Science.gov

Sample records for adaptation time constant

  1. Hearing-aid automatic gain control adapting to two sound sources in the environment, using three time constants

    NASA Astrophysics Data System (ADS)

    Nordqvist, Peter; Leijon, Arne

    2004-11-01

    A hearing aid AGC algorithm is presented that uses a richer representation of the sound environment than previous algorithms. The proposed algorithm is designed to (1) adapt slowly (in approximately 10 s) between different listening environments, e.g., when the user leaves a single talker lecture for a multi-babble coffee-break; (2) switch rapidly (about 100 ms) between different dominant sound sources within one listening situation, such as the change from the user's own voice to a distant speaker's voice in a quiet conference room; (3) instantly reduce gain for strong transient sounds and then quickly return to the previous gain setting; and (4) not change the gain in silent pauses but instead keep the gain setting of the previous sound source. An acoustic evaluation showed that the algorithm worked as intended. The algorithm was evaluated together with a reference algorithm in a pilot field test. When evaluated by nine users in a set of speech recognition tests, the algorithm showed similar results to the reference algorithm. .

  2. Unified Technical Concepts. Module 12: Time Constants.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on time constants is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  3. Time constants of flat superconducting cables

    SciTech Connect

    Takacs, S.; Yamamoto, J.

    1997-06-01

    The frequency dependence of coupling losses is calculated for flat superconducting cables, including the electromagnetic coupling between different current loops on the cable. It is shown that there are two characteristic time constants for both parallel and transverse coupling losses. The values of these time constants {tau}{sub 0} and {tau}{sub 1} are calculated by introducing effective inductances for the current loops. In both cases, {tau}{sub 1} is considerably smaller than {tau}{sub 0}. As the most important methods of determining {tau}{sub 0} from AC losses - namely, the limiting slope of loss/cycle at zero frequency and the position of the maximum loss/cycle vs. frequency - estimate {tau}{sub 0} and {tau}{sub 1}, respectively, the results are important for practical measurements and evaluation of time constants from AC losses. At larger frequencies, the losses are more likely to those in normal conductors (skin effect). The calculation schemes can be applied to cables with closely wound strands (like the cable-in-conduit conductors), too. However, several other effects should be considered being different and/or more important with respect to other cable types (demagnetization factor of strands and cables, larger regions near the cable edges, smaller number of strands and subcables, etc.).

  4. Time constant determination for electrical equivalent of biological cells

    NASA Astrophysics Data System (ADS)

    Dubey, Ashutosh Kumar; Dutta-Gupta, Shourya; Kumar, Ravi; Tewari, Abhishek; Basu, Bikramjit

    2009-04-01

    The electric field interactions with biological cells are of significant interest in various biophysical and biomedical applications. In order to study such important aspect, it is necessary to evaluate the time constant in order to estimate the response time of living cells in the electric field (E-field). In the present study, the time constant is evaluated by considering the hypothesis of electrical analog of spherical shaped cells and assuming realistic values for capacitance and resistivity properties of cell/nuclear membrane, cytoplasm, and nucleus. In addition, the resistance of cytoplasm and nucleoplasm was computed based on simple geometrical considerations. Importantly, the analysis on the basis of first principles shows that the average values of time constant would be around 2-3 μs, assuming the theoretical capacitance values and the analytically computed resistance values. The implication of our analytical solution has been discussed in reference to the cellular adaptation processes such as atrophy/hypertrophy as well as the variation in electrical transport properties of cellular membrane/cytoplasm/nuclear membrane/nucleoplasm.

  5. Newman-Penrose constants of stationary electrovacuum space-times

    SciTech Connect

    Zhang Xiangdong; Gao Sijie; Wu Xiaoning

    2009-05-15

    A theorem related to the Newman-Penrose constants is proven. The theorem states that all the Newman-Penrose constants of asymptotically flat, stationary, asymptotically algebraically special electrovacuum space-times are zero. Straightforward application of this theorem shows that all the Newman-Penrose constants of the Kerr-Newman space-time must vanish.

  6. Continuous-time adaptive critics.

    PubMed

    Hanselmann, Thomas; Noakes, Lyle; Zaknich, Anthony

    2007-05-01

    A continuous-time formulation of an adaptive critic design (ACD) is investigated. Connections to the discrete case are made, where backpropagation through time (BPTT) and real-time recurrent learning (RTRL) are prevalent. Practical benefits are that this framework fits in well with plant descriptions given by differential equations and that any standard integration routine with adaptive step-size does an adaptive sampling for free. A second-order actor adaptation using Newton's method is established for fast actor convergence for a general plant and critic. Also, a fast critic update for concurrent actor-critic training is introduced to immediately apply necessary adjustments of critic parameters induced by actor updates to keep the Bellman optimality correct to first-order approximation after actor changes. Thus, critic and actor updates may be performed at the same time until some substantial error build up in the Bellman optimality or temporal difference equation, when a traditional critic training needs to be performed and then another interval of concurrent actor-critic training may resume. PMID:17526332

  7. Design of a constant-voltage and constant-current controller with dual-loop and adaptive switching frequency control

    NASA Astrophysics Data System (ADS)

    Yingping, Chen; Zhiqian, Li

    2015-05-01

    A 5.0-V 2.0-A flyback power supply controller providing constant-voltage (CV) and constant-current (CC) output regulation without the use of an optical coupler is presented. Dual-close-loop control is proposed here due to its better regulation performance of tolerance over process and temperature compared with open loop control used in common. At the same time, the two modes, CC and CV, could switch to each other automatically and smoothly according to the output voltage level not sacrificing the regulation accuracy at the switching phase, which overcomes the drawback of the digital control scheme depending on a hysteresis comparator to change the mode. On-chip compensation using active capacitor multiplier technique is applied to stabilize the voltage loop, eliminate an additional package pin, and save on the die area. The system consumes as little as 100 mW at no-load condition without degrading the transient response performance by utilizing the adaptive switching frequency control mode. The proposed controller has been implemented in a commercial 0.35-μm 40-V BCD process, and the active chip area is 1.5 × 1.0 mm2. The total error of the output voltage due to line and load variations is less than ±1.7%.

  8. Using Constant Time Delay to Teach Braille Word Recognition

    ERIC Educational Resources Information Center

    Hooper, Jonathan; Ivy, Sarah; Hatton, Deborah

    2014-01-01

    Introduction: Constant time delay has been identified as an evidence-based practice to teach print sight words and picture recognition (Browder, Ahlbrim-Delzell, Spooner, Mims, & Baker, 2009). For the study presented here, we tested the effectiveness of constant time delay to teach new braille words. Methods: A single-subject multiple baseline…

  9. Sensory adaptation for timing perception

    PubMed Central

    Roseboom, Warrick; Linares, Daniel; Nishida, Shin'ya

    2015-01-01

    Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception. PMID:25788590

  10. Kaluza-Klein Bulk Viscous Cosmological Model with Time Dependent Gravitational Constant and Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Jain, Namrata I.; Bhoga, Shyamsunder S.

    2015-08-01

    Cosmological models with time varying gravitational constant G and cosmological constant Λ in the presence of viscous fluid in Kaluza-Klein metric were investigated. The solutions to Einstein Field Equation were obtained for different types of G, with bulk coefficient ξ = ξ 0 ρ d (where ρ is density of the Universe, d is some constant) and lambda Λ = α H 2 + β R -2 where H and R are Hubble parameter and scale factor respectively. Two possible models are suggested, one where G is proportional to H and, the other where G is inversely proportional to H. While the former leads to a non-singular model, the latter results in an inflationary model. Both Cosmological models show that the Universe is accelerating; but at the early stage of the Universe the behaviour of both models is quite different,which has been studied through the variation of decelerating parameter q with time.

  11. Time optimal paths for a constant speed unicycle

    SciTech Connect

    Reister, D.B.

    1991-01-01

    This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed unicycle. The time optimal paths consist of sequences of arcs of circles and straight lines. The maximum principle introduced concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. 10 refs., 6 figs.

  12. A Comparison of Simultaneous Prompting and Constant Time Delay Procedures in Teaching State Capitals

    ERIC Educational Resources Information Center

    Head, Kenneth David; Collins, Belva C.; Schuster, John W.; Ault, Melinda Jones

    2011-01-01

    This investigation compared the effectiveness and efficiency of constant time delay (CTD) and simultaneous prompting (SP) procedures in teaching discrete social studies facts to 4 high school students with learning and behavior disorders using an adapted alternating treatments design nested within a multiple probe design. The results indicated…

  13. Scattering in an external electric field asymptotically constant in time

    SciTech Connect

    Adachi, Tadayoshi; Ishida, Atsuhide

    2011-06-15

    We show the asymptotic completeness for two-body quantum systems in an external electric field asymptotically non-zero constant in time. One of the main ingredients of this paper is to give some propagation estimates for physical propagators generated by time-dependent Hamiltonians which govern the systems under consideration.

  14. Single time point isothermal drug stability experiments at constant humidity.

    PubMed

    Tao, Jian-Lin; Zhan, Xian-Cheng; Li, Lin-Li; Lin, Bing; Jiang, Lu

    2009-03-01

    A single time point isothermal drug stability experiments at constant humidity is introduced. In the new method, kinetic parameters related to both moisture and temperature were obtained by a single pair of experiments: these related to moisture by one with a group of testing humidities and a fixed temperature, those related to temperature by the other with a group of testing temperatures and a constant humidity. By a simulation, the estimates for the kinetic parameters (E(a), m, A) obtained by the proposed method and the reported programmed humidifying and heating method were statistically evaluated and were compared with those obtained by the isothermal measurements at constant humidity. Results indicated that under the same experimental conditions, the estimates obtained by the proposed method were significantly more precise than those obtained by the reported programmed humidifying and heating method. The estimates obtained by the isothermal method at constant humidity were somewhat more precise than those obtained by the proposed method. However, the experimental period needed by the isothermal method at constant humidity was greatly longer than that needed by the proposed method. The stability of dicloxacillin sodium, as a solid state model, was investigated by the single time point isothermal drug stability experiments at constant humidity. The results indicated that the kinetic parameters obtained by the proposed method were comparable to those from the reported. PMID:19252391

  15. Early universe constraints on time variation of fundamental constants

    SciTech Connect

    Landau, Susana J.; Mosquera, Mercedes E.; Scoccola, Claudia G.; Vucetich, Hector

    2008-10-15

    We study the time variation of fundamental constants in the early Universe. Using data from primordial light nuclei abundances, cosmic microwave background, and the 2dFGRS power spectrum, we put constraints on the time variation of the fine structure constant {alpha} and the Higgs vacuum expectation value without assuming any theoretical framework. A variation in leads to a variation in the electron mass, among other effects. Along the same line, we study the variation of {alpha} and the electron mass m{sub e}. In a purely phenomenological fashion, we derive a relationship between both variations.

  16. Telepresence, time delay, and adaptation

    NASA Technical Reports Server (NTRS)

    Held, Richard; Durlach, Nathaniel

    1989-01-01

    Displays are now being used extensively throughout the society. More and more time is spent watching television, movies, computer screens, etc. Furthermore, in an increasing number of cases, the observer interacts with the display and plays the role of operator as well as observer. To a large extent, the normal behavior in the normal environment can also be thought of in these same terms. Taking liberties with Shakespeare, it might be said, all the world's a display and all the individuals in it are operators in and on the display. Within this general context of interactive display systems, a discussion is began with a conceptual overview of a particular class of such systems, namely, teleoperator systems. The notion is considered of telepresence and the factors that limit telepresence, including decorrelation between the: (1) motor output of the teleoperator as sensed directly via the kinesthetic/tactual system, and (2) the motor output of the teleoperator as sensed indirectly via feedback from the slave robot, i.e., via a visual display of the motor actions of the slave robot. Finally, the deleterious effect of time delay (a particular decorrelation) on sensory-motor adaptation (an important phenomenon related to telepresence) is examined.

  17. The cosmological constant problem and re-interpretation of time

    NASA Astrophysics Data System (ADS)

    Luo, M. J.

    2014-07-01

    We abandon the interpretation that time is a global parameter in quantum mechanics, replace it by a quantum dynamical variable playing the role of time. This operational re-interpretation of time provides a solution to the cosmological constant problem. The expectation value of the zero-point energy under the new time variable vanishes. The fluctuation of the vacuum energy as the leading contribution to the gravitational effect gives a correct order to the observed "dark energy". The "dark energy" as a mirage is always seen comparable with the matter energy density by an observer using the internal clock time. Conceptual consequences of the re-interpretation of time are also discussed.

  18. Correction for instrument time constant in determination of reaction kinetics.

    SciTech Connect

    Chilton, Marie; Clark, Jared; Thomas, Nathan; Nicholson, Allen; Hansen, Lee D.; Hansen, Clifford W.; Hansen, Jaron

    2010-02-01

    Rates of reactions can be expressed as dn/dt = kcf(n) where n is moles of reaction, k is a rate constant, c is a proportionality constant, and f(n) is a function of the properties of the sample. When the instrument time constant, ?, and k are sufficiently comparable that measured rates are significantly affected by instrument response, correction for instrument response must be done to obtain accurate reaction kinetics. Correction for instrument response has previously been done by truncating early data or by use of the Tian equation. Both methods can lead to significant errors. We describe a method for simultaneous determination of ?, k, and c by fitting equations describing the combined instrument response and rate law to rates observed as a function of time. The method was tested with data on the heat rate from acid-catalyzed hydrolysis of sucrose.

  19. Use of Constant Time Delay and Attentional Responses with Adolescents.

    ERIC Educational Resources Information Center

    Wolery, Mark; And Others

    1991-01-01

    This study examined effectiveness of a constant time delay (CTD) procedure in teaching social studies and health facts to five adolescents with learning or behavioral disorders. Students were given praise with and without additional information. Results indicated CTD procedures were reliable and effective, and students acquired nontargeted as well…

  20. Cerebrovascular Time Constant in Patients with Head Injury.

    PubMed

    Trofimov, Alex; Kalentiev, George; Gribkov, Alexander; Voennov, Oleg; Grigoryeva, Vera

    2016-01-01

    The cerebrovascular time constant (τ) theoretically estimates how fast the cerebral arterial bed is filled by blood volume after a sudden change in arterial blood pressure during one cardiac cycle. The aim of this study was to assess the time constant of the cerebral arterial bed in patients with traumatic brain injury (TBI) with and without intracranial hematomas (IH). We examined 116 patients with severe TBI (mean 35 ± 15 years, 61 men, 55 women). The first group included 58 patients without IH and the second group included 58 patients with epidural (7), subdural (48), and multiple (3) hematomas. Perfusion computed tomography (PCT) was performed 1-12 days after TBI in the first group and 2-8 days after surgical evacuation of the hematoma in the second group. Arteriovenous amplitude of regional cerebral blood volume oscillation was calculated as the difference between arterial and venous blood volume in the "region of interest" of 1 cm(2). Mean arterial pressure was measured and the flow rate of the middle cerebral artery was recorded with transcranial Doppler ultrasound after PCT. The time constant was calculated by the formula modified by Kasprowicz. The τ was shorter (p = 0.05) in both groups 1 and 2 in comparison with normal data. The time constant in group 2 was shorter than in group 1, both on the side of the former hematoma (р = 0.012) and on the contralateral side (р = 0.044). The results indicate failure of autoregulation of cerebral capillary blood flow in severe TBI, which increases in patients with polytrauma and traumatic IH. PMID:26463964

  1. Fluorescence decay-time constants in organic liquid scintillators

    SciTech Connect

    Marrodan Undagoitia, T.; Feilitzsch, F. von; Oberauer, L.; Potzel, W.; Ulrich, A.; Winter, J.; Wurm, M.

    2009-04-15

    The fluorescence decay-time constants have been measured for several scintillator mixtures based on phenyl-o-xylylethane (PXE) and linear alkylbenzene (LAB) solvents. The resulting values are of relevance for the physics performance of the proposed large-volume liquid scintillator detector Low Energy Neutrino Astronomy (LENA). In particular, the impact of the measured values to the search for proton decay via p{yields}K{sup +}{nu} is evaluated in this work.

  2. THE HUBBLE CONSTANT INFERRED FROM 18 TIME-DELAY LENSES

    SciTech Connect

    Paraficz, Danuta; Hjorth, Jens

    2010-04-01

    We present a simultaneous analysis of 18 galaxy lenses with time-delay measurements. For each lens, we derive mass maps using pixelated simultaneous modeling with shared Hubble constant. We estimate the Hubble constant to be 66{sup +6}{sub -4} km s{sup -1} Mpc{sup -1} (for a flat universe with OMEGA{sub m} = 0.3, OMEGA{sub L}AMBDA = 0.7). We have also selected a subsample of five relatively isolated early-type galaxies, and by simultaneous modeling with an additional constraint on isothermality of their mass profiles, we get H{sub 0} = 76{sup +3}{sub -3} km s{sup -1} Mpc{sup -1}.

  3. A novel online adaptive time delay identification technique

    NASA Astrophysics Data System (ADS)

    Bayrak, Alper; Tatlicioglu, Enver

    2016-05-01

    Time delay is a phenomenon which is common in signal processing, communication, control applications, etc. The special feature of time delay that makes it attractive is that it is a commonly faced problem in many systems. A literature search on time-delay identification highlights the fact that most studies focused on numerical solutions. In this study, a novel online adaptive time-delay identification technique is proposed. This technique is based on an adaptive update law through a minimum-maximum strategy which is firstly applied to time-delay identification. In the design of the adaptive identification law, Lyapunov-based stability analysis techniques are utilised. Several numerical simulations were conducted with Matlab/Simulink to evaluate the performance of the proposed technique. It is numerically demonstrated that the proposed technique works efficiently in identifying both constant and disturbed time delays, and is also robust to measurement noise.

  4. Time Varying Gravitational Constant G via Entropic Force

    NASA Astrophysics Data System (ADS)

    M. R., Setare; Momeni, D.

    2011-10-01

    If the uncertainty principle applies to the Verlinde entropic idea, it leads to a new term in the Newton's second law of mechanics in the Planck's scale. This curious velocity dependent term inspires a frictional feature of the gravity In this short letter we address that this new term modifies the effective mass and the Newtonian constant as the time dependent quantities. Thus we must have a running on the value of the effective mass on the particle mass m near the holographic screen and the G. This result has a nigh relation with the Dirac hypothesis about the large numbers hypothesis (L.N.H.). We propose that the corrected entropic terms via Verlinde idea can be brought as a holographic evidence for the authenticity of the Dirac idea.

  5. Minimizing the area required for time constants in integrated circuits

    NASA Technical Reports Server (NTRS)

    Lyons, J. C.

    1972-01-01

    When a medium- or large-scale integrated circuit is designed, efforts are usually made to avoid the use of resistor-capacitor time constant generators. The capacitor needed for this circuit usually takes up more surface area on the chip than several resistors and transistors. When the use of this network is unavoidable, the designer usually makes an effort to see that the choice of resistor and capacitor combinations is such that a minimum amount of surface area is consumed. The optimum ratio of resistance to capacitance that will result in this minimum area is equal to the ratio of resistance to capacitance which may be obtained from a unit of surface area for the particular process being used. The minimum area required is a function of the square root of the reciprocal of the products of the resistance and capacitance per unit area. This minimum occurs when the area required by the resistor is equal to the area required by the capacitor.

  6. Is the possible fine-structure constant drift also a test of a time-dependent Planck constant?

    NASA Astrophysics Data System (ADS)

    Öztas, A. M.; Smith, M. L.

    2011-12-01

    The recent publication of spatial and distance variation of the fine-structure constant, α, derived from astronomical data of quasar emissions (QE) is exciting. The decreasing value of α over time, derived from data obtained from the Very Large Telescope (VLT) in Chile, encourages the search for other possible running constants. We surmise that emissions from distant supernovae, type Ia (SNe Ia), which are more blue than predictions are best explained by a decreasing Planck constant with increasing lookback time. We present some results from our theoretical work and comparison to the astronomical observations and suggest that both α and h might be running constants. More data are required to answer several questions about the origin of the "drifting" α and the possible time dependence of h. Astronomical tools such as SNe and QE may be the best means to secure the exacting data needed to confirm or deny these hypotheses.

  7. Comparing Simultaneous Prompting and Constant Time Delay to Teach Leisure Skills to Students with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Seward, Jannike; Schuster, John W.; Ault, Melinda Jones; Collins, Belva C.; Hall, Meada

    2014-01-01

    We compared the effects of simultaneous prompting and constant time delay in teaching two solitaire card games to five high school students with moderate intellectual disability. An adapted alternating treatments within a multiple probe design was used to evaluate the effectiveness and efficiency of the procedures. Both procedures were effective…

  8. Real-time Adaptive Control Using Neural Generalized Predictive Control

    NASA Technical Reports Server (NTRS)

    Haley, Pam; Soloway, Don; Gold, Brian

    1999-01-01

    The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.

  9. Adaptive time steps in trajectory surface hopping simulations.

    PubMed

    Spörkel, Lasse; Thiel, Walter

    2016-05-21

    Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energy surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling. PMID:27208937

  10. Adaptive time steps in trajectory surface hopping simulations

    NASA Astrophysics Data System (ADS)

    Spörkel, Lasse; Thiel, Walter

    2016-05-01

    Trajectory surface hopping (TSH) simulations are often performed in combination with active-space multi-reference configuration interaction (MRCI) treatments. Technical problems may arise in such simulations if active and inactive orbitals strongly mix and switch in some particular regions. We propose to use adaptive time steps when such regions are encountered in TSH simulations. For this purpose, we present a computational protocol that is easy to implement and increases the computational effort only in the critical regions. We test this procedure through TSH simulations of a GFP chromophore model (OHBI) and a light-driven rotary molecular motor (F-NAIBP) on semiempirical MRCI potential energy surfaces, by comparing the results from simulations with adaptive time steps to analogous ones with constant time steps. For both test molecules, the number of successful trajectories without technical failures rises significantly, from 53% to 95% for OHBI and from 25% to 96% for F-NAIBP. The computed excited-state lifetime remains essentially the same for OHBI and increases somewhat for F-NAIBP, and there is almost no change in the computed quantum efficiency for internal rotation in F-NAIBP. We recommend the general use of adaptive time steps in TSH simulations with active-space CI methods because this will help to avoid technical problems, increase the overall efficiency and robustness of the simulations, and allow for a more complete sampling.

  11. Time resolution studies using digital constant fraction discrimination

    NASA Astrophysics Data System (ADS)

    Fallu-Labruyere, A.; Tan, H.; Hennig, W.; Warburton, W. K.

    2007-08-01

    Digital Pulse Processing (DPP) modules are being increasingly considered to replace modular analog electronics in medium-scale nuclear physics experiments (100-1000s of channels). One major area remains, however, where it has not been convincingly demonstrated that DPP modules are competitive with their analog predecessors—time-of-arrival measurement. While analog discriminators and time-to-amplitude converters can readily achieve coincidence time resolutions in the 300-500 ps range with suitably fast scintillators and Photomultiplier Tubes (PMTs), this capability has not been widely demonstrated with DPPs. Some concern has been expressed, in fact, that such time resolutions are attainable with the 10 ns sampling times that are presently commonly available. In this work, we present time-coincidence measurements taken using a commercially available DPP (the Pixie-4 from XIA LLC) directly coupled to pairs of fast PMTs mated with either LSO or LaBr 3 scintillator crystals and excited by 22Na γ-ray emissions. Our results, 886 ps for LSO and 576 ps for LaBr 3, while not matching the best literature results using analog electronics, are already well below 1 ns and fully adequate for a wide variety of experiments. These results are shown not to be limited by the DPPs themselves, which achieved 57 ps time resolution using a pulser, but are degraded in part both by the somewhat limited number of photoelectrons we collected and by a sub-optimum choice of PMT. Analysis further suggests that increasing the sampling speed would further improve performance. We therefore conclude that DPP time-of-arrival resolution is already adequate to supplant analog processing in many applications and that further improvements could be achieved with only modest efforts.

  12. Durham adaptive optics real-time controller.

    PubMed

    Basden, Alastair; Geng, Deli; Myers, Richard; Younger, Eddy

    2010-11-10

    The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems. PMID:21068868

  13. Constant pressure and temperature discrete-time Langevin molecular dynamics.

    PubMed

    Grønbech-Jensen, Niels; Farago, Oded

    2014-11-21

    We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems-a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation. PMID:25416875

  14. Constant pressure and temperature discrete-time Langevin molecular dynamics

    SciTech Connect

    Grønbech-Jensen, Niels; Farago, Oded

    2014-11-21

    We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.

  15. A Time-Dependent Numerical Model for Spherically Symmetric Hailstone Growth Thermodynamics under Constant Ambient Conditions.

    NASA Astrophysics Data System (ADS)

    Lozowski, E. P.; D'Amours, R.

    1980-08-01

    A model of spherical hailstone growth thermodynamics is presented, and used to examine the validity of the continuous growth and heat balance assumptions frequently employed in the `classical' hail growth models. The model is similar to the spherically symmetric model formulated by Macklin and Payne (1969), but solutions to the model equations are obtained by means of finite-difference numerical methods. In the model, we do not try to simulate the discrete accretion process of individual drops. Instead, we attempt to identify the implications of the discrete, time-dependent nature of the icing process, by examining the accretion of a thin uniform layer of supercooled water over the entire surface of the sphere. The heat transfer equations both with the air and within the hailstone axe then solved assuming radial symmetry. By the addition of several such layers, the finite growth of a spherical hailstone can be simulated. In the present paper, only growth in constant ambient conditions is considered. It is shown that there are large internal heat fluxes during the interval between the accretion of successive layers (typically 1 s), which cause the temperatures near the surface to oscillate several degrees above and below their time-mean value. Nevertheless, the time-averaged temperature over an accretion cycle is almost uniform throughout the hailstone and, when the environmental conditions are constant, is approximately equal to the equilibrium surface temperature predicted by the `classical' models. As the hailstone grows under constant environmental conditions, it continually adapts to the classical equilibrium temperature, warming up almost uniformly throughout. The time scale for this adjustment to a quasi-equilibrium state is found to be of the order of the internal diffusive time scale R2/k. It is speculated therefore that if the environmental conditions change slowly (over time scales large compared with R2/k) the hailstone thermodynamics will be adequately

  16. Influence of gas microsensor mounting technique on its temperature time constant

    NASA Astrophysics Data System (ADS)

    Maziarz, Wojciech; Pisarkiewicz, Tadeusz

    2006-10-01

    Metal oxide semiconductor gas sensors with modulated working temperature should reveal small thermal time constant in comparison to the time constants of chemical reactions between gas atmosphere and sensitive layer. In such case analyzed sensor response is dominated with specific phenomena originated from these reactions. A way the sensors are mounted has big influence on the sensor thermal time constants. In experiments authors used gas sensors with ceramic and micromachined silicon substrates glued to the case or suspended on thin wires. Although mechanical stability and durability of glued sensors are better, the lower power consumption and lower time constants are possible with sensors mounted using thin wires.

