Science.gov

Sample records for adaptable vehicle health-monitoring

  1. Development and Flight Testing of an Adaptable Vehicle Health-Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.; Taylor, B. Douglas; Brett, Rube R.

    2003-01-01

    Development and testing of an adaptable wireless health-monitoring architecture for a vehicle fleet is presented. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained adaptable expert system. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate, and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear.

  2. Development and Flight Testing of an Adaptive Vehicle Health-Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.

    2002-01-01

    On going development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle, and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. The expert system is parameterized, which makes it adaptable to be trained to both a user's subject reasoning and existing quantitative analytic tools. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation and, data acquisition, storage and retrieval.

  3. Adaptive sensor array algorithm for structural health monitoring of helmet

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Tian, Ye; Wu, Nan; Sun, Kai; Wang, Xingwei

    2011-04-01

    The adaptive neural network is a standard technique used in nonlinear system estimation and learning applications for dynamic models. In this paper, we introduced an adaptive sensor fusion algorithm for a helmet structure health monitoring system. The helmet structure health monitoring system is used to study the effects of ballistic/blast events on the helmet and human skull. Installed inside the helmet system, there is an optical fiber pressure sensors array. After implementing the adaptive estimation algorithm into helmet system, a dynamic model for the sensor array has been developed. The dynamic response characteristics of the sensor network are estimated from the pressure data by applying an adaptive control algorithm using artificial neural network. With the estimated parameters and position data from the dynamic model, the pressure distribution of the whole helmet can be calculated following the Bazier Surface interpolation method. The distribution pattern inside the helmet will be very helpful for improving helmet design to provide better protection to soldiers from head injuries.

  4. Structural dynamic health monitoring of adaptive CFRP structures

    NASA Astrophysics Data System (ADS)

    Kaiser, Stephan; Melcher, Joerg; Breitbach, Elmar J.; Sachau, Delf

    1999-07-01

    The DLR Institute of Structural Mechanics is engaged in the construction and optimization of adaptive structures for aerospace and terrestrial applications. Due to the FFS- Project, one of the recent works of the Institute is the reduction of buffet induced vibration loads at a fin. The construction of modern aircrafts is influenced b the increasing use of fiber composites. They have more specific stiffness and strength properties than metals. On the other hand the layered structure leads to new kinds of damages like delaminations. In the fin interface there are actuators and sensors integrated. Therefore the fin is connected with a controller. For the extension of this adaptive system towards an on-line tool for health monitoring this controller can be used as an identifier of the structure's modal parameters. The most promising procedure is based on MX filters. These filters constitute the filter coefficients from which a fast transformation procedure extracts the modal parameters. The changes of these parameters are related to the location and extent of the damage. So when using the already integrate controller for system identification, one can have a low-cost on-line damage detection for dynamic adaptive structures. First off-line test at CFRP plates have shown the ability to detect delaminations.

  5. Thermal Analysis of the NASA Integrated Vehicle Health Monitoring Experiment Technology for X-Vehicles (NITEX)

    NASA Astrophysics Data System (ADS)

    Hegab, Hisham E.

    2002-06-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  6. Thermal Analysis of the NASA Integrated Vehicle Health Monitoring Experiment Technology for X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2002-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  7. Thermal Analysis Of The NASA Integrated Vehicle Health Monitoring Experiment Technology For X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2001-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  8. Dynamic self-adaptive remote health monitoring system for diabetics.

    PubMed

    Suh, Myung-kyung; Moin, Tannaz; Woodbridge, Jonathan; Lan, Mars; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid

    2012-01-01

    Diabetes is the seventh leading cause of death in the United States. In 2010, about 1.9 million new cases of diabetes were diagnosed in people aged 20 years or older. Remote health monitoring systems can help diabetics and their healthcare professionals monitor health-related measurements by providing real-time feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the remote health monitoring. This paper presents a task optimization technique used in WANDA (Weight and Activity with Blood Pressure and Other Vital Signs); a wireless health project that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. WANDA applies data analytics in real-time to improving the quality of care. The developed algorithm minimizes the number of daily tasks required by diabetic patients using association rules that satisfies a minimum support threshold. Each of these tasks maximizes information gain, thereby improving the overall level of care. Experimental results show that the developed algorithm can reduce the number of tasks up to 28.6% with minimum support 0.95, minimum confidence 0.97 and high efficiency. PMID:23366365

  9. Dynamic self-adaptive remote health monitoring system for diabetics.

    PubMed

    Suh, Myung-kyung; Moin, Tannaz; Woodbridge, Jonathan; Lan, Mars; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid

    2012-01-01

    Diabetes is the seventh leading cause of death in the United States. In 2010, about 1.9 million new cases of diabetes were diagnosed in people aged 20 years or older. Remote health monitoring systems can help diabetics and their healthcare professionals monitor health-related measurements by providing real-time feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the remote health monitoring. This paper presents a task optimization technique used in WANDA (Weight and Activity with Blood Pressure and Other Vital Signs); a wireless health project that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. WANDA applies data analytics in real-time to improving the quality of care. The developed algorithm minimizes the number of daily tasks required by diabetic patients using association rules that satisfies a minimum support threshold. Each of these tasks maximizes information gain, thereby improving the overall level of care. Experimental results show that the developed algorithm can reduce the number of tasks up to 28.6% with minimum support 0.95, minimum confidence 0.97 and high efficiency.

  10. Load tracking and structural health monitoring of unmanned aerial vehicles using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Handelman, A.; Botsev, Y.; Balter, J.; Gud's, P.; Kressel, I.; Tur, M.; Gali, S.; Pillai, A. C. R.; Hari Prasad, M.; Yadav, A. Kumar; Gupta, Nitesh; Sathya, Sakthi; Sundaram, Ramesh

    2011-08-01

    An airborne, high resolution, load tracking and structural health monitoring system for unmanned aerial vehicles is presented. The system is based on embedded optical fiber Bragg sensors interrogated in real time during flight at 2.5 kHz. By analyzing the recorded vibration signature it is now possible to identify and trace the dynamic response of an airborne structure and track its loads.

  11. Load tracking and structural health monitoring of unmanned aerial vehicles using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Handelman, A.; Botsev, Y.; Balter, J.; Gud'S, P.; Kressel, I.; Tur, M.; Gali, S.; Pillai, A. C. R.; Hari Prasad, M.; Yadav, A. Kumar; Gupta, Nitesh; Sathya, Sakthi; Sundaram, Ramesh

    2010-12-01

    An airborne, high resolution, load tracking and structural health monitoring system for unmanned aerial vehicles is presented. The system is based on embedded optical fiber Bragg sensors interrogated in real time during flight at 2.5 kHz. By analyzing the recorded vibration signature it is now possible to identify and trace the dynamic response of an airborne structure and track its loads.

  12. Smarter Software For Enhanced Vehicle Health Monitoring and Inter-Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Goodrich, Charles H.; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The existing philosophy for space mission control was born in the early days of the space program when technology did not exist to put significant control responsibility onboard the spacecraft. NASA relied on a team of ground control experts to troubleshoot systems when problems occurred. As computing capability improved, more responsibility was handed over to the systems software. However, there is still a large contingent of both launch and flight controllers supporting each mission. New technology can update this philosophy to increase mission assurance and reduce the cost of inter-planetary exploration. The advent of model-based diagnosis and intelligent planning software enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. The manifests for recent missions include multiple subsystems and complex experiments. Spacecraft must operate at longer distances from earth where communications delays make earthbound command and control impractical. NASA's Ames Research Center (ARC) has demonstrated the utility of onboard diagnosis and planning with the Remote Agent experiment in 1999. KSC has pioneered model-based diagnosis and demonstrated its utility for ground support operations. KSC and ARC are cooperating in research to improve the state of the art of this technology. This paper highlights model-based reasoning applications for Moon and Mars missions including in-situ resource utilization and enhanced vehicle health monitoring.

  13. Health Monitoring Technology for Thermal Protection Systems on Reusable Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Watters, D. G.; Heinemann, J. M.; Karunaratne, K. S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Integrated subsystem health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVs) in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. This talk summarizes a joint effort between NASA Ames and industry partners to develop rapid non-contact diagnostic tools for health and performance monitoring of thermal protection systems (TPS) on future RLVs. The specific goals for TPS health monitoring are to increase the speed and reliability of TPS inspections for improved operability at lower cost. The technology being developed includes a 3-D laser scanner for examining the exterior surface of the TPS, and a subsurface microsensor suite for monitoring the health and performance of the TPS. The sensor suite consists of passive overlimit sensors and sensors for continuous parameter monitoring in flight. The sensors are integrated with radio-frequency identification (RFID) microchips to enable wireless communication of-the sensor data to an external reader that may be a hand-held scanner or a large portal. Prototypes of the laser system and both types of subsurface sensors have been developed. The laser scanner was tested on Shuttle Orbiter Columbia and was able to dimension surface chips and holes on a variety of TPS materials. The temperature-overlimit microsensor has a diameter under 0.05 inch (suitable for placement in gaps between ceramic TPS tiles) and can withstand 700 F for 15 minutes.

  14. An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard

    2016-04-01

    As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.

  15. Vibration-based structural health monitoring using adaptive statistical method under varying environmental condition

    NASA Astrophysics Data System (ADS)

    Jin, Seung-Seop; Jung, Hyung-Jo

    2014-03-01

    It is well known that the dynamic properties of a structure such as natural frequencies depend not only on damage but also on environmental condition (e.g., temperature). The variation in dynamic characteristics of a structure due to environmental condition may mask damage of the structure. Without taking the change of environmental condition into account, false-positive or false-negative damage diagnosis may occur so that structural health monitoring becomes unreliable. In order to address this problem, an approach to construct a regression model based on structural responses considering environmental factors has been usually used by many researchers. The key to success of this approach is the formulation between the input and output variables of the regression model to take into account the environmental variations. However, it is quite challenging to determine proper environmental variables and measurement locations in advance for fully representing the relationship between the structural responses and the environmental variations. One alternative (i.e., novelty detection) is to remove the variations caused by environmental factors from the structural responses by using multivariate statistical analysis (e.g., principal component analysis (PCA), factor analysis, etc.). The success of this method is deeply depending on the accuracy of the description of normal condition. Generally, there is no prior information on normal condition during data acquisition, so that the normal condition is determined by subjective perspective with human-intervention. The proposed method is a novel adaptive multivariate statistical analysis for monitoring of structural damage detection under environmental change. One advantage of this method is the ability of a generative learning to capture the intrinsic characteristics of the normal condition. The proposed method is tested on numerically simulated data for a range of noise in measurement under environmental variation. A comparative

  16. Reentry vehicle adaptive telemetry

    SciTech Connect

    Kidner, R.E.

    1993-09-01

    In RF telemetry (TM) the allowable RF bandwidth limits the amount of data in the telemetered data set. Typically the data set is less than ideal to accommodate all aspects of a test. In the case of diagnostic data, the compromise often leaves insufficient diagnostic data when problems occur. As a solution, intelligence was designed into a TM, allowing it to adapt to changing data requirements. To minimize the computational requirements for an intelligent TM, a fuzzy logic inference engine was developed. This reference engine was simulated on a PC and then loaded into a TM hardware package for final testing.

  17. Reentry vehicle adaptive telemetry

    NASA Astrophysics Data System (ADS)

    Kidner, R. E.

    1993-09-01

    In RF telemetry (TM) the allowable RF bandwidth limits the amount of data in the telemetered data set. Typically the data set is less than ideal to accommodate all aspects of a test. In the case of diagnostic data, the compromise often leaves insufficient diagnostic data when problems occur. As a solution, intelligence was designed into a TM allowing it to adapt to changing data requirements. To minimize the computational requirements for an intelligent TM, a fuzzy logic inference engine was developed. This reference engine was simulated on a PC and then loaded into a TM hardware package for final testing.

  18. A novel real-time health monitoring system for unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, David C.; Ouyang, Lien; Qing, Peter; Li, Irene

    2008-04-01

    Real-time monitoring the status of in-service structures such as unmanned vehicles can provide invaluable information to detect the damages to the structures on time. The unmanned vehicles can be maintained and repaired in time if such damages are found. One typical cause of damages of unmanned vehicles is from impacts caused by bumping into some obstacles or being hit by some objects such as hostile fire. This paper introduces a novel impact event sensing system that can detect the location of the impact events and the force-time history of the impact events. The system consists of the Piezo-electric sensor network, the hardware platform and the analysis software. The new customized battery-powered impact event sensing system supports up to 64-channel parallel data acquisition. It features an innovative low-power hardware trigger circuit that monitors 64 channels simultaneously. The system is in the sleep mode most of the time. When an impact event happens, the system will wake up in micro-seconds and detect the impact location and corresponding force-time history. The system can be combined with the SMART sensing system to further evaluate the impact damage severity.

  19. Wireless Subsurface Microsensors for Health Monitoring of Thermal Protection Systems on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Watters, David G.; Pallix, Joan B.; Bahr, Alfred J.; Huestis, David L.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and SRI International to develop 'SensorTags,' radio frequency identification devices coupled with event-recording sensors, that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. Two prototype SensorTag designs containing thermal fuses to indicate a temperature overlimit are presented and discussed.

  20. Micro-aerial vehicle type wall-climbing robot mechanism for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Shin, Jae-Uk; Kim, Donghoon; Kim, Jong-Heon; Myung, Hyun

    2013-04-01

    Currently, the maintenance or inspection of large structures is labor-intensive, so it has a problem of the large cost due to the staffing professionals and the risk for hard to reach areas. To solve the problem, the needs of wall-climbing robot are emerged. Infra-based wall-climbing robots to maintain an outer wall of building have high payload and safety. However, the infrastructure for the robot must be equipped on the target structure and the infrastructure isn't preferred by the architects since it can injure the exterior of the structure. These are the reasons of why the infra-based wall-climbing robot is avoided. In case of the non-infra-based wall-climbing robot, it is researched to overcome the aforementioned problems. However, most of the technologies are in the laboratory level since the payload, safety and maneuverability are not satisfactory. For this reason, aerial vehicle type wall-climbing robot is researched. It is a flying possible wallclimbing robot based on a quadrotor. It is a famous aerial vehicle robot using four rotors to make a thrust for flying. This wall-climbing robot can stick to a vertical wall using the thrust. After sticking to the wall, it can move with four wheels installed on the robot. As a result, it has high maneuverability and safety since it can restore the position to the wall even if it is detached from the wall by unexpected disturbance while climbing the wall. The feasibility of the main concept was verified through simulations and experiments using a prototype.

  1. Adaptable System for Vehicle Health and Usage Monitoring

    NASA Technical Reports Server (NTRS)

    Woodart, Stanley E.; Woodman, Keith L.; Coffey, Neil C.; Taylor, Bryant D.

    2005-01-01

    Aircraft and other vehicles are often kept in service beyond their original design lives. As they age, they become susceptible to system malfunctions and fatigue. Unlike future aircraft that will include health-monitoring capabilities as integral parts in their designs, older aircraft have not been so equipped. The Adaptable Vehicle Health and Usage Monitoring System is designed to be retrofitted into a preexisting fleet of military and commercial aircraft, ships, or ground vehicles to provide them with state-of-the-art health- and usage-monitoring capabilities. The monitoring system is self-contained, and the integration of it into existing systems entails limited intrusion. In essence, it has bolt-on/ bolt-off simplicity that makes it easy to install on any preexisting vehicle or structure. Because the system is completely independent of the vehicle, it can be certified for airworthiness as an independent system. The purpose served by the health-monitoring system is to reduce vehicle operating costs and to increase safety and reliability. The monitoring system is a means to identify damage to, or deterioration of, vehicle subsystems, before such damage or deterioration becomes costly and/or disastrous. Frequent monitoring of a vehicle enables identification of the embryonic stages of damage or deterioration. The knowledge thus gained can be used to correct anomalies while they are still somewhat minor. Maintenance can be performed as needed, instead of having the need for maintenance identified during cyclic inspections that take vehicles off duty even when there are no maintenance problems. Measurements and analyses acquired by the health-monitoring system also can be used to analyze mishaps. Overall, vehicles can be made more reliable and kept on duty for longer times. Figure 1 schematically depicts the system as applied to a fleet of n vehicles. The system has three operational levels. All communication between system components is by use of wireless

  2. Wireless Subsurface Sensors for Health Monitoring of Thermal Protection Systems on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVs) in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and industry partners to develop "wireless" devices that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. These devices are sensors integrated with radio-frequency identification (RFID) microchips to enable non-contact communication of sensor data to an external reader that may be a hand-held scanner or a large portal. Both passive and active prototype devices have been developed. The passive device uses a thermal fuse to indicate the occurrence of excessive temperature. This device has a diameter under 0.13 cm. (suitable for placement in gaps between ceramic TPS tiles on an RLV) and can withstand 370 C for 15 minutes. The active device contains a small battery to provide power to a thermocouple for recording a temperature history during flight. The bulk of the device must be placed beneath the TPS for protection from high temperature, but the thermocouple can be placed in a hot location such as near the external surface.

  3. Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    NASA Technical Reports Server (NTRS)

    Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.

    1991-01-01

    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.

  4. A vehicle health monitoring system for the Space Shuttle Reaction Control System during reentry. M.S. Thesis - Massachusetts Inst. of Technology

    NASA Technical Reports Server (NTRS)

    Rosello, Anthony David

    1995-01-01

    A general two tier framework for vehicle health monitoring of Guidance Navigation and Control (GN&C) system actuators, effectors, and propulsion devices is presented. In this context, a top level monitor that estimates jet thrust is designed for the Space Shuttle Reaction Control System (RCS) during the reentry phase of flight. Issues of importance for the use of estimation technologies in vehicle health monitoring are investigated and quantified for the Shuttle RCS demonstration application. These issues include rate of convergence, robustness to unmodeled dynamics, sensor quality, sensor data rates, and information recording objectives. Closed loop simulations indicate that a Kalman filter design is sensitive to modeling error and robust estimators may reduce this sensitivity. Jet plume interaction with the aerodynamic flowfield is shown to be a significant effect adversely impacting the ability to accurately estimate thrust.

  5. Adaptive Methods within a Sequential Bayesian Approach for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Huff, Daniel W.

    computational burden is decreased significantly and the number of possible observation modes can be increased. Using sensor measurements from real experiments, the overall sequential Bayesian estimation approach, with the adaptive capability of varying the state dynamics and observation modes, is demonstrated for tracking crack damage.

  6. Adaptive vehicle motion estimation and prediction

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  7. Robust, Practical Adaptive Control for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Orr, Jeb. S.; VanZwieten, Tannen S.

    2012-01-01

    A modern mechanization of a classical adaptive control concept is presented with an application to launch vehicle attitude control systems. Due to a rigorous flight certification environment, many adaptive control concepts are infeasible when applied to high-risk aerospace systems; methods of stability analysis are either intractable for high complexity models or cannot be reconciled in light of classical requirements. Furthermore, many adaptive techniques appearing in the literature are not suitable for application to conditionally stable systems with complex flexible-body dynamics, as is often the case with launch vehicles. The present technique is a multiplicative forward loop gain adaptive law similar to that used for the NASA X-15 flight research vehicle. In digital implementation with several novel features, it is well-suited to application on aerodynamically unstable launch vehicles with thrust vector control via augmentation of the baseline attitude/attitude-rate feedback control scheme. The approach is compatible with standard design features of autopilots for launch vehicles, including phase stabilization of lateral bending and slosh via linear filters. In addition, the method of assessing flight control stability via classical gain and phase margins is not affected under reasonable assumptions. The algorithm s ability to recover from certain unstable operating regimes can in fact be understood in terms of frequency-domain criteria. Finally, simulation results are presented that confirm the ability of the algorithm to improve performance and robustness in realistic failure scenarios.

  8. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility

    NASA Astrophysics Data System (ADS)

    Rezvanizaniani, Seyed Mohammad; Liu, Zongchang; Chen, Yan; Lee, Jay

    2014-06-01

    As hybrid and electric vehicle technologies continue to advance, car manufacturers have begun to employ lithium ion batteries as the electrical energy storage device of choice for use in existing and future vehicles. However, to ensure batteries are reliable, efficient, and capable of delivering power and energy when required, an accurate determination of battery performance, health, and life prediction is necessary. This paper provides a review of battery prognostics and health management (PHM) techniques, with a focus on major unmet needs in this area for battery manufacturers, car designers, and electric vehicle drivers. A number of approaches are presented that have been developed to monitor battery health status and performance, as well as the evolution of prognostics modeling methods. The goal of this review is to render feasible and cost effective solutions for dealing with battery life issues under dynamic operating conditions.

  9. A new adaptive algorithm for automated feature extraction in exponentially damped signals for health monitoring of smart structures

    NASA Astrophysics Data System (ADS)

    Qarib, Hossein; Adeli, Hojjat

    2015-12-01

    In this paper authors introduce a new adaptive signal processing technique for feature extraction and parameter estimation in noisy exponentially damped signals. The iterative 3-stage method is based on the adroit integration of the strengths of parametric and nonparametric methods such as multiple signal categorization, matrix pencil, and empirical mode decomposition algorithms. The first stage is a new adaptive filtration or noise removal scheme. The second stage is a hybrid parametric-nonparametric signal parameter estimation technique based on an output-only system identification technique. The third stage is optimization of estimated parameters using a combination of the primal-dual path-following interior point algorithm and genetic algorithm. The methodology is evaluated using a synthetic signal and a signal obtained experimentally from transverse vibrations of a steel cantilever beam. The method is successful in estimating the frequencies accurately. Further, it estimates the damping exponents. The proposed adaptive filtration method does not include any frequency domain manipulation. Consequently, the time domain signal is not affected as a result of frequency domain and inverse transformations.

  10. Robust adaptive control for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Kahveci, Nazli E.

    The objective of meeting higher endurance requirements remains a challenging task for any type and size of Unmanned Aerial Vehicles (UAVs). According to recent research studies significant energy savings can be realized through utilization of thermal currents. The navigation strategies followed across thermal regions, however, are based on rather intuitive assessments of remote pilots and lack any systematic path planning approaches. Various methods to enhance the autonomy of UAVs in soaring applications are investigated while seeking guarantees for flight performance improvements. The dynamics of the aircraft, small UAVs in particular, are affected by the environmental conditions, whereas unmodeled dynamics possibly become significant during aggressive flight maneuvers. Besides, the demanded control inputs might have a magnitude range beyond the limits dictated by the control surface actuators. The consequences of ignoring these issues can be catastrophic. Supporting this claim NASA Dryden Flight Research Center reports considerable performance degradation and even loss of stability in autonomous soaring flight tests with the subsequent risk of an aircraft crash. The existing control schemes are concluded to suffer from limited performance. Considering the aircraft dynamics and the thermal characteristics we define a vehicle-specific trajectory optimization problem to achieve increased cross-country speed and extended range of flight. In an environment with geographically dispersed set of thermals of possibly limited lifespan, we identify the similarities to the Vehicle Routing Problem (VRP) and provide both exact and approximate guidance algorithms for the navigation of automated UAVs. An additional stochastic approach is used to quantify the performance losses due to incorrect thermal data while dealing with random gust disturbances and onboard sensor measurement inaccuracies. One of the main contributions of this research is a novel adaptive control design with

  11. Valve Health Monitor (VHM)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Delgado, H. (Technical Monitor)

    2002-01-01

    This presentation reports on progress being made on developing a Valve Health Monitor (VHM) Smart Current Signature Sensor. Topics cover include: design needs, target valves, current signatures, VHM design approach and VHM status/conclusions.

  12. Integrated structural health monitoring.

    SciTech Connect

    Farrar, C. R.

    2001-01-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the authors opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  13. Adapting unmanned aerial vehicles for turbulence measurement

    NASA Astrophysics Data System (ADS)

    Witte, Brandon; Helvey, Jacob; Mullen, Jon; Thamann, Michael; Bailey, Sean

    2015-11-01

    We describe the approach of using highly instrumented and autonomous unmanned aerial vehicles (UAVs) to spatially interrogate the atmospheric boundary layer's turbulent flow structure. This approach introduces new capabilities not available in contemporary micro-meteorological measurement techniques such as instrumented towers, balloons, and manned aircraft. A key advantage in utilizing UAVs as an atmospheric turbulence research tool is that it reduces the reliance on assumptions regarding temporal evolution of the turbulence inherent within Taylor's frozen flow hypothesis by facilitating the ability to spatially sample the flow field over a wide range of spatial scales. In addition, UAVs offer the ability to measure in a wide range of boundary conditions and distance from the earth's surface, the ability to gather many boundary layer thicknesses of data during brief periods of statistical quasi-stationarity, and the ability to acquire data where and when it is needed. We describe recent progress made in manufacturing purpose-built airframes and adapting pre-fabricated airframes for these measurements by integrating sensors into those airframes and developing data analysis techniques to isolate the atmospheric turbulence from the measured velocity signal. This research is supported by NSF Award CBET-1351411.

  14. Adaptive powertrain control for plugin hybrid electric vehicles

    DOEpatents

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  15. Application of Adaptive Autopilot Designs for an Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Shin, Yoonghyun; Calise, Anthony J.; Motter, Mark A.

    2005-01-01

    This paper summarizes the application of two adaptive approaches to autopilot design, and presents an evaluation and comparison of the two approaches in simulation for an unmanned aerial vehicle. One approach employs two-stage dynamic inversion and the other employs feedback dynamic inversions based on a command augmentation system. Both are augmented with neural network based adaptive elements. The approaches permit adaptation to both parametric uncertainty and unmodeled dynamics, and incorporate a method that permits adaptation during periods of control saturation. Simulation results for an FQM-117B radio controlled miniature aerial vehicle are presented to illustrate the performance of the neural network based adaptation.

  16. An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles

    SciTech Connect

    Cunningham, C.T.; Roberts, R.S.

    2000-09-12

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  17. Adaptive path planning algorithm for cooperating unmanned air vehicles

    SciTech Connect

    Cunningham, C T; Roberts, R S

    2001-02-08

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  18. Adaptive Attitude Control of the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Muse, Jonathan

    2010-01-01

    An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.

  19. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  20. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, the International Space Station, Uninhabited Aerial Vehicles, and Expendable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  1. Wearable Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Bell, John

    2015-01-01

    The shrinking size and weight of electronic circuitry has given rise to a new generation of smart clothing that enables biological data to be measured and transmitted. As the variation in the number and type of deployable devices and sensors increases, technology must allow their seamless integration so they can be electrically powered, operated, and recharged over a digital pathway. Nyx Illuminated Clothing Company has developed a lightweight health monitoring system that integrates medical sensors, electrodes, electrical connections, circuits, and a power supply into a single wearable assembly. The system is comfortable, bendable in three dimensions, durable, waterproof, and washable. The innovation will allow astronaut health monitoring in a variety of real-time scenarios, with data stored in digital memory for later use in a medical database. Potential commercial uses are numerous, as the technology enables medical personnel to noninvasively monitor patient vital signs in a multitude of health care settings and applications.

  2. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 6 - Development and Demonstration of a Self-Organizing Diagnostic System for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Batten, Adam; Edwards, Graeme; Gerasimov, Vadim; Hoschke, Nigel; Isaacs, Peter; Lewis, Chris; Moore, Richard; Oppolzer, Florien; Price, Don; Prokopenko, Mikhail; Scott, Andrew; Wang, Peter

    2010-01-01

    This report describes a significant advance in the capability of the CSIRO/NASA structural health monitoring Concept Demonstrator (CD). The main thrust of the work has been the development of a mobile robotic agent, and the hardware and software modifications and developments required to enable the demonstrator to operate as a single, self-organizing, multi-agent system. This single-robot system is seen as the forerunner of a system in which larger numbers of small robots perform inspection and repair tasks cooperatively, by self-organization. While the goal of demonstrating self-organized damage diagnosis was not fully achieved in the time available, much of the work required for the final element that enables the robot to point the video camera and transmit an image has been completed. A demonstration video of the CD and robotic systems operating will be made and forwarded to NASA.

  3. Design Optimization of Structural Health Monitoring Systems

    SciTech Connect

    Flynn, Eric B.

    2014-03-06

    Sensor networks drive decisions. Approach: Design networks to minimize the expected total cost (in a statistical sense, i.e. Bayes Risk) associated with making wrong decisions and with installing maintaining and running the sensor network itself. Search for optimal solutions using Monte-Carlo-Sampling-Adapted Genetic Algorithm. Applications include structural health monitoring and surveillance.

  4. Mobile health monitoring systems.

    PubMed

    Walker, William; Aroul, A L Praveen; Bhatia, Dinesh

    2009-01-01

    Advancements are being made towards a cheap and effective means for health monitoring. A mobile monitoring system is proposed for monitoring a bicycle rider using light weight, low power wireless sensors. Biometric and environmental information pertaining to the bicycle rider is captured, transmitted to, and stored in a remote database with little user interaction required. Remote users have real time access to the captured information through a web application. Possible applications for this system include the monitoring of a soldier in the battlefield and the monitoring of a patient during an ambulance ride. PMID:19965041

  5. TPS health monitoring on X-38

    NASA Astrophysics Data System (ADS)

    Graue, Roland; Reutlinger, Arnd; Jueptner, Werner P. O.

    1999-06-01

    Health monitoring passenger experiments will be flown on board of X-38 re-entry demonstrator as precursor to reusable launch vehicles such as the Crew Rescue Vehicle. Environmental load impacts and load critical conditions of the Thermal Protection System will be monitored with advanced in-flight and on-ground sensor instrumentation, the structural and functional integrity assessed, and potential consequences regarding the probability of hazardous failure or reduced life time evaluated. Intelligent health monitoring systems can streamline operational and maintenance costs while at the same time satisfying the high safety and reliability requirements. This imposes more stringent requirements on a network of sensors based on innovative technologies such as fiber optics, acoustic emissions, etc. The current development activities within the frame of the national technology program X-38/TETRA, the specific sensor features and the diagnostic expert system for data analyses will be highlighted and discussed in this paper.

  6. Inductive System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    2004-01-01

    The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS uses nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. IMS is able to monitor the system by comparing real time operational data with these classes. We present a description of learning and monitoring method used by IMS and summarize some recent IMS results.

  7. Lunar Health Monitor (LHM)

    NASA Technical Reports Server (NTRS)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  8. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  9. An adaptive guidance logic for an aeroasisted orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Hill, O.

    1984-01-01

    The Orbital Transfer Vehicle (OTV) is to be employed for the delivery of a paylod to a high earth orbit, such as a geosynchronous orbit. Subsequently, the OTV is to return to a low earth parking orbit. The present investigation is concerned with an aeroassisted OTV (AOTV) which achieves the required reduction in velocity on its return to the parking orbit through aerodynamic braking. An adaptive guidance logic is employed to control and AOTV as it passes through the earth's upper atmosphere. Attention is given to details regarding the adaptive guidance logic, and a performance evaluation. It is found that the performance of the adaptive guidance logic is satisfactory for the considered conditions.

  10. Ultrasonic wireless health monitoring

    NASA Astrophysics Data System (ADS)

    Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas

    2006-03-01

    The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data

  11. Real-Time Rocket/Vehicle System Integrated Health Management Laboratory For Development and Testing of Health Monitoring/Management Systems

    NASA Technical Reports Server (NTRS)

    Aguilar, R.

    2006-01-01

    Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.

  12. Hybrid adaptive ascent flight control for a flexible launch vehicle

    NASA Astrophysics Data System (ADS)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  13. Adaptive position estimation for an automated guided vehicle

    NASA Astrophysics Data System (ADS)

    Lapin, Brett D.

    1993-05-01

    In a mobile robotic system, complexities in positioning arise due to the motion. An adaptive position estimation scheme has been developed for an automated guide vehicle (AGV) to overcome these complexities. The scheme's purpose is to minimize the position error--the difference between the estimated position and the actual position. The method to achieve this is to adapt the system model by incorporating a parameter vector and using a maximum likelihood algorithm to estimate the parameters after an accurate position determination is made. A simulation of the vehicle's guidance system was developed and the estimator tested on an oval-shaped path. Upon injecting biases into the system, initial position errors were 10 centimeters or more. After the estimator converged, the maximum final errors were on the order of 1 to 2 centimeters (prior to measurement update). After each measurement update, after the estimator had converged, errors were on the order of 1 to 2 millimeters.

  14. Adaptive integral dynamic surface control of a hypersonic flight vehicle

    NASA Astrophysics Data System (ADS)

    Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick

    2015-07-01

    In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.

  15. Small Autonomous Aircraft Servo Health Monitoring

    NASA Technical Reports Server (NTRS)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  16. Intelligent Control and Health Monitoring. Chapter 3

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.

    2009-01-01

    Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.

  17. Nonlinear Adaptive Flight Control for the X-38 Reentry Vehicle

    NASA Astrophysics Data System (ADS)

    Wallner, E. M.; Well, K. H.

    The paper is concerned with designing an attitude control system for the X-38 vehicle for the hypersonic and supersonic region. The design goals are i) good tracking performance such that the vehicle will follow the guidance commands, ii) robust stability and performance in view of uncertain aerodynamic parameters, iii) cross-airframe capability of the control architecture in order to minimize redesign efforts in view of vehicle modifications which might occur during the development process. These goals have been achieved by selecting an inversion based control system design procedure combined with a CMAC neural net for adaptation of the linear PID controller parameters in view of the uncertainties. It is shown that the application of dynamic inversion requires a redefinition of the controlled variables in order to adequately stabilize the closed-loop system. The need for output-redefinition lies in the fact that only two bodyflaps are available for control, which limits the number of controlled variables to two. Simulation results are given to show the efficacy of the control approach.

  18. Launch vehicle payload adapter design with vibration isolation features

    NASA Astrophysics Data System (ADS)

    Thomas, Gareth R.; Fadick, Cynthia M.; Fram, Bryan J.

    2005-05-01

    Payloads, such as satellites or spacecraft, which are mounted on launch vehicles, are subject to severe vibrations during flight. These vibrations are induced by multiple sources that occur between liftoff and the instant of final separation from the launch vehicle. A direct result of the severe vibrations is that fatigue damage and failure can be incurred by sensitive payload components. For this reason a payload adapter has been designed with special emphasis on its vibration isolation characteristics. The design consists of an annular plate that has top and bottom face sheets separated by radial ribs and close-out rings. These components are manufactured from graphite epoxy composites to ensure a high stiffness to weight ratio. The design is tuned to keep the frequency of the axial mode of vibration of the payload on the flexibility of the adapter to a low value. This is the main strategy adopted for isolating the payload from damaging vibrations in the intermediate to higher frequency range (45Hz-200Hz). A design challenge for this type of adapter is to keep the pitch frequency of the payload above a critical value in order to avoid dynamic interactions with the launch vehicle control system. This high frequency requirement conflicts with the low axial mode frequency requirement and this problem is overcome by innovative tuning of the directional stiffnesses of the composite parts. A second design strategy that is utilized to achieve good isolation characteristics is the use of constrained layer damping. This feature is particularly effective at keeping the responses to a minimum for one of the most important dynamic loading mechanisms. This mechanism consists of the almost-tonal vibratory load associated with the resonant burn condition present in any stage powered by a solid rocket motor. The frequency of such a load typically falls in the 45-75Hz range and this phenomenon drives the low frequency design of the adapter. Detailed finite element analysis is

  19. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  20. Workload Model Based Dynamic Adaptation of Social Internet of Vehicles

    PubMed Central

    Alam, Kazi Masudul; Saini, Mukesh; El Saddik, Abdulmotaleb

    2015-01-01

    Social Internet of Things (SIoT) has gained much interest among different research groups in recent times. As a key member of a smart city, the vehicular domain of SIoT (SIoV) is also undergoing steep development. In the SIoV, vehicles work as sensor-hub to capture surrounding information using the in-vehicle and Smartphone sensors and later publish them for the consumers. A cloud centric cyber-physical system better describes the SIoV model where physical sensing-actuation process affects the cloud based service sharing or computation in a feedback loop or vice versa. The cyber based social relationship abstraction enables distributed, easily navigable and scalable peer-to-peer communication among the SIoV subsystems. These cyber-physical interactions involve a huge amount of data and it is difficult to form a real instance of the system to test the feasibility of SIoV applications. In this paper, we propose an analytical model to measure the workloads of various subsystems involved in the SIoV process. We present the basic model which is further extended to incorporate complex scenarios. We provide extensive simulation results for different parameter settings of the SIoV system. The findings of the analyses are further used to design example adaptation strategies for the SIoV subsystems which would foster deployment of intelligent transport systems. PMID:26389905

  1. Workload Model Based Dynamic Adaptation of Social Internet of Vehicles.

    PubMed

    Alam, Kazi Masudul; Saini, Mukesh; El Saddik, Abdulmotaleb

    2015-09-15

    Social Internet of Things (SIoT) has gained much interest among different research groups in recent times. As a key member of a smart city, the vehicular domain of SIoT (SIoV) is also undergoing steep development. In the SIoV, vehicles work as sensor-hub to capture surrounding information using the in-vehicle and Smartphone sensors and later publish them for the consumers. A cloud centric cyber-physical system better describes the SIoV model where physical sensing-actuation process affects the cloud based service sharing or computation in a feedback loop or vice versa. The cyber based social relationship abstraction enables distributed, easily navigable and scalable peer-to-peer communication among the SIoV subsystems. These cyber-physical interactions involve a huge amount of data and it is difficult to form a real instance of the system to test the feasibility of SIoV applications. In this paper, we propose an analytical model to measure the workloads of various subsystems involved in the SIoV process. We present the basic model which is further extended to incorporate complex scenarios. We provide extensive simulation results for different parameter settings of the SIoV system. The findings of the analyses are further used to design example adaptation strategies for the SIoV subsystems which would foster deployment of intelligent transport systems.

  2. Workload Model Based Dynamic Adaptation of Social Internet of Vehicles.

    PubMed

    Alam, Kazi Masudul; Saini, Mukesh; El Saddik, Abdulmotaleb

    2015-01-01

    Social Internet of Things (SIoT) has gained much interest among different research groups in recent times. As a key member of a smart city, the vehicular domain of SIoT (SIoV) is also undergoing steep development. In the SIoV, vehicles work as sensor-hub to capture surrounding information using the in-vehicle and Smartphone sensors and later publish them for the consumers. A cloud centric cyber-physical system better describes the SIoV model where physical sensing-actuation process affects the cloud based service sharing or computation in a feedback loop or vice versa. The cyber based social relationship abstraction enables distributed, easily navigable and scalable peer-to-peer communication among the SIoV subsystems. These cyber-physical interactions involve a huge amount of data and it is difficult to form a real instance of the system to test the feasibility of SIoV applications. In this paper, we propose an analytical model to measure the workloads of various subsystems involved in the SIoV process. We present the basic model which is further extended to incorporate complex scenarios. We provide extensive simulation results for different parameter settings of the SIoV system. The findings of the analyses are further used to design example adaptation strategies for the SIoV subsystems which would foster deployment of intelligent transport systems. PMID:26389905

  3. Health monitoring of civil infrastructures

    NASA Astrophysics Data System (ADS)

    Chong, Ken P.; Carino, Nicholas J.; Washer, Glenn A.

    2001-08-01

    Reliable health monitoring, including nondestructive evaluation, is an essential part of the feedback and monitoring system for infrastructures. The goal of this paper is to provide a summary of recent research activities that will act as a catalyst to expand interest in the development of new health monitoring technologies. The paper describes the motivation for developing innovative tools for monitoring the health of the nation's infrastructure. An overview of initiatives sponsored by the National Science Foundation to develop new technologies is presented. The paper includes a review of state-of-the-art stress-wave methods for the evaluation of structural materials and pavements at National Institute of Standards and Technology. Finally, efforts at the Federal Highway Administration to develop new technologies for the assessment of the nearly 500,000 bridges along the nation's roads and highways are described.

  4. Health monitoring of civil infrastructures

    NASA Astrophysics Data System (ADS)

    Chong, Ken P.; Carino, Nicholas J.; Washer, Glenn

    2003-06-01

    Reliable health monitoring, including nondestructive evaluation, is an essential part of the feedback and monitoring system for infrastructures. The goal of this paper is to provide a summary of recent research activities that will act as a catalyst to expand interest in the development of new health monitoring technologies. The paper describes the motivation for developing innovative tools for monitoring the health of the USA's infrastructure. An overview of initiatives sponsored by the National Science Foundation to develop new technologies is presented. The paper includes a review of the state-of-the-art stress-wave methods for the evaluation of structural materials and pavements at the National Institute of Standards and Technology. Finally, efforts at the Federal Highway Administration to develop new technologies for the assessment of the nearly 500 000 bridges along the USA's roads and highways are described.

  5. Robust adaptive backstepping control for reentry reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wu, Zhong; Du, Yijiang

    2016-09-01

    During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.

  6. Method for reducing the drag of blunt-based vehicles by adaptively increasing forebody roughness

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A. (Inventor); Saltzman, Edwin J. (Inventor); Moes, Timothy R. (Inventor); Iliff, Kenneth W. (Inventor)

    2005-01-01

    A method for reducing drag upon a blunt-based vehicle by adaptively increasing forebody roughness to increase drag at the roughened area of the forebody, which results in a decrease in drag at the base of this vehicle, and in total vehicle drag.

  7. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder.

    PubMed

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder. PMID:27219539

  8. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder

    PubMed Central

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder. PMID:27219539

  9. Information processing for aerospace structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, Peter F.; White, Edward V.; Baumann, Erwin W.

    1998-06-01

    Structural health monitoring (SHM) technology provides a means to significantly reduce life cycle of aerospace vehicles by eliminating unnecessary inspections, minimizing inspection complexity, and providing accurate diagnostics and prognostics to support vehicle life extension. In order to accomplish this, a comprehensive SHM system will need to acquire data from a wide variety of diverse sensors including strain gages, accelerometers, acoustic emission sensors, crack growth gages, corrosion sensors, and piezoelectric transducers. Significant amounts of computer processing will then be required to convert this raw sensor data into meaningful information which indicates both the diagnostics of the current structural integrity as well as the prognostics necessary for planning and managing the future health of the structure in a cost effective manner. This paper provides a description of the key types of information processing technologies required in an effective SHM system. These include artificial intelligence techniques such as neural networks, expert systems, and fuzzy logic for nonlinear modeling, pattern recognition, and complex decision making; signal processing techniques such as Fourier and wavelet transforms for spectral analysis and feature extraction; statistical algorithms for optimal detection, estimation, prediction, and fusion; and a wide variety of other algorithms for data analysis and visualization. The intent of this paper is to provide an overview of the role of information processing for SHM, discuss various technologies which can contribute to accomplishing this role, and present some example applications of information processing for SHM implemented at the Boeing Company.

  10. Development and Flight Testing of an Autonomous Landing Gear Health-Monitoring System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.

    2003-01-01

    Development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation; and, data acquisition, storage and retrieval.

  11. Individualized Behavioral Health Monitoring Tool

    NASA Technical Reports Server (NTRS)

    Mollicone, Daniel

    2015-01-01

    Behavioral health risks during long-duration space exploration missions are among the most difficult to predict, detect, and mitigate. Given the anticipated extended duration of future missions and their isolated, extreme, and confined environments, there is the possibility that behavior conditions and mental disorders will develop among astronaut crew. Pulsar Informatics, Inc., has developed a health monitoring tool that provides a means to detect and address behavioral disorders and mental conditions at an early stage. The tool integrates all available behavioral measures collected during a mission to identify possible health indicator warning signs within the context of quantitatively tracked mission stressors. It is unobtrusive and requires minimal crew time and effort to train and utilize. The monitoring tool can be deployed in space analog environments for validation testing and ultimate deployment in long-duration space exploration missions.

  12. Graphite/epoxy composite adapters for the Space Shuttle/Centaur vehicle

    NASA Technical Reports Server (NTRS)

    Kasper, Harold J.; Ring, Darryl S.

    1990-01-01

    The decision to launch various NASA satellite and Air Force spacecraft from the Space Shuttle created the need for a high-energy upper stage capable of being deployed from the cargo bay. Two redesigned versions of the Centaur vehicle which employed a graphite/epoxy composite material for the forward and aft adapters were selected. Since this was the first time a graphite/epoxy material was used for Centaur major structural components, the development of the adapters was a major effort. An overview of the composite adapter designs, subcomponent design evaluation test results, and composite adapter test results from a full-scale vehicle structural test is presented.

  13. Structural Health Monitoring Sensor Development at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Wu, M. C.; Allison, S. G.; DeHaven, S. L.; Ghoshal, A.

    2002-01-01

    NASA is applying considerable effort on the development of sensor technology for structural health monitoring (SHM). This research is targeted toward increasing the safety and reliability of aerospace vehicles, while reducing operating and maintenance costs. Research programs are focused on applications to both aircraft and space vehicles. Sensor technologies under development span a wide range including fiber-optic sensing, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, fiber-optic sensors are one of the leading candidates and are the major focus of this presentation. In addition, recent advances in active and passive acoustic sensing will also be discussed.

  14. An adaptive grid method for computing the high speed 3D viscous flow about a re-entry vehicle

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Smith, Robert E.

    1992-01-01

    An algebraic solution adaptive grid generation method that allows adapting the grid in all three coordinate directions is presented. Techniques are described that maintain the integrity of the original vehicle definition for grid point movement on the vehicle surface and that avoid grid cross over in the boundary layer portion of the grid lying next to the vehicle surface. The adaptive method is tested by computing the Mach 6 hypersonic three dimensional viscous flow about a proposed Martian entry vehicle.

  15. Wearable sensors for human health monitoring

    NASA Astrophysics Data System (ADS)

    Asada, H. Harry; Reisner, Andrew

    2006-03-01

    Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.

  16. A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tyre/road friction coefficient estimations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangwen; Xu, Yong; Pan, Ming; Ren, Fenghua

    2014-04-01

    A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.

  17. An Integrated Health Monitoring System for Fission Surface Power

    NASA Astrophysics Data System (ADS)

    Hashemian, H. M.; Shumaker, B. D.; McCulley, J. R.; Morton, G. W.

    Based on such criteria as safety and mission success, programmatic risk, affordability, and extensibility/flexibility, the National Aeronautics and Space Administration (NASA) has chosen fission surface power (FSP) as the primary energy source for building a sustained human presence on the Moon, exploring Mars, and extremely long-duration space missions. The current benchmark FSP system has a mission life of at least 8 years during which time there is no opportunity for repair, sensor calibrations, or periodic maintenance tasks that are normally performed on terrestrial-based nuclear power plants during scheduled outages. Current technology relies heavily on real-time human interaction, monitoring and control. However; due to the long communication times between the Earth and Moon, or Mars, real-time human control is not possible, resulting in a critical need to develop autonomous health monitoring technology for FSP systems.This paper describes the design and development of an autonomous health monitoring system that will (1) provide on-line calibration monitoring, (2) reduce uncertainties in sensor measurements, and (3) provide sensor validation and fault detection capabilities for the control systems of various FSP subsystems. The health monitoring system design integrates a number of signal processing algorithms and techniques such as cross-calibration, empirical modeling using neural networks, and physical modeling under a modular signal processing platform that will enable robust sensor and system monitoring without the need for human interaction. Prototypes of the health monitoring system have been tested and validated on data acquired from preliminary subsystem testing of NASA's FSP Technology Demonstration Unit (TDU) as well as simulated laboratory data. Results from this testing have demonstrated the utility and benefits that such autonomous health monitoring systems can provide to FSP subsystems and other potential applications within NASA such as launch

  18. Digital adaptive controllers for VTOL vehicles. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.; Pratt, S. G.

    1979-01-01

    The VTOL approach and landing test (VALT) adaptive software is documented. Two self-adaptive algorithms, one based on an implicit model reference design and the other on an explicit parameter estimation technique were evaluated. The organization of the software, user options, and a nominal set of input data are presented along with a flow chart and program listing of each algorithm.

  19. Impact of adaptation on flex-fuel vehicle emissions when fueled with E40.

    PubMed

    Yanowitz, Janet; Knoll, Keith; Kemper, James; Luecke, Jon; McCormick, Robert L

    2013-03-19

    Nine flex-fuel vehicles meeting Tier 1, light duty vehicle-low emission vehicle (LDV-LEV), light duty truck 2-LEV (LDT2-LEV), and Tier 2 emission standards were tested over hot-start and cold-start three-phase LA92 cycles for nonmethane organic gases, ethanol, acetaldehyde, formaldehyde, acetone, nitrous oxide, nitrogen oxides (NO(x)), carbon monoxide (CO), and carbon dioxide (CO(2)), as well as fuel economy. Emissions were measured immediately after refueling with E40. The vehicles had previously been adapted to either E10 or E76. An overall comparison of emissions and fuel economy behavior of vehicles running on E40 showed results generally consistent with adaptation to the blend after the length of the three-phase hot-start LA92 test procedure (1735 s, 11 miles). However, the single LDT2-LEV vehicle, a Dodge Caravan, continued to exhibit statistically significant differences in emissions for most pollutants when tested on E40 depending on whether the vehicle had been previously adapted to E10 or E76. The results were consistent with an overestimate of the amount of ethanol in the fuel when E40 was added immediately after the use of E76. Increasing ethanol concentration in fuel led to reductions in fuel economy, NO(x), CO, CO(2), and acetone emissions as well as increases in emissions of ethanol, acetaldehyde, and formaldehyde.

