monitoring strategies, to improve existing water quality models and to model mitigation and adaptation scenarios to global change in data-sparse catchments.

  13. A correlate of HIV-1 control consisting of both innate and adaptive immune parameters best predicts viral load by multivariable analysis in HIV-1 infected viremic controllers and chronically-infected non-controllers.

    PubMed

    Tomescu, Costin; Liu, Qin; Ross, Brian N; Yin, Xiangfan; Lynn, Kenneth; Mounzer, Karam C; Kostman, Jay R; Montaner, Luis J

    2014-01-01

    HIV-1 infected viremic controllers maintain durable viral suppression below 2000 copies viral RNA/ml without anti-retroviral therapy (ART), and the immunological factor(s) associated with host control in presence of low but detectable viral replication are of considerable interest. Here, we utilized a multivariable analysis to identify which innate and adaptive immune parameters best correlated with viral control utilizing a cohort of viremic controllers (median 704 viral RNA/ml) and non-controllers (median 21,932 viral RNA/ml) that were matched for similar CD4+ T cell counts in the absence of ART. We observed that HIV-1 Gag-specific CD8+ T cell responses were preferentially targeted over Pol-specific responses in viremic controllers (p = 0.0137), while Pol-specific responses were positively associated with viral load (rho = 0.7753, p = 0.0001, n = 23). Viremic controllers exhibited significantly higher NK and plasmacytoid dendritic cells (pDC) frequency as well as retained expression of the NK CD16 receptor and strong target cell-induced NK cell IFN-gamma production compared to non-controllers (p<0.05). Despite differences in innate and adaptive immune function however, both viremic controllers (p<0.05) and non-controller subjects (p<0.001) exhibited significantly increased CD8+ T cell activation and spontaneous NK cell degranulation compared to uninfected donors. Overall, we identified that a combination of innate (pDC frequency) and adaptive (Pol-specific CD8+ T cell responses) immune parameters best predicted viral load (R2 = 0.5864, p = 0.0021, n = 17) by a multivariable analysis. Together, this data indicates that preferential Gag-specific over Pol-specific CD8+ T cell responses along with a retention of functional innate subsets best predict host control over viral replication in HIV-1 infected viremic controllers compared to chronically-infected non-controllers.

  14. Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient.

    PubMed

    Firmat, C; Delzon, S; Louvet, J-M; Parmentier, J; Kremer, A

    2017-12-01

    It has been predicted that environmental changes will radically alter the selective pressures on phenological traits. Long-lived species, such as trees, will be particularly affected, as they may need to undergo major adaptive change over only one or a few generations. The traits describing the annual life cycle of trees are generally highly evolvable, but nothing is known about the strength of their genetic correlations. Tight correlations can impose strong evolutionary constraints, potentially hampering the adaptation of multivariate phenological phenotypes. In this study, we investigated the evolutionary, genetic and environmental components of the timing of leaf unfolding and senescence within an oak metapopulation along an elevation gradient. Population divergence, estimated from in situ and common-garden data, was compared to expectations under neutral evolution, based on microsatellite markers. This approach made it possible (1) to evaluate the influence of genetic correlation on multivariate local adaptation to elevation and (2) to identify traits probably exposed to past selective pressures due to the colder climate at high elevation. The genetic correlation was positive but very weak, indicating that genetic constraints did not shape the local adaptation pattern for leaf phenology. Both spring and fall (leaf unfolding and senescence, respectively) phenology timings were involved in local adaptation, but leaf unfolding was probably the trait most exposed to climate change-induced selection. Our data indicated that genetic variation makes a much smaller contribution to adaptation than the considerable plastic variation displayed by a tree during its lifetime. The evolutionary potential of leaf phenology is, therefore, probably not the most critical aspect for short-term population survival in a changing climate. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  15. Identification of species and geographical strains of Sitophilus oryzae and Sitophilus zeamais using the visible/near-infrared hyperspectral imaging technique.

    PubMed

    Cao, Yang; Zhang, Chaojie; Chen, Quansheng; Li, Yanyu; Qi, Shuai; Tian, Lin; Ren, YongLin

    2015-08-01

    Identifying stored-product insects is essential for granary management. Automated, computer-based classification methods are rapidly developing in many areas. A hyperspectral imaging technique could potentially be developed to identify stored-product insect species and geographical strains. This study tested and adapted the technique using four geographical strains of each of two insect species, the rice weevil and maize weevil, to collect and analyse the resultant hyperspectral data. Three characteristic images that corresponded to the dominant wavelengths, 505, 659 and 955 nm, were selected by multivariate image analysis. Each image was processed, and 22 morphological and textural features from regions of interest were extracted as the inputs for an identification model. We found the backpropagation neural network model to be the superior method for distinguishing between the insect species and geographical strains. The overall recognition rates of the classification model for insect species were 100 and 98.13% for the calibration and prediction sets respectively, while the rates of the model for geographical strains were 94.17 and 86.88% respectively. This study has demonstrated that hyperspectral imaging, together with the appropriate recognition method, could provide a potential instrument for identifying insects and could become a useful tool for identification of Sitophilus oryzae and Sitophilus zeamais to aid in the management of stored-product insects. © 2014 Society of Chemical Industry.

  16. A surrogate-based sensitivity quantification and Bayesian inversion of a regional groundwater flow model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.; Amerjeed, Mansoor

    2018-02-01

    Bayesian inference using Markov Chain Monte Carlo (MCMC) provides an explicit framework for stochastic calibration of hydrogeologic models accounting for uncertainties; however, the MCMC sampling entails a large number of model calls, and could easily become computationally unwieldy if the high-fidelity hydrogeologic model simulation is time consuming. This study proposes a surrogate-based Bayesian framework to address this notorious issue, and illustrates the methodology by inverse modeling a regional MODFLOW model. The high-fidelity groundwater model is approximated by a fast statistical model using Bagging Multivariate Adaptive Regression Spline (BMARS) algorithm, and hence the MCMC sampling can be efficiently performed. In this study, the MODFLOW model is developed to simulate the groundwater flow in an arid region of Oman consisting of mountain-coast aquifers, and used to run representative simulations to generate training dataset for BMARS model construction. A BMARS-based Sobol' method is also employed to efficiently calculate input parameter sensitivities, which are used to evaluate and rank their importance for the groundwater flow model system. According to sensitivity analysis, insensitive parameters are screened out of Bayesian inversion of the MODFLOW model, further saving computing efforts. The posterior probability distribution of input parameters is efficiently inferred from the prescribed prior distribution using observed head data, demonstrating that the presented BMARS-based Bayesian framework is an efficient tool to reduce parameter uncertainties of a groundwater system.

  17. Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique

    NASA Astrophysics Data System (ADS)

    Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad

    2015-11-01

    One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.

  18. Method and Apparatus for Accurately Calibrating a Spectrometer

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Simmons, Stephen M. (Inventor)

    2013-01-01

    A calibration assembly for a spectrometer is provided. The assembly includes a spectrometer having n detector elements, where each detector element is assigned a predetermined wavelength value. A first source emitting first radiation is used to calibrate the spectrometer. A device is placed in the path of the first radiation to split the first radiation into a first beam and a second beam. The assembly is configured so that one of the first and second beams travels a path-difference distance longer than the other of the first and second beams. An output signal is generated by the spectrometer when the first and second beams enter the spectrometer. The assembly includes a controller operable for processing the output signal and adapted to calculate correction factors for the respective predetermined wavelength values assigned to each detector element.

  19. Development of a Pattern Recognition Methodology for Determining Operationally Optimal Heat Balance Instrumentation Calibration Schedules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Beran; John Christenson; Dragos Nica

    2002-12-15

    The goal of the project is to enable plant operators to detect with high sensitivity and reliability the onset of decalibration drifts in all of the instrumentation used as input to the reactor heat balance calculations. To achieve this objective, the collaborators developed and implemented at DBNPS an extension of the Multivariate State Estimation Technique (MSET) pattern recognition methodology pioneered by ANAL. The extension was implemented during the second phase of the project and fully achieved the project goal.

  20. Experimental study of adaptive pointing and tracking for large flexible space structures

    NASA Technical Reports Server (NTRS)

    Boussalis, D.; Bayard, D. S.; Ih, C.; Wang, S. J.; Ahmed, A.

    1991-01-01

    This paper describes an experimental study of adaptive pointing and tracking control for flexible spacecraft conducted on a complex ground experiment facility. The algorithm used in this study is based on a multivariable direct model reference adaptive control law. Several experimental validation studies were performed earlier using this algorithm for vibration damping and robust regulation, with excellent results. The current work extends previous studies by addressing the pointing and tracking problem. As is consistent with an adaptive control framework, the plant is assumed to be poorly known to the extent that only system level knowledge of its dynamics is available. Explicit bounds on the steady-state pointing error are derived as functions of the adaptive controller design parameters. It is shown that good tracking performance can be achieved in an experimental setting by adjusting adaptive controller design weightings according to the guidelines indicated by the analytical expressions for the error.

  1. Linear model correction: A method for transferring a near-infrared multivariate calibration model without standard samples.

    PubMed

    Liu, Yan; Cai, Wensheng; Shao, Xueguang

    2016-12-05

    Calibration transfer is essential for practical applications of near infrared (NIR) spectroscopy because the measurements of the spectra may be performed on different instruments and the difference between the instruments must be corrected. For most of calibration transfer methods, standard samples are necessary to construct the transfer model using the spectra of the samples measured on two instruments, named as master and slave instrument, respectively. In this work, a method named as linear model correction (LMC) is proposed for calibration transfer without standard samples. The method is based on the fact that, for the samples with similar physical and chemical properties, the spectra measured on different instruments are linearly correlated. The fact makes the coefficients of the linear models constructed by the spectra measured on different instruments are similar in profile. Therefore, by using the constrained optimization method, the coefficients of the master model can be transferred into that of the slave model with a few spectra measured on slave instrument. Two NIR datasets of corn and plant leaf samples measured with different instruments are used to test the performance of the method. The results show that, for both the datasets, the spectra can be correctly predicted using the transferred partial least squares (PLS) models. Because standard samples are not necessary in the method, it may be more useful in practical uses. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    PubMed Central

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory. PMID:26961687

  3. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.

  4. Sample classification for improved performance of PLS models applied to the quality control of deep-frying oils of different botanic origins analyzed using ATR-FTIR spectroscopy.

    PubMed

    Kuligowski, Julia; Carrión, David; Quintás, Guillermo; Garrigues, Salvador; de la Guardia, Miguel

    2011-01-01

    The selection of an appropriate calibration set is a critical step in multivariate method development. In this work, the effect of using different calibration sets, based on a previous classification of unknown samples, on the partial least squares (PLS) regression model performance has been discussed. As an example, attenuated total reflection (ATR) mid-infrared spectra of deep-fried vegetable oil samples from three botanical origins (olive, sunflower, and corn oil), with increasing polymerized triacylglyceride (PTG) content induced by a deep-frying process were employed. The use of a one-class-classifier partial least squares-discriminant analysis (PLS-DA) and a rooted binary directed acyclic graph tree provided accurate oil classification. Oil samples fried without foodstuff could be classified correctly, independent of their PTG content. However, class separation of oil samples fried with foodstuff, was less evident. The combined use of double-cross model validation with permutation testing was used to validate the obtained PLS-DA classification models, confirming the results. To discuss the usefulness of the selection of an appropriate PLS calibration set, the PTG content was determined by calculating a PLS model based on the previously selected classes. In comparison to a PLS model calculated using a pooled calibration set containing samples from all classes, the root mean square error of prediction could be improved significantly using PLS models based on the selected calibration sets using PLS-DA, ranging between 1.06 and 2.91% (w/w).

  5. NEID Port Adapter: Design and Verification Plan

    NASA Astrophysics Data System (ADS)

    Logsdon, Sarah E.; McElwain, Michael; McElwain, Michael W.; Gong, Qian; Bender, Chad; Halverson, Samuel; Hearty, Fred; Hunting, Emily; Jaehnig, Kurt; Liang, Ming; Mahadevan, Suvrath; Monson, A. J.; Percival, Jeffrey; Rajagopal, Jayadev; Ramsey, Lawrence; Roy, Arpita; Santoro, Fernando; Schwab, Christian; Smith, Michael; Wolf, Marsha; Wright, Jason

    2018-01-01

    The NEID spectrograph is an optical (380-930 nm), fiber-fed, precision Doppler spectrograph currently in development for the 3.5 m WIYN Telescope at Kitt Peak National Observatory. Designed to achieve a radial velocity precision of <30 cm/s, NEID will be sensitive enough to detect terrestrial-mass exoplanets around low-mass stars. Light from the target stars is focused by the telescope to a bent-Cassegrain port at the edge of the primary mirror mechanical support. The specialized NEID “Port Adapter” system is mounted at this bent-Cassegrain port and is responsible for delivering the incident light from the telescope to the NEID fibers. In order to provide stable, high-quality images to the science instrument, the Port Adapter houses several subcomponents designed to acquire the target stars, correct for atmospheric dispersion, stabilize the light onto the science fibers, and calibrate the spectrograph by injecting known wavelength sources such as a laser frequency comb. Here we describe the overall design of the Port Adapter and outline the development of calibration tools and an on-sky test plan to verify the performance of the atmospheric dispersion corrector (ADC). We also discuss the development of an error budget and test requirements to ensure high-precision centroiding onto the NEID science fibers using a system of coherent fiber bundles.

  6. The Stress Response Systems: Universality and Adaptive Individual Differences

    ERIC Educational Resources Information Center

    Ellis, Bruce J.; Jackson, Jenee James; Boyce, W. Thomas

    2006-01-01

    Biological reactivity to psychological stressors comprises a complex, integrated system of central neural and peripheral neuroendocrine responses designed to prepare the organism for challenge or threat. Developmental experience plays a role, along with heritable variation, in calibrating the response dynamics of this system. This calibration…

  7. The numerical simulation tool for the MAORY multiconjugate adaptive optics system

    NASA Astrophysics Data System (ADS)

    Arcidiacono, C.; Schreiber, L.; Bregoli, G.; Diolaiti, E.; Foppiani, I.; Agapito, G.; Puglisi, A.; Xompero, M.; Oberti, S.; Cosentino, G.; Lombini, M.; Butler, R. C.; Ciliegi, P.; Cortecchia, F.; Patti, M.; Esposito, S.; Feautrier, P.

    2016-07-01

    The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It is an hybrid Natural and Laser Guide System that will perform the correction of the atmospheric turbulence volume above the telescope feeding the Multi-AO Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We developed an end-to-end Monte- Carlo adaptive optics simulation tool to investigate the performance of a the MAORY and the calibration, acquisition, operation strategies. MAORY will implement Multiconjugate Adaptive Optics combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements. The simulation tool implement the various aspect of the MAORY in an end to end fashion. The code has been developed using IDL and use libraries in C++ and CUDA for efficiency improvements. Here we recall the code architecture, we describe the modeled instrument components and the control strategies implemented in the code.