  17. Tolerability of intramuscular and intradermal delivery by CELLECTRA® adaptive constant current electroporation device in healthy volunteers

    PubMed Central

    Diehl, Malissa C; Lee, Jessica C; Daniels, Stephen E; Tebas, Pablo; Khan, Amir S; Giffear, Mary; Sardesai, Niranjan Y; Bagarazzi, Mark L

    2013-01-01

    DNA vaccines are being developed as a potentially safe and effective immunization platform. However, translation of DNA vaccines into a clinical setting has produced results that have fallen short of those generated in a preclinical setting. Various strategies are being developed to address this lack of potency, including improvements in delivery methods. Electroporation (EP) creates transient increases in cell membrane permeability, thus enhancing DNA uptake and leading to a more robust immune response. Here, we report on the safety and tolerability of delivering sterile saline via intramuscular (IM) or intradermal (ID) injection followed by in vivo electroporation using the CELLECTRA® adaptive constant current device in healthy adults from two open-label studies. Pain, as assessed by VAS, was highest immediately after EP but diminishes by about 50% within 5 min. Mean VAS scores appear to correlate with the amount of energy delivered and depth of needle insertion, especially for intramuscular EP. Mean scores did not exceed 7 out of 10 or 3 out of 10 for IM and ID EP, respectively. The majority of adverse events included mild to moderate injection site reactions that resolved within one day. No deaths or serious adverse events were reported during the course of either study. Overall, injection followed by EP with the CELLECTRA® device was well-tolerated and no significant safety concerns were identified. These studies support the further development of electroporation as a vaccine delivery method to enhance immunogenicity, particularly for diseases in which traditional vaccination approaches are ineffective. PMID:24051434

  18. Design verification of large time constant thermal shields for optical reference cavities.

    PubMed

    Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H

    2016-02-01

    In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing. PMID:26931831

  19. Improving Adaptive Learning Technology through the Use of Response Times

    ERIC Educational Resources Information Center

    Mettler, Everett; Massey, Christine M.; Kellman, Philip J.

    2011-01-01

    Adaptive learning techniques have typically scheduled practice using learners' accuracy and item presentation history. We describe an adaptive learning system (Adaptive Response Time Based Sequencing--ARTS) that uses both accuracy and response time (RT) as direct inputs into sequencing. Response times are used to assess learning strength and…

  20. Real-time adaptive video image enhancement

    NASA Astrophysics Data System (ADS)

    Garside, John R.; Harrison, Chris G.

    1999-07-01

    As part of a continuing collaboration between the University of Manchester and British Aerospace, a signal processing array has been constructed to demonstrate that it is feasible to compensate a video signal for the degradation caused by atmospheric haze in real-time. Previously reported work has shown good agreement between a simple physical model of light scattering by atmospheric haze and the observed loss of contrast. This model predicts a characteristic relationship between contrast loss in the image and the range from the camera to the scene. For an airborne camera, the slant-range to a point on the ground may be estimated from the airplane's pose, as reported by the inertial navigation system, and the contrast may be obtained from the camera's output. Fusing data from these two streams provides a means of estimating model parameters such as the visibility and the overall illumination of the scene. This knowledge allows the same model to be applied in reverse, thus restoring the contrast lost to atmospheric haze. An efficient approximation of range is vital for a real-time implementation of the method. Preliminary results show that an adaptive approach to fitting the model's parameters, exploiting the temporal correlation between video frames, leads to a robust implementation with a significantly accelerated throughput.

  1. Vector Constants of Motion for Time-Dependent Kepler and Isotropic Harmonic Oscillator Potentials

    NASA Astrophysics Data System (ADS)

    Ritter, O. M.; Santos, F. C.; Tort, A. C.

    2001-06-01

    A method of obtaining vector constants of motion for time-independent as well as time-dependent central fields is discussed. Some well-established results are rederived in this alternative way and new ones obtained.

  2. Study of a Thermophysical System with Two Time Constants Using an Open Photoacoustic Cell

    NASA Astrophysics Data System (ADS)

    Bonno, B.; Zeninari, V.; Joly, L.; Parvitte, B.

    2011-03-01

    In this paper a study of a thermophysical system with two time constants, an electronic time constant and a thermal relaxation time constant, is presented. The system under study is a thin metallic sample coupled to an open photoacoustic (PA) cell, the resulting signal being measured by a lock-in amplifier or by a data acquisition device. All operations are performed by a computer-based automatic measurement system. A time- and frequency-domain theoretical analysis of the photothermal signal is given combining the usual PA scheme to the energy balance equation of the system. The experimental results are in very good agreement with the developed theory.

  3. Adaptive Controller Adaptation Time and Available Control Authority Effects on Piloting

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna; Gregory, Irene

    2013-01-01

    Adaptive control is considered for highly uncertain, and potentially unpredictable, flight dynamics characteristic of adverse conditions. This experiment looked at how adaptive controller adaptation time to recover nominal aircraft dynamics affects pilots and how pilots want information about available control authority transmitted. Results indicate that an adaptive controller that takes three seconds to adapt helped pilots when looking at lateral and longitudinal errors. The controllability ratings improved with the adaptive controller, again the most for the three seconds adaptation time while workload decreased with the adaptive controller. The effects of the displays showing the percentage amount of available safe flight envelope used in the maneuver were dominated by the adaptation time. With the displays, the altitude error increased, controllability slightly decreased, and mental demand increased. Therefore, the displays did require some of the subjects resources but these negatives may be outweighed by pilots having more situation awareness of their aircraft.

  4. Adaptive control of systems with unknown time delays

    NASA Astrophysics Data System (ADS)

    Nelson, James P.

    Control systems, on earth or in outer-space, may exhibit time delays in their dynamic behavior. Aerospace control systems must be able to operate in the presence of time delays both internal to the system and in its inputs and outputs. These delays are often introduced via systems controlled through a network, by information, energy or mass transport phenomena, but can also be caused by computer processing time or by the accumulation of time lags in a number of simple dynamic systems connected in series. When a dynamic system is subject to a time delay, unlike other parameters, this affects the temporal characteristics of the system and exact control over system operation cannot be strictly implemented. Systems with significant time delays are difficult to control using standard feedback controllers. The United States Air Force Research Laboratory (AFRL) is considering the use of router-based data networks on-board next generation satellites and in decentralized control architectures. This approach has the potential to introduce non-constant and non-deterministic communications delays into feedback control loops that make use of these data networks. The desire for rapid deployment of new spacecraft architectures will also introduce many other control issues as the rigorous measurement, calibration and performance tests usually conducted on spacecraft systems to develop a highly precise dynamic model will need to be drastically shortened due to the desired abbreviated build and launch schedule. Due to limited testing and system identification, the spacecraft model will have uncertainties/perturbations from the actual plant. This will require a controller that can robustly control the non-linear dynamic model with limited plant knowledge. The problems created by the control of time delay systems and the limited plant knowledge nature of the systems of interest leads us to the concept of adaptive control. Adaptive control makes adjustment of the controllers

  5. Dynamics of Perceived Exertion in Constant-Power Cycling: Time- and Workload-Dependent Thresholds

    ERIC Educational Resources Information Center

    Balagué, Natàlia; Hristovski, Robert; García, Sergi; Aguirre, Cecilia; Vázquez, Pablo; Razon, Selen; Tenenbaum, Gershon

    2015-01-01

    Purpose: The purpose of this study was to test the dynamics of perceived exertion shifts (PES) as a function of time and workload during constant-power cycling. Method: Fifty-two participants assigned to 4 groups performed a cycling task at 4 different constant workloads corresponding to their individual rates of perceived exertion (RPEs = 13, 15,…

  6. The Pyramid House: A ten-day thermal time constant passive solar home

    SciTech Connect

    Ellison, T.

    1999-07-01

    The Pyramid House is a passive solar home being designed and built to operate without back-up heating. Having told people this, the fear that someday the author might have to swallow his pride and seek the warmth of a neighbor's cozy wood-heated cabin has encouraged him to analyze the Pyramid House's projected winter performance. This performance is easy to visualize when described in terms of the home's thermal time constant, {tau}--an easily calculated measure of the time it takes the house to reach equilibrium with the ambient temperature. The Pyramid House obtains its long time constant using conventional insulation, and a very high degree of thermal mass via a radiant heat flooring system and water storage. After presenting the time constant concept, it is employed to analyze building materials and then the Pyramid House. The analyses show the ineffectuality of adding solar gain to homes with low time constants, such as typical US homes.

  7. An averaging analysis of discrete-time indirect adaptive control

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen M.; Kosut, Robert L.; Franklin, Gene F.

    1988-01-01

    An averaging analysis of indirect, discrete-time, adaptive control systems is presented. The analysis results in a signal-dependent stability condition and accounts for unmodeled plant dynamics as well as exogenous disturbances. This analysis is applied to two discrete-time adaptive algorithms: an unnormalized gradient algorithm and a recursive least-squares (RLS) algorithm with resetting. Since linearization and averaging are used for the gradient analysis, a local stability result valid for small adaptation gains is found. For RLS with resetting, the assumption is that there is a long time between resets. The results for the two algorithms are virtually identical, emphasizing their similarities in adaptive control.

  8. Performance of fast monolithic ECL voltage comparators in constant-fraction discriminators and other timing circuits

    SciTech Connect

    Binkley, D.M.; Casey, M.E. )

    1988-02-01

    Timing errors caused by voltage comparator operation are investigated in detail for constant-fraction discriminators and other timing circuits. These errors result from changing comparator response time for input signals with different slopes (voltage/time) and different levels. Comparator response time is analyzed for a modern high-speed ECL voltage comparator using the SPICE circuit analysis program which models the complex nonlinearities present in comparator operation. The simulated response time for a -90 mV to 10 mV step input is slightly larger than the specified comparator performance indicating a conservative analysis. Response time is presented for a variety of input signals and supports a comparator response-time model that consists of a charge-sensitivity (variable-time) delay component and a fixed delay component. Finally, SPICE circuit simulation is extended to simulate comparator operation in a constant-fraction discriminator circuit.

  9. A Time-Critical Adaptive Approach for Visualizing Natural Scenes on Different Devices

    PubMed Central

    Dong, Tianyang; Liu, Siyuan; Xia, Jiajia; Fan, Jing; Zhang, Ling

    2015-01-01

    To automatically adapt to various hardware and software environments on different devices, this paper presents a time-critical adaptive approach for visualizing natural scenes. In this method, a simplified expression of a tree model is used for different devices. The best rendering scheme is intelligently selected to generate a particular scene by estimating the rendering time of trees based on their visual importance. Therefore, this approach can ensure the reality of natural scenes while maintaining a constant frame rate for their interactive display. To verify its effectiveness and flexibility, this method is applied in different devices, such as a desktop computer, laptop, iPad and smart phone. Applications show that the method proposed in this paper can not only adapt to devices with different computing abilities and system resources very well but can also achieve rather good visual realism and a constant frame rate for natural scenes. PMID:25723177

  10. Effectiveness and Efficiency of Constant-Time Delay and Most-to-Least Prompt Procedures in Teaching Daily Living Skills to Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Aykut, Cigil

    2012-01-01

    This study is aimed at comparing the effectiveness and efficiency of constant-time delay and most-to-least prompt procedures in teaching daily living skills to children with mental retardation. Adapted alternating treatment design was used. The outcome shows that both procedures were equally effective in teaching the daily living skills. However,…

  11. Influence of the loss of time-constants repertoire in pathologic heartbeat dynamics

    NASA Astrophysics Data System (ADS)

    Guzmán-Vargas, L.; Muñoz-Diosdado, A.; Angulo-Brown, F.

    2005-03-01

    We present a fractal analysis of diurnal heart interbeat time series from healthy young subjects and patients with congestive heart failure. We describe some differences between these groups by means of the calculation of some scale-invariant exponents. A previous simple model to reproduce the observed differences is briefly described (Phys. Rev. E 67 (2003) 052901). The model is based in first-order autoregressive processes and consists in the combination of time constants. We suggest that some changes occurring with disease could be related to the participation or absence of time constants. Finally, we also present a multifractal analysis of simulated sequences and their comparison with real data.

  12. Averaging analysis for discrete time and sampled data adaptive systems

    NASA Technical Reports Server (NTRS)

    Fu, Li-Chen; Bai, Er-Wei; Sastry, Shankar S.

    1986-01-01

    Earlier continuous time averaging theorems are extended to the nonlinear discrete time case. Theorems for the study of the convergence analysis of discrete time adaptive identification and control systems are used. Instability theorems are also derived and used for the study of robust stability and instability of adaptive control schemes applied to sampled data systems. As a by product, the effects of sampling on unmodeled dynamics in continuous time systems are also studied.

  13. Competing bounds on the present-day time variation of fundamental constants

    SciTech Connect

    Dent, Thomas; Stern, Steffen; Wetterich, Christof

    2009-04-15

    We compare the sensitivity of a recent bound on time variation of the fine structure constant from optical clocks with bounds on time-varying fundamental constants from atomic clocks sensitive to the electron-to-proton mass ratio, from radioactive decay rates in meteorites, and from the Oklo natural reactor. Tests of the weak equivalence principle also lead to comparable bounds on present variations of constants. The 'winner in sensitivity' depends on what relations exist between the variations of different couplings in the standard model of particle physics, which may arise from the unification of gauge interactions. Weak equivalence principle tests are currently the most sensitive within unified scenarios. A detection of time variation in atomic clocks would favor dynamical dark energy and put strong constraints on the dynamics of a cosmological scalar field.

  14. Measurements of the time constant for steady ionization in shaped-charge barium releases

    NASA Technical Reports Server (NTRS)

    Hoch, Edward L.; Hallinan, Thomas J.

    1993-01-01

    Quantitative measurements of three solar illuminated shaped-charge barium releases injected at small angles to the magnetic field were made using a calibrated color television camera. Two of the releases were from 1989. The third release, a reanalysis of an event included in Hallinan's 1988 study of three 1986 releases, was included to provide continuity between the two studies. Time constants for ionization, measured during the first 25 s of each release, were found to vary considerably. The two 1989 time constants differed substantially, and both were significantly less than any of the 1986 time constants. On the basis of this variability, we conclude that the two 1989 releases showed evidence of continuous nonsolar ionization. One release showed nonsolar ionization which could not he attributed to Alfven's critical ionization velocity process, which requires a component of velocity perpendicular to the magnetic field providing a perpendicular energy greater than the ionization potential.

  15. Adaptive median filtering for preprocessing of time series measurements

    NASA Technical Reports Server (NTRS)

    Paunonen, Matti

    1993-01-01

    A median (L1-norm) filtering program using polynomials was developed. This program was used in automatic recycling data screening. Additionally, a special adaptive program to work with asymmetric distributions was developed. Examples of adaptive median filtering of satellite laser range observations and TV satellite time measurements are given. The program proved to be versatile and time saving in data screening of time series measurements.

  16. Discrete-time adaptive control of robot manipulators

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1989-01-01

    A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that asymptotic trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation.

  17. Time constant measurement for control of induction heating processes for thixoforming

    NASA Astrophysics Data System (ADS)

    Gerlach, O.; Lechler, A.; Verl, A.

    2015-02-01

    In controlling induction heating systems, several measurement methods exist for controlled heating of metal billets into the semi-solid state for thixoforming. The most common approach is to measure the billet temperature, which suffers from various drawbacks leading to difficulties in process stability. The main disadvantages are the small temperature range of the process window and the alloy composition dependency of the correlation between temperature and liquid fraction. An alternative is to determine the liquid fraction of the billet by measuring the time constant of the load. Although time constant measurement is not affected by the mentioned problems, it is difficult to use it as a controlled variable. This paper shows that disturbances affecting time constant measurement are mainly caused by semiconductor losses inside the inverter. A method is introduced to compensate these losses. This method was implemented and tested in the embedded system of an induction heating unit, thereby showing that it is possible to use time constant measurement to determine the liquid fraction of a billet during induction heating.

  18. Influence of a constant magnetic field on thrombocytes. [delay of blood coagulation time

    NASA Technical Reports Server (NTRS)

    Meyerova, Y. A.

    1974-01-01

    In an experiment on white mice it was found that a constant electromagnetic field with strength of 250-275 oersteds is biologically active at an exposure of 55 minutes. Qualitative and morphological changes in thrombocytes 1-3 days following exposure reduced their numbers, prolonged blood coagulation time and increased the number of leucocytes.

  19. Teaching Employment Skills to Adolescents with Mild and Moderate Disabilities Using a Constant Time Delay Procedure.

    ERIC Educational Resources Information Center

    Chandler, Wanda; And Others

    1993-01-01

    A five-second constant time delay procedure was used to teach three chained vocational tasks (filling a soda machine, using a duplicating machine, and using a photocopier) to four high school students with mild or moderate disabilities. All students acquired the skills with a low percentage of errors. Maintenance and generalization data were…

  20. Use of Constant Time Delay in Small Group Instruction: A Study of Observational and Incidental Learning.

    ERIC Educational Resources Information Center

    Doyle, Patricia Munson; And Others

    1990-01-01

    Constant time delay was found to be an effective strategy in teaching targeted facts to four secondary-age students with mild and moderate mental retardation. Students also learned other students' target facts through observation and learned incidental information embedded in the consequent event following correct responding. (Author/JDD)

  1. Concept for sleeve induction motor with 1-msec mechanical time constant

    NASA Technical Reports Server (NTRS)

    Wiegand, D. E.

    1968-01-01

    Conductive sleeve induction motor having a 1-msec mechanical time constant is used with solid-state devices to control all-electric servo power systems. The servomotor rotor inertia is small compared to the maximum force rating of the servo motion, permitting high no-load acceleration.

  2. Using a Constant Time Delay Procedure to Teach Foundational Swimming Skills to Children with Autism

    ERIC Educational Resources Information Center

    Rogers, Laura; Hemmeter, Mary Louise; Wolery, Mark

    2010-01-01

    The purpose of this study was to evaluate the effectiveness of using a constant time delay procedure to teach foundational swimming skills to three children with autism. The skills included flutter kick, front-crawl arm strokes, and head turns to the side. A multiple-probe design across behaviors and replicated across participants was used.…

  3. Using a Constant Time Delay Procedure to Teach Aquatic Play Skills to Children with Autism

    ERIC Educational Resources Information Center

    Yilmaz, Ilker; Birkan, Bunyamin; Konukman, Ferman; Erkan, Mert

    2005-01-01

    Effects of a constant time delay procedure on aquatic play skills of children with autism was investigated. A single subject multiple probe model across behaviors with probe conditions was used. Participants were four boys, 7-9 years old. Data were collected over a 10-week period using the single opportunity method as an intervention. Results…

  4. Stochastic analysis of epidemics on adaptive time varying networks

    NASA Astrophysics Data System (ADS)

    Kotnis, Bhushan; Kuri, Joy

    2013-06-01

    Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.

  5. Delay decomposition at a single server queue with constant service time and multiple inputs

    NASA Technical Reports Server (NTRS)

    Ziegler, C.; Schilling, D. L.

    1978-01-01

    Two network consisting of single server queues, each with a constant service time, are considered. The external inputs to each network are assumed to follow some general probability distribution. Several interesting equivalencies that exist between the two networks considered are derived. This leads to the introduction of an important concept in delay decomposition. It is shown that the waiting time experienced by a customer can be decomposed into two basic components called self-delay and interference delay.

  6. Gravitational lensing effects in a time-variable cosmological 'constant' cosmology

    NASA Technical Reports Server (NTRS)

    Ratra, Bharat; Quillen, Alice

    1992-01-01

    A scalar field phi with a potential V(phi) varies as phi exp -alpha(alpha is greater than 0) has an energy density, behaving like that of a time-variable cosmological 'constant', that redshifts less rapidly than the energy densities of radiation and matter, and so might contribute significantly to the present energy density. We compute, in this spatially flat cosmology, the gravitational lensing optical depth, and the expected lens redshift distribution for fixed source redshift. We find, for the values of alpha of about 4 and baryonic density parameter Omega of about 0.2 consistent with the classical cosmological tests, that the optical depth is significantly smaller than that in a constant-Lambda model with the same Omega. We also find that the redshift of the maximum of the lens distribution falls between that in the constant-Lambda model and that in the Einstein-de Sitter model.

  7. Real-time adaptive aircraft scheduling

    NASA Technical Reports Server (NTRS)

    Kolitz, Stephan E.; Terrab, Mostafa

    1990-01-01

    One of the most important functions of any air traffic management system is the assignment of ground-holding times to flights, i.e., the determination of whether and by how much the take-off of a particular aircraft headed for a congested part of the air traffic control (ATC) system should be postponed in order to reduce the likelihood and extent of airborne delays. An analysis is presented for the fundamental case in which flights from many destinations must be scheduled for arrival at a single congested airport; the formulation is also useful in scheduling the landing of airborne flights within the extended terminal area. A set of approaches is described for addressing a deterministic and a probabilistic version of this problem. For the deterministic case, where airport capacities are known and fixed, several models were developed with associated low-order polynomial-time algorithms. For general delay cost functions, these algorithms find an optimal solution. Under a particular natural assumption regarding the delay cost function, an extremely fast (O(n ln n)) algorithm was developed. For the probabilistic case, using an estimated probability distribution of airport capacities, a model was developed with an associated low-order polynomial-time heuristic algorithm with useful properties.

  8. Consensus time and conformity in the adaptive voter model

    NASA Astrophysics Data System (ADS)

    Rogers, Tim; Gross, Thilo

    2013-09-01

    The adaptive voter model is a paradigmatic model in the study of opinion formation. Here we propose an extension for this model, in which conflicts are resolved by obtaining another opinion, and analytically study the time required for consensus to emerge. Our results shed light on the rich phenomenology of both the original and extended adaptive voter models, including a dynamical phase transition in the scaling behavior of the mean time to consensus.

  9. Bipolar square-wave current source for transient electromagnetic systems based on constant shutdown time

    NASA Astrophysics Data System (ADS)

    Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan

    2016-03-01

    Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.

  10. Memory efficient and constant time 2D-recursive spatial averaging filter for embedded implementations

    NASA Astrophysics Data System (ADS)

    Gan, Qifeng; Seoud, Lama; Ben Tahar, Houssem; Langlois, J. M. Pierre

    2016-04-01

    Spatial Averaging Filters (SAF) are extensively used in image processing for image smoothing and denoising. Their latest implementations have already achieved constant time computational complexity regardless of kernel size. However, all the existing O(1) algorithms require additional memory for temporary data storage. In order to minimize memory usage in embedded systems, we introduce a new two-dimensional recursive SAF. It uses previous resultant pixel values along both rows and columns to calculate the current one. It can achieve constant time computational complexity without using any additional memory usage. Experimental comparisons with previous SAF implementations shows that the proposed 2D-Recursive SAF does not require any additional memory while offering a computational time similar to the most efficient existing SAF algorithm. These features make it especially suitable for embedded systems with limited memory capacity.

  11. Real-time method and apparatus for measuring the decay-time constant of a fluorescing phosphor

    DOEpatents

    Britton, Jr., Charles L.; Beshears, David L.; Simpson, Marc L.; Cates, Michael R.; Allison, Steve W.

    1999-01-01

    A method for determining the decay-time constant of a fluorescing phosphor is provided, together with an apparatus for performing the method. The apparatus includes a photodetector for detecting light emitted by a phosphor irradiated with an excitation pulse and for converting the detected light into an electrical signal. The apparatus further includes a differentiator for differentiating the electrical signal and a zero-crossing discrimination circuit that outputs a pulse signal having a pulse width corresponding to the time period between the start of the excitation pulse and the time when the differentiated electrical signal reaches zero. The width of the output pulse signal is proportional to the decay-time constant of the phosphor.

  12. Delay decomposition at a single server queue with constant service time and multiple inputs. [Waiting time on computer network

    NASA Technical Reports Server (NTRS)

    Ziegler, C.; Schilling, D. L.

    1977-01-01

    Two networks consisting of single server queues, each with a constant service time, are considered. The external inputs to each network are assumed to follow some general probability distribution. Several interesting equivalencies that exist between the two networks considered are derived. This leads to the introduction of an important concept in delay decomposition. It is shown that the waiting time experienced by a customer can be decomposed into two basic components called self delay and interference delay.

  13. The method of variation of constants and multiple time scales in orbital mechanics.

    PubMed

    Newman, William I; Efroimsky, Michael

    2003-06-01

    The method of variation of constants is an important tool used to solve systems of ordinary differential equations, and was invented by Euler and Lagrange to solve a problem in orbital mechanics. This methodology assumes that certain "constants" associated with a homogeneous problem will vary in time in response to an external force. It also introduces one or more constraint equations. We show that these constraints can be generalized in analogy to gauge theories in physics, and that different constraints can offer conceptual advances and methodological benefits to the solution of the underlying problem. Examples are given from linear ordinary differential equation theory and from orbital mechanics. However, a slow driving force in the presence of multiple time scales contained in the underlying (homogeneous) problem nevertheless requires special care, and this has strong implications to the analytic and numerical solutions of problems ranging from celestial mechanics to molecular dynamics. (c) 2003 American Institute of Physics. PMID:12777110

  14. Simulating diffusion processes in discontinuous media: A numerical scheme with constant time steps

    SciTech Connect

    Lejay, Antoine; Pichot, Geraldine

    2012-08-30

    In this article, we propose new Monte Carlo techniques for moving a diffusive particle in a discontinuous media. In this framework, we characterize the stochastic process that governs the positions of the particle. The key tool is the reduction of the process to a Skew Brownian motion (SBM). In a zone where the coefficients are locally constant on each side of the discontinuity, the new position of the particle after a constant time step is sampled from the exact distribution of the SBM process at the considered time. To do so, we propose two different but equivalent algorithms: a two-steps simulation with a stop at the discontinuity and a one-step direct simulation of the SBM dynamic. Some benchmark tests illustrate their effectiveness.

  15. Transiting planets as a precision clock to constrain the time variation of the gravitational constant

    NASA Astrophysics Data System (ADS)

    Masuda, Kento; Suto, Yasushi

    2016-06-01

    Analysis of transit times in exoplanetary systems accurately provides an instantaneous orbital period, P(t), of their member planets. A long-term monitoring of those transiting planetary systems puts limits on the variability of P(t), which are translated into the constraints on the time variation of the gravitational constant G. We apply this analysis to 10 transiting systems observed by the Kepler spacecraft, and find that ΔG/G ≲ 5 × 10- 6 for 2009-2013, or dot{G}/G ≲ 10^{-6}yr-1 if dot{G} is constant. While the derived limit is weaker than those from other analyses, it is complementary to them and can be improved by analyzing numerous transiting systems that are continuously monitored.