  20. Digital adaptive controllers for VTOL vehicles. Volume 1: Concept evaluation

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.; Pratt, S. G.

    1979-01-01

    A digital self-adaptive flight control system was developed for flight test in the VTOL approach and landing technology (VALT) research aircraft (a modified CH-47 helicopter). The control laws accept commands from an automatic on-board guidance system. The primary objective of the control laws is to provide good command-following with a minimum cross-axis response. Three attitudes and vertical velocity are separately commanded. Adaptation of the control laws is based on information from rate and attitude gyros and a vertical velocity measurement. The final design resulted from a comparison of two different adaptive concepts--one based on explicit parameter estimates from a real-time maximum-likelihood estimation algorithm, the other based on an implicit model reference adaptive system. The two designs were compared on the basis of performance and complexity.

  1. An adaptive numeric predictor-corrector guidance algorithm for atmospheric entry vehicles

    NASA Astrophysics Data System (ADS)

    Spratlin, Kenneth Milton

    1987-05-01

    An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.

  2. Adaptive representation for dynamic environment, vehicle, and mission complexity

    NASA Astrophysics Data System (ADS)

    Collier, Jack A.; Ricard, Benoit; Digney, Bruce L.; Cheng, David; Trentini, Michael; Beckman, Blake

    2004-09-01

    In order for an Unmanned Ground Vehicle (UGV) to operate effectively it must be able to perceive its environment in an accurate, robust and effective manner. This is done by creating a world representation which encompasses all the perceptual information necessary for the UGV to understand its surroundings. These perceptual needs are a function of the robots mobility characteristics, the complexity of the environment in which it operates, and the mission with which the UGV has been tasked. Most perceptual systems are designed with predefined vehicle, environmental, and mission complexity in mind. This can lead the robot to fail when it encounters a situation which it was not designed for since its internal representation is insufficient for effective navigation. This paper presents a research framework currently being investigated by Defence R&D Canada (DRDC), which will ultimately relieve robotic vehicles of this problem by allowing the UGV to recognize representational deficiencies, and change its perceptual strategy to alleviate these deficiencies. This will allow the UGV to move in and out of a wide variety of environments, such as outdoor rural to indoor urban, at run time without reprogramming. We present sensor and perception work currently being done and outline our research in this area for the future.

  3. Foundations for learning and adaptation in a multi-degree-of-freedom unmanned ground vehicle

    NASA Astrophysics Data System (ADS)

    Blackburn, Michael R.; Bailey, Richard

    2004-04-01

    The real-time coordination and control of a many motion degrees of freedom (dof) unmanned ground vehicle under dynamic conditions in a complex environment is nearly impossible for a human operator to accomplish. Needed are adaptive on-board mechanisms to quickly complete sensor-effector loops to maintain balance and leverage. This paper contains a description of our approach to the control problem for a small unmanned ground vehicle with six dof in the three spatial dimensions. Vehicle control is based upon seven fixed action patterns that exercise all of the motion dof of which the vehicle is capable, and five basic reactive behaviors that protect the vehicle during operation. The reactive behaviors demonstrate short-term adaptations. The learning processes for long-term adaptations of the vehicle control functions that we are implementing are composed of classical and operant conditionings of novel responses to information available from distance sensors (vision and audition) built upon the pre-defined fixed action patterns. The fixed action patterns are in turn modulated by the pre-defined low-level reactive behaviors that, as unconditioned responses, continuously serve to maintain the viability of the robot during the activations of the fixed action patterns, and of the higher-order (conditioned) behaviors. The sensors of the internal environment that govern the low-level reactive behaviors also serve as the criteria for operant conditioning, and satisfy the requirement for basic behavioral motivation.

  4. Integrated controls and health monitoring for chemical transfer propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Binder, Michael P.

    1990-01-01

    NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed.

  5. FUN3D Grid Refinement and Adaptation Studies for the Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Vasta, Veer; Carlson, Jan-Renee; Park, Mike; Mineck, Raymond E.

    2010-01-01

    This paper presents grid refinement and adaptation studies performed in conjunction with computational aeroelastic analyses of the Ares crew launch vehicle (CLV). The unstructured grids used in this analysis were created with GridTool and VGRID while the adaptation was performed using the Computational Fluid Dynamic (CFD) code FUN3D with a feature based adaptation software tool. GridTool was developed by ViGYAN, Inc. while the last three software suites were developed by NASA Langley Research Center. The feature based adaptation software used here operates by aligning control volumes with shock and Mach line structures and by refining/de-refining where necessary. It does not redistribute node points on the surface. This paper assesses the sensitivity of the complex flow field about a launch vehicle to grid refinement. It also assesses the potential of feature based grid adaptation to improve the accuracy of CFD analysis for a complex launch vehicle configuration. The feature based adaptation shows the potential to improve the resolution of shocks and shear layers. Further development of the capability to adapt the boundary layer and surface grids of a tetrahedral grid is required for significant improvements in modeling the flow field.

  6. I35W collapse, rebuild, and structural health monitoring - challenges associated with structural health monitoring of bridge systems

    SciTech Connect

    French, C. E.; Hedegaard, B.; Shield, C. K.; Stolarski, H.

    2011-06-23

    During evening rush hour traffic on August 1, 2007, the major interstate highway bridge carrying I35W over the Mississippi River in Minneapolis catastrophically failed, tragically taking the lives of thirteen people and injuring many more. The steel truss bridge, constructed in 1967, was undergoing deck reconstruction during the collapse, and was estimated to carry more than 140,000 vehicles daily. This tragedy generated great interest in employment of structural health monitoring systems. The I35W St. Anthony Falls Bridge, a post-tensioned concrete box bridge constructed to replace the collapsed steel truss bridge, contains over 500 instruments to monitor the structural behavior. Numerical models of the bridge are being developed and calibrated to the collected data obtained from truck load tests and thermal effects. The data obtained over the first few years of monitoring are being correlated with the calibrated models and used to develop the baseline bridge behavior. This information is being used to develop a system to monitor and interpret the long-term behavior of the bridge. This paper describes the instrumentation, preliminary results from the data and model calibration, the plan for developing long-term monitoring capabilities, and the challenges associated with structural health monitoring of bridge systems. In addition, opportunities and directions for future research required to fully realize the objectives of structural health monitoring are described.

  7. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  8. Autonomous self-powered structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Anton, Steven R.; Zhang, David; Kumar, Amrita; Inman, Daniel J.; Ooi, Teng K.

    2010-03-01

    Structural health monitoring technology is perceived as a revolutionary method of determining the integrity of structures involving the use of multidisciplinary fields including sensors, materials, system integration, signal processing and interpretation. The core of the technology is the development of self-sufficient systems for the continuous monitoring, inspection and damage detection of structures with minimal labor involvement. A major drawback of the existing technology for real-time structural health monitoring is the requirement for external electrical power input. For some applications, such as missiles or combat vehicles in the field, this factor can drastically limit the use of the technology. Having an on-board electrical power source that is independent of the vehicle power system can greatly enhance the SHM system and make it a completely self-contained system. In this paper, using the SMART layer technology as a basis, an Autonomous Self-powered (ASP) Structural Health Monitoring (SHM) system has been developed to solve the major challenge facing the transition of SHM systems into field applications. The architecture of the self-powered SHM system was first designed. There are four major components included in the SHM system: SMART Layer with sensor network, low power consumption diagnostic hardware, rechargeable battery with energy harvesting device, and host computer with supporting software. A prototype of the integrated self-powered active SHM system was built for performance and functionality testing. Results from the evaluation tests demonstrated that a fully charged battery system is capable of powering the SHM system for active scanning up to 10 hours.

  9. Trajectory Planning and Optimized Adaptive Control for a Class of Wheeled Inverted Pendulum Vehicle Models.

    PubMed

    Yang, Chenguang; Li, Zhijun; Li, Jing

    2013-02-01

    In this paper, we investigate optimized adaptive control and trajectory generation for a class of wheeled inverted pendulum (WIP) models of vehicle systems. Aiming at shaping the controlled vehicle dynamics to be of minimized motion tracking errors as well as angular accelerations, we employ the linear quadratic regulation optimization technique to obtain an optimal reference model. Adaptive control has then been developed using variable structure method to ensure the reference model to be exactly matched in a finite-time horizon, even in the presence of various internal and external uncertainties. The minimized yaw and tilt angular accelerations help to enhance the vehicle rider's comfort. In addition, due to the underactuated mechanism of WIP, the vehicle forward velocity dynamics cannot be controlled separately from the pendulum tilt angle dynamics. Inspired by the control strategy of human drivers, who usually manipulate the tilt angle to control the forward velocity, we design a neural-network-based adaptive generator of implicit control trajectory (AGICT) of the tilt angle which indirectly "controls" the forward velocity such that it tracks the desired velocity asymptotically. The stability and optimal tracking performance have been rigorously established by theoretic analysis. In addition, simulation studies have been carried out to demonstrate the efficiency of the developed AGICT and optimized adaptive controller.

  10. Method for Reducing the Drag of Increasing Forebody Roughness Blunt-Based Vehicles by Adaptively Increasing Forebody Roughness

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A. (Inventor); Saltzman, Edwin J. (Inventor); Moes, Timothy R. (Inventor); Iliff, Kenneth W. (Inventor)

    2005-01-01

    A method for reducing drag upon a blunt-based vehicle by adaptively increasing forebody roughness to increase drag at the roughened area of the forebody, which results in a decrease in drag at the base of this vehicle, and in total vehicle drag.

  11. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2014-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.

  12. Nonlinear Adaptive Control and Guidance for Unstart Recovery for a Generic Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Gunbatar, Yakup

    This work presents the development of an integrated flight controller for a generic model of a hypersonic air-breathing vehicle. The flight control architecture comprises a guidance and trajectory planning module and a nonlinear inner-loop adaptive controller. The emphasis of the controller design is on achieving stable tracking of suitable reference trajectories in the presence of a specific engine fault (inlet unstart), in which sudden and drastic changes in the vehicle aerodynamics and engine performance occur. First, the equations of motion of the vehicle for a rigid body model, taking the rotation of the Earth into account, is provided. Aerodynamic forces and moments and engine data are provided in lookup-table format. This comprehensive model is used for simulations and verification of the control strategies. Then, a simplified control-oriented model is developed for the purpose of control design and stability analysis. The design of the guidance and nonlinear adaptive control algorithms is first carried out on a longitudinal version of the vehicle dynamics. The design is verified in a simulation study aiming at testing the robustness of the inner-loop controller under significant model uncertainty and engine failures. At the same time, the guidance system provides reference trajectories to maximize the vehicle's endurance, which is cast as an optimal control problem. The design is then extended to tackle the significantly more challenging case of the 6-degree-of-freedom (6-DOF) vehicle dynamics. For the full 6-DOF case, the adaptive nonlinear flight controller is tested on more challenging maneuvers, where values of the flight path and bank angles exceed the nominal range defined for the vehicle. Simulation studies show stable operation of the closed-loop system in nominal operating conditions, unstart conditions, and during transition from sustained scramjet propulsion to engine failure mode.

  13. STRUCTURAL HEALTH MONITORING OF WELDED CONNECTIONS

    SciTech Connect

    H. SOHN; C. FARRAR; M. FUGATE; J. CZARNECKI

    2001-05-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective monitoring system for welded beam-column connections in a moment resisting frame structure. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMs) technology, and statistical pattern recognition algorithms. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  14. Video-image-based neural network guidance system with adaptive view-angles for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Luebbers, Paul G.; Pandya, Abhijit S.

    1991-08-01

    This paper describes the guidance function of an autonomous vehicle based on a neural network controller using video images with adaptive view angles for sensory input. The guidance function for an autonomous vehicle provides the low-level control required for maintaining the autonomous vehicle on a prescribed trajectory. Neural networks possess unique properties such as the ability to perform sensor fusion, the ability to learn, and fault tolerant architectures, qualities which are desirable for autonomous vehicle applications. To demonstrate the feasibility of using neural networks in this type of an application, an Intelledex 405 robot fitted with a video camera and vision system was used to model an autonomous vehicle with a limited range of motion. In addition to fixed-angle video images, a set of images using adaptively varied view angles based on speed are used as the input to the neural network controller. It was shown that the neural network was able to control the autonomous vehicle model along a path composed of path segments unlike the exemplars with which it was trained. This system was designed to assess only the guidance system, and it was assumed that other functions employed in autonomous vehicle control systems (mission planning, navigation, and obstacle avoidance) are to be implemented separately and are providing a desired path to the guidance system. The desired path trajectory is presented to the robot in the form of a two-dimensional path, with centerline, that is to be followed. A video camera and associated vision system provides video image data as control feedback to the guidance system. The neural network controller uses Gaussian curves for the output vector to facilitate interpolation and generalization of the output space.

  15. Improving traffic flow at a 2-to-1 lane reduction with wirelessly connected, adaptive cruise control vehicles

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2016-06-01

    Wirelessly connected vehicles that exchange information about traffic conditions can reduce delays caused by congestion. At a 2-to-1 lane reduction, the improvement in flow past a bottleneck due to traffic with a random mixture of 40% connected vehicles is found to be 52%. Control is based on connected-vehicle-reported velocities near the bottleneck. In response to indications of congestion the connected vehicles, which are also adaptive cruise control vehicles, reduce their speed in slowdown regions. Early lane changes of manually driven vehicles from the terminated lane to the continuous lane are induced by the slowing connected vehicles. Self-organized congestion at the bottleneck is thus delayed or eliminated, depending upon the incoming flow magnitude. For the large majority of vehicles, travel times past the bottleneck are substantially reduced. Control is responsible for delaying the onset of congestion as the incoming flow increases. Adaptive cruise control increases the flow out of the congested state at the bottleneck. The nature of the congested state, when it occurs, appears to be similar under a variety of conditions. Typically 80-100 vehicles are approximately equally distributed between the lanes in the 500 m region prior to the end of the terminated lane. Without the adaptive cruise control capability, connected vehicles can delay the onset of congestion but do not increase the asymptotic flow past the bottleneck. Calculations are done using the Kerner-Klenov three-phase theory, stochastic discrete-time model for manual vehicles. The dynamics of the connected vehicles is given by a conventional adaptive cruise control algorithm plus commanded deceleration. Because time in the model for manual vehicles is discrete (one-second intervals), it is assumed that the acceleration of any vehicle immediately in front of a connected vehicle is constant during the time interval, thereby preserving the computational simplicity and speed of a discrete-time model.

  16. Health Monitoring of Composite Material Structures using a Vibrometry Technique

    NASA Technical Reports Server (NTRS)

    Schulz, Mark J.

    1997-01-01

    Large composite material structures such as aircraft and Reusable Launch Vehicles (RLVS) operate in severe environments comprised of vehicle dynamic loads, aerodynamic loads, engine vibration, foreign object impact, lightning strikes, corrosion, and moisture absorption. These structures are susceptible to damage such as delamination, fiber breaking/pullout, matrix cracking, and hygrothermal strain. To ensure human safety and load-bearing integrity, these structures must be inspected to detect and locate often invisible damage and faults before becoming catastrophic. Moreover, nearly all future structures will need some type of in-service inspection technique to increase their useful life and reduce maintenance and overall costs. Possible techniques for monitoring the health and indicating damage on composite structures include: c-scan, thermography, acoustic emissions using piezoceramic actuators or fiber-optic wires with gratings, laser ultrasound, shearography, holography, x-ray, and others. These techniques have limitations in detecting damage that is beneath the surface of the structure, far away from a sensor location, or during operation of the vehicle. The objective of this project is to develop a more global method for damage detection that is based on structural dynamics principles, and can inspect for damage when the structure is subjected to vibratory loads to expose faults that may not be evident by static inspection. A Transmittance Function Monitoring (TFM) method is being developed in this project for ground-based inspection and operational health monitoring of large composite structures as a RLV. A comparison of the features of existing health monitoring approaches and the proposed TFM method is given.

  17. L1 Adaptive Control Law for Flexible Space Launch Vehicle and Proposed Plan for Flight Test Validation

    NASA Technical Reports Server (NTRS)

    Kharisov, Evgeny; Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira

    2008-01-01

    This paper explores application of the L1 adaptive control architecture to a generic flexible Crew Launch Vehicle (CLV). Adaptive control has the potential to improve performance and enhance safety of space vehicles that often operate in very unforgiving and occasionally highly uncertain environments. NASA s development of the next generation space launch vehicles presents an opportunity for adaptive control to contribute to improved performance of this statically unstable vehicle with low damping and low bending frequency flexible dynamics. In this paper, we consider the L1 adaptive output feedback controller to control the low frequency structural modes and propose steps to validate the adaptive controller performance utilizing one of the experimental test flights for the CLV Ares-I Program.

  18. Stability Assessment and Tuning of an Adaptively Augmented Classical Controller for Launch Vehicle Flight Control

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen; Zhu, J. Jim; Adami, Tony; Berry, Kyle; Grammar, Alex; Orr, Jeb S.; Best, Eric A.

    2014-01-01

    Recently, a robust and practical adaptive control scheme for launch vehicles [ [1] has been introduced. It augments a classical controller with a real-time loop-gain adaptation, and it is therefore called Adaptive Augmentation Control (AAC). The loop-gain will be increased from the nominal design when the tracking error between the (filtered) output and the (filtered) command trajectory is large; whereas it will be decreased when excitation of flex or sloshing modes are detected. There is a need to determine the range and rate of the loop-gain adaptation in order to retain (exponential) stability, which is critical in vehicle operation, and to develop some theoretically based heuristic tuning methods for the adaptive law gain parameters. The classical launch vehicle flight controller design technics are based on gain-scheduling, whereby the launch vehicle dynamics model is linearized at selected operating points along the nominal tracking command trajectory, and Linear Time-Invariant (LTI) controller design techniques are employed to ensure asymptotic stability of the tracking error dynamics, typically by meeting some prescribed Gain Margin (GM) and Phase Margin (PM) specifications. The controller gains at the design points are then scheduled, tuned and sometimes interpolated to achieve good performance and stability robustness under external disturbances (e.g. winds) and structural perturbations (e.g. vehicle modeling errors). While the GM does give a bound for loop-gain variation without losing stability, it is for constant dispersions of the loop-gain because the GM is based on frequency-domain analysis, which is applicable only for LTI systems. The real-time adaptive loop-gain variation of the AAC effectively renders the closed-loop system a time-varying system, for which it is well-known that the LTI system stability criterion is neither necessary nor sufficient when applying to a Linear Time-Varying (LTV) system in a frozen-time fashion. Therefore, a

  19. Health Monitoring of a Satellite System

    NASA Technical Reports Server (NTRS)

    Chen, Robert H.; Ng, Hok K.; Speyer, Jason L.; Guntur, Lokeshkumar S.; Carpenter, Russell

    2004-01-01

    A health monitoring system based on analytical redundancy is developed for satellites on elliptical orbits. First, the dynamics of the satellite including orbital mechanics and attitude dynamics is modelled as a periodic system. Then, periodic fault detection filters are designed to detect and identify the satellite's actuator and sensor faults. In addition, parity equations are constructed using the algebraic redundant relationship among the actuators and sensors. Furthermore, a residual processor is designed to generate the probability of each of the actuator and sensor faults by using a sequential probability test. Finally, the health monitoring system, consisting of periodic fault detection lters, parity equations and residual processor, is evaluated in the simulation in the presence of disturbances and uncertainty.

  20. Smartphone-based mobile health monitoring.

    PubMed

    Lee, Yong-Gyu; Jeong, Won Sig; Yoon, Gilwon

    2012-10-01

    We developed a health monitoring system based on the smartphone. A compact and low-power-consuming biosignal monitoring unit (BMU) measured electrocardiogram (ECG), photoplethysmogram (PPG), temperature, oxygen saturation, energy expenditure, and location information. The 2.4 GHz Bluetooth(®) (Bluetooth SIG) network in the BMU communicated with a smartphone. Health information was sent to a remote healthcare server through a built-in 3G or Wi-Fi network in the smartphone. The remote server monitored multiple users in real-time. Normally data of vital signs were being transmitted to the server. In an emergency or for a special care case, additional information such as the waveform of the ECG and PPG were displayed at the server. For increased transmission efficiency, data compression and a simple error correction algorithm were implemented. Using a widespread smartphone, an efficient personal health monitoring system was developed and tested successfully for multiple users.

  1. Health Monitoring System for Car Seat

    NASA Technical Reports Server (NTRS)

    Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)

    2004-01-01

    A health monitoring system for use with a child car seat has sensors mounted in the seat to monitor one or more health conditions of the seat's occupant. A processor monitors the sensor's signals and generates status signals related to the monitored conditions. A transmitter wireless transmits the status signals to a remotely located receiver. A signaling device coupled to the receiver produces at least one sensory (e.g., visual, audible, tactile) output based on the status signals.

  2. Forest health monitoring: Field methods guide

    SciTech Connect

    Tallent-Halsell, N.G.

    1994-10-01

    This guide is intended to instruct Forest Health Monitors when collecting data on forest health indicators; site condition, growth and regeneration, crown condition, tree damage and mortality assessment, photosynthetically active radiation, vegetation structure, ozone bioindicator species, lichen community structure and field logistics. This guide contains information on measuring, observing and recording data related to the above listed forest health indicators. Pertinent quality assurance information is also included.

  3. In situ health monitoring of piezoelectric sensors

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  4. Nuclear propulsion control and health monitoring

    NASA Technical Reports Server (NTRS)

    Walter, P. B.; Edwards, R. M.

    1993-01-01

    An integrated control and health monitoring architecture is being developed for the Pratt & Whitney XNR2000 nuclear rocket. Current work includes further development of the dynamic simulation modeling and the identification and configuration of low level controllers to give desirable performance for the various operating modes and faulted conditions. Artificial intelligence and knowledge processing technologies need to be investigated and applied in the development of an intelligent supervisory controller module for this control architecture.

  5. A Battery Health Monitoring Framework for Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  6. Fault Tolerance Analysis of L1 Adaptive Control System for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Kiruthika

    Trajectory tracking is a critical element for the better functionality of autonomous vehicles. The main objective of this research study was to implement and analyze L1 adaptive control laws for autonomous flight under normal and upset flight conditions. The West Virginia University (WVU) Unmanned Aerial Vehicle flight simulation environment was used for this purpose. A comparison study between the L1 adaptive controller and a baseline conventional controller, which relies on position, proportional, and integral compensation, has been performed for a reduced size jet aircraft, the WVU YF-22. Special attention was given to the performance of the proposed control laws in the presence of abnormal conditions. The abnormal conditions considered are locked actuators (stabilator, aileron, and rudder) and excessive turbulence. Several levels of abnormal condition severity have been considered. The performance of the control laws was assessed over different-shape commanded trajectories. A set of comprehensive evaluation metrics was defined and used to analyze the performance of autonomous flight control laws in terms of control activity and trajectory tracking errors. The developed L1 adaptive control laws are supported by theoretical stability guarantees. The simulation results show that L1 adaptive output feedback controller achieves better trajectory tracking with lower level of control actuation as compared to the baseline linear controller under nominal and abnormal conditions.

  7. Flexible Structural-Health-Monitoring Sheets

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  8. A robust adaptive nonlinear fault-tolerant controller via norm estimation for reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Hu, Chaofang; Gao, Zhifei; Ren, Yanli; Liu, Yunbing

    2016-11-01

    In this paper, a reusable launch vehicle (RLV) attitude control problem with actuator faults is addressed via the robust adaptive nonlinear fault-tolerant control (FTC) with norm estimation. Firstly, the accurate tracking task of attitude angles in the presence of parameter uncertainties and external disturbances is considered. A fault-free controller is proposed using dynamic surface control (DSC) combined with fuzzy adaptive approach. Furthermore, the minimal learning parameter strategy via norm estimation technique is introduced to reduce the multi-parameter adaptive computation burden of fuzzy approximation of the lump uncertainties. Secondly, a compensation controller is designed to handle the partial loss fault of actuator effectiveness. The unknown maximum eigenvalue of actuator efficiency loss factors is estimated online. Moreover, stability analysis guarantees that all signals of the closed-loop control system are semi-global uniformly ultimately bounded. Finally, illustrative simulations show the effectiveness of the proposed method.

  9. Verification and Tuning of an Adaptive Controller for an Unmanned Air Vehicle

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper focuses on the analysis and tuning of a controller based on the Adaptive Control Technology for Safe Flight (ACTS) architecture. The ACTS architecture consists of a nominal, non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off-nominal ones. A framework unifying control verification and gain tuning is used to make the controller s ability to satisfy the closed-loop requirements more robust to uncertainty. In this paper we tune the gains of both controllers using this approach. Some advantages and drawbacks of adaptation are identified by performing a global robustness assessment of both the adaptive controller and its non-adaptive counterpart. The analyses used to determine these characteristics are based on evaluating the degradation in closed-loop performance resulting from uncertainties having increasing levels of severity. The specific adverse conditions considered can be grouped into three categories: aerodynamic uncertainties, structural damage, and actuator failures. These failures include partial and total loss of control effectiveness, locked-in-place control surface deflections, and engine out conditions. The requirements considered are the peak structural loading, the ability of the controller to track pilot commands, the ability of the controller to keep the aircraft s state within the reliable flight envelope, and the handling/riding qualities of the aircraft. The nominal controller resulting from these tuning strategies was successfully validated using the NASA GTM Flight Test Vehicle.

  10. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  11. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    PubMed

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions. PMID:25056743

  12. Adaptive neural control for cooperative path following of marine surface vehicles: state and output feedback

    NASA Astrophysics Data System (ADS)

    Wang, H.; Wang, D.; Peng, Z. H.

    2016-01-01

    This paper addresses the cooperative path-following problem of multiple marine surface vehicles subject to dynamical uncertainties and ocean disturbances induced by unknown wind, wave and ocean current. The control design falls neatly into two parts. One is to steer individual marine surface vehicle to track a predefined path and the other is to synchronise the along-path speed and path variables under the constraints of an underlying communication network. Within these two formulations, a robust adaptive path-following controller is first designed for individual vehicles based on backstepping and neural network techniques. Then, a decentralised synchronisation control law is derived by means of consensus on along-path speed and path variables based on graph theory. The distinct feature of this design lies in that synchronised path following can be reached for any undirected connected communication graphs without accurate knowledge of the model. This result is further extended to the output feedback case, where an observer-based cooperative path-following controller is developed without measuring the velocity of each vehicle. For both designs, rigorous theoretical analysis demonstrate that all signals in the closed-loop system are semi-global uniformly ultimately bounded. Simulation results validate the performance and robustness improvement of the proposed strategy.

  13. Simulation of adaptive semi-active magnetorheological seat damper for vehicle occupant blast protection

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyeong; Murugan, Muthuvel; Wereley, Norman M.

    2013-04-01

    This study investigates a lumped-parameter human body model which includes lower leg in seated posture within a quarter-car model for blast injury assessment simulation. To simulate the shock acceleration of the vehicle, mine blast analysis was conducted on a generic land vehicle crew compartment (sand box) structure. For the purpose of simulating human body dynamics with non-linear parameters, a physical model of a lumped-parameter human body within a quarter car model was implemented using multi-body dynamic simulation software. For implementing the control scheme, a skyhook algorithm was made to work with the multi-body dynamic model by running a co-simulation with the control scheme software plug-in. The injury criteria and tolerance levels for the biomechanical effects are discussed for each of the identified vulnerable body regions, such as the relative head displacement and the neck bending moment. The desired objective of this analytical model development is to study the performance of adaptive semi-active magnetorheological damper that can be used for vehicle-occupant protection technology enhancements to the seat design in a mine-resistant military vehicle.

  14. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    PubMed

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.

  15. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows.

    PubMed

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results.

  16. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows.

    PubMed

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158

  17. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows

    PubMed Central

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon’s 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158

  18. Adaptive homochromous disturbance elimination and feature selection based mean-shift vehicle tracking method

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Lei, Bo; Hong, Pu; Wang, Chensheng

    2011-11-01

    This paper introduces a novel method to adaptively diminish the effects of disturbance in the airborne camera shooting traffic video. Based on the moving vector of the tracked vehicle, a search area in the next frame is predicted, which is the area of interest (AOI) to the mean-shift method. Background color estimation is performed according to the previous tracking, which is used to judge whether there is possible disturbance in the predicted search area in the next frame. Without disturbance, the difference image of vehicle and background could be used as input features to the mean-shift algorithm; with disturbance, the histogram of colors in the predict area is calculated to find the most and second disturbing color. Experiments proved this method could diminish or eliminate the effects of homochromous disturbance and lead to more precise and more robust tracking.

  19. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    PubMed

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-01-01

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835

  20. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation

    PubMed Central

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-01-01

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix ‘R’ and the system noise V-C matrix ‘Q’. Then, the global filter uses R to calculate the information allocation factor ‘β’ for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively. PMID:27438835

  1. The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.

    PubMed

    Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck

    2016-07-16

    This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.

  2. On-orbit structural health monitoring

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.

    1990-01-01

    On-orbit structural health monitoring aboard space platforms requires the development of sensor systems for assessing impact damage from particles and debris, the effects of atomic oxygen erosion, and the integrity of power systems, storage tanks, pressure vessels, and major structural elements. The task of implementing such a smart structure diagnostic system during the initial phase of the NASA Space Station Freedom is evaluated, with a view to more complete smart structures implementation in the course of station evolution. The data processing/cataloguing task may ultimately require AI and neural networks.

  3. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  4. Robust Strategy for Rocket Engine Health Monitoring

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    2001-01-01

    Monitoring the health of rocket engine systems is essentially a two-phase process. The acquisition phase involves sensing physical conditions at selected locations, converting physical inputs to electrical signals, conditioning the signals as appropriate to establish scale or filter interference, and recording results in a form that is easy to interpret. The inference phase involves analysis of results from the acquisition phase, comparison of analysis results to established health measures, and assessment of health indications. A variety of analytical tools may be employed in the inference phase of health monitoring. These tools can be separated into three broad categories: statistical, rule based, and model based. Statistical methods can provide excellent comparative measures of engine operating health. They require well-characterized data from an ensemble of "typical" engines, or "golden" data from a specific test assumed to define the operating norm in order to establish reliable comparative measures. Statistical methods are generally suitable for real-time health monitoring because they do not deal with the physical complexities of engine operation. The utility of statistical methods in rocket engine health monitoring is hindered by practical limits on the quantity and quality of available data. This is due to the difficulty and high cost of data acquisition, the limited number of available test engines, and the problem of simulating flight conditions in ground test facilities. In addition, statistical methods incur a penalty for disregarding flow complexity and are therefore limited in their ability to define performance shift causality. Rule based methods infer the health state of the engine system based on comparison of individual measurements or combinations of measurements with defined health norms or rules. This does not mean that rule based methods are necessarily simple. Although binary yes-no health assessment can sometimes be established by

  5. Augmented Fish Health Monitoring, 1992 Annual Report.

    SciTech Connect

    Warren, James W.

    1992-08-01

    The Augmented Fish Health Monitoring Project (Project) had its origin, in the mid-1980's, in perceived differences or inconsistencies in fish disease detection, diagnosis and control capabilities between the five conservation agencies rearing and releasing anadromous salmonids for fishery resource management and mitigation purposes in the Columbia River basin. Agency fish health programs varied greatly. Some agencies had personnel, equipment and funding to frequently monitor the health status of both juvenile production fish and adult salmon or steelhead trout at the time of spawning. Other agencies had much smaller programs and limited resources. These differences became better understood when the Pacific Northwest Fish Health Protection Committee developed its Model Fish Health Protection Program including recommendations for standard fish disease detection procedures. Even though some agencies could not immediately attain the goals set by the Model Program it was unanimously adopted as a desirable objective. Shortly thereafter, a multi-party planning group was assembled to help the Bonneville Power Administration (BPA) find ways to improve agency fish health programs and implement measures under the Fish and Wildlife Program of the Northwest Power Planning Council. The planning group assessed existing agency fish health monitoring capabilities, agreed upon satisfactory levels of capability to detect and identify important fish pathogens, and designed a five-year project establishing comparable fish health monitoring capability in each agency. It was strongly believed that such a project would improve the health and quality of the millions of hatchery fish released annually in the Columbia River basin and improve interagency communications and disease control coordination. During 1986 and 1987 BPA individually negotiated five separate contracts with the fishery agencies to standardize fish health monitoring, develop a common data collection and reporting format

  6. Structural Health Monitoring: Leveraging Pain in the Human Body

    NASA Astrophysics Data System (ADS)

    Nayak, Subhadarshi

    2012-07-01

    Tissue damage, or the perception thereof, is managed through pain experience. The neurobiological process of pain triggers most effective defense mechanisms for our safety. Structural health monitoring (SHM) is also a very similar function, albeit in engineering systems. SHM technology can leverage many aspects of pain mechanisms to progress in several critical areas. Discrimination between features from the undamaged and damaged structures can follow the threshold gate mechanism of the pain perception. Furthermore, the sensing mechanisms can be adaptive to changes by adjusting the threshold as does the pain perception. A distributed sensor network, often advanced by SHM, can be made fault-tolerant and robust by following the perception way of self-organization and redundancy. Data handling in real life is a huge challenge for large-scale SHM. As sensory data of pain is first cleaned, the threshold is then processed through experiential information gathering and use.

  7. Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.

    PubMed

    Valasek, John; Doebbler, James; Tandale, Monish D; Meade, Andrew J

    2008-08-01

    This paper presents an improved Adaptive-Reinforcement Learning Control methodology for the problem of unmanned air vehicle morphing control. The reinforcement learning morphing control function that learns the optimal shape change policy is integrated with an adaptive dynamic inversion control trajectory tracking function. An episodic unsupervised learning simulation using the Q-learning method is developed to replace an earlier and less accurate Actor-Critic algorithm. Sequential Function Approximation, a Galerkin-based scattered data approximation scheme, replaces a K-Nearest Neighbors (KNN) method and is used to generalize the learning from previously experienced quantized states and actions to the continuous state-action space, all of which may not have been experienced before. The improved method showed smaller errors and improved learning of the optimal shape compared to the KNN. PMID:18632393

  8. Fuzzy physical programming for Space Manoeuvre Vehicles trajectory optimization based on hp-adaptive pseudospectral method

    NASA Astrophysics Data System (ADS)

    Chai, Runqi; Savvaris, Al; Tsourdos, Antonios

    2016-06-01

    In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.

  9. Improved Adaptive-Reinforcement Learning Control for morphing unmanned air vehicles.

    PubMed

    Valasek, John; Doebbler, James; Tandale, Monish D; Meade, Andrew J

    2008-08-01

    This paper presents an improved Adaptive-Reinforcement Learning Control methodology for the problem of unmanned air vehicle morphing control. The reinforcement learning morphing control function that learns the optimal shape change policy is integrated with an adaptive dynamic inversion control trajectory tracking function. An episodic unsupervised learning simulation using the Q-learning method is developed to replace an earlier and less accurate Actor-Critic algorithm. Sequential Function Approximation, a Galerkin-based scattered data approximation scheme, replaces a K-Nearest Neighbors (KNN) method and is used to generalize the learning from previously experienced quantized states and actions to the continuous state-action space, all of which may not have been experienced before. The improved method showed smaller errors and improved learning of the optimal shape compared to the KNN.

  10. Augmented Fish Health Monitoring, 1989 Annual Report.

    SciTech Connect

    Michak, Patty

    1990-05-01

    Since 1986 Washington Department of Fisheries (WDF) has participated in the Columbia Basin Augmented Fish Health Monitoring Project, funded by Bonneville Power Administration (BPA). This interagency project was developed to provide a standardized level of fish health information from all Agencies rearing fish in the Columbia Basin. Agencies involved in the project are: WDF, Washington Department of Wildlife, Oregon Fish and Wildlife, Idaho Fish and Game, and the US Fish and Wildlife Service. WDF has actively participated in this project, and completed its third year of fish health monitoring, data collection and pathogen inspection during 1989. This report will present data collected from January 1, 1989 to December 31, 1989 and will compare sampling results from screening at spawning for viral pathogens and bacterial kidney disease (BKD), and evaluation of causes of pre-spawning loss. The juvenile analysis will include pre-release examination results, mid-term rearing exam results and evaluation of the Organosomatic Analysis completed on stocks. 2 refs., 4 figs., 15 tabs.

  11. Health Monitoring for Airframe Structural Characterization

    NASA Technical Reports Server (NTRS)

    Munns, Thomas E.; Kent, Renee M.; Bartolini, Antony; Gause, Charles B.; Borinski, Jason W.; Dietz, Jason; Elster, Jennifer L.; Boyd, Clark; Vicari, Larry; Ray, Asok; Cooper, E. G. (Technical Monitor)

    2002-01-01

    This study established requirements for structural health monitoring systems, identified and characterized a prototype structural sensor system, developed sensor interpretation algorithms, and demonstrated the sensor systems on operationally realistic test articles. Fiber-optic corrosion sensors (i.e., moisture and metal ion sensors) and low-cycle fatigue sensors (i.e., strain and acoustic emission sensors) were evaluated to validate their suitability for monitoring aging degradation; characterize the sensor performance in aircraft environments; and demonstrate placement processes and multiplexing schemes. In addition, a unique micromachined multimeasure and sensor concept was developed and demonstrated. The results show that structural degradation of aircraft materials could be effectively detected and characterized using available and emerging sensors. A key component of the structural health monitoring capability is the ability to interpret the information provided by sensor system in order to characterize the structural condition. Novel deterministic and stochastic fatigue damage development and growth models were developed for this program. These models enable real time characterization and assessment of structural fatigue damage.

  12. Hardware Specific Integration Strategy for Impedance-Based Structural Health Monitoring of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.

  13. Augmented Fish Health Monitoring, 1987 Annual Report.

    SciTech Connect

    Michak, Patty

    1989-04-01

    Washington Department of Fisheries has divided the sampling and data collection into three major groups: adult analysis, juvenile analysis and database development. The adult analysis done at spawning includes screening for viral pathogens and Bacterial Kidney Disease (BKD). Pre-spawning mortalities are sampled for the presence of bacterial pathogens and parasites to determine causes of pre-spawning loss. Juvenile analysis involves monthly monitoring; pre-release examinations for viral pathogens, BKD and, where appropriate, whirling disease (M. cerebralis); completion of the Organosomatic analysis on four index stocks, and midterm exams on yearling groups for BKD and M. cerebralis. Database development required constructing fish health monitoring forms and a computer based data entry and retrieval system. We have completed a full year of sampling and data collection, January, 1987 to January, 1988. This report will present and analyze this information.

  14. Fiber Optic Thermal Health Monitoring of Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  15. Structural health monitoring apparatus and methodology

    NASA Technical Reports Server (NTRS)

    Giurgiutiu, Victor (Inventor); Yu, Lingyu (Inventor); Bottai, Giola Santoni (Inventor)

    2011-01-01

    Disclosed is an apparatus and methodology for structural health monitoring (SHM) in which smart devices interrogate structural components to predict failure, expedite needed repairs, and thus increase the useful life of those components. Piezoelectric wafer active sensors (PWAS) are applied to or integrated with structural components and various data collected there from provide the ability to detect and locate cracking, corrosion, and disbanding through use of pitch-catch, pulse-echo, electro/mechanical impedance, and phased array technology. Stand alone hardware and an associated software program are provided that allow selection of multiple types of SHM investigations as well as multiple types of data analysis to perform a wholesome investigation of a structure.

  16. Structural health monitoring of wind turbines

    SciTech Connect

    Simmermacher, T.; James, G.H. III.; Hurtado, J.E.

    1997-09-01

    To properly determine what is needed in a structural health monitoring system, actual operational structures need to be studied. We have found that to effectively monitor the structural condition of an operational structure four areas must be addressed: determination of damage-sensitive parameters, test planning, information condensation, and damage identification techniques. In this work, each of the four areas has been exercised on an operational structure. The structures studied were all be wind turbines of various designs. The experiments are described and lessons learned will be presented. The results of these studies include a broadening of experience in the problems of monitoring actual structures as well as developing a process for implementing such monitoring systems.

  17. Degradation Modelling for Health Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Stetter, R.; Witczak, M.

    2014-12-01

    Condition-monitoring plays an increasingly important role for technical processes in order to improve reliability, availability, maintenance and lifetime of equipment. With increasing demands for efficiency and product quality, plus progress in the integration of automatic control systems in high-cost mechatronic and critical safety processes, the field of health monitoring is gaining interest. A similar research field is concerned with an estimation of the remaining useful life. A central question in these fields is the modelling of degradation; degradation is a process of a gradual and irreversible accumulation of damage which will finally result in a failure of the system. This paper is based on a current research project and explores various degradation modelling techniques. These results are explained on the basis of an industrial product - a system for the generation of health status information for pump systems. The result of this fuzzy-logic based system is a single number indicating the current health of a pump system.

  18. INDUCTIVE SYSTEM HEALTH MONITORING WITH STATISTICAL METRICS

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    2005-01-01

    Model-based reasoning is a powerful method for performing system monitoring and diagnosis. Building models for model-based reasoning is often a difficult and time consuming process. The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS processes nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. In particular, a clustering algorithm forms groups of nominal values for sets of related parameters. This establishes constraints on those parameter values that should hold during nominal operation. During monitoring, IMS provides a statistically weighted measure of the deviation of current system behavior from the established normal baseline. If the deviation increases beyond the expected level, an anomaly is suspected, prompting further investigation by an operator or automated system. IMS has shown potential to be an effective, low cost technique to produce system monitoring capability for a variety of applications. We describe the training and system health monitoring techniques of IMS. We also present the application of IMS to a data set from the Space Shuttle Columbia STS-107 flight. IMS was able to detect an anomaly in the launch telemetry shortly after a foam impact damaged Columbia's thermal protection system.

  19. Intelligent Wireless Sensor Networks for System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  20. Augmented Fish Health Monitoring in Idaho, 1992 Annual Report.

    SciTech Connect

    Munson, A.Douglas

    1993-12-01

    This report documents the progress of Idaho Department of Fish and Game`s fish health monitoring during the past five years and will serve as a completion report for the Augmented Fish Health Monitoring Project. Anadromous fish at twelve IDFG facilities were monitored for various pathogens and organosomatic analyses were performed to anadromous fish prior to their release. A fish disease database has been developed and data is presently being entered. Alternate funding has been secured to continue fish health monitoring.

  1. Aeroelastic Deformation: Adaptation of Wind Tunnel Measurement Concepts to Full-Scale Vehicle Flight Testing

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.

    2005-01-01

    The adaptation of a proven wind tunnel test technique, known as Videogrammetry, to flight testing of full-scale vehicles is presented. A description is presented of the technique used at NASA's Dryden Flight Research Center for the measurement of the change in wing twist and deflection of an F/A-18 research aircraft as a function of both time and aerodynamic load. Requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the flight-testing technique and differences compared to wind tunnel testing are given. Measurement and operational comparisons to an older in-flight system known as the Flight Deflection Measurement System (FDMS) are presented.

  2. Design of Field Experiments for Adaptive Sampling of the Ocean with Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Ooi, B. H.; Cho, W.; Dao, M. H.; Tkalich, P.; Patrikalakis, N. M.

    2010-05-01

    Due to the highly non-linear and dynamical nature of oceanic phenomena, the predictive capability of various ocean models depends on the availability of operational data. A practical method to improve the accuracy of the ocean forecast is to use a data assimilation methodology to combine in-situ measured and remotely acquired data with numerical forecast models of the physical environment. Autonomous surface and underwater vehicles with various sensors are economic and efficient tools for exploring and sampling the ocean for data assimilation; however there is an energy limitation to such vehicles, and thus effective resource allocation for adaptive sampling is required to optimize the efficiency of exploration. In this paper, we use physical oceanography forecasts of the coastal zone of Singapore for the design of a set of field experiments to acquire useful data for model calibration and data assimilation. The design process of our experiments relied on the oceanography forecast including the current speed, its gradient, and vorticity in a given region of interest for which permits for field experiments could be obtained and for time intervals that correspond to strong tidal currents. Based on these maps, resources available to our experimental team, including Autonomous Surface Craft (ASC) are allocated so as to capture the oceanic features that result from jets and vortices behind bluff bodies (e.g., islands) in the tidal current. Results are summarized from this resource allocation process and field experiments conducted in January 2009.

  3. Fair Energy Scheduling for Vehicle-to-Grid Networks Using Adaptive Dynamic Programming.

    PubMed

    Xie, Shengli; Zhong, Weifeng; Xie, Kan; Yu, Rong; Zhang, Yan

    2016-08-01

    Research on the smart grid is being given enormous supports worldwide due to its great significance in solving environmental and energy crises. Electric vehicles (EVs), which are powered by clean energy, are adopted increasingly year by year. It is predictable that the huge charge load caused by high EV penetration will have a considerable impact on the reliability of the smart grid. Therefore, fair energy scheduling for EV charge and discharge is proposed in this paper. By using the vehicle-to-grid technology, the scheduler controls the electricity loads of EVs considering fairness in the residential distribution network. We propose contribution-based fairness, in which EVs with high contributions have high priorities to obtain charge energy. The contribution value is defined by both the charge/discharge energy and the timing of the action. EVs can achieve higher contribution values when discharging during the load peak hours. However, charging during this time will decrease the contribution values seriously. We formulate the fair energy scheduling problem as an infinite-horizon Markov decision process. The methodology of adaptive dynamic programming is employed to maximize the long-term fairness by processing online network training. The numerical results illustrate that the proposed EV energy scheduling is able to mitigate and flatten the peak load in the distribution network. Furthermore, contribution-based fairness achieves a fast recovery of EV batteries that have deeply discharged and guarantee fairness in the full charge time of all EVs.

  4. Fair Energy Scheduling for Vehicle-to-Grid Networks Using Adaptive Dynamic Programming.

    PubMed

    Xie, Shengli; Zhong, Weifeng; Xie, Kan; Yu, Rong; Zhang, Yan

    2016-08-01

    Research on the smart grid is being given enormous supports worldwide due to its great significance in solving environmental and energy crises. Electric vehicles (EVs), which are powered by clean energy, are adopted increasingly year by year. It is predictable that the huge charge load caused by high EV penetration will have a considerable impact on the reliability of the smart grid. Therefore, fair energy scheduling for EV charge and discharge is proposed in this paper. By using the vehicle-to-grid technology, the scheduler controls the electricity loads of EVs considering fairness in the residential distribution network. We propose contribution-based fairness, in which EVs with high contributions have high priorities to obtain charge energy. The contribution value is defined by both the charge/discharge energy and the timing of the action. EVs can achieve higher contribution values when discharging during the load peak hours. However, charging during this time will decrease the contribution values seriously. We formulate the fair energy scheduling problem as an infinite-horizon Markov decision process. The methodology of adaptive dynamic programming is employed to maximize the long-term fairness by processing online network training. The numerical results illustrate that the proposed EV energy scheduling is able to mitigate and flatten the peak load in the distribution network. Furthermore, contribution-based fairness achieves a fast recovery of EV batteries that have deeply discharged and guarantee fairness in the full charge time of all EVs. PMID:26930694

  5. Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Hull, Patrick V.

    2015-01-01

    Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.

  6. Analog neural network-based helicopter gearbox health monitoring system.

    PubMed

    Monsen, P T; Dzwonczyk, M; Manolakos, E S

    1995-12-01

    The development of a reliable helicopter gearbox health monitoring system (HMS) has been the subject of considerable research over the past 15 years. The deployment of such a system could lead to a significant saving in lives and vehicles as well as dramatically reduce the cost of helicopter maintenance. Recent research results indicate that a neural network-based system could provide a viable solution to the problem. This paper presents two neural network-based realizations of an HMS system. A hybrid (digital/analog) neural system is proposed as an extremely accurate off-line monitoring tool used to reduce helicopter gearbox maintenance costs. In addition, an all analog neural network is proposed as a real-time helicopter gearbox fault monitor that can exploit the ability of an analog neural network to directly compute the discrete Fourier transform (DFT) as a sum of weighted samples. Hardware performance results are obtained using the Integrated Neural Computing Architecture (INCA/1) analog neural network platform that was designed and developed at The Charles Stark Draper Laboratory. The results indicate that it is possible to achieve a 100% fault detection rate with 0% false alarm rate by performing a DFT directly on the first layer of INCA/1 followed by a small-size two-layer feed-forward neural network and a simple post-processing majority voting stage.