  8. Wavelet analysis techniques applied to removing varying spectroscopic background in calibration model for pear sugar content

    NASA Astrophysics Data System (ADS)

    Liu, Yande; Ying, Yibin; Lu, Huishan; Fu, Xiaping

    2005-11-01

    A new method is proposed to eliminate the varying background and noise simultaneously for multivariate calibration of Fourier transform near infrared (FT-NIR) spectral signals. An ideal spectrum signal prototype was constructed based on the FT-NIR spectrum of fruit sugar content measurement. The performances of wavelet based threshold de-noising approaches via different combinations of wavelet base functions were compared. Three families of wavelet base function (Daubechies, Symlets and Coiflets) were applied to estimate the performance of those wavelet bases and threshold selection rules by a series of experiments. The experimental results show that the best de-noising performance is reached via the combinations of Daubechies 4 or Symlet 4 wavelet base function. Based on the optimization parameter, wavelet regression models for sugar content of pear were also developed and result in a smaller prediction error than a traditional Partial Least Squares Regression (PLSR) mode.

  9. Rapid analysis of pharmaceutical drugs using LIBS coupled with multivariate analysis.

    PubMed

    Tiwari, P K; Awasthi, S; Kumar, R; Anand, R K; Rai, P K; Rai, A K

    2018-02-01

    Type 2 diabetes drug tablets containing voglibose having dose strengths of 0.2 and 0.3 mg of various brands have been examined, using laser-induced breakdown spectroscopy (LIBS) technique. The statistical methods such as the principal component analysis (PCA) and the partial least square regression analysis (PLSR) have been employed on LIBS spectral data for classifying and developing the calibration models of drug samples. We have developed the ratio-based calibration model applying PLSR in which relative spectral intensity ratios H/C, H/N and O/N are used. Further, the developed model has been employed to predict the relative concentration of element in unknown drug samples. The experiment has been performed in air and argon atmosphere, respectively, and the obtained results have been compared. The present model provides rapid spectroscopic method for drug analysis with high statistical significance for online control and measurement process in a wide variety of pharmaceutical industrial applications.

  10. Predictive factors of pathologic complete response of HER2-positive breast cancer after preoperative chemotherapy with trastuzumab: development of a specific predictor and study of its utilities using decision curve analysis.

    PubMed

    Jankowski, Clémentine; Guiu, S; Cortet, M; Charon-Barra, C; Desmoulins, I; Lorgis, V; Arnould, L; Fumoleau, P; Coudert, B; Rouzier, R; Coutant, C; Reyal, F

    2017-01-01

    The aim of this study was to assess the Institut Gustave Roussy/M.D. Anderson Cancer Center (IGR/MDACC) nomogram in predicting pathologic complete response (pCR) to preoperative chemotherapy in a cohort of human epidermal growth factor receptor 2 (HER2)-positive tumors treated with preoperative chemotherapy with trastuzumab. We then combine clinical and pathological variables associated with pCR into a new nomogram specific to HER2-positive tumors treated by preoperative chemotherapy with trastuzumab. Data from 270 patients with HER2-positive tumors treated with preoperative chemotherapy with trastuzumab at the Institut Curie and at the Georges François Leclerc Cancer Center were used to assess the IGR/MDACC nomogram and to subsequently develop a new nomogram for pCR based on multivariate logistic regression. Model performance was quantified in terms of calibration and discrimination. We studied the utility of the new nomogram using decision curve analysis. The IGR/MDACC nomogram was not accurate for the prediction of pCR in HER2-positive tumors treated by preoperative chemotherapy with trastuzumab, with poor discrimination (AUC = 0.54, 95% CI 0.51-0.58) and poor calibration (p = 0.01). After uni- and multivariate analysis, a new pCR nomogram was built based on T stage (TNM), hormone receptor status, and Ki67 (%). The model had good discrimination with an area under the curve (AUC) at 0.74 (95% CI 0.70-0.79) and adequate calibration (p = 0.93). By decision curve analysis, the model was shown to be relevant between thresholds of 0.3 and 0.7. To the best of our knowledge, ours is the first nomogram to predict pCR in HER2-positive tumors treated by preoperative chemotherapy with trastuzumab. To ensure generalizability, this model needs to be externally validated.

  11. Investigating the discrimination potential of linear and nonlinear spectral multivariate calibrations for analysis of phenolic compounds in their binary and ternary mixtures and calculation pKa values.

    PubMed

    Rasouli, Zolaikha; Ghavami, Raouf

    2016-08-05

    Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD=0.12], 0.67-23.19 [LOD=0.13] and 0.73-25.12 [LOD=0.15] μgmL(-1) for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Investigating the discrimination potential of linear and nonlinear spectral multivariate calibrations for analysis of phenolic compounds in their binary and ternary mixtures and calculation pKa values

    NASA Astrophysics Data System (ADS)

    Rasouli, Zolaikha; Ghavami, Raouf

    2016-08-01

    Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD = 0.12], 0.67-23.19 [LOD = 0.13] and 0.73-25.12 [LOD = 0.15] μg mL- 1 for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples.

  13. Parametric decadal climate forecast recalibration (DeFoReSt 1.0)

    NASA Astrophysics Data System (ADS)

    Pasternack, Alexander; Bhend, Jonas; Liniger, Mark A.; Rust, Henning W.; Müller, Wolfgang A.; Ulbrich, Uwe

    2018-01-01

    Near-term climate predictions such as decadal climate forecasts are increasingly being used to guide adaptation measures. For near-term probabilistic predictions to be useful, systematic errors of the forecasting systems have to be corrected. While methods for the calibration of probabilistic forecasts are readily available, these have to be adapted to the specifics of decadal climate forecasts including the long time horizon of decadal climate forecasts, lead-time-dependent systematic errors (drift) and the errors in the representation of long-term changes and variability. These features are compounded by small ensemble sizes to describe forecast uncertainty and a relatively short period for which typically pairs of reforecasts and observations are available to estimate calibration parameters. We introduce the Decadal Climate Forecast Recalibration Strategy (DeFoReSt), a parametric approach to recalibrate decadal ensemble forecasts that takes the above specifics into account. DeFoReSt optimizes forecast quality as measured by the continuous ranked probability score (CRPS). Using a toy model to generate synthetic forecast observation pairs, we demonstrate the positive effect on forecast quality in situations with pronounced and limited predictability. Finally, we apply DeFoReSt to decadal surface temperature forecasts from the MiKlip prototype system and find consistent, and sometimes considerable, improvements in forecast quality compared with a simple calibration of the lead-time-dependent systematic errors.

  14. A First Order Wavefront Estimation Algorithm for P1640 Calibrator

    NASA Technical Reports Server (NTRS)

    Zhaia, C.; Vasisht, G.; Shao, M.; Lockhart, T.; Cady, E.; Oppenheimer, B.; Burruss, R.; Roberts, J.; Beichman, C.; Brenner, D.; hide

    2012-01-01

    P1640 calibrator is a wavefront sensor working with the P1640 coronagraph and the Palomar 3000 actuator adaptive optics system (P3K) at the Palomar 200 inch Hale telescope. It measures the wavefront by interfering post-coronagraph light with a reference beam formed by low-pass filtering the blocked light from the coronagraph focal plane mask. The P1640 instrument has a similar architecture to the Gemini Planet Imager (GPI) and its performance is currently limited by the quasi-static speckles due to non-common path wavefront errors, which comes from the non-common path for the light to arrive at the AO wavefront sensor and the coronagraph mask. By measuring the wavefront after the coronagraph mask, the non-common path wavefront error can be estimated and corrected by feeding back the error signal to the deformable mirror (DM) of the P3K AO system. Here, we present a first order wavefront estimation algorithm and an instrument calibration scheme used in experiments done recently at Palomar observatory. We calibrate the P1640 calibrator by measuring its responses to poking DM actuators with a sparse checkerboard pattern at different amplitudes. The calibration yields a complex normalization factor for wavefront estimation and establishes the registration of the DM actuators at the pupil camera of the P1640 calibrator, necessary for wavefront correction. Improvement of imaging quality after feeding back the wavefront correction to the AO system demonstrated the efficacy of the algorithm.

  15. Direct megavoltage photon calibration service in Australia

    PubMed Central

    Ramanathan, G.; Oliver, C.; Cole, A.; Lye, J.; Harty, P. D.; Wright, T.; Webb, D. V.; Followill, D. S.

    2014-01-01

    The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) maintains the Australian primary standard of absorbed dose. Until recently, the standard was used to calibrate ionisation chambers only in 60Co gamma rays. These chambers are then used by radiotherapy clinics to determine linac output, using a correction factor (kQ) to take into account the different spectra of 60Co and the linac. Over the period 2010–2013, ARPANSA adapted the primary standard to work in megavoltage linac beams, and has developed a calibration service at three photon beams (6, 10 and 18 MV) from an Elekta Synergy linac. We describe the details of the new calibration service, the method validation and the use of the new calibration factors with the International Atomic Energy Agency’s TRS-398 dosimetry Code of Practice. The expected changes in absorbed dose measurements in the clinic when shifting from 60Co to the direct calibration are determined. For a Farmer chamber (model 2571), the measured chamber calibration coefficient is expected to be reduced by 0.4, 1.0 and 1.1 % respectively for these three beams when compared to the factor derived from 60Co. These results are in overall agreement with international absorbed dose standards and calculations by Muir and Rogers in 2010 of kQ factors using Monte Carlo techniques. The reasons for and against moving to the new service are discussed in the light of the requirements of clinical dosimetry. PMID:25146559

  16. Regional estimation of response routine parameters

    NASA Astrophysics Data System (ADS)

    Tøfte, Lena S.

    2015-04-01

    Reducing the number of calibration parameters is of a considerable advantage when area distributed hydrological models are to be calibrated, both due to equifinality and over-parameterization of the model in general, and for making the calibration process more efficient. A simple non-threshold response model for drainage in natural catchments based on among others Kirchner's article in WRR 2009 is implemented in the gridded hydrological model in the ENKI framework. This response model takes only the hydrogram into account; it has one state and two parameters, and is adapted to catchments that are dominated by terrain drainage. In former analyses of natural discharge series from a large number of catchments in different regions of Norway, we found that these response model parameters can be calculated from some known catchment characteristics, as catchment area and lake percentage, found in maps or data bases, meaning that the parameters can easily be found also for ungauged catchments. In the presented work from the EU project COMPLEX a large region in Mid-Norway containing 27 simulated catchments of different sizes and characteristics is calibrated. Results from two different calibration strategies are compared: 1) removing the response parameters from the calibration by calculating them in advance, based on the results from our former studies, and 2) including the response parameters in the calibration, both as maps with different values for each catchment, and as a constant number for the total region. The resulting simulation performances are compared and discussed.

  17. Dissolution testing of isoniazid, rifampicin, pyrazinamide and ethambutol tablets using near-infrared spectroscopy (NIRS) and multivariate calibration.

    PubMed

    de Oliveira Neves, Ana Carolina; Soares, Gustavo Mesquita; de Morais, Stéphanie Cavalcante; da Costa, Fernanda Saadna Lopes; Porto, Dayanne Lopes; de Lima, Kássio Michell Gomes

    2012-01-05

    This work utilized the near-infrared spectroscopy (NIRS) and multivariate calibration to measure the percentage drug dissolution of four active pharmaceutical ingredients (APIs) (isoniazid, rifampicin, pyrazinamide and ethambutol) in finished pharmaceutical products produced in the Federal University of Rio Grande do Norte (Brazil). The conventional analytical method employed in quality control tests of the dissolution by the pharmaceutical industry is high-performance liquid chromatography (HPLC). The NIRS is a reliable method that offers important advantages for the large-scale production of tablets and for non-destructive analysis. NIR spectra of 38 samples (in triplicate) were measured using a Bomen FT-NIR 160 MB in the range 1100-2500nm. Each spectrum was the average of 50 scans obtained in the diffuse reflectance mode. The dissolution test, which was initially carried out in 900mL of 0.1N hydrochloric acid at 37±0.5°C, was used to determine the percentage a drug that dissolved from each tablet measured at the same time interval (45min) at pH 6.8. The measurement of the four API was performed by HPLC (Shimadzu, Japan) in the gradiente mode. The influence of various spectral pretreatments (Savitzky-Golay smoothing, Multiplicative Scatter Correction (MSC), and Savitzky-Golay derivatives) and multivariate analysis using the partial least squares (PLS) regression algorithm was calculated by the Unscrambler 9.8 (Camo) software. The correlation coefficient (R(2)) for the HPLC determination versus predicted values (NIRS) ranged from 0.88 to 0.98. The root-mean-square error of prediction (RMSEP) obtained from PLS models were 9.99%, 8.63%, 8.57% and 9.97% for isoniazid, rifampicin, ethambutol and pyrazinamide, respectively, indicating that the NIR method is an effective and non-destructive tool for measurement of drug dissolution from tablets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  18. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2014-10-01

    This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb -1 of LHC proton–proton collision data taken at centre-of-mass energies of √s=7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Zmore » decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.« less

  19. Quantifying Multi-variables in Urban Watershed Adaptation: Challenges and Opportunities

    EPA Science Inventory

    Climate change and rapid socioeconomic developments are considered to be the principle variables affecting evolution of an urban watershed, the forms and sustainability of its built environment. In the traditional approach, we are accustomed to the assumption of a stationary cli...

  20. Prediction of energy expenditure and physical activity in preschoolers

    USDA-ARS?s Scientific Manuscript database

    Accurate, nonintrusive, and feasible methods are needed to predict energy expenditure (EE) and physical activity (PA) levels in preschoolers. Herein, we validated cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on accelerometry and heart rate (HR) ...

  1. A multivariate regression model for detection of fumonisins content in maize from near infrared spectra.

    PubMed

    Giacomo, Della Riccia; Stefania, Del Zotto

    2013-12-15

    Fumonisins are mycotoxins produced by Fusarium species that commonly live in maize. Whereas fungi damage plants, fumonisins cause disease both to cattle breedings and human beings. Law limits set fumonisins tolerable daily intake with respect to several maize based feed and food. Chemical techniques assure the most reliable and accurate measurements, but they are expensive and time consuming. A method based on Near Infrared spectroscopy and multivariate statistical regression is described as a simpler, cheaper and faster alternative. We apply Partial Least Squares with full cross validation. Two models are described, having high correlation of calibration (0.995, 0.998) and of validation (0.908, 0.909), respectively. Description of observed phenomenon is accurate and overfitting is avoided. Screening of contaminated maize with respect to European legal limit of 4 mg kg(-1) should be assured. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Simultaneous quantitative analysis of olmesartan, amlodipine and hydrochlorothiazide in their combined dosage form utilizing classical and alternating least squares based chemometric methods.