  16. Inherent robustness of discrete-time adaptive control systems

    NASA Technical Reports Server (NTRS)

    Ma, C. C. H.

    1986-01-01

    Global stability robustness with respect to unmodeled dynamics, arbitrary bounded internal noise, as well as external disturbance is shown to exist for a class of discrete-time adaptive control systems when the regressor vectors of these systems are persistently exciting. Although fast adaptation is definitely undesirable, so far as attaining the greatest amount of global stability robustness is concerned, slow adaptation is shown to be not necessarily beneficial. The entire analysis in this paper holds for systems with slowly varying return difference matrices; the plants in these systems need not be slowly varying.

  17. Dividing line between quantum and classical trajectories in a measurement problem: Bohmian time constant.

    PubMed

    Nassar, Antonio B; Miret-Artés, Salvador

    2013-10-11

    This Letter proposes an answer to a challenge posed by Bell on the lack of clarity in regards to the dividing line between the quantum and classical regimes in a measurement problem. To this end, a generalized logarithmic nonlinear Schrödinger equation is proposed to describe the time evolution of a quantum dissipative system under continuous measurement. Within the Bohmian mechanics framework, a solution to this equation reveals a novel result: it displays a time constant that should represent the dividing line between the quantum and classical trajectories. It is shown that continuous measurements and damping not only disturb the particle but compel the system to converge in time to a Newtonian regime. While the width of the wave packet may reach a stationary regime, its quantum trajectories converge exponentially in time to classical trajectories. In particular, it is shown that damping tends to suppress further quantum effects on a time scale shorter than the relaxation time of the system. If the initial wave packet width is taken to be equal to 2.8×10(-15) m (the approximate size of an electron), the Bohmian time constant is found to have an upper limit, i.e., τ(Bmax)=10(-26) s. PMID:24160580

  18. Time and Space Resolved Heat Transfer Measurements Under Nucleate Bubbles with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2003-01-01

    Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.

  19. Limits on the Time Evolution of Space Dimensions from Newton's Constant

    NASA Astrophysics Data System (ADS)

    Nasseri, Forough

    Limits are imposed upon the possible rate of change of extra spatial dimensions in a decrumpling model Universe with time variable spatial dimensions (TVSD) by considering the time variation of (1+3)-dimensional Newton's constant. Previous studies on the time variation of (1+3)-dimensional Newton's constant in TVSD theory had not include the effects of the volume of the extra dimensions and the effects of the surface area of the unit sphere in D-space dimensions. Our main result is that the absolute value of the present rate of change of spatial dimensions to be less than about 10-14 yr-1. Our results would appear to provide a prima facie case for ruling the TVSD model out. We show that based on observational bounds on the present variation of Newton's constant, one would have to conclude that the spatial dimension of the Universe when the Universe was "at the Planck scale" to be less than or equal to 3.09. If the dimension of space when the Universe was "at the Planck scale" is constrained to be fractional and very close to 3, then the whole edifice of TVSD model loses credibility.

  20. Active movement restores veridical event-timing after tactile adaptation.

    PubMed

    Tomassini, Alice; Gori, Monica; Burr, David; Sandini, Giulio; Morrone, Maria Concetta

    2012-10-01

    Growing evidence suggests that time in the subsecond range is tightly linked to sensory processing. Event-time can be distorted by sensory adaptation, and many temporal illusions can accompany action execution. In this study, we show that adaptation to tactile motion causes a strong contraction of the apparent duration of tactile stimuli. However, when subjects make a voluntary motor act before judging the duration, it annuls the adaptation-induced temporal distortion, reestablishing veridical event-time. The movement needs to be performed actively by the subject: passive movement of similar magnitude and dynamics has no effect on adaptation, showing that it is the motor commands themselves, rather than reafferent signals from body movement, which reset the adaptation for tactile duration. No other concomitant perceptual changes were reported (such as apparent speed or enhanced temporal discrimination), ruling out a generalized effect of body movement on somatosensory processing. We suggest that active movement resets timing mechanisms in preparation for the new scenario that the movement will cause, eliminating inappropriate biases in perceived time. Our brain seems to utilize the intention-to-move signals to retune its perceptual machinery appropriately, to prepare to extract new temporal information. PMID:22832572

  1. Using Response Times for Item Selection in Adaptive Testing

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2008-01-01

    Response times on items can be used to improve item selection in adaptive testing provided that a probabilistic model for their distribution is available. In this research, the author used a hierarchical modeling framework with separate first-level models for the responses and response times and a second-level model for the distribution of the…

  2. HUBBLE CONSTANT, LENSING, AND TIME DELAY IN RELATIVISTIC MODIFIED NEWTONIAN DYNAMICS

    SciTech Connect

    Tian, Yong; Ko, Chung-Ming; Chiu, Mu-Chen E-mail: cmko@astro.ncu.edu.tw

    2013-06-20

    The time delay in galaxy gravitational lensing systems has been used to determine the value of the Hubble constant. As with other dynamical phenomena on the galaxy scale, dark matter is often invoked in gravitational lensing to account for the 'missing mass' (the apparent discrepancy between the dynamical mass and the luminous mass). Alternatively, modified gravity can be used to explain the discrepancy. In this paper, we adopt the tensor-vector-scalar gravity (TeVe S), a relativistic version of Modified Newtonian Dynamics, to study gravitational lensing phenomena and derive the formulae needed to evaluate the Hubble constant. We test our method on quasar lensing by elliptical galaxies in the literature. We focus on double-image systems with time delay measurement. Three candidates are suitable for our study: HE 2149-2745, FBQ J0951+2635, and SBS 0909+532. The Hubble constant obtained is consistent with the value used to fit the cosmic microwave background result in a neutrino cosmological model.

  3. Assessment of the time constant of relaxation: insights from simulations and hemodynamic measurements.

    PubMed

    De Mey, S; Thomas, J D; Greenberg, N L; Vandervoort, P M; Verdonck, P R

    2001-06-01

    The objective of this study was to use high-fidelity animal data and numerical simulations to gain more insight into the reliability of the estimated relaxation constant derived from left ventricular pressure decays, assuming a monoexponential model with either a fixed zero or free moving pressure asymptote. Comparison of the experimental data with the results of the simulations demonstrated a trade off between the fixed zero and the free moving asymptote approach. The latter method more closely fits the pressure curves and has the advantage of producing an extra coefficient with potential diagnostic information. On the other hand, this method suffers from larger standard errors on the estimated coefficients. The method with fixed zero asymptote produces values of the time constant of isovolumetric relaxation (tau) within a narrow confidence interval. However, if the pressure curve is actually decaying to a nonzero pressure asymptote, this method results in an inferior fit of the pressure curve and a biased estimation of tau. PMID:11356655

  4. Assessment of the time constant of relaxation: insights from simulations and hemodynamic measurements

    NASA Technical Reports Server (NTRS)

    De Mey, S.; Thomas, J. D.; Greenberg, N. L.; Vandervoort, P. M.; Verdonck, P. R.

    2001-01-01

    The objective of this study was to use high-fidelity animal data and numerical simulations to gain more insight into the reliability of the estimated relaxation constant derived from left ventricular pressure decays, assuming a monoexponential model with either a fixed zero or free moving pressure asymptote. Comparison of the experimental data with the results of the simulations demonstrated a trade off between the fixed zero and the free moving asymptote approach. The latter method more closely fits the pressure curves and has the advantage of producing an extra coefficient with potential diagnostic information. On the other hand, this method suffers from larger standard errors on the estimated coefficients. The method with fixed zero asymptote produces values of the time constant of isovolumetric relaxation (tau) within a narrow confidence interval. However, if the pressure curve is actually decaying to a nonzero pressure asymptote, this method results in an inferior fit of the pressure curve and a biased estimation of tau.

  5. Constants of the motion, universal time and the Hamilton-Jacobi function in general relativity

    NASA Astrophysics Data System (ADS)

    O'Hara, Paul

    2013-04-01

    In most text books of mechanics, Newton's laws or Hamilton's equations of motion are first written down and then solved based on initial conditions to determine the constants of the motions and to describe the trajectories of the particles. In this essay, we take a different starting point. We begin with the metrics of general relativity and show how they can be used to construct by inspection constants of motion, which can then be used to write down the equations of the trajectories. This will be achieved by deriving a Hamiltonian-Jacobi function from the metric and showing that its existence requires all of the above mentioned properties. The article concludes by showing that a consistent theory of such functions also requires the need for a universal measure of time which can be identified with the "worldtime" parameter, first introduced by Steuckelberg and later developed by Horwitz and Piron.

  6. Short time Fourier analysis of the electromyogram - Fast movements and constant contraction

    NASA Technical Reports Server (NTRS)

    Hannaford, Blake; Lehman, Steven

    1986-01-01

    Short-time Fourier analysis was applied to surface electromyograms (EMG) recorded during rapid movements, and during isometric contractions at constant forces. A portion of the data to be transformed by multiplying the signal by a Hamming window was selected, and then the discrete Fourier transform was computed. Shifting the window along the data record, a new spectrum was computed each 10 ms. The transformed data were displayed in spectograms or 'voiceprints'. This short-time technique made it possible to see time-dependencies in the EMG that are normally averaged in the Fourier analysis of these signals. Spectra of EMGs during isometric contractions at constant force vary in the short (10-20 ms) term. Short-time spectra from EMGs recorded during rapid movements were much less variable. The windowing technique picked out the typical 'three-burst pattern' in EMG's from both wrist and head movements. Spectra during the bursts were more consistent than those during isometric contractions. Furthermore, there was a consistent shift in spectral statistics in the course of the three bursts. Both the center frequency and the variance of the spectral energy distribution grew from the first burst to the second burst in the same muscle. The analogy between EMGs and speech signals is extended to argue for future applicability of short-time spectral analysis of EMG.

  7. Electric field observations of time constants related to charging and charge neutralization processes in the ionosphere

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Evans, D. S.; Troim, J.

    1982-01-01

    The Polar 5 electric field results are reviewed, and the transients from Polar 3 are presented. The phenomena are discussed from the standpoint of space charge. On the basis of the Polar 5 results, the large magnitude of the electric field from Polar 3 is seen as indicating that the observed space charge was probably within a few km or less of the payload. Reference is made to Cole's prediction (1960) that charges in the ionosphere would reach equilibrium with a time constant of the order of a few microsec. The processes involved in the two cases presented here require time constants of the order of ms. If the sheath dimensions are taken to be between 50 and 100 m, which is not considered unreasonable in view of the electric field measurements, then a qualitative estimate of the neutralization time would be the transit time for ions across the sheath. Since the kinetic velocity of a 1-eV proton is approximately 14 m/s, it would traverse the distance in 4 to 8 ms, assuming freedom of movement across magnetic field lines. This is the order of the decay times observed on Polar 5.

  8. Constant phycobilisome size in chromatically adapted cells of the cyanobacterium Tolypothrix tenuis, and variation in Nostoc sp

    SciTech Connect

    Ohki, K.; Gantt, E.; Lipschultz, C.A.; Ernst, M.C.

    1985-12-01

    Phycobilisomes of Tolypothrix tenuis, a cyanobacterium capable of complete chromatic adaptation, were studied from cells grown in red and green light, and in darkness. The phycobilisome size remained constant irrespective of the light quality. The hemidiscoidal phycobilisomes had an average diameter of about 52 nanometers and height of about 33 nanometers, by negative staining. The thickness was equivalent to a physocyanin molecule (about 10 nanometers). The molar ratio of allophycocyanin, relative to other phycobiliproteins always remained at about 1:3. Phycobilisomes from red light grown cells and cells grown heterotrophically in darkness were indistinguishable in their pigment composition, polypeptide pattern, and size. Eight polypeptides were resolved in the phycobilin region (17.5 to 23.5 kilodaltons) by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Half of these were invariable, while others were variable in green and red light. It is inferred that phycoerythrin synthesis in green light resulted in a one for one substitution of phycocyanin, thus retaining a constant phycobilisome size. Tolypothrix appears to be one of the best examples of phycobiliprotein regulation with wavelength. By contrast, in Nostoc sp., the decrease in phycoerythrin in red light cells was accompanied by a decrease in phycobilisome size but not a regulated substitution.

  9. A discrete-time adaptive control scheme for robot manipulators

    NASA Technical Reports Server (NTRS)

    Tarokh, M.

    1990-01-01

    A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. The scheme utilizes feedback, feedforward, and auxiliary signals, obtained from joint angle measurement through simple expressions. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation. Simulations and experimental results are given to demonstrate the performance of the scheme.

  10. Strategies for obtaining long constant-pressure test times in shock tubes

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Parise, T.; Tulgestke, A. M.; Spearrin, R. M.; Davidson, D. F.; Hanson, R. K.

    2015-11-01

    Several techniques have been developed for obtaining long, constant-pressure test times in reflected shock wave experiments in a shock tube, including the use of driver inserts, driver gas tailoring, helium gas diaphragm interfaces, driver extensions, and staged driver gas filling. These techniques are detailed here, including discussion on the most recent strategy, staged driver gas filling. Experiments indicate that this staged filling strategy increases available test time by roughly 20 % relative to single-stage filling of tailored driver gas mixtures, while simultaneously reducing the helium required per shock by up to 85 %. This filling scheme involves firstly mixing a tailored helium-nitrogen mixture in the driver section as in conventional driver filling and, secondly, backfilling a low-speed-of-sound gas such as nitrogen or carbon dioxide from a port close to the end cap of the driver section. Using this staged driver gas filling, in addition to the other techniques listed above, post-reflected shock test times of up to 0.102 s (102 ms) at 524 K and 1.6 atm have been obtained. Spectroscopically based temperature measurements in non-reactive mixtures have confirmed that temperature and pressure conditions remain constant throughout the length of these long test duration trials. Finally, these strategies have been used to measure low-temperature n-heptane ignition delay times.

  11. Deuteron quadrupole coupling constants and reorientational correlation times in protic ionic liquids.

    PubMed

    Strauch, Matthias; Bonsa, Anne-Marie; Golub, Benjamin; Overbeck, Viviane; Michalik, Dirk; Paschek, Dietmar; Ludwig, Ralf

    2016-07-21

    We describe a method for the accurate determination of deuteron quadrupole coupling constants χD for N-D bonds in triethylammonium-based protic ionic liquids (PILs). This approach was first introduced by Wendt and Farrar for O-D bonds in molecular liquids, and is based on the linear relationship between the deuteron quadrupole coupling constants χD, and the proton chemical shifts δ(1)H, as obtained from DFT calculated properties in differently sized clusters of the compounds. Thus the measurement of δ(1)H provides an accurate estimate for χD, which can then be used for deriving reorientational correlation-times τND, by means of NMR deuteron quadrupole relaxation time measurements. The method is applied to pure PILs including differently strong interacting anions. The obtained χD values vary between 152 and 204 kHz, depending on the cation-anion interaction strength, intensified by H-bonding. We find that considering dispersion corrections in the DFT-calculations leads to only slightly decreasing χD values. The determined reorientational correlation times indicate that the extreme narrowing condition is fulfilled for these PILs. The τc values along with the measured viscosities provide an estimate for the volume/size of the clusters present in solution. In addition, the correlation times τc, and the H-bonded aggregates were also characterized by molecular dynamics (MD) simulations. PMID:27067640

  12. Time Adaptation Shows Duration Selectivity in the Human Parietal Cortex

    PubMed Central

    Hayashi, Masamichi J.; Ditye, Thomas; Harada, Tokiko; Hashiguchi, Maho; Sadato, Norihiro; Carlson, Synnöve; Walsh, Vincent; Kanai, Ryota

    2015-01-01

    Although psychological and computational models of time estimation have postulated the existence of neural representations tuned for specific durations, empirical evidence of this notion has been lacking. Here, using a functional magnetic resonance imaging (fMRI) adaptation paradigm, we show that the inferior parietal lobule (IPL) (corresponding to the supramarginal gyrus) exhibited reduction in neural activity due to adaptation when a visual stimulus of the same duration was repeatedly presented. Adaptation was strongest when stimuli of identical durations were repeated, and it gradually decreased as the difference between the reference and test durations increased. This tuning property generalized across a broad range of durations, indicating the presence of general time-representation mechanisms in the IPL. Furthermore, adaptation was observed irrespective of the subject’s attention to time. Repetition of a nontemporal aspect of the stimulus (i.e., shape) did not produce neural adaptation in the IPL. These results provide neural evidence for duration-tuned representations in the human brain. PMID:26378440

  13. Estimation of Nutation Time Constant Model Parameters for On-Axis Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Schlee, Keith; Sudermann, James

    2008-01-01

    Calculating an accurate nutation time constant for a spinning spacecraft is an important step for ensuring mission success. Spacecraft nutation is caused by energy dissipation about the spin axis. Propellant slosh in the spacecraft fuel tanks is the primary source for this dissipation and can be simulated using a forced motion spin table. Mechanical analogs, such as pendulums and rotors, are typically used to simulate propellant slosh. A strong desire exists for an automated method to determine these analog parameters. The method presented accomplishes this task by using a MATLAB Simulink/SimMechanics based simulation that utilizes the Parameter Estimation Tool.

  14. Developmental Times of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) at Constant Temperatures and Applications in Forensic Entomology.

    PubMed

    Yang, Yong-Qiang; Li, Xue-Bo; Shao, Ru-Yue; Lyu, Zhou; Li, Hong-Wei; Li, Gen-Ping; Xu, Lyu-Zi; Wan, Li-Hua

    2016-09-01

    The characteristic life stages of infesting blowflies (Calliphoridae) such as Chrysomya megacephala (Fabricius) are powerful evidence for estimating the death time of a corpse, but an established reference of developmental times for local blowfly species is required. We determined the developmental rates of C. megacephala from southwest China at seven constant temperatures (16-34°C). Isomegalen and isomorphen diagrams were constructed based on the larval length and time for each developmental event (first ecdysis, second ecdysis, wandering, pupariation, and eclosion), at each temperature. A thermal summation model was constructed by estimating the developmental threshold temperature D0 and the thermal summation constant K. The thermal summation model indicated that, for complete development from egg hatching to eclosion, D0 = 9.07 ± 0.54°C and K = 3991.07 ± 187.26 h °C. This reference can increase the accuracy of estimations of postmortem intervals in China by predicting the growth of C. megacephala. PMID:27581209

  15. The Effects of Predator Arrival Timing on Adaptive Radiation (Invited)

    NASA Astrophysics Data System (ADS)

    Borden, J.; Knope, M. L.; Fukami, T.

    2009-12-01

    Much of Earth’s biodiversity is thought to have arisen by adaptive radiation, the rapid diversification of a single ancestral species to fill a wide-variety of ecological niches. Both theory and empirical evidence have long supported competition for limited resources as a primary driver of adaptive radiation. While predation has also been postulated to be an important selective force during radiation, empirical evidence is surprisingly scant and its role remains controversial. However, two recent empirical studies suggest that predation can promote divergence during adaptive radiation. Using an experimental laboratory microcosm system, we examined how predator arrival timing affects the rate and extent of diversification during adaptive radiation. We varied the introduction timing of a protozoan predator (Tetrahymena thermophila) into populations of the bacteria Pseudomonas flourescens, which is known for its ability to undergo rapid adaptive radiation in aqueous microcosms. While our results show that predator arrival timing may have a significant impact on the rate, but not extent, of diversification, these results are tenuous and should be interpreted with caution, as the protozoan predators died early in the majority of our treatments, hampering our ability for comparison across treatments. Additionally, the abundance of newly derived bacterial genotypes was markedly lower in all treatments than observed in previous experiments utilizing this microbial experimental evolution system. To address these shortcomings, we will be repeating the experiment in the near future to further explore the impact of predator arrival timing on adaptive radiation. Smooth Morph and small-Wrinkly Spreader Pseudomonas flourescens diversification in the 96 hour treatment. Day 10, diluted to 1e-5.

  16. ADAPTIVE DATA ANALYSIS OF COMPLEX FLUCTUATIONS IN PHYSIOLOGIC TIME SERIES

    PubMed Central

    PENG, C.-K.; COSTA, MADALENA; GOLDBERGER, ARY L.

    2009-01-01

    We introduce a generic framework of dynamical complexity to understand and quantify fluctuations of physiologic time series. In particular, we discuss the importance of applying adaptive data analysis techniques, such as the empirical mode decomposition algorithm, to address the challenges of nonlinearity and nonstationarity that are typically exhibited in biological fluctuations. PMID:20041035

  17. A Different Look at Dark Energy and the Time Variation of Fundamental Constants

    SciTech Connect

    Weinstein, Marvin; /SLAC

    2011-02-07

    This paper makes the simple observation that a fundamental length, or cutoff, in the context of Friedmann-Lemaitre-Robertson-Walker (FRW) cosmology implies very different things than for a static universe. It is argued that it is reasonable to assume that this cutoff is implemented by fixing the number of quantum degrees of freedom per co-moving volume (as opposed to a Planck volume) and the relationship of the vacuum-energy of all of the fields in the theory to the cosmological constant (or dark energy) is re-examined. The restrictions that need to be satisfied by a generic theory to avoid conflicts with current experiments are discussed, and it is shown that in any theory satisfying these constraints knowing the difference between w and minus one allows one to predict w. It is argued that this is a robust result and if this prediction fails the idea of a fundamental cutoff of the type being discussed can be ruled out. Finally, it is observed that, within the context of a specific theory, a co-moving cutoff implies a predictable time variation of fundamental constants. This is accompanied by a general discussion of why this is so, what are the strongest phenomenological limits upon this predicted variation, and which limits are in tension with the idea of a co-moving cutoff. It is pointed out, however, that a careful comparison of the predicted time variation of fundamental constants is not possible without restricting to a particular model field-theory and that is not done in this paper.

  18. Constant time tensor correlation experiments by non-gamma-encoded recoupling pulse sequences

    NASA Astrophysics Data System (ADS)

    Mou, Yun; Tsai, Tim W. T.; Chan, Jerry C. C.

    2012-10-01

    Constant-time tensor correlation under magic-angle spinning conditions is an important technique in solid-state nuclear magnetic resonance spectroscopy for the measurements of backbone or side-chain torsion angles of polypeptides and proteins. We introduce a general method for the design of constant-time tensor correlation experiments under magic-angle spinning. Our method requires that the amplitude of the average Hamiltonian must depend on all the three Euler angles bringing the principal axis system to the rotor-fixed frame, which is commonly referred to as non-gamma encoding. We abbreviate this novel approach as COrrelation of Non-Gamma-Encoded Experiment (CONGEE), which exploits the orientation-dependence of non-gamma-encoded sequences with respect to the magic-angle rotation axis. By manipulating the relative orientation of the average Hamiltonians created by two non-gamma-encoded sequences, one can obtain a modulation of the detected signal, from which the structural information can be extracted when the tensor orientations relative to the molecular frame are known. CONGEE has a prominent feature that the number of rf pulses and the total pulse sequence duration can be maintained to be constant so that for torsion angle determination the effects of systematic errors owing to the experimental imperfections and/or T2 effects could be minimized. As a proof of concept, we illustrate the utility of CONGEE in the correlation between the C' chemical shift tensor and the Cα-Hα dipolar tensor for the backbone psi angle determination. In addition to a detailed theoretical analysis, numerical simulations and experiments measured for [U-13C, 15N]-L-alanine and N-acetyl-[U-13C, 15N]-D,L-valine are used to validate our approach at a spinning frequency of 20 kHz.

  19. Adaptive Mesh Refinement and Adaptive Time Integration for Electrical Wave Propagation on the Purkinje System

    PubMed Central

    Ying, Wenjun; Henriquez, Craig S.

    2015-01-01

    A both space and time adaptive algorithm is presented for simulating electrical wave propagation in the Purkinje system of the heart. The equations governing the distribution of electric potential over the system are solved in time with the method of lines. At each timestep, by an operator splitting technique, the space-dependent but linear diffusion part and the nonlinear but space-independent reactions part in the partial differential equations are integrated separately with implicit schemes, which have better stability and allow larger timesteps than explicit ones. The linear diffusion equation on each edge of the system is spatially discretized with the continuous piecewise linear finite element method. The adaptive algorithm can automatically recognize when and where the electrical wave starts to leave or enter the computational domain due to external current/voltage stimulation, self-excitation, or local change of membrane properties. Numerical examples demonstrating efficiency and accuracy of the adaptive algorithm are presented. PMID:26581455

  20. Space-time adaptive numerical methods for geophysical applications.

    PubMed

    Castro, C E; Käser, M; Toro, E F

    2009-11-28

    In this paper we present high-order formulations of the finite volume and discontinuous Galerkin finite-element methods for wave propagation problems with a space-time adaptation technique using unstructured meshes in order to reduce computational cost without reducing accuracy. Both methods can be derived in a similar mathematical framework and are identical in their first-order version. In their extension to higher order accuracy in space and time, both methods use spatial polynomials of higher degree inside each element, a high-order solution of the generalized Riemann problem and a high-order time integration method based on the Taylor series expansion. The static adaptation strategy uses locally refined high-resolution meshes in areas with low wave speeds to improve the approximation quality. Furthermore, the time step length is chosen locally adaptive such that the solution is evolved explicitly in time by an optimal time step determined by a local stability criterion. After validating the numerical approach, both schemes are applied to geophysical wave propagation problems such as tsunami waves and seismic waves comparing the new approach with the classical global time-stepping technique. The problem of mesh partitioning for large-scale applications on multi-processor architectures is discussed and a new mesh partition approach is proposed and tested to further reduce computational cost. PMID:19840984

  1. Analysis of discrete and continuous distributions of ventilatory time constants from dynamic computed tomography

    NASA Astrophysics Data System (ADS)

    Doebrich, Marcus; Markstaller, Klaus; Karmrodt, Jens; Kauczor, Hans-Ulrich; Eberle, Balthasar; Weiler, Norbert; Thelen, Manfred; Schreiber, Wolfgang G.

    2005-04-01

    In this study, an algorithm was developed to measure the distribution of pulmonary time constants (TCs) from dynamic computed tomography (CT) data sets during a sudden airway pressure step up. Simulations with synthetic data were performed to test the methodology as well as the influence of experimental noise. Furthermore the algorithm was applied to in vivo data. In five pigs sudden changes in airway pressure were imposed during dynamic CT acquisition in healthy lungs and in a saline lavage ARDS model. The fractional gas content in the imaged slice (FGC) was calculated by density measurements for each CT image. Temporal variations of the FGC were analysed assuming a model with a continuous distribution of exponentially decaying time constants. The simulations proved the feasibility of the method. The influence of experimental noise could be well evaluated. Analysis of the in vivo data showed that in healthy lungs ventilation processes can be more likely characterized by discrete TCs whereas in ARDS lungs continuous distributions of TCs are observed. The temporal behaviour of lung inflation and deflation can be characterized objectively using the described new methodology. This study indicates that continuous distributions of TCs reflect lung ventilation mechanics more accurately compared to discrete TCs.