  7. Health monitoring studies on composite structures for aerospace applications

    SciTech Connect

    James, G.; Roach, D.; Hansche, B.; Meza, R.; Robinson, N.

    1996-02-01

    This paper discusses ongoing work to develop structural health monitoring techniques for composite aerospace structures such as aircraft control surfaces, fuselage sections or repairs, and reusable launch vehicle fuel tanks. The overall project is divided into four tasks: Operational evaluation, diagnostic measurements, information condensation, and damage detection. Five composite plates were constructed to study delaminations, disbonds, and fluid retention issues as the initial step in creating an operational system. These four square feet plates were graphite-epoxy with nomex honeycomb cores. The diagnostic measurements are composed of modal tests with a scanning laser vibrometer at over 500 scan points per plate covering the frequency range up to 2000 Hz. This data has been reduced into experimental dynamics matrices using a generic, software package developed at the University of Colorado at Boulder. The continuing effort will entail performing a series of damage identification studies to detect, localize, and determine the extent of the damage. This work is providing understanding and algorithm development for a global NDE technique for composite aerospace structures.

  8. Structural health monitoring for ship structures

    SciTech Connect

    Farrar, Charles; Park, Gyuhae; Angel, Marian; Bement, Matthew; Salvino, Liming

    2009-01-01

    Currently the Office of Naval Research is supporting the development of structural health monitoring (SHM) technology for U.S. Navy ship structures. This application is particularly challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with these ships missions, lack of data from known damage conditions, limited sensing that was not designed specifically for SHM, and the management of the vast amounts of data that can be collected during a mission. This paper will first define a statistical pattern recognition paradigm for SHM by describing the four steps of (1) Operational Evaluation, (2) Data Acquisition, (3) Feature Extraction, and (4) Statistical Classification of Features as they apply to ship structures. Note that inherent in the last three steps of this process are additional tasks of data cleansing, compression, normalization and fusion. The presentation will discuss ship structure SHM challenges in the context of applying various SHM approaches to sea trials data measured on an aluminum multi-hull high-speed ship, the HSV-2 Swift. To conclude, the paper will discuss several outstanding issues that need to be addressed before SHM can make the transition from a research topic to actual field applications on ship structures and suggest approaches for addressing these issues.

  9. Aircraft fiber optic structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih

    2012-06-01

    Structural Health Monitoring (SHM) is a sought after concept that is expected to advance military maintenance programs, increase platform operational safety and reduce its life cycle cost. Such concept is further considered to constitute a major building block of any Integrated Health Management (IHM) capability. Since 65% to 80% of military assets' Life Cycle Cost (LCC) is devoted to operations and support (O&S), the aerospace industry and military sectors continue to look for opportunities to exploit SHM systems, capability and tools. Over the past several years, countless SHM concepts and technologies have emerged. Among those, fiber optic based systems were identified of significant potential. This paper introduces the elements of an SHM system and investigates key issues impeding the commercial implementation of fiber optic based SHM capability. In particular, this paper presents an experimental study of short gauge, intrinsic, spectrometric-based in-fiber Bragg grating sensors, for potential use as a component of an SHM system. Fiber optic Bragg grating sensors are evaluated against resistance strain gauges for strain monitoring, sensitivity, accuracy, reliability, and fatigue durability. Strain field disturbance is also investigated by "embedding" the sensors under a photoelastic coating in order to illustrate sensor intrusiveness in an embedded configuration.

  10. Structural health monitoring of civil infrastructure.

    PubMed

    Brownjohn, J M W

    2007-02-15

    Structural health monitoring (SHM) is a term increasingly used in the last decade to describe a range of systems implemented on full-scale civil infrastructures and whose purposes are to assist and inform operators about continued 'fitness for purpose' of structures under gradual or sudden changes to their state, to learn about either or both of the load and response mechanisms. Arguably, various forms of SHM have been employed in civil infrastructure for at least half a century, but it is only in the last decade or two that computer-based systems are being designed for the purpose of assisting owners/operators of ageing infrastructure with timely information for their continued safe and economic operation. This paper describes the motivations for and recent history of SHM applications to various forms of civil infrastructure and provides case studies on specific types of structure. It ends with a discussion of the present state-of-the-art and future developments in terms of instrumentation, data acquisition, communication systems and data mining and presentation procedures for diagnosis of infrastructural 'health'.

  11. Augmented Fish Health Monitoring, 1988 Annual Report.

    SciTech Connect

    Warren, James W.

    1989-08-15

    Augmented Fish Health Monitoring Contract AI79-87BP35585 was implemented on July 20, 1987. Second year activities focused on full implementation of disease surveillance activities and histopathological support services to participating state agencies. Persistent and sometimes severe disease losses were caused by infectious hematopoietic necrosis (IHN) in summer steelhead trout in Idaho and in spring chinook salmon at hatcheries on the lower Columbia River. Diagnostic capability was enhanced by the installation, for field use, of enzyme-linked immunosorbent assay (ELISA) technology at the Dworshak Fish Health Center for the detection and assay of bacterial kidney disease and by a dot-blot'' training session for virus identification at the Lower Columbia Fish Health Center. Complete diagnostic and inspection services were provided to 13 Columbia River basin National Fish hatcheries. Case history data was fully documented in a computerized data base for storage and analysis. This report briefly describes work being done to meet contract requirements for fish disease surveillance at Service facilities in the Columbia River basin. It also summarizes the health status of fish reared at those hatcheries and provides a summary of case history data for calendar year 1988. 2 refs., 4 tabs.

  12. Augmented Fish Health Monitoring, 1990 Annual Report.

    SciTech Connect

    Warren, James W.

    1990-08-15

    Augmented Fish Health Monitoring Contract AI79-87BP35585 was implemented on July 20, 1987. This report briefly describes third-year work being done to meet contract requirements for fish disease surveillance at Service facilities in the Columbia River basin and for histopathological support services provided to participating state agencies. It also summarizes the health status of fish reared at participating Service hatcheries and provides a summary of case history data for calendar year 1989. Items of note included severe disease losses to infectious hematopoietic necrosis (IHN) in summer steelhead trout in Idaho, the detection of IHN virus in juvenile spring chinook salmon at hatcheries on the lower Columbia River, and improved bacterial kidney disease (BKD) detection and adult assay by enzyme-linked immunosorbent assay (ELISA) technology at the Dworshak Fish Health Center. Complete diagnostic and inspection services were provided to 13 Columbia River Basin National Fish Hatcheries. Case history data was fully documented in a computerized data base for storage and analysis and is summarized herein. 2 refs., 1 fig., 4 tabs.

  13. An autonomous structural health monitoring solution

    NASA Astrophysics Data System (ADS)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  14. Vehicle active suspension system using skyhook adaptive neuro active force control

    NASA Astrophysics Data System (ADS)

    Priyandoko, G.; Mailah, M.; Jamaluddin, H.

    2009-04-01

    This paper aims to highlight the practical viability of a new and novel hybrid control technique applied to a vehicle active suspension system of a quarter car model using skyhook and adaptive neuro active force control (SANAFC). The overall control system essentially comprises four feedback control loops, namely the innermost proportional-integral (PI) control loop for the force tracking of the pneumatic actuator, the intermediate skyhook and active force control (AFC) control loops for the compensation of the disturbances and the outermost proportional-integral-derivative (PID) control loop for the computation of the optimum target/commanded force. A neural network (NN) with a modified adaptive Levenberg-Marquardt learning algorithm was used to approximate the estimated mass and inverse dynamics of the pneumatic actuator in the AFC loop. A number of experiments were carried out on a physical test rig using a hardware-in-the-loop configuration that fully incorporates the theoretical elements. The performance of the proposed control method was evaluated and compared to examine the effectiveness of the system in suppressing the vibration effect on the suspension system. It was found that the simulation and experimental results were in good agreement, particularly for the sprung mass displacement and acceleration behaviours in which the proposed SANAFC scheme is found to outperform the PID and passive counterparts.

  15. A self-adaptive memeplexes robust search scheme for solving stochastic demands vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Chen, Xianshun; Feng, Liang; Ong, Yew Soon

    2012-07-01

    In this article, we proposed a self-adaptive memeplex robust search (SAMRS) for finding robust and reliable solutions that are less sensitive to stochastic behaviours of customer demands and have low probability of route failures, respectively, in vehicle routing problem with stochastic demands (VRPSD). In particular, the contribution of this article is three-fold. First, the proposed SAMRS employs the robust solution search scheme (RS 3) as an approximation of the computationally intensive Monte Carlo simulation, thus reducing the computation cost of fitness evaluation in VRPSD, while directing the search towards robust and reliable solutions. Furthermore, a self-adaptive individual learning based on the conceptual modelling of memeplex is introduced in the SAMRS. Finally, SAMRS incorporates a gene-meme co-evolution model with genetic and memetic representation to effectively manage the search for solutions in VRPSD. Extensive experimental results are then presented for benchmark problems to demonstrate that the proposed SAMRS serves as an efficable means of generating high-quality robust and reliable solutions in VRPSD.

  16. Propulsion health monitoring of a turbine engine disk using spin test data

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Woike, Mark; Oza, Nikunj; Matthews, Bryan; Baakilini, George

    2010-03-01

    On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenging feature to easily implement, especially, in the presence of scattered loading conditions, crack size, component geometry and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic event occurs. These techniques go further to evaluate materials' discontinuities and other anomalies that have grown to the level of critical defects which can lead to failure. Generally, health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost and durable products. Therefore, in an effort to address the technical issues concerning health monitoring of a rotor disk, this paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory will be evaluated using multiple data-driven anomaly detection techniques to identify anomalies in the disk. This study

  17. Health Monitoring System Technology Assessments: Cost Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Kent, Renee M.; Murphy, Dennis A.

    2000-01-01

    The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.

  18. Aircraft operability methods applied to space launch vehicles

    NASA Astrophysics Data System (ADS)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  19. Aircraft operability methods applied to space launch vehicles

    SciTech Connect

    Young, D.

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The {open_quotes}building in{close_quotes} of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program. {copyright} {ital 1997 American Institute of Physics.}

  20. FOREWORD: Structural Health Monitoring and Intelligent Infrastructure

    NASA Astrophysics Data System (ADS)

    Wu, Zhishen; Fujino, Yozo

    2005-06-01

    This special issue collects together 19 papers that were originally presented at the First International Conference on Structural Health Monitoring and Intelligent Infrastructure (SHMII-1'2003), held in Tokyo, Japan, on 13-15 November 2003. This conference was organized by the Japan Society of Civil Engineers (JSCE) with partial financial support from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sport, Science and Technology, Japan. Many related organizations supported the conference. A total of 16 keynote papers including six state-of-the-art reports from different counties, six invited papers and 154 contributed papers were presented at the conference. The conference was attended by a diverse group of about 300 people from a variety of disciplines in academia, industry and government from all over the world. Structural health monitoring (SHM) and intelligent materials, structures and systems have been the subject of intense research and development in the last two decades and, in recent years, an increasing range of applications in infrastructure have been discovered both for existing structures and for new constructions. SHMII-1'2003 addressed progress in the development of building, transportation, marine, underground and energy-generating structures, and other civilian infrastructures that are periodically, continuously and/or actively monitored where there is a need to optimize their performance. In order to focus the current needs on SHM and intelligent technologies, the conference theme was set as 'Structures/Infrastructures Sustainability'. We are pleased to have the privilege to edit this special issue on SHM and intelligent infrastructure based on SHMII-1'2003. We invited some of the presenters to submit a revised/extended version of their paper that was included in the SHMII-1'2003 proceedings for possible publication in the special issue. Each paper included in this special issue was edited with the same

  1. Asset health monitors: development, sustainment, advancement

    NASA Astrophysics Data System (ADS)

    Mauss, Fredrick J.

    2011-04-01

    Pacific Northwest National Laboratory (PNNL) has developed the Captive Carry Health Monitor Unit (HMU) and the Humidity Indicator HMU. Each of these devices provides end users information that can be used to ensure the proper maintenance and performance of the missile. These two efforts have led to the ongoing development and evolution of the next generation Captive Carry HMU and the next generation Humidity Indicator HMU. These next generation efforts are in turn, leading to the future of HMUs. This evolutionary development process inherently allows for direct and indirect impact toward new HMU functionality, operability and performance characteristics by influencing their requirements, testing, communications, data archival, and user interaction. Current designs allow systems to operate in environments outside the limits of typical consumer electronics for up to or exceeding 10 years. These designs are battery powered and typically provided in custom mechanical packages that employ sensors for temperature, shock/vibration, and humidity measurements. The data taken from these sensors is then analyzed onboard using unique algorithms. The algorithms are developed from test data and fielded prototypes. Onboard data analysis provides field users with a simple indication of missile exposure. The HMU provides missile readiness information to the user based on storage and use conditions observed. To continually advance current designs PNNL evaluates the potential for enhancing sensor capabilities by improving performance or power saving features, increasing algorithm and processing abilities, and adding new features. Future work at PNNL includes the utilization of power harvesting, using a defined wireless protocol, and defining a data/information structure. These efforts will lead to improved performance allowing the HMUs to benefit users with direct access to HMUs in the field as well as benefiting those with the ability to make strategic and high-level supply and

  2. Elements of an integrated health monitoring framework

    NASA Astrophysics Data System (ADS)

    Fraser, Michael; Elgamal, Ahmed; Conte, Joel P.; Masri, Sami; Fountain, Tony; Gupta, Amarnath; Trivedi, Mohan; El Zarki, Magda

    2003-07-01

    Internet technologies are increasingly facilitating real-time monitoring of Bridges and Highways. The advances in wireless communications for instance, are allowing practical deployments for large extended systems. Sensor data, including video signals, can be used for long-term condition assessment, traffic-load regulation, emergency response, and seismic safety applications. Computer-based automated signal-analysis algorithms routinely process the incoming data and determine anomalies based on pre-defined response thresholds and more involved signal analysis techniques. Upon authentication, appropriate action may be authorized for maintenance, early warning, and/or emergency response. In such a strategy, data from thousands of sensors can be analyzed with near real-time and long-term assessment and decision-making implications. Addressing the above, a flexible and scalable (e.g., for an entire Highway system, or portfolio of Networked Civil Infrastructure) software architecture/framework is being developed and implemented. This framework will network and integrate real-time heterogeneous sensor data, database and archiving systems, computer vision, data analysis and interpretation, physics-based numerical simulation of complex structural systems, visualization, reliability & risk analysis, and rational statistical decision-making procedures. Thus, within this framework, data is converted into information, information into knowledge, and knowledge into decision at the end of the pipeline. Such a decision-support system contributes to the vitality of our economy, as rehabilitation, renewal, replacement, and/or maintenance of this infrastructure are estimated to require expenditures in the Trillion-dollar range nationwide, including issues of Homeland security and natural disaster mitigation. A pilot website (http://bridge.ucsd.edu/compositedeck.html) currently depicts some basic elements of the envisioned integrated health monitoring analysis framework.

  3. Mobile health-monitoring system through visible light communication.

    PubMed

    Tan, Yee-Yong; Chung, Wan-Young

    2014-01-01

    Promising development in the light emitting diode (LED) technology has spurred the interest to adapt LED for both illumination and data transmission. This has fostered the growth of interest in visible light communication (VLC), with on-going research to utilize VLC in various applications. This paper presents a mobile-health monitoring system, where healthcare information such as biomedical signals and patient information are transmitted via the LED lighting. A small and portable receiver module is designed and developed to be attached to the mobile device, providing a seamless monitoring environment. Three different healthcare information including ECG, PPG signals and HL7 text information is transmitted simultaneously, using a single channel VLC. This allows for a more precise and accurate monitoring and diagnosis. The data packet size is carefully designed, to transmit information in a minimal packet error rate. A comprehensive monitoring application is designed and developed through the use of a tablet computer in our study. Monitoring and evaluation such as heart rate and arterial blood pressure measurement can be performed concurrently. Real-time monitoring is demonstrated through experiment, where non-hazardous transmission method can be implemented alongside a portable device for better and safer healthcare service.

  4. Logic-centered architecture for ubiquitous health monitoring.

    PubMed

    Lewandowski, Jacek; Arochena, Hisbel E; Naguib, Raouf N G; Chao, Kuo-Ming; Garcia-Perez, Alexeis

    2014-09-01

    One of the key points to maintain and boost research and development in the area of smart wearable systems (SWS) is the development of integrated architectures for intelligent services, as well as wearable systems and devices for health and wellness management. This paper presents such a generic architecture for multiparametric, intelligent and ubiquitous wireless sensing platforms. It is a transparent, smartphone-based sensing framework with customizable wireless interfaces and plug'n'play capability to easily interconnect third party sensor devices. It caters to wireless body, personal, and near-me area networks. A pivotal part of the platform is the integrated inference engine/runtime environment that allows the mobile device to serve as a user-adaptable personal health assistant. The novelty of this system lays in a rapid visual development and remote deployment model. The complementary visual Inference Engine Editor that comes with the package enables artificial intelligence specialists, alongside with medical experts, to build data processing models by assembling different components and instantly deploying them (remotely) on patient mobile devices. In this paper, the new logic-centered software architecture for ubiquitous health monitoring applications is described, followed by a discussion as to how it helps to shift focus from software and hardware development, to medical and health process-centered design of new SWS applications.

  5. Structural health monitoring methodology for aircraft condition-based maintenance

    NASA Astrophysics Data System (ADS)

    Saniger, Jordi; Reithler, Livier; Guedra-Degeorges, Didier; Takeda, Nobuo; Dupuis, Jean Pierre

    2001-06-01

    Reducing maintenance costs while keeping a constant level of safety is a major issue for Air Forces and airlines. The long term perspective is to implement condition based maintenance to guarantee a constant safety level while decreasing maintenance costs. On this purpose, the development of a generalized Structural Health Monitoring System (SHMS) is needed. The objective of such a system is to localize the damages and to assess their severity, with enough accuracy to allow low cost corrective actions. The present paper describes a SHMS based on acoustic emission technology. This choice was driven by its reliability and wide use in the aerospace industry. The described SHMS uses a new learning methodology which relies on the generation of artificial acoustic emission events on the structure and an acoustic emission sensor network. The calibrated acoustic emission events picked up by the sensors constitute the knowledge set that the system relies on. With this methodology, the anisotropy of composite structures is taken into account, thus avoiding the major cause of errors of classical localization methods. Moreover, it is adaptive to different structures as it does not rely on any particular model but on measured data. The acquired data is processed and the event's location and corrected amplitude are computed. The methodology has been demonstrated and experimental tests on elementary samples presented a degree of accuracy of 1cm.

  6. Friction Stir Weld Application and Tooling Design for the Multi-purpose Crew Vehicle Stage Adapter

    NASA Technical Reports Server (NTRS)

    Alcorn, John

    2013-01-01

    The Multi-Purpose Crew Vehicle (MPCV), commonly known as the Orion capsule, is planned to be the United States' next manned spacecraft for missions beyond low earth orbit. Following the cancellation of the Constellation program and creation of SLS (Space Launch System), the need arose for the MPCV to utilize the Delta IV Heavy rocket for a test launch scheduled for 2014 instead of the previously planned Ares I rocket. As a result, an adapter (MSA) must be used in conjunction with the MPCV to account for the variation in diameter of the launch vehicles; 5.5 meters down to 5.0 meters. Prior to ight article fabrication, a path nder (test article) will be fabricated to ne tune the associated manufacturing processes. The adapter will be comprised of an aluminum frustum (partial cone) that employs isogrid technology and circumferential rings on each end. The frustum will be fabricated by friction stir welding (FSW) three individual panels together on a Vertical Weld Tool (VWT) at NASA Marshall Space Flight Center. Subsequently, each circumferential ring will be friction stir welded to the frustum using a Robotic Weld Tool (RWT). The irregular geometry and large mass of the MSA require that extensive tooling preparation be put into support structures for the friction stir weld. The tooling on the VWT will be comprised of a set of conveyors mounted on pre-existing stanchions so that the MSA will have the ability to be rotated after each of the three friction stir welds. The tooling requirements to friction stir weld the rings with the RWT are somewhat more demanding. To support the mass of the MSA and resist the load of the weld tool, a system of mandrels will be mounted to stanchions and assembled in a circle. The goal of the paper will be to explain the design, fabrication, and assembly of the tooling, to explain the use of friction stir welding on the MSA path nder, and also to discuss the lessons learned and modi cations made in preparation for ight article fabrication

  7. Physiological fitness and health adaptations from purposeful training using off-road vehicles.

    PubMed

    Burr, J F; Jamnik, V K; Gledhill, N

    2011-08-01

    The purpose of this study was to evaluate fitness and health adaptations from a training program riding all-terrain vehicles (ATV) and off-road motorcycles (ORM) as the exercise stimulus. Participants (n = 58) were randomized to a control group (n = 12) or one of four experimental groups; 2 days/week ATV (n = 11), 2 days/week ORM (n = 12), 4 days/week ATV (n = 11), or 4 days/week ORM (n = 12). Aerobic fitness, musculoskeletal fitness, body composition, clinical health, and quality of life (QOL) were compared at baseline and following 6 weeks of training. In all riding groups, there were improvements in blood pressure (SBP = 9.4 ± 10.1, DBP = 5.8 ± 6.2 mmHg), fasting glucose (0.5 ± 0.7 mmol/l), subcutaneous adiposity (0.9 ± 1.1%), body mass (0.7 ± 2.7 kg), waist circumference (1.3 ± 2.5 cm), and isometric leg endurance (26 ± 44 s). All changes were of moderate to large magnitude (Cohen's d 0.52-0.94) with the exception of a small loss of body mass (Cohen's d = 0.27). Although changes occurred in the riding groups for aerobic power (2.9 ± 4.6 ml kg(-1) min(-1)), leg power (172 ± 486 w), and curl-ups (13.2 ± 22.7), these changes were not significantly different from the control group. No significant alterations occurred in resting heart rate, trunk flexibility, back endurance, hand grip strength, long jump, pull/push strength, or push-up ability as a result of training. Physical domain QOL increased in all 2 days/week riders but mental domain QOL increased in all ORM, but not ATV riders regardless of volume. Ambient carbon monoxide levels while riding (<30 ppm) were within safe exposure guidelines. Positive adaptations can be gained from a training program using off-road vehicle riding as the exercise stimulus.

  8. Self-tuning control algorithm design for vehicle adaptive cruise control system through real-time estimation of vehicle parameters and road grade

    NASA Astrophysics Data System (ADS)

    Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman

    2016-09-01

    The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.

  9. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.

    PubMed

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406

  10. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.

    PubMed

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.

  11. An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Zhang, Chenbin; Chen, Zonghai

    2016-02-01

    With the growing number of electric vehicle (EV) applications, the function of the battery management system (BMS) becomes more sophisticated. The accuracy of remaining energy estimation is critical for energy optimization and management in EVs. Therefore the state-of-energy (SoE) is defined to indicate the remaining available energy of the batteries. Considering that there are inevitable accumulated errors caused by current and voltage integral method, an adaptive SoE estimator is first established in this paper. In order to establish a reasonable battery equivalent model, based on the experimental data of the LiFePO4 battery, a data-driven model is established to describe the relationship between the open-circuit voltage (OCV) and the SoE. What is more, the forgetting factor recursive least-square (RLS) method is used for parameter identification to get accurate model parameters. Finally, in order to analyze the robustness and the accuracy of the proposed approach, different types of dynamic current profiles are conducted on the lithium-ion batteries and the performances are calculated and compared. The results indicate that the proposed approach has robust and accurate SoE estimation results under dynamic working conditions.

  12. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles

    PubMed Central

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406

  13. What benefit does Intelligent Speed Adaptation deliver: a close examination of its effect on vehicle speeds.

    PubMed

    Lai, Frank; Carsten, Oliver

    2012-09-01

    Intelligent Speed Adaptation (ISA) is a driver support system which brings the speed limit information into the vehicle. This paper describes the UK ISA field trials taken place between 2004 and 2006 and presents evidence on how drivers' choice of speed is altered. The ISA system was observed to have a distinctive effect in transforming the speed distribution from a conventional bell shape to an asymmetric distribution biased towards the high speed end. ISA not only diminished excessive speeding, but also led to a reduction in speed variation, prompting a positive implication to accident reduction. The use of an overridable ISA system also provided an opportunity to investigate where drivers would choose to have ISA based on observed behaviour instead of opinion. Evidence shows that ISA tends to be overridden on roads where it was perhaps needed most. Behavioural difference among driver groups also suggests that ISA tends to be overridden by those drivers who in safety terms stand to benefit most from using it, as with other safety systems.

  14. Economy-oriented vehicle adaptive cruise control with coordinating multiple objectives function

    NASA Astrophysics Data System (ADS)

    Eben Li, Shengbo; Li, Keqiang; Wang, Jianqiang

    2013-01-01

    A recent design issue of adaptive cruise control systems is how to reduce fuel consumption when following a preceding vehicle. High fuel economy is achievable through reducing acceleration level, however, it is also significantly restrained by two other functional demands, track capability and driver desired response. In the framework of multi-objective coordination, this paper develops and experimentally validates an economy-oriented headway control algorithm for a passenger car with internal combustion engine. The control algorithm is synthesised in a hierarchical structure. The upper controller, undertaking a major coordinating task, is designed based on the model predictive control theory. Fuel economy, tracking capability, and the driver desired response are formulated as its cost function and constraints in a finite prediction horizon. As further analysis indicated, such a design inevitably results in infeasible control inputs in some extreme cases, e.g. urgent situations involving rapid acceleration/deceleration. A constraint softening method is adopted to enlarge the feasible region in the cost of somewhat sacrificing the optimality of the original cost function. Finally, a prototyping controller is developed based on xPC toolbox and equipped in a passenger car. The followed field tests show that, compared to a linear quadratic controller, such an algorithm improves both fuel economy and tracking capability while also being more responsive to driver car-following behaviours.

  15. A new adaptive control approach for aerospace vehicles with parameter uncertainties

    NASA Technical Reports Server (NTRS)

    Hahn, Yungsun; Speyer, Jason L.

    1989-01-01

    A new stochastic adaptive control structure is developed for the problem of combined parameter estimation and control of aerospace vehicles with changing parameters. Parameter uncertainties are modeled as first-order Gauss-Markov processes, and are introduced to the system dynamics through a small parameter. It is assumed that an accurate inertial measurement unit gives perfect measurements of the state variables. Since the stochastic system is assumed to be Gauss-Markov, the density function of the parameters given these measurements is conditionally Gaussian. Based on this conditionally Gaussian density, the problem of minimizing a quadratic cost over an infinite time horizon can be set up within the framework of stochastic optimal control theory. The optimal feedback control law is derived from a straightforward expansion of the Hamilton-Jacobi-Bellman equation, based on the LQG solution. The resulting nonlinear controller is applied to the pitch axis control of a space platform with uncertain moments of inertia and is shown to produce marked improvement over a fixed controller.

  16. [The research and expectation on wearable health monitoring system].

    PubMed

    Chang, Feiba; Yin, Jun; Zhang, Hehua; Yan, Lexian; Li, Shuying; Zhou, Deqiang

    2015-01-01

    Wearable health monitoring systems that use wearable biosensors capturing human motion and physiological parameters, to achieve the wearer's movement and health management needs. Wearable health monitoring system is a noninvasive continuous detection of human physiological information, data wireless transmission and real-time processing capabilities of integrated system, can satisfy physiological condition monitoring under the condition of low physiological and psychological load. This paper first describes the wearable health monitoring system structure and the relevant technology applied to wearable health monitoring system, and focuses on the current research work what we have done associated with wearable monitoring that wearable respiration and ECG acquisition and construction of electric multi-parameter body area network. Finally, the wearable monitoring system for the future development direction is put forward a simple expectation.

  17. Piezoelectric Sensor Evaluation for Structural Health Monitoring of Cryogenic Structures

    NASA Technical Reports Server (NTRS)

    Lassiter, John; Engberg, Robert

    2005-01-01

    This viewgraph presentation provides an overview of Structural Health Monitoring (SHM), and profiles piezoelectric sensors useful for SHM of cryogenic structures. The presentation also profiles impedance tests and other SHM tests conducted at Marshall Space Flight Center (MSFC).

  18. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Miller, Chris; Wall, John H.; Vanzwieten, Tannen S.; Gilligan, Eric; Orr, Jeb S.

    2015-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control.

  19. Fault-Tolerant Trajectory Tracking of Unmanned Aerial Vehicles Using Immunity-Based Model Reference Adaptive Control

    NASA Astrophysics Data System (ADS)

    Wilburn, Brenton K.

    This dissertation presents the design, development, and simulation testing of an adaptive trajectory tracking algorithm capable of compensating for various aircraft subsystem failures and upset conditions. A comprehensive adaptive control framework, here within referred to as the immune model reference adaptive control (IMRAC) algorithm, is developed by synergistically merging core concepts from the biologically- inspired artificial immune system (AIS) paradigm with more traditional optimal and adaptive control techniques. In particular, a model reference adaptive control (MRAC) algorithm is enhanced with the detection and learning capabilities of a novel, artificial neural network augmented AIS scheme. With the given modifications, the MRAC scheme is capable of detecting and identifying a given failure or upset condition, learning how to adapt to the problem, responding in a manner specific to the given failure condition, and retaining the learning parameters for quicker adaptation to subsequent failures of the same nature. The IMRAC algorithm developed in this dissertation is applicable to a wide range of control problems. However, the proposed methodology is demonstrated in simulation for an unmanned aerial vehicle. The results presented show that the IMRAC algorithm is an effective and valuable extension to traditional optimal and adaptive control techniques. The implementation of this methodology can potentially have significant impacts on the operational safety of many complex systems.

  20. 76 FR 13969 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ...; National Animal Health Monitoring System; Needs Assessments AGENCY: Animal and Plant Health Inspection... National Animal Health Monitoring System needs assessments. DATES: We will consider all comments that we...-2908. SUPPLEMENTARY INFORMATION: Title: National Animal Health Monitoring System; Needs...

  1. 78 FR 24153 - Notice of Emergency Approval of an Information Collection; National Animal Health Monitoring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ...; National Animal Health Monitoring System; Equine Herpesvirus Myeloencephalopathy Study AGENCY: Animal and... information collection for a National Animal Health Monitoring System Equine Herpesvirus Myeloencephalopathy...: National Animal Health Monitoring System; Equine Herpesvirus Myeloencephalopathy Study. OMB Number:...

  2. 75 FR 52711 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ...; National Animal Health Monitoring System; Sheep 2011 Study AGENCY: Animal and Plant Health Inspection... intention to initiate an information collection to support the National Animal Health Monitoring System...-2908. SUPPLEMENTARY INFORMATION: Title: National Animal Health Monitoring System; Sheep 2011 Study....

  3. Modeling for health monitoring and control with applications to the Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Helmicki, Arthur J.

    1992-01-01

    The work reported herein represents a continuation of work begun at MSFC during the 1991 NASA/ASEE Summer Faculty Fellowship Program. During this period, the author proposed and studied a paradigm for the analysis and synthesis of Integrated Health Monitoring and Control Systems (IHMCS) for rocket engines. This work was motivated by NASA's desire to develop advanced propulsion systems which could operate with increased cost. The Space Transportation Main Engine (STME) whose function it is to provide primary thrust for the National Launch System (NLS) family of vehicles is a primary example of this trend.

  4. Smart health monitoring systems: an overview of design and modeling.

    PubMed

    Baig, Mirza Mansoor; Gholamhosseini, Hamid

    2013-04-01

    Health monitoring systems have rapidly evolved during the past two decades and have the potential to change the way health care is currently delivered. Although smart health monitoring systems automate patient monitoring tasks and, thereby improve the patient workflow management, their efficiency in clinical settings is still debatable. This paper presents a review of smart health monitoring systems and an overview of their design and modeling. Furthermore, a critical analysis of the efficiency, clinical acceptability, strategies and recommendations on improving current health monitoring systems will be presented. The main aim is to review current state of the art monitoring systems and to perform extensive and an in-depth analysis of the findings in the area of smart health monitoring systems. In order to achieve this, over fifty different monitoring systems have been selected, categorized, classified and compared. Finally, major advances in the system design level have been discussed, current issues facing health care providers, as well as the potential challenges to health monitoring field will be identified and compared to other similar systems.

  5. Non-Maximally Decimated Filter Banks Enable Adaptive Frequency Hopping for Unmanned Aircraft Vehicles

    NASA Technical Reports Server (NTRS)

    Venosa, Elettra; Vermeire, Bert; Alakija, Cameron; Harris, Fred; Strobel, David; Sheehe, Charles J.; Krunz, Marwan

    2017-01-01

    In the last few years, radio technologies for unmanned aircraft vehicle (UAV) have advanced very rapidly. The increasing need to fly unmanned aircraft systems (UAS) in the national airspace system (NAS) to perform missions of vital importance to national security, defense, and science has pushed ahead the design and implementation of new radio platforms. However, a lot still has to be done to improve those radios in terms of performance and capabilities. In addition, an important aspect to account for is hardware cost and the feasibility to implement these radios using commercial off-the-shelf (COTS) components. UAV radios come with numerous technical challenges and their development involves contributions at different levels of the design. Cognitive algorithms need to be developed in order to perform agile communications using appropriate frequency allocation while maintaining safe and efficient operations in the NAS and, digital reconfigurable architectures have to be designed in order to ensure a prompt response to environmental changes. Command and control (C2) communications have to be preserved during "standard" operations while crew operations have to be minimized. It is clear that UAV radios have to be software-defined systems, where size, weight and power consumption (SWaP) are critical parameters. This paper provides preliminary results of the efforts performed to design a fully digital radio architecture as part of a NASA Phase I STTR. In this paper, we will explain the basic idea and technical principles behind our dynamic/adaptive frequency hopping radio for UAVs. We will present our Simulink model of the dynamic FH radio transmitter design for UAV communications and show simulation results and FPGA system analysis.

  6. Structural Health Monitoring of AN Aircraft Joint

    NASA Astrophysics Data System (ADS)

    Mickens, T.; Schulz, M.; Sundaresan, M.; Ghoshal, A.; Naser, A. S.; Reichmeider, R.

    2003-03-01

    A major concern with ageing aircraft is the deterioration of structural components in the form of fatigue cracks at fastener holes, loose rivets and debonding of joints. These faults in conjunction with corrosion can lead to multiple-site damage and pose a hazard to flight. Developing a simple vibration-based method of damage detection for monitoring ageing structures is considered in this paper. The method is intended to detect damage during operation of the vehicle before the damage can propagate and cause catastrophic failure of aircraft components. It is typical that only a limited number of sensors could be used on the structure and damage can occur anywhere on the surface or inside the structure. The research performed was to investigate use of the chirp vibration responses of an aircraft wing tip to detect, locate and approximately quantify damage. The technique uses four piezoelectric patches alternatively as actuators and sensors to send and receive vibration diagnostic signals.Loosening of selected screws simulated damage to the wing tip. The results obtained from the testing led to the concept of a sensor tape to detect damage at joints in an aircraft structure.

  7. Augmented Fish Health Monitoring; Volume II of II, Completion Report.

    SciTech Connect

    Michak, Patty

    1991-12-01

    The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Participating agencies included: Washington Department of Fisheries (WDF), Oregon Department of Fish and Wildlife, Idaho Department of Fish and Game, and the US Fish and Wildlife Service (USFWS). This is the final data report for the Augmented Fish Health Monitoring project. Data collected and sampling results for 1990 and 1991 are presented within this report. An evaluation of this project can be found in Augmented Fish Health Monitoring, Volume 1, Completion Report.'' May, 1991. Pathogen detection methods remained the same from methods described in Augmented Fish Health Monitoring, Annual Report 1989,'' May, 1990. From January 1, 1990 to June 30, 1991 fish health monitoring sampling was conducted. In 1990 21 returning adult stocks were sampled. Juvenile pre-release exams were completed on 20 yearling releases, and 13 sub-yearling releases in 1990. In 1991 17 yearling releases and 11 sub-yearling releases were examined. Midterm sampling was completed on 19 stocks in 1990. Organosomatic analysis was performed at release on index station stocks; Cowlitz spring and fall chinook, Lewis river early coho and Lyons Ferry fall chinook.

  8. [Current state and prospects of military personnel health monitoring].

    PubMed

    Rezvantsev, M V; Kuznetsov, S M; Ivanov, V V; Zakurdaev, V V

    2014-01-01

    The current article is dedicated to some features of the Russian Federation Armed Forces military personnel health monitoring such as legal and informational provision, methodological basis of functioning, historical aspect of formation and development of the social and hygienic monitoring in the Russian Federation Armed Forces. The term "military personnel health monitoring" is defined as an analytical system of constant and long-term observation, analysis, assessment, studying of factors determined the military personnel health, these factors correlations, health risk factors management in order to minimize them. The current state of the military personnel health monitoring allows coming to the conclusion that the military health system does have forces and resources for state policy of establishing the population health monitoring system implementation. The following directions of the militarily personnel health monitoring improvement are proposed: the Russian Federation Armed Forces medical service record and report system reorganization bringing it closer to the civilian one, implementation of the integrated approach to the medical service informatisation, namely, military personnel health status and medical service resources monitoring. The leading means in this direction are development and introduction of a military serviceman individual health status monitoring system on the basis of a serviceman electronic medical record card. Also it is proposed the current Russian Federation Armed Forces social and hygienic monitoring improvement at the expense of informational interaction between the two subsystems on the basis of unified military medical service space.

  9. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  10. Recommendations for Health Monitoring and Reporting for Zebrafish Research Facilities.

    PubMed

    Collymore, Chereen; Crim, Marcus J; Lieggi, Christine

    2016-07-01

    The presence of subclinical infection or clinical disease in laboratory zebrafish may have a significant impact on research results, animal health and welfare, and transfer of animals between institutions. As use of zebrafish as a model of disease increases, a harmonized method for monitoring and reporting the health status of animals will facilitate the transfer of animals, allow institutions to exclude diseases that may negatively impact their research programs, and improve animal health and welfare. All zebrafish facilities should implement a health monitoring program. In this study, we review important aspects of a health monitoring program, including choice of agents, samples for testing, available testing methodologies, housing and husbandry, cost, test subjects, and a harmonized method for reporting results. Facilities may use these recommendations to implement their own health monitoring program.

  11. Recommendations for Health Monitoring and Reporting for Zebrafish Research Facilities.

    PubMed

    Collymore, Chereen; Crim, Marcus J; Lieggi, Christine

    2016-07-01

    The presence of subclinical infection or clinical disease in laboratory zebrafish may have a significant impact on research results, animal health and welfare, and transfer of animals between institutions. As use of zebrafish as a model of disease increases, a harmonized method for monitoring and reporting the health status of animals will facilitate the transfer of animals, allow institutions to exclude diseases that may negatively impact their research programs, and improve animal health and welfare. All zebrafish facilities should implement a health monitoring program. In this study, we review important aspects of a health monitoring program, including choice of agents, samples for testing, available testing methodologies, housing and husbandry, cost, test subjects, and a harmonized method for reporting results. Facilities may use these recommendations to implement their own health monitoring program. PMID:26991393

  12. Evaluating distributed fibre optic sensors integrated into thermoplastic composites for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Schilder, Constanze; Schukar, Marcus; Steffen, Milan; Krebber, Katerina

    2014-05-01

    Strain sensors used for structural health monitoring (SHM) must provide reliable measurement data during their entire service lifetime. To achieve this for fibre optic sensors integrated into composites, the integration of the sensor has to be adapted according to the process conditions. This paper describes the fabrication of thermoplastic composite samples with integrated distributed fibre optic sensors (DFOS) based on copper-nickel and polyimide coated silica optical fibres. The performance of these DFOS as SHM sensors is evaluated in terms of reliability by measurements derived from comparative measurements with resistance strain gauges and from fatigue tests with 10 million load cycles.

  13. An adaptable, low cost test-bed for unmanned vehicle systems research

    NASA Astrophysics Data System (ADS)

    Goppert, James M.

    2011-12-01

    An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.

  14. New smart materials to address issues of structural health monitoring.

    SciTech Connect

    Chaplya, Pavel Mikhail

    2004-12-01

    Nuclear weapons and their storage facilities may benefit from in-situ structural health monitoring systems. Appending health-monitoring functionality to conventional materials and structures has been only marginally successful. The purpose of this project was to evaluate feasibility of a new smart material that includes self-sensing health monitoring functions similar to that of a nervous system of a living organism. Reviews of current efforts in the fields of heath-monitoring, nanotechnology, micro-electromechanical systems (MEMS), and wireless sensor networks were conducted. Limitations of the current nanotechnology methods were identified and new approaches were proposed to accelerate the development of self-sensing materials. Wireless networks of MEMS sensors have been researched as possible prototypes of self-sensing materials. Sensor networks were also examined as enabling technologies for dense data collection techniques to be used for validation of numerical methods and material parameter identification. Each grain of the envisioned material contains sensors that are connected in a dendritic manner similar to networks of neurons in a nervous system. Each sensor/neuron can communicate with the neighboring grains. Both the state of the sensor (on/off) and the quality of communication signal (speed/amplitude) should indicate not only a presence of a structural defect but the nature of the defect as well. For example, a failed sensor may represent a through-grain crack, while a lost or degraded communication link may represent an inter-granular crack. A technology to create such material does not exist. While recent progress in the fields of MEMS and nanotechnology allows to envision these new smart materials, it is unrealistic to expect creation of self-sensing materials in the near future. The current state of MEMS, nanotechnology, communication, sensor networks, and data processing technologies indicates that it will take more than ten years for the

  15. L(sub 1) Adaptive Control Design for NASA AirSTAR Flight Test Vehicle

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira; Zou, Xiaotian

    2009-01-01

    In this paper we present a new L(sub 1) adaptive control architecture that directly compensates for matched as well as unmatched system uncertainty. To evaluate the L(sub 1) adaptive controller, we take advantage of the flexible research environment with rapid prototyping and testing of control laws in the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. We apply the L(sub 1) adaptive control laws to the subscale turbine powered Generic Transport Model. The presented results are from a full nonlinear simulation of the Generic Transport Model and some preliminary pilot evaluations of the L(sub 1) adaptive control law.

  16. Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Sun, Fuchun; Yang, Chenguang; Gao, Daoxiang; Ren, Jianxin

    2011-09-01

    In this article, the adaptive neural controller in discrete time is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle. The dynamics are decomposed into the altitude subsystem and the velocity subsystem. The altitude subsystem is transformed into the strict-feedback form from which the discrete-time model is derived by the first-order Taylor expansion. The virtual control is designed with nominal feedback and neural network (NN) approximation via back-stepping. Meanwhile, one adaptive NN controller is designed for the velocity subsystem. To avoid the circular construction problem in the practical control, the design of coefficients adopts the upper bound instead of the nominal value. Under the proposed controller, the semiglobal uniform ultimate boundedness stability is guaranteed. The square and step responses are presented in the simulation studies to show the effectiveness of the proposed control approach.

  17. Secure Remote Health Monitoring with Unreliable Mobile Devices

    PubMed Central

    Shin, Minho

    2012-01-01

    As the nation's healthcare information infrastructure continues to evolve, new technologies promise to provide readily accessible health information that can help people address personal and community health concerns. In particular, wearable and implantable medical sensors and portable computing devices present many opportunities for providing timely health information to health providers, public health professionals, and consumers. Concerns about privacy and information quality, however, may impede the development and deployment of these technologies for remote health monitoring. Patients may fail to apply sensors correctly, device can be stolen or compromised (exposing the medical data therein to a malicious party), low-cost sensors controlled by a capable attacker might generate falsified data, and sensor data sent to the server can be captured in the air by an eavesdropper; there are many opportunities for sensitive health data to be lost, forged, or exposed. In this paper, we design a framework for secure remote health-monitoring systems; we build a realistic risk model for sensor-data quality and propose a new health-monitoring architecture that is secure despite the weaknesses of common personal devices. For evaluation, we plan to implement a proof of concept for secure health monitoring. PMID:22910449

  18. 76 FR 6475 - Emergency Responder Health Monitoring and Surveillance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... Occupational Safety and Health, Centers for Disease Control and Prevention. BILLING CODE 4163-19-P ... HUMAN SERVICES Centers for Disease Control and Prevention Emergency Responder Health Monitoring and Surveillance AGENCY: National Institute for Occupational Safety and Health (NIOSH) of the Centers for...

  19. STRUCTURAL HEALTH MONITORING OF COMPOSITE LAMINATES WITH EMBEDDED PIEZOELECTRIC FIBERS

    SciTech Connect

    Lissenden, Cliff J.; Puthillath, Padma K.; Blackshire, James L.

    2009-03-03

    The actuation of ultrasonic guided waves in a carbon fiber reinforced polymer plate from embedded metal core piezoelectric fibers is studied for structural health monitoring applications. A linear array of fibers embedded at the midplane can generate guided waves transverse to the fiber direction. Finite element simulations show that a significant source influence is associated with the small diameter piezoelectric fibers.

  20. Course Modules on Structural Health Monitoring with Smart Materials

    ERIC Educational Resources Information Center

    Shih, Hui-Ru; Walters, Wilbur L.; Zheng, Wei; Everett, Jessica

    2009-01-01

    Structural Health Monitoring (SHM) is an emerging technology that has multiple applications. SHM emerged from the wide field of smart structures, and it also encompasses disciplines such as structural dynamics, materials and structures, nondestructive testing, sensors and actuators, data acquisition, signal processing, and possibly much more. To…

  1. Probabilistic Sensitivity Analysis for Launch Vehicles with Varying Payloads and Adapters for Structural Dynamics and Loads

    NASA Technical Reports Server (NTRS)

    McGhee, David S.; Peck, Jeff A.; McDonald, Emmett J.

    2012-01-01

    This paper examines Probabilistic Sensitivity Analysis (PSA) methods and tools in an effort to understand their utility in vehicle loads and dynamic analysis. Specifically, this study addresses how these methods may be used to establish limits on payload mass and cg location and requirements on adaptor stiffnesses while maintaining vehicle loads and frequencies within established bounds. To this end, PSA methods and tools are applied to a realistic, but manageable, integrated launch vehicle analysis where payload and payload adaptor parameters are modeled as random variables. This analysis is used to study both Regional Response PSA (RRPSA) and Global Response PSA (GRPSA) methods, with a primary focus on sampling based techniques. For contrast, some MPP based approaches are also examined.

  2. Launch Vehicle Manual Steering with Adaptive Augmenting Control:In-Flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.

    2015-01-01

    An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.

  3. Adaptive approach for on-board impedance parameters and voltage estimation of lithium-ion batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Farmann, Alexander; Waag, Wladislaw; Sauer, Dirk Uwe

    2015-12-01

    Robust algorithms using reduced order equivalent circuit model (ECM) for an accurate and reliable estimation of battery states in various applications become more popular. In this study, a novel adaptive, self-learning heuristic algorithm for on-board impedance parameters and voltage estimation of lithium-ion batteries (LIBs) in electric vehicles is introduced. The presented approach is verified using LIBs with different composition of chemistries (NMC/C, NMC/LTO, LFP/C) at different aging states. An impedance-based reduced order ECM incorporating ohmic resistance and a combination of a constant phase element and a resistance (so-called ZARC-element) is employed. Existing algorithms in vehicles are much more limited in the complexity of the ECMs. The algorithm is validated using seven day real vehicle data with high temperature variation including very low temperatures (from -20 °C to +30 °C) at different Depth-of-Discharges (DoDs). Two possibilities to approximate both ZARC-elements with finite number of RC-elements on-board are shown and the results of the voltage estimation are compared. Moreover, the current dependence of the charge-transfer resistance is considered by employing Butler-Volmer equation. Achieved results indicate that both models yield almost the same grade of accuracy.

  4. Novel adaptive neural control design for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    NASA Astrophysics Data System (ADS)

    Bu, Xiangwei; Wu, Xiaoyan; He, Guangjun; Huang, Jiaqi

    2016-03-01

    This paper investigates the design of a novel adaptive neural controller for the longitudinal dynamics of a flexible air-breathing hypersonic vehicle with control input constraints. To reduce the complexity of controller design, the vehicle dynamics is decomposed into the velocity subsystem and the altitude subsystem, respectively. For each subsystem, only one neural network is utilized to approach the lumped unknown function. By employing a minimal-learning parameter method to estimate the norm of ideal weight vectors rather than their elements, there are only two adaptive parameters required for neural approximation. Thus, the computational burden is lower than the ones derived from neural back-stepping schemes. Specially, to deal with the control input constraints, additional systems are exploited to compensate the actuators. Lyapunov synthesis proves that all the closed-loop signals involved are uniformly ultimately bounded. Finally, simulation results show that the adopted compensation scheme can tackle actuator constraint effectively and moreover velocity and altitude can stably track their reference trajectories even when the physical limitations on control inputs are in effect.