    PubMed

    Darwish, Hany W; Bakheit, Ahmed H; Abdelhameed, Ali S

    2016-03-01

    Simultaneous spectrophotometric analysis of a multi-component dosage form of olmesartan, amlodipine and hydrochlorothiazide used for the treatment of hypertension has been carried out using various chemometric methods. Multivariate calibration methods include classical least squares (CLS) executed by net analyte processing (NAP-CLS), orthogonal signal correction (OSC-CLS) and direct orthogonal signal correction (DOSC-CLS) in addition to multivariate curve resolution-alternating least squares (MCR-ALS). Results demonstrated the efficiency of the proposed methods as quantitative tools of analysis as well as their qualitative capability. The three analytes were determined precisely using the aforementioned methods in an external data set and in a dosage form after optimization of experimental conditions. Finally, the efficiency of the models was validated via comparison with the partial least squares (PLS) method in terms of accuracy and precision.

  3. The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders.

    PubMed

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale

    2013-11-01

    To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Majority of the data collected took place in an autism clinic. A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12-33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Not applicable. The primary outcome measures in this study were calibrated autism severity scores. Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p < 0.01). Children with weaker motor skills displayed higher levels of calibrated autism severity. The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion.

  4. Update on optical design of adaptive optics system at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Bauman, Brian J.; Gavel, Donald T.; Waltjen, Kenneth E.; Freeze, Gary J.; Hurd, Randall L.; Gates, Elinor L.; Max, Claire E.; Olivier, Scot S.; Pennington, Deanna M.

    2002-02-01

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  5. Update on Optical Design of Adaptive Optics System at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, B J; Gavel, D T; Waltjen, K E

    2001-07-31

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  6. A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems

    NASA Astrophysics Data System (ADS)

    Farrell, Kathryn; Oden, J. Tinsley; Faghihi, Danial

    2015-08-01

    A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.

  7. Quantifying the Value of Downscaled Climate Model Information for Adaptation Decisions: When is Downscaling a Smart Decision?

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Wootten, A.; Eaton, M. J.; Runge, M. C.; Littell, J. S.; Bryan, A. M.; Carter, S. L.

    2015-12-01

    Two types of decisions face society with respect to anthropogenic climate change: (1) whether to enact a global greenhouse gas abatement policy, and (2) how to adapt to the local consequences of current and future climatic changes. The practice of downscaling global climate models (GCMs) is often used to address (2) because GCMs do not resolve key features that will mediate global climate change at the local scale. In response, the development of downscaling techniques and models has accelerated to aid decision makers seeking adaptation guidance. However, quantifiable estimates of the value of information are difficult to obtain, particularly in decision contexts characterized by deep uncertainty and low system-controllability. Here we demonstrate a method to quantify the additional value that decision makers could expect if research investments are directed towards developing new downscaled climate projections. As a proof of concept we focus on a real-world management problem: whether to undertake assisted migration for an endangered tropical avian species. We also take advantage of recently published multivariate methods that account for three vexing issues in climate impacts modeling: maximizing climate model quality information, accounting for model dependence in ensembles of opportunity, and deriving probabilistic projections. We expand on these global methods by including regional (Caribbean Basin) and local (Puerto Rico) domains. In the local domain, we test whether a high resolution (2km) dynamically downscaled GCM reduces the multivariate error estimate compared to the original coarse-scale GCM. Initial tests show little difference between the downscaled and original GCM multivariate error. When propagated through to a species population model, the Value of Information analysis indicates that the expected utility that would accrue to the manager (and species) if this downscaling were completed may not justify the cost compared to alternative actions.

  8. Fast-NPS-A Markov Chain Monte Carlo-based analysis tool to obtain structural information from single-molecule FRET measurements

    NASA Astrophysics Data System (ADS)

    Eilert, Tobias; Beckers, Maximilian; Drechsler, Florian; Michaelis, Jens

    2017-10-01

    The analysis tool and software package Fast-NPS can be used to analyse smFRET data to obtain quantitative structural information about macromolecules in their natural environment. In the algorithm a Bayesian model gives rise to a multivariate probability distribution describing the uncertainty of the structure determination. Since Fast-NPS aims to be an easy-to-use general-purpose analysis tool for a large variety of smFRET networks, we established an MCMC based sampling engine that approximates the target distribution and requires no parameter specification by the user at all. For an efficient local exploration we automatically adapt the multivariate proposal kernel according to the shape of the target distribution. In order to handle multimodality, the sampler is equipped with a parallel tempering scheme that is fully adaptive with respect to temperature spacing and number of chains. Since the molecular surrounding of a dye molecule affects its spatial mobility and thus the smFRET efficiency, we introduce dye models which can be selected for every dye molecule individually. These models allow the user to represent the smFRET network in great detail leading to an increased localisation precision. Finally, a tool to validate the chosen model combination is provided. Programme Files doi:http://dx.doi.org/10.17632/7ztzj63r68.1 Licencing provisions: Apache-2.0 Programming language: GUI in MATLAB (The MathWorks) and the core sampling engine in C++ Nature of problem: Sampling of highly diverse multivariate probability distributions in order to solve for macromolecular structures from smFRET data. Solution method: MCMC algorithm with fully adaptive proposal kernel and parallel tempering scheme.

  9. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens

    We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less

  10. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    DOE PAGES

    Anderson, Ryan B.; Clegg, Samuel M.; Frydenvang, Jens; ...

    2016-12-15

    We report that accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the Laser-Induced Breakdown Spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response ofmore » an element’s emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “submodel” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. Lastly, the sub-model method, using partial least squares regression (PLS), is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.« less

  11. 8s, a numerical simulator of the challenging optical calibration of the E-ELT adaptive mirror M4

    NASA Astrophysics Data System (ADS)

    Briguglio, Runa; Pariani, Giorgio; Xompero, Marco; Riccardi, Armando; Tintori, Matteo; Lazzarini, Paolo; Spanò, Paolo

    2016-07-01

    8s stands for Optical Test TOwer Simulator (with 8 read as in italian 'otto'): it is a simulation tool for the optical calibration of the E-ELT deformable mirror M4 on its test facility. It has been developed to identify possible criticalities in the procedure, evaluate the solutions and estimate the sensitivity to environmental noise. The simulation system is composed by the finite elements model of the tower, the analytic influence functions of the actuators, the ray tracing propagation of the laser beam through the optical surfaces. The tool delivers simulated phasemaps of M4, associated with the current system status: actuator commands, optics alignment and position, beam vignetting, bench temperature and vibrations. It is possible to simulate a single step of the optical test of M4 by changing the system parameters according to a calibration procedure and collect the associated phasemap for performance evaluation. In this paper we will describe the simulation package and outline the proposed calibration procedure of M4.

  12. Calibrated infrared ground/air radiometric spectrometer

    NASA Astrophysics Data System (ADS)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  13. Optical calibration and test of the VLT Deformable Secondary Mirror

    NASA Astrophysics Data System (ADS)

    Briguglio, Runa; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Biasi, Roberto; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves

    2013-12-01

    The Deformable Secondary Mirror (DSM) for the VLT (ESO) represents the state-of-art of the large-format deformable mirror technology with its 1170 voice-coil actuators and its internal metrology based on actuator co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the results of the optical characterization of the mirror unit with the ASSIST facility located at ESO-Garching and executed in a collaborative effort by ESO, INAF-Osservatorio Astrofisico di Arcetri and the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.). The main purposes of the tests are the optical characterization of the shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions. The results are used for the optical acceptance of the DSM and to allow the next test phase coupling the DSM with the wave-front sensor modules of the new Adaptive Optics Facility (AOF) of ESO.

  14. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofeng; Ye, Hongwei; Xia, Ting; Asma, Evren; Winkler, Mark; Gagnon, Daniel; Wang, Wenli

    2015-07-01

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the ‘ring’ artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset.

  15. Electricity Consumption in the Industrial Sector of Jordan: Application of Multivariate Linear Regression and Adaptive Neuro-Fuzzy Techniques

    NASA Astrophysics Data System (ADS)

    Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.

    2009-08-01

    In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.

  16. Visual control of robots using range images.

    PubMed

    Pomares, Jorge; Gil, Pablo; Torres, Fernando

    2010-01-01

    In the last years, 3D-vision systems based on the time-of-flight (ToF) principle have gained more importance in order to obtain 3D information from the workspace. In this paper, an analysis of the use of 3D ToF cameras to guide a robot arm is performed. To do so, an adaptive method to simultaneous visual servo control and camera calibration is presented. Using this method a robot arm is guided by using range information obtained from a ToF camera. Furthermore, the self-calibration method obtains the adequate integration time to be used by the range camera in order to precisely determine the depth information.

  17. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.

    1996-01-01

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  18. Chromatographic molecular weight measurements for heparin, its fragments and fractions, and other glycosaminoglycans.

    PubMed

    Mulloy, Barbara; Hogwood, John

    2015-01-01

    Glycosaminoglycan samples are usually polydisperse, consisting of molecules with differing length and differing sequence. Methods for measuring the molecular weight of heparin have been developed to assure the quality and consistency of heparin products for medicinal use, and these methods can be applied in other laboratory contexts. In the method described here, high-performance gel permeation chromatography is calibrated using appropriate heparin molecular weight markers or a single broad standard calibrant, and used to characterize the molecular weight distribution of polydisperse samples or the peak molecular weight of monodisperse, or approximately monodisperse, heparin fractions. The same technology can be adapted for use with other glycosaminoglycans.

  19. The Gemini Planet Imager Calibration Wavefront Sensor Instrument

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Burruss, Rick S.; Bartos, Randall D.; Trinh, Thang Q.; Pueyo, Laurent A.; Fregoso, Santos F.; Angione, John R.; Shelton, J. Chris

    2010-01-01

    The Gemini Planet Imager is an extreme adaptive optics system that will employ an apodized-pupil coronagraph to make direct detections of faint companions of nearby stars to a contrast level of the 10(exp -7) within a few lambda/D of the parent star. Such high contrasts from the ground require exquisite wavefront sensing and control both for the AO system as well as for the coronagraph. Un-sensed non-common path phase and amplitude errors after the wavefront sensor dichroic but before the coronagraph would lead to speckles which would ultimately limit the contrast. The calibration wavefront system for GPI will measure the complex wavefront at the system pupil before the apodizer and provide slow phase corrections to the AO system to mitigate errors that would cause a loss in contrast. The calibration wavefront sensor instrument for GPI has been built. We will describe the instrument and its performance.

  20. Development of buried wire gages for measurement of wall shear stress in Blastane experiments

    NASA Technical Reports Server (NTRS)

    Murthy, S. V.; Steinle, F. W.

    1986-01-01

    Buried Wire Gages operated from a Constant Temperature Anemometer System are among the special types of instrumentation to be used in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). These Gages are of a new type and need to be adapted for specific applications. Methods were developed to fabricate Gage inserts and mount those in the BLASTANE Instrumentation Plugs. A large number of Gages were prepared and operated from a Constant Temperature Anemometer System to derive some of the calibration constants for application to fluid-flow wall shear-stress measurements. The final stage of the calibration was defined, but could not be accomplished because of non-availability of a suitable flow simulating apparatus. This report provides a description of the Buried Wire Gage technique, an explanation of the method evolved for making proper Gages and the calibration constants, namely Temperature Coefficient of Resistance and Conduction Loss Factor.

  1. A self-calibrating multicomponent force/torque measuring system

    NASA Astrophysics Data System (ADS)

    Marangoni, Rafael R.; Schleichert, Jan; Rahneberg, Ilko; Hilbrunner, Falko; Fröhlich, Thomas

    2018-07-01

    A multicomponent self-calibrating force and torque sensor is presented. In this system, the principle of a Kibble balance is adapted for the traceable force and torque measurement in three orthogonal directions. The system has two operating modes: the velocity mode and the force/torque sensing mode. In the velocity mode, the calibration of the sensor is performed, while in the force/torque sensing mode, forces and torques are measured by using the principle of the electromagnetic force compensation. Details about the system are provided, with the main components of the sensor and a description of the operational procedure. A prototype of the system is currently being implemented for measuring forces and torques in a range of  ±2 N and  ±0.1 N · m respectively. A maximal relative expanded measurement uncertainty (k  =  2) of 1 · 10‑4 is expected for the force and torque measurements.

  2. Automatic analysis of quantitative NMR data of pharmaceutical compound libraries.

    PubMed

    Liu, Xuejun; Kolpak, Michael X; Wu, Jiejun; Leo, Gregory C

    2012-08-07

    In drug discovery, chemical library compounds are usually dissolved in DMSO at a certain concentration and then distributed to biologists for target screening. Quantitative (1)H NMR (qNMR) is the preferred method for the determination of the actual concentrations of compounds because the relative single proton peak areas of two chemical species represent the relative molar concentrations of the two compounds, that is, the compound of interest and a calibrant. Thus, an analyte concentration can be determined using a calibration compound at a known concentration. One particularly time-consuming step in the qNMR analysis of compound libraries is the manual integration of peaks. In this report is presented an automated method for performing this task without prior knowledge of compound structures and by using an external calibration spectrum. The script for automated integration is fast and adaptable to large-scale data sets, eliminating the need for manual integration in ~80% of the cases.

  3. Not All Stars Are the Sun: Empirical Calibration of the Mixing Length for Metal-poor Stars Using One-dimensional Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Chaboyer, B.

    2018-03-01

    Theoretical stellar evolution models are constructed and tailored to the best known, observationally derived characteristics of metal-poor ([Fe/H] ∼ ‑2.3) stars representing a range of evolutionary phases: subgiant HD 140283, globular cluster M92, and four single, main sequence stars with well-determined parallaxes: HIP 46120, HIP 54639, HIP 106924, and WOLF 1137. It is found that the use of a solar-calibrated value of the mixing length parameter α MLT in models of these objects is ineffective at reproducing their observed properties. Empirically calibrated values of α MLT are presented for each object, accounting for uncertainties in the input physics employed in the models. It is advocated that the implementation of an adaptive mixing length is necessary in order for stellar evolution models to maintain fidelity in the era of high-precision observations.

  4. IN-SITU IONIC CHEMICAL ANALYSIS OF FRESH WATER VIA A NOVEL COMBINED MULTI-SENSOR / SIGNAL PROCESSING ARCHITECTURE

    NASA Astrophysics Data System (ADS)

    Mueller, A. V.; Hemond, H.