  2. Origin and control of the dominant time constant of salamander cone photoreceptors

    PubMed Central

    Zang, Jingjing

    2012-01-01

    Recovery of the light response in vertebrate photoreceptors requires the shutoff of both active intermediates in the phototransduction cascade: the visual pigment and the transducin–phosphodiesterase complex. Whichever intermediate quenches more slowly will dominate photoresponse recovery. In suction pipette recordings from isolated salamander ultraviolet- and blue-sensitive cones, response recovery was delayed, and the dominant time constant slowed when internal [Ca2+] was prevented from changing after a bright flash by exposure to 0Ca2+/0Na+ solution. Taken together with a similar prior observation in salamander red-sensitive cones, these observations indicate that the dominance of response recovery by a Ca2+-sensitive process is a general feature of amphibian cone phototransduction. Moreover, changes in the external pH also influenced the dominant time constant of red-sensitive cones even when changes in internal [Ca2+] were prevented. Because the cone photopigment is, uniquely, exposed to the external solution, this may represent a direct effect of protons on the equilibrium between its inactive Meta I and active Meta II forms, consistent with the notion that the process dominating recovery of the bright flash response represents quenching of the active Meta II form of the cone photopigment. PMID:22802362

  3. DEMETER Observations of Ionospheric Heating Time Constants Above the NWC VLF Transmitter

    NASA Astrophysics Data System (ADS)

    Bell, T. F.; Graf, K. L.; Inan, U. S.; Parrot, M.

    2011-12-01

    As demonstrated by recent DEMETER observations, intense 19.8 kHz VLF signals from the powerful (1 MW) NWC transmitter in Australia significantly heat the overlying ionosphere and produce significant changes in local electron and ion density and temperature at 700 km altitude [Parrot et al., 2007]. These changes are accompanied by a unique VLF plasma wave structure covering a 5 to 10 kHz band below the NWC signals and by quasi-electrostatic ELF turbulence. In order to determine the heating and cooling time constants of this effect, a campaign was carried out in which the NWC transmitter was programed to transmit a single CW pulse of 2 second duration every 10 seconds during periods in which the DEMETER spacecraft passed over the transmitter location. The data from this campaign show that the time constant for production of the unique VLF plasma wave structure and the quasi-electrostatic ELF turbulence ranged from 100 to 300 msec. However significant changes in electron and ion density and temperature during the 2 second pulses occurred only sporadically. This result suggests that small scale ( 10-100 m) plasma density irregularities are produced quickly by the heating pulses, but larger scale irregularities take significantly longer than 2 seconds to develop. We discuss the observations obtained during the campaign and the physical mechanisms involved in the heating process.

  4. Constant Time Delay and Interspersal of Known Items To Teach Sight Words to Students with Mental Retardation and Learning Disabilities.

    ERIC Educational Resources Information Center

    Knight, Melissa G.; Ross, Denise E.; Taylor, Ronald L.; Ramasamy, Rangasamy

    2003-01-01

    This study compared efficacy and efficiency of constant time delay and interspersal of known items to teach sight words to four students with mild mental retardation and learning disabilities. Results support effectiveness of constant time delay and suggest that interspersal of known items was more effective with students with learning…

  5. Vestibular Compensation in Unilateral Patients Often Causes Both Gain and Time Constant Asymmetries in the VOR

    PubMed Central

    Ranjbaran, Mina; Katsarkas, Athanasios; Galiana, Henrietta L.

    2016-01-01

    The vestibulo-ocular reflex (VOR) is essential in our daily life to stabilize retinal images during head movements. Balanced vestibular functionality secures optimal reflex performance which otherwise can be distorted by peripheral vestibular lesions. Luckily, vestibular compensation in different neuronal sites restores VOR function to some extent over time. Studying vestibular compensation gives insight into the possible mechanisms for plasticity in the brain. In this work, novel experimental analysis tools are employed to reevaluate the VOR characteristics following unilateral vestibular lesions and compensation. Our results suggest that following vestibular lesions, asymmetric performance of the VOR is not only limited to its gain. Vestibular compensation also causes asymmetric dynamics, i.e., different time constants for the VOR during leftward or rightward passive head rotation. Potential mechanisms for these experimental observations are provided using simulation studies. PMID:27065839

  6. Vestibular Compensation in Unilateral Patients Often Causes Both Gain and Time Constant Asymmetries in the VOR.

    PubMed

    Ranjbaran, Mina; Katsarkas, Athanasios; Galiana, Henrietta L

    2016-01-01

    The vestibulo-ocular reflex (VOR) is essential in our daily life to stabilize retinal images during head movements. Balanced vestibular functionality secures optimal reflex performance which otherwise can be distorted by peripheral vestibular lesions. Luckily, vestibular compensation in different neuronal sites restores VOR function to some extent over time. Studying vestibular compensation gives insight into the possible mechanisms for plasticity in the brain. In this work, novel experimental analysis tools are employed to reevaluate the VOR characteristics following unilateral vestibular lesions and compensation. Our results suggest that following vestibular lesions, asymmetric performance of the VOR is not only limited to its gain. Vestibular compensation also causes asymmetric dynamics, i.e., different time constants for the VOR during leftward or rightward passive head rotation. Potential mechanisms for these experimental observations are provided using simulation studies. PMID:27065839

  7. An adaptive robust controller for time delay maglev transportation systems

    NASA Astrophysics Data System (ADS)

    Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza

    2012-12-01

    For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.

  8. Tolerability of intramuscular and intradermal delivery by CELLECTRA(®) adaptive constant current electroporation device in healthy volunteers.

    PubMed

    Diehl, Malissa C; Lee, Jessica C; Daniels, Stephen E; Tebas, Pablo; Khan, Amir S; Giffear, Mary; Sardesai, Niranjan Y; Bagarazzi, Mark L

    2013-10-01

    DNA vaccines are being developed as a potentially safe and effective immunization platform. However, translation of DNA vaccines into a clinical setting has produced results that have fallen short of those generated in a preclinical setting. Various strategies are being developed to address this lack of potency, including improvements in delivery methods. Electroporation (EP) creates transient increases in cell membrane permeability, thus enhancing DNA uptake and leading to a more robust immune response. Here, we report on the safety and tolerability of delivering sterile saline via intramuscular (IM) or intradermal (ID) injection followed by in vivo electroporation using the CELLECTRA(®) adaptive constant current device in healthy adults from two open-label studies. Pain, as assessed by VAS, was highest immediately after EP but diminishes by about 50% within 5 min. Mean VAS scores appear to correlate with the amount of energy delivered and depth of needle insertion, especially for intramuscular EP. Mean scores did not exceed 7 out of 10 or 3 out of 10 for IM and ID EP, respectively. The majority of adverse events included mild to moderate injection site reactions that resolved within one day. No deaths or serious adverse events were reported during the course of either study. Overall, injection followed by EP with the CELLECTRA(®) device was well-tolerated and no significant safety concerns were identified. These studies support the further development of electroporation as a vaccine delivery method to enhance immunogenicity, particularly for diseases in which traditional vaccination approaches are ineffective. PMID:24051434

  9. Active imaging lens with real-time variable resolution and constant field of view

    NASA Astrophysics Data System (ADS)

    Parent, Jocelyn; Thibault, Simon

    2010-08-01

    We present a lens with a constant total field of view and real-time variable resolution in certain zones of interest. This smart imaging lens uses an active optical element to modify as desired the local distortion. This way, while keeping the total field of view constant, the resolution can be increased in a zone of interest, at the expense of decreasing it somewhere in the remaining part of the field of view. We first present the concept of this lens, using a deformable mirror as the active surface. Computer simulations are done with Zemax in which a magnifying power of 2 in a zone of interest representing 10% of the full field of view is achieved, using a f=12.5 mm lens and a F/# of 18. Different combinations of theses parameters would allow different performances and results. We then present experimental results of this lens with a prototype built using a ferrofluidic deformable mirror as the active element. Experimental results of a zone of increased resolution with a magnification of 1.32 and a zone of decreased resolution with a magnification of 0.80 are obtained.

  10. Time and Space Resolved Wall Temperature Measurements during Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Yerramilli, Vamsee K.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work is to acquire time and space resolved temperature distributions under nucleate bubbles on a constant heat flux surface. This was performed using a microheater array with 100 micron resolution that allowed effectively simultaneous measurements of surface temperature while supplying a constant dissipative heat flux. This data is then correlated with high speed (> 1000Hz) visual recordings of the bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that a significant source of energy during bubble nucleation and initial growth is the superheated layer around the bubble. Bubble coalescence was not observed to decrease surface temperature as significantly as bubble departure from the surface. Since bubble departure is typically followed by a sharp increase in the heater surface temperature, it is surmised that the departing bubble effectively removes the superheated layer, allowing a high local heat transfer rate with the bulk fluid through transient conduction/micro-convection during rewetting.

  11. Effects of magnetic dipolar interactions on the specific time constant in superparamagnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Iacob, N.; Schinteie, G.; Bartha, C.; Palade, P.; Vekas, L.; Kuncser, V.

    2016-07-01

    A quantitative treatment of the effects of magnetic mutual interactions on the specific absorption rate of a superparamagnetic system of iron oxide nanoparticles coated with oleic acid is reported. The nanoparticle concentration of the considered ferrofluid samples varied from a very low (0.005) to a medium (0.16) value of the volume fraction, whereas the amplitude of the exciting AC magnetic field ranged from 14–35 kA m‑1. It was proved that a direct effect of the interparticle interactions resides in the regime of the modified superparamagnetism, dealing, besides the usual increase in the anisotropy energy barrier per nanoparticle, with the decrease in the specific time constant {τ0} of the relaxation law, usually considered as a material constant. Consequently, the increase in the specific absorption rate versus the volume fraction is significantly diminished in the presence of the interparticle interactions compared to the case of non-interacting superparamagnetic nanoparticles, with direct influence on the magnetic hyperthermia efficiency.

  12. Real time adaptive filtering for digital X-ray applications.

    PubMed

    Bockenbach, Olivier; Mangin, Michel; Schuberth, Sebastian

    2006-01-01

    Over the last decade, many methods for adaptively filtering a data stream have been proposed. Those methods have applications in two dimensional imaging as well as in three dimensional image reconstruction. Although the primary objective of this filtering technique is to reduce the noise while avoiding to blur the edges, diagnostic, automated segmentation and surgery show a growing interest in enhancing the features contained in the image flow. Most of the methods proposed so far emerged from thorough studies of the physics of the considered modality and therefore show only a marginal capability to be extended across modalities. Moreover, adaptive filtering belongs to the family of processing intensive algorithms. Existing technology has often driven to simplifications and modality specific optimization to sustain the expected performances. In the specific case of real time digital X-ray as used surgery, the system has to sustain a throughput of 30 frames per second. In this study, we take a generalized approach for adaptive filtering based on multiple oriented filters. Mapping the filtering part to the embedded real time image processing while a user/application defined adaptive recombination of the filter outputs allow to change the smoothing and edge enhancement properties of the filter without changing the oriented filter parameters. We have implemented the filtering on a Cell Broadband Engine processor and the adaptive recombination on an off-the-shelf PC, connected via Gigabit Ethernet. This implementation is capable of filtering images of 5122 pixels at a throughput in excess of 40 frames per second while allowing to change the parameters in real time. PMID:17354937

  13. Frequency Adaptability and Waveform Design for OFDM Radar Space-Time Adaptive Processing

    SciTech Connect

    Sen, Satyabrata; Glover, Charles Wayne

    2012-01-01

    We propose an adaptive waveform design technique for an orthogonal frequency division multiplexing (OFDM) radar signal employing a space-time adaptive processing (STAP) technique. We observe that there are inherent variabilities of the target and interference responses in the frequency domain. Therefore, the use of an OFDM signal can not only increase the frequency diversity of our system, but also improve the target detectability by adaptively modifying the OFDM coefficients in order to exploit the frequency-variabilities of the scenario. First, we formulate a realistic OFDM-STAP measurement model considering the sparse nature of the target and interference spectra in the spatio-temporal domain. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. With numerical examples we demonstrate that the resultant OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.

  14. Discrete-time minimal control synthesis adaptive algorithm

    NASA Astrophysics Data System (ADS)

    di Bernardo, M.; di Gennaro, F.; Olm, J. M.; Santini, S.

    2010-12-01

    This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based discrete-time model reference adaptive controllers introduced in (Landau, Y. (1979), Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, Inc.) and is able to ensure tracking of the states of a given reference model with minimal knowledge about the plant. The control design shows robustness to parameter uncertainties, slow parameter variation and matched disturbances. Furthermore, it is proved that the proposed discrete-time MCS algorithm can be used to control discretised continuous-time plants with the same performance features. Contrary to previous discrete-time implementations of the continuous-time MCS algorithm, here a formal proof of asymptotic stability is given for generic n-dimensional plants in controllable canonical form. The theoretical approach is validated by means of simulation results.

  15. Constraints on the Time Variation of the Fine Structure Constant by the 5-Year WMAP Data

    NASA Astrophysics Data System (ADS)

    Nakashima, M.; Nagata, R.; Yokoyama, J.

    2008-12-01

    The constraints on the time variation of the fine structure constant at recombination epoch relative to its present value, Δα/α ≡ (α_{rec} - α_{now})/α_{now}, are obtained from the analysis of the 5-year WMAP cosmic microwave background data. As a result of Markov-Chain Monte-Carlo analysis, it is found that, contrary to the analysis based on the previous WMAP data, the mean value of Δα/α = -0.0009 does not change significantly whether we use the Hubble Space Telescope (HST) measurement of the Hubble parameter as a prior or not. The resultant 95% confidence ranges of Δα/α are -0.028 < Δα/α < 0.026 with HST prior and -0.050 < Δα/α < 0.042 without HST prior.

  16. Time and Space Resolved Heat Flux Measurements During Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Yerramilli, Vamsee K.; Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work was to acquire time and space resolved temperature distributions under nucleating bubbles on a constant heat flux surface using a microheater array with 100x 100 square microns resolution, then numerically determine the wall to liquid heat flux. This data was then correlated with high speed (greater than l000Hz) visual recordings of The bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that microlayer evaporation and contact line heat transfer are not major heat transfer mechanisms for bubble growth. The dominant heat transfer mechanism appears to be transient conduction into the liquid as the liquid rewets the wall during the bubble departure process.

  17. Time constant of defect relaxation in ion-irradiated 3C-SiC

    SciTech Connect

    Wallace, J. B.; Bayu Aji, L. B.; Kucheyev, S. O.; Shao, L.

    2015-05-18

    Above room temperature, the buildup of radiation damage in SiC is a dynamic process governed by the mobility and interaction of ballistically generated point defects. Here, we study the dynamics of radiation defects in 3C-SiC bombarded at 100 °C with 500 keV Ar ions, with the total ion dose split into a train of equal pulses. Damage–depth profiles are measured by ion channeling for a series of samples irradiated under identical conditions except for different durations of the passive part of the beam cycle. Results reveal an effective defect relaxation time constant of ∼3 ms (for second order kinetics) and a dynamic annealing efficiency of ∼40% for defects in both Si and C sublattices. This demonstrates a crucial role of dynamic annealing at elevated temperatures and provides evidence of the strong coupling of defect accumulation processes in the two sublattices of 3C-SiC.

  18. Determination of the Newtonian Gravitational Constant G with Time-of-Swing Method

    SciTech Connect

    Luo Jun; Liu Qi; Tu Liangcheng; Shao Chenggang; Liu Linxia; Yang Shanqing; Li Qing; Zhang Yating

    2009-06-19

    We present a new value of the Newtonian gravitational constant G by using the time-of-swing method. Several improvements greatly reduce the uncertainties: (1) measuring the anelasticity of the fiber directly; (2) using spherical source masses minimizes the effects of density inhomogeneity and eccentricities; (3) using a quartz block pendulum simplifies its vibration modes and minimizes the uncertainty of inertial moment; (4) setting the pendulum and source masses both in a vacuum chamber reduces the error of measuring the relative positions. By two individual experiments, we obtain G=6.673 49(18)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2} with a standard uncertainty of about 2.6 parts in 10{sup 5}.

  19. A multiple relaxation time extension of the constant speed kinetic model

    NASA Astrophysics Data System (ADS)

    Zadehgol, Abed; Ashrafizaadeh, Mahmud

    2016-02-01

    In this work, a multiple relaxation time (MRT) extension of the recently introduced constant speed kinetic model (CSKM) is proposed. The CSKM, which is an entropic kinetic model and based on unconventional entropies of Burg and Tssalis, was introduced in [A. Zadehgol and M. Ashrafizaadeh, J. Comput. Phys. 274, 803 (2014)]; [A. Zadehgol Phys. Rev. E 91, 063311 (2015)] as an extension of the model of Boghosian et al. [Phys. Rev. E 68, 025103 (2003)] in the limit of fixed speed continuous velocities. The present extension improves the stability of the previous models at very high Reynolds numbers, while allowing for a more convenient orthogonal lattice. The model is verified by solving the following benchmark problems: (i) the lid driven square cavity and (ii) the Kelvin-Helmholtz instability of thin shear layers in a doubly periodic square domain.

  20. Adaptive Sensing of Time Series with Application to Remote Exploration

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Cabrol, Nathalie A.; Furlong, Michael; Hardgrove, Craig; Low, Bryan K. H.; Moersch, Jeffrey; Wettergreen, David

    2013-01-01

    We address the problem of adaptive informationoptimal data collection in time series. Here a remote sensor or explorer agent throttles its sampling rate in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility -- all collected datapoints lie in the past, but its resource allocation decisions require predicting far into the future. Our solution is to continually fit a Gaussian process model to the latest data and optimize the sampling plan on line to maximize information gain. We compare the performance characteristics of stationary and nonstationary Gaussian process models. We also describe an application based on geologic analysis during planetary rover exploration. Here adaptive sampling can improve coverage of localized anomalies and potentially benefit mission science yield of long autonomous traverses.

  1. Effect of temporal acquisition parameters on image quality of strain time constant elastography.

    PubMed

    Nair, Sanjay; Varghese, Joshua; Chaudhry, Anuj; Righetti, Raffaella

    2015-04-01

    Ultrasound methods to image the time constant (TC) of elastographic tissue parameters have been recently developed. Elastographic TC images from creep or stress relaxation tests have been shown to provide information on the viscoelastic and poroelastic behavior of tissues. However, the effect of temporal ultrasonic acquisition parameters and input noise on the image quality of the resultant strain TC elastograms has not been fully investigated yet. Understanding such effects could have important implications for clinical applications of these novel techniques. This work reports a simulation study aimed at investigating the effects of varying windows of observation, acquisition frame rate, and strain signal-to-noise ratio (SNR) on the image quality of elastographic TC estimates. A pilot experimental study was used to corroborate the simulation results in specific testing conditions. The results of this work suggest that the total acquisition time necessary for accurate strain TC estimates has a linear dependence to the underlying strain TC (as estimated from the theoretical strain-vs.-time curve). The results also indicate that it might be possible to make accurate estimates of the elastographic TC (within 10% error) using windows of observation as small as 20% of the underlying TC, provided sufficiently fast acquisition rates (>100 Hz for typical acquisition depths). The limited experimental data reported in this study statistically confirm the simulation trends, proving that the proposed model can be used as upper bound guidance for the correct execution of the experiments. PMID:24942645

  2. Stability and Relative Stability of Linear Systems with Many Constant Time Delays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Barker, Larry Keith

    1976-01-01

    A method of determining the stability of linear systems with many constant time delays is developed. This technique, an extension of the tau-decomposition method, is used to examine not only the stability but also the relative stability of retarded systems with many delays and a class of neutral equations with one delay. Analytical equations are derived for partitioning the delay space of a retarded system with two time delays. The stability of the system in each of the regions defined by the partitioning curves in the parameter plane is determined using the extended tau-decomposition method. In addition, relative stability boundaries are defined using the extended tau-decompositon method in association with parameter plane techniques. Several applications of the extended tau-decomposition method are presented and compared with stability results obtained from other analyses. In all cases the results obtained using the method outlined herein coincide with and extend those of previous investigations. The extended tau-decomposition method applied to systems with time delays requires less computational effort and yields more complete stability analyses than previous techniques.

  3. Sparse time-frequency decomposition based on dictionary adaptation.

    PubMed

    Hou, Thomas Y; Shi, Zuoqiang

    2016-04-13

    In this paper, we propose a time-frequency analysis method to obtain instantaneous frequencies and the corresponding decomposition by solving an optimization problem. In this optimization problem, the basis that is used to decompose the signal is not known a priori. Instead, it is adapted to the signal and is determined as part of the optimization problem. In this sense, this optimization problem can be seen as a dictionary adaptation problem, in which the dictionary is adaptive to one signal rather than a training set in dictionary learning. This dictionary adaptation problem is solved by using the augmented Lagrangian multiplier (ALM) method iteratively. We further accelerate the ALM method in each iteration by using the fast wavelet transform. We apply our method to decompose several signals, including signals with poor scale separation, signals with outliers and polluted by noise and a real signal. The results show that this method can give accurate recovery of both the instantaneous frequencies and the intrinsic mode functions. PMID:26953172

  4. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  5. Constant-thrust glideslope guidance algorithm for time-fixed rendezvous in real halo orbit

    NASA Astrophysics Data System (ADS)

    Lian, Yijun; Meng, Yunhe; Tang, Guojian; Liu, Luhua

    2012-10-01

    This paper presents a fixed-time glideslope guidance algorithm that is capable of guiding the spacecraft approaching a target vehicle on a quasi-periodic halo orbit in real Earth-Moon system. To guarantee the flight time is fixed, a novel strategy for designing the parameters of the algorithm is given. Based on the numerical solution of the linearized relative dynamics of the Restricted Three-Body Problem (expressed in inertial coordinates with a time-variant nature), the proposed algorithm breaks down the whole rendezvous trajectory into several arcs. For each arc, a two-impulse transfer is employed to obtain the velocity increment (delta-v) at the joint between arcs. Here we respect the fact that instantaneous delta-v cannot be implemented by any real engine, since the thrust magnitude is always finite. To diminish its effect on the control, a thrust duration as well as a thrust direction are translated from the delta-v in the context of a constant thrust engine (the most robust type in real applications). Furthermore, the ignition and cutoff delays of the thruster are considered as well. With this high-fidelity thrust model, the relative state is then propagated to the next arc by numerical integration using a complete Solar System model. In the end, final corrective control is applied to insure the rendezvous velocity accuracy. To fully validate the proposed guidance algorithm, Monte Carlo simulation is done by incorporating the navigational error and the thrust direction error. Results show that our algorithm can effectively maintain control over the time-fixed rendezvous transfer, with satisfactory final position and velocity accuracies for the near-range guided phase.

  6. Effects of lung time constant, gas analyser delay and rise time on measurements of respiratory dead-space.

    PubMed

    Tang, Yongquan; Turner, Martin J; Baker, A Barry

    2005-12-01

    This study evaluated effects of mechanical time constants (tau(m)) of the respiratory system, delays between flow and CO(2) partial pressure (P(CO)(2)) signals and rise time of the CO(2) analyser on dead-space measurements. A computer model simulated low alveolar dead-space, high alveolar dead-space, 0.2 time delays and anatomic and physiological dead-spaces were calculated. The CO(2) analyser was simulated as a critically damped second-order system with 10-90% rise times of 25-400 ms. The error in measured dead-space increases approximately 2.5% per 10 ms signal delay for normal lungs (tau(m) = 1 s), but has low sensitivity (0.58% per 10 ms) to the rise time of the CO(2) analyser. Sensitivity of physiological dead-space, but not anatomic dead-space to delay is decreased in high alveolar dead-space and abnormal V/Q distribution. Shorter tau(m) increase the error sensitivity of both physiological and anatomic dead-spaces to both delay and rise time. P(CO)(2) and flow should be well synchronized, particularly when tau(m) are short, to avoid dead-space errors. PMID:16311457

  7. Adaptive Sampling of Time Series During Remote Exploration

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2012-01-01

    This work deals with the challenge of online adaptive data collection in a time series. A remote sensor or explorer agent adapts its rate of data collection in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility (all its datapoints lie in the past) and limited control (it can only decide when to collect its next datapoint). This problem is treated from an information-theoretic perspective, fitting a probabilistic model to collected data and optimizing the future sampling strategy to maximize information gain. The performance characteristics of stationary and nonstationary Gaussian process models are compared. Self-throttling sensors could benefit environmental sensor networks and monitoring as well as robotic exploration. Explorer agents can improve performance by adjusting their data collection rate, preserving scarce power or bandwidth resources during uninteresting times while fully covering anomalous events of interest. For example, a remote earthquake sensor could conserve power by limiting its measurements during normal conditions and increasing its cadence during rare earthquake events. A similar capability could improve sensor platforms traversing a fixed trajectory, such as an exploration rover transect or a deep space flyby. These agents can adapt observation times to improve sample coverage during moments of rapid change. An adaptive sampling approach couples sensor autonomy, instrument interpretation, and sampling. The challenge is addressed as an active learning problem, which already has extensive theoretical treatment in the statistics and machine learning literature. A statistical Gaussian process (GP) model is employed to guide sample decisions that maximize information gain. Nonsta tion - ary (e.g., time-varying) covariance relationships permit the system to represent and track local anomalies, in contrast with current GP approaches. Most common GP models

  8. On time variations of gravitational and Yang-Mills constants in a cosmological model of superstring origin

    NASA Astrophysics Data System (ADS)

    Ivashchuk, V. D.; Melnikov, V. N.

    2014-01-01

    In the framework of 10-dimensional "Friedmann-Calabi-Yau" cosmology of superstring origin we show that the time variation of either Newton's gravitational constant or Yang-Mills one is unavoidable in the present epoch.