  5. An adaptive large neighborhood search heuristic for Two-Echelon Vehicle Routing Problems arising in city logistics

    PubMed Central

    Hemmelmayr, Vera C.; Cordeau, Jean-François; Crainic, Teodor Gabriel

    2012-01-01

    In this paper, we propose an adaptive large neighborhood search heuristic for the Two-Echelon Vehicle Routing Problem (2E-VRP) and the Location Routing Problem (LRP). The 2E-VRP arises in two-level transportation systems such as those encountered in the context of city logistics. In such systems, freight arrives at a major terminal and is shipped through intermediate satellite facilities to the final customers. The LRP can be seen as a special case of the 2E-VRP in which vehicle routing is performed only at the second level. We have developed new neighborhood search operators by exploiting the structure of the two problem classes considered and have also adapted existing operators from the literature. The operators are used in a hierarchical scheme reflecting the multi-level nature of the problem. Computational experiments conducted on several sets of instances from the literature show that our algorithm outperforms existing solution methods for the 2E-VRP and achieves excellent results on the LRP. PMID:23483764

  6. Real-time nondestructive structural health monitoring using support vector machines and wavelets

    NASA Astrophysics Data System (ADS)

    Bulut, Ahmet; Singh, Ambuj K.; Shin, Peter; Fountain, Tony; Jasso, Hector; Yan, Linjun; Elgamal, Ahmed

    2005-05-01

    We present an alternative to visual inspection for detecting damage to civil infrastructure. We describe a real-time decision support system for nondestructive health monitoring. The system is instrumented by an integrated network of wireless sensors mounted on civil infrastructures such as bridges, highways, and commercial and industrial facilities. To address scalability and power consumption issues related to sensor networks, we propose a three-tier system that uses wavelets to adaptively reduce the streaming data spatially and temporally. At the sensor level, measurement data is temporally compressed before being sent upstream to intermediate communication nodes. There, correlated data from multiple sensors is combined and sent to the operation center for further reduction and interpretation. At each level, the compression ratio can be adaptively changed via wavelets. This multi-resolution approach is useful in optimizing total resources in the system. At the operation center, Support Vector Machines (SVMs) are used to detect the location of potential damage from the reduced data. We demonstrate that the SVM is a robust classifier in the presence of noise and that wavelet-based compression gracefully degrades its classification accuracy. We validate the effectiveness of our approach using a finite element model of the Humboldt Bay Bridge. We envision that our approach will prove novel and useful in the design of scalable nondestructive health monitoring systems.

  7. Parallel, Gradient-Based Anisotropic Mesh Adaptation for Re-entry Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Gnoffo, Peter A.; Park, Michael A.; Jones, William T.

    2006-01-01

    Two gradient-based adaptation methodologies have been implemented into the Fun3d refine GridEx infrastructure. A spring-analogy adaptation which provides for nodal movement to cluster mesh nodes in the vicinity of strong shocks has been extended for general use within Fun3d, and is demonstrated for a 70 sphere cone at Mach 2. A more general feature-based adaptation metric has been developed for use with the adaptation mechanics available in Fun3d, and is applicable to any unstructured, tetrahedral, flow solver. The basic functionality of general adaptation is explored through a case of flow over the forebody of a 70 sphere cone at Mach 6. A practical application of Mach 10 flow over an Apollo capsule, computed with the Felisa flow solver, is given to compare the adaptive mesh refinement with uniform mesh refinement. The examples of the paper demonstrate that the gradient-based adaptation capability as implemented can give an improvement in solution quality.

  8. Design of a Model Reference Adaptive Controller for an Unmanned Air Vehicle

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper presents the "Adaptive Control Technology for Safe Flight (ACTS)" architecture, which consists of a non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off nominal ones. The design and implementation procedures of both controllers are presented. The aim of these procedures, which encompass both theoretical and practical considerations, is to develop a controller suitable for flight. The ACTS architecture is applied to the Generic Transport Model developed by NASA-Langley Research Center. The GTM is a dynamically scaled test model of a transport aircraft for which a flight-test article and a high-fidelity simulation are available. The nominal controller at the core of the ACTS architecture has a multivariable LQR-PI structure while the adaptive one has a direct, model reference structure. The main control surfaces as well as the throttles are used as control inputs. The inclusion of the latter alleviates the pilot s workload by eliminating the need for cancelling the pitch coupling generated by changes in thrust. Furthermore, the independent usage of the throttles by the adaptive controller enables their use for attitude control. Advantages and potential drawbacks of adaptation are demonstrated by performing high fidelity simulations of a flight-validated controller and of its adaptive augmentation.

  9. Application of a wireless sensor node to health monitoring of operational wind turbine blades

    SciTech Connect

    Taylor, Stuart G; Farinholt, Kevin M; Park, Gyuhae; Farrar, Charles R; Todd, Michael D

    2009-01-01

    Structural health monitoring (SHM) is a developing field of research with a variety of applications including civil structures, industrial equipment, and energy infrastructure. An SHM system requires an integrated process of sensing, data interrogation and statistical assessment. The first and most important stage of any SHM system is the sensing system, which is traditionally composed of transducers and data acquisition hardware. However, such hardware is often heavy, bulky, and difficult to install in situ. Furthermore, physical access to the structure being monitored may be limited or restricted, as is the case for rotating wind turbine blades or unmanned aerial vehicles, requiring wireless transmission of sensor readings. This study applies a previously developed compact wireless sensor node to structural health monitoring of rotating small-scale wind turbine blades. The compact sensor node collects low-frequency structural vibration measurements to estimate natural frequencies and operational deflection shapes. The sensor node also has the capability to perform high-frequency impedance measurements to detect changes in local material properties or other physical characteristics. Operational measurements were collected using the wireless sensing system for both healthy and damaged blade conditions. Damage sensitive features were extracted from the collected data, and those features were used to classify the structural condition as healthy or damaged.

  10. Structural Health Monitoring of Composite Plates Under Ambient and Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.

    2005-01-01

    Methods for structural health monitoring are now being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. Different types of excitation and response signals and different sensors are employed in composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency and high frequency chirps of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage and operating environment. These results are furthermore compared with previous work using externally mounted sensors. More work is needed to accurately account for changes in temperature seen in these environments and be statistically significant. Sensor development and placement strategy are other areas of further work to make structural health monitoring more robust. Results from this and other work might then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2nd generation reusable launch vehicle using composites as a structural element.

  11. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  12. Developing a phosphor-based health monitoring sensor suite for future spacecraft

    NASA Astrophysics Data System (ADS)

    Goedeke, S. M.; Hollerman, W. A.; Bergeron, N. P.; Allison, S. W.; Moore, R. J.

    2006-05-01

    The desire to explore the Moon and Mars by 2030 makes cost effective and low mass health monitoring sensors essential for spacecraft development. Parameters such as impact, temperature, and radiation fluence need to be measured in order to determine the health of a human occupied vehicle. A phosphor-based sensor offers one good approach to develop a robust health monitoring system. The authors have spent the last few years evaluating physical characteristics of zinc sulfide (ZnS) phosphors. These materials emit triboluminescence (TL) which is fluorescence produced as a result of an impact. Currently, two ZnS materials have been tested for impact response for velocities from 1 m/s to 6 km/s. These materials have also been calibrated for use as temperature sensors from room temperature to 350 °C. Finally, any sensor that is intended to function in space must be characterized for response to ionizing radiation. Research to date has included irradiating ZnS with 3 MeV protons and 20 keV electrons, which are likely components of the space radiation environment. Results have shown that that the fluorescence emission intensity decreases with radiation fluence. However, radiation induced damage can be annealed at small fluence levels. This annealing not only increased light intensity of the exposed sample from excitation but also TL excitation as well.

  13. Self-Aware Vehicles: Mission and Performance Adaptation to System Health

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Leonard, Charles; Scotti, Stephen J.

    2016-01-01

    Advances in sensing (miniaturization, distributed sensor networks) combined with improvements in computational power leading to significant gains in perception, real-time decision making/reasoning and dynamic planning under uncertainty as well as big data predictive analysis have set the stage for realization of autonomous system capability. These advances open the design and operating space for self-aware vehicles that are able to assess their own capabilities and adjust their behavior to either complete the assigned mission or to modify the mission to reflect their current capabilities. This paper discusses the self-aware vehicle concept and associated technologies necessary for full exploitation of the concept. A self-aware aircraft, spacecraft or system is one that is aware of its internal state, has situational awareness of its environment, can assess its capabilities currently and project them into the future, understands its mission objectives, and can make decisions under uncertainty regarding its ability to achieve its mission objectives.

  14. Development of structural health monitoring systems for railroad bridge testbeds

    NASA Astrophysics Data System (ADS)

    Park, Hyun-Jun; Min, Jiyoung; Yun, Chung-Bang; Shin, Min-Ho; Kim, Yong-Su; Park, Su-Yeol

    2011-04-01

    Recently a challenging project has been carried out for construction of a national network for safety management and monitoring of civil infrastructures in Korea. As a part of the project, structural health monitoring (SHM) systems have been established on railroad bridges employing various types of sensors such as accelerometers, optical fiber sensors, and piezoelectric sensors. This paper presents the current status of railroad bridge health monitoring testbeds. Emerging sensors and monitoring technologies are under investigation. They are local damage detection using PZT-based electro-mechanical impedances; vibration-based global monitoring using accelerations, FBG-based dynamic strains; and wireless sensor data acquisition systems. The monitoring systems provide real-time measurements under train-transit and environmental loadings, and can be remotely accessible and controllable via the web. Long-term behaviors of the railroad bridge testbeds are investigated, and guidelines for safety management are to be established by combining numerical analysis and signal processing of the measured data.

  15. Wearable lung-health monitoring system with electrical impedance tomography.

    PubMed

    Hong, Sunjoo; Lee, Jaehyuk; Yoo, Hoi-Jun

    2015-08-01

    The wearable lung-health monitoring system is proposed with an electrical impedance tomography (EIT). The proposed system has light belt-type form factor which is implemented with the EIT integrated circuit (IC) on the planar-fashionable circuit board (P-FCB) technology. The EIT IC provides programmable current stimulation which is optimally controlled by the results of contact impedance monitoring. The measured data is transmitted to the mobile device and the lung EIT images are reconstructed and displayed with up to 20 frames/s real-time. From the lung EIT image, the measured lung air volume ratio can be used as an indicator of the lung-health, and other various parameters can be extracted to monitor lung status. The proposed wearable system achieves the user convenience for lung-health monitoring which can be used personally at home. The proposed system is fully implemented and verified on both in-vitro and in-vivo tests.

  16. TPS In-Flight Health Monitoring Project Progress Report

    NASA Technical Reports Server (NTRS)

    Kostyk, Chris; Richards, Lance; Hudston, Larry; Prosser, William

    2007-01-01

    Progress in the development of new thermal protection systems (TPS) is reported. New approaches use embedded lightweight, sensitive, fiber optic strain and temperature sensors within the TPS. Goals of the program are to develop and demonstrate a prototype TPS health monitoring system, develop a thermal-based damage detection algorithm, characterize limits of sensor/system performance, and develop ea methodology transferable to new designs of TPS health monitoring systems. Tasks completed during the project helped establish confidence in understanding of both test setup and the model and validated system/sensor performance in a simple TPS structure. Other progress included complete initial system testing, commencement of the algorithm development effort, generation of a damaged thermal response characteristics database, initial development of a test plan for integration testing of proven FBG sensors in simple TPS structure, and development of partnerships to apply the technology.

  17. Dynamic Structural Health Monitoring of Slender Structures Using Optical Sensors

    PubMed Central

    Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo

    2012-01-01

    In this paper we summarize the research activities at the Instituto de Telecomunicações—Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior. PMID:22778661

  18. Thermal sensitivity of Lamb waves for structural health monitoring applications.

    PubMed

    Dodson, J C; Inman, D J

    2013-03-01

    One of the drawbacks of the current Lamb wave structural health monitoring methods are the false positives due to changing environmental conditions such as temperature. To create an environmental insensitive damage detection scheme, the physics of thermal effects on Lamb waves must be understood. Dispersion and thermal sensitivity curves for an isotropic plate with thermal stress and thermally varying elastic modulus are presented. The thermal sensitivity of dispersion curves is analytically developed and validated by experimental measurements. The group velocity thermal sensitivity highlights temperature insensitive features at two critical frequencies. The thermal sensitivity gives us insight to how temperature affects Lamb wave speeds in different frequency ranges and will help those developing structural health monitoring algorithms.

  19. Augmented Fish Health Monitoring; Volume I of II, Completion Report.

    SciTech Connect

    Michak, Patty

    1991-05-01

    The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Historically, all agencies involved with fish health in the Columbia Basin were conducting various levels of fish health monitoring, pathogen screening and collection. The goals of this project were; to identify, develop and implement a standardized level of fish health methodologies, develop a common data collection and reporting format in the area of artificial production, evaluate and monitor water quality, improve communications between agencies and provide annual evaluation of fish health information for production of healthier smolts. This completion report will contain a project evaluation, review of the goals of the project, evaluation of the specific fish health analyses, an overview of highlights of the project and concluding remarks. 8 refs., 1 fig., 4 tabs.

  20. Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.

    1992-01-01

    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.

  1. Wavelet De-noising of GNSS Based Bridge Health Monitoring Data

    NASA Astrophysics Data System (ADS)

    Ogundipe, Oluropo; Lee, Jae Kang; Roberts, Gethin Wyn

    2014-11-01

    GNSS signal multipath occurs when the GNSS signal reflects of objects in the antenna environment and arrives at the antenna via multiple paths. A bridge environment is one that is prone to multipath with the bridge structure, as well as passing vehicles providing static and dynamic sources of multipath. In this paper, the Wavelet Transform (WT) is applied to bridge data collected on the Machang cable stayed bridge in Korea. The WT algorithm was applied to the GNSS derived bridge defection data at the mid-span. Up to 41% improvement in RMS was observed afterwavelet shrinkage de-noisingwas applied.Application of this algorithm to the torsion data showed significant improvement with the residual average and RMS decreased by 40% and 45% respectively. This method enabled the generation of more accurate information for bridge health monitoring systems in terms of the analysis of frequency, mode shape and three dimensional defections.

  2. Challenges in Data Quality Assurance in Pervasive Health Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Sriram, Janani; Shin, Minho; Kotz, David; Rajan, Anand; Sastry, Manoj; Yarvis, Mark

    Wearable, portable, and implantable medical sensors have ushered in a new paradigm for healthcare in which patients can take greater responsibility and caregivers can make well-informed, timely decisions. Health-monitoring systems built on such sensors have huge potential benefit to the quality of healthcare and quality of life for many people, such as patients with chronic medical conditions (such as blood-sugar sensors for diabetics), people seeking to change unhealthy behavior (such as losing weight or quitting smoking), or athletes wishing to monitor their condition and performance. To be effective, however, these systems must provide assurances about the quality of the sensor data. The sensors must be applied to the patient by a human, and the sensor data may be transported across multiple networks and devices before it is presented to the medical team. While no system can guarantee data quality, we anticipate that it will help for the system to annotate data with some measure of confidence. In this paper, we take a deeper look at potential health-monitoring usage scenarios and highlight research challenges required to ensure and assess quality of sensor data in health-monitoring systems.

  3. Development of structural health monitoring techniques using dynamics testing

    SciTech Connect

    James, G.H. III

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  4. Adaptation to Altitude as a Vehicle for Experiential Learning of Physiology by University Undergraduates

    ERIC Educational Resources Information Center

    Weigle, David S.; Buben, Amelia; Burke, Caitlin C.; Carroll, Nels D.; Cook, Brett M.; Davis, Benjamin S.; Dubowitz, Gerald; Fisher, Rian E.; Freeman, Timothy C.; Gibbons, Stephen M.; Hansen, Hale A.; Heys, Kimberly A.; Hopkins, Brittany; Jordan, Brittany L.; McElwain, Katherine L.; Powell, Frank L.; Reinhart, Katherine E.; Robbins, Charles D.; Summers, Cameron C.; Walker, Jennifer D.; Weber, Steven S.; Weinheimer, Caroline J.

    2007-01-01

    In this article, an experiential learning activity is described in which 19 university undergraduates made experimental observations on each other to explore physiological adaptations to high altitude. Following 2 wk of didactic sessions and baseline data collection at sea level, the group ascended to a research station at 12,500-ft elevation.…

  5. Real-time adaptive off-road vehicle navigation and terrain classification

    NASA Astrophysics Data System (ADS)

    Muller, Urs A.; Jackel, Lawrence D.; LeCun, Yann; Flepp, Beat

    2013-05-01

    We are developing a complete, self-contained autonomous navigation system for mobile robots that learns quickly, uses commodity components, and has the added benefit of emitting no radiation signature. It builds on the au­tonomous navigation technology developed by Net-Scale and New York University during the Defense Advanced Research Projects Agency (DARPA) Learning Applied to Ground Robots (LAGR) program and takes advantage of recent scientific advancements achieved during the DARPA Deep Learning program. In this paper we will present our approach and algorithms, show results from our vision system, discuss lessons learned from the past, and present our plans for further advancing vehicle autonomy.

  6. Health monitoring of offshore structures using wireless sensor network: experimental investigations

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Srinivasan; Chitambaram, Thailammai

    2016-04-01

    This paper presents a detailed methodology of deploying wireless sensor network in offshore structures for structural health monitoring (SHM). Traditional SHM is carried out by visual inspections and wired systems, which are complicated and requires larger installation space to deploy while decommissioning is a tedious process. Wireless sensor networks can enhance the art of health monitoring with deployment of scalable and dense sensor network, which consumes lesser space and lower power consumption. Proposed methodology is mainly focused to determine the status of serviceability of large floating platforms under environmental loads using wireless sensors. Data acquired by the servers will analyze the data for their exceedance with respect to the threshold values. On failure, SHM architecture will trigger an alarm or an early warning in the form of alert messages to alert the engineer-in-charge on board; emergency response plans can then be subsequently activated, which shall minimize the risk involved apart from mitigating economic losses occurring from the accidents. In the present study, wired and wireless sensors are installed in the experimental model and the structural response, acquired is compared. The wireless system comprises of Raspberry pi board, which is programmed to transmit the acquired data to the server using Wi-Fi adapter. Data is then hosted in the webpage for further post-processing, as desired.

  7. 75 FR 52504 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Information Collection; National Animal Health Monitoring System; Dairy Heifer Raiser 2010 Study AGENCY... National Animal Health Monitoring System Dairy Heifer Raiser 2010 Study. DATES: We will consider all... Health Monitoring System; Dairy Heifer Raiser 2010 Study. OMB Number: 0579-xxxx. Type of...

  8. 76 FR 28414 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ...; National Animal Health Monitoring System; Emergency Epidemiologic Investigations AGENCY: Animal and Plant... to support the National Animal Health Monitoring System. DATES: We will consider all comments that we... Coordinator, at (301) 851-2908. SUPPLEMENTARY INFORMATION: Title: National Animal Health Monitoring...

  9. 78 FR 58269 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ...; National Animal Health Monitoring System; Bison 2014 Study AGENCY: Animal and Plant Health Inspection... intention to request approval of a new information collection for the National Animal Health Monitoring...: National Animal Health Monitoring System; Bison 2014 Study. OMB Number: 0579-XXXX. Type of...

  10. 78 FR 58268 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ...; National Animal Health Monitoring System; Cervid 2014 Study AGENCY: Animal and Plant Health Inspection... intention to request approval of a new information collection for the National Animal Health Monitoring...: National Animal Health Monitoring System; Cervid 2014 Study. OMB Number: 0579-XXXX. Type of...

  11. SSME to RS-25: Challenges of Adapting a Heritage Engine to a New Vehicle Architecture

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2015-01-01

    A key constituent of the NASA Space Launch System (SLS) architecture is the RS-25 engine, also known as the Space Shuttle Main Engine (SSME). This engine was selected largely due to the maturity and extensive experience gained through 30-plus years of service. However, while the RS-25 is a highly mature system, simply unbolting it from the Space Shuttle and mounting it on the new SLS vehicle is not a "plug-and-play" operation. In addition to numerous technical integration and operational details, there were also hardware upgrades needed. While the magnitude of effort is less than that needed to develop a new clean-sheet engine system, this paper describes some of the expected and unexpected challenges encountered to date on the path to the first flight of SLS.

  12. Adapting physically complete models to vehicle-based EMI array sensor data: data inversion and discrimination studies

    NASA Astrophysics Data System (ADS)

    Shubitidze, Fridon; Miller, Jonathan S.; Schultz, Gregory M.; Marble, Jay A.

    2010-04-01

    This paper reports vehicle based electromagnetic induction (EMI) array sensor data inversion and discrimination results. Recent field studies show that EMI arrays, such as the Minelab Single Transmitter Multiple Receiver (STMR), and the Geophex GEM-5 EMI array, provide a fast and safe way to detect subsurface metallic targets such as landmines, unexploded ordnance (UXO) and buried explosives. The array sensors are flexible and easily adaptable for a variety of ground vehicles and mobile platforms, which makes them very attractive for safe and cost effective detection operations in many applications, including but not limited to explosive ordnance disposal and humanitarian UXO and demining missions. Most state-of-the-art EMI arrays measure the vertical or full vector field, or gradient tensor fields and utilize them for real-time threat detection based on threshold analysis. Real field practice shows that the threshold-level detection has high false alarms. One way to reduce these false alarms is to use EMI numerical techniques that are capable of inverting EMI array data in real time. In this work a physically complete model, known as the normalized volume/surface magnetic sources (NV/SMS) model is adapted to the vehicle-based EMI array, such as STMR and GEM-5, data. The NV/SMS model can be considered as a generalized volume or surface dipole model, which in a special limited case coincides with an infinitesimal dipole model approach. According to the NV/SMS model, an object's response to a sensor's primary field is modeled mathematically by a set of equivalent magnetic dipoles, distributed inside the object (i.e. NVMS) or over a surface surrounding the object (i.e. NSMS). The scattered magnetic field of the NSMS is identical to that produced by a set of interacting magnetic dipoles. The amplitudes of the magnetic dipoles are normalized to the primary magnetic field, relating induced magnetic dipole polarizability and the primary magnetic field. The magnitudes of

  13. Effects of Piezoelectric (PZT) Sensor Bonding and the Characteristics of the Host Structure on Impedance Based Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Jalloh, Abdul

    2005-01-01

    This study was conducted to investigate the effects of certain factors on the impedance signal in structural health monitoring. These factors were: the quality of the bond between the sensor and the host structure, and the characteristics of the host structure, such as geometry, mass, and material properties. This work was carried out to answer a set of questions, related to these factors, that were developed by the project team. The project team was comprised of Dr. Doug Ramers and Dr. Abdul Jalloh of the Summer Faculty Fellowship Program, Mr. Arnaldo Colon- Perez, a student intern from the University of Puerto Rico of Turabo, and Mr. John Lassiter and Mr. Bob Engberg of the Structural and Dynamics Test Group at NASA Marshall Space Flight Center (MSFC). This study was based on a review of the literature on structural health monitoring to investigate the factors referred to above because there was not enough time to plan and conduct the appropriate tests at MSFC during the tenure of the Summer Faculty Fellowship Program project members. The surveyed literature documents works on structural health monitoring that were based on laboratory tests that were conducted using bolted trusses and other civil engineering type structures for the most part. These are not the typical types of structures used in designing and building NASA s space vehicles and systems. It was therefore recommended that tests be conducted using NASA type structures, such as pressure vessels, to validate the observations made in this report.

  14. Efficient integration of spectral features for vehicle tracking utilizing an adaptive sensor

    NASA Astrophysics Data System (ADS)

    Uzkent, Burak; Hoffman, Matthew J.; Vodacek, Anthony

    2015-03-01

    Object tracking in urban environments is an important and challenging problem that is traditionally tackled using visible and near infrared wavelengths. By inserting extended data such as spectral features of the objects one can improve the reliability of the identification process. However, huge increase in data created by hyperspectral imaging is usually prohibitive. To overcome the complexity problem, we propose a persistent air-to-ground target tracking system inspired by a state-of-the-art, adaptive, multi-modal sensor. The adaptive sensor is capable of providing panchromatic images as well as the spectra of desired pixels. This addresses the data challenge of hyperspectral tracking by only recording spectral data as needed. Spectral likelihoods are integrated into a data association algorithm in a Bayesian fashion to minimize the likelihood of misidentification. A framework for controlling spectral data collection is developed by incorporating motion segmentation information and prior information from a Gaussian Sum filter (GSF) movement predictions from a multi-model forecasting set. An intersection mask of the surveillance area is extracted from OpenStreetMap source and incorporated into the tracking algorithm to perform online refinement of multiple model set. The proposed system is tested using challenging and realistic scenarios generated in an adverse environment.

  15. Health monitoring system for the SSME - Hardware architecture study

    NASA Technical Reports Server (NTRS)

    Kamenetz, Jeffry K.; Hawman, Mike W.; Tulpule, Sharayu

    1990-01-01

    This paper presents a hardware architecture for a health monitoring system (HMS) for the SSME. The architecture study was conducted in conjunction with a NASA sponsored program to develop a framework for SSME HMS for (1) ground test and, potentially (2) flight applications. The requirements for both systems are both stated and analyzed. A multiprocessor distributed VME system is envisioned for the ground-test hardware. By repackaging the boards, the same concept is shown to be usable for the flight system. The paper concludes with an analysis of weight, power, and reliability with respect to variations in functionality.

  16. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  17. SSME to RS-25: Challenges of Adapting a Heritage Engine to a New Vehicle Architecture

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2015-01-01

    Following the cancellation of the Constellation program and retirement of the Space Shuttle, NASA initiated the Space Launch System (SLS) program to provide next-generation heavy lift cargo and crew access to space. A key constituent of the SLS architecture is the RS-25 engine, also known as the Space Shuttle Main Engine (SSME). The RS-25 was selected to serve as the main propulsion system for the SLS core stage in conjunction with the solid rocket boosters. This selection was largely based on the maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over a million seconds total accumulated hot-fire time. In addition, there were also over a dozen functional flight assets remaining from the Space Shuttle program that could be leveraged to support the first four flights. However, while the RS-25 is a highly mature system, simply unbolting it from the Space Shuttle boat-tail and installing it on the new SLS vehicle is not a "plug-and-play" operation. In addition to numerous technical integration details involving changes to significant areas such as the environments, interface conditions, technical performance requirements, operational constraints and so on, there were other challenges to be overcome in the area of replacing the obsolete engine control system (ECS). While the magnitude of accomplishing this effort was less than that needed to develop and field a new clean-sheet engine system, the path to the first flight of SLS has not been without unexpected challenges.

  18. A Future Vision of a Data Acquisition: Distributed Sensing, Processing, and Health Monitoring

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Solano, Wanda; Thurman, Charles; Schmalzel, John

    2000-01-01

    This paper presents a vision fo a highly enhanced data acquisition and health monitoring system at NASA Stennis Space Center (SSC) rocket engine test facility. This vision includes the use of advanced processing capabilities in conjunction with highly autonomous distributed sensing and intelligence, to monitor and evaluate the health of data in the context of it's associated process. This method is expected to significantly reduce data acquisitions costs and improve system reliability. A Universal Signal Conditioning Amplifier (USCA) based system, under development at Kennedy Space Center, is being evaluated for adaptation to the SSC testing infrastructure. Kennedy's USCA architecture offers many advantages including flexible and auto-configuring data acquisition with improved calibration and verifiability. Possible enhancements at SSC may include multiplexing the distributed USCAs to reduce per channel cost, and the use of IEEE-485 to Allen-Bradley Control Net Gateways for interfacing with the resident control systems.

  19. Toward flexible and wearable human-interactive health-monitoring devices.

    PubMed

    Takei, Kuniharu; Honda, Wataru; Harada, Shingo; Arie, Takayuki; Akita, Seiji

    2015-03-11

    This Progress Report introduces flexible wearable health-monitoring devices that interact with a person by detecting from and stimulating the body. Interactive health-monitoring devices should be highly flexible and attach to the body without awareness like a bandage. This type of wearable health-monitoring device will realize a new class of electronics, which will be applicable not only to health monitoring, but also to other electrical devices. However, to realize wearable health-monitoring devices, many obstacles must be overcome to economically form the active electrical components on a flexible substrate using macroscale fabrication processes. In particular, health-monitoring sensors and curing functions need to be integrated. Here recent developments and advancements toward flexible health-monitoring devices are presented, including conceptual designs of human-interactive devices.

  20. A dual adaptive tunable vibration absorber using MREs for vehicle powertrain vibration control

    NASA Astrophysics Data System (ADS)

    Hoang, N.; Zhang, N.; Du, H.

    2010-04-01

    This paper presents a dual Adaptive Tuned Vibration Absorber (ATVA) using a magnetorheological elastomer (MRE) for powertrain torsional vibration control. The MRE used in this device is a soft MRE with a significant MR effect. By using the MRE, the ATVA can work in a wide frequency range. In this paper, the dual ATVA is proposed rather than a single ATVA because a single ATVA, at a fixed location, cannot deal with resonances happening to several powertrain vibration modes. Also, the dual ATVA concept design is presented to validate its effectiveness. In addition the soft MRE shear modulus is approximated by a polynomial of magnetic flux intensity B and the approximation was experimentally validated. The simulation results showed that with the ATVA, powertrain vibration response is significantly suppressed. Furthermore, the effect of the dual ATVA parameters such as inertia moment, stiffness and damping coefficients and ATVA locations were examined. The dual ATVA will be useful device for powertrain vibration suppression.

  1. Structural Health Monitoring of a Bridge with Energy Dissipators

    SciTech Connect

    Amaddeo, Carmen; D'Amore, Enzo; Benzoni, Gianmario

    2008-07-08

    After natural events like the 1994 Northridge (USA), the 1995 Kobe (Japan), the 1999 Chi-Chi (Taiwan) and the 1999 Duzce (Turkey) earthquakes it became evident that the demand for bridge structures could greatly benefit from the application of isolation/energy dissipation techniques. Despite the level of maturity achieved in the field of seismic isolation, open questions still remain on the durability of seismic response modification devices (SRMD) under working conditions. The option of removal of sample devices from the bridge structure to verify their performance characteristics involves a significant economical effort, particularly if associated to disruption of the regular traffic. It provides also a device response verification difficult to correlate to the global structural performance. Health monitoring techniques offer a valuable alternative. The main objective of this research is the definition of an effective health monitoring approach to be applied to bridges protected with the most common seismic response modification devices (SRMD). The proposed methodology was validated with the use of records from a bridge equipped with viscous dampers. The record were obtained before and after damage occurred. The procedure proved to be accurate in detecting early degradations of the device characteristics as well as of the structural elements directly connected to the devices.

  2. Implementation of a piezoelectric energy harvester in railway health monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2014-03-01

    With development of wireless sensor technology, wireless sensor network has shown a great potential for railway health monitoring. However, how to supply continuous power to the wireless sensor nodes is one of the critical issues in long-term full-scale deployment of the wireless smart sensors. Some energy harvesting methodologies have been available including solar, vibration, wind, etc; among them, vibration-based energy harvester using piezoelectric material showed the potential for converting ambient vibration energy to electric energy in railway health monitoring even for underground subway systems. However, the piezoelectric energy harvester has two major problems including that it could only generate small amount of energy, and that it should match the exact narrow band natural frequency with the excitation frequency. To overcome these problems, a wide band piezoelectric energy harvester, which could generate more power on various frequencies regions, has been designed and validated with experimental test. Then it was applied to a full-scale field test using actual railway train. The power generation of the wide band piezoelectric array has been compared to a narrow-band, resonant-based, piezoelectric energy harvester.

  3. Fiber Optic Sensors for Health Monitoring of Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Timothy; Wood, Karen; Childers, Brooks; Cano, Roberto; Jensen, Brian; Rogowski, Robert

    2001-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors. These sensors will measure load and vibration signatures that will be used to infer structural integrity. Sine the aircraft morphing program assumes that future aircraft will be aerodynamically reconfigurable there is also a requirement for pressure, flow and shape sensors. In some cases a single fiber may be used for measuring several different parameters. The objective of the current program is to develop techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service structural integrity of the composite structure. Graphite-epoxy panels were fabricated with integrated optical fibers of various types. The panels were mechanically and thermally tested to evaluate composite strength and sensor durability. Finally the performance of the fiber optic sensors was determined. Experimental results are presented evaluating the performance of embedded and surface mounted optical fibers for measuring strain, temperature and chemical composition. The performance of the fiber optic sensors was determined by direct comparison with results from more conventional instrumentation. The facilities for fabricating optical fiber and associated sensors and methods of demodulating Bragg gratings for strain measurement will be described.

  4. Ultra Low Power Signal Oriented Approach for Wireless Health Monitoring

    PubMed Central

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios. PMID:22969379

  5. Space Shuttle Main Engine: Advanced Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Singer, Chirs

    1999-01-01

    The main gola of the Space Shuttle Main Engine (SSME) Advanced Health Management system is to improve flight safety. To this end the new SSME has robust new components to improve the operating margen and operability. The features of the current SSME health monitoring system, include automated checkouts, closed loop redundant control system, catastropic failure mitigation, fail operational/ fail-safe algorithms, and post flight data and inspection trend analysis. The features of the advanced health monitoring system include: a real time vibration monitor system, a linear engine model, and an optical plume anomaly detection system. Since vibration is a fundamental measure of SSME turbopump health, it stands to reason that monitoring the vibration, will give some idea of the health of the turbopumps. However, how is it possible to avoid shutdown, when it is not necessary. A sensor algorithm has been developed which has been exposed to over 400 test cases in order to evaluate the logic. The optical plume anomaly detection (OPAD) has been developed to be a sensitive monitor of engine wear, erosion, and breakage.

  6. Wireless system for structural health monitoring based on Lamb waves

    NASA Astrophysics Data System (ADS)

    Lieske, U.; Dietrich, A.; Schubert, L.; Frankenstein, B.

    2012-04-01

    Structural health monitoring systems are increasingly used for comprehensive fatigue tests and surveillance of large scale structures. In this paper we describe the development and validation of a wireless system for SHM application based on Lamb-waves. The system is based on a wireless sensor network and focuses especially on low power measurement, signal processing and communication. The sensor nodes were realized by compact, sensor near signal processing structures containing components for analog preprocessing of acoustic signals, their digitization and network communication. The core component is a digital microprocessor ARM Cortex-M3 von STMicroelectronics, which performs the basic algorithms necessary for data acquisition synchronization and filtering. The system provides network discovery and multi-hop and self-healing mechanisms. If the distance between two communicating devices is too big for direct radio transmission, packets are routed over intermediate devices automatically. The system represents a low-power and low-cost active structural health monitoring solution. As a first application, the system was installed on a CFRP structure.

  7. Reusable rocket engine turbopump health monitoring system, part 3

    NASA Technical Reports Server (NTRS)

    Perry, John G.

    1989-01-01

    Degradation mechanisms and sensor identification/selection resulted in a list of degradation modes and a list of sensors that are utilized in the diagnosis of these degradation modes. The sensor list is divided into primary and secondary indicators of the corresponding degradation modes. The signal conditioning requirements are discussed, describing the methods of producing the Space Shuttle Main Engine (SSME) post-hot-fire test data to be utilized by the Health Monitoring System. Development of the diagnostic logic and algorithms is also presented. The knowledge engineering approach, as utilized, includes the knowledge acquisition effort, characterization of the expert's problem solving strategy, conceptually defining the form of the applicable knowledge base, and rule base, and identifying an appropriate inferencing mechanism for the problem domain. The resulting logic flow graphs detail the diagnosis/prognosis procedure as followed by the experts. The nature and content of required support data and databases is also presented. The distinction between deep and shallow types of knowledge is identified. Computer coding of the Health Monitoring System is shown to follow the logical inferencing of the logic flow graphs/algorithms.

  8. Passive and Active Sensing Technologies for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  9. Some practical issues in remote structural health monitoring

    NASA Astrophysics Data System (ADS)

    Han, L.; Newhook, J. P.; Mufti, A. A.

    2005-05-01

    Structural health monitoring (SHM) activities in civil engineering grow at a rapid pace and mature in both research and field applications. Internet technology was successfully incorporated into structural health monitoring, which makes it possible to manage real-time sensing data and centralize the remote structural monitoring systems. With the increase in size and complexity of the monitored structures, more sensors and data acquisition equipment is involved. This paper addresses some specific issues related to long distance small signal transmission and Ethernet IP sharing between different devices. The issue of data volume versus storage space and communication bandwidth is discussed especially in the application of web camera image transfer and recording. The approaches are illustrated through reference to two current case studies, which include a bridge and a statue. It can be seen that these practical solutions employed by ISIS Canada are easy to implement and reduce the cost for the maintenance of SHM systems. The paper also discusses future activities and research needs related to the reliability and security of the SHM system.

  10. Conformal and embedded IDT microsensors for health monitoring of structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    2000-06-01

    MEMS are currently being applied to the structural health monitoring of critical aircraft components and composites. The approach integrates acoustic emission, strain gauges, MEMS accelerometers and vibration monitoring aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensor and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State wireless communication systems suitable for condition monitoring of aircraft structures in-flight. The main application areas of this investigation include continuos monitoring of a) structural integrity of aging aircraft, b) fatigue cracking, c) corrosion, d) deflection and strain of aircraft structures, wings, and rotorblades, e) impact damage, f) delamination and g) location and propagation of cracks. In this paper we give an overview of wireless programmable microsensors and MEMS and their associated driving electronics for such applications.

  11. Design and Analysis of Architectures for Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  12. Piezoelectric based sensing in wireless steel bridge health monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor; Ziehl, Paul; Ozevin, Didem

    2009-03-01

    rent routine inspection practices for bridge health monitoring are not sufficient for the timely identification of areas of concern or to provide enough information to bridge owners to make informed decisions for maintenance prioritization. Continuous monitoring is needed for long term evaluation from an integrated sensing system that would act as a monitoring and early warning alarm system and be able to communicate the information from the bridge directly to the bridge owners for potential and immediate action. To address this urgent highway bridge health monitoring need, a joint venture research has been initiated by incorporating novel and promising sensing approach based on piezoelectricity together with energy harvesting to reduce the dramatic uncertainty inherent into any inspection and maintenance plan. In the system, the damage detection and classification is focused on the use of piezoelectric wafer active sensors (PWAS) at both active (Lamb wave interrogation) mode and passive (acoustic emission) mode on steel bridge. For efficient energy usage, the active mode will be triggered when acoustic emission caused by the structural change is detected. In the active sensing mode, computed array imaging will be used to detect the presence of crack and to track its growth. To further quantify the crack growth, damage physics based damage indicator will be defined and used to trace the crack growth as well.

  13. Structural health monitoring method for curved concrete bridge box girders

    NASA Astrophysics Data System (ADS)

    Glišić, Branko; Posenato, Daniele; Inaudi, Daniele; Figini, Angelo

    2008-03-01

    Curved concrete bridge girders have very complex internal forces, stress and strain distribution. As a consequence of their shape, not only the usual bending moments and shear forces are generated, but also important torsion moments are created. These moments "rotate" the axes of principal tensional stresses increasing the risk of cracking. Post-tensioning can prevent the cracks, but the added compression forces introduced in different directions increase the complexity of stress and strain fields. Therefore, the curved post-tensioned concrete girders must be particularly designed and carefully constructed. However, the real structural behavior should be verified, and risks and uncertainties related to structural design and quality of construction minimized. Structural health monitoring is a natural solution for these issues. Structural health monitoring method, based on the use of fiber optic interferometric technology including long-gage sensors and inclinometers, is presented in this paper. A 36 meters long curved post-tensioned bridge box girder is equipped with so-called parallel and so-called crossed sensor topologies, and inclinometers, in order to monitor axial strain, both horizontal and vertical curvature changes, torsion, average shear strain and rotations in both vertical plans. Important parts of structure life such as construction, post-tensioning and first years of service are registered, analyzed and presented.

  14. Acquiring Peak Samples from Phytoplankton Thin Layers and Intermediate Nepheloid Layers by an Autonomous Underwater Vehicle with Adaptive Triggering

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; McEwen, R.; Ryan, J. P.; Bellingham, J. G.; Harvey, J.; Vrijenhoek, R.

    2010-12-01

    Phytoplankton thin layers (PTLs) affect many fundamental aspects of coastal ocean ecology including primary productivity, development of harmful algal blooms (HABs) and the survival and growth of zooplankton and fish larvae. Intermediate nepheloid layers (INLs) that contain suspended particulate matter transported from the bottom boundary layer of continental shelves and slopes also affect biogeochemistry and ecology of ocean margins. To better understand the impacts of these types of layers, we have developed an adaptive sampling method for an autonomous underwater vehicle (AUV) to detect a layer (adjusting detection parameters in situ), acquire water samples from peaks in the layer, and acquire control samples outside the layer. We have used the method in a number of field experiments with the AUV Dorado, which is equipped with ten water samplers (called "gulpers"). In real time, the algorithm tracks background levels of fluorescence and optical backscatter and the peaks' baseline to ensure that detection is tuned to the ambient conditions. The algorithm cross-checks fluorescence and backscatter signals to differentiate PTLs from INLs. To capture peak water samples with minimal delay, the algorithm exploits the AUV's sawtooth (i.e., yo-yo) trajectory: the vehicle crosses the detected layer twice in one yo-yo cycle. At the first crossing, it detects the layer's peak and saves its signal height. Sampling is triggered at the second crossing when the signal reaches the saved peak height plus meeting additional timing and depth conditions. The algorithm is also capable of triggering gulpers to acquire control samples outside the layer for comparison with ambient water. The sequence of peak and control samples can be set based on need. In recent AUV Dorado missions, the algorithm triggered the gulpers to acquire peak and control samples from INLs and PTLs in Monterey Bay. Zooplankton analysis of some peak samples showed very high concentrations of mussel and barnacle

  15. Inter-Module Ventilation Changes to the International Space Station Vehicle to Support Integration of the International Docking Adapter and Commercial Crew Vehicles

    NASA Technical Reports Server (NTRS)

    Link, Dwight E., Jr.; Balistreri, Steven F., Jr.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) is continuing to evolve in the post-Space Shuttle era. The ISS vehicle configuration that is in operation was designed for docking of a Space Shuttle vehicle, and designs currently under development for commercial crew vehicles require different interfaces. The ECLSS Temperature and Humidity Control Subsystem (THC) Inter-Module Ventilation (IMV) must be modified in order to support two docking interfaces at the forward end of ISS, to provide the required air exchange. Development of a new higher-speed IMV fan and extensive ducting modifications are underway to support the new Commercial Crew Vehicle interfaces. This paper will review the new ECLSS IMV development requirements, component design and hardware status, subsystem analysis and testing performed to date, and implementation plan to support Commercial Crew Vehicle docking.

  16. An Adaptive Flow Solver for Air-Borne Vehicles Undergoing Time-Dependent Motions/Deformations

    NASA Technical Reports Server (NTRS)

    Singh, Jatinder; Taylor, Stephen

    1997-01-01

    This report describes a concurrent Euler flow solver for flows around complex 3-D bodies. The solver is based on a cell-centered finite volume methodology on 3-D unstructured tetrahedral grids. In this algorithm, spatial discretization for the inviscid convective term is accomplished using an upwind scheme. A localized reconstruction is done for flow variables which is second order accurate. Evolution in time is accomplished using an explicit three-stage Runge-Kutta method which has second order temporal accuracy. This is adapted for concurrent execution using another proven methodology based on concurrent graph abstraction. This solver operates on heterogeneous network architectures. These architectures may include a broad variety of UNIX workstations and PCs running Windows NT, symmetric multiprocessors and distributed-memory multi-computers. The unstructured grid is generated using commercial grid generation tools. The grid is automatically partitioned using a concurrent algorithm based on heat diffusion. This results in memory requirements that are inversely proportional to the number of processors. The solver uses automatic granularity control and resource management techniques both to balance load and communication requirements, and deal with differing memory constraints. These ideas are again based on heat diffusion. Results are subsequently combined for visualization and analysis using commercial CFD tools. Flow simulation results are demonstrated for a constant section wing at subsonic, transonic, and a supersonic case. These results are compared with experimental data and numerical results of other researchers. Performance results are under way for a variety of network topologies.

  17. Health Monitoring System Based on Intra-Body Communication

    NASA Astrophysics Data System (ADS)

    Razak, A. H. A.; Ibrahim, I. W.; Ayub, A. H.; Amri, M. F.; Hamzi, M. H.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al

    2015-11-01

    This paper presents a model of a Body Area Network (BAN) health monitoring system based on Intra-Body Communication. Intra-body Communication (IBC) is a communication technique that uses the human body as a medium for electrical signal communication. One of the visions in the health care industry is to provide autonomous and continuous self and the remote health monitoring system. This can be achieved via BAN, LAN and WAN integration. The BAN technology itself consists of short range data communication modules, sensors, controller and actuators. The information can be transmitted to the LAN and WAN via the RF technology such as Bluetooth, ZigBee and ANT. Although the implementations of RF communication have been successful, there are still limitations in term of power consumption, battery lifetime, interferences and signal attenuations. One of the solutions for Medical Body Area Network (MBANs) to overcome these issues is by using an IBC technique because it can operate at lower frequencies and power consumption compared to the existing techniques. The first objective is to design the IBC's transmitter and receiver modules using the off the shelf components. The specifications of the modules such as frequency, data rate, modulation and demodulation coding system were defined. The individual module were designed and tested separately. The modules was integrated as an IBC system and tested for functionality then was implemented on PCB. Next objective is to model and implement the digital parts of the transmitter and receiver modules on the Altera's FPGA board. The digital blocks were interfaced with the FPGA's on board modules and the discrete components. The signals that have been received from the transmitter were converted into a proper waveform and it can be viewed via external devices such as oscilloscope and Labview. The signals such as heartbeats or pulses can also be displayed on LCD. In conclusion, the IBC project presents medical health monitoring model

  18. Wireless microsensors for health monitoring of aircraft structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2003-01-01

    The integration of MEMS, IDTs (interdigital transducers) and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring (ASHM) system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC (Application Specific Integrated Circuit), providing a low power Microsystems. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial

  19. Adaptive Correlation Space Adjusted Open-Loop Tracking Approach for Vehicle Positioning with Global Navigation Satellite System in Urban Areas.

    PubMed

    Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng

    2015-08-28

    For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N₀) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N₀. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N₀. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area.

  20. Preceding Vehicle Detection and Tracking Adaptive to Illumination Variation in Night Traffic Scenes Based on Relevance Analysis

    PubMed Central

    Guo, Junbin; Wang, Jianqiang; Guo, Xiaosong; Yu, Chuanqiang; Sun, Xiaoyan

    2014-01-01

    Preceding vehicle detection and tracking at nighttime are challenging problems due to the disturbance of other extraneous illuminant sources coexisting with the vehicle lights. To improve the detection accuracy and robustness of vehicle detection, a novel method for vehicle detection and tracking at nighttime is proposed in this paper. The characteristics of taillights in the gray level are applied to determine the lower boundary of the threshold for taillights segmentation, and the optimal threshold for taillight segmentation is calculated using the OTSU algorithm between the lower boundary and the highest grayscale of the region of interest. The candidate taillight pairs are extracted based on the similarity between left and right taillights, and the non-vehicle taillight pairs are removed based on the relevance analysis of vehicle location between frames. To reduce the false negative rate of vehicle detection, a vehicle tracking method based on taillights estimation is applied. The taillight spot candidate is sought in the region predicted by Kalman filtering, and the disturbed taillight is estimated based on the symmetry and location of the other taillight of the same vehicle. Vehicle tracking is completed after estimating its location according to the two taillight spots. The results of experiments on a vehicle platform indicate that the proposed method could detect vehicles quickly, correctly and robustly in the actual traffic environments with illumination variation. PMID:25195855

  1. Preceding vehicle detection and tracking adaptive to illumination variation in night traffic scenes based on relevance analysis.