    2009-12-01

    The capability for comprehensive, real-time, in-situ characterization of the chemical constituents of natural waters is a powerful tool for the advancement of the ecological and geochemical sciences, e.g. by facilitating rapid high-resolution adaptive sampling campaigns and avoiding the potential errors and high costs related to traditional grab sample collection, transportation and analysis. Portable field-ready instrumentation also promotes the goals of large-scale monitoring networks, such as CUASHI and WATERS, without the financial and human resources overhead required for traditional sampling at this scale. Problems of environmental remediation and monitoring of industrial waste waters would additionally benefit from such instrumental capacity. In-situ measurement of all major ions contributing to the charge makeup of natural fresh water is thus pursued via a combined multi-sensor/multivariate signal processing architecture. The instrument is based primarily on commercial electrochemical sensors, e.g. ion selective electrodes (ISEs) and ion selective field-effect transistors (ISFETs), to promote low cost as well as easy maintenance and reproduction,. The system employs a novel architecture of multivariate signal processing to extract accurate information from in-situ data streams via an "unmixing" process that accounts for sensor non-linearities at low concentrations, as well as sensor cross-reactivities. Conductivity, charge neutrality and temperature are applied as additional mathematical constraints on the chemical state of the system. Including such non-ionic information assists in obtaining accurate and useful calibrations even in the non-linear portion of the sensor response curves, and measurements can be made without the traditionally-required standard additions or ionic strength adjustment. Initial work demonstrates the effectiveness of this methodology at predicting inorganic cations (Na+, NH4+, H+, Ca2+, and K+) in a simplified system containing only a single anion (Cl-) in addition to hydroxide, thus allowing charge neutrality to be easily and explicitly invoked. Calibration of every probe relative to each of the five cations present is undertaken, and resulting curves are used to create a representative environmental data set based on USGS data for New England waters. Signal processing methodologies, specifically artificial neural networks (ANNs), are extended to use a feedback architecture based on conductivity measurements and charge neutrality calculations. The algorithms are then tuned to optimize performance of the algorithm at predicting actual concentrations from these simulated signals. Results are compared to use of component probes as stand-alone sensors. Future extension of this instrument for multiple anions (including carbonate and bicarbonate, nitrate, and sulfate) will ultimately provide rapid, accurate field measurements of the entire charge balance of natural waters at high resolution, improving sampling abilities while reducing costs and errors related to transport and analysis of grab samples.

  5. Newer classification and regression tree techniques: Bagging and Random Forests for ecological prediction

    Treesearch

    Anantha M. Prasad; Louis R. Iverson; Andy Liaw; Andy Liaw

    2006-01-01

    We evaluated four statistical models - Regression Tree Analysis (RTA), Bagging Trees (BT), Random Forests (RF), and Multivariate Adaptive Regression Splines (MARS) - for predictive vegetation mapping under current and future climate scenarios according to the Canadian Climate Centre global circulation model.

  6. Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula

    NASA Astrophysics Data System (ADS)

    Sarhadi, Ali; Burn, Donald H.; Concepción Ausín, María.; Wiper, Michael P.

    2016-03-01

    A time-varying risk analysis is proposed for an adaptive design framework in nonstationary conditions arising from climate change. A Bayesian, dynamic conditional copula is developed for modeling the time-varying dependence structure between mixed continuous and discrete multiattributes of multidimensional hydrometeorological phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean estimates and credible intervals are provided for the model parameters and the Deviance Information Criterion (DIC) is used to select the model that best captures different forms of nonstationarity over time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate time-dependent risk analysis in nonstationary environments. The results demonstrate that the nature and the risk of extreme-climate multidimensional processes are changed over time under the impact of climate change, and accordingly the long-term decision making strategies should be updated based on the anomalies of the nonstationary environment.

  7. A New Approach of Juvenile Age Estimation using Measurements of the Ilium and Multivariate Adaptive Regression Splines (MARS) Models for Better Age Prediction.

    PubMed

    Corron, Louise; Marchal, François; Condemi, Silvana; Chaumoître, Kathia; Adalian, Pascal

    2017-01-01

    Juvenile age estimation methods used in forensic anthropology generally lack methodological consistency and/or statistical validity. Considering this, a standard approach using nonparametric Multivariate Adaptive Regression Splines (MARS) models were tested to predict age from iliac biometric variables of male and female juveniles from Marseilles, France, aged 0-12 years. Models using unidimensional (length and width) and bidimensional iliac data (module and surface) were constructed on a training sample of 176 individuals and validated on an independent test sample of 68 individuals. Results show that MARS prediction models using iliac width, module and area give overall better and statistically valid age estimates. These models integrate punctual nonlinearities of the relationship between age and osteometric variables. By constructing valid prediction intervals whose size increases with age, MARS models take into account the normal increase of individual variability. MARS models can qualify as a practical and standardized approach for juvenile age estimation. © 2016 American Academy of Forensic Sciences.

  8. Testing Multivariate Adaptive Regression Splines (MARS) as a Method of Land Cover Classification of TERRA-ASTER Satellite Images.

    PubMed

    Quirós, Elia; Felicísimo, Angel M; Cuartero, Aurora

    2009-01-01

    This work proposes a new method to classify multi-spectral satellite images based on multivariate adaptive regression splines (MARS) and compares this classification system with the more common parallelepiped and maximum likelihood (ML) methods. We apply the classification methods to the land cover classification of a test zone located in southwestern Spain. The basis of the MARS method and its associated procedures are explained in detail, and the area under the ROC curve (AUC) is compared for the three methods. The results show that the MARS method provides better results than the parallelepiped method in all cases, and it provides better results than the maximum likelihood method in 13 cases out of 17. These results demonstrate that the MARS method can be used in isolation or in combination with other methods to improve the accuracy of soil cover classification. The improvement is statistically significant according to the Wilcoxon signed rank test.

  9. Integrating Growth Variability of the Ilium, Fifth Lumbar Vertebra, and Clavicle with Multivariate Adaptive Regression Splines Models for Subadult Age Estimation.

    PubMed

    Corron, Louise; Marchal, François; Condemi, Silvana; Telmon, Norbert; Chaumoitre, Kathia; Adalian, Pascal

    2018-05-31

    Subadult age estimation should rely on sampling and statistical protocols capturing development variability for more accurate age estimates. In this perspective, measurements were taken on the fifth lumbar vertebrae and/or clavicles of 534 French males and females aged 0-19 years and the ilia of 244 males and females aged 0-12 years. These variables were fitted in nonparametric multivariate adaptive regression splines (MARS) models with 95% prediction intervals (PIs) of age. The models were tested on two independent samples from Marseille and the Luis Lopes reference collection from Lisbon. Models using ilium width and module, maximum clavicle length, and lateral vertebral body heights were more than 92% accurate. Precision was lower for postpubertal individuals. Integrating punctual nonlinearities of the relationship between age and the variables and dynamic prediction intervals incorporated the normal increase in interindividual growth variability (heteroscedasticity of variance) with age for more biologically accurate predictions. © 2018 American Academy of Forensic Sciences.

  10. Meal Detection in Patients With Type 1 Diabetes: A New Module for the Multivariable Adaptive Artificial Pancreas Control System.

    PubMed

    Turksoy, Kamuran; Samadi, Sediqeh; Feng, Jianyuan; Littlejohn, Elizabeth; Quinn, Laurie; Cinar, Ali

    2016-01-01

    A novel meal-detection algorithm is developed based on continuous glucose measurements. Bergman's minimal model is modified and used in an unscented Kalman filter for state estimations. The estimated rate of appearance of glucose is used for meal detection. Data from nine subjects are used to assess the performance of the algorithm. The results indicate that the proposed algorithm works successfully with high accuracy. The average change in glucose levels between the meals and the detection points is 16(±9.42) [mg/dl] for 61 successfully detected meals and snacks. The algorithm is developed as a new module of an integrated multivariable adaptive artificial pancreas control system. Meal detection with the proposed method is used to administer insulin boluses and prevent most of postprandial hyperglycemia without any manual meal announcements. A novel meal bolus calculation method is proposed and tested with the UVA/Padova simulator. The results indicate significant reduction in hyperglycemia.

  11. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree

    NASA Astrophysics Data System (ADS)

    Heddam, Salim; Kisi, Ozgur

    2018-04-01

    In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.

  12. Multivariate curve-resolution analysis of pesticides in water samples from liquid chromatographic-diode array data.

    PubMed

    Maggio, Rubén M; Damiani, Patricia C; Olivieri, Alejandro C

    2011-01-30

    Liquid chromatographic-diode array detection data recorded for aqueous mixtures of 11 pesticides show the combined presence of strongly coeluting peaks, distortions in the time dimension between experimental runs, and the presence of potential interferents not modeled by the calibration phase in certain test samples. Due to the complexity of these phenomena, data were processed by a second-order multivariate algorithm based on multivariate curve resolution and alternating least-squares, which allows one to successfully model both the spectral and retention time behavior for all sample constituents. This led to the accurate quantitation of all analytes in a set of validation samples: aldicarb sulfoxide, oxamyl, aldicarb sulfone, methomyl, 3-hydroxy-carbofuran, aldicarb, propoxur, carbofuran, carbaryl, 1-naphthol and methiocarb. Limits of detection in the range 0.1-2 μg mL(-1) were obtained. Additionally, the second-order advantage for several analytes was achieved in samples containing several uncalibrated interferences. The limits of detection for all analytes were decreased by solid phase pre-concentration to values compatible to those officially recommended, i.e., in the order of 5 ng mL(-1). Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Kinetic approach for the enzymatic determination of levodopa and carbidopa assisted by multivariate curve resolution-alternating least squares.

    PubMed

    Grünhut, Marcos; Garrido, Mariano; Centurión, Maria E; Fernández Band, Beatriz S

    2010-07-12

    A combination of kinetic spectroscopic monitoring and multivariate curve resolution-alternating least squares (MCR-ALS) was proposed for the enzymatic determination of levodopa (LVD) and carbidopa (CBD) in pharmaceuticals. The enzymatic reaction process was carried out in a reverse stopped-flow injection system and monitored by UV-vis spectroscopy. The spectra (292-600 nm) were recorded throughout the reaction and were analyzed by multivariate curve resolution-alternating least squares. A small calibration matrix containing nine mixtures was used in the model construction. Additionally, to evaluate the prediction ability of the model, a set with six validation mixtures was used. The lack of fit obtained was 4.3%, the explained variance 99.8% and the overall prediction error 5.5%. Tablets of commercial samples were analyzed and the results were validated by pharmacopeia method (high performance liquid chromatography). No significant differences were found (alpha=0.05) between the reference values and the ones obtained with the proposed method. It is important to note that a unique chemometric model made it possible to determine both analytes simultaneously. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis.

    PubMed

    Liu, Fei; Ye, Lanhan; Peng, Jiyu; Song, Kunlin; Shen, Tingting; Zhang, Chu; He, Yong

    2018-02-27

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R 2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where R c 2 and R p 2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.

  15. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis

    PubMed Central

    Ye, Lanhan; Song, Kunlin; Shen, Tingting

    2018-01-01

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where Rc2 and Rp2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice. PMID:29495445

  16. Speciation of adsorbates on surface of solids by infrared spectroscopy and chemometrics.

    PubMed

    Vilmin, Franck; Bazin, Philippe; Thibault-Starzyk, Frédéric; Travert, Arnaud

    2015-09-03

    Speciation, i.e. identification and quantification, of surface species on heterogeneous surfaces by infrared spectroscopy is important in many fields but remains a challenging task when facing strongly overlapped spectra of multiple adspecies. Here, we propose a new methodology, combining state of the art instrumental developments for quantitative infrared spectroscopy of adspecies and chemometrics tools, mainly a novel data processing algorithm, called SORB-MCR (SOft modeling by Recursive Based-Multivariate Curve Resolution) and multivariate calibration. After formal transposition of the general linear mixture model to adsorption spectral data, the main issues, i.e. validity of Beer-Lambert law and rank deficiency problems, are theoretically discussed. Then, the methodology is exposed through application to two case studies, each of them characterized by a specific type of rank deficiency: (i) speciation of physisorbed water species over a hydrated silica surface, and (ii) speciation (chemisorption and physisorption) of a silane probe molecule over a dehydrated silica surface. In both cases, we demonstrate the relevance of this approach which leads to a thorough surface speciation based on comprehensive and fully interpretable multivariate quantitative models. Limitations and drawbacks of the methodology are also underlined. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Innovative methodology for intercomparison of radionuclide calibrators using short half-life in situ prepared radioactive sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, P. A.; Santos, J. A. M., E-mail: joao.santos@ipoporto.min-saude.pt; Serviço de Física Médica do Instituto Português de Oncologia do Porto Francisco Gentil, EPE, Porto

    2014-07-15

    Purpose: An original radionuclide calibrator method for activity determination is presented. The method could be used for intercomparison surveys for short half-life radioactive sources used in Nuclear Medicine, such as{sup 99m}Tc or most positron emission tomography radiopharmaceuticals. Methods: By evaluation of the resulting net optical density (netOD) using a standardized scanning method of irradiated Gafchromic XRQA2 film, a comparison of the netOD measurement with a previously determined calibration curve can be made and the difference between the tested radionuclide calibrator and a radionuclide calibrator used as reference device can be calculated. To estimate the total expected measurement uncertainties, a carefulmore » analysis of the methodology, for the case of{sup 99m}Tc, was performed: reproducibility determination, scanning conditions, and possible fadeout effects. Since every factor of the activity measurement procedure can influence the final result, the method also evaluates correct syringe positioning inside the radionuclide calibrator. Results: As an alternative to using a calibrated source sent to the surveyed site, which requires a relatively long half-life of the nuclide, or sending a portable calibrated radionuclide calibrator, the proposed method uses a source preparedin situ. An indirect activity determination is achieved by the irradiation of a radiochromic film using {sup 99m}Tc under strictly controlled conditions, and cumulated activity calculation from the initial activity and total irradiation time. The irradiated Gafchromic film and the irradiator, without the source, can then be sent to a National Metrology Institute for evaluation of the results. Conclusions: The methodology described in this paper showed to have a good potential for accurate (3%) radionuclide calibrators intercomparison studies for{sup 99m}Tc between Nuclear Medicine centers without source transfer and can easily be adapted to other short half-life radionuclides.« less

  18. Reduced rank regression via adaptive nuclear norm penalization

    PubMed Central

    Chen, Kun; Dong, Hongbo; Chan, Kung-Sik

    2014-01-01

    Summary We propose an adaptive nuclear norm penalization approach for low-rank matrix approximation, and use it to develop a new reduced rank estimation method for high-dimensional multivariate regression. The adaptive nuclear norm is defined as the weighted sum of the singular values of the matrix, and it is generally non-convex under the natural restriction that the weight decreases with the singular value. However, we show that the proposed non-convex penalized regression method has a global optimal solution obtained from an adaptively soft-thresholded singular value decomposition. The method is computationally efficient, and the resulting solution path is continuous. The rank consistency of and prediction/estimation performance bounds for the estimator are established for a high-dimensional asymptotic regime. Simulation studies and an application in genetics demonstrate its efficacy. PMID:25045172

  19. Adaptive Gas Turbine Engine Control for Deterioration Compensation Due to Aging

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Parker, Khary I.; Chatterjee, Santanu

    2003-01-01

    This paper presents an ad hoc adaptive, multivariable controller tuning rule that compensates for a thrust response variation in an engine whose performance has been degraded though use and wear. The upset appears when a large throttle transient is performed such that the engine controller switches from low-speed to high-speed mode. A relationship was observed between the level of engine degradation and the overshoot in engine temperature ratio, which was determined to cause the thrust response variation. This relationship was used to adapt the controller. The method is shown to work very well up to the operability limits of the engine. Additionally, since the level of degradation can be estimated from sensor data, it would be feasible to implement the adaptive control algorithm on-line.