  9. CONVERGENCE STUDIES OF MASS TRANSPORT IN DISKS WITH GRAVITATIONAL INSTABILITIES. I. THE CONSTANT COOLING TIME CASE

    SciTech Connect

    Michael, Scott; Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Boley, Aaron C. E-mail: tomsc@astro.indiana.edu E-mail: aaron.boley@gmail.com

    2012-02-10

    We conduct a convergence study of a protostellar disk, subject to a constant global cooling time and susceptible to gravitational instabilities (GIs), at a time when heating and cooling are roughly balanced. Our goal is to determine the gravitational torques produced by GIs, the level to which transport can be represented by a simple {alpha}-disk formulation, and to examine fragmentation criteria. Four simulations are conducted, identical except for the number of azimuthal computational grid points used. A Fourier decomposition of non-axisymmetric density structures in cos (m{phi}), sin (m{phi}) is performed to evaluate the amplitudes A{sub m} of these structures. The A{sub m} , gravitational torques, and the effective Shakura and Sunyaev {alpha} arising from gravitational stresses are determined for each resolution. We find nonzero A{sub m} for all m-values and that A{sub m} summed over all m is essentially independent of resolution. Because the number of measurable m-values is limited to half the number of azimuthal grid points, higher-resolution simulations have a larger fraction of their total amplitude in higher-order structures. These structures act more locally than lower-order structures. Therefore, as the resolution increases the total gravitational stress decreases as well, leading higher-resolution simulations to experience weaker average gravitational torques than lower-resolution simulations. The effective {alpha} also depends upon the magnitude of the stresses, thus {alpha}{sub eff} also decreases with increasing resolution. Our converged {alpha}{sub eff} is consistent with predictions from an analytic local theory for thin disks by Gammie, but only over many dynamic times when averaged over a substantial volume of the disk.

  10. Adaptive Timing of Motor Output in the Mouse: The Role of Movement Oscillations in Eyelid Conditioning

    PubMed Central

    Chettih, Selmaan N.; McDougle, Samuel D.; Ruffolo, Luis I.; Medina, Javier F.

    2011-01-01

    To survive, animals must learn to control their movements with millisecond-level precision, and adjust the kinematics if conditions, or task requirements, change. Here, we examine adaptive timing of motor output in mice, using a simple eyelid conditioning task. Mice were trained to blink in response to a light stimulus that was always followed by a corneal air-puff at a constant time interval. Different mice were trained with different intervals of time separating the onset of the light and the air-puff. As in previous work in other animal species, mice learned to control the speed of the blink, such that the time of maximum eyelid closure matched the interval used during training. However, we found that the time of maximum eyelid speed was always in the first 100 ms after movement onset and did not scale with the training interval, indicating that adaptive timing is not accomplished by slowing down (or speeding up) the eyelid movement uniformly throughout the duration of the blink. A new analysis, specifically designed to examine the kinematics of blinks in single trials, revealed that the underlying control signal responsible for the eyelid movement is made up of oscillatory bursts that are time-locked to the light stimulus at the beginning of the blink, becoming desynchronized later on. Furthermore, mice learn to blink at different speeds and time the movement appropriately by adjusting the amplitude, but not the frequency of the bursts in the eyelid oscillation. PMID:22144951

  11. A 45-year time series of dune mobility indicating constant windiness over the central Sahara

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.; Leprince, S.

    2012-07-01

    Although evidence is mounting that links global warming to changes in atmospheric dynamics over the Atlantic realm, similar studies over the African continent are lacking. And even if such models would exist, it would be difficult to verify their validity due to the paucity of meteorological observations and anemometers in the central Sahara. A pragmatic way around this problem is to monitor barchan dune velocity as a proxy for the windiness of desert areas. Dune migration rates are a measure of the amount of work done by the wind which does not require field measurements but can be observed from space instead. This paper presents a novel application of the remote sensing tool COSI-Corr for the construction of time series of dune mobility from sequences of optical satellite imagery. The technique has been applied to the Bodélé Depression in northern Chad, to demonstrate that dune migration rates in the central Sahara have been remarkably constant for nearly half a century, leading us to conclude that wind velocities have not changed more than 0.2% per year over that period. It is therefore unlikely that the frequency and intensity of dust storms originating from this ‘hot spot’ has significantly changed over the past decades either.

  12. New determination of the gravitational constant G with time-of-swing method

    SciTech Connect

    Tu Liangcheng; Li Qing; Wang Qinglan; Shao Chenggang; Yang Shanqing; Liu Linxia; Liu Qi; Luo Jun

    2010-07-15

    A new determination of the Newtonian gravitational constant G is presented by using a torsion pendulum with the time-of-swing method. Compared with our previous measurement with the same method, several improvements greatly reduced the uncertainties as follows: (i) two stainless steel spheres with more homogeneous density are used as the source masses instead of the cylinders used in the previous experiment, and the offset of the mass center from the geometric center is measured and found to be much smaller than that of the cylinders; (ii) a rectangular glass block is used as the main body of the pendulum, which has fewer vibration modes and hence improves the stability of the period and reduces the uncertainty of the moment of inertia; (iii) both the pendulum and source masses are placed in the same vacuum chamber to reduce the error of measuring the relative positions; (iv) changing the configurations between the ''near'' and ''far'' positions is remotely operated by using a stepper motor to lower the environmental disturbances; and (v) the anelastic effect of the torsion fiber is first measured directly by using two disk pendulums with the help of a high-Q quartz fiber. We have performed two independent G measurements, and the two G values differ by only 9 ppm. The combined value of G is (6.673 49{+-}0.000 18)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2} with a relative uncertainty of 26 ppm.

  13. The Oklo bound on the time variation of the fine-structure constant revisited

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Dyson, Freeman

    1996-02-01

    It has been pointed out by Shlyakhter that data from the natural fission reactors which operated about two billion years ago at Oklo (Gabon) had the potential of providing an extremely tight bound on the variability of the fine-structure constant α. We revisit the derivation of such a bound by (i) reanalyzing a large selection of published rare-earth data from Oklo, (ii) critically taking into account the very large uncertainty of the temperature at which the reactors operated, and (iii) connecting in a new way (using isotope shift measurements) the Oklo-derived constraint on a possible shift of thermal neutron-capture resonances with a bound on the time variation of α. Our final (95% C.L.) results are: -0.9 × 10 -7 < ( αOklo - αnow)/ α < 1.2 × 10 -7 and -6.7 × 10 -17yr-1 < αdotaveraged/α < 5.0 × 10 -17yr-1.

  14. Automated Method for Estimating Nutation Time Constant Model Parameters for Spacecraft Spinning on Axis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Calculating an accurate nutation time constant (NTC), or nutation rate of growth, for a spinning upper stage is important for ensuring mission success. Spacecraft nutation, or wobble, is caused by energy dissipation anywhere in the system. Propellant slosh in the spacecraft fuel tanks is the primary source for this dissipation and, if it is in a state of resonance, the NTC can become short enough to violate mission constraints. The Spinning Slosh Test Rig (SSTR) is a forced-motion spin table where fluid dynamic effects in full-scale fuel tanks can be tested in order to obtain key parameters used to calculate the NTC. We accomplish this by independently varying nutation frequency versus the spin rate and measuring force and torque responses on the tank. This method was used to predict parameters for the Genesis, Contour, and Stereo missions, whose tanks were mounted outboard from the spin axis. These parameters are incorporated into a mathematical model that uses mechanical analogs, such as pendulums and rotors, to simulate the force and torque resonances associated with fluid slosh.

  15. Photocycles of bacteriorhodopsin in light- and dark-adapted purple membrane studied by time-resolved absorption spectroscopy.

    PubMed Central

    Hofrichter, J; Henry, E R; Lozier, R H

    1989-01-01

    Nanosecond time-resolved absorption spectra have been measured throughout the photocycle of bacteriorhodopsin in both light-adapted and dark-adapted purple membrane (PM). The data from dark-adapted samples are interpretable as the superposition of two photocycles arising independently from the all-trans and 13-cis retinal isomers that coexist in the dark-adapted state. The presence of a photocycle in dark-adapted PM which is indistinguishable from that observed for light-adapted PM under the same experimental conditions is demonstrated by the observation of the same five relaxation rates associated with essentially identical changes in the photoproduct spectra. This cycle is attributed to the all-trans component. The cycle of the 13-cis component is revealed by scaling the data measured for the light-adapted sample and subtracting it from the data on the dark-adapted mixture. At times less than 1 ms, the resulting difference spectra are nearly time-independent. The peak of the difference spectrum is near 600 nm, although there appears to be a slight (approximately 2 nm) blue-shift in the first few microseconds. Subsequently the amplitude of this spectrum decays and the peak of the difference spectrum shifts in two relaxations. Most of the amplitude of the photoproduct difference spectrum (approximately 80%) decays in a single relaxation having a time constant of approximately 35 ms. The difference spectrum remaining after this relaxation peaks at approximately 590 nm and is indistinguishable from the classical light-dark difference spectrum, which we find, in experiments performed on a much longer time scale, to peak at 588 nm. The decay of this remaining photo-product is not resolvable in the nanosecond kinetic experiments, but dark adaptation of a completely light-adapted sample is found to occur exponentially with a relaxation time of approximately 2,000 s under the conditions of our experiments. PMID:2819234

  16. Smoothed Particle Hydrodynamics with Time Varying, Piecewise Constant Smoothing Length Profiles

    NASA Astrophysics Data System (ADS)

    Børve, S.; Omang, M.; Trulsen, J.

    2000-12-01

    Smoothed Particle Hydrodynamics (SPH) has proven to be a very useful numerical tool in studying a number of widely different astrophysical problems. Still, used on many other types of problems the method faces problems concerning efficiency and accuracy compared to that of modern grid-based methods. Essential to efficiency is maintaining a near-optimal particle distribution and smoothing length profile that reflects the physics of the problem. This means, directing computer resources towards those regions and time intervals where the action is taking place and not being wasted where nothing is happening. In the literature researchers have tried to achieve these goals by combining the Lagrangian nature of the SPH method with a smoothing length profile varying smoothly in space and time. To make the SPH method better suited for accurately describing a wider range of problems, a scheme containing two novel features is proposed. First, the scheme assumes a piecewise constant smoothing length profile. To avoid substantial errors near steps in the smoothing length profile, alternative forms of the SPH equations of motion is used. Secondly, a predictive attitude towards optimizing the particle distribution is introduced by activating a mass, momentum and internal energy conservation regularization process at intervals. The main challenge faced by the scheme has been to put the newly optimized smoothing length profile into use without severely altering the underlying physics. To achieve this, the entire set of particles is redefined in the process. The basic ideas behind this scheme is briefly described. Finally, the results from several hydrodynamical and magnetohydrodynamical tests in one and two dimensions are presented. This work is funded by the Research Council of Norway.

  17. Cerebral Arterial Time Constant Recorded from the MCA and PICA in Normal Subjects.

    PubMed

    Kasprowicz, Magdalena; Czosnyka, Marek; Poplawska, Karolina; Reinhard, Matthias

    2016-01-01

    Cerebral arterial time constant (τ) estimates how quickly the cerebral arterial bed distal to the point of insonation is filled with arterial blood following a cardiac contraction. It is not known how τ behaves in different vascular territories in the brain. We therefore investigated the differences in τ of two cerebral arteries: the posterior inferior cerebellar artery (PICA) and the middle cerebral artery (MCA).Transcranial Doppler cerebral blood flow velocity (CBFV) in the PICA and left MCA along with Finapres arterial blood pressure (ABP) were simultaneously recorded in 35 young healthy volunteers. τ was estimated using mathematical transformations of pulse waveforms of ABP and the CBFV of the MCA and the PICA. Since τ is independent from the vessel radius, its comparison in different cerebral arteries was feasible. Mean ABP was 76.1 ± 9.6 mmHg. The CBFV of the MCA was higher than that of the PICA (59.7 ± 7.7 vs. 41.0 ± 4.5 cm/s; p < 0.000001). τ of the PICA was shorter than that of the MCA (0.15 ± 0.03 vs. 0.18 ± 0.03 s; p < 0.000001). The MCA-supplied vascular bed has a longer distal average length, measured from the place of insonation up to the small arterioles, than the PICA-supplied vascular bed. Therefore, a longer time is needed to fill it with arterial blood volume. This study thus confirms the physiological validity of the τ concept. PMID:27165908

  18. Adaptive time-frequency parametrization of epileptic spikes

    NASA Astrophysics Data System (ADS)

    Durka, Piotr J.

    2004-05-01

    Adaptive time-frequency approximations of signals have proven to be a valuable tool in electroencephalogram (EEG) analysis and research, where it is believed that oscillatory phenomena play a crucial role in the brain’s information processing. This paper extends this paradigm to the nonoscillating structures such as the epileptic EEG spikes, and presents the advantages of their parametrization in general terms such as amplitude and half-width. A simple detector of epileptic spikes in the space of these parameters, tested on a limited data set, gives very promising results. It also provides a direct distinction between randomly occurring spikes or spike/wave complexes and rhythmic discharges.

  19. Two-dimensional implicit time dependent calculations on adaptive unstructured meshes with time evolving boundaries.

    SciTech Connect

    Lin, Paul Tinphone; Jameson, Antony, 1934-; Baker, Timothy J.; Martinelli, Luigi

    2005-01-01

    An implicit multigrid-driven algorithm for two-dimensional incompressible laminar viscous flows has been coupled with a solution adaptation method and a mesh movement method for boundary movement. Time-dependent calculations are performed implicitly by regarding each time step as a steady-state problem in pseudo-time. The method of artificial compressibility is used to solve the flow equations. The solution mesh adaptation method performs local mesh refinement using an incremental Delaunay algorithm and mesh coarsening by means of edge collapse. Mesh movement is achieved by modeling the computational domain as an elastic solid and solving the equilibrium equations for the stress field. The solution adaptation method has been validated by comparison with experimental results and other computational results for low Reynolds number flow over a shedding circular cylinder. Preliminary validation of the mesh movement method has been demonstrated by a comparison with experimental results of an oscillating airfoil and with computational results for an oscillating cylinder.

  20. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  1. Nightside magnetospheric current circuit: Time constants of the solar wind-magnetosphere coupling

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Uozumi, T.

    2014-05-01

    This study addresses the characteristics of the nightside magnetospheric current system using the analogy of an electric circuit. The modeled circuit consists of the generator (V: solar wind), inductor (L: tail lobes), capacitor (C: plasma sheet convection), and resistor (R: particle energization). The electric circuit has three time constants: τCR(=CR), τLC(=√LC), and τL/R(=L/R). Here τCR is of the order of the ion gyroperiod in the plasma sheet, τLC is a global timescale (2πτLC is several tens of minutes), and τL/R is even longer (several hours). Despite uncertainty in the estimate of each circuit element, τCR ≪ τLC ≪ τL/R holds generally for the magnetosphere, which characterizes the electric circuit as overdamped. The following implications are obtained: (1) During the substorm growth phase the cross-tail current increases continuously even if interplanetary magnetic field (IMF) BZ does not change after southward turning; (2) the magnetotail current weakens following northward turnings if the change of IMF BZ is comparable to the preceding southward IMF BZ; otherwise it may strengthen continuously if more gradually; (3) during the early main phase of magnetospheric storms the enhancement of the lobe magnetic energy is far more prominent than the enhancements of the kinematic and kinetic energies of the plasma sheet plasma; (4) The efficiency of the solar wind-magnetosphere coupling changes on a timescale of several hours (τL/R) through the change of the tail flaring, and so does the cross polar-cap potential; and (5) the magnetospheric current system does not resonate to an oscillatory external driver, and therefore, the periodicity of some magnetotail phenomena reflects that of their triggers.

  2. Does Newton’s gravitational constant vary sinusoidally with time? Orbital motions say no

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2016-02-01

    A sinusoidally time-varying pattern of the values of Newton’s constant of gravitation G measured in Earth-based laboratories over the last few decades has been recently reported in the literature. We put to the test the hypothesis that the aforementioned harmonic variation may pertain to G itself in a direct and independent way. We numerically integrated the ad hoc modified equations of motion of the major bodies of the Solar System, finding that the orbits of the planets would be altered by an unacceptably larger amount in view of the present-day high accuracy astrometric measurements. In the case of Saturn, its geocentric right ascension α, declination δ and range ρ would be affected by up to {10}4-{10}5 milliarcseconds and 105 km, respectively; the present-day residuals of such observables are as little as about 4 milliarcseconds and 10-1 km, respectively. We analytically calculated the long-term orbital effects induced by the putative harmonic variation of G at hand, finding non-zero rates of change for the semimajor axis a, the eccentricity e and the argument of pericenter ω of a test particle. For the LAGEOS satellite, an orbital increase as large as 3.9 m yr-1 is predicted, in contrast with the observed decay of -0.203 ± 0.035 m yr-1. An anomalous perihelion precession as large as 14 arcseconds per century is implied for Saturn, while latest observations constrain it to the 10-4 arcseconds per century level. The rejection level provided by the Mercury’s perihelion rate is of the same order of magnitude.

  3. Holographic dark energy with time depend gravitational constant in the non-flat Hořava-Lifshitz cosmology

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, A.; Saaidi, K.; Setare, M. R.

    2011-04-01

    We study the holographic dark energy on the subject of Hořava-Lifshitz gravity with a time dependent gravitational constant G( t), in the non-flat space-time. We obtain the differential equation that specify the evolution of the dark energy density parameter based on varying gravitational constant. We find out a relation for the state parameter of the dark energy equation of state to low red-shifts which containing varying G corrections in the non-flat space-time.

  4. An Evaluation of Constant Time Delay and Simultaneous Prompting Procedures in Skill Acquisition for Young Children with Autism

    ERIC Educational Resources Information Center

    Brandt, Julie A. Ackerlund; Weinkauf, Sara; Zeug, Nicole; Klatt, Kevin P.

    2016-01-01

    Previous research has shown that various prompting procedures are effective in teaching skills to children and adults with developmental disabilities. Simultaneous prompting includes proving a prompt immediately following an instruction; whereas constant time-delay procedures include a set time delay (i.e., 5 s or 10 s) prior to delivering a…

  5. Effectiveness of Constant Time Delay on Teaching Snack and Drink Preparation Skills to Children with Mental Retardation

    ERIC Educational Resources Information Center

    Bozkurt, Funda; Gursel, Oguz

    2005-01-01

    A multiple probe design with probe conditions across behaviors was used to evaluate effectiveness of constant time delay on teaching snack and drink preparation skills to children with mental retardation. In addition, generalization effects across settings, time, and materials, and maintenance effects were examined. Three students between the ages…

  6. Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.

  7. Non-iterative adaptive time stepping with truncation error control for simulating variable-density flow

    NASA Astrophysics Data System (ADS)

    Hirthe, E. M.; Graf, T.

    2012-04-01

    Fluid density variations occur due to changes in the solute concentration, temperature and pressure of groundwater. Examples are interaction between freshwater and seawater, radioactive waste disposal, groundwater contamination, and geothermal energy production. The physical coupling between flow and transport introduces non-linearity in the governing mathematical equations, such that solving variable-density flow problems typically requires very long computational time. Computational efficiency can be attained through the use of adaptive time-stepping schemes. The aim of this work is therefore to apply a non-iterative adaptive time-stepping scheme based on local truncation error in variable-density flow problems. That new scheme is implemented into the code of the HydroGeoSphere model (Therrien et al., 2011). The new time-stepping scheme is applied to the Elder (1967) and the Shikaze et al. (1998) problem of free convection in porous and fractured-porous media, respectively. Numerical simulations demonstrate that non-iterative time-stepping based on local truncation error control fully automates the time step size and efficiently limits the temporal discretization error to the user-defined tolerance. Results of the Elder problem show that the new time-stepping scheme presented here is significantly more efficient than uniform time-stepping when high accuracy is required. Results of the Shikaze problem reveal that the new scheme is considerably faster than conventional time-stepping where time step sizes are either constant or controlled by absolute head/concentration changes. Future research will focus on the application of the new time-stepping scheme to variable-density flow in complex real-world fractured-porous rock.

  8. Adaptive spatial combining for passive time-reversed communications.

    PubMed

    Gomes, João; Silva, António; Jesus, Sérgio

    2008-08-01

    Passive time reversal has aroused considerable interest in underwater communications as a computationally inexpensive means of mitigating the intersymbol interference introduced by the channel using a receiver array. In this paper the basic technique is extended by adaptively weighting sensor contributions to partially compensate for degraded focusing due to mismatch between the assumed and actual medium impulse responses. Two algorithms are proposed, one of which restores constructive interference between sensors, and the other one minimizes the output residual as in widely used equalization schemes. These are compared with plain time reversal and variants that employ postequalization and channel tracking. They are shown to improve the residual error and temporal stability of basic time reversal with very little added complexity. Results are presented for data collected in a passive time-reversal experiment that was conducted during the MREA'04 sea trial. In that experiment a single acoustic projector generated a 24-PSK (phase-shift keyed) stream at 200400 baud, modulated at 3.6 kHz, and received at a range of about 2 km on a sparse vertical array with eight hydrophones. The data were found to exhibit significant Doppler scaling, and a resampling-based preprocessing method is also proposed here to compensate for that scaling. PMID:18681595

  9. Evaluating mallard adaptive management models with time series

    USGS Publications Warehouse

    Conn, P.B.; Kendall, W.L.

    2004-01-01

    Wildlife practitioners concerned with midcontinent mallard (Anas platyrhynchos) management in the United States have instituted a system of adaptive harvest management (AHM) as an objective format for setting harvest regulations. Under the AHM paradigm, predictions from a set of models that reflect key uncertainties about processes underlying population dynamics are used in coordination with optimization software to determine an optimal set of harvest decisions. Managers use comparisons of the predictive abilities of these models to gauge the relative truth of different hypotheses about density-dependent recruitment and survival, with better-predicting models giving more weight to the determination of harvest regulations. We tested the effectiveness of this strategy by examining convergence rates of 'predictor' models when the true model for population dynamics was known a priori. We generated time series for cases when the a priori model was 1 of the predictor models as well as for several cases when the a priori model was not in the model set. We further examined the addition of different levels of uncertainty into the variance structure of predictor models, reflecting different levels of confidence about estimated parameters. We showed that in certain situations, the model-selection process favors a predictor model that incorporates the hypotheses of additive harvest mortality and weakly density-dependent recruitment, even when the model is not used to generate data. Higher levels of predictor model variance led to decreased rates of convergence to the model that generated the data, but model weight trajectories were in general more stable. We suggest that predictive models should incorporate all sources of uncertainty about estimated parameters, that the variance structure should be similar for all predictor models, and that models with different functional forms for population dynamics should be considered for inclusion in predictor model! sets. All of these

  10. Real-Time Adaptive Color Segmentation by Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2004-01-01

    Artificial neural networks that would utilize the cascade error projection (CEP) algorithm have been proposed as means of autonomous, real-time, adaptive color segmentation of images that change with time. In the original intended application, such a neural network would be used to analyze digitized color video images of terrain on a remote planet as viewed from an uninhabited spacecraft approaching the planet. During descent toward the surface of the planet, information on the segmentation of the images into differently colored areas would be updated adaptively in real time to capture changes in contrast, brightness, and resolution, all in an effort to identify a safe and scientifically productive landing site and provide control feedback to steer the spacecraft toward that site. Potential terrestrial applications include monitoring images of crops to detect insect invasions and monitoring of buildings and other facilities to detect intruders. The CEP algorithm is reliable and is well suited to implementation in very-large-scale integrated (VLSI) circuitry. It was chosen over other neural-network learning algorithms because it is better suited to realtime learning: It provides a self-evolving neural-network structure, requires fewer iterations to converge and is more tolerant to low resolution (that is, fewer bits) in the quantization of neural-network synaptic weights. Consequently, a CEP neural network learns relatively quickly, and the circuitry needed to implement it is relatively simple. Like other neural networks, a CEP neural network includes an input layer, hidden units, and output units (see figure). As in other neural networks, a CEP network is presented with a succession of input training patterns, giving rise to a set of outputs that are compared with the desired outputs. Also as in other neural networks, the synaptic weights are updated iteratively in an effort to bring the outputs closer to target values. A distinctive feature of the CEP neural

  11. Nonlinear time-series-based adaptive control applications

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.; Rajkumar, V.; Zakrzewski, R. R.

    1991-01-01

    A control design methodology based on a nonlinear time-series reference model is presented. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible AC transmission system with series capacitor power feedback control is studied. A bilinear autoregressive moving average reference model is identified from system data, and the feedback control is manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index. A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack.

  12. ROAMing terrain (Real-time Optimally Adapting Meshes)

    SciTech Connect

    Duchaineau, M.; Wolinsky, M.; Sigeti, D.E.; Miller, M.C.; Aldrich, C.; Mineev, M.

    1997-07-01

    Terrain visualization is a difficult problem for applications requiring accurate images of large datasets at high frame rates, such as flight simulation and ground-based aircraft testing using synthetic sensor stimulation. On current graphics hardware, the problem is to maintain dynamic, view-dependent triangle meshes and texture maps that produce good images at the required frame rate. We present an algorithm for constructing triangle meshes that optimizes flexible view-dependent error metrics, produces guaranteed error bounds, achieves specified triangle counts directly, and uses frame-to-frame coherence to operate at high frame rates for thousands of triangles per frame. Our method, dubbed Real-time Optimally Adapting Meshes (ROAM), uses two priority queues to drive split and merge operations that maintain continuous triangulations built from pre-processed bintree triangles. We introduce two additional performance optimizations: incremental triangle stripping and priority-computation deferral lists. ROAM execution time is proportionate to the number of triangle changes per frame, which is typically a few percent of the output mesh size, hence ROAM performance is insensitive to the resolution and extent of the input terrain. Dynamic terrain and simple vertex morphing are supported.

  13. Augmenting synthetic aperture radar with space time adaptive processing

    NASA Astrophysics Data System (ADS)

    Riedl, Michael; Potter, Lee C.; Ertin, Emre

    2013-05-01

    Wide-area persistent radar video offers the ability to track moving targets. A shortcoming of the current technology is an inability to maintain track when Doppler shift places moving target returns co-located with strong clutter. Further, the high down-link data rate required for wide-area imaging presents a stringent system bottleneck. We present a multi-channel approach to augment the synthetic aperture radar (SAR) modality with space time adaptive processing (STAP) while constraining the down-link data rate to that of a single antenna SAR system. To this end, we adopt a multiple transmit, single receive (MISO) architecture. A frequency division design for orthogonal transmit waveforms is presented; the approach maintains coherence on clutter, achieves the maximal unaliased band of radial velocities, retains full resolution SAR images, and requires no increase in receiver data rate vis-a-vis the wide-area SAR modality. For Nt transmit antennas and N samples per pulse, the enhanced sensing provides a STAP capability with Nt times larger range bins than the SAR mode, at the cost of O(log N) more computations per pulse. The proposed MISO system and the associated signal processing are detailed, and the approach is numerically demonstrated via simulation of an airborne X-band system.