    PubMed

    Guo, Junbin; Wang, Jianqiang; Guo, Xiaosong; Yu, Chuanqiang; Sun, Xiaoyan

    2014-01-01

    Preceding vehicle detection and tracking at nighttime are challenging problems due to the disturbance of other extraneous illuminant sources coexisting with the vehicle lights. To improve the detection accuracy and robustness of vehicle detection, a novel method for vehicle detection and tracking at nighttime is proposed in this paper. The characteristics of taillights in the gray level are applied to determine the lower boundary of the threshold for taillights segmentation, and the optimal threshold for taillight segmentation is calculated using the OTSU algorithm between the lower boundary and the highest grayscale of the region of interest. The candidate taillight pairs are extracted based on the similarity between left and right taillights, and the non-vehicle taillight pairs are removed based on the relevance analysis of vehicle location between frames. To reduce the false negative rate of vehicle detection, a vehicle tracking method based on taillights estimation is applied. The taillight spot candidate is sought in the region predicted by Kalman filtering, and the disturbed taillight is estimated based on the symmetry and location of the other taillight of the same vehicle. Vehicle tracking is completed after estimating its location according to the two taillight spots. The results of experiments on a vehicle platform indicate that the proposed method could detect vehicles quickly, correctly and robustly in the actual traffic environments with illumination variation. PMID:25195855

  2. Time-frequency methods for structural health monitoring.

    PubMed

    Pyayt, Alexander L; Kozionov, Alexey P; Mokhov, Ilya I; Lang, Bernhard; Meijer, Robert J; Krzhizhanovskaya, Valeria V; Sloot, Peter M A

    2014-03-12

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and "strange" behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany).

  3. Biosecurity and Health Monitoring at the Zebrafish International Resource Center.

    PubMed

    Murray, Katrina N; Varga, Zoltán M; Kent, Michael L

    2016-07-01

    The Zebrafish International Resource Center (ZIRC) is a repository and distribution center for mutant, transgenic, and wild-type zebrafish. In recent years annual imports of new zebrafish lines to ZIRC have increased tremendously. In addition, after 15 years of research, we have identified some of the most virulent pathogens affecting zebrafish that should be avoided in large production facilities, such as ZIRC. Therefore, while importing a high volume of new lines we prioritize safeguarding the health of our in-house fish colony. Here, we describe the biosecurity and health-monitoring program implemented at ZIRC. This strategy was designed to prevent introduction of new zebrafish pathogens, minimize pathogens already present in the facility, and ensure a healthy zebrafish colony for in-house uses and shipment to customers.

  4. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  5. A Survey of Current Rotorcraft Propulsion Health Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Dempsey, Paula J.; Simon, Donald L.

    2012-01-01

    A brief review is presented on the state-of-the-art in rotorcraft engine health monitoring technologies including summaries on current practices in the area of sensors, data acquisition, monitoring and analysis. Also, presented are guidelines for verification and validation of Health Usage Monitoring System (HUMS) and specifically for maintenance credits to extend part life. Finally, a number of new efforts in HUMS are summarized as well as lessons learned and future challenges. In particular, gaps are identified to supporting maintenance credits to extend rotorcraft engine part life. A number of data sources were consulted and include results from a survey from the HUMS community, Society of Automotive Engineers (SAE) documents, American Helicopter Society (AHS) papers, as well as references from Defence Science & Technology Organization (DSTO), Civil Aviation Authority (CAA), and Federal Aviation Administration (FAA).

  6. Structural health monitoring system design using finite element analysis

    SciTech Connect

    Stinemates, D. W.; Bennett, J. G.

    2002-01-01

    The project described in this report was performed to couple experimental and analytical techniques in the field of structural health monitoring and damage identification. To do this, a finite element model was constructed of a simulated three-story building used for damage identification experiments. The model was used in conjunction with data from the physical structure to research damage identification algorithms. Of particular interest was modeling slip in joints as a function of bolt torque and predicting the smallest change of torque that could be detected experimentally. After being validated with results from the physical structure, the model was used to produce data to test the capabilities of damage identification algorithms. This report describes the finite element model constructed, the results obtained, and proposed future use of the model.

  7. Resonant packaged piezoelectric power harvester for machinery health monitoring

    NASA Astrophysics Data System (ADS)

    du Plessis, Andries J.; Huigsloot, Marcel J.; Discenzo, Fred D.

    2005-05-01

    Packaged piezoelectric bi-morph actuators offer an alternative power source for health monitoring using localized vibrational power harvesting. Packaging piezoelectric wafers simplify the integration of piezoelectric ceramic wafers into products and improve the durability of the brittle piezoelectric ceramic material. This paper describes a model for predicting the power harvested from a resonant cantilevered beam piezoelectric power harvester across a resistive load. The model results are correlated with experimental power harvesting measurements made using a commercially available piezoelectric bi-morph actuator. Additionally, experimental power harvesting levels were determined under high root strain conditions and varying command frequencies. Finally, the power production capability of the packaged piezoelectric bi-morph generator was evaluated over millions of cycles at very high root strains levels, representative of the loads expected in an industrial application. Results from the testing indicate that packaged piezoelectric wafer products used in power harvesting devices are very reliable and well suited for harsh industrial application environments.

  8. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  9. Performance Health Monitoring of Large-Scale Systems

    SciTech Connect

    Rajamony, Ram

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  10. Pipelining in structural health monitoring wireless sensor network

    NASA Astrophysics Data System (ADS)

    Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim

    2010-04-01

    Application of wireless sensor network (WSN) for structural health monitoring (SHM), is becoming widespread due to its implementation ease and economic advantage over traditional sensor networks. Beside advantages that have made wireless network preferable, there are some concerns regarding their performance in some applications. In long-span Bridge monitoring the need to transfer data over long distance causes some challenges in design of WSN platforms. Due to the geometry of bridge structures, using multi-hop data transfer between remote nodes and base station is essential. This paper focuses on the performances of pipelining algorithms. We summarize several prevent pipelining approaches, discuss their performances, and propose a new pipelining algorithm, which gives consideration to both boosting of channel usage and the simplicity in deployment.

  11. Development of High Temperature Ultrasonic Transducer for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Baba, A.; Searfass, C. T.; Tittmann, B. R.

    2011-06-01

    Structural health monitoring (SHM) techniques are needed to maintain the reliability of aging power plants for long term operation. The high temperature transducers are necessary to realize SHM (monitor wall thickness of the pipings, crack growth in the materials and material evaluation) under the working condition of power plants. We have developed high temperature transducer using lithium niobate (LiNbO3) single crystal which is well known as a high Curie temperature piezoelectric material. The LiNbO3 was bonded onto a stainless steel substrate. The transducer was heated in an electric furnace while measuring the bottom echoes from the substrate. We confirmed that the high temperature transducer could work up to 1000 °C.

  12. Time-Frequency Methods for Structural Health Monitoring

    PubMed Central

    Pyayt, Alexander L.; Kozionov, Alexey P.; Mokhov, Ilya I.; Lang, Bernhard; Meijer, Robert J.; Krzhizhanovskaya, Valeria V.; Sloot, Peter M. A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and “strange” behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany). PMID:24625740

  13. Health Monitoring to Support Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (aSMRs) are based on advanced reactor concepts, some of which were promoted by the Generation IV International Forum, and are being considered for diverse missions including desalination of water, production of hydrogen, etc. While the existing fleet of commercial nuclear reactors provides baseload electricity, it is conceivable that aSMRs could be implemented for both baseload and load following applications. The effect of diverse operating missions and unit modularity on plant operations and maintenance (O&M) is not fully understood and limiting these costs will be essential to successful deployment of aSMRs. Integrated health monitoring concepts are proposed to support the safe and affordable operation of aSMRs over their lifetime by enabling management of significant in-vessel and in-containment active and passive components.

  14. Fiber optic sensors for structural health monitoring of air platforms.

    PubMed

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  15. Optical Fiber Sensors for Aircraft Structural Health Monitoring.

    PubMed

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-06-30

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  16. Optical Fiber Sensors for Aircraft Structural Health Monitoring

    PubMed Central

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-01-01

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel. PMID:26134107

  17. Scalable high-density peptide arrays for comprehensive health monitoring.

    PubMed

    Legutki, Joseph Barten; Zhao, Zhan-Gong; Greving, Matt; Woodbury, Neal; Johnston, Stephen Albert; Stafford, Phillip

    2014-01-01

    There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies to report on health fluctuations. Recently, we demonstrated that peptide microarrays can do this through antibody signatures (immunosignatures). Unfortunately, printed microarrays are not scalable. Here we demonstrate a platform based on fabricating microarrays (~10 M peptides per slide, 330,000 peptides per assay) on silicon wafers using equipment common to semiconductor manufacturing. The potential of these microarrays for comprehensive health monitoring is verified through the simultaneous detection and classification of six different infectious diseases and six different cancers. Besides diagnostics, these high-density peptide chips have numerous other applications both in health care and elsewhere. PMID:25183057

  18. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  19. A nonlinear cointegration approach with applications to structural health monitoring

    NASA Astrophysics Data System (ADS)

    Shi, H.; Worden, K.; Cross, E. J.

    2016-09-01

    One major obstacle to the implementation of structural health monitoring (SHM) is the effect of operational and environmental variabilities, which may corrupt the signal of structural degradation. Recently, an approach inspired from the community of econometrics, called cointegration, has been employed to eliminate the adverse influence from operational and environmental changes and still maintain sensitivity to structural damage. However, the linear nature of cointegration may limit its application when confronting nonlinear relations between system responses. This paper proposes a nonlinear cointegration method based on Gaussian process regression (GPR); the method is constructed under the Engle-Granger framework, and tests for unit root processes are conducted both before and after the GPR is applied. The proposed approach is examined with real engineering data from the monitoring of the Z24 Bridge.

  20. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  1. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays

    NASA Technical Reports Server (NTRS)

    Black, Richard J.; Faridian, Ferey; Moslehi, Behzad; Sotoudeh, Vahid

    2012-01-01

    Structural health monitoring (SHM) is one of the most important tools available for the maintenance, safety, and integrity of aerospace structural systems. Lightweight, electromagnetic-interference- immune, fiber-optic sensor-based SHM will play an increasing role in more secure air transportation systems. Manufacturers and maintenance personnel have pressing needs for significantly improving safety and reliability while providing for lower inspection and maintenance costs. Undetected or untreated damage may grow and lead to catastrophic structural failure. Damage can originate from the strain/stress history of the material, imperfections of domain boundaries in metals, delamination in multi-layer materials, or the impact of machine tools in the manufacturing process. Damage can likewise develop during service life from wear and tear, or under extraordinary circumstances such as with unusual forces, temperature cycling, or impact of flying objects. Monitoring and early detection are key to preventing a catastrophic failure of structures, especially when these are expected to perform near their limit conditions.

  2. Fiber optic sensors for structural health monitoring of air platforms.

    PubMed

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  3. Augmented Fish Health Monitoring, 1987-1988 Annual Report.

    SciTech Connect

    Warren, James W.

    1988-08-01

    Augmented Fish Health Monitoring Contract DE-AI79-87BP35585 was implemented on July 20, 1987. First year highlights included remodeling of the Olympia (WA) Fish Health Center to provide laboratory space for histopathological support services to participating state agencies, acquisition of gas monitoring equipment for hatchery water systems, expanded disease detection work for bacterial kidney disease and erythrocytic inclusion body syndrome in fish stocks at 13 Columbia River Basin National Fish Hatcheries and advancements in computerized case history data storage and analysis. This report summarizes the health status of fish reared at Service facilities in the Columbia River basin, briefly describes work being done to meet contract requirements for fish disease surveillance at those hatcheries and provides a summary of case history data for calendar years 1984, 1985, 1986 and 1987. 1 ref.

  4. Forest health monitoring 1992 annual statistical summary. Project report

    SciTech Connect

    Aalexander, S.A.; Barnard, J.E.

    1994-04-01

    In 1990, the U.S. Department of Agriculture (USDA) Forest Service (FS) and the U.S. Environmental Protection Agency (EPA) initiated a cooperative national program to monitor the condition of the nation's forests. This multi-agency effort, within EPA's Environmental Monitoring and Assessment Program (EMAP), is called the Forest Health Monitoring (FHM) program. In 1992, Detection Monitoring activities were conducted in twelve states: Alabama; Connecticut; Delaware; Georgia; Maine; Maryland; Massachusetts; New Hampshire; New Jersey; Rhode Island; Vermont; and Virginia. Data analysis results for the following indicators are presented; tree species and stand density (mensuration); tree crown condition; tree species diversity; and air pollution bioindicator plants. The cumulative distribution function methods used in the analysis provide a statistical summary of most measurements. Tabular summaries were also prepared in some cases.

  5. Bio-inspired sensor skins for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Tata, Uday; Deshmukh, S.; Chiao, J. C.; Carter, Ronald; Huang, H.

    2009-10-01

    This paper presents the simulation and experimental work that proved the feasibility of using a patch antenna for strain measurement. A patch antenna, besides serving as a data transmitting device, can function as a transducer that directly encodes the strain experienced into its resonant frequency. Printed on a flexible substrate, the antenna sensor is small in size, has a low profile and can be conformal to any attached surface. The technique for interrogating the antenna sensor using a wireless non-contact method is also demonstrated. Without needing electric wiring for power supply and data transmitting, the antenna sensor has a great potential for the realization of engineered sensor skins that imitate the sense of pain for structural health monitoring purposes.

  6. Damage detection and health monitoring of operational structures

    SciTech Connect

    James, G.; Mayes, R.; Carne, T.; Reese, G.

    1994-09-01

    Initial damage detection/health monitoring experiments have been performed on three different operational structures: a fracture critical bridge, a composite wind turbine blade, and an aging aircraft. An induced damage test was performed on the Rio Grande/I40 bridge before its demolition. The composite wind turbine test was fatgued to failure with periodic modal testing performed throughout the testing. The front fuselage of a DC-9 aircraft was used as the testbed for an induced damage test. These tests have yielded important insights into techniques for experimental damage detection on real structures. Additionally, the data are currently being used with current damage detection algorithms to further develop the numerical technology. State of the art testing technologies such as, high density modal testing, scanning laser vibrometry and natural excitation testing have also been utilized for these tests.

  7. Converting signals to knowledge in structural health monitoring systems

    NASA Astrophysics Data System (ADS)

    Brownjohn, James M. W.; Moyo, Pilate; Omenzetter, Piotr; Chakraboorty, Sushanta

    2005-04-01

    Academic approaches in structural health monitoring (SHM) usually focus on fine detail or on aspects of the technology such as sensors and data collection, and areas that may be less useful to operators than information about the level of performance of their structures. The steps in the process of SHM such as data management, data mining, conversion to knowledge of structural behaviour and integrity are frequently absent, and even the most operationally successful SHM systems may lack the component where deep understanding on the nature of the structure performance is obtained. This paper presents experience gained in a number of SHM exercises where static and dynamic response data have been interpreted, with or without the aid of calibrated structural models, in order to characterise the mechanisms at work and the experiences of the structure.

  8. Optical Fiber Sensors for Aircraft Structural Health Monitoring.

    PubMed

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-01-01

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel. PMID:26134107

  9. Scalable high-density peptide arrays for comprehensive health monitoring.

    PubMed

    Legutki, Joseph Barten; Zhao, Zhan-Gong; Greving, Matt; Woodbury, Neal; Johnston, Stephen Albert; Stafford, Phillip

    2014-09-03

    There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies to report on health fluctuations. Recently, we demonstrated that peptide microarrays can do this through antibody signatures (immunosignatures). Unfortunately, printed microarrays are not scalable. Here we demonstrate a platform based on fabricating microarrays (~10 M peptides per slide, 330,000 peptides per assay) on silicon wafers using equipment common to semiconductor manufacturing. The potential of these microarrays for comprehensive health monitoring is verified through the simultaneous detection and classification of six different infectious diseases and six different cancers. Besides diagnostics, these high-density peptide chips have numerous other applications both in health care and elsewhere.

  10. Wireless Zigbee strain gage sensor system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  11. A bio-inspired structural health monitoring system based on ambient vibration

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Kang; Kiremidjian, Anne; Lei, Chi-Yang

    2010-11-01

    A structural health monitoring (SHM) system based on naïve Bayesian (NB) damage classification and DNA-like expression data was developed in this research. Adapted from the deoxyribonucleic acid (DNA) array concept in molecular biology, the proposed structural health monitoring system is constructed utilizing a double-tier regression process to extract the expression array from the structural time history recorded during external excitations. The extracted array is symbolized as the various genes of the structure from the viewpoint of molecular biology and reflects the possible damage conditions prevalent in the structure. A scaled down, six-story steel building mounted on the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark. The structural response at different damage levels and locations under ambient vibration was collected to support the database for the proposed SHM system. To improve the precision of detection in practical applications, the system was enhanced by an optimization process using the likelihood selection method. The obtained array representing the DNA array of the health condition of the structure was first evaluated and ranked. A total of 12 groups of expression arrays were regenerated from a combination of four damage conditions. To keep the length of the array unchanged, the best 16 coefficients from every expression array were selected to form the optimized SHM system. Test results from the ambient vibrations showed that the detection accuracy of the structural damage could be greatly enhanced by the optimized expression array, when compared to the original system. Practical verification also demonstrated that a rapid and reliable result could be given by the final system within 1 min. The proposed system implements the idea of transplanting the DNA array concept from molecular biology into the field of SHM.

  12. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  13. Adaptive Correlation Space Adjusted Open-Loop Tracking Approach for Vehicle Positioning with Global Navigation Satellite System in Urban Areas

    PubMed Central

    Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng

    2015-01-01

    For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N0) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N0. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N0. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area. PMID:26343683

  14. Particle filter based hybrid prognostics for health monitoring of uncertain systems in bond graph framework

    NASA Astrophysics Data System (ADS)

    Jha, Mayank Shekhar; Dauphin-Tanguy, G.; Ould-Bouamama, B.

    2016-06-01

    The paper's main objective is to address the problem of health monitoring of system parameters in Bond Graph (BG) modeling framework, by exploiting its structural and causal properties. The system in feedback control loop is considered uncertain globally. Parametric uncertainty is modeled in interval form. The system parameter is undergoing degradation (prognostic candidate) and its degradation model is assumed to be known a priori. The detection of degradation commencement is done in a passive manner which involves interval valued robust adaptive thresholds over the nominal part of the uncertain BG-derived interval valued analytical redundancy relations (I-ARRs). The latter forms an efficient diagnostic module. The prognostics problem is cast as joint state-parameter estimation problem, a hybrid prognostic approach, wherein the fault model is constructed by considering the statistical degradation model of the system parameter (prognostic candidate). The observation equation is constructed from nominal part of the I-ARR. Using particle filter (PF) algorithms; the estimation of state of health (state of prognostic candidate) and associated hidden time-varying degradation progression parameters is achieved in probabilistic terms. A simplified variance adaptation scheme is proposed. Associated uncertainties which arise out of noisy measurements, parametric degradation process, environmental conditions etc. are effectively managed by PF. This allows the production of effective predictions of the remaining useful life of the prognostic candidate with suitable confidence bounds. The effectiveness of the novel methodology is demonstrated through simulations and experiments on a mechatronic system.

  15. Remote health monitoring for elderly through interactive television

    PubMed Central

    2012-01-01

    Background Providing remote health monitoring to specific groups of patients represents an issue of great relevance for the national health systems, because of the costs related to moving health operators, the time spent to reach remote sites, and the high number of people needing health assistance. At the same time, some assistance activities, like those related to chronical diseases, may be satisfied through a remote interaction with the patient, without a direct medical examination. Methods Moving from this considerations, our paper proposes a system architecture for the provisioning of remote health assistance to older adults, based on a blind management of a network of wireless medical devices, and an interactive TV Set Top Box for accessing health related data. The selection of TV as the interface between the user and the system is specifically targeted to older adults. Due to the private nature of the information exchanged, a certified procedure is implemented for data delivery, through the use of non conditional smart cards. All these functions may be accomplished through a proper design of the system management, and a suitable interactive application. Results The interactive application acting as the interface between the user and the system on the TV monitor has been evaluated able to help readability and clear understanding of the contents and functions proposed. Thanks to the limited amount of data to transfer, even a Set Top Box equipped with a traditional PSTN modem may be used to support the proposed service at a basic level; more advanced features, like audio/video connection, may be activated if the Set Top Box enables a broadband connection (e.g. ADSL). Conclusions The proposed layered architecture for a remote health monitoring system can be tailored to address a wide range of needs, according with each patient’s conditions and capabilities. The system exploits the potentialities offered by Digital Television receivers, a friendly MHP interface

  16. Advanced instrumentation for acousto-ultrasonic based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Smithard, Joel; Galea, Steve; van der Velden, Stephen; Powlesland, Ian; Jung, George; Rajic, Nik

    2016-04-01

    Structural health monitoring (SHM) systems using structurally-integrated sensors potentially allow the ability to inspect for damage in aircraft structures on-demand and could provide a basis for the development of condition-based maintenance approaches for airframes. These systems potentially offer both substantial cost savings and performance improvements over conventional nondestructive inspection (NDI). Acousto-ultrasonics (AU), using structurallyintegrated piezoelectric transducers, offers a promising basis for broad-field damage detection in aircraft structures. For these systems to be successfully applied in the field the hardware for AU excitation and interrogation needs to be easy to use, compact, portable, light and, electrically and mechanically robust. Highly flexible and inexpensive instrumentation for basic background laboratory investigations is also required to allow researchers to tackle the numerous scientific and engineering issues associated with AU based SHM. The Australian Defence Science and Technology Group (DST Group) has developed the Acousto Ultrasonic Structural health monitoring Array Module (AUSAM+), a compact device for AU excitation and interrogation. The module, which has the footprint of a typical current generation smart phone, provides autonomous control of four send and receive piezoelectric elements, which can operate in pitch-catch or pulse-echo modes and can undertake electro-mechanical impedance measurements for transducer and structural diagnostics. Modules are designed to operate synchronously with other units, via an optical link, to accommodate larger transducer arrays. The module also caters for fibre optic sensing of acoustic waves with four intensity-based optical inputs. Temperature and electrical resistance strain gauge inputs as well as external triggering functionality are also provided. The development of a Matlab hardware object allows users to easily access the full hardware functionality of the device and

  17. Feature and Statistical Model Development in Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Inho

    All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network

  18. Structural health monitoring of helicopter hard landing using 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    LeBlanc, Bruce; Niezrecki, Christopher; Avitabile, Peter

    2010-03-01

    During operation of vehicles and structures, excessive transient loading can lead to reduced fatigue life and even mechanical failure. It has been shown that when a structure undergoes a damaging sequence of events, such as those occurring during a helicopter hard landing, the structural health of a specimen can be severely affected. In order to effectively quantify damage and monitor the structural health of the specimen, experimental data is required across a wide area of the helicopter. Within this paper the use of three-dimensional (3D) digital image correlation (DIC) and dynamic photogrammetry (DP) is examined as a possible method to acquire the necessary data to perform structural health monitoring in a non-obtrusive manner. DIC and DP are a non-contacting measurement techniques that utilizes a stereo pair of digital cameras to track prescribed surface pattern or optical targets placed on the structure. The approaches can provide global information about changes to the structure over the entire field of view. A scale laboratory test is performed on a helicopter to simulate several loading scenarios. The changes in the structural shape and strain field of the model helicopter fuselage as a direct result of the loadings are identified. The tests demonstrate that this technique is a valid way to determine the damage inflicted on the structure due to an excessive applied loading or dynamic maneuver. Practical applications and common limitations of the technique are discussed.

  19. A wireless laser displacement sensor node for structural health monitoring.

    PubMed

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  20. Temperature effects in ultrasonic Lamb wave structural health monitoring systems.

    PubMed

    Lanza di Scalea, Francesco; Salamone, Salvatore

    2008-07-01

    There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems.

  1. Smart piezoelectric transducers for in situ health monitoring of concrete

    NASA Astrophysics Data System (ADS)

    Tseng, Kevin K.; Wang, Liangsheng

    2004-10-01

    This paper presents the results of applying a non-parametric technique to the detection of the presence of damage and the monitoring of damage progression in concrete. The electromechanical impedance method using smart piezoceramic material is utilized in this study. The smart piezoelectric lead-zirconate-titanate (PZT) transducers bonded onto the structures are used to actively provide the local excitation and simultaneously sense the structural dynamic response in high frequency band. The frequency-dependent electric admittance signatures of the piezoelectric transducer are compared with the baseline signatures to determine the status of the health of structures. The damage is quantified by the root-mean-square deviation (RMSD) index. The correlation of the RMSD index with the location and extent of damage is investigated. In this paper, two sets of experimental tests are performed on the concrete beams instrumented with PZT transducers. The findings summarized from the experimental results are confirmed by a series of numerical simulations using finite element analysis. The experimental and numerical results demonstrate the suitability of using the smart PZT transducers for in situ health monitoring of structural integrity in civil infrastructures using concrete.

  2. Optimal sensor placement in structural health monitoring using discrete optimization

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Büyüköztürk, Oral

    2015-12-01

    The objective of optimal sensor placement (OSP) is to obtain a sensor layout that gives as much information of the dynamic system as possible in structural health monitoring (SHM). The process of OSP can be formulated as a discrete minimization (or maximization) problem with the sensor locations as the design variables, conditional on the constraint of a given sensor number. In this paper, we propose a discrete optimization scheme based on the artificial bee colony algorithm to solve the OSP problem after first transforming it into an integer optimization problem. A modal assurance criterion-oriented objective function is investigated to measure the utility of a sensor configuration in the optimization process based on the modal characteristics of a reduced order model. The reduced order model is obtained using an iterated improved reduced system technique. The constraint is handled by a penalty term added to the objective function. Three examples, including a 27 bar truss bridge, a 21-storey building at the MIT campus and the 610 m high Canton Tower, are investigated to test the applicability of the proposed algorithm to OSP. In addition, the proposed OSP algorithm is experimentally validated on a physical laboratory structure which is a three-story two-bay steel frame instrumented with triaxial accelerometers. Results indicate that the proposed method is efficient and can be potentially used in OSP in practical SHM.

  3. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    SciTech Connect

    Mahadevan, Sankaran; Agarwal, Vivek; Cai, Guowei; Nath, Paromita; Bao, Yanqing; Bru Brea, Jose Maria; Koester, David; Adams, Douglas; Kosson, David

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  4. Self-organizing wireless sensor networks for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Basheer, Mohammed R.; Rao, Vittal S.; Derriso, Mark M.

    2003-07-01

    A smart sensor node has been developed which has (a) the ability to sense strain of the structure under observation, (b) process this raw sensor data in cooperation with its neighbors and (c) transmit the information to the end user. This network is designed to be self organizing in the sense of establishing and maintaining the inter node connectivity without the need for human intervention. For the envisioned application of structural health monitoring, wireless communication is the most practical solution for node interconnectivity not only because they eliminate interconnecting cables but also for their ability to establish communication links even in inaccessible regions. But wireless nework brings with it a number of issues such as interference, fault tolerant self organizing, multi-hop communication, energy effieiciency, routing and finally reliable operation in spite of massive complexity of the sysetm. This paper addresses the issue of fault tolerant self organiing in wireless sensor networks. We propose a new architecture called the Redundant Tree Network (RTN). RTN is a hierarchical network which exploits redundant links between nodes to provide reliability.

  5. Smart health monitoring system for a prestressed concrete bridge

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Wang, Ming L.; Zhao, Yang; Chen, Han; Zhou, Lily L.

    2004-07-01

    Smart Health Monitoring System (SHMS) is a set of integrated system of hardware and software designed to automatically collect and analyze the data from a faraway bridge. The real-time data can be preprocessed in the sub-workstation on the bridge then transferred to the main server with a wired or wireless internet access. SHMS is based on the statistical analysis of the static and dynamic characteristics of structures. In order to automate the procedure of processing and analyzing all the raw data, a rule-based expert system was developed for the monitoring system with Bootstrap Method. In general, the estimation of parameters from measurement always contains systematic perturbations and random fluctuations. The systematic perturbations mainly come from periodic environmental factors, especially temperature. Random fluctuations result from irregular disturbance including instrumentation sources and numerical processing algorithms. The former can be identified and characterized. Based on the historical data, a set of correction models have been built to remove the influence from systematic perturbations. Random fluctuations are difficult to be characterized by traditional statistical methods. But with Bootstrap Method, we can minimize the random error.

  6. Temperature effects in ultrasonic Lamb wave structural health monitoring systems.

    PubMed

    Lanza di Scalea, Francesco; Salamone, Salvatore

    2008-07-01

    There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems. PMID:18646963

  7. Singularity detection for structural health monitoring using holder exponents.

    SciTech Connect

    Robertson, A. N.; Farrar, C. R.; Sohn, H.

    2003-01-01

    The majority of structural health monitoring studies reported in the technical literature focus on identifying damage sensitive features that can be extracted from dynamic response data . However, many of these studies assume the structure can be modeled as a linear system before and after damage and use parameters of these models as the damage sensitive features. The study summarized in this paper proposes a damage sensitive feature that takes advantage of the nonlinearities associated with discontinuities introduced into the dynamic response data as a result of certain types of damage. Specifically, the Holder exponent, a measure of the degree to which a signal is differentiable, is the feature that is used to detect the presence of damage and when that damage occurred . A procedure for capturing the time varying nature of the Holder exponent based on wavelet transforms is demonstrated through applications to non-stationary random signals with underlying discontinuities and then to a harmonically excited mechanical system that contains a loose part . Also, a classification procedure is developed to quantify when changes in the Holder exponent are significant . The results presented herein show the Holder exponent to be an effective feature for identifying damage that introduces discontinuities into the measured dynamic response data .

  8. An overview of wireless structural health monitoring for civil structures.

    PubMed

    Lynch, Jerome Peter

    2007-02-15

    Wireless monitoring has emerged in recent years as a promising technology that could greatly impact the field of structural monitoring and infrastructure asset management. This paper is a summary of research efforts that have resulted in the design of numerous wireless sensing unit prototypes explicitly intended for implementation in civil structures. Wireless sensing units integrate wireless communications and mobile computing with sensors to deliver a relatively inexpensive sensor platform. A key design feature of wireless sensing units is the collocation of computational power and sensors; the tight integration of computing with a wireless sensing unit provides sensors with the opportunity to self-interrogate measurement data. In particular, there is strong interest in using wireless sensing units to build structural health monitoring systems that interrogate structural data for signs of damage. After the hardware and the software designs of wireless sensing units are completed, the Alamosa Canyon Bridge in New Mexico is utilized to validate their accuracy and reliability. To improve the ability of low-cost wireless sensing units to detect the onset of structural damage, the wireless sensing unit paradigm is extended to include the capability to command actuators and active sensors.

  9. Phase Space Dissimilarity Measures for Structural Health Monitoring

    SciTech Connect

    Bubacz, Jacob A; Chmielewski, Hana T; Pape, Alexander E; Depersio, Andrew J; Hively, Lee M; Abercrombie, Robert K; Boone, Shane

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  10. Distributed Health Monitoring System for Reusable Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.

    2009-01-01

    The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.

  11. Implementation of foetal e-health monitoring system through biotelemetry.

    PubMed

    Chourasia, Vijay S; Tiwari, Anil Kumar

    2012-01-01

    Continuous foetal monitoring of physiological signals is of particular importance for early detection of complexities related to the foetus or the mother's health. The available conventional methods of monitoring mostly perform off-line analysis and restrict the mobility of subjects within a hospital or a room. Hence, the aim of this paper is to develop a foetal e-health monitoring system using mobile phones and wireless sensors for providing advanced healthcare services in the home environment. The system is tested by recording the real-time Foetal Phonocardiography (fPCG) signals from 15 subjects with different gestational periods. The performance of the developed system is compared with the existing ultrasound based Doppler shift technique, ensuring an overall accuracy of 98% of the developed system. The developed framework is non-invasive, cost-effective and simple enough to be used in home care application. It offers advanced healthcare facilities even to the pregnant women living in rural areas and avoids their unnecessary visits at the healthcare centres.

  12. On Assessing the Robustness of Structural Health Monitoring Technologies

    SciTech Connect

    Stull, Christopher J.; Hemez, Francois M.; Farrar, Charles R.

    2012-08-24

    As Structural Health Monitoring (SHM) continues to gain popularity, both as an area of research and as a tool for use in industrial applications, the number of technologies associated with SHM will also continue to grow. As a result, the engineer tasked with developing a SHM system is faced with myriad hardware and software technologies from which to choose, often adopting an ad hoc qualitative approach based on physical intuition or past experience to making such decisions. This paper offers a framework that aims to provide the engineer with a quantitative approach for choosing from among a suite of candidate SHM technologies. The framework is outlined for the general case, where a supervised learning approach to SHM is adopted, and the presentation will focus on applying the framework to two commonly encountered problems: (1) selection of damage-sensitive features and (2) selection of a damage classifier. The data employed for these problems will be drawn from a study that examined the feasibility of applying SHM to the RAPid Telescopes for Optical Response observatory network.

  13. Carbon Nanotube-Based Structural Health Monitoring Sensors

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip

    2011-01-01

    Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.

  14. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  15. Ultrasonic wave-based structural health monitoring embedded instrument.

    PubMed

    Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests. PMID:24387467

  16. Structural Health Monitoring of Adhesively Bonded Composite Joints

    NASA Astrophysics Data System (ADS)

    Habib, Fady

    In recent years, many aerospace organizations have researched and implemented composite materials to achieve better fuel efficiency as well as reduced maintenance cost. In addition to the use of composites, manufacturers are investigating the use of adhesive bonded joints and composite patch bonded repairs to extend the life of their in-service aircraft. Adhesive joints are superior to traditional mechanical fasteners as they reduce stress concentration zones and overall part count. However, the integrity of an adhesive joint is difficult to inspect. Inspection of adhesive joints may be carried out using interrogation technology such as Structural Health Monitoring (SHM). This thesis focuses on the evaluation of Acoustic-Ultrasonic (AU) SHM technique for the detection of crack and disbond growth. In addition to AU, Capacitance Disbond Detection Technique (CDDT) and the Surface Mountable Crack Detection System (SMCDS) were evaluated for the detection disbonds. Results of the AU system demonstrated that AU technology may be used to detect and quantify crack and disbond growth. It was also found that SMCDS and CDDT both complement each other, as SMCDS identified the location of disbond while CDDT quantify disbond.

  17. Ultrasonic wave-based structural health monitoring embedded instrument

    NASA Astrophysics Data System (ADS)

    Aranguren, G.; Monje, P. M.; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  18. Ultrasonic wave-based structural health monitoring embedded instrument.

    PubMed

    Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  19. A bio-inspired memory model for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zhu, Yong

    2009-04-01

    Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system.

  20. Development of sensing techniques for weaponry health monitoring

    NASA Astrophysics Data System (ADS)

    Edwards, Eugene; Ruffin, Paul B.; Walker, Ebonee A.; Brantley, Christina L.

    2013-04-01

    Due to the costliness of destructive evaluation methods for assessing the aging and shelf-life of missile and rocket components, the identification of nondestructive evaluation methods has become increasingly important to the Army. Verifying that there is a sufficient concentration of stabilizer is a dependable indicator that the missile's double-based solid propellant is viable. The research outlined in this paper summarizes the Army Aviation and Missile Research, Development, and Engineering Center's (AMRDEC's) comparative use of nanoporous membranes, carbon nanotubes, and optical spectroscopic configured sensing techniques for detecting degradation in rocket motor propellant. The first sensing technique utilizes a gas collecting chamber consisting of nanoporous structures that trap the smaller solid propellant particles for measurement by a gas analysis device. In collaboration with NASA-Ames, sensing methods are developed that utilize functionalized single-walled carbon nanotubes as the key sensing element. The optical spectroscopic sensing method is based on a unique light collecting optical fiber system designed to detect the concentration of the propellant stabilizer. Experimental setups, laboratory results, and overall effectiveness of each technique are presented in this paper. Expectations are for the three sensing mechanisms to provide nondestructive evaluation methods that will offer cost-savings and improved weaponry health monitoring.

  1. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    PubMed Central

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements. PMID:24084114

  2. Ultrasonic wave-based structural health monitoring embedded instrument

    SciTech Connect

    Aranguren, G.; Monje, P. M.; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-15

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  3. Development of acoustic health monitoring for railroad tank cars

    NASA Astrophysics Data System (ADS)

    Gostautas, Richard; Finlayson, Richard; Godinez, Valery; Pollock, Adrian; Penya, Jose

    2005-05-01

    This paper presents the research and development of an Acoustic Health Monitoring (AHM) system that uses Guided Lamb Wave (GLW) technology to determine the thickness of railroad tank car shells for identification of wall loss due to corrosion. In recent regulatory changes, the emphasis has shifted from the traditional hydrotest to more modern methods for assuring tank car integrity. The new generation of maintenance programs will rely heavily on nondestructive testing, and will use damage tolerance concepts and risk analysis to establish inspection frequencies and items to inspect. It is the responsibility of the owners to set up experience-based maintenance programs that are suitable for the working conditions of their own particular fleets. Development of an ideal AHM system for railroad cars would be an instrument that incorporates Acoustic Emission (AE) and GLW technology. The combination of active and passive acoustic technologies integrated into a single system would be a highly efficient means of determining the structural integrity of tank cars. The integration of the GLW technology will allow identification of corrosion wall loss in a zone between two sensors, rather than at a single point (traditional ultrasonic thickness measurements). Thus, a much larger area of the structure can be inspected for approximately the same inspection cost. With a suitable integration of this new technology into the overall inspection and corrosion management program, the fleet can be more efficiently maintained and the risk of accidental release through progressive corrosion damage can be significantly reduced.

  4. Energy Harvesting for Structural Health Monitoring Sensor Networks

    SciTech Connect

    Park, G.; Farrar, C. R.; Todd, M. D.; Hodgkiss, T.; Rosing, T.

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.

  5. Continuous health monitoring of graphite epoxy motorcases (GEM)

    NASA Astrophysics Data System (ADS)

    Finlayson, Richard D.; Luzio, Marco A.; Miller, Ronnie K.; Pollock, Adrian A.

    2003-08-01

    With the increasing use of advanced composite materials in aircraft, automobiles, military hardware, and aerospace composites (such as rocket motorcases) a sizable need for composite health assessment measures exist, particularly where there is risk of failure due to high mechanical and thermal stresses. For most epoxy-based laminate composites, even low-momentum impacts can lead to "barely visible impact damage" (BVD), corresponding to a significant weakening of the composite. This weakening can lead to sudden and catastrophic failure when the material is subjected to normal operating loads. Following the explosion of Delta 241 (IIR-1) on Jaunary 17th, 1997, the failure investigation board concluded that an entire fleet of Graphite Epoxy Motorcases (GEMs) should be instrumented with a health monitoring system. This system would provide continuous structural health data on the GEM from initial acceptance testing through final erection on the launch pad. The result presented here contribute significantly to the understanding of the acoustic properties of the GEM casing, and make a substantial advancement in the theoretical phase of the source location algorithm development. When the system is complete it will continuously monitor the structural health of the GEMs, communicate wirelessly with base stations, operate autonomously for extended periods, and fit unobtrusively on the GEM itself.

  6. Damage detection in bridges through fiber optic structural health monitoring

    NASA Astrophysics Data System (ADS)

    Doornink, J. D.; Phares, B. M.; Wipf, T. J.; Wood, D. L.

    2006-10-01

    A fiber optic structural health monitoring (SHM) system was developed and deployed by the Iowa State University (ISU) Bridge Engineering Center (BEC) to detect gradual or sudden damage in fracture-critical bridges (FCBs). The SHM system is trained with measured performance data, which are collected by fiber optic strain sensors to identify typical bridge behavior when subjected to ambient traffic loads. Structural responses deviating from the trained behavior are considered to be signs of structural damage or degradation and are identified through analytical procedures similar to control chart analyses used in statistical process control (SPC). The demonstration FCB SHM system was installed on the US Highway 30 bridge near Ames, IA, and utilizes 40 fiber bragg grating (FBG) sensors to continuously monitor the bridge response when subjected to ambient traffic loads. After the data is collected and processed, weekly evaluation reports are developed that summarize the continuous monitoring results. Through use of the evaluation reports, the bridge owner is able to identify and estimate the location and severity of the damage. The information presented herein includes an overview of the SHM components, results from laboratory and field validation testing on the system components, and samples of the reduced and analyzed data.

  7. Impedance-Based Structural Health Monitoring for Composite Laminates at Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Tseng, Kevin

    2003-01-01

    One of the important ways of increasing the payload in a reusable launch vehicle (RLV) is to replace heavy metallic materials by lightweight composite laminates. Among various parts and systems of the RLV, this project focuses on tanks containing cryogenic fuel. Historically, aluminum alloys have been used as the materials to construct fuel tanks for launch vehicles. To replace aluminum alloys with composite laminates or honeycomb materials, engineers have to make sure that the composites are free of defects before, during, and after launch. In addition to robust design and manufacturing procedures, the performance of the composite structures needs to be monitored constantly.In recent years, the impedance-based health monitoring technique has shown its promise in many applications. This technique makes use of the special properties of smart piezoelectric materials to identify the change of material properties due to the nucleation and progression of damage. The piezoceramic patch serves as a sensor and an actuator simultaneously. The piezoelectric patch is bonded onto an existing structure or embedded into a new structure and electrically excited at high frequencies. The signature (impedance or admittance) is extracted as a function of the exciting frequency and is compared with the baseline signature of the healthy state. The damage is quantified using root mean square deviation (RMSD) in the impedance signatures with respect to the baseline signature. A major advantage of this technique is that the procedure is nondestructive in nature and does not perturb the properties and performance of the materials and structures. This project aims at applying the impedance-based nondestructive testing technique to the damage identification of composite laminates at cryogenic temperature.

  8. Framework and implementation of a continuous network-wide health monitoring system for roadways

    NASA Astrophysics Data System (ADS)

    Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar

    2014-03-01

    According to the 2013 ASCE report card America's infrastructure scores only a D+. There are more than four million miles of roads (grade D) in the U.S. requiring a broad range of maintenance activities. The nation faces a monumental problem of infrastructure management in the scheduling and implementation of maintenance and repair operations, and in the prioritization of expenditures within budgetary constraints. The efficient and effective performance of these operations however is crucial to ensuring roadway safety, preventing catastrophic failures, and promoting economic growth. There is a critical need for technology that can cost-effectively monitor the condition of a network-wide road system and provide accurate, up-to-date information for maintenance activity prioritization. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project provides a framework and the sensing capability to complement periodical localized inspections to continuous network-wide health monitoring. Research focused on the development of a cost-effective, lightweight package of multi-modal sensor systems compatible with this framework. An innovative software infrastructure is created that collects, processes, and evaluates these large time-lapse multi-modal data streams. A GIS-based control center manages multiple inspection vehicles and the data for further analysis, visualization, and decision making. VOTERS' technology can monitor road conditions at both the surface and sub-surface levels while the vehicle is navigating through daily traffic going about its normal business, thereby allowing for network-wide frequent assessment of roadways. This deterioration process monitoring at unprecedented time and spatial scales provides unique experimental data that can be used to improve life-cycle cost analysis models.

  9. Systems Health Monitoring — From Ground to Air — The Aerospace Challenges

    NASA Astrophysics Data System (ADS)

    Austin, Mary

    2007-03-01

    The aerospace industry and the government are significantly investing in jet engine systems health monitoring. Government organizations such as the Air Force, Navy, Army, National Labs and NASA are investing in the development of state aware sensing for health monitoring of jet engines such as the Joint Strike Fighter, F119 and F100's. This paper will discuss on-going work in systems health monitoring for jet engines. Topics will include a general discussion of the approaches to engine structural health monitoring and the prognosis of engine component life. Real-world implementation challenges on the ground and in the air will be reviewed. The talk will conclude with a prediction of where engine health monitoring will be in twenty years.

  10. Development of a Corrosion Sensor for AN Aircraft Vehicle Health Monitoring System

    NASA Astrophysics Data System (ADS)

    Scott, D. A.; Price, D. C.; Edwards, G. C.; Batten, A. B.; Kolmeder, J.; Muster, T. H.; Corrigan, P.; Cole, I. S.

    2010-02-01

    A Rayleigh-wave-based sensor has been developed to measure corrosion damage in aircraft. This sensor forms an important part of a corrosion monitoring system being developed for a major aircraft manufacturer. This system measures the corrosion rate at the location of its sensors, and through a model predicts the corrosion rates in nearby places on an aircraft into which no sensors can be placed. In order to calibrate this model, which yields corrosion rates rather than the accumulated effect, an absolute measure of the damage is required. In this paper the development of a surface wave sensor capable of measuring accumulated damage will be described in detail. This sensor allows the system to measure material loss due to corrosion regardless of the possible loss of historical corrosion rate data, and can provide, at any stage, a benchmark for the predictive model that would allow a good estimate of the accumulated corrosion damage in similar locations on an aircraft. This system may obviate the need for costly inspection of difficult-to-access places in aircraft, where presently the only way to check for corrosion is by periodic dismantling and reassembly.

  11. Continuous health monitoring of Graphite Epoxy Motorcases (GEM)

    NASA Astrophysics Data System (ADS)

    Finlayson, Richard D.; Schaafsma, David T.; Shen, H. Warren; Carlos, Mark F.; Miller, Ronnie K.; Shepherd, Brent

    2001-07-01

    Following the explosion of Delta 241 (IIR-1) on January 17th, 1997, the failure investigation board concluded that the Graphite Epoxy Motorcases (GEM's) should be inspected for damage just prior to launch. Subsequent investigations and feedback from industry led to an Aerospace Corporation proposal to instrument the entire fleet of GEM's with a continuous health monitoring system. The period of monitoring would extend from the initial acceptance testing through final erection on the launch pad. As this proposal demonstrates, (along with the increasing use of advanced composite materials in aircraft, automobiles, military hardware, and aerospace components such as rocket motorcases) a sizable need for composite health assessment measures exist. Particularly where continuous monitoring is required for the detection of damage from impacts and other sources of high mechanical and thermal stresses. Even low-momentum impacts can lead to barely visible impact damage (BVID), corresponding to a significant weakening of the composite. This damage, undetectable by visual inspection, can in turn lead to sudden and catastrophic failure when the material is subjected to a normal operating load. There is perhaps no system with as much potential for truly catastrophic failure as a rocket motor. We will present an update on our ongoing efforts with the United States Air Force Delta II Program Office, and The Aerospace Corporation. This will cover the development of a local, portable, surface-mounted, fiberoptic sensor based impact damage monitor designed to operate on a Delta II GEM during transport, storage, and handling. This system is designed to continuously monitor the GEMs, to communicate wirelessly with base stations and maintenance personnel, to operate autonomously for extended periods, and to fit unobtrusively on the GEM itself.

  12. On structural health monitoring of aircraft adhesively bonded repairs

    NASA Astrophysics Data System (ADS)

    Pavlopoulou, Sofia

    The recent interest in life extension of ageing aircraft and the need to address the repair challenges in the new age composite ones, led to the investigation of new repair methodologies such as adhesively bonded repair patches. The present thesis focuses on structural health monitoring aspects of the repairs, evaluating their performance with guided ultrasonic waves aiming to develop a monitoring strategy which would eliminate unscheduled maintenance and unnecessary inspection costs. To address the complex nature of the wave propagation phenomena, a finite element based model identified the existing challenges by exploring the interaction of the excitation waves with different levels of damage. The damage sensitivity of the first anti-symmetric mode was numerically investigated. An external bonded patch and a scarf repair, were further tested in static and dynamic loadings, and their performance was monitored with Lamb waves, excited by surface-bonded piezoelectric transducers.. The response was processed by means of advanced pattern recognition and data dimension reduction techniques such as novelty detection and principal component analysis. An optimisation of these tools enabled an accurate damage detection under complex conditions. The phenomena of mode isolation and precise arrival time determination under a noisy environment and the problem of inadequate training data were investigated and solved through appropriate transducer arrangements and advanced signal processing respectively. The applicability of the established techniques was demonstrated on an aluminium repaired helicopter tail stabilizer. Each case study utilised alternative non-destructive techniques for validation such as 3D digital image correlation, X-ray radiography and thermography. Finally a feature selection strategy was developed through the analysis of the instantaneous properties of guided waves for damage detection purposes..