  20. HEALTH CONDITIONS LINKED TO AGE-RELATED MACULAR DEGENERATION ASSOCIATED WITH DARK ADAPTATION.

    PubMed

    Laíns, Inês; Miller, John B; Mukai, Ryo; Mach, Steven; Vavvas, Demetrios; Kim, Ivana K; Miller, Joan W; Husain, Deeba

    2018-06-01

    To determine the association between dark adaption (DA) and different health conditions linked with age-related macular degeneration (AMD). Cross-sectional study, including patients with AMD and a control group. Age-related macular degeneration was graded according to the Age-Related Eye Disease Study (AREDS) classification. We obtained data on medical history, medications, and lifestyle. Dark adaption was assessed with the extended protocol (20 minutes) of AdaptDx (MacuLogix). For analyses, the right eye or the eye with more advanced AMD was selected. Multivariate linear and logistic regressions were performed, accounting for age and AMD stage. Seventy-eight subjects (75.6% AMD; 24.4% controls) were included. Multivariate assessments revealed that body mass index (BMI; β = 0.30, P = 0.045), taking AREDS vitamins (β = 5.51, P < 0.001), and family history of AMD (β = 2.68, P = 0.039) were significantly associated with worse rod intercept times. Abnormal DA (rod intercept time ≥ 6.5 minutes) was significantly associated with family history of AMD (β = 1.84, P = 0.006), taking AREDS supplements (β = 1.67, P = 0.021) and alcohol intake (β = 0.07, P = 0.017). Besides age and AMD stage, a higher body mass index, higher alcohol intake, and a family history of AMD seem to impair DA. In this cohort, the use of AREDS vitamins was also statistically linked with impaired DA, most likely because of an increased severity of disease in subjects taking them.

  1. Modelling exploration of non-stationary hydrological system

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2015-04-01

    Traditional hydrological modelling assumes that the catchment does not change with time (i.e., stationary conditions) which means the model calibrated for the historical period is valid for the future period. However, in reality, due to change of climate and catchment conditions this stationarity assumption may not be valid in the future. It is a challenge to make the hydrological model adaptive to the future climate and catchment conditions that are not observable at the present time. In this study a lumped conceptual rainfall-runoff model called IHACRES was applied to a catchment in southwest England. Long observation data from 1961 to 2008 were used and seasonal calibration (in this study only summer period is further explored because it is more sensitive to climate and land cover change than the other three seasons) has been done since there are significant seasonal rainfall patterns. We expect that the model performance can be improved by calibrating the model based on individual seasons. The data is split into calibration and validation periods with the intention of using the validation period to represent the future unobserved situations. The success of the non-stationary model will depend not only on good performance during the calibration period but also the validation period. Initially, the calibration is based on changing the model parameters with time. Methodology is proposed to adapt the parameters using the step forward and backward selection schemes. However, in the validation both the forward and backward multiple parameter changing models failed. One problem is that the regression with time is not reliable since the trend may not be in a monotonic linear relationship with time. The second issue is that changing multiple parameters makes the selection process very complex which is time consuming and not effective in the validation period. As a result, two new concepts are explored. First, only one parameter is selected for adjustment while the other parameters are set as constant. Secondly, regression is made against climate condition instead of against time. It has been found that such a new approach is very effective and this non-stationary model worked very well both in the calibration and validation period. Although the catchment is specific in southwest England and the data are for only the summer period, the methodology proposed in this study is general and applicable to other catchments. We hope this study will stimulate the hydrological community to explore a variety of sites so that valuable experiences and knowledge could be gained to improve our understanding of such a complex modelling issue in climate change impact assessment.

  2. Crop physiology calibration in the CLM

    DOE PAGES

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-15

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurementsmore » of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.« less

  3. Crop physiology calibration in the CLM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurementsmore » of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.« less

  4. Migrating from a legacy fixed-format measure to CAT administration: calibrating the PHQ-9 to the PROMIS depression measures

    PubMed Central

    Feldman, Betsy J.; Crane, Heidi M.; Mugavero, Michael; Willig, James H.; Patrick, Donald; Schumacher, Joseph; Saag, Michael; Kitahata, Mari M.; Crane, Paul K.

    2011-01-01

    Purpose We provide detailed instructions for analyzing patient-reported outcome (PRO) data collected with an existing (legacy) instrument so that scores can be calibrated to the PRO Measurement Information System (PROMIS) metric. This calibration facilitates migration to computerized adaptive test (CAT) PROMIS data collection, while facilitating research using historical legacy data alongside new PROMIS data. Methods A cross-sectional convenience sample (n = 2,178) from the Universities of Washington and Alabama at Birmingham HIV clinics completed the PROMIS short form and Patient Health Questionnaire (PHQ-9) depression symptom measures between August 2008 and December 2009. We calibrated the tests using item response theory. We compared measurement precision of the PHQ-9, the PROMIS short form, and simulated PROMIS CAT. Results Dimensionality analyses confirmed the PHQ-9 could be calibrated to the PROMIS metric. We provide code used to score the PHQ-9 on the PROMIS metric. The mean standard errors of measurement were 0.49 for the PHQ-9, 0.35 for the PROMIS short form, and 0.37, 0.28, and 0.27 for 3-, 8-, and 9-item-simulated CATs. Conclusions The strategy described here facilitated migration from a fixed-format legacy scale to PROMIS CAT administration and may be useful in other settings. PMID:21409516

  5. Migrating from a legacy fixed-format measure to CAT administration: calibrating the PHQ-9 to the PROMIS depression measures.

    PubMed

    Gibbons, Laura E; Feldman, Betsy J; Crane, Heidi M; Mugavero, Michael; Willig, James H; Patrick, Donald; Schumacher, Joseph; Saag, Michael; Kitahata, Mari M; Crane, Paul K

    2011-11-01

    We provide detailed instructions for analyzing patient-reported outcome (PRO) data collected with an existing (legacy) instrument so that scores can be calibrated to the PRO Measurement Information System (PROMIS) metric. This calibration facilitates migration to computerized adaptive test (CAT) PROMIS data collection, while facilitating research using historical legacy data alongside new PROMIS data. A cross-sectional convenience sample (n = 2,178) from the Universities of Washington and Alabama at Birmingham HIV clinics completed the PROMIS short form and Patient Health Questionnaire (PHQ-9) depression symptom measures between August 2008 and December 2009. We calibrated the tests using item response theory. We compared measurement precision of the PHQ-9, the PROMIS short form, and simulated PROMIS CAT. Dimensionality analyses confirmed the PHQ-9 could be calibrated to the PROMIS metric. We provide code used to score the PHQ-9 on the PROMIS metric. The mean standard errors of measurement were 0.49 for the PHQ-9, 0.35 for the PROMIS short form, and 0.37, 0.28, and 0.27 for 3-, 8-, and 9-item-simulated CATs. The strategy described here facilitated migration from a fixed-format legacy scale to PROMIS CAT administration and may be useful in other settings.

  6. Heliostat kinematic system calibration using uncalibrated cameras

    NASA Astrophysics Data System (ADS)

    Burisch, Michael; Gomez, Luis; Olasolo, David; Villasante, Cristobal

    2017-06-01

    The efficiency of the solar field greatly depends on the ability of the heliostats to precisely reflect solar radiation onto a central receiver. To control the heliostats with such a precision accurate knowledge of the motion of each of them modeled as a kinematic system is required. Determining the parameters of this system for each heliostat by a calibration system is crucial for the efficient operation of the solar field. For small sized heliostats being able to make such a calibration in a fast and automatic manner is imperative as the solar field potentially contain tens or even hundreds of thousands of them. A calibration system which can rapidly recalibrate a whole solar field would also allow reducing costs. Heliostats are generally designed to provide stability over a large period of time. Being able to relax this requirement and compensate any occurring error by adapting parameters in a model, the costs of the heliostat can be reduced. The presented method describes such an automatic calibration system using uncalibrated cameras rigidly attached to each heliostat. The cameras are used to observe targets spread out through the solar field; based on this the kinematic system of the heliostat can be estimated with high precision. A comparison of this approach to similar solutions shows the viability of the proposed solution.

  7. Experimental and simulation studies of multivariable adaptive optimization of continuous bioreactors using bilevel forgetting factors.

    PubMed

    Chang, Y K; Lim, H C

    1989-08-20

    A multivariable on-line adaptive optimization algorithm using a bilevel forgetting factor method was developed and applied to a continuous baker's yeast culture in simulation and experimental studies to maximize the cellular productivity by manipulating the dilution rate and the temperature. The algorithm showed a good optimization speed and a good adaptability and reoptimization capability. The algorithm was able to stably maintain the process around the optimum point for an extended period of time. Two cases were investigated: an unconstrained and a constrained optimization. In the constrained optimization the ethanol concentration was used as an index for the baking quality of yeast cells. An equality constraint with a quadratic penalty was imposed on the ethanol concentration to keep its level close to a hypothetical "optimum" value. The developed algorithm was experimentally applied to a baker's yeast culture to demonstrate its validity. Only unconstrained optimization was carried out experimentally. A set of tuning parameter values was suggested after evaluating the results from several experimental runs. With those tuning parameter values the optimization took 50-90 h. At the attained steady state the dilution rate was 0.310 h(-1) the temperature 32.8 degrees C, and the cellular productivity 1.50 g/L/h.

  8. Differential flatness properties and multivariable adaptive control of ovarian system dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2016-12-01

    The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.

  9. Updated Astrometric Calibration of the Gemini Planet Imager: Application to the Theta1 Orionis B System

    NASA Astrophysics Data System (ADS)

    Tran, Debby; Konopacky, Quinn; GPIES Team

    2018-01-01

    The Gemini Planet Imager (GPI), housed on the 8-meter Gemini South telescope in Chile, is an instrument designed to detect Jupiter-like extrasolar planets by direct imaging. It relies on adaptive optics to correct the effects of atmospheric turbulence, along with an advanced coronagraph and calibration system. One of the scientific goals of GPI is to measure the orbital properties of the planets it discovers. Because these orbits have long periods, precise measurements of the relative position between the star and the planet (relative astrometry) are required. In this poster, I will present the astrometric calibration of GPI. We constrain the plate scale and orientation of the camera by observing different binary star systems with both GPI and another well-calibrated instrument, NIRC2, at the Keck telescope in Hawaii. We measure their separations with both instruments and use that information to calibrate the plate scale. By taking these calibration measurements over the course of three years, we have measured the plate scale to 0.05% and shown that it is stable across multiple epochs. One of the calibrators for GPI is Theta1 Orionis B, one of the star systems in the Trapezium Cluster in Orion. Using GPI and Keck measurements taken over the past several years combined with astrometry from the literature spanning two decades, we can place new constraints on the orbital properties of this massive multiple system. We will present the best fit orbital properties for these objects, including updated mass estimates for the components.

  10. To risk or not to risk: Anxiety and the calibration between risk perception and danger mitigation.

    PubMed

    Notebaert, Lies; Masschelein, Stijn; Wright, Bridget; MacLeod, Colin

    2016-06-01

    Anxiety prepares an organism for dealing with threats by recruiting cognitive resources to process information about the threat, and by engaging physiological systems to prepare a response. Heightened trait anxiety is associated with biases in both these processes: high trait-anxious individuals tend to report heightened risk perceptions, and inappropriate engagement in danger mitigation behavior. However, no research has addressed whether the calibration between risk perception and danger mitigation behavior is affected by anxiety, though it is well recognized that this calibration is crucial for adaptive functioning. The current study aimed to examine whether anxiety is characterized by better or worse calibration of danger mitigation behavior to variations in risk magnitude. Low and high trait-anxious participants were presented with information about the likelihood and severity of a danger (loud noise burst) on each trial. Participants could decide to mitigate this danger by investing a virtual coin, at the cost of losing danger mitigation ability on subsequent trials. Importantly, level of risk likelihood and severity were varied independently, and the multiplicative relationship between the 2 defined total danger. Multilevel modeling showed that the magnitude of total danger predicted the probability of coin investments, over and above the effects of risk likelihood and severity, suggesting that participants calibrated their danger mitigation behavior to integrated risk information. Crucially, this calibration was affected by trait anxiety, indicating better calibration in high trait-anxious individuals. These results are discussed in light of existing knowledge and models of the effect of anxiety on risk perception and decision-making. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    NASA Technical Reports Server (NTRS)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  12. Nonlinear and adaptive control

    NASA Technical Reports Server (NTRS)

    Athans, Michael

    1989-01-01

    The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies.

  13. Determinants of adaptation choices to climate change by sheep and goat farmers in Northern Ethiopia: the case of Southern and Central Tigray, Ethiopia.

    PubMed

    Feleke, Fikeremaryam Birara; Berhe, Melaku; Gebru, Getachew; Hoag, Dana

    2016-01-01

    The livestock sector serves as a foremost source of revenue for rural people, particularly in many developing countries. Among the livestock species, sheep and goats are the main source of livelihood for rural people in Ethiopia; they can quickly multiply, resilient and are easily convertible to cash to meet financial needs of the rural producers. The multiple contributions of sheep and goat and other livestock to rural farmers are however being challenged by climate change and variability. Farmers are responding to the impacts of climate change by adopting different mechanisms, where choices are largely dependent on many factors. This study, therefore, aims to analyze the determinants of choices of adaptation practices to climate change that causes scarcity of feed, heat stress, shortage of water and pasture on sheep and goat production. The study used 318 sample households drawn from potential livestock producing districts representing 3 agro-ecological settings. Data was analyzed using simple descriptive statistical tools, a multivariate probit model and Ordinary Least Squares (OLS). Most of the respondents (98.6 %) noted that climate is changing. Respondents' perception is that climate change is expressed through increased temperature (88 %) and decline in rainfall (73 %) over the last 10 years. The most commonly used adaptation strategy was marketing during forage shock (96.5 %), followed by home feeding (89.6 %). The estimation from the multivariate probit model showed that access to information, farming experience, number of households in one village, distance to main market, income of household, and agro-ecological settings influenced farmers' adaptation choices to climate change. Furthermore, OLS revealed that the adaptation strategies had positive influence on the household income.