  14. Adaptive multimode signal reconstruction from time-frequency representations.

    PubMed

    Meignen, Sylvain; Oberlin, Thomas; Depalle, Philippe; Flandrin, Patrick; McLaughlin, Stephen

    2016-04-13

    This paper discusses methods for the adaptive reconstruction of the modes of multicomponent AM-FM signals by their time-frequency (TF) representation derived from their short-time Fourier transform (STFT). The STFT of an AM-FM component or mode spreads the information relative to that mode in the TF plane around curves commonly called ridges. An alternative view is to consider a mode as a particular TF domain termed a basin of attraction. Here we discuss two new approaches to mode reconstruction. The first determines the ridge associated with a mode by considering the location where the direction of the reassignment vector sharply changes, the technique used to determine the basin of attraction being directly derived from that used for ridge extraction. A second uses the fact that the STFT of a signal is fully characterized by its zeros (and then the particular distribution of these zeros for Gaussian noise) to deduce an algorithm to compute the mode domains. For both techniques, mode reconstruction is then carried out by simply integrating the information inside these basins of attraction or domains. PMID:26953184

  15. Effects of Vocabulary Instruction Using Constant Time Delay on Expository Reading of Young Adults with Intellectual Disability

    ERIC Educational Resources Information Center

    Hua, Youjia; Woods-Groves, Suzanne; Kaldenberg, Erica R.; Scheidecker, Bethany J.

    2013-01-01

    We investigated the effectiveness of using constant time delay (CTD) with young adults with intellectual disability on their vocabulary acquisition and retention, as well as expository reading comprehension. Four learners, ages 19 to 21 years, from a postsecondary education program for individuals with disabilities participated in the study.…

  16. Coupling loss time constants in full-size Nb{sub 3}Sn CIC model conductors for fusion magnets

    SciTech Connect

    Nijhuis, A.; Kate, H.H.J. ten; Duchateau, J.L.

    1997-06-01

    The cable-in-conduit conductor for the ITER coils have to perform at magnetic fields up to 13 T under the conditions of normal high ramp rates as well as extreme magnetic pulses during a plasma disruption. Modelling, ac loss computations and design optimisations require to understand and identify the coupling loss time constants in multistage cables. For this AC loss measurements are performed on jacketed full size Nb{sub 3}Sn cable-in-conduit conductors. A transverse sinusoidal magnetic field is applied on the conductor to determine the coupling loss time constants with a calorimetric method. Moreover the decay of the coupling currents after a linear ramp is monitored with compensated pick-up coils. A comparison is made between the results obtained with both measuring methods. It appears that the n.{tau} value taken from the slope of the loss versus frequency curve in the low frequency limit has only a meaning at these low frequencies. At higher rates of magnetic field change which are relevant to describe a plasma disruption, internal shielding effects are not negligible and a different approach has to be used. The experimental results and a straightforward model are presented to find the coupling current time constants of this type of conductors. It is shown that several dominant time constants can exist that are associated with relatively small volume fractions of a cable.

  17. Teaching Generalized Reading of Product Warning Labels to Young Adults with Autism Using the Constant Time Delay Procedure

    ERIC Educational Resources Information Center

    Dogoe, Maud S.; Banda, Devender R.; Lock, Robin H.; Feinstein, Rita

    2011-01-01

    This study examined the effectiveness of the constant timed delay procedure for teaching two young adults with autism to read, define, and state the contextual meaning of keywords on product warning labels of common household products. Training sessions were conducted in the dyad format using flash cards. Results indicated that both participants…

  18. The Effects of Constant Time Delay and Instructive Feedback on the Acquisition of English and Spanish Sight Words

    ERIC Educational Resources Information Center

    Appelman, Michelle; Vail, Cynthia O.; Lieberman-Betz, Rebecca G.

    2014-01-01

    The authors of this study evaluated the acquisition of instructive feedback information presented to four kindergarten children with mild delays taught in dyads using a constant time delay (CTD) procedure. They also assessed the learning of observational (dyadic partner) information within this instructional arrangement. A multiple probe design…

  19. Identification of Printed Nonsense Words for an Individual with Autism: A Comparison of Constant Time Delay and Stimulus Fading

    ERIC Educational Resources Information Center

    Redhair, Emily I.; McCoy, Kathleen M.; Zucker, Stanley H.; Mathur, Sarup R.; Caterino, Linda

    2013-01-01

    This study compared a stimulus fading (SF) procedure with a constant time delay (CTD) procedure for identification of consonant-vowel-consonant (CVC) nonsense words for a participant with autism. An alternating treatments design was utilized through a computer-based format. Receptive identification of target words was evaluated using a computer…

  20. Using Video Prompting and Constant Time Delay to Teach an Internet Search Basic Skill to Students with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Zisimopoulos, Dimitrios; Sigafoos, Jeff; Koutromanos, George

    2011-01-01

    We evaluated a video prompting and a constant time delay procedure for teaching three primary school students with moderate intellectual disabilities to access the Internet and download pictures related to participation in a classroom History project. Video clips were used as an antecedent prompt and as an error correction technique within a…

  1. Effects of Constant Time Delay Procedure on the Halliwick's Method of Swimming Rotation Skills for Children with Autism

    ERIC Educational Resources Information Center

    Yilmaz, Ilker; Konukman, Ferman; Birkan, Binyamin; Ozen, Arzu; Yanardag, Mehmet; Camursoy, Ilhan

    2010-01-01

    Effects of a constant time delay procedure on the Halliwick's method of swimming rotation skills (i.e., vertical and lateral rotation) for children with autism were investigated. A single subject multiple baseline model across behaviors with probe conditions was used. Participants were three boys, 8-9 years old. Data were collected over a 10-week…

  2. Time evolution of the fine structure constant in a two-field quintessence model

    SciTech Connect

    Bento, M.C.; Bertolami, O.; Santos, N.M.C.

    2004-11-15

    We examine the variation of the fine structure constant in the context of a two-field quintessence model. We find that, for solutions that lead to a transient late period of accelerated expansion, it is possible to fit the data arising from quasar spectra and comply with the bounds on the variation of {alpha} from the Oklo reactor, meteorite analysis, atomic clock measurements, cosmic microwave background radiation, and big bang nucleosynthesis. That is more difficult if we consider solutions corresponding to a late period of permanent accelerated expansion.

  3. Personality traits, future time perspective and adaptive behavior in adolescence.

    PubMed

    Gomes Carvalho, Renato Gil; Novo, Rosa Ferreira

    2015-01-01

    Several studies provide evidence of the importance of future time perspective (FTP) for individual success. However, little research addresses the relationship between FTP and personality traits, particularly if FTP can mediate their influence on behavior. In this study we analyze the mediating of FTP in the influence of personality traits on the way adolescents live their life at school. Sample consisted in 351 students, aged from 14 to 18 years-old, at different schooling levels. Instruments were the Portuguese version of the MMPI-A, particularly the PSY-5 dimensions (Aggressiveness, Psychoticism, Disconstraint, Neuroticism, Introversion), a FTP questionnaire, and a survey on school life, involving several indicators of achievement, social integration, and overall satisfaction. With the exception of Neuroticism, the results show significant mediation effects (p < .001) of FTP on most relationships between PSY-5 dimensions and school life variables. Concerning Disconstraint, FTP mediated its influence on overall satisfaction (β = -.125) and school achievement (β = -.106). In the case of Introversion, significant mediation effects occurred for interpersonal difficulties (β = .099) and participation in extracurricular activities (β = -.085). FTP was also a mediator of Psychoticism influence in overall satisfaction (β = -.094), interpersonal difficulties (β = .057), and behavior problems (β = .037). Finally, FTP mediated the influence of Aggressiveness on overall satisfaction (β = -.061), interpersonal difficulties (β = .040), achievement (β = -.052), and behavior problems (β = .023). Results are discussed considering the importance of FTP in the impact of some personality structural characteristics in students' school adaptation. PMID:25907852

  4. Adaptive real-time dual-comb spectroscopy.

    PubMed

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2014-01-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences. PMID:24572636

  5. Adaptive real-time dual-comb spectroscopy

    PubMed Central

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-01-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences. PMID:24572636

  6. Adaptive real-time dual-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-02-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  7. The graviton one-loop effective action in cosmological space-times with constant deceleration

    NASA Astrophysics Data System (ADS)

    Janssen, T. M.; Prokopec, T.

    2010-05-01

    We consider the quantum Friedmann equations which include one-loop vacuum fluctuations due to gravitons and scalar field matter in a FLRW background with constant γ=-H˙/H2. After several field redefinitions, to remove the mixing between the gravitational and matter degrees of freedom, we can construct the one-loop correction to the Friedmann equations. Due to cosmological particle creation, the propagators needed in such a calculation are typically infrared divergent. In this paper we construct the graviton and matter propagators, making use of the recent construction of the infrared finite scalar propagators calculated on a compact spatial manifold in Janssen et al. (2008) [1]. The resulting correction to the Friedman equations is suppressed with respect to the tree level contribution by a factor of H2/mp2 and shows no secular growth.

  8. Quantum logic gates from time-dependent global magnetic field in a system with constant exchange

    SciTech Connect

    Nenashev, A. V. Dvurechenskii, A. V.; Zinovieva, A. F.; Gornov, A. Yu.; Zarodnyuk, T. S.

    2015-03-21

    We propose a method that implements a universal set of one- and two-quantum-bit gates for quantum computation in a system of coupled electron pairs with constant non-diagonal exchange interaction. In our proposal, suppression of the exchange interaction is performed by the continual repetition of single-spin rotations. A small g-factor difference between the electrons allows for addressing qubits and avoiding strong magnetic field pulses. Numerical experiments were performed to show that, to implement the one- and two-qubit operations, it is sufficient to change the strength of the magnetic field by a few Gauss. This introduces one and then the other electron in a resonance. To determine the evolution of the two-qubit system, we use the algorithms of optimal control theory.

  9. SHARP - iii. First Use of Adaptive Optics Imaging to Constrain Cosmology with Gravitational Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Chen, Geoff C. F.; Suyu, Sherry H.; Wong, Kenneth C.; Fassnacht, Christopher D.; Chiueh, Tzihong; Halkola, Aleksi; Hu, I. Shing; Auger, Matthew W.; Koopmans, Léon V. E.; Lagattuta, David J.; McKean, John P.; Vegetti, Simona

    2016-08-01

    Accurate and precise measurements of the Hubble constant are critical for testing our current standard cosmological model and revealing possibly new physics. With Hubble Space Telescope (HST) imaging, each strong gravitational lens system with measured time delays can allow one to determine the Hubble constant with an uncertainty of ˜7%. Since HST will not last forever, we explore adaptive-optics (AO) imaging as an alternative that can provide higher angular resolution than HST imaging but has a less stable point spread function (PSF) due to atmospheric distortion. To make AO imaging useful for time-delay-lens cosmography, we develop a method to extract the unknown PSF directly from the imaging of strongly lensed quasars. In a blind test with two mock data sets created with different PSFs, we are able to recover the important cosmological parameters (time-delay distance, external shear, lens mass profile slope, and total Einstein radius). Our analysis of the Keck AO image of the strong lens system RXJ 1131-1231 shows that the important parameters for cosmography agree with those based on HST imaging and modeling within 1-σ uncertainties. Most importantly, the constraint on the model time-delay distance by using AO imaging with 0.045″ resolution is tighter by ˜50% than the constraint of time-delay distance by using HST imaging with 0.09″ when a power-law mass distribution for the lens system is adopted. Our PSF reconstruction technique is generic and applicable to data sets that have multiple nearby point sources, enabling scientific studies that require high-precision models of the PSF.

  10. Optimal Control Modification Adaptive Law for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  11. Time constant of hydraulic-head response in aquifers subjected to sudden recharge change: application to large basins

    NASA Astrophysics Data System (ADS)

    Vasseur, Guy; Rousseau-Gueutin, Pauline; de Marsily, Ghislain

    2015-08-01

    Analytical formulae are proposed to describe the first-order temporal evolution of the head in large groundwater systems (such as those found in North Africa or eastern Australia) that are subjected to drastic modifications of their recharge conditions (such as those in Pleistocene and Holocene times). The mathematical model is based on the hydrodynamics of a mixed-aquifer system composed of a confined aquifer connected to an unconfined one with a large storage capacity. The transient behaviour of the head following a sudden change of recharge conditions is computed with Laplace transforms for linear one-dimensional and cylindrical geometries. This transient evolution closely follows an exponential trend exp(- t/ τ). The time constant τ is expressed analytically as a function of the various parameters characterizing the system. In many commonly occurring situations, τ depends on only four parameters: the width a c of the main confined aquifer, its transmissivity T c, the integrated storage situated upstream in the unconfined aquifer M = S u a u, and a curvature parameter accounting for convergence/divergence effects. This model is applied to the natural decay of large aquifer basins of the Sahara and Australia following the end of the mid-Holocene humid period. The observed persistence of the resource is discussed on the basis of the time constant estimated with the system parameters. This comparison confirms the role of the upstream water reserve, which is modelled as an unconfined aquifer, and highlights the significant increase of the time constant in case of converging flow.

  12. Adaptive control for a class of MIMO nonlinear time delay systems against time varying actuator failures.

    PubMed

    Hashemi, Mahnaz; Ghaisari, Jafar; Askari, Javad

    2015-07-01

    This paper investigates an adaptive controller for a class of Multi Input Multi Output (MIMO) nonlinear systems with unknown parameters, bounded time delays and in the presence of unknown time varying actuator failures. The type of considered actuator failure is one in which some inputs may be stuck at some time varying values where the values, times and patterns of the failures are unknown. The proposed approach is constructed based on a backstepping design method. The boundedness of all the closed-loop signals is guaranteed and the tracking errors are proved to converge to a small neighborhood of the origin. The proposed approach is employed for a double inverted pendulums benchmark and a chemical reactor system. The simulation results show the effectiveness of the proposed method. PMID:25792517

  13. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants.

    PubMed

    Godun, R M; Nisbet-Jones, P B R; Jones, J M; King, S A; Johnson, L A M; Margolis, H S; Szymaniec, K; Lea, S N; Bongs, K; Gill, P

    2014-11-21

    Singly ionized ytterbium, with ultranarrow optical clock transitions at 467 and 436 nm, is a convenient system for the realization of optical atomic clocks and tests of present-day variation of fundamental constants. We present the first direct measurement of the frequency ratio of these two clock transitions, without reference to a cesium primary standard, and using the same single ion of 171Yb+. The absolute frequencies of both transitions are also presented, each with a relative standard uncertainty of 6×10(-16). Combining our results with those from other experiments, we report a threefold improvement in the constraint on the time variation of the proton-to-electron mass ratio, μ/μ=0.2(1.1)×10(-16)  yr(-1), along with an improved constraint on time variation of the fine structure constant, α/α=-0.7(2.1)×10(-17)  yr(-1). PMID:25479482

  14. Spatial variability of time-constant slip rates on the San Jacinto fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Blisniuk, K.; Oskin, M. E.; Sharp, W. D.; Meriaux, A. B.; Rockwell, T. K.; Fletcher, K.; Owen, L. A.

    2011-12-01

    In southern California, the San Andreas (SAF) and San Jacinto fault (SJF) zones account for 70-80% of the relative dextral motion between the Pacific and North American plates, with some studies suggesting that the SJF zone may be the dominant structure. However, few slip rate measurements are available for the SJF zone, making it difficult to evaluate the partitioning of deformation across the plate boundary. To more reliably constrain the late Quaternary slip history of the SJF zone, we measured the displacement of well-preserved alluvial fans along the Clark and Coyote Creek fault strands of the SJF zone using field mapping and high-resolution LiDAR topographic data, and dated the fans using U-series on pedogenic carbonate clast-coatings and in situ cosmogenic 10Be. Our results from four sites along the Clark fault strand and two sites along the Coyote Creek fault strand indicate that late Quaternary slip rates have fluctuated along their length but have remained constant since the late Pleistocene. Slip rates along the Clark fault strand over the past 50-30 kyr decrease southward over a distance of ~60 km from ~13 mm/yr at Anza, to 8.9 ± 2.0 mm/yr at Rockhouse Canyon, and 1.5 ± 0.4 mm/yr near the SE end of the Santa Rosa Mountains, probably due to transfer of slip from the Clark fault strand to the Coyote Creek fault strand and nearby zones of distributed deformation. Slip rates of up to ~14 to 18 mm/yr summed across the southern SJF zone suggest that since the latest Pleistocene, the SJF zone may rival the southern SAF zone in accommodating deformation across the Pacific-North America Plate boundary.

  15. Resource Management for Real-Time Adaptive Agents

    NASA Technical Reports Server (NTRS)

    Welch, Lonnie; Chelberg, David; Pfarr, Barbara; Fleeman, David; Parrott, David; Tan, Zhen-Yu; Jain, Shikha; Drews, Frank; Bruggeman, Carl; Shuler, Chris

    2003-01-01

    Increased autonomy and automation in onboard flight systems offer numerous potential benefits, including cost reduction and greater flexibility. The existence of generic mechanisms for automation is critical for handling unanticipated science events and anomalies where limitations in traditional control software with fixed, predetermined algorithms can mean loss of science data and missed opportunities for observing important terrestrial events. We have developed such a mechanism by adding a Hierarchical Agent-based ReaLTime technology (HART) extension to our Dynamic Resource Management (DRM) middleware. Traditional DRM provides mechanisms to monitor the realtime performance of distributed applications and to move applications among processors to improve real-time performance. In the HART project we have designed and implemented a performance adaptation mechanism to improve reaktime performance. To use this mechanism, applications are developed that can run at various levels of quality. The DRM can choose a setting for the quality level of an application dynamically at run-time in order to manage satellite resource usage more effectively. A groundbased prototype of a satellite system that captures and processes images has also been developed as part of this project to be used as a benchmark for evaluating the resource management framework A significant enhancement of this generic mission-independent framework allows scientists to specify the utility, or "scientific benefit," of science observations under various conditions like cloud cover and compression method. The resource manager then uses these benefit tables to determine in redtime how to set the quality levels for applications to maximize overall system utility as defined by the scientists running the mission. We also show how maintenance functions llke health and safety data can be integrated into the utility framework. Once thls framework has been certified for missions and successfully flight tested it

  16. Spike timing precision changes with spike rate adaptation in the owl's auditory space map.

    PubMed

    Keller, Clifford H; Takahashi, Terry T

    2015-10-01

    Spike rate adaptation (SRA) is a continuing change of responsiveness to ongoing stimuli, which is ubiquitous across species and levels of sensory systems. Under SRA, auditory responses to constant stimuli change over time, relaxing toward a long-term rate often over multiple timescales. With more variable stimuli, SRA causes the dependence of spike rate on sound pressure level to shift toward the mean level of recent stimulus history. A model based on subtractive adaptation (Benda J, Hennig RM. J Comput Neurosci 24: 113-136, 2008) shows that changes in spike rate and level dependence are mechanistically linked. Space-specific neurons in the barn owl's midbrain, when recorded under ketamine-diazepam anesthesia, showed these classical characteristics of SRA, while at the same time exhibiting changes in spike timing precision. Abrupt level increases of sinusoidally amplitude-modulated (SAM) noise initially led to spiking at higher rates with lower temporal precision. Spike rate and precision relaxed toward their long-term values with a time course similar to SRA, results that were also replicated by the subtractive model. Stimuli whose amplitude modulations (AMs) were not synchronous across carrier frequency evoked spikes in response to stimulus envelopes of a particular shape, characterized by the spectrotemporal receptive field (STRF). Again, abrupt stimulus level changes initially disrupted the temporal precision of spiking, which then relaxed along with SRA. We suggest that shifts in latency associated with stimulus level changes may differ between carrier frequency bands and underlie decreased spike precision. Thus SRA is manifest not simply as a change in spike rate but also as a change in the temporal precision of spiking. PMID:26269555

  17. Using Constant Time Delay To Teach Preventative Safety Skills to Preschoolers with Disabilities. Final Report.

    ERIC Educational Resources Information Center

    Rule, Sarah; Tso, Marion

    This final report describes a study to investigate the effects of an intervention procedure that included time delay, praise, and other cues on the acquisition of safety skills in preschool children with disabilities. Twelve preschool-aged children with disabilities from six different classrooms participated. Preventive safety skills consisted of…

  18. A compensatory algorithm for the slow-down effect on constant-time-separation approaches

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1991-01-01

    In seeking methods to improve airport capacity, the question arose as to whether an electronic display could provide information which would enable the pilot to be responsible for self-separation under instrument conditions to allow for the practical implementation of reduced separation, multiple glide path approaches. A time based, closed loop algorithm was developed and simulator validated for in-trail (one aircraft behind the other) approach and landing. The algorithm was designed to reduce the effects of approach speed reduction prior to landing for the trailing aircraft as well as the dispersion of the interarrival times. The operational task for the validation was an instrument approach to landing while following a single lead aircraft on the same approach path. The desired landing separation was 60 seconds for these approaches. An open loop algorithm, previously developed, was used as a basis for comparison. The results showed that relative to the open loop algorithm, the closed loop one could theoretically provide for a 6 pct. increase in runway throughput. Also, the use of the closed loop algorithm did not affect the path tracking performance and pilot comments indicated that the guidance from the closed loop algorithm would be acceptable from an operational standpoint. From these results, it is concluded that by using a time based, closed loop spacing algorithm, precise interarrival time intervals may be achievable with operationally acceptable pilot workload.

  19. Gravitational Lens Time Delays: A Statistical Assessmentof Lens Model Dependences and Implications for the Global Hubble Constant

    SciTech Connect

    Oguri, Masamune; /KIPAC, Menlo Park

    2006-09-29

    Time delays between lensed multiple images have been known to provide an interesting probe of the Hubble constant, but such application is often limited by degeneracies with the shape of lens potentials. We propose a new statistical approach to examine the dependence of time delays on the complexity of lens potentials, such as higher-order perturbations, non-isothermality, and substructures. Specifically, we introduce a reduced time delay of the dimensionless form, and explore its behavior analytically and numerically as a function of the image configuration that is characterized by the asymmetry and opening angle of the image pair. In particular we derive a realistic conditional probability distribution for a given image configuration from Monte-Carlo simulations. We find that the probability distribution is sensitive to the image configuration such that more symmetric and/or smaller opening angle image pairs are more easily affected by perturbations on the primary lens potential. On average time delays of double lenses are less scattered than those of quadruple lenses. Furthermore, the realistic conditional distribution allows a new statistical method to constrain the Hubble constant from observed time delays. We find that 15 published time delay quasars constrain the Hubble constant to be H{sub 0} = 70 {+-} 3km s{sup -1} Mpc{sup -1}. While systematic errors coming from the heterogeneous nature of the quasar sample and the uncertainty of the input distribution of lens potentials should be considered, reasonable agreement with other estimates indicates the usefulness of our new approach as a cosmological and astrophysical probe, particularly in the era of large-scale synoptic surveys.

  20. A two-dimensional model of the plasmasphere - Refilling time constants

    NASA Technical Reports Server (NTRS)

    Rasmussen, Craig E.; Guiter, Steven M.; Thomas, Steven G.

    1993-01-01

    A 2D model of the plasmasphere has been developed to study the temporal evolution of plasma density in the equatorial plane of the magnetosphere. This model includes the supply and loss of hydrogen ions due to ionosphere-magnetosphere coupling as well as the effects of E x B convection. A parametric model describing the required coupling fluxes has been developed which utilizes empirical models of the neutral atmosphere, the ionosphere and the saturated plasmasphere. The plasmaspheric model has been used to examine the time it takes for the plasmasphere to refill after it has been depleted by a magnetic storm. The time it takes for the plasmasphere to reach 90 percent of its equilibrium level ranges from 3 days at L = 3 during solar minimum to as high as 100 days at L = 5 during solar maximum. Refilling is also dependent on the month of the year, with refilling requiring a longer period of time at solar maximum during June than during December for L greater than 3.2.

  1. Avoiding unrealistic priors: The case of dark energy constraints from the time variation of the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.

    2016-04-01

    We critically assess recent claims suggesting that upper limits on the time variation of the fine-structure constant tightly constrain the coupling of a dark energy scalar field to the electromagnetic sector, and, indirectly, the violation of the weak equivalence principle. We show that such constraints depend crucially on the assumed priors, even if the dark energy was described by a dynamical scalar field with a constant equation-of-state parameter w linearly coupled to the electromagnetic sector through a dimensionless coupling ζ . We find that, although local atomic clock tests, as well as other terrestrial, astrophysical and cosmological data, put stringent bounds on |ζ |√{|w +1 | } , the time variation of the fine-structure constant cannot be used to set or to improve upper limits on |ζ | or |w +1 | without specifying priors, consistent with but not favored by current data, which disfavor low values of |w +1 | or |ζ |, respectively. We briefly discuss how this might change with a new generation of high-resolution ultrastable spectrographs, such as ESPRESSO and ELT-HIRES, in combination with forthcoming missions to map the geometry of the Universe, such as Euclid, or to test the equivalence principle, such as MICROSCOPE or STEP.

  2. An Efficient Format for Nearly Constant-Time Access to Arbitrary Time Intervals in Large Trace Files

    DOE PAGESBeta

    Chan, Anthony; Gropp, William; Lusk, Ewing

    2008-01-01

    A powerful method to aid in understanding the performance of parallel applications uses log or trace files containing time-stamped events and states (pairs of events). These trace files can be very large, often hundreds or even thousands of megabytes. Because of the cost of accessing and displaying such files, other methods are often used that reduce the size of the tracefiles at the cost of sacrificing detail or other information. This paper describes a hierarchical trace file format that provides for display of an arbitrary time window in a time independent of the total size of the file andmore » roughly proportional to the number of events within the time window. This format eliminates the need to sacrifice data to achieve a smaller trace file size (since storage is inexpensive, it is necessary only to make efficient use of bandwidth to that storage). The format can be used to organize a trace file or to create a separate file of annotations that may be used with conventional trace files. We present an analysis of the time to access all of the events relevant to an interval of time and we describe experiments demonstrating the performance of this file format.« less

  3. Regulation of sodium in the shore crab Carcinus maenas, adapted to environments of constant and changing salinities

    NASA Astrophysics Data System (ADS)

    Siebers, D.; Winkler, A.; Leweck, K.; Madian, A.

    1983-09-01

    The activity of Na-K-ATPase was determined in the posterior gills of the shore crab Carcinus maenas during a period following transfer from 35 to 10 ‰ salinity and vice versa at 15 °C. After transfer from high to low salinity, Na-K-ATPase activity increased from 3.2 to 7.0 μmoles Pi mg protein-1 h-1 within a period of 2 to 3 weeks. Transfer of crabs from low to high salinity resulted in reduction of activity from 7.4 to 4.5 μmoles Pi mg protein-1 h-1 within about the same period. The relatively slow response following salinity change indicates that the amounts of Na-K-ATPase in the gills may play a role in hyperionic Na regulation in relatively constant brackish-water environments. Instant responses to salinity result from activation and inhibition of Na-K-ATPase activity by Na. Gill Na-K-ATPase is activated by the Na concentration of the incubation medium to attain a steep maximum at about 75 mM Na, which corresponds to the lowest environmental Na levels tolerated by C. maenas equivalent to a salinity of ca 6 ‰. Activity greatly decreased towards higher Na levels, equivalent to the salinity of normal sea water, at which hyperregulation no longer occurs. Selective addition of either Na or Cl to brackish water of 9 ‰ S resulted in effective hyperregulation of the non-increased ion, and passive distribution between medium and blood of the increased ion. These data indicate that under appropriate conditions the normally coupled transport of Na and Cl may be uncoupled and take place independently of each other.