  13. Hybrid Nanostructured Textile Bioelectrode for Unobtrusive Health Monitoring

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush

    Coronary heart disease, cardiovascular diseases and strokes are the leading causes of mortality in United States of America. Timely point-of-care health diagnostics and therapeutics for person suffering from these diseases can save thousands of lives. However, lack of accessible minimally intrusive health monitoring systems makes timely diagnosis difficult and sometimes impossible. To remedy this problem, a textile based nano-bio-sensor was developed and evaluated in this research. The sensor was made of novel array of vertically standing nanostructures that are conductive nano-fibers projecting from a conductive fabric. These sensor electrodes were tested for the quality of electrical contact that they made with the skin based on the fundamental skin impedance model and electromagnetic theory. The hybrid nanostructured dry electrodes provided large surface area and better contact with skin that improved electrode sensitivity and reduced the effect of changing skin properties, which are the problems usually faced by conventional dry textile electrodes. The dry electrodes can only register strong physiological signals because of high background noise levels, thus limiting the use of existing dry electrodes to heart rate measurement and respiration. Therefore, dry electrode systems cannot be used for recording complete ECG waveform, EEG or measurement of bioimpedance. Because of their improved sensitivity these hybrid nanostructured dry electrodes can be applied to measurement of ECG and bioimpedance with very low baseline noise. These textile based electrodes can be seamlessly integrated into garments of daily use such as vests and bra. In combination with embedded wireless network device that can communicate with smart phone, laptop or GPRS, they can function as wearable wireless health diagnostic systems.

  14. Roller Bearing Health Monitoring Using CPLE Frequency Analysis Method

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi; Jones, Jess H.

    2007-01-01

    This paper describes a unique vibration signature analysis technique Coherence Phase Line Enhancer (CPLE) Frequency Analysis - for roller bearing health monitoring. Defects of roller bearing (e.g. wear, foreign debris, crack in bearing supporting structure, etc.) can cause small bearing characteristic frequency shifts due to minor changes in bearing geometry. Such frequency shifts are often too small to detect by the conventional Power Spectral Density (PSD) due to its frequency bandwidth limitation. This Coherent Phase Line Enhancer technology has been evolving over the last few years and has culminated in the introduction of a new and novel frequency spectrum which is fully described in this paper. This CPLE technology uses a "key phasor" or speed probe as a preprocessor for this analysis. With the aid of this key phasor, this CPLE technology can develop a two dimensional frequency spectrum that preserves both amplitude and phase that is not normally obtained using conventional frequency analysis. This two-dimensional frequency transformation results in several newly defined spectral functions; i. e. CPLE-PSD, CPLE-Coherence and the CPLE-Frequency. This paper uses this CPLE frequency analysis to detect subtle, low level bearing related signals in the High Pressure Fuel Pump (HPFP) of the Space Shuttle Main Engine (SSME). For many rotating machinery applications, a key phasor is an essential measurement that is used in the detection of bearing related signatures. There are times however, when a key phasor is not available; i. e. during flight of any of the SSME turbopumps or on the SSME High Pressure Oxygen Turbopump (HPOTP) where no speed probe is present. In this case, the CPLE analysis approach can still be achieved using a novel Pseudo Key Phasor (PKP) technique to reconstruct a 1/Rev PKP signal directly from external vibration measurements. This paper develops this Pseudo Key Phasor technique and applies it to the SSME vibration data.

  15. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  16. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  17. Development of lightweight structural health monitoring systems for aerospace applications

    NASA Astrophysics Data System (ADS)

    Pearson, Matthew

    This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy

  18. Energy Harvesting for Aerospace Structural Health Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Pearson, M. R.; Eaton, M. J.; Pullin, R.; Featherston, C. A.; Holford, K. M.

    2012-08-01

    Recent research into damage detection methodologies, embedded sensors, wireless data transmission and energy harvesting in aerospace environments has meant that autonomous structural health monitoring (SHM) systems are becoming a real possibility. The most promising system would utilise wireless sensor nodes that are able to make decisions on damage and communicate this wirelessly to a central base station. Although such a system shows great potential and both passive and active monitoring techniques exist for detecting damage in structures, powering such wireless sensors nodes poses a problem. Two such energy sources that could be harvested in abundance on an aircraft are vibration and thermal gradients. Piezoelectric transducers mounted to the surface of a structure can be utilised to generate power from a dynamic strain whilst thermoelectric generators (TEG) can be used to generate power from thermal gradients. This paper reports on the viability of these two energy sources for powering a wireless SHM system from vibrations ranging from 20 to 400Hz and thermal gradients up to 50°C. Investigations showed that using a single vibrational energy harvester raw power levels of up to 1mW could be generated. Further numerical modelling demonstrated that by optimising the position and orientation of the vibrational harvester greater levels of power could be achieved. However using commercial TEGs average power levels over a flight period between 5 to 30mW could be generated. Both of these energy harvesting techniques show a great potential in powering current wireless SHM systems where depending on the complexity the power requirements range from 1 to 180mW.

  19. Design of the Electronic Brake Pressure Modulator Using a Direct Adaptive Fuzzy Controller in Commercial Vehicles for the Safety of Braking in Fail

    NASA Astrophysics Data System (ADS)

    Kim, Hunmo

    In the brake systems, it is important to reduce the rear brake pressure in order to secure the safety of the vehicle in braking. So, there was some research that reduced and controlled the rear brake pressure exactly like a L. S. P. V and a E. L. S. P. V. However, the previous research has some weaknesses: the L. S. P. V is a mechanical system and its brake efficiency is lower than the efficiency of E. L. S. P. V. But, the cost of E. L. S. P. V is very higher so its application to the vehicle is very difficult. Additionally, when a fail appears in the circuit which controls the valves, the fail results in some wrong operation of the valves. But, the previous researchers didn't take the effect of fail into account. Hence, the efficiency of them is low and the safety of the vehicle is not confirmed. So, in this paper we develop a new economical pressure modulator that exactly controls brake pressure and confirms the safety of the vehicle in any case using a direct adaptive fuzzy controller.

  20. Integrated G and C Implementation within IDOS: A Simulink Based Reusable Launch Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Fisher, Joseph E.; Bevacqua, Tim; Lawrence, Douglas A.; Zhu, J. Jim; Mahoney, Michael

    2003-01-01

    The implementation of multiple Integrated Guidance and Control (IG&C) algorithms per flight phase within a vehicle simulation poses a daunting task to coordinate algorithm interactions with the other G&C components and with vehicle subsystems. Currently being developed by Universal Space Lines LLC (USL) under contract from NASA, the Integrated Development and Operations System (IDOS) contains a high fidelity Simulink vehicle simulation, which provides a means to test cutting edge G&C technologies. Combining the modularity of this vehicle simulation and Simulink s built-in primitive blocks provide a quick way to implement algorithms. To add discrete-event functionality to the unfinished IDOS simulation, Vehicle Event Manager (VEM) and Integrated Vehicle Health Monitoring (IVHM) subsystems were created to provide discrete-event and pseudo-health monitoring processing capabilities. Matlab's Stateflow is used to create the IVHM and Event Manager subsystems and to implement a supervisory logic controller referred to as the Auto-commander as part of the IG&C to coordinate the control system adaptation and reconfiguration and to select the control and guidance algorithms for a given flight phase. Manual creation of the Stateflow charts for all of these subsystems is a tedious and time-consuming process. The Stateflow Auto-builder was developed as a Matlab based software tool for the automatic generation of a Stateflow chart from information contained in a database. This paper describes the IG&C, VEM and IVHM implementations in IDOS. In addition, this paper describes the Stateflow Auto-builder.

  1. New Quality Control Algorithm Based on GNSS Sensing Data for a Bridge Health Monitoring System.

    PubMed

    Lee, Jae Kang; Lee, Jae One; Kim, Jung Ok

    2016-01-01

    This research introduces an improvement plan for the reliability of Global Navigation Satellite System (GNSS) positioning solutions. It should be considered the most suitable methodology in terms of the adjustment and positioning of GNSS in order to maximize the utilization of GNSS applications. Though various studies have been conducted with regards to Bridge Health Monitoring System (BHMS) based on GNSS, the outliers which depend on the signal reception environment could not be considered until now. Since these outliers may be connected to GNSS data collected from major bridge members, which can reduce the reliability of a whole monitoring system through the delivery of false information, they should be detected and eliminated in the previous adjustment stage. In this investigation, the Detection, Identification, Adaptation (DIA) technique was applied and implemented through an algorithm. Moreover, it can be directly applied to GNSS data collected from long span cable stayed bridges and most of outliers were efficiently detected and eliminated simultaneously. By these effects, the reliability of GNSS should be enormously improved. Improvement on GNSS positioning accuracy is directly linked to the safety of bridges itself, and at the same time, the reliability of monitoring systems in terms of the system operation can also be increased. PMID:27240375

  2. New Quality Control Algorithm Based on GNSS Sensing Data for a Bridge Health Monitoring System.

    PubMed

    Lee, Jae Kang; Lee, Jae One; Kim, Jung Ok

    2016-05-27

    This research introduces an improvement plan for the reliability of Global Navigation Satellite System (GNSS) positioning solutions. It should be considered the most suitable methodology in terms of the adjustment and positioning of GNSS in order to maximize the utilization of GNSS applications. Though various studies have been conducted with regards to Bridge Health Monitoring System (BHMS) based on GNSS, the outliers which depend on the signal reception environment could not be considered until now. Since these outliers may be connected to GNSS data collected from major bridge members, which can reduce the reliability of a whole monitoring system through the delivery of false information, they should be detected and eliminated in the previous adjustment stage. In this investigation, the Detection, Identification, Adaptation (DIA) technique was applied and implemented through an algorithm. Moreover, it can be directly applied to GNSS data collected from long span cable stayed bridges and most of outliers were efficiently detected and eliminated simultaneously. By these effects, the reliability of GNSS should be enormously improved. Improvement on GNSS positioning accuracy is directly linked to the safety of bridges itself, and at the same time, the reliability of monitoring systems in terms of the system operation can also be increased.

  3. New Quality Control Algorithm Based on GNSS Sensing Data for a Bridge Health Monitoring System

    PubMed Central

    Lee, Jae Kang; Lee, Jae One; Kim, Jung Ok

    2016-01-01

    This research introduces an improvement plan for the reliability of Global Navigation Satellite System (GNSS) positioning solutions. It should be considered the most suitable methodology in terms of the adjustment and positioning of GNSS in order to maximize the utilization of GNSS applications. Though various studies have been conducted with regards to Bridge Health Monitoring System (BHMS) based on GNSS, the outliers which depend on the signal reception environment could not be considered until now. Since these outliers may be connected to GNSS data collected from major bridge members, which can reduce the reliability of a whole monitoring system through the delivery of false information, they should be detected and eliminated in the previous adjustment stage. In this investigation, the Detection, Identification, Adaptation (DIA) technique was applied and implemented through an algorithm. Moreover, it can be directly applied to GNSS data collected from long span cable stayed bridges and most of outliers were efficiently detected and eliminated simultaneously. By these effects, the reliability of GNSS should be enormously improved. Improvement on GNSS positioning accuracy is directly linked to the safety of bridges itself, and at the same time, the reliability of monitoring systems in terms of the system operation can also be increased. PMID:27240375

  4. Probabilistic uncertainty quantification of wavelet-transform-based structural health monitoring features

    NASA Astrophysics Data System (ADS)

    Sarrafi, Aral; Mao, Zhu

    2016-04-01

    In the application of Structural Health Monitoring (SHM), processing the online-acquired data plays a very important role, among which wavelet transform is an outstanding tool and compared to Fourier transform, it handles the nonstationary behaviors in the time series in an adaptive fashion. When dealing with time-variant data, there are uncertainties from numerous resources inherent to the feature estimation, such as measurement noise, operational and environmental variability, hardware limitation, etc. The corruption from uncertainty will make the data interpretation ambiguous and thereby dramatically degrades the decision quality with regard to the occurrence, location, severity, and extent of damages. This paper derives a probabilistic model to quantify analytically the uncertainty of wavelet transform feature as a random variable, and variance is derived analytically in this work. Considering central limit theorem, Gaussian probability density function characterizes the distribution and this has been validated via Monte Carlo testing. By fully characterizing the uncertainty, the damage detection implementations may be facilitated with a quantified false alarm rate and miss catch rate.

  5. Towards the Disease Biomarker in an Individual Patient Using Statistical Health Monitoring

    PubMed Central

    Engel, Jasper; Blanchet, Lionel; Engelke, Udo F. H.; Wevers, Ron A.; Buydens, Lutgarde M. C.

    2014-01-01

    In metabolomics, identification of complex diseases is often based on application of (multivariate) statistical techniques to the data. Commonly, each disease requires its own specific diagnostic model, separating healthy and diseased individuals, which is not very practical in a diagnostic setting. Additionally, for orphan diseases such models cannot be constructed due to a lack of available data. An alternative approach adapted from industrial process control is proposed in this study: statistical health monitoring (SHM). In SHM the metabolic profile of an individual is compared to that of healthy people in a multivariate manner. Abnormal metabolite concentrations, or abnormal patterns of concentrations, are indicated by the method. Subsequently, this biomarker can be used for diagnosis. A tremendous advantage here is that only data of healthy people is required to construct the model. The method is applicable in current–population based –clinical practice as well as in personalized health applications. In this study, SHM was successfully applied for diagnosis of several orphan diseases as well as detection of metabotypic abnormalities related to diet and drug intake. PMID:24691487

  6. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Jingqing; Feng, Shuo; Liu, Wei

    2015-06-01

    Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.

  7. Rapid evaluation of mechanical boundary conditions using impedance based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Kettle, Ryan A.; Anton, Steven R.

    2016-04-01

    Conventionally, structural health monitoring (SHM) has been primarily concerned with sensing, identifying, locating, and determining the severity of damage present in a structure that is in a static state. Instead, this study will investigate adapting the impedance SHM method to rapidly evaluate a mechanical system during a dynamic event. Also in contrast to conventional SHM, the objective is not to detect damage but instead to detect changes in the boundary conditions as they occur during a dynamic event. Rapid detection of changes in boundary conditions in highly dynamic environments has the potential to be used in a wide variety of applications, including the aerospace, civil, and mining industries. A key feature of this work will be the use of frequency ranges higher than what is typically used for SHM impedance measurements, in the range of several MHz. Using such high frequencies will allow for faster measurements of impedance, thus enabling the capture of variations in boundary conditions as they change during a dynamic event. An existing analytical model from the literature for electromechanical impedance based SHM will be utilized for this study.

  8. Vehicle health management technology needs

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.; Jones, W. G.

    1992-01-01

    Background material on vehicle health management (VHM) and health monitoring/control is presented. VHM benefits are described and a list of VHM technology needs that should be pursued is presented. The NASA funding process as it impacts VHM technology funding is touched upon, and the VHM architecture guidelines for generic launch vehicles are described. An example of a good VHM architecture, design, and operational philosophy as it was conceptualized for the National Launch System program is presented. Consideration is given to the Strategic Avionics Technology Working Group's role in VHM, earth-to-orbit, and space vehicle avionics technology development considerations, and some actual examples of VHM benefits for checkout are given.

  9. Wireless Structural Sensing for Health Monitoring and Control Applications

    NASA Astrophysics Data System (ADS)

    Lynch, J. P.

    2003-12-01

    health monitoring) have been included in the unit's computational core. Additionally, an actuation interface has recently been added to the sensing unit design to allow for direct operation of structural actuators. With a computational core capable of real-time data processing, the data acquisition and actuation interfaces can be coupled through discrete-time feedback control loops implemented in software. Looking to the future, this intelligent monitoring infrastructure can possibly tune a structural control system in real-time after early warning of a pending seismic disturbance has been communicated to the wireless sensor network.

  10. Localized structural health monitoring via transmission zero invariance

    NASA Astrophysics Data System (ADS)

    Reich, Gregory William

    2000-11-01

    This thesis presents a method of localized health monitoring based on an invariance property of transmission zeros of substructural frequency response functions. The proposed method has several desirable characteristics which make it attractive for use in damage detection applications. These are the independence from initial parameter estimates, the determination of a unique damage location, and the fact that the method is particularly suited for structural continuum applications where other methods perform poorly. The proposed method is based on a substructuring technique for structural mechanics. The structural equations of motion are cast in a variational framework and are mathematically decomposed into substructures using Lagrange multipliers as boundary constraints. The global dynamics of the system are then written in terms of the independent dynamics of each substructure plus the inter-element dynamics. The frequency response functions of the localized form represent the energy transfer between unique input forces which are derived from the total global force input and output variables which exist independently on a substructure. Because transmission zeros are highly dependent on the input and output of the system under consideration, they exhibit different characteristics in the local form versus the global form. If damage is limited to a change in flexibility, then it can be shown that the transmission zeros of a partition of the full transfer function matrix corresponding to a damaged substructure are invariant to the damage. Transmission zeros of partitions of the transfer function matrix corresponding to healthy substructures likewise can be shown to vary with the damage. Identification of the substructure whose zeros exhibit the least amount of variation between tests results in identification of the damage location. Analytical and experimental examples are used to demonstrate the theory and abilities of the proposed method. In each example, the system

  11. Development of a composite UAV wing test-bed for structural health monitoring research

    NASA Astrophysics Data System (ADS)

    Oliver, J. A.; Kosmatka, J. B.; Farrar, Charles R.; Park, Gyuhae

    2007-04-01

    In order to facilitate damage detection and structural health monitoring (SHM) research for composite unmanned aerial vehicles (UAV) a specialized test-bed has been developed. This test-bed consists of four 2.61 m all-composite test-pieces emulating composite UAV wings, a series of detailed finite element models of the test-pieces and their components, and a dynamic testing setup including a mount for simulating the cantilevered operation configuration of real wings. Two of the wings will have bondline damage built in; one undamaged and one damaged wing will also be fitted with a range of embedded and attached sensors-piezoelectric patches, fiber-optics, and accelerometers. These sensors will allow collection of realistic data; combined with further modal testing they will allow comparison of the physical impact of the sensors on the structure compared to the damage-induced variation, evaluation of the sensors for implementation in an operational structure, and damage detection algorithm validation. At the present time the pieces for four wings have been fabricated and modally tested and one wing has been fully assembled and re-tested in a cantilever configuration. The component part and assembled wing finite element models, created for MSC.Nastran, have been correlated to their respective structures using the modal information. This paper details the design and manufacturing of the test-pieces, the finite element model construction, and the dynamic testing setup. Measured natural frequencies and mode shapes for the assembled cantilevered wing are reported, along with finite element model undamaged modal response, and response with a small disbond at the root of the top main spar-skin bondline.

  12. Improving physical health monitoring for patients with chronic mental health problems who receive antipsychotic medications.

    PubMed

    Abdallah, Nihad; Conn, Rory; Latif Marini, Abdel

    2016-01-01

    Physical health monitoring is an integral part of caring for patients with mental health problems. It is proven that serious physical health problems are more common among patients with severe mental health illness (SMI), this monitoring can be challenging and there is a need for improvement. The project aimed at improving the physical health monitoring among patients with SMI who are receiving antipsychotic medications. The improvement process focused on ensuring there is a good communication with general practitioners (GPs) as well as patient's education and education of care home staff. GP letters requesting physical health monitoring were updated; care home staff and patients were given more information about the value of regular physical health monitoring. There was an improvement in patients' engagement with the monitoring and the monitoring done by GPs was more adherent to local and national guidelines and was communicated with the mental health service.

  13. Improving physical health monitoring for patients with chronic mental health problems who receive antipsychotic medications

    PubMed Central

    Abdallah, Nihad; Conn, Rory; Latif Marini, Abdel

    2016-01-01

    Physical health monitoring is an integral part of caring for patients with mental health problems. It is proven that serious physical health problems are more common among patients with severe mental health illness (SMI), this monitoring can be challenging and there is a need for improvement. The project aimed at improving the physical health monitoring among patients with SMI who are receiving antipsychotic medications. The improvement process focused on ensuring there is a good communication with general practitioners (GPs) as well as patient's education and education of care home staff. GP letters requesting physical health monitoring were updated; care home staff and patients were given more information about the value of regular physical health monitoring. There was an improvement in patients' engagement with the monitoring and the monitoring done by GPs was more adherent to local and national guidelines and was communicated with the mental health service. PMID:27559474

  14. Application of near field communication for health monitoring in daily life.

    PubMed

    Strömmer, Esko; Kaartinen, Jouni; Pärkkä, Juha; Ylisaukko-Oja, Arto; Korhonen, Ilkka

    2006-01-01

    We study the possibility of applying an emerging RFID-based communication technology, NFC (Near Field Communication), to health monitoring. We suggest that NFC is, compared to other competing technologies, a high-potential technology for short-range connectivity between health monitoring devices and mobile terminals. We propose practices to apply NFC to some health monitoring applications and study the benefits that are attainable with NFC. We compare NFC to other short-range communication technologies such as Bluetooth and IrDA, and study the possibility of improving the usability of health monitoring devices with NFC. We also introduce a research platform for technical evaluation, applicability study and application demonstrations of NFC.

  15. Improving physical health monitoring for patients with chronic mental health problems who receive antipsychotic medications.

    PubMed

    Abdallah, Nihad; Conn, Rory; Latif Marini, Abdel

    2016-01-01

    Physical health monitoring is an integral part of caring for patients with mental health problems. It is proven that serious physical health problems are more common among patients with severe mental health illness (SMI), this monitoring can be challenging and there is a need for improvement. The project aimed at improving the physical health monitoring among patients with SMI who are receiving antipsychotic medications. The improvement process focused on ensuring there is a good communication with general practitioners (GPs) as well as patient's education and education of care home staff. GP letters requesting physical health monitoring were updated; care home staff and patients were given more information about the value of regular physical health monitoring. There was an improvement in patients' engagement with the monitoring and the monitoring done by GPs was more adherent to local and national guidelines and was communicated with the mental health service. PMID:27559474

  16. mHealthMon: toward energy-efficient and distributed mobile health monitoring using parallel offloading.

    PubMed

    Ahnn, Jong Hoon; Potkonjak, Miodrag

    2013-10-01

    Although mobile health monitoring where mobile sensors continuously gather, process, and update sensor readings (e.g. vital signals) from patient's sensors is emerging, little effort has been investigated in an energy-efficient management of sensor information gathering and processing. Mobile health monitoring with the focus of energy consumption may instead be holistically analyzed and systematically designed as a global solution to optimization subproblems. This paper presents an attempt to decompose the very complex mobile health monitoring system whose layer in the system corresponds to decomposed subproblems, and interfaces between them are quantified as functions of the optimization variables in order to orchestrate the subproblems. We propose a distributed and energy-saving mobile health platform, called mHealthMon where mobile users publish/access sensor data via a cloud computing-based distributed P2P overlay network. The key objective is to satisfy the mobile health monitoring application's quality of service requirements by modeling each subsystem: mobile clients with medical sensors, wireless network medium, and distributed cloud services. By simulations based on experimental data, we present the proposed system can achieve up to 10.1 times more energy-efficient and 20.2 times faster compared to a standalone mobile health monitoring application, in various mobile health monitoring scenarios applying a realistic mobility model. PMID:23897403

  17. A summary of fault modelling and predictive health monitoring of rolling element bearings

    NASA Astrophysics Data System (ADS)

    El-Thalji, Idriss; Jantunen, Erkki

    2015-08-01

    The rolling element bearing is one of the most critical components that determine the machinery health and its remaining lifetime in modern production machinery. Robust Predictive Health Monitoring tools are needed to guarantee the healthy state of rolling element bearing s during the operation. A Predictive Health Monitoring tool indicates the upcoming failures which provide sufficient lead time for maintenance planning. The Predictive Health Monitoring tool aims to monitor the deterioration i.e. wear evolution rather than just detecting the defects. The Predictive Health Monitoring procedures contain detection, diagnosis and prognosis analysis, which are required to extract the features related to the faulty rolling element bearing and estimate the remaining useful lifetime. The purpose of this study is to review the Predictive Health Monitoring methods and explore their capabilities, advantages and disadvantage in monitoring rolling element bearings. Therefore, the study provides a critical review of the Predictive Health Monitoring methods of the entire defect evolution process i.e. over the whole lifetime and suggests enhancements for rolling element bearing monitoring.

  18. mHealthMon: toward energy-efficient and distributed mobile health monitoring using parallel offloading.

    PubMed

    Ahnn, Jong Hoon; Potkonjak, Miodrag

    2013-10-01

    Although mobile health monitoring where mobile sensors continuously gather, process, and update sensor readings (e.g. vital signals) from patient's sensors is emerging, little effort has been investigated in an energy-efficient management of sensor information gathering and processing. Mobile health monitoring with the focus of energy consumption may instead be holistically analyzed and systematically designed as a global solution to optimization subproblems. This paper presents an attempt to decompose the very complex mobile health monitoring system whose layer in the system corresponds to decomposed subproblems, and interfaces between them are quantified as functions of the optimization variables in order to orchestrate the subproblems. We propose a distributed and energy-saving mobile health platform, called mHealthMon where mobile users publish/access sensor data via a cloud computing-based distributed P2P overlay network. The key objective is to satisfy the mobile health monitoring application's quality of service requirements by modeling each subsystem: mobile clients with medical sensors, wireless network medium, and distributed cloud services. By simulations based on experimental data, we present the proposed system can achieve up to 10.1 times more energy-efficient and 20.2 times faster compared to a standalone mobile health monitoring application, in various mobile health monitoring scenarios applying a realistic mobility model.

  19. Initial evaluation of an active/passive structural neural system for health monitoring of composite materials

    NASA Astrophysics Data System (ADS)

    Kirikera, G. R.; Lee, J. W.; Schulz, M. J.; Ghoshal, A.; Sundaresan, M. J.; Allemang, R. J.; Shanov, V. N.; Westheider, H.

    2006-10-01

    Structural health monitoring is an underlying technology that can help to ensure safe operation and provide cost effective maintenance of advanced composite structures. While several general methods of health monitoring have evolved in recent years, there is still the goal of reducing the overall cost of applying health monitoring to large structures. Data acquisition hardware typically consumes most of the investment in a structural monitoring system. On a conventional system based on acoustic emission monitoring, a separate high sampling rate data acquisition channel is needed for each sensor to convert analog signals to digital signals to locate damage. Other methods of damage detection are likewise complicated, and require many sensors and actuators, auxiliary signal processing, and data storage instrumentation. This paper proposes a structural neural system that uses firing of sensor neurons to reduce the number of data acquisition channels needed for damage detection. The neural system can perform passive acoustic emission sensing or active wave propagation monitoring. A prototype structural neural system with four sensor inputs was built and tested, and experimental results are presented in the paper. One signal output from the structural neural system is used to predict the location of damage. A second signal provides the time domain response of the sensors. Therefore, passive and active health monitoring can be performed using two channels of data acquisition. The structural neural system significantly reduces the data acquisition hardware required for health monitoring, and combines some of the advantages that exist individually for passive and active health monitoring.

  20. AI mass spectrometers for space shuttle health monitoring

    NASA Astrophysics Data System (ADS)

    Adams, F. W.

    1991-03-01

    The facility Hazardous Gas Detection System (HGDS) at Kennedy Space Center (KSC) is a mass spectrometer based gas analyzer. Two instruments make up the HGDS, which is installed in a prime/backup arrangement, with the option of using both analyzers on the same sample line, or on two different lines simultaneously. It is used for monitoring the Shuttle during fuel loading, countdown, and drainback, if necessary. The use of complex instruments, operated over many shifts, has caused problems in tracking the status of the ground support equipment (GSE) and the vehicle. A requirement for overall system reliability has been a major force in the development of Shuttle GSE, and is the ultimate driver in the choice to pursue artificial intelligence (AI) techniques for Shuttle and Advanced Launch System (ALS) mass spectrometer systems. Shuttle applications of AI are detailed.

  1. Optimal adaptation of equivalent factor of equivalent consumption minimization strategy for fuel cell hybrid electric vehicles under active state inequality constraints

    NASA Astrophysics Data System (ADS)

    Han, Jihun; Park, Youngjin; Kum, Dongsuk

    2014-12-01

    Among existing energy management strategies (EMSs) for fuel cell hybrid electric vehicles (FCHEV), the equivalent consumption minimization strategy (ECMS) is often considered as a practical approach because it can be implemented in real-time, while achieving near-optimal performance. However, under real-world driving conditions with uncertainties such as hilly roads, both near-optimality and charge-sustenance of ECMS are not guaranteed unless the equivalent factor (EF) is optimally adjusted in real-time. In this paper, a methodology of extracting the globally optimal EF trajectory from dynamic programming (DP) solution is proposed for the design of EF adaptation strategies. In order to illustrate the performance and process of the extraction method, a FCHEV energy management problem under hilly road conditions is investigated as a case study. The main goal is to learn how EF should be adjusted and the impact of EF adaptation on fuel economy under several hilly road cases. Using the extraction method, the DP-based EF is computed, and its performance is compared with those of Pontryagin's minimum principle (PMP) and conventional ECMS. The results show that the optimal EF adaptation significantly improves fuel economy when the battery SoC constraint becomes active, and thus EF must be properly adjusted under severely hilly road conditions.

  2. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen

    2015-09-01

    In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints.

  3. Flood member detection for real-time structural health monitoring of sub-sea structures of offshore steel oilrigs

    NASA Astrophysics Data System (ADS)

    Mijarez, Rito; Gaydecki, Patrick; Burdekin, Michael

    2007-10-01

    A structural flood detection system for real-time health monitoring in the hollow sub-sea members of new offshore steel oilrigs is presented. Field-proven flood member detection techniques, integrated within the concept of health monitoring, offer an alternative to underwater nondestructive testing methods based on ultrasound and x-rays, which have been used to detect the presence of seawater in these applications, often with diverse or remote operating vehicles. The system employs a single piezoelectric transducer which can be permanently attached to the inner wall of every sub-sea structure and which is powered by a normally inert seawater battery. Upon activation, the sensor transmits ultrasonic chirp or tone encoded pulses, in the range of 21-42 kHz, to a monitoring receiver system at deck level for decoding and identifying flooded members. Experiments have been carried out using a jointed steel pipe structure, 7 m in length, 0.5 m in diameter and 16 mm in thickness. This structure was flooded and completely immersed in seawater. Two approaches to the system were considered during the investigation, depending on the communication channel exploited; the former utilized guided waves, on the basis of exploiting the steel structure as a wave-guide; the latter employed underwater ultrasound, based on using the seawater as a propagation medium. Although severe losses were encountered in both approaches, the system effectively identified the signals above the background noise. This work forms the foundation for the future development of a system that can be used with large, commercial offshore platforms.

  4. Towards homoscedastic nonlinear cointegration for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zolna, Konrad; Dao, Phong B.; Staszewski, Wieslaw J.; Barszcz, Tomasz

    2016-06-01

    The paper presents the homoscedastic nonlinear cointegration. The method leads to stable variances in nonlinear cointegration residuals. The adapted Breusch-Pagan test procedure is developed to test for the presence of heteroscedasticity (or homoscedasticity) in the cointegration residuals obtained from the nonlinear cointegration analysis. Three different time series - i.e. one with a nonlinear quadratic deterministic trend, simulated vibration data and experimental wind turbine data - are used to illustrate the application of the proposed method. The proposed approach can be used for effective removal of nonlinear trends from various types of data and for reliable structural damage detection based on data that are corrupted by environmental and/or operational nonlinear trends.

  5. Toward energy-efficient and distributed mobile health monitoring using parallel offloading.

    PubMed

    Ahnn, Jong Hoon; Potkonjak, Miodrag

    2013-01-01

    Although mobile health monitoring where mobile sensors continuously gather, process, and update sensor readings (e.g. vital signals) from patient's sensors is emerging, little effort has been investigated in an energy-efficient management of sensor information gathering and processing. Mobile health monitoring with the focus of energy consumption may instead be holistically analyzed and systematically designed as a global solution to optimization subproblems. We propose a distributed and energy-saving mobile health platform, called mHealthMon where mobile users publish/access sensor data via a cloud computing-based distributed P2P overlay network. The key objective is to satisfy the mobile health monitoring application's quality of service requirements by modeling each subsystem: mobile clients with medical sensors, wireless network medium, and distributed cloud services. By simulations based on experimental data, we present the proposed system can achieve up to 10.1 times more energy-efficient and 20.2 times faster compared to a standalone mobile health monitoring application, in various mobile health monitoring scenarios applying a realistic mobility model. PMID:24111420

  6. Toward energy-efficient and distributed mobile health monitoring using parallel offloading.

    PubMed

    Ahnn, Jong Hoon; Potkonjak, Miodrag

    2013-01-01

    Although mobile health monitoring where mobile sensors continuously gather, process, and update sensor readings (e.g. vital signals) from patient's sensors is emerging, little effort has been investigated in an energy-efficient management of sensor information gathering and processing. Mobile health monitoring with the focus of energy consumption may instead be holistically analyzed and systematically designed as a global solution to optimization subproblems. We propose a distributed and energy-saving mobile health platform, called mHealthMon where mobile users publish/access sensor data via a cloud computing-based distributed P2P overlay network. The key objective is to satisfy the mobile health monitoring application's quality of service requirements by modeling each subsystem: mobile clients with medical sensors, wireless network medium, and distributed cloud services. By simulations based on experimental data, we present the proposed system can achieve up to 10.1 times more energy-efficient and 20.2 times faster compared to a standalone mobile health monitoring application, in various mobile health monitoring scenarios applying a realistic mobility model.

  7. Health Monitoring of Composite Material Structures Using a Vibrometry Technique

    NASA Technical Reports Server (NTRS)

    Schulz, Mark J.

    1998-01-01

    Non-destructive evaluation (NDE) methods for quantifying and locating damage are essential for inspecting structures to ensure safety and reliability. Transmittance function monitoring is a potentially new NDE technique being tested as a tool to detect, quantify, and locate damage on flexible structures. The technique has a large spatial range that is practical for detecting damage on large composite material structures such as a reusable launch vehicle. The Transmittance Function (TF) theory is based on structural dynamics principles that define how vibration at one point in a structure is related to a force at another point. This relationship is called the Frequency Response Function (FRF). A Transmittance Function (TF) is derived as the ratio of FRFs, and can detect damage because the FRFs change due to damage. If one excitation is used for the testing, the force does not need to be measured to compute the TF. In the damage detection procedure, the structure is subjected to wide-band vibration and TFs are computed between different accelerometers to detect changes in the structure, presumably due to damage. In the first year of the project the TF method was tested on a bolted panel, a curved panel, and beams, all made of fiberglass. It was shown that damage could be detected using low frequency vibration, 250 to 1,250 Hz. The technique is sensitive to damage, but it requires storage of historical or pre-damage TFs for the healthy structure. This would become a large data storage requirement for large structures. Thus one objective for the second year of the project was to eliminate the need to store historical data. The second year report gives details of how storage of historical data was eliminated. Further results of testing panel structures are also given.

  8. Findings on American astronauts bearing on the issue of artificial gravity for future manned space vehicles. [adaptation to weightlessness during manned space flight

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1973-01-01

    Findings for American astronauts are reviewed that may indicate some alteration in vestibular response related to exposure to zero gravity. Of 25 individuals participating in Apollo missions 7 through 15, nine have experienced symptomatology that could be related to motion sickness. The apparent divergence between these results and those from the Soviet space program, which initially appears great, may reflect the greater emphasis given by Soviet investigators to vestibular aberrations. Presently the incidence of motion sickness, long known as an indicator of vestibular disturbance, seems too low to warrant any positive statement regarding inclusion of an artificial gravity system in future long term space missions. Where motion sickness has occurred, adaptation to weightlessness has always resulted in abatement of symptoms. In the absence of biomedical justification for incorporating artificial gravity systems in long term space flight vehicles, engineering considerations may dictate the manner in which the final ballot is cast.

  9. Flight Test of an L(sub 1) Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2010-01-01

    This paper presents results of a flight test of the L-1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are for piloted tasks performed during the flight test.

  10. Structural health monitoring by high-frequency vibration measurement with non-contact laser excitation

    NASA Astrophysics Data System (ADS)

    Kajiwara, I.; Miyamoto, D.; Hosoya, N.; Nishidome, C.

    2011-04-01

    This paper proposes a vibration testing and health monitoring system based on an impulse response excited by a laser ablation. High power YAG pulse laser is used for producing an ideal impulse force on structural surface. It is possible to measure high frequency vibration responses in this system. A health monitoring system is constructed by this vibration testing system and a damage detecting algorithm. A microscopic damage of structures can be extracted by detecting fluctuations of high frequency vibration response with the present health monitoring system. In this study, loosening of bolt tightening torques is defined as the damage of the system. The damage is detected and identified by statistical evaluations with Recognition-Taguchi method.

  11. Health Monitoring and Management for Manufacturing Workers in Adverse Working Conditions.

    PubMed

    Xu, Xiaoya; Zhong, Miao; Wan, Jiafu; Yi, Minglun; Gao, Tiancheng

    2016-10-01

    In adverse working conditions, environmental parameters such as metallic dust, noise, and environmental temperature, directly affect the health condition of manufacturing workers. It is therefore important to implement health monitoring and management based on important physiological parameters (e.g., heart rate, blood pressure, and body temperature). In recent years, new technologies, such as body area networks, cloud computing, and smart clothing, have allowed the improvement of the quality of services. In this article, we first give five-layer architecture for health monitoring and management of manufacturing workers. Then, we analyze the system implementation process, including environmental data processing, physical condition monitoring and system services and management, and present the corresponding algorithms. Finally, we carry out an evaluation and analysis from the perspective of insurance and compensation for manufacturing workers in adverse working conditions. The proposed scheme will contribute to the improvement of workplace conditions, realize health monitoring and management, and protect the interests of manufacturing workers. PMID:27624491

  12. Health Monitoring and Management for Manufacturing Workers in Adverse Working Conditions.

    PubMed

    Xu, Xiaoya; Zhong, Miao; Wan, Jiafu; Yi, Minglun; Gao, Tiancheng

    2016-10-01

    In adverse working conditions, environmental parameters such as metallic dust, noise, and environmental temperature, directly affect the health condition of manufacturing workers. It is therefore important to implement health monitoring and management based on important physiological parameters (e.g., heart rate, blood pressure, and body temperature). In recent years, new technologies, such as body area networks, cloud computing, and smart clothing, have allowed the improvement of the quality of services. In this article, we first give five-layer architecture for health monitoring and management of manufacturing workers. Then, we analyze the system implementation process, including environmental data processing, physical condition monitoring and system services and management, and present the corresponding algorithms. Finally, we carry out an evaluation and analysis from the perspective of insurance and compensation for manufacturing workers in adverse working conditions. The proposed scheme will contribute to the improvement of workplace conditions, realize health monitoring and management, and protect the interests of manufacturing workers.

  13. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  14. A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints

    NASA Astrophysics Data System (ADS)

    Rakow, Alexi Schroder

    Fatigue cracks initiating at fastener hole locations in metallic components are among the most common form of airframe damage. The fastener hole site has been surveyed as the second leading initiation site for fatigue related accidents of fixed wing aircraft. Current methods for inspecting airframes for these cracks are manual, whereby inspectors rely on non-destructive inspection equipment or hand-held probes to scan over areas of a structure. Use of this equipment often demands disassembly of the vehicle to search appropriate hole locations for cracks, which elevates the complexity and cost of these maintenance inspections. Improved reliability, safety, and reduced cost of such maintenance can be realized by the permanent integration of sensors with a structure to detect this damage. Such an integrated system of sensors would form a structural health monitoring (SHM) system. In this study, an Additive, Interleaved, Multi-layer Electromagnetic (AIME) sensor was developed and integrated with the shank of a fastener to form a SHM Fastener, a new SHM technology targeted at detection of fastener hole cracks. The major advantages of the SHM Fastener are its installation, which does not require joint layer disassembly, its capability to detect inner layer cracks, and its capability to operate in a continuous autonomous mode. Two methods for fabricating the proposed SHM Fastener were studied. The first option consisted of a thin flexible printed circuit film that was bonded around a thin metallic sleeve placed around the fastener shank. The second option consisted of coating sensor materials directly to the shank of a part in an effort to increase the durability of the sensor under severe loading conditions. Both analytical and numerical models were developed to characterize the capability of the sensors and provide a design tool for the sensor layout. A diagnostic technique for crack growth monitoring was developed to complete the SHM system, which consists of the

  15. Advances in Micromechanics Modeling of Composites Structures for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Moncada, Albert

    Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focuses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and

  16. An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight

    NASA Astrophysics Data System (ADS)

    Whitfield, Clifford A.

    2009-12-01

    A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight. Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude. The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for

  17. Fatigue in aerostructures--where structural health monitoring can contribute to a complex subject.

    PubMed

    Boller, Christian; Buderath, Matthias

    2007-02-15

    An overview of the aircraft design and maintenance process is given with specific emphasis on the fatigue design as well as the phenomenon of the ageing aircraft observed over the life cycle. The different measures taken to guarantee structural integrity along the maintenance process are addressed. The impact of structural health monitoring as a means of possibly revolutionizing the current aircraft structural monitoring and design process is emphasized and comparison is made to jet engines and helicopters, where health monitoring has already found the respective breakthrough.

  18. Fatigue in aerostructures--where structural health monitoring can contribute to a complex subject.

    PubMed

    Boller, Christian; Buderath, Matthias

    2007-02-15

    An overview of the aircraft design and maintenance process is given with specific emphasis on the fatigue design as well as the phenomenon of the ageing aircraft observed over the life cycle. The different measures taken to guarantee structural integrity along the maintenance process are addressed. The impact of structural health monitoring as a means of possibly revolutionizing the current aircraft structural monitoring and design process is emphasized and comparison is made to jet engines and helicopters, where health monitoring has already found the respective breakthrough. PMID:17255052

  19. A system for ubiquitous health monitoring in the bedroom via a Bluetooth network and wireless LAN.

    PubMed

    Choi, J M; Choi, B H; Seo, J W; Sohn, R H; Ryu, M S; Yi, W; Park, K S

    2004-01-01

    Advances in information technology have enabled ubiquitous health monitoring at home, which is particularly useful for patients, who have to live alone. We have focused on the automatic and unobtrusive measurement of biomedical signals and activities of patients. We have constructed wireless communication networks in order to transfer data. The networks consist of Bluetooth and Wireless Local Area Network (WLAN). In this paper, we present the concept of a ubiquitous-Bedroom (u-Bedroom) which is a part of a ubiquitous-House (u-House) and we present our systems for ubiquitous health monitoring.

  20. Design of a new adaptive fuzzy controller and its application to vibration control of a vehicle seat installed with an MR damper

    NASA Astrophysics Data System (ADS)

    Phu, Do Xuan; Shin, Do Kyun; Choi, Seung-Bok

    2015-08-01

    This paper presents a new adaptive fuzzy controller featuring a combination of two different control methodologies: H infinity control technique and sliding mode control. It is known that both controllers are powerful in terms of high performance and robust stability. However, both control methods require an accurate dynamic model to design a state variable based controller in order to maintain their advantages. Thus, in this work a fuzzy control method which does not require an accurate dynamic model is adopted and two control methodologies are integrated to maintain the advantages even in an uncertain environment of the dynamic system. After a brief explanation of the interval type 2 fuzzy logic, a new adaptive fuzzy controller associated with the H infinity control and sliding mode control is formulated on the basis of Lyapunov stability theory. Subsequently, the formulated controller is applied to vibration control of a vehicle seat equipped with magnetorheological fluid damper (MR damper in short). An experimental setup for realization of the proposed controller is established and vibration control performances such as acceleration at the driver’s seat are evaluated. In addition, in order to demonstrate the effectiveness of the proposed controller, a comparative work with two existing controllers is undertaken. It is shown through simulation and experiment that the proposed controller can provide much better vibration control performance than the two existing controllers.

  1. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  2. New methods for state estimation and adaptive observation of environmental flow systems leveraging coordinated swarms of sensor vehicles

    NASA Astrophysics Data System (ADS)

    Bewley, Thomas

    2015-11-01

    Accurate long-term forecasts of the path and intensity of hurricanes are imperative to protect property and save lives. Accurate estimations and forecasts of the spread of large-scale contaminant plumes, such as those from Deepwater Horizon, Fukushima, and recent volcanic eruptions in Iceland, are essential for assessing environment impact, coordinating remediation efforts, and in certain cases moving folks out of harm's way. The challenges in estimating and forecasting such systems include: (a) environmental flow modeling, (b) high-performance real-time computing, (c) assimilating measured data into numerical simulations, and (d) acquiring in-situ data, beyond what can be measured from satellites, that is maximally relevant for reducing forecast uncertainty. This talk will focus on new techniques for addressing (c) and (d), namely, data assimilation and adaptive observation, in both hurricanes and large-scale environmental plumes. In particular, we will present a new technique for the energy-efficient coordination of swarms of sensor-laden balloons for persistent, in-situ, distributed, real-time measurement of developing hurricanes, leveraging buoyancy control only (coupled with the predictable and strongly stratified flowfield within the hurricane). Animations of these results are available at http://flowcontrol.ucsd.edu/3dhurricane.mp4 and http://flowcontrol.ucsd.edu/katrina.mp4. We also will survey our unique hybridization of the venerable Ensemble Kalman and Variational approaches to large-scale data assimilation in environmental flow systems, and how essentially the dual of this hybrid approach may be used to solve the adaptive observation problem in a uniquely effective and rigorous fashion.

  3. Structural Health Monitoring of Composite Materials Using Distributed Fiber Bragg Sensors

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kual, Raj; Taylor, Scott; Jackson, Kurt V.; Myers, George; Wang, Y.; Sharma, A.; Burdine, Robert (Technical Monitor)

    2002-01-01

    Health monitoring of polymer matrix composite materials using fiber optic Bragg grating (FBG) sensors is accomplished using a tunable IR (infrared) laser via transmission mode. Results are presented from experiments of composite structures with FBG's embedded at various orientations, and surface measurements of various cryogenic composite vessels.

  4. Real-time health monitoring of civil infrastructure systems in Colombia

    NASA Astrophysics Data System (ADS)

    Thomson, Peter; Marulanda Casas, Johannio; Marulanda Arbelaez, Johannio; Caicedo, Juan

    2001-08-01

    Colombia's topography, climatic conditions, intense seismic activity and acute social problems place high demands on the nations deteriorating civil infrastructure. Resources that are available for maintenance of the road and railway networks are often misdirected and actual inspection methods are limited to a visual examination. New techniques for inspection and evaluation of safety and serviceability of civil infrastructure, especially bridges, must be developed. Two cases of civil structures with health monitoring systems in Colombia are presented in this paper. Construction of the Pereria-Dos Quebradas Viaduct was completed in 1997 with a total cost of 58 million dollars, including 1.5 million dollars in health monitoring instrumentation provided and installed by foreign companies. This health monitoring system is not yet fully operational due to the lack of training of national personnel in system operation and extremely limited technical documentation. In contrast to the Pereria-Dos Quebradas Viaduct monitoring system, the authors have proposed a relatively low cost health monitoring system via telemetry. This system has been implemented for real-time monitoring of accelerations of El Hormiguero Bridge spanning the Cauca River using the Colombian Southwest Earthquake Observatory telemetry systems. This two span metallic bridge, located along a critical road between the cities of Puerto Tejada and Cali in the Cauca Valley, was constructed approximately 50 years ago. Experiences with this system demonstrate how effective low cost systems can be used to remotely monitor the structural integrity of deteriorating structures that are continuously subject to high loading conditions.

  5. [Use of routine data from statutory health insurances for federal health monitoring purposes].

    PubMed

    Ohlmeier, C; Frick, J; Prütz, F; Lampert, T; Ziese, T; Mikolajczyk, R; Garbe, E

    2014-04-01

    Federal health monitoring deals with the state of health and the health-related behavior of populations and is used to inform politics. To date, the routine data from statutory health insurances (SHI) have rarely been used for federal health monitoring purposes. SHI routine data enable analyses of disease frequency, risk factors, the course of the disease, the utilization of medical services, and mortality rates. The advantages offered by SHI routine data regarding federal health monitoring are the intersectoral perspective and the nearly complete absence of recall and selection bias in the respective population. Further, the large sample sizes and the continuous collection of the data allow reliable descriptions of the state of health of the insurants, even in cases of multiple stratification. These advantages have to be weighed against disadvantages linked to the claims nature of the data and the high administrative hurdles when requesting the use of SHI routine data. Particularly in view of the improved availability of data from all SHI insurants for research institutions in the context of the "health-care structure law", SHI routine data are an interesting data source for federal health monitoring purposes.

  6. Evaluation of a Microwave Blade Tip Clearance Sensor for Propulsion Health Monitoring

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    2013-01-01

    The NASA Glenn Research Center has investigated a microwave blade tip clearance system for the structural health monitoring of gas turbine engines. This presentation describes the sensors and the experiments that have been conducted to evaluate their performance along with future plans for their use on an engine ground test.

  7. Microsensors and MEMS for health monitoring of composite and aircraft structures in flight

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1999-07-01

    Microsensors and Microelectromechanical Systems (MEMS) are currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture.

  8. Method and Circuit for In-Situ Health Monitoring of Solar Cells in Space

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J.; Prokop, Norman F.