  14. Simulation analysis of adaptive cruise prediction control

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Cui, Sheng Min

    2017-09-01

    Predictive control is suitable for multi-variable and multi-constraint system control.In order to discuss the effect of predictive control on the vehicle longitudinal motion, this paper establishes the expected spacing model by combining variable pitch spacing and the of safety distance strategy. The model predictive control theory and the optimization method based on secondary planning are designed to obtain and track the best expected acceleration trajectory quickly. Simulation models are established including predictive and adaptive fuzzy control. Simulation results show that predictive control can realize the basic function of the system while ensuring the safety. The application of predictive and fuzzy adaptive algorithm in cruise condition indicates that the predictive control effect is better.

  15. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

    NASA Astrophysics Data System (ADS)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

  16. A Comparison of Linking and Concurrent Calibration under the Graded Response Model.

    ERIC Educational Resources Information Center

    Kim, Seock-Ho; Cohen, Allan S.

    Applications of item response theory to practical testing problems including equating, differential item functioning, and computerized adaptive testing, require that item parameter estimates be placed onto a common metric. In this study, two methods for developing a common metric for the graded response model under item response theory were…

  17. Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation

    USDA-ARS?s Scientific Manuscript database

    As climate change becomes inevitable, the agricultural community is concerned about its possible effects on crop production and developing strategies to adapt to this change. In this study, the Root Zone Water Quality Model (RZWQM2) was calibrated with four years of maize data from central Colorado ...

  18. 78 FR 61337 - Request for Comments on Department of Commerce Green Paper, Copyright Policy, Creativity, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... relevance and scope of the first sale doctrine in the digital environment; the appropriate calibration of... licensing environment; and establishing a multistakeholder dialogue on improving the operation of the notice... in adapting copyright law to the digital environment, identifies issues on which more work should be...

  19. Cryogenic liquid-level detector

    NASA Technical Reports Server (NTRS)

    Hamlet, J.

    1978-01-01

    Detector is designed for quick assembly, fast response, and good performance under vibratory stress. Its basic parallel-plate open configuration can be adapted to any length and allows its calibration scale factor to be predicted accurately. When compared with discrete level sensors, continuous reading sensor was found to be superior if there is sloshing, boiling, or other disturbance.

  20. MATE: Machine Learning for Adaptive Calibration Template Detection

    PubMed Central

    Donné, Simon; De Vylder, Jonas; Goossens, Bart; Philips, Wilfried

    2016-01-01

    The problem of camera calibration is two-fold. On the one hand, the parameters are estimated from known correspondences between the captured image and the real world. On the other, these correspondences themselves—typically in the form of chessboard corners—need to be found. Many distinct approaches for this feature template extraction are available, often of large computational and/or implementational complexity. We exploit the generalized nature of deep learning networks to detect checkerboard corners: our proposed method is a convolutional neural network (CNN) trained on a large set of example chessboard images, which generalizes several existing solutions. The network is trained explicitly against noisy inputs, as well as inputs with large degrees of lens distortion. The trained network that we evaluate is as accurate as existing techniques while offering improved execution time and increased adaptability to specific situations with little effort. The proposed method is not only robust against the types of degradation present in the training set (lens distortions, and large amounts of sensor noise), but also to perspective deformations, e.g., resulting from multi-camera set-ups. PMID:27827920

  1. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    NASA Astrophysics Data System (ADS)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  2. Derivation and validation of the prediabetes self-assessment screening score after acute pancreatitis (PERSEUS).

    PubMed

    Soo, Danielle H E; Pendharkar, Sayali A; Jivanji, Chirag J; Gillies, Nicola A; Windsor, John A; Petrov, Maxim S

    2017-10-01

    Approximately 40% of patients develop abnormal glucose metabolism after a single episode of acute pancreatitis. This study aimed to develop and validate a prediabetes self-assessment screening score for patients after acute pancreatitis. Data from non-overlapping training (n=82) and validation (n=80) cohorts were analysed. Univariate logistic and linear regression identified variables associated with prediabetes after acute pancreatitis. Multivariate logistic regression developed the score, ranging from 0 to 215. The area under the receiver-operating characteristic curve (AUROC), Hosmer-Lemeshow χ 2 statistic, and calibration plots were used to assess model discrimination and calibration. The developed score was validated using data from the validation cohort. The score had an AUROC of 0.88 (95% CI, 0.80-0.97) and Hosmer-Lemeshow χ 2 statistic of 5.75 (p=0.676). Patients with a score of ≥75 had a 94.1% probability of having prediabetes, and were 29 times more likely to have prediabetes than those with a score of <75. The AUROC in the validation cohort was 0.81 (95% CI, 0.70-0.92) and the Hosmer-Lemeshow χ 2 statistic was 5.50 (p=0.599). Model calibration of the score showed good calibration in both cohorts. The developed and validated score, called PERSEUS, is the first instrument to identify individuals who are at high risk of developing abnormal glucose metabolism following an episode of acute pancreatitis. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  3. Reliable noninvasive measurement of blood gases

    DOEpatents

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.; Alam, Mary K.

    1994-01-01

    Methods and apparatus for, preferably, determining noninvasively and in vivo at least two of the five blood gas parameters (i.e., pH, PCO.sub.2, [HCO.sub.3.sup.- ], PO.sub.2, and O.sub.2 sat.) in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 500 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of at least two of pH, [HCO.sub.3.sup.- ], PCO.sub.2 and a measure of oxygen concentration. The determined values are within the physiological ranges observed in blood containing tissue. The method also includes the steps of providing calibration samples, determining if the spectral intensities v. wavelengths from the tissue represents an outlier, and determining if any of the calibration samples represents an outlier. The determination of the unknown values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. Preferably, there is a separate calibration for each blood gas parameter being determined. The method can be utilized in a pulse mode and can also be used invasively. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.

  4. Simultaneous estimation of ramipril, acetylsalicylic acid and atorvastatin calcium by chemometrics assisted UV-spectrophotometric method in capsules.

    PubMed

    Sankar, A S Kamatchi; Vetrichelvan, Thangarasu; Venkappaya, Devashya

    2011-09-01

    In the present work, three different spectrophotometric methods for simultaneous estimation of ramipril, aspirin and atorvastatin calcium in raw materials and in formulations are described. Overlapped data was quantitatively resolved by using chemometric methods, viz. inverse least squares (ILS), principal component regression (PCR) and partial least squares (PLS). Calibrations were constructed using the absorption data matrix corresponding to the concentration data matrix. The linearity range was found to be 1-5, 10-50 and 2-10 μg mL-1 for ramipril, aspirin and atorvastatin calcium, respectively. The absorbance matrix was obtained by measuring the zero-order absorbance in the wavelength range between 210 and 320 nm. A training set design of the concentration data corresponding to the ramipril, aspirin and atorvastatin calcium mixtures was organized statistically to maximize the information content from the spectra and to minimize the error of multivariate calibrations. By applying the respective algorithms for PLS 1, PCR and ILS to the measured spectra of the calibration set, a suitable model was obtained. This model was selected on the basis of RMSECV and RMSEP values. The same was applied to the prediction set and capsule formulation. Mean recoveries of the commercial formulation set together with the figures of merit (calibration sensitivity, selectivity, limit of detection, limit of quantification and analytical sensitivity) were estimated. Validity of the proposed approaches was successfully assessed for analyses of drugs in the various prepared physical mixtures and formulations.

  5. Corrigendum to "Pharmaceutical analysis in solids using front face fluorescence spectroscopy and multivariate calibration with matrix correction by piecewise direct standardization" [Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 103 (2013) 311-318

    NASA Astrophysics Data System (ADS)

    Alves, Julio Cesar L.; Poppi, Ronei J.

    2014-03-01

    The authors regret to inform that the tick labels of the ternary diagram axes in Fig. 1 were shown from 0% to 1.0% instead of 0% to 100%. The correct values of 0% to 100% are shown in the corrected Fig. 1 (see below). The right contents of the active ingredients in the sample sets shown in the diagram are now in agreement with the stated throughout the paper.

  6. Laser-induced breakdown spectroscopy for analysis of plant materials: A review

    NASA Astrophysics Data System (ADS)

    Santos, Dário, Jr.; Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Gomes, Marcos da Silva; de Souza, Paulino Florêncio; Leme, Flavio de Oliveira; dos Santos, Luis Gustavo Cofani; Krug, Francisco José

    2012-05-01

    Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited.

  7. Calibrating the ChemCam LIBS for Carbonate Minerals on Mars

    DOE R&D Accomplishments Database

    Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.

    2009-01-01

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  8. Application of the dynamic calibration method to international monitoring system stations in Central Asia using natural seismicity data

    NASA Astrophysics Data System (ADS)

    Kedrov, O. K.; Kedrov, E. O.; Sergeyeva, N. A.; Zabarinskaya, L. P.; Gordon, V. R.

    2008-05-01

    The dynamic calibration method (DCM), using natural seismicity data and initially elaborated in [Kedrov, 2001; Kedrov et al., 2001; Kedrov and Kedrov, 2003], is applied to International Monitoring System (IMS) stations in Central Asia. The algorithm of the method is refined and a program is designed for calibrating diagnostic parameters (discriminants) that characterize a seismic source on the source-station traces. The DCM calibration of stations in relation to the region under study is performed by the choice of attenuation coefficients that adapt the diagnostic parameters to the conditions in a reference region. In this method, the stable Eurasia region is used as the latter. The calibration used numerical data samples taken from the archive of the International Data Centre (IDC) for the IMS stations MKAR, BVAR, EIL, ASF, and CMAR. In this paper, we used discriminants in the spectral and time domains that have the form D_i = X_i - a_m m_b - b_Δ log Δ and are independent of the magnitude m b and the epicentral distance Δ; these discriminants were elaborated in [Kedrov et al., 1990; Kedrov and Lyuke, 1999] on the basis of a method used for identification of events at regional distances in Eurasia. Prerequisites of the DCM are the assumptions that the coefficient a m is regionindependent and the coefficient b Δ depends only on the geotectonic characteristics of the medium and does not depend on the source type. Thus, b Δ can be evaluated only from a sample of earthquakes in the region studied; it is used for adapting the discriminants D( X i ) in the region studied to the reference region. The algorithm is constructed in such a way that corrected values of D( X i) are calculated from the found values of the calibration coefficients b Δ, after which natural events in the region under study are selected by filtering. Empirical estimates of the filtering efficiency as a function of a station vary in a range of 95 100%. The DCM was independently tested using records obtained at the IRIS (Incorporated Research Institutions for Seismology) stations BRVK and MAKZ from explosions detonated in India on May 11, 1998, and Pakistan on May 28, 1998; these stations are similar in location and recording instrumentation characteristics to the IMS stations BVAR and MKAR. This test resulted in correct recognition of the source type and thereby directly confirmed the validity of the proposed calibration method of stations with the use of natural seismicity data. It is shown that the calibration coefficients b Δ for traces similar in the conditions of signal propagation (e.g., the traces from Iran to the stations EIL and ASF) are comparable for nearly all diagnostic parameters. We arrive at the conclusion that the method of dynamic calibration of stations using natural seismicity data in a region where no explosions were detonated can be significant for a rapid and inexpensive calibration of IMS stations. The DCM can also be used for recognition of industrial chemical explosions that are sometimes erroneously classified in regional catalogs as earthquakes.

  9. Photometric Calibration of the Gemini South Adaptive Optics Imager

    NASA Astrophysics Data System (ADS)

    Stevenson, Sarah Anne; Rodrigo Carrasco Damele, Eleazar; Thomas-Osip, Joanna

    2017-01-01

    The Gemini South Adaptive Optics Imager (GSAOI) is an instrument available on the Gemini South telescope at Cerro Pachon, Chile, utilizing the Gemini Multi-Conjugate Adaptive Optics System (GeMS). In order to allow users to easily perform photometry with this instrument and to monitor any changes in the instrument in the future, we seek to set up a process for performing photometric calibration with standard star observations taken across the time of the instrument’s operation. We construct a Python-based pipeline that includes IRAF wrappers for reduction and combines the AstroPy photutils package and original Python scripts with the IRAF apphot and photcal packages to carry out photometry and linear regression fitting. Using the pipeline, we examine standard star observations made with GSAOI on 68 nights between 2013 and 2015 in order to determine the nightly photometric zero points in the J, H, Kshort, and K bands. This work is based on observations obtained at the Gemini Observatory, processed using the Gemini IRAF and gemini_python packages, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  10. A multivariate assessment of changes in wetland habitat for waterbirds at Moosehorn National Wildlife Refuge, Maine, USA

    USGS Publications Warehouse

    Hierl, L.A.; Loftin, C.S.; Longcore, J.R.; McAuley, D.G.; Urban, D.L.

    2007-01-01

    We assessed changes in vegetative structure of 49 impoundments at Moosehorn National Wildlife Refuge (MNWR), Maine, USA, between the periods 1984-1985 to 2002 with a multivariate, adaptive approach that may be useful in a variety of wetland and other habitat management situations. We used Mahalanobis Distance (MD) analysis to classify the refuge?s wetlands as poor or good waterbird habitat based on five variables: percent emergent vegetation, percent shrub, percent open water, relative richness of vegetative types, and an interspersion juxtaposition index that measures adjacency of vegetation patches. Mahalanobis Distance is a multivariate statistic that examines whether a particular data point is an outlier or a member of a data cluster while accounting for correlations among inputs. For each wetland, we used MD analysis to quantify a distance from a reference condition defined a priori by habitat conditions measured in MNWR wetlands used by waterbirds. Twenty-five wetlands declined in quality between the two periods, whereas 23 wetlands improved. We identified specific wetland characteristics that may be modified to improve habitat conditions for waterbirds. The MD analysis seems ideal for instituting an adaptive wetland management approach because metrics can be easily added or removed, ranges of target habitat conditions can be defined by field-collected data, and the analysis can identify priorities for single or multiple management objectives.

  11. Parameter identifiability and regional calibration for reservoir inflow prediction

    NASA Astrophysics Data System (ADS)

    Kolberg, Sjur; Engeland, Kolbjørn; Tøfte, Lena S.; Bruland, Oddbjørn

    2013-04-01

    The large hydropower producer Statkraft is currently testing regional, distributed models for operational reservoir inflow prediction. The need for simultaneous forecasts and consistent updating in a large number of catchments supports the shift from catchment-oriented to regional models. Low-quality naturalized inflow series in the reservoir catchments further encourages the use of donor catchments and regional simulation for calibration purposes. MCMC based parameter estimation (the Dream algorithm; Vrugt et al, 2009) is adapted to regional parameter estimation, and implemented within the open source ENKI framework. The likelihood is based on the concept of effectively independent number of observations, spatially as well as in time. Marginal and conditional (around an optimum) parameter distributions for each catchment may be extracted, even though the MCMC algorithm itself is guided only by the regional likelihood surface. Early results indicate that the average performance loss associated with regional calibration (difference in Nash-Sutcliffe R2 between regionally and locally optimal parameters) is in the range of 0.06. The importance of the seasonal snow storage and melt in Norwegian mountain catchments probably contributes to the high degree of similarity among catchments. The evaluation continues for several regions, focusing on posterior parameter uncertainty and identifiability. Vrugt, J. A., C. J. F. ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hyman and D. Higdon: Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling. Int. J. of nonlinear sciences and numerical simulation 10, 3, 273-290, 2009.