  4. Estimation of the path-averaged atmospheric refractive index structure constant from time-lapse imagery

    NASA Astrophysics Data System (ADS)

    Basu, Santasri; McCrae, Jack E.; Fiorino, Steven T.

    2015-05-01

    A time-lapse imaging experiment was conducted to monitor the effects of the atmosphere over some period of time. A tripod-mounted digital camera captured images of a distant building every minute. Correlation techniques were used to calculate the position shifts between the images. Two factors causing shifts between the images are: atmospheric turbulence, causing the images to move randomly and quickly, plus changes in the average refractive index gradient along the path which cause the images to move vertically, more slowly and perhaps in noticeable correlation with solar heating and other weather conditions. A technique for estimating the path-averaged C 2n from the random component of the image motion is presented here. The technique uses a derived set of weighting functions that depend on the size of the imaging aperture and the patch size in the image whose motion is being tracked. Since this technique is phase based, it can be applied to strong turbulence paths where traditional irradiance based techniques suffer from saturation effects.

  5. Theoretical determination of chemical rate constants using novel time-dependent methods

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.

    1994-01-01

    The work completed within the grant period 10/1/91 through 12/31/93 falls primarily in the area of reaction dynamics using both quantum and classical mechanical methodologies. Essentially four projects have been completed and have been or are in preparation of being published. The majority of time was spent in the determination of reaction rate coefficients in the area of hydrocarbon fuel combustion reactions which are relevant to NASA's High Speed Research Program (HSRP). These reaction coefficients are important in the design of novel jet engines with low NOx emissions, which through a series of catalytic reactions contribute to the deterioration of the earth's ozone layer. A second area of research studied concerned the control of chemical reactivity using ultrashort (femtosecond) laser pulses. Recent advances in pulsed-laser technologies have opened up a vast new field to be investigated both experimentally and theoretically. The photodissociation of molecules adsorbed on surfaces using novel time-independent quantum mechanical methods was a third project. And finally, using state-of-the-art, high level ab initio electronic structure methods in conjunction with accurate quantum dynamical methods, the rovibrational energy levels of a triatomic molecule with two nonhydrogen atoms (HCN) were calculated to unprecedented levels of agreement between theory and experiment.

  6. Multiple Time Courses of Vestibular Set-Point Adaptation Revealed by Sustained Magnetic Field Stimulation of the Labyrinth.

    PubMed

    Jareonsettasin, Prem; Otero-Millan, Jorge; Ward, Bryan K; Roberts, Dale C; Schubert, Michael C; Zee, David S

    2016-05-23

    A major focus in neurobiology is how the brain adapts its motor behavior to changes in its internal and external environments [1, 2]. Much is known about adaptively optimizing the amplitude and direction of eye and limb movements, for example, but little is known about another essential form of learning, "set-point" adaptation. Set-point adaptation balances tonic activity so that reciprocally acting, agonist and antagonist muscles have a stable platform from which to launch accurate movements. Here, we use the vestibulo-ocular reflex-a simple behavior that stabilizes the position of the eye while the head is moving-to investigate how tonic activity is adapted toward a new set point to prevent eye drift when the head is still [3, 4]. Set-point adaptation was elicited with magneto-hydrodynamic vestibular stimulation (MVS) by placing normal humans in a 7T MRI for 90 min. MVS is ideal for prolonged labyrinthine activation because it mimics constant head acceleration and induces a sustained nystagmus similar to natural vestibular lesions [5, 6]. The MVS-induced nystagmus diminished slowly but incompletely over multiple timescales. We propose a new adaptation hypothesis, using a cascade of imperfect mathematical integrators, that reproduces the response to MVS (and more natural chair rotations), including the gradual decrease in nystagmus as the set point changes over progressively longer time courses. MVS set-point adaptation is a biological model with applications to basic neurophysiological research into all types of movements [7], functional brain imaging [8], and treatment of vestibular and higher-level attentional disorders by introducing new biases to counteract pathological ones [9]. PMID:27185559

  7. Light deflection, lensing, and time delays from gravitational potentials and Fermat's principle in the presence of a cosmological constant

    SciTech Connect

    Ishak, Mustapha

    2008-11-15

    The contributions of the cosmological constant to the deflection angle and the time delays are derived from the integration of the gravitational potential as well as from Fermat's principle. The findings are in agreement with recent results using exact solutions to Einstein's equations and reproduce precisely the new {lambda} term in the bending angle and the lens equation. The consequences on time-delay expressions are explored. While it is known that {lambda} contributes to the gravitational time delay, it is shown here that a new {lambda} term appears in the geometrical time delay as well. Although these newly derived terms are perhaps small for current observations, they do not cancel out as previously claimed. Moreover, as shown before, at galaxy cluster scale, the {lambda} contribution can be larger than the second-order term in the Einstein deflection angle for several cluster lens systems.

  8. Stability prediction of amorphous benzodiazepines by calculation of the mean relaxation time constant using the Williams-Watts decay function.

    PubMed

    Van den Mooter, G; Augustijns, P; Kinget, R

    1999-07-01

    The enthalpic relaxation of three amorphous benzodiazepines, diazepam, temazepam and triazolam was studied using differential scanning calorimetry for ageing temperatures which were below the glass transition temperature, and ageing times up to 16 h. Experimental determination of the relaxation enthalpy and the heat capacity change, both accompanying the glass transition, enabled us to calculate the extent of relaxation of the amorphous drugs at specific ageing conditions. Fitting of the relaxation function to the Williams-Watts two parameter decay function led to calculation of the mean relaxation time constant tau and the molecular relaxation time distribution parameter beta. The mean relaxation time constants for the three drugs increased from approximately ten h at the glass transition temperature with more than eight orders of magnitude at 66 K below the glass transition temperature. It was found that the benzodiazepines exhibited significant molecular mobility until approximately 50 K below the glass transition temperature; below this temperature molecular mobility becomes unimportant with respect to the shelf life stability. Hence the presented procedure provides the formulation scientist with a tool to set storage conditions for amorphous drugs and glassy pharmaceutical products. PMID:10477327

  9. Spectral editing of weakly coupled spins using variable flip angles in PRESS constant echo time difference spectroscopy: Application to GABA

    NASA Astrophysics Data System (ADS)

    Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.

    2009-10-01

    A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.

  10. Adaptive, real-time hypoxia measurements using an autonomous boat

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Wong, B. P.; Balzano, L.; Lipor, J.; Scavia, D.

    2015-12-01

    We present an autonomous system to measure hypoxia at high spatial resolutions. The approach combines a robotic boat, cloud hosted data services, and a suite of adaptive sampling algorithms to minimize the number of samples required to delineate hypoxic extents. The boat lowers sensors into the water column to provide depth profiles of temperature and oxygen concentrations. An adaptive path-planning algorithm continuously analyzes the in-situ observations and directs the boat to its next measurement location. This significantly reduces number of samples compared to a gridded sampling approach, while simultaneously improving the certainty with which the hypoxic regions are delineated. The method has been evaluated on small lakes throughout Michigan and shows significant promise to scale to the Great Lakes, where hypoxia is common occurrence that adversely affects various stakeholder and ecosystems.

  11. Spatially resolved measurements of mean spin-spin relaxation time constants

    NASA Astrophysics Data System (ADS)

    Nechifor, Ruben Emanuel; Romanenko, Konstantin; Marica, Florea; Balcom, Bruce J.

    2014-02-01

    Magnetic Resonance measurements of the T2 distribution have become very common and they are a powerful way to probe microporous fluid bearing solids. While the structure of the T2 distribution, and changes in the structure, are often very informative, it is common to reduce the T2 distribution to a mean numeric quantity in order to provide a quantitative interpretation of the distribution. Magnetic Resonance Imaging measurements of the T2 distribution have recently been introduced, but they are time consuming, especially for 2 and 3 spatial dimensions. In this paper we explore a direct MRI measurement of the arithmetic mean of 1/T2, characterizing the distribution by using the initial slope of the spatially resolved T2 decay in a CPMG prepared Centric Scan SPRITE experiment. The methodology is explored with a test phantom sample and realistic petroleum reservoir core plug samples. The arithmetic mean of 1/T2 is related to the harmonic mean of T2. The mean obtained from the early decay is explored through measurements of uniform saturated core plug samples and by comparison to other means determined from the complete T2 distribution. Complementary data were obtained using SE-SPI T2 distribution MRI measurements. The utility of the arithmetic mean 1/T2 is explored through measurements of centrifuged core plug samples where the T2 distribution varies spatially. The harmonic mean T2 obtained from the early decay was employed to estimate the irreducible water saturation for core plug samples.

  12. Spatially resolved measurements of mean spin-spin relaxation time constants.

    PubMed

    Nechifor, Ruben Emanuel; Romanenko, Konstantin; Marica, Florea; Balcom, Bruce J

    2014-02-01

    Magnetic Resonance measurements of the T2 distribution have become very common and they are a powerful way to probe microporous fluid bearing solids. While the structure of the T2 distribution, and changes in the structure, are often very informative, it is common to reduce the T2 distribution to a mean numeric quantity in order to provide a quantitative interpretation of the distribution. Magnetic Resonance Imaging measurements of the T2 distribution have recently been introduced, but they are time consuming, especially for 2 and 3 spatial dimensions. In this paper we explore a direct MRI measurement of the arithmetic mean of 1/T2, characterizing the distribution by using the initial slope of the spatially resolved T2 decay in a CPMG prepared Centric Scan SPRITE experiment. The methodology is explored with a test phantom sample and realistic petroleum reservoir core plug samples. The arithmetic mean of 1/T2 is related to the harmonic mean of T2. The mean obtained from the early decay is explored through measurements of uniform saturated core plug samples and by comparison to other means determined from the complete T2 distribution. Complementary data were obtained using SE-SPI T2 distribution MRI measurements. The utility of the arithmetic mean 1/T2 is explored through measurements of centrifuged core plug samples where the T2 distribution varies spatially. The harmonic mean T2 obtained from the early decay was employed to estimate the irreducible water saturation for core plug samples. PMID:24361482

  13. PFC design via FRIT Approach for Adaptive Output Feedback Control of Discrete-time Systems

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Takagi, Taro; Fukui, Sota; Shah, Sirish L.

    This paper deals with a design problem of an adaptive output feedback control for discrete-time systems with a parallel feedforward compensator (PFC) which is designed for making the augmented controlled system ASPR. A PFC design scheme by a FRIT approach with only using an input/output experimental data set will be proposed for discrete-time systems in order to design an adaptive output feedback control system. Furthermore, the effectiveness of the proposed PFC design method will be confirmed through numerical simulations by designing adaptive control system with adaptive NN (Neural Network) for an uncertain discrete-time system.

  14. Adaptation-Induced Compression of Event Time Occurs Only for Translational Motion

    PubMed Central

    Fornaciai, Michele; Arrighi, Roberto; Burr, David C.

    2016-01-01

    Adaptation to fast motion reduces the perceived duration of stimuli displayed at the same location as the adapting stimuli. Here we show that the adaptation-induced compression of time is specific for translational motion. Adaptation to complex motion, either circular or radial, did not affect perceived duration of subsequently viewed stimuli. Adaptation with multiple patches of translating motion caused compression of duration only when the motion of all patches was in the same direction. These results show that adaptation-induced compression of event-time occurs only for uni-directional translational motion, ruling out the possibility that the neural mechanisms of the adaptation occur at early levels of visual processing. PMID:27003445

  15. Polestitters: Using Solar Sails for Constant Real-time Sensing of Earth's Polar Regions

    NASA Astrophysics Data System (ADS)

    Mulligan, P.; Diedrich, B. L.; Barnes, N.; Derbes, B.

    2012-12-01

    NASA has funded the Sunjammer mission - a near term demonstration of solar sail technology (2014/15). Sunjammer has the potential to demonstrate stationkeeping out of Earth's orbital plane. This is a first step in achieving "polesitter" orbits with year-round, real-time visibility of Earth's polar regions. Potential applications for such missions are illustrated. Solar sails have long been a concept for spacecraft propulsion that works by exchanging momentum with sunlight reflected by large, lightweight, mirrored sails. In addition to enabling propellantless propulsion throughout the solar system and beyond, their continuous thrust enables artificial Lagrange orbits (ALOs), some of which can be called "polesitter" orbits, with 24-hour, year-round visibility of Earth's polar regions. Several potential Earth remote sensing applications have been identified that address the limited temporal and spatial coverage from traditional polar and geostationary satellites. The Galileo spacecraft during its 1990 Earth flyby acquired imagery and radiometer data similar to the view from a polesitter. The Galileo imagery was used to derive aerosols and cloud variations used in atmospheric motion vector (AMV) derivations. Composites of satellite imagery over the South Pole is routinely used to derive atmospheric motion vectors like those performed regularly from geostationary satellites. The JAXA IKAROS mission flew a 14x14m solar sail past Venus in 2010. Sunjammer will demonstrate a state of the art 38x38m solar sail from Earth to an artificial Lagrange orbit located sunward and north of the sun-Earth L1 point. Traditional spacecraft can orbit naturally occurring Lagrange equilibrium points between the sun and Earth. The low, continuous thrust of solar sails can change where these points occur, creating new orbits with a variety of potential applications including polar remote sensing, space weather monitoring, and polar communications. This figure illustrates a selection of

  16. Initial Sensorimotor and Cardiovascular Data Acquired from Soyuz Landings: Establishing a Functional Performance Recovery Time Constant

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskaya, E. S.; Cerisano, J. M.; Bloomberg, J. J.; Stenger, M. B.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Lee, S. M. C.; Wood, S. J.; Mulavara, A. P.; Feiveson, A. H.; Fisher, E. A.

    2015-01-01

    INTRODUCTION Testing of crew responses following long-duration flights has not been previously possible until a minimum of more than 24 hours after landing. As a result, it has not been possible to determine the trend of the early recovery process, nor has it been possible to accurately assess the full impact of the decrements associated with long-duration flight. To overcome these limitations, both the Russian and U.S. programs have implemented joint testing at the Soyuz landing site. This International Space Station research effort has been identified as the functional Field Test, and represents data collect on NASA, Russian, European Space Agency, and Japanese Aerospace Exploration Agency crews. RESEARCH The primary goal of this research is to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible on the day of landing (typically within 1 to 1.5 hours). This goal has both sensorimotor and cardiovascular elements. To date, a total of 15 subjects have participated in a 'pilot' version of the full 'field test'. The full version of the 'field test' will assess functional sensorimotor measurements included hand/eye coordination, standing from a seated position (sit-to-stand), walking normally without falling, measurement of dynamic visual acuity, discriminating different forces generated with the hands (both strength and ability to judge just noticeable differences of force), standing from a prone position, coordinated walking involving tandem heel-to-toe placement (tested with eyes both closed and open), walking normally while avoiding obstacles of differing heights, and determining postural ataxia while standing (measurement of quiet stance). Sensorimotor performance has been obtained using video records, and data from body worn inertial sensors. The cardiovascular portion of the investigation has measured blood pressure and heart rate during a timed stand test in conjunction with postural ataxia

  17. Simple analytical forms of the perpendicular diffusion coefficient for two-component turbulence. II. Dynamical turbulence with constant correlation time

    SciTech Connect

    Shalchi, A.

    2014-01-10

    We explore perpendicular diffusion based on the unified nonlinear transport theory. In Paper I, we focused on magnetostatic turbulence, whereas in the present article we include dynamical turbulence effects. For simplicity, we assume a constant correlation time. We show that there is now a nonvanishing contribution of the slab modes. We explore the parameter regimes in which the turbulence dynamics becomes important for perpendicular diffusion. Analytical forms for the perpendicular diffusion coefficient are derived, which can be implemented easily in solar modulation or shock acceleration codes.

  18. Seasonal shift in timing of vernalization as an adaptation to extreme winter

    PubMed Central

    Duncan, Susan; Holm, Svante; Questa, Julia; Irwin, Judith; Grant, Alastair; Dean, Caroline

    2015-01-01

    The requirement for vernalization, a need for prolonged cold to trigger flowering, aligns reproductive development with favorable spring conditions. In Arabidopsis thaliana vernalization depends on the cold-induced epigenetic silencing of the floral repressor locus FLC. Extensive natural variation in vernalization response is associated with A. thaliana accessions collected from different geographical regions. Here, we analyse natural variation for vernalization temperature requirement in accessions, including those from the northern limit of the A. thaliana range. Vernalization required temperatures above 0°C and was still relatively effective at 14°C in all the accessions. The different accessions had characteristic vernalization temperature profiles. One Northern Swedish accession showed maximum vernalization at 8°C, both at the level of flowering time and FLC chromatin silencing. Historical temperature records predicted all accessions would vernalize in autumn in N. Sweden, a prediction we validated in field transplantation experiments. The vernalization response of the different accessions was monitored over three intervals in the field and found to match that when the average field temperature was given as a constant condition. The vernalization temperature range of 0–14°C meant all accessions fully vernalized before snowfall in N. Sweden. These findings have important implications for understanding the molecular basis of adaptation and for predicting the consequences of climate change on flowering time. DOI: http://dx.doi.org/10.7554/eLife.06620.001 PMID:26203563

  19. Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes.

    PubMed

    Coughlan, Melinda T; Nguyen, Tuong-Vi; Penfold, Sally A; Higgins, Gavin C; Thallas-Bonke, Vicki; Tan, Sih Min; Van Bergen, Nicole J; Sourris, Karly C; Harcourt, Brooke E; Thorburn, David R; Trounce, Ian A; Cooper, Mark E; Forbes, Josephine M

    2016-05-01

    Oxidative phosphorylation (OXPHOS) drives ATP production by mitochondria, which are dynamic organelles, constantly fusing and dividing to maintain kidney homoeostasis. In diabetic kidney disease (DKD), mitochondria appear dysfunctional, but the temporal development of diabetes-induced adaptations in mitochondrial structure and bioenergetics have not been previously documented. In the present study, we map the changes in mitochondrial dynamics and function in rat kidney mitochondria at 4, 8, 16 and 32 weeks of diabetes. Our data reveal that changes in mitochondrial bioenergetics and dynamics precede the development of albuminuria and renal histological changes. Specifically, in early diabetes (4 weeks), a decrease in ATP content and mitochondrial fragmentation within proximal tubule epithelial cells (PTECs) of diabetic kidneys were clearly apparent, but no changes in urinary albumin excretion or glomerular morphology were evident at this time. By 8 weeks of diabetes, there was increased capacity for mitochondrial permeability transition (mPT) by pore opening, which persisted over time and correlated with mitochondrial hydrogen peroxide (H2O2) generation and glomerular damage. Late in diabetes, by week 16, tubular damage was evident with increased urinary kidney injury molecule-1 (KIM-1) excretion, where an increase in the Complex I-linked oxygen consumption rate (OCR), in the context of a decrease in kidney ATP, indicated mitochondrial uncoupling. Taken together, these data show that changes in mitochondrial bioenergetics and dynamics may precede the development of the renal lesion in diabetes, and this supports the hypothesis that mitochondrial dysfunction is a primary cause of DKD. PMID:26831938

  20. Robustness via Run-Time Adaptation of Contingent Plans

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Washington, Richard; Norvig, Peter (Technical Monitor)

    2000-01-01

    In this paper, we discuss our approach to making the behavior of planetary rovers more robust for the purpose of increased productivity. Due to the inherent uncertainty in rover exploration, the traditional approach to rover control is conservative, limiting the autonomous operation of the rover and sacrificing performance for safety. Our objective is to increase the science productivity possible within a single uplink by allowing the rover's behavior to be specified with flexible, contingent plans and by employing dynamic plan adaptation during execution. We have deployed a system exhibiting flexible, contingent execution; this paper concentrates on our ongoing efforts on plan adaptation, Plans can be revised in two ways: plan steps may be deleted, with execution continuing with the plan suffix; and the current plan may be merged with an "alternate plan" from an on-board library. The plan revision action is chosen to maximize the expected utility of the plan. Plan merging and action deletion constitute a more conservative general-purpose planning system; in return, our approach is more efficient and more easily verified, two important criteria for deployed rovers.

  1. Effect of UV curing time on physical and electrical properties and reliability of low dielectric constant materials

    SciTech Connect

    Kao, Kai-Chieh; Cheng, Yi-Lung; Chang, Wei-Yuan; Chang, Yu-Min; Leu, Jihperng

    2014-11-01

    This study comprehensively investigates the effect of ultraviolet (UV) curing time on the physical, electrical, and reliability characteristics of porous low-k materials. Following UV irradiation for various periods, the depth profiles of the chemical composition in the low-k dielectrics were homogeneous. Initially, the UV curing process preferentially removed porogen-related CH{sub x} groups and then modified Si-CH{sub 3} and cage Si-O bonds to form network Si-O bonds. The lowest dielectric constant (k value) was thus obtained at a UV curing time of 300 s. Additionally, UV irradiation made porogen-based low-k materials hydrophobic and to an extent that increased with UV curing time. With a short curing time (<300 s), porogen was not completely removed and the residues degraded reliability performance. A long curing time (>300 s) was associated with improved mechanical strength, electrical performance, and reliability of the low-k materials, but none of these increased linearly with UV curing time. Therefore, UV curing is necessary, but the process time must be optimized for porous low-k materials on back-end of line integration in 45 nm or below technology nodes.

  2. Adaptive time-delayed stabilization of steady states and periodic orbits.

    PubMed

    Selivanov, Anton; Lehnert, Judith; Fradkov, Alexander; Schöll, Eckehard

    2015-01-01

    We derive adaptive time-delayed feedback controllers that stabilize fixed points and periodic orbits. First, we develop an adaptive controller for stabilization of a steady state by applying the speed-gradient method to an appropriate goal function and prove global asymptotic stability of the resulting system. For an example we show that the advantage of the adaptive controller over the nonadaptive one is in a smaller controller gain. Second, we propose adaptive time-delayed algorithms for stabilization of periodic orbits. Their efficiency is confirmed by local stability analysis. Numerical examples demonstrate the applicability of the proposed controllers. PMID:25679681

  3. Adaptive time-delayed stabilization of steady states and periodic orbits

    NASA Astrophysics Data System (ADS)

    Selivanov, Anton; Lehnert, Judith; Fradkov, Alexander; Schöll, Eckehard

    2015-01-01

    We derive adaptive time-delayed feedback controllers that stabilize fixed points and periodic orbits. First, we develop an adaptive controller for stabilization of a steady state by applying the speed-gradient method to an appropriate goal function and prove global asymptotic stability of the resulting system. For an example we show that the advantage of the adaptive controller over the nonadaptive one is in a smaller controller gain. Second, we propose adaptive time-delayed algorithms for stabilization of periodic orbits. Their efficiency is confirmed by local stability analysis. Numerical examples demonstrate the applicability of the proposed controllers.

  4. Rate constant of exciton quenching of Ir(ppy)3 with hole measured by time-resolved luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Oyama, Shiho; Sakai, Heisuke; Murata, Hideyuki

    2016-03-01

    We observed the quenching of tris(2-phenylpyridinato)iridium(III) [Ir(ppy)3] excitons by polarons (holes or electrons) by time-resolved photoluminescence (PL) spectroscopy to clarify the dynamics of the triplet-polaron quenching of excitons. We employed a hole-only device (HOD) and an electron-only device (EOD), where the emitting layer consists of Ir(ppy)3 doped in 4,4‧-bis(carbazol-9-yl)biphenyl. Time-resolved PL spectroscopy of the EOD and HOD were measured under a constant current density. The results showed that the excitons of Ir(ppy)3 were significantly quenched only by holes. The PL decay curves of HOD were well fitted by the biexponential function, where lifetimes (τ1 and τ2) remain unchanged but the coefficient of each exponential term depends on hole current density. From the results, we proposed a model of exciton quenching where the exciton-hole quenching area expands with increasing hole current density. On the basis of the model, the triplet-polaron quenching rate constant Kq was determined.

  5. Does slow energy transfer limit the observed time constant for radical pair formation in photosystem II reaction centers?

    PubMed

    Rech, T; Durrant, J R; Joseph, D M; Barber, J; Porter, G; Klug, D R

    1994-12-13

    We have used spectrally photoselective femtosecond transient absorption spectroscopy on photosystem II reaction centers to show that there are at least two pools of chlorin molecules/states which can transfer excitation energy to P680, the primary electron donor in photosystem II. It has previously been shown that one chlorin pool equilibrates with P680 in 100 fs [Durrant et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11632-11636], and we report here the observation of energy transfer from a second more weakly coupled chlorin pool. The effect of the weakly coupled pool is to increase the apparent time constant for radical pair formation from 21 ps when P680 is selectively excited to 27 ps when the accessory chlorins are excited. We conclude that it is possible to observe both radical pair formation somewhat slowed by an energy transfer step and radical pair formation not limited by this slow energy transfer, depending upon which chromophores are initially excited. These observations provide evidence that when using photoselective excitation of P680, the observed 21 ps time constant for radical pair formation is not limited by a slow energy transfer step. PMID:7993905

  6. Logistic time constant of isometric relaxation force curve of ferret ventricular papillary muscle: reliable index of lusitropism.

    PubMed

    Mizuno, J; Araki, J; Mikane, T; Mohri, S; Imaoka, T; Matsubara, H; Okuyama, H; Kurihara, S; Ohe, T; Hirakawa, M; Suga, H

    2000-10-01

    We have found that a logistic function fits the left ventricular isovolumic relaxation pressure curve in the canine excised, cross-circulated heart more precisely than a monoexponential function. On this basis, we have proposed a logistic time constant (tau(L)) as a better index of ventricular isovolumic lusitropism than the conventional monoexponential time constant (tau(E)). We hypothesize in the present study that this tau(L) would also be a better index of myocardial isometric lusitropism than the conventional tau(E). We tested this hypothesis by analyzing the isometric relaxation force curve of 114 twitches of eight ferret isolated right ventricular papillary muscles. The muscle length was changed between 82 and 100% L(max) and extracellular Ca(2+) concentrations ([Ca(2+)](o)) between 0.2 and 8 mmol/l. We found that the logistic function always fitted the isometric relaxation force curve much more precisely than the monoexponential function at any muscle length and [Ca(2+)](o) level. We also found that tau(L) was independent of the choice of the end of isometric relaxation but tau(E) was considerably dependent on it as in ventricular relaxation. These results validated our present hypothesis. We conclude that tau(L) is a more reliable, though still empirical, index of lusitropism than conventional tau(E) in the myocardium as in the ventricle. PMID:11120914

  7. Analysis of position error by time constant in read-out resistive network for gamma-ray imaging detection system

    NASA Astrophysics Data System (ADS)

    Jeon, Su-Jin; Park, Chang-In; Son, Byung-Hee; Jung, Mi; Jang, Teak-Jin; Lee, Chun-Sik; Choi, Young-Wan

    2016-03-01

    Position-sensitive photomultiplier tubes (PSPMTs) in array are used as gamma ray position detector. Each PMT converts the light of wide spectrum range (100 nm ~ 2500 nm) to electrical signal with amplification. Because detection system size is determined by the number of output channels in the PSPMTs, resistive network has been used for reducing the number of output channels. The photo-generated current is distributed to the four output current pulses according to a ratio by resistance values of resistive network. The detected positions are estimated by the peak value of the distributed current pulses. However, due to parasitic capacitance of PSPMTs in parallel with resistor in the resistive network, the time constants should be considered. When the duration of current pulse is not long enough, peak value of distributed pulses is reduced and detected position error is increased. In this paper, we analyzed the detected position error in the resistive network and variation of time constant according to the input position of the PSPMTs.