    2010-01-01

    This innovation represents a method and circuit realization of a system designed to make in-situ measurements of test solar-cell operational parameters on orbit using readily available high-temperature and high-ionizing-radiation- tolerant electronic components. This innovation enables on-orbit in-situ solar-array health monitoring and is in response to a need recognized by the U.S. Air Force for future solar arrays for unmanned spacecraft. This system can also be constructed out of commercial-grade electronics and can be embedded into terrestrial solar power system as a diagnostics instrument. This innovation represents a novel approach to I-V curve measurement that is radiation and temperature hard, consumes very few system resources, is economical, and utilizes commercially available components. The circuit will also operate at temperatures as low as 55 C and up to +225 C, allowing it to reside close to the array in direct sunlight. It uses a swept mode transistor functioning as a resistive load while utilizing the solar cells themselves as the biasing device, so the size of the instrument is small and there is no danger of over-driving the cells. Further, this innovation utilizes nearly universal spacecraft bus resources and therefore can be readily adapted to any spacecraft bus allowing for ease of retrofit, or designed into new systems without requiring the addition of infrastructure. One unique characteristic of this innovation is that it effects the measurement of I-V curves without the use of large resistor arrays or active current sources normally used to characterize cells. A single transistor is used as a variable resistive load across the cell. This multi-measurement instrument was constructed using operational amplifiers, analog switches, voltage regulators, MOSFETs, resistors, and capacitors. The operational amplifiers, analog switches, and voltage regulators are silicon-on-insulator (SOI) technology known for its hardness to the effects of ionizing

  9. Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, Rick; Skow, Miles

    2013-01-01

    This three-year project (FY12-14) will design and demonstrate the ability of new Magnetic Stress Gages for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap. The sensors are being tested at White Sands Testing Facility (WSTF) where the results will be correlated with a known nondestructive technique acoustic emission. The gages will be produced utilizing Meandering Winding Magnetometer (MWM) and/or MWM array eddy current technology. The ultimate goal is to utilize this technology for the health monitoring of Composite Overwrapped Pressure Vessels for all future flight programs. The first full-scale pressurization test was performed at WSTF in June 2012. The goals of this test were to determine adaptations of the magnetic stress gauge instrumentation that would be necessary to allow multiple sensors to monitor the vessel's condition simultaneously and to determine how the sensor response changes with sensor selection and orientation. The second full scale pressurization test was performed at WSTF in August 2012. The goals of this test were to monitor the vessel's condition with multiple sensors simultaneously, to determine the viability of the multiplexing units (MUX) for the application, and to determine if the sensor responses in different orientations are repeatable. For both sets of tests the vessel was pressured up to 6,000 psi to simulate maximum operating pressure. Acoustic events were observed during the first pressurization cycle. This suggested that the extended storage period prior to use of this bottle led to a relaxation of the residual stresses imparted during auto-frettage. The pressurization tests successfully demonstrated the use of multiplexers with multiple MWM arrays to monitor a vessel. It was discovered that depending upon the sensor orientation, the frequencies, and the sense element, the MWM arrays can provide a variety of complementary information about the composite overwrapped pressure

  10. Autonomous structural health monitoring technique for interplanetary drilling applications using laser Doppler velocimeters

    NASA Astrophysics Data System (ADS)

    Statham, Shannon M.

    The research work presented in this thesis is devoted to the formulation and field testing of a dynamics-based structural health monitoring system for an interplanetary subsurface exploration drill system. Structural health monitoring is the process of detecting damage or other types of defects in structural and mechanical systems that have the potential to adversely affect the current or future performance of these systems. Interplanetary exploration missions, specifically to Mars, involve operations to search for water and other signs of extant or past life. Such missions require advanced robotic systems that are more susceptible to structural and mechanical failures, which motivates a need for structural health monitoring techniques relevant to interplanetary exploration systems. Strict design requirements for interplanetary exploration missions create unique research problems and challenges compared with structural health monitoring procedures and techniques developed to date. These challenges include implementing sensors and devices that will not interfere with the drilling operation, producing "real-time" diagnostics of the drilling condition, and developing an automation procedure for complete autonomous operations. The first research area involves modal analysis experiments to understand the dynamic characteristics of interplanetary drill structural systems in operation. These experiments also validate the use of Laser Doppler Velocimeter sensors in real-time structural health monitoring and prove the drill motor system adequately excites the drill for dynamic measurements and modal analysis while the drill is in operation. The second research area involves the development of modal analysis procedures for rotating structures using a Chebyshev signal filter to remove harmonic component and other noise from the rotating drill signal. This filter is necessary to accurately analyze the condition of the rotating drill auger tube while in operation. The third

  11. Acoustic Emission Health Monitoring of Fill Purge COPV's Used in Aerospace and Automotive Applications and Designed for Long Cycle Life

    NASA Technical Reports Server (NTRS)

    Waller, Jess

    2013-01-01

    Cumulative composite damage in composite pressure vessels (CPVs) currently is not monitored on-orbit. Consequently, hazards due to catastrophic burst before leak (BBL) or compromised CPV reliability cannot be ascertained or mitigated, posing a risk to crew and mission assurance. The energy associated with CPV rupture can be significant, especially with high pressure gases are under containment, and the energy releases can be severe enough to cause injury, death, loss of assets or mission. Dual-Use Rationale: CPVs similar to those used by NASA on ISS, for example, are finding increasing use in automotive and transportation industry applications. These CPVs generally have a nonload sharing liner and are repeatedly filled over their service lifetime, typically with hydrogen or compressed natural gas (CNG). The same structural health monitoring equipment and software developed by NASA WSTF for evaluating, in real-time, the health of NASA CPVs on ISS will be used to evaluate the health of automotive CPVs, the only differences being the type and design of the CPV, and the in-service lifetime pressure histories. HSF Need(s)/Performance Characteristic(s) Supported: 1) Enable on-board vehicle systems management for mission critical functions at destinations with > 3 second time delay 2) Enable autonomous nominal operations and FDIR for crewed and un-crewed systems 3) Reduce on-board crew time to sustain and manage vehicle by factor of 2x at destinations with > 6 second time delay (see Crew Autonomy sheet) 4) Reduce earth-based mission ops "back room engineering" requirements for distant mission support delay (see Mission Autonomy sheet)

  12. Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares

    NASA Astrophysics Data System (ADS)

    Duong, Van-Huan; Bastawrous, Hany Ayad; Lim, KaiChin; See, Khay Wai; Zhang, Peng; Dou, Shi Xue

    2015-11-01

    This paper deals with the contradiction between simplicity and accuracy of the LiFePO4 battery states estimation in the electric vehicles (EVs) battery management system (BMS). State of charge (SOC) and state of health (SOH) are normally obtained from estimating the open circuit voltage (OCV) and the internal resistance of the equivalent electrical circuit model of the battery, respectively. The difficulties of the parameters estimation arise from their complicated variations and different dynamics which require sophisticated algorithms to simultaneously estimate multiple parameters. This, however, demands heavy computation resources. In this paper, we propose a novel technique which employs a simplified model and multiple adaptive forgetting factors recursive least-squares (MAFF-RLS) estimation to provide capability to accurately capture the real-time variations and the different dynamics of the parameters whilst the simplicity in computation is still retained. The validity of the proposed method is verified through two standard driving cycles, namely Urban Dynamometer Driving Schedule and the New European Driving Cycle. The proposed method yields experimental results that not only estimated the SOC with an absolute error of less than 2.8% but also characterized the battery model parameters accurately.

  13. Performance of a fiber optic polarimetric sensor in health monitoring of different smart structures

    NASA Astrophysics Data System (ADS)

    Hegde, Gopalkrishna M.; Asundi, Anand K.

    2003-10-01

    Fiber reinforced structures and machines are becoming increasingly popular in recent years, as they facilitate nondestructive damage detection in these systems. Fiber Optic Polarimetric Sensor (FOPS) is an interesting device in real time structural health monitoring. In this paper the authors present their experimental results on the health monitoring of aluminum, concrete and composite structures using FOPS. The sensor monitors the change in state of polarization of the light beam traversing in the fiber under dynamic loading. The dynamic response of high-birefringence fiber has been evaluated for the three types of structures by embedding the fiber into the specimen. The performances of FOPS is damage detection of the three smart structures under impact loading condition are compared.

  14. Coupling sensing hardware with data interrogation software for structural health monitoring.

    SciTech Connect

    Farrar, C. R.; Allen, D. W.; Ball, S.; Masquelier, Michael P.; Park, G. H.

    2004-01-01

    The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). The authors approach is to address the SIAM problem in the context of a statistical pattern recognition paradigm. In this paradigm, the process can be broken down into four parts: (1) Operational Evaluation, (2) Data Acquisition and Cleansing, (3) Feature Extraction and Data Compression, and (4) Statistical Model Development for Feature Discrimination. These processes must be implemented through hardware or software and, in general, some combination of these two approaches will be used. This paper will discuss each portion of the SHM process with particular emphasis on the coupling of a general purpose data interrogation software package for structural health monitoring (DIAMOND 11) with a modular wireless sensing and processing platform that is being jointly developed with Motorola Labs. More specifically, this paper will address the need to take an integrated hardware/software approach to developing SHM solutions.

  15. Lagrangian heuristic method for the wireless sensor network design problem in railway structural health monitoring

    NASA Astrophysics Data System (ADS)

    Hada, Akio; Soga, Kenichi; Liu, Ruoshui; Wassell, Ian J.

    2012-04-01

    In this paper, we study a design method for minimizing the total cost of a wireless sensor network (WSN) used for health monitoring of railway structures. First, we present the problem, that is to simultaneously determine the number of relays and their deployment locations, the transmission power level for each sensor and relay, and the routes for transferring sensor data to a gateway using multi-hop wireless communication. Second, we formulate this task as a mathematical programming problem, and to solve this problem, we propose a near optimal algorithm based on the Lagrangian heuristic method. Finally, we verify the effectiveness of our algorithm through computational experiments carried out using data acquired from a real WSN used for railway structural health monitoring.

  16. A Multi-hop Wireless Sensor System for Bridge Health Monitoring

    NASA Astrophysics Data System (ADS)

    Li, Tansheng; Xiao, Haitao; Ogai, Harutoshi; Yamauchi, Noriyoshi

    This paper introduces a multi-hopped wireless sensor network for remote bridge health monitoring, including system architecture, transmission protocol, data acquiring and processing. This system based on detecting the three-dimension vibration or acceleration data of the bridge, which data is caused by external impacts such as a car or a truck. Comparing with traditional monitoring systems, this bridge health monitoring system has advantages in human-free, long-life, and real-time responses. Additionally, to compare data of a damaged bridge and a healthy one, an experiment of making artificial damage to a bridge is carried out with consent of related departments. Moreover, this system can be applied in any form of bridges. In the future, it is even expected to be applied in other kind of buildings more than bridges.

  17. Coupling Sensing Hardware with Data Interrogation Software for Structural Health Monitoring

    DOE PAGES

    Farrar, Charles R.; Allen, David W.; Park, Gyuhae; Ball, Steven; Masquelier, Michael P.

    2006-01-01

    The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). The authors' approach is to address the SHM problem in the context of a statistical pattern recognition paradigm. In this paradigm, the process can be broken down into four parts: (1) Operational Evaluation, (2) Data Acquisition and Cleansing, (3) Feature Extraction and Data Compression, and (4) Statistical Model Development for Feature Discrimination. These processes must be implemented through hardware or software and, in general, some combination of these two approaches will be used. This paper will discussmore » each portion of the SHM process with particular emphasis on the coupling of a general purpose data interrogation software package for structural health monitoring with a modular wireless sensing and processing platform. More specifically, this paper will address the need to take an integrated hardware/software approach to developing SHM solutions.« less

  18. Automated Internet-Based Control of Spacecraft Groundstations: Beacon-Based Health Monitoring Concept

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian; Twiggs, Robert; Swartwout, Michael

    1997-01-01

    This report serves as an update about the activities of Stanford University's Space Systems Development Laboratory (SSDL) in their beacon-based health monitoring experiment. Section 1 describes the goals of the project and the organization of the team. Section 2 provides an overview of the major components of the system, describing the general approach of automated health monitoring and the beacon signal relay. It also provides background about the SAPPHIRE spacecraft and ASSET operations system, which will be used for the experiment. Specific details about implementation and status of each element of the experiment are found in Section 3. Section 4 describes the experiment and future work, and references are contained in Section 5.

  19. An intelligent health monitoring system using radio-frequency identification technology.

    PubMed

    Lai, Yeong-Lin; Chen, Chin-Ling; Chang, Ching-Hisang; Hsu, Chih-Yu; Lai, Yeong-Kang; Tseng, Kuo-Kun; Chen, Chih-Cheng; Zheng, Chun-Yi

    2015-01-01

    Long-term care (LTC) for the elderly has become extremely important in recent years. It is necessary for the different physiological monitoring systems to be integrated on the same interface to help oversee and manage the elderly's needs. This paper presents a novel health monitoring system for LTC services using radio-frequency identification (RFID) technology. Dual-band RFID protocols were included in the system, in which the high-frequency (HF) band of 13.56 MHz was used to identify individuals and the microwave band of 2.45 GHz was used to monitor physiological information. Distinct physiological data, including oxyhemoglobin saturation by pulse oximetry (SpO2), blood pressure, blood sugar, electrocardiogram (ECG) readings, body temperature, and respiration rate, were monitored by various biosensors. The intelligent RFID health monitoring system provided the features of the real-time acquisition of biomedical signals and the identification of personal information pertaining to the elderly and patients in nursing homes.

  20. Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Martin, Richard E.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-01-01

    This paper addresses recent efforts at the NASA Glenn Research Center at Lewis Field relating to the set-up and assessment of electro-mechanical (E/M) impedance based structural health monitoring. The overall aim is the application of the impedance based technique to aeronautic and space based structural components. As initial steps, a laboratory was created, software written, and experiments conducted on aluminum plates in undamaged and damaged states. A simulated crack, in the form of a narrow notch at various locations, was analyzed using piezoelectric-ceramic (PZT: lead, zirconate, titarate) patches as impedance measuring transducers. Descriptions of the impedance quantifying hardware and software are provided as well as experimental results. In summary, an impedance based health monitoring system was assembled and tested. The preliminary data showed that the impedance based technique was successful in recognizing the damage state of notched aluminum plates.

  1. On the use of attractor dimension as a feature in structural health monitoring

    USGS Publications Warehouse

    Nichols, J.M.; Virgin, L.N.; Todd, M.D.; Nichols, J.D.

    2003-01-01

    Recent works in the vibration-based structural health monitoring community have emphasised the use of correlation dimension as a discriminating statistic in seperating a damaged from undamaged response. This paper explores the utility of attractor dimension as a 'feature' and offers some comparisons between different metrics reflecting dimension. This focus is on evaluating the performance of two different measures of dimension as damage indicators in a structural health monitoring context. Results indicate that the correlation dimension is probably a poor choice of statistic for the purpose of signal discrimination. Other measures of dimension may be used for the same purposes with a higher degree of statistical reliability. The question of competing methodologies is placed in a hypothesis testing framework and answered with experimental data taken from a cantilivered beam.

  2. Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing

    NASA Astrophysics Data System (ADS)

    Lemistre, Michel; Balageas, Daniel

    2001-06-01

    A health monitoring system is presented composed of integrated disc-shaped, 100 µm thick and 5 mm diameter piezoelectric transducers (PZTs) working sequentially as Lamb wave emitters and receivers. The diagnostic is based on the analysis of Lamb wave signals recorded before and after damage. In the composite, delaminations are discontinuities producing mode conversion processes generating various outgoing modes. The multiresolution processing allows the isolation of various propagation modes and their extraction in order to measure, for various propagation paths, the time delay between the arrivals of the main burst and of a specific outgoing mode. This process permits, with good accuracy, the localization of damage and the estimation of its extent. The robustness and portability of this technique is demonstrated by the fact that, after validation in our laboratory, it was successfully applied to data coming from an experiment conducted in another laboratory using its own acousto-ultrasonic health monitoring hardware system.

  3. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    PubMed Central

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  4. Fiber optic sensors for health monitoring of morphing airframes: I. Bragg grating strain and temperature sensor

    NASA Astrophysics Data System (ADS)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-04-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors to infer integrity of the aircraft structure. Part 1 of this two part series describes sensors that will measure load and temperature signatures of these structures. In some cases a single fiber may be used for measuring these parameters. Part 2 will describe techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service integrity of composite structures using a single fiber optic sensor capable of measuring multiple chemical and physical parameters. The facilities for fabricating optical fiber and associated sensors and the methods of demodulating Bragg gratings for strain measurement will be described.

  5. Distributed fiber optic sensors embedded in technical textiles for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Krebber, Katerina; Lenke, Philipp; Liehr, Sascha; Noether, Nils; Wendt, Mario; Wosniok, Aleksander

    2010-09-01

    Technical textiles with embedded distributed fiber optic sensors have been developed for the purposes of structural health monitoring in geotechnical and civil engineering. The distributed fiber optic sensors are based on Brillouin scattering in silica optical fibers and OTDR in polymer optical fibers. Such "smart" technical textiles can be used for reinforcement of geotechnical and masonry structures and the embedded fiber optic sensors can provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, structural health monitoring of critical geotechnical and civil infrastructures can be realized. The paper highlights the results achieved in this innovative field in the framework of several German and European projects.

  6. Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Bernstein, Dennis S.

    2012-01-01

    Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.

  7. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  8. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    PubMed

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  9. PHYSIOLOGICAL INFORMATION FOR PAVEMENT HEALTH MONITORING BASED ON SURFACE RIDE QUALITY

    NASA Astrophysics Data System (ADS)

    Tomiyama, Kazuya; Kawamura, Akira; Takahashi, Kiyoshi; Ishida, Tateki

    Pavement ride quality testing has traditionally been based on subjective questionnaire ratings. The questionnaire survey has ability to directly measure the sense of road users' ride quality. However, it is difficult to quantify the evaluation results based on the questionnaire due to its lack of objectivity. This study examines pavement health monitoring method using physiological information such as heart rate variability (HRV) for detecting mental stress of road users toward pavement ride quality. First, a results of a driving simulator experiment shows that potential mental stress caused by road roughness can be observed in high-frequency oscillations in 0.15-0.4Hz of HRV processed by continuous wavelet transform. Then, the high-frequency oscillations of HRV is summarized as an index related to the mental stress that makes objective ride quality evaluation possible. Finally, this study indicates that the index contributes to improve the accuracy of pavement health monitoring based on surface ride quality.

  10. Structural health monitoring system of soccer arena based on optical sensors

    NASA Astrophysics Data System (ADS)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  11. Analysis of decision fusion algorithms in handling uncertainties for integrated health monitoring systems

    NASA Astrophysics Data System (ADS)

    Zein-Sabatto, Saleh; Mikhail, Maged; Bodruzzaman, Mohammad; DeSimio, Martin; Derriso, Mark; Behbahani, Alireza

    2012-06-01

    It has been widely accepted that data fusion and information fusion methods can improve the accuracy and robustness of decision-making in structural health monitoring systems. It is arguably true nonetheless, that decision-level is equally beneficial when applied to integrated health monitoring systems. Several decisions at low-levels of abstraction may be produced by different decision-makers; however, decision-level fusion is required at the final stage of the process to provide accurate assessment about the health of the monitored system as a whole. An example of such integrated systems with complex decision-making scenarios is the integrated health monitoring of aircraft. Thorough understanding of the characteristics of the decision-fusion methodologies is a crucial step for successful implementation of such decision-fusion systems. In this paper, we have presented the major information fusion methodologies reported in the literature, i.e., probabilistic, evidential, and artificial intelligent based methods. The theoretical basis and characteristics of these methodologies are explained and their performances are analyzed. Second, candidate methods from the above fusion methodologies, i.e., Bayesian, Dempster-Shafer, and fuzzy logic algorithms are selected and their applications are extended to decisions fusion. Finally, fusion algorithms are developed based on the selected fusion methods and their performance are tested on decisions generated from synthetic data and from experimental data. Also in this paper, a modeling methodology, i.e. cloud model, for generating synthetic decisions is presented and used. Using the cloud model, both types of uncertainties; randomness and fuzziness, involved in real decision-making are modeled. Synthetic decisions are generated with an unbiased process and varying interaction complexities among decisions to provide for fair performance comparison of the selected decision-fusion algorithms. For verification purposes

  12. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1992-01-01

    Various engine related performance and health monitoring techniques developed in support of flight research are described. Techniques used during flight to enhance safety and to increase flight test productivity are summarized. A description of the NASA range facility is given along with a discussion of the flight data processing. Examples of data processed and the flight data displays are shown. A discussion of current trends and future capabilities is also included.

  13. State of Idaho Augmented Anadromous Fish Health Monitoring, 1988 Annual Report.

    SciTech Connect

    Foott, J. Scott; Hauch, A. Kent

    1989-05-01

    This report documents the progress in the assigned tasks which have occurred during the second year of the Augmented Anadromous Fish Health Monitoring Project. Fish at seven Idaho Department of Fish and Game facilities were monitored for various pathogens and organosomatic analyses were performed on smolts prior to their release in the Spring of 1989. A disease database has been developed and facility impediments to fish health have been identified.

  14. Structural health monitoring MEMS sensors using elasticity-based beam vibrations

    NASA Astrophysics Data System (ADS)

    Plankis, Alivia

    The worsening problem of aging and deficient infrastructure in this nation and across the world has demonstrated the need for an improved system to monitor and maintain these structures. The field of structural health monitoring has grown in recent years to address this issue. The goal of this field is to continually monitor the condition of a structure to detect and mitigate damage that may occur. Many structural health monitoring methods have been developed and most of these require sensor systems to collect the necessary information to assess the current strength and integrity of a structure. The motivation for this thesis is a proposed new microelectromechanical systems (MEMS) sensor with applications in civil infrastructure sensing. The work required was to determine accurate estimates of the resonant frequencies for a fixed-fixed silicon bridge within the device so that further testing and development could proceed. Additional knowledge and information were essential, though, before these requested calculations could be performed confidently. First, a thorough review of current structural health monitoring concepts and methods was performed to better understand the field in which this device would be applied and what incentive existed to develop a new sensor. Second, an in-depth investigation of vibrational beam mechanics theories was completed to ensure the accuracy of the frequency results for the new MEMS sensor. This study analyzed the influence of three assumptions employed in the Euler-Bernoulli, Rayleigh, and Timoshenko beam theories by comparing their results to a three-dimensional, elasticity-based approximation for vibrational frequencies and mode shapes. The results of this study showed that all three theories are insufficient when a fixed support is involved, so the elasticity-based approximation was utilized to calculate the frequencies for the bridge component in the MEMS device. These results have been passed on to the developers so that the

  15. State of Idaho Augmented Anadromous Fish Health Monitoring, 1987 Annual Report.

    SciTech Connect

    Foott, J. Scott; Hauck, A. Kent

    1988-05-01

    The anadromous fish health monitoring program began in full operation in January 1988 after the hiring of the lead pathologist. This short operating period limits the amount of information available at the time of this writing. Pre-release sampling of smolts revealed the presence of several sub-clinical pathogens. Organosomatic analysis results demonstrated no major abnormalities in the examined stocks. The results of the 1988 steelhead broodstock sampling are still pending.

  16. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine: a twin control study.

    PubMed

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H

    2016-01-01

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted.

  17. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine: a twin control study

    PubMed Central

    Kawchuk, Gregory N.; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H.

    2016-01-01

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject’s spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted. PMID:26964507

  18. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine: a twin control study.

    PubMed

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H

    2016-01-01

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted. PMID:26964507

  19. Conceptual framework of a remote wireless health monitoring system for large civil structures

    NASA Astrophysics Data System (ADS)

    Pines, Darryll J.; Lovell, Philip A.

    1998-10-01

    Recent advances in smart materials and structures sensor technology offer many unique opportunities to assess the structural integrity of large civil structures. However, the remote operational environment of large civil structures, such as highways, buildings and bridges, makes condition-based health monitoring for damage assessment difficult in the event of a natural disaster. During such disasters, electrical power is lost and cellular phone lines are under heavy usage. This limits the retrieval of very important sensor data. However, recent rulings by the Federal Communication Commission coupled with advances in wireless communication products have now made it possible to circumvent existing wired and cellular infrastructure to retrieve data from smart sensors remotely and more economically. This paper discusses a novel approach using smart sensors and wireless communication technology to monitor the health of large civil structures remotely. Specifically, a remote health monitoring system for large civil structures is developed using spread spectrum wireless modems, data communication software and conventional strain sensors. This system is used to monitor the loads on a laboratory test specimen with a bolted lap joint from as far away as one mile. Commands are issued from a notebook personal computer to instruct the health monitoring system to either excite the structure or acquire data from sensors mounted externally to the structure. Data from measurements made on the structure are then transmitted wirelessly back to a notebook computer for processing and analysis using damage detection algorithms.

  20. Issues in implementing a knowledge-based ECG analyzer for personal mobile health monitoring.

    PubMed

    Goh, K W; Kim, E; Lavanya, J; Kim, Y; Soh, C B

    2006-01-01

    Advances in sensor technology, personal mobile devices, and wireless broadband communications are enabling the development of an integrated personal mobile health monitoring system that can provide patients with a useful tool to assess their own health and manage their personal health information anytime and anywhere. Personal mobile devices, such as PDAs and mobile phones, are becoming more powerful integrated information management tools and play a major role in many people's lives. We focus on designing a health-monitoring system for people who suffer from cardiac arrhythmias. We have developed computer simulation models to evaluate the performance of appropriate electrocardiogram (ECG) analysis techniques that can be implemented on personal mobile devices. This paper describes an ECG analyzer to perform ECG beat and episode detection and classification. We have obtained promising preliminary results from our study. Also, we discuss several key considerations when implementing a mobile health monitoring solution. The mobile ECG analyzer would become a front-end patient health data acquisition module, which is connected to the Personal Health Information Management System (PHIMS) for data repository. PMID:17947185

  1. Piezoelectric-based smart sensing system for I-beam structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Zhang, Haifeng; Yu, Tzuyang; Wang, Xingwei

    2016-04-01

    In recent decades, the I-beam has become one of the most important engineering structural components being applied in areas such as mechanical, civil, and constructional engineering. To ensure safety and proper maintenance, an effective and accurate structural health monitoring method/system for I-beams is urgently needed. This paper proposes a smart sensing system for I-beam crack detection that is based on the energy diffusivity (attenuation) between two individual piezoelectric transducers (PZTs). Sensor (one of the PZTs) responses are analyzed and applied to characterize the health status of the I-beam. Lab experiments are carried out for effective evaluation of this approach in structural health monitoring. The characteristics of crack distribution are studied by calculating and analyzing the energy diffusivity variation of the sensor responses to artificially cuttings to the I-beam. Moreover, instead of utilizing an actuator and a sensor, the system employs a couple of PZTs sensors, which offer the potential for in-field, in situ sensing with the sensor arrays. This smart sensing system can be applied in railway, metro, and iron-steel structures for I-beam health monitoring applications.

  2. Health monitoring of electric power communication line using a distributed optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Hao; Zhang, Xuping

    2014-11-01

    Optical fiber ground wire (OPGW) is used for both the earth line and communication line in electric power systems. It is important to find an effective to monitor the status of OPGW and diagnose some possible damages. Fault location of the optical fiber transmission line, lightning stroke location and early-warning of ice covering of OPGW are common tasks for OPGW health monitoring and maintenance. As to these issues, Brillouin optical time domain reflectometry (BOTDR) is employed for the health monitoring of OPGW. In experiment, a positive electrode with high pulsed current and a negative electrode are adopted to form a lightning impulse system with duration time of 200ms for simulation of the lightning stroke process, and a tensile force loading apparatus is also constructed to simulate the strain influence of the ice covering on the OPGW. Experimental results demonstrate that the BOTDR can sensitively locate the lightning stroke incidents with the quantity of electric discharging larger than 100C and the strain component has little interference on temperature monitoring as the fiber contained in the OPGW is generally free of strain, and in the ice covering condition the strain feature appears only when the extra tensile force on the OPGW is over 30kN. In addition, the vibration of OPGW does not disturb both the temperature and strain monitoring. As to further applications of distributed optical fiber sensors (DOFS) for the OPGW health monitoring, it is important to enhance its spatial resolution.

  3. Investigation of piezoelectric impedance-based health monitoring of structure interface debonding

    NASA Astrophysics Data System (ADS)

    Xiao, Li; Chen, Guofeng; Chen, Xiaoming; Qu, Wenzhong

    2016-04-01

    Various damages might occur during the solid rocket motor (SRM) manufacturing/operational phase, and the debonding of propellant/insulator/composite case interfaces is one of damage types which determine the life of a motor. The detection of such interface debonding damage will be beneficial for developing techniques for reliable nondestructive evaluation (NDE) and structural health monitoring (SHM). Piezoelectric sensors are widely used for structural health monitoring technique. In particular, electromechanical impedance (EMI) techniques give simple and low-cost solutions for detecting damage in various structures. In this work, piezoelectric EMI structural health monitoring technique is applied to identify the debonding condition of propellant/insulator interface structure using finite element method and experimental investigation. A three-dimensional coupled field finite element model is developed using the software ANSYS and the harmonic analysis is conducted for high-frequency impedance analysis procedure. In the experimental study, the impedance signals were measured from PZT and MFC sensors outside attached to composite case monitoring the different debonding conditions between the propellant and insulator. Root mean square deviation (RMSD) based damage index is conducted to quantify the changes i n impedance for different de bonding conditions and frequency range. Simulation and experimental results confirmed that the EMI technique can be used effectively for detecting the debonding damage in SRM and is expected to be useful for future application of real SRM's SHM.

  4. Turbine Engine Disk Rotor Health Monitoring Assessment Using Spin Tests Data

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark; Baalini, George; Bodis, James R.

    2012-01-01

    Detecting rotating engine component malfunctions and structural anomalies is increasingly becoming a crucial key feature that will help boost safety and lower maintenance cost. However, achievement of such technology, which can be referred to as a health monitoring remains somewhat challenging to implement. This is mostly due to presence of scattered loading conditions, crack sizes, component geometry and material properties that hinders the simplicity of imposing such application. Different approaches are being considered to assist in developing other means of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic events occur. These methods extend further to assess material discontinuities and other defects that have matured to the level where a failure is very likely. This paper is focused on presenting data obtained from spin test experiments of a turbine engine like rotor disk and their correlation to the development of a structural health monitoring and fault detection system. The data collected includes blade tip clearance, blade tip timing measurements and shaft displacements. The experimental results are collected at rotational speeds up to 10,000 Rpm and tests are conducted at the NASA Glenn Research Center s Rotordynamics Laboratory via a high precision spin system. Additionally, this study offers a closer glance at a selective online evaluation of a rotating disk using advanced capacitive, microwave and eddy current sensor technology.

  5. Health monitoring with optical fiber sensors: from human body to civil structures

    NASA Astrophysics Data System (ADS)

    Pinet, Éric; Hamel, Caroline; Glišić, Branko; Inaudi, Daniele; Miron, Nicolae

    2007-04-01

    Although structural health monitoring and patient monitoring may benefit from the unique advantages of optical fiber sensors (OFS) such as electromagnetic interferences (EMI) immunity, sensor small size and long term reliability, both applications are facing different realities. This paper presents, with practical examples, several OFS technologies ranging from single-point to distributed sensors used to address the health monitoring challenges in medical and in civil engineering fields. OFS for medical applications are single-point, measuring mainly vital parameters such as pressure or temperature. In the intra-aortic balloon pumping (IABP) therapy, a miniature OFS can monitor in situ aortic blood pressure to trigger catheter balloon inflation/deflation in counter-pulsation with heartbeats. Similar sensors reliably monitor the intracranial pressure (ICP) of critical care patients, even during surgical interventions or examinations under medical resonance imaging (MRI). Temperature OFS are also the ideal monitoring solution for such harsh environments. Most of OFS for structural health monitoring are distributed or have long gage length, although quasi-distributed short gage sensors are also used. Those sensors measure mainly strain/load, temperature, pressure and elongation. SOFO type deformation sensors were used to monitor and secure the Bolshoi Moskvoretskiy Bridge in Moscow. Safety of Plavinu dam built on clay and sand in Latvia was increased by monitoring bitumen joints displacement and temperature changes using SMARTape and Temperature Sensitive Cable read with DiTeSt unit. A similar solution was used for monitoring a pipeline built in an unstable area near Rimini in Italy.

  6. Matrix factorization to time-frequency distribution for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ming; Huang, Shieh-Kung

    2016-04-01

    Structural health monitoring enables structural information to be acquired through sensing technology, and is of need to early detect problems and damages in structures. Health monitoring strategies are often realized through a combination of qualitative sensing systems and high-performance structural integrity assessment methods. Structural deviations can be then effectively identified by interpreting the raw sensor measurements using signal processing techniques. The objective of this study is to develop a new structural health monitoring method that applies a matrix factorization algorithm to a time-frequency representation of multi-channel signals measured from a structure. This method processes vibrational input and/or output responses of structures to improve raw data quality, to estimate structural responses, to derive signal features, and to detect structural variations. For example, the proposed method can reduce the signal noise by utilizing first few principle vectors to reconstruct the measured signals. For frequency-domain responses, this method can smooth the phase to obtain a better input-output relationship of a structure. Additionally, the method removes abnormal signals in time series, allowing better understanding of structural behavior. Due to communication loss, this method is able to recover lost data from other channel measurements in a structure. Moreover, the proposed method transforms the signal components into a specific domain and then yield meaningful characteristics. All these features are numerically verified using experimental data, and the proposed method permits more detailed investigation of structural behavior.

  7. Synthesis of vibration control and health monitoring of building structures under unknown excitation

    NASA Astrophysics Data System (ADS)

    He, Jia; Huang, Qin; Xu, You-Lin

    2014-10-01

    The vibration control and health monitoring of building structures have been actively investigated in recent years but often treated separately according to the primary objective pursued. In this study, a time-domain integrated vibration control and health monitoring approach is proposed based on the extended Kalman filter (EKF) for identifying the physical parameters of the controlled building structures without the knowledge of the external excitation. The physical parameters and state vectors of the building structure are then estimated and used for the determination of the control force for the purpose of the vibration attenuation. The interaction between the health monitoring and vibration control is revealed and assessed. The feasibility and reliability of the proposed approach is numerically demonstrated via a five-story shear building structure equipped with magneto-rheological (MR) dampers. Two types of excitations are considered: (1) the EI-Centro ground excitation underneath of the building and (2) a swept-frequency excitation applied on the top floor of the building. Results show that the structural parameters as well as the unknown dynamic loadings could be identified accurately; and, at the same time, the structural vibration is significantly reduced in the building structure.

  8. Health monitoring of reinforced concrete structures based on PZT admittance signal

    NASA Astrophysics Data System (ADS)

    Wang, Dansheng; Zhu, Hongping; Shen, Danyan; Ge, Dongdong

    2009-07-01

    Reinforced concrete (RC) structure is one of most familiar engineering structure styles in the civil engineering community, which often suffer crack damage during their service life because of some factors such as overloading, excessive use, and bad environmental conditions. Thus early detection of crack damage is of special concern for RC structures. Piezoelectric materials have direct and converse piezoelectric effects and can serve as actuators or sensors. A health monitoring method based on PZT admittance signals is addressed in this paper, which use the electromechanical coupling property of piezoelectric materials. An experimental study on health monitoring of a RC beam is implemented based on the PZT admittance signals. In this experiment, the electrical admittances of distributed PZT sheets are measured when the host beams are suffering from variable loads. From the obtained PZT admittance curves one can find that the presence of incipient crack can be captured and the cracking load of the RC beam can also generally determined. By the experimental study it is concluded that the health monitoring technique is quite effective and sensitive for RC structures, which indicates its favorable application foreground in civil engineering field.

  9. Wavelet-based AR-SVM for health monitoring of smart structures

    NASA Astrophysics Data System (ADS)

    Kim, Yeesock; Chong, Jo Woon; Chon, Ki H.; Kim, JungMi

    2013-01-01

    This paper proposes a novel structural health monitoring framework for damage detection of smart structures. The framework is developed through the integration of the discrete wavelet transform, an autoregressive (AR) model, damage-sensitive features, and a support vector machine (SVM). The steps of the method are the following: (1) the wavelet-based AR (WAR) model estimates vibration signals obtained from both the undamaged and damaged smart structures under a variety of random signals; (2) a new damage-sensitive feature is formulated in terms of the AR parameters estimated from the structural velocity responses; and then (3) the SVM is applied to each group of damaged and undamaged data sets in order to optimally separate them into either damaged or healthy groups. To demonstrate the effectiveness of the proposed structural health monitoring framework, a three-story smart building equipped with a magnetorheological (MR) damper under artificial earthquake signals is studied. It is shown from the simulation that the proposed health monitoring scheme is effective in detecting damage of the smart structures in an efficient way.

  10. Health monitoring of full composite CNG tanks using long-gauge fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Glisic, Branko; Inaudi, Daniele

    2004-07-01

    The Compressed Natural Gas (CNG) used as a carburant in automotive industry offers low cost and notably less pollution. Full composite tank used to store the CNG onboard features low weight and extended lifespan. However, the safety issues and maintenance fees remain a challenge for its use in ordinary cars. The structural health monitoring of tanks with accent to damage detection can significantly increase the safety and decrease the maintenance fees. Structural health monitoring and damage detection of composite tanks impose important challenges to the monitoring strategy and monitoring system to be used. The issues of non-intrusive installation of sensors, their topologies and network, and particularly analysis and interpretation of resulting data are very complex. The long-gage interferometric sensors of SOFO type, for direct embedding in the full composite tank during production are developed. The sensor consists of single mode optical fiber embedded into the very thin composite tape. Such packaging offers to optical fiber excellent protection during handling and embedding and makes sensor non-intrusive to the tank material. Appropriate topologies of the sensors are combined in single sensor network used to monitor strain state and damage. The results of monitoring are analyzed at several levels, and the damage is detected using algorithms combining the global deformation and changes in both the tank stiffness and sensors cross-correlation. The monitoring strategy, sensors used in full composite tank monitoring, installation issues and the results of the structural health monitoring performed in laboratory are presented in details in this paper.

  11. Integrating Oil Debris and Vibration Measurements for Intelligent Machine Health Monitoring. Degree awarded by Toledo Univ., May 2002

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2003-01-01

    A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they

  12. Multi-wave and hybrid imaging techniques: a new direction for nondestructive testing and structural health monitoring.

    PubMed

    Cheng, Yuhua; Deng, Yiming; Cao, Jing; Xiong, Xin; Bai, Libing; Li, Zhaojun

    2013-11-27

    In this article, the state-of-the-art multi-wave and hybrid imaging techniques in the field of nondestructive evaluation and structural health monitoring were comprehensively reviewed. A new direction for assessment and health monitoring of various structures by capitalizing the advantages of those imaging methods was discussed. Although sharing similar system configurations, the imaging physics and principles of multi-wave phenomena and hybrid imaging methods are inherently different. After a brief introduction of nondestructive evaluation (NDE) , structure health monitoring (SHM) and their related challenges, several recent advances that have significantly extended imaging methods from laboratory development into practical applications were summarized, followed by conclusions and discussion on future directions.

  13. Health monitoring of Japanese payload specialist: Autonomic nervous and cardiovascular responses under reduced gravity condition (L-0)

    NASA Technical Reports Server (NTRS)

    Sekiguchi, Chiharu

    1993-01-01

    In addition to health monitoring of the Japanese Payload Specialists (PS) during the flight, this investigation also focuses on the changes of cardiovascular hemodynamics during flight which will be conducted under the science collaboration with the Lower Body Negative Pressure (LBNP) Experiment of NASA. For the Japanese, this is an opportunity to examine firsthand the effects of microgravity of human physiology. We are particularly interested in the adaption process and how it relates to space motion sickness and cardiovascular deconditioning. By comparing data from our own experiment to data collected by others, we hope to understand the processes involved and find ways to avoid these problems for future Japanese astronauts onboard Space Station Freedom and other Japanese space ventures. The primary objective of this experiment is to monitor the health condition of Japanese Payload Specialists to maintain a good health status during and after space flight. The second purpose is to investigate the autonomic nervous system's response to space motion sickness. To achieve this, the function of the autonomic nervous system will be monitored using non-invasive techniques. Data obtained will be employed to evaluate the role of autonomic nervous system in space motion sickness and to predict susceptibility to space motion sickness. The third objective is evaluation of the adaption process of the cardiovascular system to microgravity. By observation of the hemodynamics using an echocardiogram we will gain insight on cardiovascular deconditioning. The last objective is to create a data base for use in the health care of Japanese astronauts by obtaining control data in experiment L-O in the SL-J mission.

  14. Health Monitoring of a Rotating Disk Using a Combined Analytical-Experimental Approach

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Lekki, John D.; Baaklini, George Y.

    2009-01-01

    Rotating disks undergo rigorous mechanical loading conditions that make them subject to a variety of failure mechanisms leading to structural deformities and cracking. During operation, periodic loading fluctuations and other related factors cause fractures and hidden internal cracks that can only be detected via noninvasive types of health monitoring and/or nondestructive evaluation. These evaluations go further to inspect material discontinuities and other irregularities that have grown to become critical defects that can lead to failure. Hence, the objectives of this work is to conduct a collective analytical and experimental study to present a well-rounded structural assessment of a rotating disk by means of a health monitoring approach and to appraise the capabilities of an in-house rotor spin system. The analyses utilized the finite element method to analyze the disk with and without an induced crack at different loading levels, such as rotational speeds starting at 3000 up to 10 000 rpm. A parallel experiment was conducted to spin the disk at the desired speeds in an attempt to correlate the experimental findings with the analytical results. The testing involved conducting spin experiments which, covered the rotor in both damaged and undamaged (i.e., notched and unnotched) states. Damaged disks had artificially induced through-thickness flaws represented in the web region ranging from 2.54 to 5.08 cm (1 to 2 in.) in length. This study aims to identify defects that are greater than 1.27 cm (0.5 in.), applying available means of structural health monitoring and nondestructive evaluation, and documenting failure mechanisms experienced by the rotor system under typical turbine engine operating conditions.

  15. Energy efficient wireless sensor network for structural health monitoring using distributed embedded piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Li, Peng; Olmi, Claudio; Song, Gangbing

    2010-04-01

    Piezoceramic based transducers are widely researched and used for structural health monitoring (SHM) systems due to the piezoceramic material's inherent advantage of dual sensing and actuation. Wireless sensor network (WSN) technology benefits from advances made in piezoceramic based structural health monitoring systems, allowing easy and flexible installation, low system cost, and increased robustness over wired system. However, piezoceramic wireless SHM systems still faces some drawbacks, one of these is that the piezoceramic based SHM systems require relatively high computational capabilities to calculate damage information, however, battery powered WSN sensor nodes have strict power consumption limitation and hence limited computational power. On the other hand, commonly used centralized processing networks require wireless sensors to transmit all data back to the network coordinator for analysis. This signal processing procedure can be problematic for piezoceramic based SHM applications as it is neither energy efficient nor robust. In this paper, we aim to solve these problems with a distributed wireless sensor network for piezoceramic base structural health monitoring systems. Three important issues: power system, waking up from sleep impact detection, and local data processing, are addressed to reach optimized energy efficiency. Instead of sweep sine excitation that was used in the early research, several sine frequencies were used in sequence to excite the concrete structure. The wireless sensors record the sine excitations and compute the time domain energy for each sine frequency locally to detect the energy change. By comparing the data of the damaged concrete frame with the healthy data, we are able to find out the damage information of the concrete frame. A relative powerful wireless microcontroller was used to carry out the sampling and distributed data processing in real-time. The distributed wireless network dramatically reduced the data

  16. Real time health monitoring and control system methodology for flexible space structures

    NASA Astrophysics Data System (ADS)

    Jayaram, Sanjay

    This dissertation is concerned with the Near Real-time Autonomous Health Monitoring of Flexible Space Structures. The dynamics of multi-body flexible systems is uncertain due to factors such as high non-linearity, consideration of higher modal frequencies, high dimensionality, multiple inputs and outputs, operational constraints, as well as unexpected failures of sensors and/or actuators. Hence a systematic framework of developing a high fidelity, dynamic model of a flexible structural system needs to be understood. The fault detection mechanism that will be an integrated part of an autonomous health monitoring system comprises the detection of abnormalities in the sensors and/or actuators and correcting these detected faults (if possible). Applying the robust control law and the robust measures that are capable of detecting and recovering/replacing the actuators rectifies the actuator faults. The fault tolerant concept applied to the sensors will be in the form of an Extended Kalman Filter (EKF). The EKF is going to weigh the information coming from multiple sensors (redundant sensors used to measure the same information) and automatically identify the faulty sensors and weigh the best estimate from the remaining sensors. The mechanization is comprised of instrumenting flexible deployable panels (solar array) with multiple angular position and rate sensors connected to the data acquisition system. The sensors will give position and rate information of the solar panel in all three axes (i.e. roll, pitch and yaw). The position data corresponds to the steady state response and the rate data will give better insight on the transient response of the system. This is a critical factor for real-time autonomous health monitoring. MATLAB (and/or C++) software will be used for high fidelity modeling and fault tolerant mechanism.

  17. Wireless health monitoring of cracks in structures with MEMS-IDT sensors

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Sung; Vinoy, K. J.; Varadan, Vijay K.

    2002-07-01

    The integration of MEMS, IDTs and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real- time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characteristics and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC, providing a low power microsystem. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection

  18. Long term structural health monitoring by Brillouin fibre-optic sensing: a real case

    NASA Astrophysics Data System (ADS)

    Minardo, Aldo; Persichetti, Gianluca; Testa, Genni; Zeni, Luigi; Bernini, Romeo

    2012-08-01

    We report the results of a long term structural health monitoring (SHM) test campaign performed on a concrete bridge. A one-year test campaign was performed by a portable prototype instrument based on stimulated Brillouin scattering in a single-mode optical fibre. The optical fibre sensor was attached along one arch of the bridge using two types of adhesive for comparison purposes. The attached fibre was able to provide the strain distribution along the structure during the one-year test campaign, with a spatial resolution of 1 m. A crack was revealed and correctly localized by the distributed sensor.

  19. Proof-of-Concept Application of Impedance-Based Health Monitoring on Space Shuttle Ground Structures

    NASA Technical Reports Server (NTRS)

    Peairs, Daniel M.; Grisso, Benjamin; Inman, Daniel J.; Page, Kenneth R.; Athman, Robert; Margasahayam, Ravi N.

    2003-01-01

    Many of the structures responsible for the launch, ground systems and support operations of the space shuttle are still being used well past their nominal expected design life. This has led to an increased interest in monitoring these structures in order to decrease the risk of eventual breakdown or structural failure. One monitoring method, which has shown promising results for such applications, is the impedance-based structural health monitoring technique. This paper presents results from proof-of-concept tests on the launch pad's orbiter access arm bolted connection, solid rocket booster hold down post, mobile launch platform heat shield and crawler transporter bearing. Modification for future tests are suggested.

  20. NASA Prototype All Composite Tank Cryogenic Pressure Tests to Failure with Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Pena, Francisco

    2015-01-01

    This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.

  1. Improving the Physical Health Monitoring of City & Hackney Assertive Outreach Service Patients

    PubMed Central

    Akyuz, Elvan; jain, amit; phelan, declan; Gupta, Susham

    2016-01-01

    Improving physical healthcare to reduce premature mortality in people with SMI (Serious Mental Illness) is a priority for ELFT (East London NHS Foundation Trust) and NHS England. It is well know that people with schizophrenia have a life expectancy which is approximately 20% shorter than that of the general population and a substantial mortality difference exists between people with schizophrenia and the general community.[1–2] Among other risk factors, such as poor diet, physical inactivity, and high rates of smoking, the iatrogenic effects of anti-psychotic medications have been found to increase the risk of metabolic syndrome. This can easily be detected through regular monitoring. Through this project, it was our aim to improve the physical health monitoring of City & Hackney Assertive Outreach Service (AOS) patients with a view to decrease mortality rate, increase life expectancy, increase the quality of life, and reduce harm from medication. This was done using quality improvement methods, including several change ideas, each of which started sequentially over the course of a nine month period from November 2014. Following QI methodology, this utilised cycles of iterative learning using PDSA methods and was supported by the Trust's extensive programme of quality improvement, including training provided by the Institute for Healthcare Improvement. The project involved setting a specific aim which was improving the physical health monitoring of AOS patients to 80% by July 2015 and for our patients to have physical health checks (blood tests, weight, ECG, BP) as a minimum annually. From baseline measurements of between 50–75%, we reached our target of 80% for weight, BP and blood tests monitoring, with 89%, 91%, and 84% achieved respectively by July 2015. Further progress still needs to be made on ECGs, with 77% achieved by July 2015, although the monitoring of ECG nearly doubled from 39% in November 2014 to 77% in July 2015. This project demonstrated that

  2. Optical fiber based sensing system design for the health monitoring of multi-layered pavement structure

    NASA Astrophysics Data System (ADS)

    Liu, Wanqiu; Wang, Huaping; Zhou, Zhi; Li, Shiyu; Ni, Yuanbao; Wang, Geng

    2011-11-01

    This paper introduces an optical fiber based sensing system design for multi-layered pavement structural health monitoring. The co-line and integration design of FBG (Fiber Bragg Gating) sensors and BOTDR (Brillouin Optical Time Domain Reflectometry) sensors will ensure the large scale damage monitoring and local high accurate strain measurement. The function of pavement structure multi-scale shape measurement will provide real time subgrade settlement and rutting information. The sensor packaging methodology and strain transfer problem of the system will also be discussed in this paper. Primary lab tests prove the potential and feasibility of the practical application of the sensing system.