  12. An early warning system for marine storm hazard mitigation

    NASA Astrophysics Data System (ADS)

    Vousdoukas, M. I.; Almeida, L. P.; Pacheco, A.; Ferreira, O.

    2012-04-01

    The present contribution presents efforts towards the development of an operational Early Warning System for storm hazard prediction and mitigation. The system consists of a calibrated nested-model train which consists of specially calibrated Wave Watch III, SWAN and XBeach models. The numerical simulations provide daily forecasts of the hydrodynamic conditions, morphological change and overtopping risk at the area of interest. The model predictions are processed by a 'translation' module which is based on site-specific Storm Impact Indicators (SIIs) (Ciavola et al., 2011, Storm impacts along European coastlines. Part 2: lessons learned from the MICORE project, Environmental Science & Policy, Vol 14), and warnings are issued when pre-defined threshold values are exceeded. For the present site the selected SIIs were (i) the maximum wave run-up height during the simulations; and (ii) the dune-foot horizontal retreat at the end of the simulations. Both SIIs and pre-defined thresholds were carefully selected on the grounds of existing experience and field data. Four risk levels were considered, each associated with an intervention approach, recommended to the responsible coastal protection authority. Regular updating of the topography/bathymetry is critical for the performance of the storm impact forecasting, especially when there are significant morphological changes. The system can be extended to other critical problems, like implications of global warming and adaptive management strategies, while the approach presently followed, from model calibration to the early warning system for storm hazard mitigation, can be applied to other sites worldwide, with minor adaptations.

  13. Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC

    NASA Astrophysics Data System (ADS)

    Susiluoto, Jouni; Raivonen, Maarit; Backman, Leif; Laine, Marko; Makela, Jarmo; Peltola, Olli; Vesala, Timo; Aalto, Tuula

    2018-03-01

    Estimating methane (CH4) emissions from natural wetlands is complex, and the estimates contain large uncertainties. The models used for the task are typically heavily parameterized and the parameter values are not well known. In this study, we perform a Bayesian model calibration for a new wetland CH4 emission model to improve the quality of the predictions and to understand the limitations of such models.The detailed process model that we analyze contains descriptions for CH4 production from anaerobic respiration, CH4 oxidation, and gas transportation by diffusion, ebullition, and the aerenchyma cells of vascular plants. The processes are controlled by several tunable parameters. We use a hierarchical statistical model to describe the parameters and obtain the posterior distributions of the parameters and uncertainties in the processes with adaptive Markov chain Monte Carlo (MCMC), importance resampling, and time series analysis techniques. For the estimation, the analysis utilizes measurement data from the Siikaneva flux measurement site in southern Finland. The uncertainties related to the parameters and the modeled processes are described quantitatively. At the process level, the flux measurement data are able to constrain the CH4 production processes, methane oxidation, and the different gas transport processes. The posterior covariance structures explain how the parameters and the processes are related. Additionally, the flux and flux component uncertainties are analyzed both at the annual and daily levels. The parameter posterior densities obtained provide information regarding importance of the different processes, which is also useful for development of wetland methane emission models other than the square root HelsinkI Model of MEthane buiLd-up and emIssion for peatlands (sqHIMMELI). The hierarchical modeling allows us to assess the effects of some of the parameters on an annual basis. The results of the calibration and the cross validation suggest that the early spring net primary production could be used to predict parameters affecting the annual methane production. Even though the calibration is specific to the Siikaneva site, the hierarchical modeling approach is well suited for larger-scale studies and the results of the estimation pave way for a regional or global-scale Bayesian calibration of wetland emission models.

  14. Item bank development, calibration and validation for patient-reported outcomes in female urinary incontinence

    PubMed Central

    Sung, Vivian W.; Griffith, James W.; Rogers, Rebecca G.; Raker, Christina A.; Clark, Melissa A.

    2016-01-01

    Purpose Current patient-reported outcomes for female urinary incontinence (UI) are limited by their inability to be tailored. Our objective is to describe the development and field-testing of 7 item banks designed to measure domains identified as important UI in females (UIf). We also describe the calibration and validation properties of the UIf-item banks, which allow for more efficient computerized-adaptive testing (CAT) in the future. METHODS The UIf-measures included 168 items covering 7 domains: Stress UI (SUI), Overactive Bladder (OAB), Urinary Frequency, Physical, Social and Emotional Health Impact, and Adaptation. Items underwent rigorous qualitative development and psychometric testing across 2 sites. Items were calibrated using item response theory and evaluated for internal consistency, construct validity and responsiveness. RESULTS 750 women (249 SUI, 249 OAB, and 252 mixed UI) participated. Mean age was 55±14 years ,23% were Hispanic, 80% white. In addition to face and content validity, the measures demonstrated good internal consistency (coefficient alpha 0.92-0.98) and unidimensionality. There was evidence for construct validity with moderate to strong correlations with the UDI (r’s ≥ 0.6) and IIQ (r’s = ≥ 0.6) scales. The measures were responsive to change for SUI treatment (paired t-test p <.001, ES range=1.3 to 2.9; SRM range=1.3 to 2.5) and OAB treatment (paired t-test p <.05 for all domains except Social Health Impact and Adaptation, ES range=.3 to 1.5, SRM range=0.4 to 1.0). The measures were responsive based on concurrent changes with the UDI and IIQ (p < 0.05). CAT versions were developed and pilot tested. CONCLUSIONS The UIf-item banks demonstrate good psychometric characteristics and are a sufficiently valid set of customizable tools for measuring UI symptoms and life impact. PMID:26732514

  15. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces

    PubMed Central

    Prins, Noeline W.; Sanchez, Justin C.; Prasad, Abhishek

    2014-01-01

    Brain-Machine Interfaces (BMIs) can be used to restore function in people living with paralysis. Current BMIs require extensive calibration that increase the set-up times and external inputs for decoder training that may be difficult to produce in paralyzed individuals. Both these factors have presented challenges in transitioning the technology from research environments to activities of daily living (ADL). For BMIs to be seamlessly used in ADL, these issues should be handled with minimal external input thus reducing the need for a technician/caregiver to calibrate the system. Reinforcement Learning (RL) based BMIs are a good tool to be used when there is no external training signal and can provide an adaptive modality to train BMI decoders. However, RL based BMIs are sensitive to the feedback provided to adapt the BMI. In actor-critic BMIs, this feedback is provided by the critic and the overall system performance is limited by the critic accuracy. In this work, we developed an adaptive BMI that could handle inaccuracies in the critic feedback in an effort to produce more accurate RL based BMIs. We developed a confidence measure, which indicated how appropriate the feedback is for updating the decoding parameters of the actor. The results show that with the new update formulation, the critic accuracy is no longer a limiting factor for the overall performance. We tested and validated the system onthree different data sets: synthetic data generated by an Izhikevich neural spiking model, synthetic data with a Gaussian noise distribution, and data collected from a non-human primate engaged in a reaching task. All results indicated that the system with the critic confidence built in always outperformed the system without the critic confidence. Results of this study suggest the potential application of the technique in developing an autonomous BMI that does not need an external signal for training or extensive calibration. PMID:24904257

  16. Stochastic calibration and learning in nonstationary hydroeconomic models

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Howitt, R.

    2014-05-01

    Concern about water scarcity and adverse climate events over agricultural regions has motivated a number of efforts to develop operational integrated hydroeconomic models to guide adaptation and optimal use of water. Once calibrated, these models are used for water management and analysis assuming they remain valid under future conditions. In this paper, we present and demonstrate a methodology that permits the recursive calibration of economic models of agricultural production from noisy but frequently available data. We use a standard economic calibration approach, namely positive mathematical programming, integrated in a data assimilation algorithm based on the ensemble Kalman filter equations to identify the economic model parameters. A moving average kernel ensures that new and past information on agricultural activity are blended during the calibration process, avoiding loss of information and overcalibration for the conditions of a single year. A regularization constraint akin to the standard Tikhonov regularization is included in the filter to ensure its stability even in the presence of parameters with low sensitivity to observations. The results show that the implementation of the PMP methodology within a data assimilation framework based on the enKF equations is an effective method to calibrate models of agricultural production even with noisy information. The recursive nature of the method incorporates new information as an added value to the known previous observations of agricultural activity without the need to store historical information. The robustness of the method opens the door to the use of new remote sensing algorithms for operational water management.

  17. Adaptive on-line calibration for around-view monitoring system using between-camera homography estimation

    NASA Astrophysics Data System (ADS)

    Lim, Sungsoo; Lee, Seohyung; Kim, Jun-geon; Lee, Daeho

    2018-01-01

    The around-view monitoring (AVM) system is one of the major applications of advanced driver assistance systems and intelligent transportation systems. We propose an on-line calibration method, which can compensate misalignments for AVM systems. Most AVM systems use fisheye undistortion, inverse perspective transformation, and geometrical registration methods. To perform these procedures, the parameters for each process must be known; the procedure by which the parameters are estimated is referred to as the initial calibration. However, when only using the initial calibration data, we cannot compensate misalignments, caused by changing equilibria of cars. Moreover, even small changes such as tire pressure levels, passenger weight, or road conditions can affect a car's equilibrium. Therefore, to compensate for this misalignment, additional techniques are necessary, specifically an on-line calibration method. On-line calibration can recalculate homographies, which can correct any degree of misalignment using the unique features of ordinary parking lanes. To extract features from the parking lanes, this method uses corner detection and a pattern matching algorithm. From the extracted features, homographies are estimated using random sample consensus and parameter estimation. Finally, the misaligned epipolar geographies are compensated via the estimated homographies. Thus, the proposed method can render image planes parallel to the ground. This method does not require any designated patterns and can be used whenever cars are placed in a parking lot. The experimental results show the robustness and efficiency of the method.

  18. The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders

    PubMed Central

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale

    2015-01-01

    Objective To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. Design The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Setting Majority of the data collected took place in an autism clinic. Participants A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12–33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Interventions Not applicable. Main Outcome Measures The primary outcome measures in this study were calibrated autism severity scores. Results Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p < 0.01). Children with weaker motor skills displayed higher levels of calibrated autism severity. Conclusions The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion. PMID:25774214

  19. Hot spots of multivariate extreme anomalies in Earth observations

    NASA Astrophysics Data System (ADS)

    Flach, M.; Sippel, S.; Bodesheim, P.; Brenning, A.; Denzler, J.; Gans, F.; Guanche, Y.; Reichstein, M.; Rodner, E.; Mahecha, M. D.

    2016-12-01

    Anomalies in Earth observations might indicate data quality issues, extremes or the change of underlying processes within a highly multivariate system. Thus, considering the multivariate constellation of variables for extreme detection yields crucial additional information over conventional univariate approaches. We highlight areas in which multivariate extreme anomalies are more likely to occur, i.e. hot spots of extremes in global atmospheric Earth observations that impact the Biosphere. In addition, we present the year of the most unusual multivariate extreme between 2001 and 2013 and show that these coincide with well known high impact extremes. Technically speaking, we account for multivariate extremes by using three sophisticated algorithms adapted from computer science applications. Namely an ensemble of the k-nearest neighbours mean distance, a kernel density estimation and an approach based on recurrences is used. However, the impact of atmosphere extremes on the Biosphere might largely depend on what is considered to be normal, i.e. the shape of the mean seasonal cycle and its inter-annual variability. We identify regions with similar mean seasonality by means of dimensionality reduction in order to estimate in each region both the `normal' variance and robust thresholds for detecting the extremes. In addition, we account for challenges like heteroscedasticity in Northern latitudes. Apart from hot spot areas, those anomalies in the atmosphere time series are of particular interest, which can only be detected by a multivariate approach but not by a simple univariate approach. Such an anomalous constellation of atmosphere variables is of interest if it impacts the Biosphere. The multivariate constellation of such an anomalous part of a time series is shown in one case study indicating that multivariate anomaly detection can provide novel insights into Earth observations.

  20. Comparative Research of Navy Voluntary Education at Operational Commands

    DTIC Science & Technology

    2017-03-01

    return on investment, ROI, logistic regression, multivariate analysis, descriptive statistics, Markov, time-series, linear programming 15. NUMBER...21  B.  DESCRIPTIVE STATISTICS TABLES ...............................................25  C.  PRIVACY CONSIDERATIONS...THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF TABLES Table 1.  Variables and Descriptions . Adapted from NETC (2016). .......................21

  1. ARGOS - the Laser Star Adaptive Optics for LBT

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Conot, C.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Lloyd Hart, M.; Hubbard, P.; Kanneganti, S.; Kulas, M.; Noenickx, J.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.; Orban de Xivry, G.

    2011-09-01

    We will present the design and status of ARGOS - the Laser Guide Star adaptive optics facility for the Large Binocular Telescope. By projecting a constellation of multiple laser guide stars above each of the 8.4m primary mirrors of the LBT, ARGOS in its ground layer mode will enable a wide field adaptive optics correction for multi object spectroscopy. ARGOS implements high power pulsed green lasers and makes use of Rayleigh scattering for the guide star creation. The geometric relations of this setup in guide star height vs. primary diameter are quite comparable to an ELT with sodium guide stars. The use of LBT's adaptive secondary mirror, gated wavefront sensors, a prime focus calibration system and the laser constellation shows several aspects that may be used as pathfinding technology for the planned ELTs. In already planned upgrade steps with a hybrid Sodium-Rayleigh combination ARGOS will enable MCAO and MOAO implementations at LBT allowing unique astronomical observations.

  2. FISHER'S GEOMETRIC MODEL WITH A MOVING OPTIMUM

    PubMed Central

    Matuszewski, Sebastian; Hermisson, Joachim; Kopp, Michael

    2014-01-01

    Fisher's geometric model has been widely used to study the effects of pleiotropy and organismic complexity on phenotypic adaptation. Here, we study a version of Fisher's model in which a population adapts to a gradually moving optimum. Key parameters are the rate of environmental change, the dimensionality of phenotype space, and the patterns of mutational and selectional correlations. We focus on the distribution of adaptive substitutions, that is, the multivariate distribution of the phenotypic effects of fixed beneficial mutations. Our main results are based on an “adaptive-walk approximation,” which is checked against individual-based simulations. We find that (1) the distribution of adaptive substitutions is strongly affected by the ecological dynamics and largely depends on a single composite parameter γ, which scales the rate of environmental change by the “adaptive potential” of the population; (2) the distribution of adaptive substitution reflects the shape of the fitness landscape if the environment changes slowly, whereas it mirrors the distribution of new mutations if the environment changes fast; (3) in contrast to classical models of adaptation assuming a constant optimum, with a moving optimum, more complex organisms evolve via larger adaptive steps. PMID:24898080

  3. Quantifying the Adaptive Cycle | Science Inventory | US EPA

    EPA Pesticide Factsheets

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and

  4. Calibration of Photon Sources for Brachytherapy

    NASA Astrophysics Data System (ADS)

    Rijnders, Alex

    Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.