  3. Improving the Physical Health Monitoring of City & Hackney Assertive Outreach Service Patients.

    PubMed

    Akyuz, Elvan; Jain, Amit; Phelan, Declan; Gupta, Susham

    2016-01-01

    Improving physical healthcare to reduce premature mortality in people with SMI (Serious Mental Illness) is a priority for ELFT (East London NHS Foundation Trust) and NHS England. It is well know that people with schizophrenia have a life expectancy which is approximately 20% shorter than that of the general population and a substantial mortality difference exists between people with schizophrenia and the general community.[1-2] Among other risk factors, such as poor diet, physical inactivity, and high rates of smoking, the iatrogenic effects of anti-psychotic medications have been found to increase the risk of metabolic syndrome. This can easily be detected through regular monitoring. Through this project, it was our aim to improve the physical health monitoring of City & Hackney Assertive Outreach Service (AOS) patients with a view to decrease mortality rate, increase life expectancy, increase the quality of life, and reduce harm from medication. This was done using quality improvement methods, including several change ideas, each of which started sequentially over the course of a nine month period from November 2014. Following QI methodology, this utilised cycles of iterative learning using PDSA methods and was supported by the Trust's extensive programme of quality improvement, including training provided by the Institute for Healthcare Improvement. The project involved setting a specific aim which was improving the physical health monitoring of AOS patients to 80% by July 2015 and for our patients to have physical health checks (blood tests, weight, ECG, BP) as a minimum annually. From baseline measurements of between 50-75%, we reached our target of 80% for weight, BP and blood tests monitoring, with 89%, 91%, and 84% achieved respectively by July 2015. Further progress still needs to be made on ECGs, with 77% achieved by July 2015, although the monitoring of ECG nearly doubled from 39% in November 2014 to 77% in July 2015. This project demonstrated that

  4. Technology readiness assessment of advanced space engine integrated controls and health monitoring

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1991-01-01

    An evaluation is given for an integrated control and health monitoring system (ICHM) system that is designed to be used with hydrogen-oxygen rocket engines. The minimum required ICHM functions, system elements, technology readiness, and system cost are assessed for a system which permits the operation of H-O engines that are space-based, reusable, and descent throttleable. Based on the evaluation of the H-O ICHM, it is estimated that the minimum system requirements for demonstration on an engine system testbed will require an investment of 30 to 45 million dollars over six years.

  5. Propulsion Health Monitoring of a Turbine Engine Disk Using Spin Test Data

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj; Matthews, Bryan; Baaklini, George Y.

    2010-01-01

    This paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating turbine engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center s Rotordynamics Laboratory are evaluated using multiple data-driven anomaly detection techniques to identify abnormalities in the disk. Further, this study presents a select evaluation of an online health monitoring scheme of a rotating disk using high caliber sensors and test the capability of the in-house spin system.

  6. Experimental and numerical analysis of a hybrid FBG long gauge sensor for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Torres Górriz, Benjamín; Calderón García, Pedro; Payá-Zaforteza, Ignacio J.; Sales Maicas, Salvador

    2014-12-01

    This paper presents a new long gauge sensor for structural health monitoring based on the use of fiber Bragg gratings. The proposed sensor has the advantage over existing sensors that it does not require prestressing of the optical fiber. The development consisted of numerical studies complemented by experimental tests to analyze: (1) the strain transfer between the sensor and the host structure; (2) the influence of sensor axial stiffness on the structural behavior of the host structure; (3) the influence of the mechanical properties of the adhesive used to fix the sensor and (4) the failure modes of the sensor (buckling and shear stress of sensor anchors).

  7. Environmental monitoring and assessment program forest health monitoring quality assurance project plan for detection monitoring project

    SciTech Connect

    Cline, S.P.; Alexander, S.A.; Barnard, J.E.

    1995-05-01

    The Quality Assurance Project Plan (QAP) is written specifically for the Detection Minitoring project of the interagency Forest Health Monitoring (FHM) program. Sections 1 through 3 briefly explain key features of the Environmental Monitoring and Assessment Program (EMAP), the FHM program, and their interrelationship, respectively. Section 4 describes the general quality assurance (QA) requirements for the FHM Detection Monitoring project. Section 5 contains the separate QAPs for each forest condition indicator: site condition and tree growth and regeneration, tree crown condition, tree damage assessment, photosynthetically active radiation (PAR), vegetation structure, ozone bioindicator plants, and lichen communities.

  8. Improving the Physical Health Monitoring of City & Hackney Assertive Outreach Service Patients.

    PubMed

    Akyuz, Elvan; Jain, Amit; Phelan, Declan; Gupta, Susham

    2016-01-01

    Improving physical healthcare to reduce premature mortality in people with SMI (Serious Mental Illness) is a priority for ELFT (East London NHS Foundation Trust) and NHS England. It is well know that people with schizophrenia have a life expectancy which is approximately 20% shorter than that of the general population and a substantial mortality difference exists between people with schizophrenia and the general community.[1-2] Among other risk factors, such as poor diet, physical inactivity, and high rates of smoking, the iatrogenic effects of anti-psychotic medications have been found to increase the risk of metabolic syndrome. This can easily be detected through regular monitoring. Through this project, it was our aim to improve the physical health monitoring of City & Hackney Assertive Outreach Service (AOS) patients with a view to decrease mortality rate, increase life expectancy, increase the quality of life, and reduce harm from medication. This was done using quality improvement methods, including several change ideas, each of which started sequentially over the course of a nine month period from November 2014. Following QI methodology, this utilised cycles of iterative learning using PDSA methods and was supported by the Trust's extensive programme of quality improvement, including training provided by the Institute for Healthcare Improvement. The project involved setting a specific aim which was improving the physical health monitoring of AOS patients to 80% by July 2015 and for our patients to have physical health checks (blood tests, weight, ECG, BP) as a minimum annually. From baseline measurements of between 50-75%, we reached our target of 80% for weight, BP and blood tests monitoring, with 89%, 91%, and 84% achieved respectively by July 2015. Further progress still needs to be made on ECGs, with 77% achieved by July 2015, although the monitoring of ECG nearly doubled from 39% in November 2014 to 77% in July 2015. This project demonstrated that

  9. On-orbit damage detection and health monitoring of large space trusses: Status and critical issues

    NASA Technical Reports Server (NTRS)

    Kashangaki, Thomas A. L.

    1991-01-01

    The long lifetimes, delicate nature and stringent pointing requirements of large space structures such as Space Station Freedom and geostationary Earth sciences platforms might require that these spacecraft be monitored periodically for possible damage to the load carrying structures. A review of the literature in damage detection and health monitoring of such structures is presented, along with a candidate structure to be used as a testbed for future work in this field. A unified notation and terminology is also proposed to facilitate comparisons between candidate methods.

  10. Health monitoring and disease prevention at the Zebrafish International Resource Center.

    PubMed

    Varga, Z M; Murray, K N

    2016-01-01

    In this chapter we review the components of the fish health program at the Zebrafish International Resource Center. We describe health-monitoring strategies to assess individual and colony health, practices to prevent the spread of pathogens within the fish colony, and a biosecurity program designed to prevent entry of new fish pathogens. While this program is designed for a facility on a recirculating water system with expectations of high volumes of import and export, many of the components can be directly applied or modified for application in facilities of different sizes and with other programmatic goals.

  11. Overview of space propulsion systems for identifying nondestructive evaluation and health monitoring opportunities

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1991-01-01

    The next generation of space propulsion systems will be designed to incorporate advanced health monitoring and nondestructive inspection capabilities. As a guide to help the nondestructive evaluation (NDE) community impact the development of these space propulsion systems, several questions should be addressed. An overview of background and current information on space propulsion systems at both the programmatic and technical levels is provided. A framework is given that will assist the NDE community in addressing key questions raised during the 2 to 5 April 1990 meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Nondestructive Evaluation Subcommittee (NDES).

  12. A Lamb waves based statistical approach to structural health monitoring of carbon fibre reinforced polymer composites.

    PubMed

    Carboni, Michele; Gianneo, Andrea; Giglio, Marco

    2015-07-01

    This research investigates a Lamb-wave based structural health monitoring approach matching an out-of-phase actuation of a pair of piezoceramic transducers at low frequency. The target is a typical quasi-isotropic carbon fibre reinforced polymer aeronautical laminate subjected to artificial, via Teflon patches, and natural, via suitable low velocity drop weight impact tests, delaminations. The performance and main influencing factors of such an approach are studied through a Design of Experiment statistical method, considering both Pulse Echo and Pitch Catch configurations of PZT sensors. Results show that some factors and their interactions can effectively influence the detection of a delamination-like damage.

  13. Conductive polymer sensor arrays: a new approach for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.

    2001-07-01

    Today's commercial and military aircraft require significant manpower resources to provide operational readiness and safety of flight. Aging aircraft fleets are much in need of new and innovative health-monitoring methods to prevent catastrophic failure and reduce life-cycle costs. The key items to be addressed are describing in situ structural integrity characteristics of corrosion and barely visible impact damage (BVID) to determine the 'damage susceptibility.' This paper presents a new concept for performing onboard real-time monitoring using conductive polymer sensor array technology.

  14. a Continuous Health Monitoring Guided Wave Fmd System for Retrofit to Existing Offshore Oilrigs

    NASA Astrophysics Data System (ADS)

    Mijarez, R.; Solis, L.; Martinez, F.

    2010-02-01

    An automatic health monitoring guided wave flood member detection (FMD) system, for retrofit to existing offshore oilrigs is presented. The system employs a microcontroller piezoelectric (PZT) based transmitter and a receiver instrumentation package composed of a PZT 40 kHz ultrasound transducer and a digital signal processor (DSP) module connected to a PC via USB for monitoring purposes. The transmitter and receiver were attached, non-intrusively, to the external wall of a steel tube; 1 m×27 cm×2 mm. Experiments performed in the laboratory have successfully identified automatically flooded tubes.

  15. Remote control for motor vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  16. Apparatus for stopping a vehicle

    DOEpatents

    Wattenburg, Willard H.; McCallen, David B.

    2007-03-20

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  17. Characterization of sensor performance and durability for structural health monitoring systems

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Giurgiutiu, Victor; Cooney, Adam; Doane, James

    2005-05-01

    A key question that needs to be addressed and answered with regard to successfully implementing Structural Health Monitoring technologies in Air Force systems involves the long-term operability, durability, and survivability of integrated sensor systems and their associated hardware. Whether a sensor system is fully integrated within a structural material, or surface-bonded to the structure, a number of environmental and system level influences will tend to degrade the sensor system"s performance and durability over time. In this effort, an initial sensor durability study was undertaken to better understand the performance and degradation of piezo wafer active sensor (PWAS) systems under adverse mechanical, temperature, and moisture conditions. A novel displacement-field imaging approach was utilized to understand the vibration characteristics of PWAS transducers placed in accelerated vibration, temperature-cycling, and moisture-cycling conditions. The results showed damage in the form of PWAS sensor cracking events, bond degradation and failure, as well as indications of performance variation and reduction due to the accelerated exposure levels. Future activities will focus on identifying critical durability and survivability issues through advanced sensor modeling and additional accelerated testing efforts, with the ultimate goal of improving the robustness of health monitoring systems through improved sensor system design and packaging.

  18. Evaluation and improvement in sensor performance and durability for structural health monitoring systems

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Cooney, Adam

    2006-03-01

    For aerospace applications, the successful transition and use of integrated structural health monitoring systems will require durable sensors that can perform in their intended environment for many years. For legacy aircraft the primary means of implementing a sensor system will be through surface mounting or bonding of the sensors to the structure. Previous work has shown that the performance of surface-bonded piezo sensors can degrade due to environmental effects such as vibrations, temperature fluctuations, and substrate flexure motions. This performance degradation included sensor cracking, disbonding, and general loss of efficiency over time. In this activity, the bond and piezo material characteristics of a typical surface-bonded piezo sensor system were studied to understand and improve the long-term durability and survivability of the sensor system. Analytic and computational models were developed and used to understand stress-strain relationships for the bonded sensor system, with a special emphasis being place on coefficient of thermal expansion issues. Accelerated environmental testing was accomplished for simple bonded piezo sensor systems, where a displacement-field imaging technique was used to understand the piezo sensor performance. Future activities will focus on identifying the optimal bond conditions and piezo material type, with the ultimate goal of improving the robustness of health monitoring systems through improved sensor system design and packaging.

  19. Structural health monitoring on turbine engines using microwave blade tip clearance sensors

    NASA Astrophysics Data System (ADS)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle

    2014-04-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to the aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for possible use in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the same experiments with the sub-scale turbine engine disks.

  20. Chest-Worn Health Monitor Based on a Bistatic Self-Injection-Locked Radar.

    PubMed

    Wang, Fu-Kang; Chou, You-Rung; Chiu, Yen-Chen; Horng, Tzyy-Sheng

    2015-12-01

    This paper presents wearable health monitors that are based on continuous-wave Doppler radar technology. To achieve low complexity, low power consumption, and simultaneous wireless transmission of Doppler information, the radar architecture is bistatic with a self-injection-locked oscillator (SILO) tag and an injection-locked oscillator (ILO)-based frequency demodulator. In experiments with a prototype that was operated in the medical body area network and the industrial scientific and medical bands from 2.36 to 2.484 GHz, the SILO tag is attached to the chest of a subject to transform the movement of the chest due to cardiopulmonary activity and body exercise into a transmitted frequency-modulated wave. The tag consumes a very low power of 4.4 mW. The ILO-based frequency demodulator, located 30 cm from the subject, receives and processes this wave to yield the waveform that is associated with the movement of the chest. Following further digital signal processing, the cardiopulmonary activity and body exercise are displayed as time-frequency spectrograms. Promisingly, the experimental results that are presented in this paper reveal that the proposed health monitor has high potential to integrate a cardiopulmonary sensor, a pedometer, and a wireless transmission device on a single radar platform.

  1. An intelligent health monitoring system using radio-frequency identification technology.

    PubMed

    Lai, Yeong-Lin; Chen, Chin-Ling; Chang, Ching-Hisang; Hsu, Chih-Yu; Lai, Yeong-Kang; Tseng, Kuo-Kun; Chen, Chih-Cheng; Zheng, Chun-Yi

    2015-01-01

    Long-term care (LTC) for the elderly has become extremely important in recent years. It is necessary for the different physiological monitoring systems to be integrated on the same interface to help oversee and manage the elderly's needs. This paper presents a novel health monitoring system for LTC services using radio-frequency identification (RFID) technology. Dual-band RFID protocols were included in the system, in which the high-frequency (HF) band of 13.56 MHz was used to identify individuals and the microwave band of 2.45 GHz was used to monitor physiological information. Distinct physiological data, including oxyhemoglobin saturation by pulse oximetry (SpO2), blood pressure, blood sugar, electrocardiogram (ECG) readings, body temperature, and respiration rate, were monitored by various biosensors. The intelligent RFID health monitoring system provided the features of the real-time acquisition of biomedical signals and the identification of personal information pertaining to the elderly and patients in nursing homes. PMID:26578279

  2. Evaluation of embedded FBGs in composite overwrapped pressure vessels for strain based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Pena, Francisco; Strutner, Scott M.; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.

    2014-03-01

    The increased use of composite overwrapped pressure vessels (COPVs) in space and commercial applications, and the explosive nature of pressure vessel ruptures, make it crucial to develop techniques for early condition based damage detection. The need for a robust health monitoring system for COPVs is a high priority since the mechanisms of stress rupture are not fully understood. Embedded Fiber Bragg Grating (FBG) sensors have been proposed as a potential solution that may be utilized to anticipate and potentially avoid catastrophic failures. The small size and light weight of optical fibers enable manufactures to integrate FBGs directly into composite structures for the purpose of structural health monitoring. A challenging aspect of embedding FBGs within composite structures is the risk of potentially impinging the optical fiber while the structure is under load, thus distorting the optical information to be transferred. As the COPV is pressurized, an embedded optical sensor is compressed between the expansion of the inner bottle, and the outer overwrap layer of composite. In this study, FBGs are installed on the outer surface of a COPV bottle as well as embedded underneath a composite overwrap layer for comparison of strain measurements. Experimental data is collected from optical fibers containing multiple FBGs during incremental pressurization cycles, ranging from 0 to 10,000 psi. The graphical representations of high density strain maps provide a more efficient process of monitoring structural integrity. Preliminary results capture the complex distribution of strain, while furthering the understanding of the failure mechanisms of COPVs.

  3. Applications of Ground Penetrating Radar in Bridge Health Monitoring Using Different Frequency Antennae Systems

    NASA Astrophysics Data System (ADS)

    Alani, A.; Kilic, G.; Aboutalebi, M.

    2012-04-01

    Inspection and assessment of bridge structures within the context of health monitoring of structures as well as the life cycle of structures is of paramount importance for structural engineers and bridge owners. No doubt the early detection of structural defects in particular internal structural elements such as bridge deck delamination, formation of cracks and corrosion of rebar will enable engineers to remedy the imperfection and prolong the serviceability of the structure. Applications of Ground Penetrating Radar (GPR) have proved to be effective in detecting such imperfections if utilised correctly. This paper presents and discusses the applications of GPR in assessing the structural integrity of a heavily used bridge in a town centre position (Pentagon Road Bridge, Chatham, Kent, UK) using different antennae in terms of frequency and method of application (2 GHz and 200-600 MHz GPR antennae). The paper focuses on the effectiveness of using the 'correct' tool and data processing in terms of better understanding possible structural defects. Processing, interpretation and analysis of collected data were supported by GRED software, with three-dimensional scanning capabilities. Reported results illustrate the effectiveness of GPR mapping providing valuable information regarding the positions of rebar (upper and lower reinforcement), unknown structural features as well as possible moisture ingress within the structure. The results also demonstrate a possible phenomenon in identifying the presence of moisture within the bridge deck confirming a similar finding in an earlier case (Forth Road Bridge in Scotland). Keywords: Bridge; Structure; Health Monitoring; Moisture Ingress.

  4. Mass and stiffness estimation using mobile devices for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Le, Viet; Yu, Tzuyang

    2015-04-01

    In the structural health monitoring (SHM) of civil infrastructure, dynamic methods using mass, damping, and stiffness for characterizing structural health have been a traditional and widely used approach. Changes in these system parameters over time indicate the progress of structural degradation or deterioration. In these methods, capability of predicting system parameters is essential to their success. In this paper, research work on the development of a dynamic SHM method based on perturbation analysis is reported. The concept is to use externally applied mass to perturb an unknown system and measure the natural frequency of the system. Derived theoretical expressions for mass and stiffness prediction are experimentally verified by a building model. Dynamic responses of the building model perturbed by various masses in free vibration were experimentally measured by a mobile device (cell phone) to extract the natural frequency of the building model. Single-degreeof- freedom (SDOF) modeling approach was adopted for the sake of using a cell phone. From the experimental result, it is shown that the percentage error of predicted mass increases when the mass ratio increases, while the percentage error of predicted stiffness decreases when the mass ratio increases. This work also demonstrated the potential use of mobile devices in the health monitoring of civil infrastructure.

  5. Augmented Fish Health Monitoring in Oregon, 1987-1988 Annual Report.

    SciTech Connect

    Bauer, Jerry

    1988-05-01

    Diminished natural fish production in the Columbia River Basin has prompted increased artificial propagation to compensate both for losses of anadromous salmonids related to hydroelectric facilities and for other causes. The health and quality of artificially propagated smolts probably is a major influence on survival. Smolt survival varies greatly from one location to another, among different species and from one year to the next. Fish health monitoring is necessary to identify cause of mortality, assist in producing a healthy smolt, and provide a means for improving hatchery effectiveness. The Bonneville Power Administration (BPA) conducted a series of meetings to define the minimum ''needed'' level of fish health monitoring, determine what was presently being done and what additional effort was needed in the Basin's 54 anadromous fish hatcheries. Funding for the additional effort in Oregon began June 2, 1987. The goal of this project is to increase smolt-to-adult survival by accomplishing the following: (1) increase monitoring for specific fish pathogens and fish health parameters; (2) measure hatchery water supply quality; (3) identify facility impediments to fish health; (4) create a database of hatchery and fish health information; (5) establish a technical steering committee to evaluate and refine the project annually; and (6) increase communication and technology application among personnel in hatcheries, research, management, other agencies and the public. 4 refs., 3 figs., 10 tabs.

  6. Structural Health Monitoring on Turbine Engines Using Microwave Blade Tip Clearance Sensors

    NASA Technical Reports Server (NTRS)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle

    2014-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for use possible in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the experiments with the sub-scale turbine engine disks.

  7. On the use of a compact optical fiber sensor system in aircraft structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih; Guo, Honglei; Xiao, Gaozhi; Rocha, Bruno; Sun, Zhigang

    2012-06-01

    Structural Health Monitoring (SHM) has been identified as an area of significant potential for advanced aircraft maintenance programs that ensure continued airworthiness, enhanced operational safety and reduced life cycle cost. Several sensors and sensory systems have been developed for the implementation of such health monitoring capability. Among a wide range of developed technologies, fiber optic sensor technology, in particular fiber Bragg grating based emerged as one of the most promising for aircraft structural applications. This paper is set to explore the suitability of using a new Fiber Bragg Grating sensor (FBG) system developed for operation in two modes, low and high speed sensing modes, respectively. The suitability of the system for potential use in aircraft load monitoring and damage detection applications has been demonstrated. Results from FBG sensor system were in good agreement with results from conventional resistive strain gauges, validating this capability for load monitoring. For damage detection, the FBG sensor system was able to detect acoustic waves generated 52 inches (1.32 m) away. The initial results, obtained in a full stale experimentation, demonstrate the potential of using FBG sensors for both load monitoring and damage detection in aircraft environment.

  8. A wirelessly programmable actuation and sensing system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Long, James; Büyüköztürk, Oral

    2016-04-01

    Wireless sensor networks promise to deliver low cost, low power and massively distributed systems for structural health monitoring. A key component of these systems, particularly when sampling rates are high, is the capability to process data within the network. Although progress has been made towards this vision, it remains a difficult task to develop and program 'smart' wireless sensing applications. In this paper we present a system which allows data acquisition and computational tasks to be specified in Python, a high level programming language, and executed within the sensor network. Key features of this system include the ability to execute custom application code without firmware updates, to run multiple users' requests concurrently and to conserve power through adjustable sleep settings. Specific examples of sensor node tasks are given to demonstrate the features of this system in the context of structural health monitoring. The system comprises of individual firmware for nodes in the wireless sensor network, and a gateway server and web application through which users can remotely submit their requests.

  9. Chest-Worn Health Monitor Based on a Bistatic Self-Injection-Locked Radar.

    PubMed

    Wang, Fu-Kang; Chou, You-Rung; Chiu, Yen-Chen; Horng, Tzyy-Sheng

    2015-12-01

    This paper presents wearable health monitors that are based on continuous-wave Doppler radar technology. To achieve low complexity, low power consumption, and simultaneous wireless transmission of Doppler information, the radar architecture is bistatic with a self-injection-locked oscillator (SILO) tag and an injection-locked oscillator (ILO)-based frequency demodulator. In experiments with a prototype that was operated in the medical body area network and the industrial scientific and medical bands from 2.36 to 2.484 GHz, the SILO tag is attached to the chest of a subject to transform the movement of the chest due to cardiopulmonary activity and body exercise into a transmitted frequency-modulated wave. The tag consumes a very low power of 4.4 mW. The ILO-based frequency demodulator, located 30 cm from the subject, receives and processes this wave to yield the waveform that is associated with the movement of the chest. Following further digital signal processing, the cardiopulmonary activity and body exercise are displayed as time-frequency spectrograms. Promisingly, the experimental results that are presented in this paper reveal that the proposed health monitor has high potential to integrate a cardiopulmonary sensor, a pedometer, and a wireless transmission device on a single radar platform. PMID:26168431

  10. Integrated system of structural health monitoring and intelligent management for a cable-stayed bridge.

    PubMed

    Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu

    2014-01-01

    It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system. PMID:25140342

  11. Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges.

    PubMed

    Banaee, Hadi; Ahmed, Mobyen Uddin; Loutfi, Amy

    2013-12-17

    The past few years have witnessed an increase in the development of wearable sensors for health monitoring systems. This increase has been due to several factors such as development in sensor technology as well as directed efforts on political and stakeholder levels to promote projects which address the need for providing new methods for care given increasing challenges with an aging population. An important aspect of study in such system is how the data is treated and processed. This paper provides a recent review of the latest methods and algorithms used to analyze data from wearable sensors used for physiological monitoring of vital signs in healthcare services. In particular, the paper outlines the more common data mining tasks that have been applied such as anomaly detection, prediction and decision making when considering in particular continuous time series measurements. Moreover, the paper further details the suitability of particular data mining and machine learning methods used to process the physiological data and provides an overview of the properties of the data sets used in experimental validation. Finally, based on this literature review, a number of key challenges have been outlined for data mining methods in health monitoring systems.

  12. The web-rhetoric of companies offering home-based personal health monitoring.

    PubMed

    Nordgren, Anders

    2012-06-01

    In this paper I investigate the web-rhetoric of companies offering home-based personal health monitoring to patients and elderly people. Two main rhetorical methods are found, namely a reference to practical benefits and a use of prestige words like "quality of life" and "independence". I interpret the practical benefits in terms of instrumental values and the prestige words in terms of final values. I also reconstruct the arguments on the websites in terms of six different types of argument. Finally, I articulate a general critique of the arguments, namely that the websites neglect the context of use of personal health monitoring technologies. Whether or not a technology is good depends on the use of the technology by a particular individual in a particular context. The technology is not good-or bad-in itself. I support this critique with a number of more specific arguments such as the risk for reduced personal contact. For some elderly people social contact with care providers is more valuable than the independent living made possible by remote monitoring, for others independence is more important.

  13. Public Health Monitoring of Privilege and Deprivation With the Index of Concentration at the Extremes

    PubMed Central

    Waterman, Pamela D.; Spasojevic, Jasmina; Li, Wenhui; Maduro, Gil; Van Wye, Gretchen

    2016-01-01

    Objectives. We evaluated use of the Index of Concentration at the Extremes (ICE) for public health monitoring. Methods. We used New York City data centered around 2010 to assess cross-sectional associations at the census tract and community district levels, for (1) diverse ICE measures plus the US poverty rate, with (2) infant mortality, premature mortality (before age 65 years), and diabetes mortality. Results. Point estimates for rate ratios were consistently greatest for the novel ICE that jointly measured extreme concentrations of income and race/ethnicity. For example, the census tract–level rate ratio for infant mortality comparing the bottom versus top quintile for an ICE contrasting low-income Black versus high-income White equaled 2.93 (95% confidence interval [CI] = 2.11, 4.09), but was 2.19 (95% CI = 1.59, 3.02) for low versus high income, 2.77 (95% CI = 2.02, 3.81) for Black versus White, and 1.56 (95% CI = 1.19, 2.04) for census tracts with greater than or equal to 30% versus less than 10% below poverty. Conclusions. The ICE may be a useful metric for public health monitoring, as it simultaneously captures extremes of privilege and deprivation and can jointly measure economic and racial/ethnic segregation. PMID:26691119

  14. New sensors and techniques for the structural health monitoring of propulsion systems.

    PubMed

    Woike, Mark; Abdul-Aziz, Ali; Oza, Nikunj; Matthews, Bryan

    2013-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA), through the Aviation Safety Program (AVSP), has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk. PMID:23935425

  15. Interoperability as a quality label for portable & wearable health monitoring systems.

    PubMed

    Chronaki, Catherine E; Chiarugi, Franco

    2005-01-01

    Advances in ICT promising universal access to high quality care, reduction of medical errors, and containment of health care costs, have renewed interest in electronic health records (EHR) standards and resulted in comprehensive EHR adoption programs in many European states. Health cards, and in particular the European health insurance card, present an opportunity for instant cross-border access to emergency health data including allergies, medication, even a reference ECG. At the same time, research and development in miniaturized medical devices and wearable medical sensors promise continuous health monitoring in a comfortable, flexible, and fashionable way. These trends call for the seamless integration of medical devices and intelligent wearables into an active EHR exploiting the vast information available to increase medical knowledge and establish personal wellness profiles. In a mobile connected world with empowered health consumers and fading barriers between health and healthcare, interoperability has a strong impact on consumer trust. As a result, current interoperability initiatives are extending the traditional standardization process to embrace implementation, validation, and conformance testing. In this paper, starting from the OpenECG initiative, which promotes the consistent implementation of interoperability standards in electrocardiography and supports a worldwide community with data sets, open source tools, specifications, and online conformance testing, we discuss EHR interoperability as a quality label for personalized health monitoring systems. Such a quality label would support big players and small enterprises in creating interoperable eHealth products, while opening the way for pervasive healthcare and the take-up of the eHealth market.

  16. New Sensors and Techniques for the Structural Health Monitoring of Propulsion Systems

    PubMed Central

    2013-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA), through the Aviation Safety Program (AVSP), has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk. PMID:23935425

  17. New sensors and techniques for the structural health monitoring of propulsion systems.

    PubMed

    Woike, Mark; Abdul-Aziz, Ali; Oza, Nikunj; Matthews, Bryan

    2013-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA), through the Aviation Safety Program (AVSP), has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk.

  18. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    PubMed Central

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  19. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    PubMed

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  20. Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges

    PubMed Central

    Banaee, Hadi; Ahmed, Mobyen Uddin; Loutfi, Amy

    2013-01-01

    The past few years have witnessed an increase in the development of wearable sensors for health monitoring systems. This increase has been due to several factors such as development in sensor technology as well as directed efforts on political and stakeholder levels to promote projects which address the need for providing new methods for care given increasing challenges with an aging population. An important aspect of study in such system is how the data is treated and processed. This paper provides a recent review of the latest methods and algorithms used to analyze data from wearable sensors used for physiological monitoring of vital signs in healthcare services. In particular, the paper outlines the more common data mining tasks that have been applied such as anomaly detection, prediction and decision making when considering in particular continuous time series measurements. Moreover, the paper further details the suitability of particular data mining and machine learning methods used to process the physiological data and provides an overview of the properties of the data sets used in experimental validation. Finally, based on this literature review, a number of key challenges have been outlined for data mining methods in health monitoring systems. PMID:24351646

  1. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NASA Astrophysics Data System (ADS)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  2. Neural network approach for a combined performance and mechanical health monitoring of a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Barad, Sanjay G.; P. V., Ramaiah; R. K., Giridhar; Krishnaiah, G.

    2012-02-01

    Traditionally independent diagnostics methods were employed for health monitoring of system. These exhibited an overall satisfactory performance, but with a limited effectiveness range. A discipline that has emerged in recent years is that of an information (or data) fusion, which allows interweaving of different methods with different effectiveness ranges, to produce a wider and more reliable coverage of diagnosis. It is a multidisciplinary domain wherein, data from the various domain is blended together to arrive at a more reliable monitoring. The present paper brings out a Neural Network (NN) based approach for executing this task of combined health monitoring viz. mechanical and performance, with an example case study pertaining to a developmental power turbine. The various parameters used along with the trending methodologies both for steady state and transient operations are brought out. In addition, the influences of various parameters that can lead to deviations in the response are also discussed. The whole process of executing this task is put forward in a rather simple manner. The results accrued have been well corroborated with the findings on dismantling of the turbine.

  3. Future Issues and Approaches to Health Monitoring and Failure Prevention for Oil-Free Gas Turbines

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2004-01-01

    Recent technology advances in foil air bearings, high temperature solid lubricants and computer based modeling has enabled the development of small Oil-Free gas turbines. These turbomachines are currently commercialized as small (<100 kW) microturbine generators and larger machines are being developed. Based upon these successes and the high potential payoffs offered by Oil-Free systems, NASA, industry, and other government entities are anticipating Oil-Free gas turbine propulsion systems to proliferate future markets. Since an Oil-Free engine has no oil system, traditional approaches to health monitoring and diagnostics, such as chip detection, oil analysis, and possibly vibration signature analyses (e.g., ball pass frequency) will be unavailable. As such, new approaches will need to be considered. These could include shaft orbit analyses, foil bearing temperature measurements, embedded wear sensors and start-up/coast down speed analysis. In addition, novel, as yet undeveloped techniques may emerge based upon concurrent developments in MEMS technology. This paper introduces Oil-Free technology, reviews the current state of the art and potential for future turbomachinery applications and discusses possible approaches to health monitoring, diagnostics and failure prevention.

  4. Integrated system of structural health monitoring and intelligent management for a cable-stayed bridge.

    PubMed

    Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu

    2014-01-01

    It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.

  5. Advances in utilization of structurally integrated sensor networks for health monitoring in commercial applications

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Kumar, Amrita; Qing, Xinlin; Beard, Shawn J.

    2002-07-01

    Structural health monitoring is a new technology that has been increasingly evaluated by the industry as a potential approach to improve the cost and ease of structural inspection. By improving structural inspection, structures can be made safer and more reliable, thus reducing the cost of structure ownership. Acellent Technologies is developing tools for structural health monitoring. The tools Acellent is offering are the SMART Layer and the SMART Suitcase. The SMART Layer is a flexible layer with a distributed array of piezoelectric transducers made using the printed circuit process that allows easy installation onto structures for in-situ sensing. The SMART Suitcase is an instrument that can interact with the SMART Layer and process the information collected from the structures. Acellent has been providing the system to researchers and companies to try out this new technique. Currently, this system is being evaluated by aircraft manufacturers for monitoring fatigue cracks from rivet holes, by an automotive company for inspecting flaws in composite/foam components, and by aerospace companies for detecting damages in composite/honeycomb sandwich structures. Other recent developments include the addition of fiber-optic sensors onto the SMART Layer and proving the SMART Layer for composite RTM process.

  6. ASIC-based design of NMR system health monitor for mission/safety-critical applications.

    PubMed

    Balasubramanian, P

    2016-01-01

    N-modular redundancy (NMR) is a generic fault tolerance scheme that is widely used in safety-critical circuit/system designs to guarantee the correct operation with enhanced reliability. In passive NMR, at least a majority (N + 1)/2 out of N function modules is expected to operate correctly at any time, where N is odd. Apart from a conventional realization of the NMR system, it would be useful to provide a concurrent indication of the system's health so that an appropriate remedial action may be initiated depending upon an application's safety criticality. In this context, this article presents the novel design of a generic NMR system health monitor which features: (i) early fault warning logic, that is activated upon the production of a conflicting result by even one output of any arbitrary function module, and (ii) error signalling logic, which signals an error when the number of faulty function modules unfortunately attains a majority and the system outputs may no more be reliable. Two sample implementations of NMR systems viz. triple modular redundancy and quintuple modular redundancy with the proposed system health monitoring are presented in this work, with a 4-bit ALU used for the function modules. The simulations are performed using a 32/28 nm CMOS process technology. PMID:27330894

  7. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    PubMed

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  8. Development of an impedance-based wireless sensor node for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mascarenas, David L.; Todd, Michael D.; Park, Gyuhae; Farrar, Charles R.

    2007-12-01

    This paper presents the development and application of a miniaturized impedance sensor node for structural health monitoring (SHM). A large amount of research has been focused on utilizing the impedance method for structural health monitoring. The vast majority of this research, however, has required the use of expensive and bulky impedance analyzers that are not suitable for field deployment. In this study, we developed a wireless impedance sensor node equipped with a low-cost integrated circuit chip that can measure and record the electrical impedance of a piezoelectric transducer, a microcontroller that performs local computing and a wireless telemetry module that transmits the structural information to a base station. The performance of this miniaturized and portable device has been compared to results obtained with a conventional impedance analyzer and its effectiveness has been demonstrated in an experiment to detect loss of preload in a bolted joint. Furthermore, for the first time, we also consider the problem of wireless powering of such SHM sensor nodes, where we use radio-frequency wireless energy transmission to deliver electrical energy to power the sensor node. In this way, the sensor node does not have to rely on an on-board power source, and the required energy can be wirelessly delivered as needed by human or a remotely controlled robotic device.

  9. Use of composite materials, health monitoring and self-healing concepts to refurbish our civil and military infrastructure.

    SciTech Connect

    Roach, Dennis Patrick; Delong, Waylon Anthony; White, Scott; Yepez, Esteban; Rackow, Kirk A.; Reedy, Earl David, Jr.

    2007-09-01

    An unavoidable by-product of a metallic structure's use is the appearance of crack, corrosion, erosion and other flaws. Economic barriers to the replacement of these structures have created an aging civil and military infrastructure and placed even greater demands on efficient and safe repair and inspection methods. As a result of Homeland Security issues and these aging infrastructure concerns, increased attention has been focused on the rapid repair and preemptive reinforcement of structures such as buildings and bridges. This Laboratory Directed Research and Development (LDRD) program established the viability of using bonded composite patches to repair metallic structures. High modulus fiber-reinforced polymer (FRP) material may be used in lieu of mechanically fastened metallic patches or welds to reinforce or repair damaged structures. Their use produces a wide array of engineering and economic advantages. Current techniques for strengthening steel structures have several drawbacks including requiring heavy equipment for installation, poor fatigue performance, and the need for ongoing maintenance due to continued corrosion attack or crack growth. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are currently no rehabilitation options. Applications include such diverse structures as: buildings, bridges, railroad cars, trucks and other heavy machinery, steel power and communication towers, pipelines, factories, mining equipment, ships, tanks and other military vehicles. This LDRD also proved the concept of a living infrastructure by developing custom sensors and self-healing chemistry and linking this technology with the application of advanced composite materials. Structural Health Monitoring (SHM) systems and mountable, miniature sensors were designed to continuously or periodically assess structural integrity. Such systems are able to detect

  10. Finnish experiences of health monitoring: local, regional, and national data sources for policy evaluation

    PubMed Central

    Kilpeläinen, Katri; Parikka, Suvi; Koponen, Päivikki; Koskinen, Seppo; Rotko, Tuulia; Koskela, Timo; Gissler, Mika

    2016-01-01

    Background Finland has a long tradition of gathering information about the health and welfare of the adult population. Design Surveys and administrative registers form the basis for national and local health monitoring in Finland. Results Different data sources are used in Finland to develop key indicators, which can be used to evaluate how the national health policy targets have been met in different parts of the country and in different population subgroups. Progress has been shown in chronic disease risk factors, such as smoking reduction. However, some health policy targets have not been met. Socioeconomic health differences, for example, have remained large compared with other European countries. Conclusion Although data availability for key health indicators is good in Finland, there is a need for wider and more comprehensive use of this information by political decision-makers and healthcare professionals. PMID:26931405

  11. A Spray-On Carbon Nanotube Artificial Neuron Strain Sensor for Composite Structural Health Monitoring.

    PubMed

    Choi, Gyeongrak; Lee, Jong Won; Cha, Ju Young; Kim, Young-Ju; Choi, Yeon-Sun; Schulz, Mark J; Moon, Chang Kwon; Lim, Kwon Tack; Kim, Sung Yong; Kang, Inpil

    2016-01-01

    We present a nanocomposite strain sensor (NCSS) to develop a novel structural health monitoring (SHM) sensor that can be easily installed in a composite structure. An NCSS made of a multi-walled carbon nanotubes (MWCNT)/epoxy composite was installed on a target structure with facile processing. We attempted to evaluate the NCSS sensing characteristics and benchmark compared to those of a conventional foil strain gauge. The response of the NCSS was fairly good and the result was nearly identical to the strain gauge. A neuron, which is a biomimetic long continuous NCSS, was also developed, and its vibration response was investigated for structural damage detection of a composite cantilever. The vibration response for damage detection was measured by tracking the first natural frequency, which demonstrated good result that matched the finite element (FE) analysis. PMID:27472332

  12. Performance analysis of coexisting IEEE 802.15.4-based health monitoring WBANs.

    PubMed

    Deylami, Mohammad; Jovanov, Emil

    2012-01-01

    Wireless Body Area Networks (WBANs) for health monitoring systems are required to meet stringent performance demands regarding the tradeoff between reliability, latency, and power efficiency. WBANs feature limited range and bandwidth and they are prone to interference. Considering the life-critical nature of some WBAN systems, we present an in-depth investigation of the situations where the dynamic coexistence of multiple WBANs may severely affect their performances. In this paper, we analytically study the effect of coexistence on the operation of WBANs. We present a mathematical analysis to precisely obtain the probabilities of successful communication and validate this analysis through simulation. Our simulation analysis indicates that in the default mode of operation, coexistence of three WBANs can lead to the loss of 20-85% of data transmissions for typical sensor configurations.

  13. All-optically driven system in ultrasonic wave-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Wu, Nan; Zhou, Jingcheng; Zhang, Haifeng; Wang, Xingwei

    2016-04-01

    Ultrasonic wave based structural health monitoring (SHM) is an innovative method for nondestructive detection and an area of growing interest. This is due to high demands for wireless detection in the field of structural engineering. Through optically exciting and detecting ultrasonic waves, electrical wire connections can be avoided, and non-contact SHM can be achieved. With the combination of piezoelectric transducer (PZT) (which possesses high heat resistance) and the noncontact detection, this system has a broad range of applications, even in extreme conditions. This paper reports an all-optically driven SHM system. The resonant frequencies of the PZT transducers are sensitive to a variety of structural damages. Experimental results have verified the feasibility of the all-optically driven SHM system.

  14. A noncontact FMCW radar sensor for displacement measurement in structural health monitoring.

    PubMed

    Li, Cunlong; Chen, Weimin; Liu, Gang; Yan, Rong; Xu, Hengyi; Qi, Yi

    2015-03-26

    This paper investigates the Frequency Modulation Continuous Wave (FMCW) radar sensor for multi-target displacement measurement in Structural Health Monitoring (SHM). The principle of three-dimensional (3-D) displacement measurement of civil infrastructures is analyzed. The requirements of high-accuracy displacement and multi-target identification for the measuring sensors are discussed. The fundamental measuring principle of FMCW radar is presented with rigorous mathematical formulas, and further the multiple-target displacement measurement is analyzed and simulated. In addition, a FMCW radar prototype is designed and fabricated based on an off-the-shelf radar frontend and data acquisition (DAQ) card, and the displacement error induced by phase asynchronism is analyzed. The conducted outdoor experiments verify the feasibility of this sensing method applied to multi-target displacement measurement, and experimental results show that three targets located at different distances can be distinguished simultaneously with millimeter level accuracy.

  15. Development of Ultrasonic Surface Wave Sensors for Structural Health Monitoring of Composite Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Druffner, C.; Nalladega, V.; Na, J. K.

    2011-06-01

    To increase the power generating capacity of a wind turbine composite turbine blade manufacturers have been increasing the size of blades. Current utility-scale windmills are equipped with blades ranging from 40 m (130 ft) to 90 m (300 ft) in their sweep diameter. The increased blade size brings greater structural and safety demands. Recent blade recalls and field failures highlights the market need for sensors capable of part quality inspections on manufacturing line and for structural health monitoring (SHM) of the composites in service. An ultrasonic surface wave sensor technology based on interdigitization transduction (IDT) has been developed that can inspect and detect defects in the composite blades. The current work covers the design, fabrication, and characterization of the IDT sensors. The sensor characterization, coverage area, and detection capability for a variety of defects such as impact, cracking and delamination will be discussed.

  16. Augmented Fish Health Monitoring in Idaho, 1989-1990 Annual Report.

    SciTech Connect

    Hauck, A. K.

    1990-10-01

    The Idaho augmented fish health monitoring contract DE-A179-87BP65903 was awarded in June 1987 and fully implemented in January 1988. The third annual report of activities serviced under this contract is presented. The prevailing fish health problems in 1989 include persistent infections caused by infectious pancreatic necrosis virus (IPNV), by Myxobolus (Myxosoma) cerebralis, Renibacterium salmoninarum and drug resistant Aeromonas salmonicida at select hatcheries on Idaho's upper Columbia River tributaries. Administrative focus during the year was to fill vacant positions and still maintain the monitoring effort at levels agreed on under contract. Complete diagnostic and inspection services were provided to eleven Idaho anadromous facilities. The present report describes work done to meet contract agreements and summarizes the fish health findings of anadromous stocks reared at and returning to Idaho's facilities during 1989.

  17. Forest health monitoring: Southeast loblolly/shortleaf pine demonstration interim report

    SciTech Connect

    Lewis, T.E.; Conkling, B.L.

    1994-04-01

    The U.S. Environmental Protection Agency's Office of Research and Development is conducting an Environmental Monitoring and Assessment Program (EMAP) with other federal agencies to establish the status of and trends in the ecological health of the Nation's natural resources. The forest component of EMAP is a multiagency effort referred to as Forest Health Monitoring (FHM). The FHM program conducted a two year demonstration study to test a suite of indicators considered important in assessing forest health. The study is referred to in this report as the Southeast Loblolly/Shortleaf Pine Demonstration, or SE DEMO. The interim report describes the results from the first year of the SE DEMO. The use of such data is encouraged by EMAP to foster a better understanding of the anticipated performance of an indicator prior to large investments in funding for field research. These data were used to the extent possible to determine the current status of each indicator with respect to the six criteria.

  18. Remote Mobile Health Monitoring System Based on Smart Phone and Browser/Server Structure.

    PubMed

    Zhang, Yunzhou; Liu, Huiyu; Su, Xiaolin; Jiang, Pei; Wei, Dongfei

    2015-01-01

    A remote mobile health monitoring system with mobile phone and web service capabilities is proposed in this paper. It provides an end-to-end solution; specifically, (1) physiologic parameters, including respiration rate and heart rate, are measured by wearable sensors and recorded by a mobile phone which presents the graphical interface for the user to observe his/her health status more easily; (2) it provides doctors and family members with necessary data through a web interface and enables authorized personnel to monitor the patient's condition and to facilitate remote diagnosis; and (3) it supports real-time alarming and positioning services during an urgent situation, such as a tumble or a heart attack, so that unexpected events can be handled in a timely manner. Experimental results show that the proposed system can reliably monitor the physiologic parameters and conveniently report the user's position.

  19. A Vibration-Based Strategy for Health Monitoring of Offshore Pipelines' Girth-Welds

    PubMed Central

    Razi, Pejman; Taheri, Farid

    2014-01-01

    This study presents numerical simulations and experimental verification of a vibration-based damage detection technique. Health monitoring of a submerged pipe's girth-weld against an advancing notch is attempted. Piezoelectric transducers are bonded on the pipe for sensing or actuation purposes. Vibration of the pipe is excited by two means: (i) an impulsive force; (ii) using one of the piezoelectric transducers as an actuator to propagate chirp waves into the pipe. The methodology adopts the empirical mode decomposition (EMD), which processes vibration data to establish energy-based damage indices. The results obtained from both the numerical and experimental studies confirm the integrity of the approach in identifying the existence, and progression of the advancing notch. The study also discusses and compares the performance of the two vibration excitation means in damage detection. PMID:25225877

  20. Structural health monitoring using time reversal and cracked rod spectral element

    NASA Astrophysics Data System (ADS)

    Lucena, R. L.; Dos Santos, J. M. C.

    2016-10-01

    Structural health monitoring (SHM) has received substantial attention in the last decades. Damage detection methods based on dynamic analysis seem to be appropriate to detect large damages, but fail for small ones. Alternative methods use elastic wave propagation allowing a quick and long range test. In this paper, a new approach based on the combination of Time Reversal Method (TRM) and Spectral Element Method (SEM) is proposed to perform structural damage detection. The main novelty is to combine wave-based spectral element model together with time reversal signal processing. Although the methodology is evaluated by numerical simulation, this combination of numerical modeling and time reversal signal processing can be applied as an experimental approach to provide a useful tool for damage detection. Simulated examples of the damage detection method using rod-like structures are illustrated and the results discussed and compared with those from literature.