  5. Adaptable Diffraction Gratings With Wavefront Transformation

    NASA Technical Reports Server (NTRS)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.

  6. Phase retrieval based wavefront sensing experimental implementation and wavefront sensing accuracy calibration

    NASA Astrophysics Data System (ADS)

    Mao, Heng; Wang, Xiao; Zhao, Dazun

    2009-05-01

    As a wavefront sensing (WFS) tool, Baseline algorithm, which is classified as the iterative-transform algorithm of phase retrieval, estimates the phase distribution at pupil from some known PSFs at defocus planes. By using multiple phase diversities and appropriate phase unwrapping methods, this algorithm can accomplish reliable unique solution and high dynamic phase measurement. In the paper, a Baseline algorithm based wavefront sensing experiment with modification of phase unwrapping has been implemented, and corresponding Graphical User Interfaces (GUI) software has also been given. The adaptability and repeatability of Baseline algorithm have been validated in experiments. Moreover, referring to the ZYGO interferometric results, the WFS accuracy of this algorithm has been exactly calibrated.

  7. Active radiometer for self-calibrated furnace temperature measurements

    DOEpatents

    Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.

    1996-11-12

    A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.

  8. Standard-target calibration of an acoustic backscatter system

    USGS Publications Warehouse

    Foote, Kenneth G.; Martini, Marinna A.

    2010-01-01

    The standard-target method used to calibrate scientific echo sounders and other scientific sonars by a single, solid elastic sphere is being adapted to acoustic backscatter (ABS) systems. Its first application, to the AQUAscat 1000, is described. The on-axis sensitivity and directional properties of transducer beams at three operating frequencies, nominally 1, 2.5, and 4 MHz, have been determined using a 10-mm-diameter sphere of tungsten carbide with 6% cobalt binder. Preliminary results are reported for the 1-MHz transducer. Their application to measurements of suspended sediment made in situ with the same device is described. This will enable the data to be expressed directly in physical units of volume backscattering.

  9. A Bayesian approach for parameter estimation and prediction using a computationally intensive model

    DOE PAGES

    Higdon, Dave; McDonnell, Jordan D.; Schunck, Nicolas; ...

    2015-02-05

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based modelmore » $$\\eta (\\theta )$$, where θ denotes the uncertain, best input setting. Hence the statistical model is of the form $$y=\\eta (\\theta )+\\epsilon ,$$ where $$\\epsilon $$ accounts for measurement, and possibly other, error sources. When nonlinearity is present in $$\\eta (\\cdot )$$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model $$\\eta (\\cdot )$$. This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. Lastly, we also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory.« less

  10. ASTM clustering for improving coal analysis by near-infrared spectroscopy.

    PubMed

    Andrés, J M; Bona, M T

    2006-11-15

    Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.

  11. Quantitative assessment of copper proteinates used as animal feed additives using ATR-FTIR spectroscopy and powder X-ray diffraction (PXRD) analysis.

    PubMed

    Cantwell, Caoimhe A; Byrne, Laurann A; Connolly, Cathal D; Hynes, Michael J; McArdle, Patrick; Murphy, Richard A

    2017-08-01

    The aim of the present work was to establish a reliable analytical method to determine the degree of complexation in commercial metal proteinates used as feed additives in the solid state. Two complementary techniques were developed. Firstly, a quantitative attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic method investigated modifications in vibrational absorption bands of the ligand on complex formation. Secondly, a powder X-ray diffraction (PXRD) method to quantify the amount of crystalline material in the proteinate product was developed. These methods were developed in tandem and cross-validated with each other. Multivariate analysis (MVA) was used to develop validated calibration and prediction models. The FTIR and PXRD calibrations showed excellent linearity (R 2  > 0.99). The diagnostic model parameters showed that the FTIR and PXRD methods were robust with a root mean square error of calibration RMSEC ≤3.39% and a root mean square error of prediction RMSEP ≤7.17% respectively. Comparative statistics show excellent agreement between the MVA packages assessed and between the FTIR and PXRD methods. The methods can be used to determine the degree of complexation in complexes of both protein hydrolysates and pure amino acids.

  12. Online low-field NMR spectroscopy for process control of an industrial lithiation reaction-automated data analysis.

    PubMed

    Kern, Simon; Meyer, Klas; Guhl, Svetlana; Gräßer, Patrick; Paul, Andrea; King, Rudibert; Maiwald, Michael

    2018-05-01

    Monitoring specific chemical properties is the key to chemical process control. Today, mainly optical online methods are applied, which require time- and cost-intensive calibration effort. NMR spectroscopy, with its advantage being a direct comparison method without need for calibration, has a high potential for enabling closed-loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and rough environments for process monitoring and advanced process control strategies. We present a fully automated data analysis approach which is completely based on physically motivated spectral models as first principles information (indirect hard modeling-IHM) and applied it to a given pharmaceutical lithiation reaction in the framework of the European Union's Horizon 2020 project CONSENS. Online low-field NMR (LF NMR) data was analyzed by IHM with low calibration effort, compared to a multivariate PLS-R (partial least squares regression) approach, and both validated using online high-field NMR (HF NMR) spectroscopy. Graphical abstract NMR sensor module for monitoring of the aromatic coupling of 1-fluoro-2-nitrobenzene (FNB) with aniline to 2-nitrodiphenylamine (NDPA) using lithium-bis(trimethylsilyl) amide (Li-HMDS) in continuous operation. Online 43.5 MHz low-field NMR (LF) was compared to 500 MHz high-field NMR spectroscopy (HF) as reference method.

  13. Updating a synchronous fluorescence spectroscopic virgin olive oil adulteration calibration to a new geographical region.

    PubMed

    Kunz, Matthew Ross; Ottaway, Joshua; Kalivas, John H; Georgiou, Constantinos A; Mousdis, George A

    2011-02-23

    Detecting and quantifying extra virgin olive adulteration is of great importance to the olive oil industry. Many spectroscopic methods in conjunction with multivariate analysis have been used to solve these issues. However, successes to date are limited as calibration models are built to a specific set of geographical regions, growing seasons, cultivars, and oil extraction methods (the composite primary condition). Samples from new geographical regions, growing seasons, etc. (secondary conditions) are not always correctly predicted by the primary model due to different olive oil and/or adulterant compositions stemming from secondary conditions not matching the primary conditions. Three Tikhonov regularization (TR) variants are used in this paper to allow adulterant (sunflower oil) concentration predictions in samples from geographical regions not part of the original primary calibration domain. Of the three TR variants, ridge regression with an additional 2-norm penalty provides the smallest validation sample prediction errors. Although the paper reports on using TR for model updating to predict adulterant oil concentration, the methods should also be applicable to updating models distinguishing adulterated samples from pure extra virgin olive oil. Additionally, the approaches are general and can be used with other spectroscopic methods and adulterants as well as with other agriculture products.

  14. A multi-model fusion strategy for multivariate calibration using near and mid-infrared spectra of samples from brewing industry

    NASA Astrophysics Data System (ADS)

    Tan, Chao; Chen, Hui; Wang, Chao; Zhu, Wanping; Wu, Tong; Diao, Yuanbo

    2013-03-01

    Near and mid-infrared (NIR/MIR) spectroscopy techniques have gained great acceptance in the industry due to their multiple applications and versatility. However, a success of application often depends heavily on the construction of accurate and stable calibration models. For this purpose, a simple multi-model fusion strategy is proposed. It is actually the combination of Kohonen self-organizing map (KSOM), mutual information (MI) and partial least squares (PLSs) and therefore named as KMICPLS. It works as follows: First, the original training set is fed into a KSOM for unsupervised clustering of samples, on which a series of training subsets are constructed. Thereafter, on each of the training subsets, a MI spectrum is calculated and only the variables with higher MI values than the mean value are retained, based on which a candidate PLS model is constructed. Finally, a fixed number of PLS models are selected to produce a consensus model. Two NIR/MIR spectral datasets from brewing industry are used for experiments. The results confirms its superior performance to two reference algorithms, i.e., the conventional PLS and genetic algorithm-PLS (GAPLS). It can build more accurate and stable calibration models without increasing the complexity, and can be generalized to other NIR/MIR applications.

  15. Context-aware adaptive spelling in motor imagery BCI

    NASA Astrophysics Data System (ADS)

    Perdikis, S.; Leeb, R.; Millán, J. d. R.

    2016-06-01

    Objective. This work presents a first motor imagery-based, adaptive brain-computer interface (BCI) speller, which is able to exploit application-derived context for improved, simultaneous classifier adaptation and spelling. Online spelling experiments with ten able-bodied users evaluate the ability of our scheme, first, to alleviate non-stationarity of brain signals for restoring the subject’s performances, second, to guide naive users into BCI control avoiding initial offline BCI calibration and, third, to outperform regular unsupervised adaptation. Approach. Our co-adaptive framework combines the BrainTree speller with smooth-batch linear discriminant analysis adaptation. The latter enjoys contextual assistance through BrainTree’s language model to improve online expectation-maximization maximum-likelihood estimation. Main results. Our results verify the possibility to restore single-sample classification and BCI command accuracy, as well as spelling speed for expert users. Most importantly, context-aware adaptation performs significantly better than its unsupervised equivalent and similar to the supervised one. Although no significant differences are found with respect to the state-of-the-art PMean approach, the proposed algorithm is shown to be advantageous for 30% of the users. Significance. We demonstrate the possibility to circumvent supervised BCI recalibration, saving time without compromising the adaptation quality. On the other hand, we show that this type of classifier adaptation is not as efficient for BCI training purposes.

  16. Context-aware adaptive spelling in motor imagery BCI.

    PubMed

    Perdikis, S; Leeb, R; Millán, J D R

    2016-06-01

    This work presents a first motor imagery-based, adaptive brain-computer interface (BCI) speller, which is able to exploit application-derived context for improved, simultaneous classifier adaptation and spelling. Online spelling experiments with ten able-bodied users evaluate the ability of our scheme, first, to alleviate non-stationarity of brain signals for restoring the subject's performances, second, to guide naive users into BCI control avoiding initial offline BCI calibration and, third, to outperform regular unsupervised adaptation. Our co-adaptive framework combines the BrainTree speller with smooth-batch linear discriminant analysis adaptation. The latter enjoys contextual assistance through BrainTree's language model to improve online expectation-maximization maximum-likelihood estimation. Our results verify the possibility to restore single-sample classification and BCI command accuracy, as well as spelling speed for expert users. Most importantly, context-aware adaptation performs significantly better than its unsupervised equivalent and similar to the supervised one. Although no significant differences are found with respect to the state-of-the-art PMean approach, the proposed algorithm is shown to be advantageous for 30% of the users. We demonstrate the possibility to circumvent supervised BCI recalibration, saving time without compromising the adaptation quality. On the other hand, we show that this type of classifier adaptation is not as efficient for BCI training purposes.

  17. Rapid determination of chemical composition and classification of bamboo fractions using visible-near infrared spectroscopy coupled with multivariate data analysis.

    PubMed

    Yang, Zhong; Li, Kang; Zhang, Maomao; Xin, Donglin; Zhang, Junhua

    2016-01-01

    During conversion of bamboo into biofuels and chemicals, it is necessary to efficiently predict the chemical composition and digestibility of biomass. However, traditional methods for determination of lignocellulosic biomass composition are expensive and time consuming. In this work, a novel and fast method for quantitative and qualitative analysis of chemical composition and enzymatic digestibilities of juvenile bamboo and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branch) using visible-near infrared spectra was evaluated. The developed partial least squares models yielded coefficients of determination in calibration of 0.88, 0.94, and 0.96, for cellulose, xylan, and lignin of bamboo fractions in raw spectra, respectively. After visible-near infrared spectra being pretreated, the corresponding coefficients of determination in calibration yielded by the developed partial least squares models are 0.994, 0.990, and 0.996, respectively. The score plots of principal component analysis of mature bamboo, juvenile bamboo, and different fractions of mature bamboo were obviously distinguished in raw spectra. Based on partial least squares discriminant analysis, the classification accuracies of mature bamboo, juvenile bamboo, and different fractions of bamboo (bamboo green, bamboo timber, bamboo yellow, and bamboo branch) all reached 100 %. In addition, high accuracies of evaluation of the enzymatic digestibilities of bamboo fractions after pretreatment with aqueous ammonia were also observed. The results showed the potential of visible-near infrared spectroscopy in combination with multivariate analysis in efficiently analyzing the chemical composition and hydrolysabilities of lignocellulosic biomass, such as bamboo fractions.

  18. Salicylic acid deposition from wash-off products: comparison of in vivo and porcine deposition models.

    PubMed

    Davies, M A

    2015-10-01

    Salicylic acid (SA) is a widely used active in anti-acne face wash products. Only about 1-2% of the total dose is actually deposited on skin during washing, and more efficient deposition systems are sought. The objective of this work was to develop an improved method, including data analysis, to measure deposition of SA from wash-off formulae. Full fluorescence excitation-emission matrices (EEMs) were acquired for non-invasive measurement of deposition of SA from wash-off products. Multivariate data analysis methods - parallel factor analysis and N-way partial least-squares regression - were used to develop and compare deposition models on human volunteers and porcine skin. Although both models are useful, there are differences between them. First, the range of linear response to dosages of SA was 60 μg cm(-2) in vivo compared to 25 μg cm(-2) on porcine skin. Second, the actual shape of the SA band was different between substrates. The methods employed in this work highlight the utility of the use of EEMs, in conjunction with multivariate analysis tools such as parallel factor analysis and multiway partial least-squares calibration, in determining sources of spectral variability in skin and quantification of exogenous species deposited on skin. The human model exhibited the widest range of linearity, but porcine model is still useful up to deposition levels of 25 μg cm(-2) or used with nonlinear calibration models. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Development of a photogrammetric method of measuring tree taper outside bark

    Treesearch

    David R. Larsen

    2006-01-01

    A photogrammetric method is presented for measuring tree diameters outside bark using calibrated control ground-based digital photographs. The method was designed to rapidly collect tree taper information from subject trees for the development of tree taper equations. Software that is commercially available, but designed for a different purpose, can be readily adapted...

  20. Using Automatic Item Generation to Meet the Increasing Item Demands of High-Stakes Educational and Occupational Assessment

    ERIC Educational Resources Information Center

    Arendasy, Martin E.; Sommer, Markus

    2012-01-01

    The use of new test administration technologies such as computerized adaptive testing in high-stakes educational and occupational assessments demands large item pools. Classic item construction processes and previous approaches to automatic item generation faced the problems of a considerable loss of items after the item calibration phase. In this…

Top