  8. Comparing Teacher-Directed and Computer-Assisted Constant Time Delay for Teaching Functional Sight Words to Students with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Coleman, Mari Beth; Hurley, Kevin J.; Cihak, David F.

    2012-01-01

    The purpose of this study was to compare the effectiveness and efficiency of teacher-directed and computer-assisted constant time delay strategies for teaching three students with moderate intellectual disability to read functional sight words. Target words were those found in recipes and were taught via teacher-delivered constant time delay or…

  9. In Situ Time Constant and Optical Efficiency Measurements of TRUCE Pixels in the Atacama B-Mode Search

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Appel, J. W.; Cho, H. M.; Essinger-Hileman, T.; Irwin, K. D.; Kusaka, A.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L. P.; Raghunathan, S.; Sievers, J. L.; Staggs, S. T.; Visnjic, K.

    2014-09-01

    The Atacama B-mode Search (ABS) instrument, which began observation in February of 2012, is a crossed-Dragone telescope located at an elevation of 5,100 m in the Atacama Desert in Chile. The primary scientific goal of ABS is to measure the B-mode polarization spectrum of the Cosmic Microwave Background from multipole moments of about 50 to 500 (angular scales from to ), a range that includes the primordial B-mode peak from inflationary gravitational waves. The ABS focal plane array consists of 240 pixels designed for observation at 145 GHz by the TRUCE collaboration. Each pixel has its own individual, single-moded feedhorn and contains two transition-edge sensor bolometers coupled to orthogonal polarizations that are read out using time domain multiplexing. We will report on the current status of ABS and discuss the time constants and optical efficiencies of the TRUCE detectors in the field.

  10. Relating low-flow characteristics to the base flow recession time constant at partial record stream gauges

    USGS Publications Warehouse

    Eng, K.; Milly, P.C.D.

    2007-01-01

    Base flow recession information is helpful for regional estimation of low-flow characteristics. However, analyses that exploit such information generally require a continuous record of streamflow at the estimation site to characterize base flow recession. Here we propose a simple method for characterizing base flow recession at low-flow partial record stream gauges (i.e., sites with very few streamflow measurements under low-streamflow conditions), and we use that characterization as the basis for a practical new approach to low-flow regression. In a case study the introduction of a base flow recession time constant, estimated from a single pair of strategically timed streamflow measurements, approximately halves the root-mean-square estimation error relative to that of a conventional drainage area regression. Additional streamflow measurements can be used to reduce the error further.

  11. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  12. Prisms to travel in time: Investigation of time-space association through prismatic adaptation effect on mental time travel.

    PubMed

    Anelli, Filomena; Ciaramelli, Elisa; Arzy, Shahar; Frassinetti, Francesca

    2016-11-01

    Accumulating evidence suggests that humans process time and space in similar veins. Humans represent time along a spatial continuum, and perception of temporal durations can be altered through manipulations of spatial attention by prismatic adaptation (PA). Here, we investigated whether PA-induced manipulations of spatial attention can also influence more conceptual aspects of time, such as humans' ability to travel mentally back and forward in time (mental time travel, MTT). Before and after leftward- and rightward-PA, participants projected themselves in the past, present or future time (i.e., self-projection), and, for each condition, determined whether a series of events were located in the past or the future with respect to that specific self-location in time (i.e., self-reference). The results demonstrated that leftward and rightward shifts of spatial attention facilitated recognition of past and future events, respectively. These findings suggest that spatial attention affects the temporal processing of the human self. PMID:27467891

  13. Contextual control of inhibition with reinforcement: Adaptation and timing mechanisms

    PubMed Central

    Bouton, Mark E.; Frohardt, Russell J.; Sunsay, Ceyhun; Waddell, Jaylyn; Morris, Richard W.

    2010-01-01

    Four experiments with rats studied the effects of switching the context after Pavlovian conditioning. In three conditioned suppression experiments, a large number of conditioning trials created “inhibition with reinforcement” (IWR), in which fear of the conditional stimulus (CS) reached a maximum and then declined despite continued CS – unconditional stimulus pairings. When IWR occurred, a context switch augmented fear of the CS; IWR and augmentation were highly correlated. Neither IWR nor augmentation resulted from inhibition of delay (IOD): In conditioned suppression, IWR and augmentation occurred without IOD (Experiment 3), and in appetitive conditioning (Experiment 4), IOD occurred without IWR or augmentation. IWR may occur in conditioned suppression because the animal adapts to fear of the CS in a context-specific manner. We discuss several implications. PMID:18426305

  14. Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model

    PubMed Central

    Teka, Wondimu; Marinov, Toma M.; Santamaria, Fidel

    2014-01-01

    The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fractional derivative is a non-local process in which the value of the variable is determined by integrating a temporal weighted voltage trace, also called the memory trace. Here we developed and analyzed a fractional leaky integrate-and-fire model in which the exponent of the fractional derivative can vary from 0 to 1, with 1 representing the normal derivative. As the exponent of the fractional derivative decreases, the weights of the voltage trace increase. Thus, the value of the voltage is increasingly correlated with the trajectory of the voltage in the past. By varying only the fractional exponent, our model can reproduce upward and downward spike adaptations found experimentally in neocortical pyramidal cells and tectal neurons in vitro. The model also produces spikes with longer first-spike latency and high inter-spike variability with power-law distribution. We further analyze spike adaptation and the responses to noisy and oscillatory input. The fractional model generates reliable spike patterns in response to noisy input. Overall, the spiking activity of the fractional leaky integrate-and-fire model deviates from the spiking activity of the Markovian model and reflects the temporal accumulated intrinsic membrane dynamics that affect the response of the neuron to external stimulation. PMID:24675903

  15. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  16. Enhanced time response of 1-in. LaBr3(Ce) crystals by leading edge and constant fraction techniques

    NASA Astrophysics Data System (ADS)

    Vedia, V.; Mach, H.; Fraile, L. M.; Udías, J. M.; Lalkovski, S.

    2015-09-01

    We have characterized in depth the time response of three detectors equipped with cylindrical LaBr3(Ce) crystals with dimensions of 1-in. in height and 1-in. in diameter, and having nominal Ce doping concentration of 5%, 8% and 10%. Measurements were performed at 60Co and 22Na γ-ray energies against a fast BaF2 reference detector. The time resolution was optimized by the choice of the photomultiplier bias voltage and the fine tuning of the parameters of the constant fraction discriminator, namely the zero-crossing and the external delay. We report here on the optimal time resolution of the three crystals. It is observed that timing properties are influenced by the amount of Ce doping and the crystal homogeneity. For the crystal with 8% of Ce doping the use of the ORTEC 935 CFD at very shorts delays in addition to the Hamamatsu R9779 PMT has made it possible to improve the LaBr3(Ce) time resolution from the best literature value at 60Co photon energies to below 100 ps.

  17. An Adaptive Flow Solver for Air-Borne Vehicles Undergoing Time-Dependent Motions/Deformations

    NASA Technical Reports Server (NTRS)

    Singh, Jatinder; Taylor, Stephen

    1997-01-01

    This report describes a concurrent Euler flow solver for flows around complex 3-D bodies. The solver is based on a cell-centered finite volume methodology on 3-D unstructured tetrahedral grids. In this algorithm, spatial discretization for the inviscid convective term is accomplished using an upwind scheme. A localized reconstruction is done for flow variables which is second order accurate. Evolution in time is accomplished using an explicit three-stage Runge-Kutta method which has second order temporal accuracy. This is adapted for concurrent execution using another proven methodology based on concurrent graph abstraction. This solver operates on heterogeneous network architectures. These architectures may include a broad variety of UNIX workstations and PCs running Windows NT, symmetric multiprocessors and distributed-memory multi-computers. The unstructured grid is generated using commercial grid generation tools. The grid is automatically partitioned using a concurrent algorithm based on heat diffusion. This results in memory requirements that are inversely proportional to the number of processors. The solver uses automatic granularity control and resource management techniques both to balance load and communication requirements, and deal with differing memory constraints. These ideas are again based on heat diffusion. Results are subsequently combined for visualization and analysis using commercial CFD tools. Flow simulation results are demonstrated for a constant section wing at subsonic, transonic, and a supersonic case. These results are compared with experimental data and numerical results of other researchers. Performance results are under way for a variety of network topologies.

  18. Lens galaxies in the Illustris simulation: power-law models and the bias of the Hubble constant from time delays

    NASA Astrophysics Data System (ADS)

    Xu, Dandan; Sluse, Dominique; Schneider, Peter; Springel, Volker; Vogelsberger, Mark; Nelson, Dylan; Hernquist, Lars

    2016-02-01

    A power-law density model, i.e. ρ (r) ∝ r^{-γ ^' }}, has been commonly employed in strong gravitational lensing studies, including the so-called time-delay technique used to infer the Hubble constant H0. However, since the radial scale at which strong lensing features are formed corresponds to the transition from the dominance of baryonic matter to dark matter, there is no known reason why galaxies should follow a power law in density. The assumption of a power law artificially breaks the mass-sheet degeneracy, a well-known invariance transformation in gravitational lensing which affects the product of Hubble constant and time delay and can therefore cause a bias in the determination of H0 from the time-delay technique. In this paper, we use the Illustris hydrodynamical simulations to estimate the amplitude of this bias, and to understand how it is related to observational properties of galaxies. Investigating a large sample of Illustris galaxies that have velocity dispersion σSIE ≥ 160 km s-1 at redshifts below z = 1, we find that the bias on H0 introduced by the power-law assumption can reach 20-50 per cent, with a scatter of 10-30 per cent (rms). However, we find that by selecting galaxies with an inferred power-law model slope close to isothermal, it is possible to reduce the bias on H0 to ≲ 5 per cent and the scatter to ≲ 10 per cent. This could potentially be used to form less biased statistical samples for H0 measurements in the upcoming large survey era.

  19. On discontinuous Galerkin for time integration in option pricing problems with adaptive finite differences in space

    NASA Astrophysics Data System (ADS)

    von Sydow, Lina

    2013-10-01

    The discontinuous Galerkin method for time integration of the Black-Scholes partial differential equation for option pricing problems is studied and compared with more standard time-integrators. In space an adaptive finite difference discretization is employed. The results show that the dG method are in most cases at least comparable to standard time-integrators and in some cases superior to them. Together with adaptive spatial grids the suggested pricing method shows great qualities.

  20. Real-Time Adaptive Foreground/Background Segmentation

    NASA Astrophysics Data System (ADS)

    Butler, Darren E.; Bove, V. Michael; Sridharan, Sridha

    2005-12-01

    The automatic analysis of digital video scenes often requires the segmentation of moving objects from a static background. Historically, algorithms developed for this purpose have been restricted to small frame sizes, low frame rates, or offline processing. The simplest approach involves subtracting the current frame from the known background. However, as the background is rarely known beforehand, the key is how to learn and model it. This paper proposes a new algorithm that represents each pixel in the frame by a group of clusters. The clusters are sorted in order of the likelihood that they model the background and are adapted to deal with background and lighting variations. Incoming pixels are matched against the corresponding cluster group and are classified according to whether the matching cluster is considered part of the background. The algorithm has been qualitatively and quantitatively evaluated against three other well-known techniques. It demonstrated equal or better segmentation and proved capable of processing [InlineEquation not available: see fulltext.] PAL video at full frame rate using only 35%-40% of a [InlineEquation not available: see fulltext.] GHz Pentium 4 computer.

  1. Real-time control of geometry and stiffness in adaptive structures

    NASA Technical Reports Server (NTRS)

    Ramesh, A. V.; Utku, S.; Wada, B. K.

    1991-01-01

    The basic theory is presented for the geometry, stiffness, and damping control of adaptive structures, with emphasis on adaptive truss structures. Necessary and sufficient conditions are given for stress-free geometry control in statically determinate and indeterminate adaptive discrete structures. Two criteria for selecting the controls are proposed, and their use in real-time control is illustrated by numerical simulation results. It is shown that the stiffness and damping control of adaptive truss structures for vibration suppression is possible by elongation and elongation rate dependent feedback forces from the active elements.

  2. Adaptive tuning of feedback gain in time-delayed feedback control

    NASA Astrophysics Data System (ADS)

    Lehnert, J.; Hövel, P.; Flunkert, V.; Guzenko, P. Yu.; Fradkov, A. L.; Schöll, E.

    2011-12-01

    We demonstrate that time-delayed feedback control can be improved by adaptively tuning the feedback gain. This adaptive controller is applied to the stabilization of an unstable fixed point and an unstable periodic orbit embedded in a chaotic attractor. The adaptation algorithm is constructed using the speed-gradient method of control theory. Our computer simulations show that the adaptation algorithm can find an appropriate value of the feedback gain for single and multiple delays. Furthermore, we show that our method is robust to noise and different initial conditions.

  3. Adaptive tuning of feedback gain in time-delayed feedback control.

    PubMed

    Lehnert, J; Hövel, P; Flunkert, V; Guzenko, P Yu; Fradkov, A L; Schöll, E

    2011-12-01

    We demonstrate that time-delayed feedback control can be improved by adaptively tuning the feedback gain. This adaptive controller is applied to the stabilization of an unstable fixed point and an unstable periodic orbit embedded in a chaotic attractor. The adaptation algorithm is constructed using the speed-gradient method of control theory. Our computer simulations show that the adaptation algorithm can find an appropriate value of the feedback gain for single and multiple delays. Furthermore, we show that our method is robust to noise and different initial conditions. PMID:22225348

  4. Time-frequency analysis of nonstationary vibration signals for deployable structures by using the constant-Q nonstationary gabor transform

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Yan, Shaoze; Zhang, Wei

    2016-06-01

    Deployable structures have been widely used in on-orbit servicing spacecrafts, and the vibration properties of such structures have become increasingly important in the aerospace industry. The constant-Q nonstationary Gabor transform (CQ-NSGT) is introduced in this paper to accurately evaluate the variation in the frequency and amplitude of vibration signals along with time. First, an example signal is constructed on the basis of the vibration properties of deployable structures and is processed by the short-time Fourier transform, Wigner-Ville distribution, Hilbert-Huang transform, and CQ-NSGT. Results show that time and frequency resolutions are simultaneously fine only by employing CQ-NSGT. Subsequently, a zero padding operation is conducted to correct the calculation error at the end of the transform results. Finally, a set of experimental devices is constructed. The vibration signal of the experimental mode is processed by CQ-NSGT. On this basis, the experimental signal properties are discussed. This time-frequency method may be useful for formulating the dynamics for complex deployable structures.

  5. Recovery and radiation corrections and time constants of several sizes of shielded and unshielded thermocouple probes for measuring gas temperature

    NASA Technical Reports Server (NTRS)

    Glawe, G. E.; Holanda, R.; Krause, L. N.

    1978-01-01

    Performance characteristics were experimentally determined for several sizes of a shielded and unshielded thermocouple probe design. The probes are of swaged construction and were made of type K wire with a stainless steel sheath and shield and MgO insulation. The wire sizes ranged from 0.03- to 1.02-mm diameter for the unshielded design and from 0.16- to 0.81-mm diameter for the shielded design. The probes were tested through a Mach number range of 0.2 to 0.9, through a temperature range of room ambient to 1420 K, and through a total-pressure range of 0.03 to 0.2.2 MPa (0.3 to 22 atm). Tables and graphs are presented to aid in selecting a particular type and size. Recovery corrections, radiation corrections, and time constants were determined.

  6. Cartesian Off-Body Grid Adaption for Viscous Time- Accurate Flow Simulation

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2011-01-01

    An improved solution adaption capability has been implemented in the OVERFLOW overset grid CFD code. Building on the Cartesian off-body approach inherent in OVERFLOW and the original adaptive refinement method developed by Meakin, the new scheme provides for automated creation of multiple levels of finer Cartesian grids. Refinement can be based on the undivided second-difference of the flow solution variables, or on a specific flow quantity such as vorticity. Coupled with load-balancing and an inmemory solution interpolation procedure, the adaption process provides very good performance for time-accurate simulations on parallel compute platforms. A method of using refined, thin body-fitted grids combined with adaption in the off-body grids is presented, which maximizes the part of the domain subject to adaption. Two- and three-dimensional examples are used to illustrate the effectiveness and performance of the adaption scheme.

  7. Verification and Validation Methodology of Real-Time Adaptive Neural Networks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Loparo, Kenneth; Mackall, Dale; Schumann, Johann; Soares, Fola

    2004-01-01

    Recent research has shown that adaptive neural based control systems are very effective in restoring stability and control of an aircraft in the presence of damage or failures. The application of an adaptive neural network with a flight critical control system requires a thorough and proven process to ensure safe and proper flight operation. Unique testing tools have been developed as part of a process to perform verification and validation (V&V) of real time adaptive neural networks used in recent adaptive flight control system, to evaluate the performance of the on line trained neural networks. The tools will help in certification from FAA and will help in the successful deployment of neural network based adaptive controllers in safety-critical applications. The process to perform verification and validation is evaluated against a typical neural adaptive controller and the results are discussed.

  8. Hydraulic time constants for transpiration of loblolly pine at a free-air carbon dioxide enrichment site.

    PubMed

    Ward, Eric J; Bell, David M; Clark, James S; Oren, Ram

    2013-02-01

    The impact of stored water on estimates of transpiration from scaled sap flux measurements was assessed in mature Pinus taeda (L.) at the Duke Free-Air CO(2) Enrichment (FACE) site. We used a simple hydraulic model with measurements of sap flux (J) at breast height and the base of the live crown for 26 trees over 6 months to examine the effects of elevated CO(2) (eCO(2)) and fertilization (N(F)) treatments, as well as temporal variation in soil moisture (M(()(t)())), on estimates of the hydraulic time constant (κ). At low M(()(t)()), there was little (<12%) difference in κ of different treatments. At high M(()(t)()), differences were much greater, with κ reductions of 27, 52 and 34% in eCO(2), N(F) and eCO(2) × N(F) respective to the control. Incorporating κ with these effects into the analysis of a larger data set of previous J measurements at this site (1998-2008) improved agreement between modeled and measured values in 92% of cases. However, a simplified calibration of κ that neglected treatment and soil moisture effects performed more dependably, improving agreement in 98% of cases. Incorporating κ had the effect of increasing estimates of reference stomatal conductance at 1 kPa vapor pressure deficit (VPD) and saturating photosynthetic active radiation (PAR) an average of 12-14%, while increasing estimated sensitivities to VPD and PAR. A computationally efficient hydraulic model, such as the one presented here, incorporated into a hierarchical model of stomatal conductance presents a novel approach to including hydraulic time constants in estimates of stomatal responses from long-term sap flux data sets. PMID:23192973

  9. Zoom-TOFMS: addition of a constant-momentum-acceleration "zoom" mode to time-of-flight mass spectrometry.

    PubMed

    Dennis, Elise A; Gundlach-Graham, Alexander W; Ray, Steven J; Enke, Christie G; Barinaga, Charles J; Koppenaal, David W; Hieftje, Gary M

    2014-11-01

    In this study, we demonstrate the performance of a new mass spectrometry concept called zoom time-of-flight mass spectrometry (zoom-TOFMS). In our zoom-TOFMS instrument, we combine two complementary types of TOFMS: conventional, constant-energy acceleration (CEA) TOFMS and constant-momentum acceleration (CMA) TOFMS to provide complete mass-spectral coverage as well as enhanced resolution and duty factor for a narrow, targeted mass region, respectively. Alternation between CEA- and CMA-TOFMS requires only that electrostatic instrument settings (i.e., reflectron and ion optics) and ion acceleration conditions be changed. The prototype zoom-TOFMS instrument has orthogonal-acceleration geometry, a total field-free distance of 43 cm, and a direct-current glow-discharge ionization source. Experimental results demonstrate that the CMA-TOFMS "zoom" mode offers resolution enhancement of 1.6 times over single-stage acceleration CEA-TOFMS. For the atomic mass range studied here, the maximum resolving power at full-width half-maximum observed for CEA-TOFMS was 1,610 and for CMA-TOFMS the maximum was 2,550. No difference in signal-to-noise (S/N) ratio was observed between the operating modes of zoom-TOFMS when both were operated at equivalent repetition rates. For a 10-kHz repetition rate, S/N values for CEA-TOFMS varied from 45 to 990 and from 67 to 10,000 for CMA-TOFMS. This resolution improvement is the result of a linear TOF-to-mass scale and the energy-focusing capability of CMA-TOFMS. Use of CMA also allows ions outside a given m/z range to be rejected by simple ion-energy barriers to provide a substantial improvement in duty factor. PMID:24866712

  10. Adaptive spark timing controller for an internal combustion engine

    SciTech Connect

    Javaherian, H.

    1989-09-19

    This patent describes a system for determining the ignition timing value in an ignition control system for an internal combustion engine having cylinders and an output crankshaft rotated during operation of the engine. The ignition control system initiating combustion in each cylinder of the engine at the determined ignition timing value. The system comprising, combination: means for sensing the end of combustion in a cylinder of the engine, the means for sensing including means for determining when an indicator function is at a peak as the crankshaft rotates; means for determining the magnitude of the crankshaft angle after top dead center of the cylinder at which the end of combustion in the cylinder was sensed; and means for establishing the ignition timing value at a start of combustion angle {theta}inew in advance of top dead center of the cylinders having a predetermined relationship to the determined magnitude of the end of combustion angle.

  11. An adaptive time-stepping strategy for solving the phase field crystal model

    SciTech Connect

    Zhang, Zhengru; Ma, Yuan; Qiao, Zhonghua

    2013-09-15

    In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. The numerical experiments demonstrate that the CPU time is significantly saved for long time simulations.

  12. Blade synchronous vibration measurement based on tip-timing at constant rotating speed without once-per-revolution sensor

    NASA Astrophysics Data System (ADS)

    Guo, Haotian; Duan, Fajie; Wang, Meng

    2016-01-01

    In this article, a blade synchronous vibration measurement method based on tip-timing at constant rotating speed is presented. This method requires no once-per revolution sensor, which makes it more generally applicable, especially for high pressure compressors of the dual rotor engines. The vibration amplitude and engine order are identified with this method. The theoretical analysis is presented, and the least square method is utilized for vibration parameter identification. The method requires at least four tip-timing sensors if the Campbell diagram is previously known and five sensors if the Campbell diagram is unknown. The method has no strict requirement on the angles among sensors which facilitate the installation of the sensors in the measurement. In some special conditions the method will fail and these conditions are analyzed. Experiments are conducted on a high speed rotor with a fiber based tip-timing system, and the experimental results indicate that the theoretical analysis is correct and the method is feasible.

  13. Feedback-linearization-based neural adaptive control for unknown nonaffine nonlinear discrete-time systems.

    PubMed

    Deng, Hua; Li, Han-Xiong; Wu, Yi-Hu

    2008-09-01

    A new feedback-linearization-based neural network (NN) adaptive control is proposed for unknown nonaffine nonlinear discrete-time systems. An equivalent model in affine-like form is first derived for the original nonaffine discrete-time systems as feedback linearization methods cannot be implemented for such systems. Then, feedback linearization adaptive control is implemented based on the affine-like equivalent model identified with neural networks. Pretraining is not required and the weights of the neural networks used in adaptive control are directly updated online based on the input-output measurement. The dead-zone technique is used to remove the requirement of persistence excitation during the adaptation. With the proposed neural network adaptive control, stability and performance of the closed-loop system are rigorously established. Illustrated examples are provided to validate the theoretical findings. PMID:18779092

  14. Emergence of adaptability to time delay in bipedal locomotion.

    PubMed

    Ohgane, Kunishige; Ei, Shin-Ichiro; Kazutoshi, Kudo; Ohtsuki, Tatsuyuki

    2004-02-01

    Based on neurophysiological evidence, theoretical studies have shown that locomotion is generated by mutual entrainment between the oscillatory activities of central pattern generators (CPGs) and body motion. However, it has also been shown that the time delay in the sensorimotor loop can destabilize mutual entrainment and result in the failure to walk. In this study, a new mechanism called flexible-phase locking is proposed to overcome the time delay. It is realized by employing the Bonhoeffer-Van der Pol formalism - well known as a physiologically faithful neuronal model - for neurons in the CPG. The formalism states that neurons modulate their phase according to the delay so that mutual entrainment is stabilized. Flexible-phase locking derives from the phase dynamics related to an asymptotically stable limit cycle of the neuron. The effectiveness of the mechanism is verified by computer simulations of a bipedal locomotion model. PMID:14999479

  15. An online novel adaptive filter for denoising time series measurements.

    PubMed

    Willis, Andrew J

    2006-04-01

    A nonstationary form of the Wiener filter based on a principal components analysis is described for filtering time series data possibly derived from noisy instrumentation. The theory of the filter is developed, implementation details are presented and two examples are given. The filter operates online, approximating the maximum a posteriori optimal Bayes reconstruction of a signal with arbitrarily distributed and non stationary statistics. PMID:16649562

  16. Adaptive Haar transforms with arbitrary time and scale splitting

    NASA Astrophysics Data System (ADS)

    Egiazarian, Karen O.; Astola, Jaakko T.

    2001-05-01

    The Haar transform is generalized to the case of an arbitrary time and scale splitting. To any binary tree we associate an orthogonal system of Haar-type functions - tree-structured Haar (TSH) functions. Unified fast algorithm for computation of the introduced tree-structured Haar transforms is presented. It requires 2(N - 1) additions and 3N - 2 multiplications, where N is transform order or, equivalently, the number of leaves of the binary tree.

  17. Adaptive spark timing controller for an internal combustion engine

    SciTech Connect

    Javaherian, H.

    1989-09-19

    This patent describes a system for controlling the ignition timing angle in the ignition control system for an internal combustion engine having cylinders and an output crankshaft rotated during operation of the engine. The ignition control system initiating combustion in each cylinder of the engine at the determined ignition timing value. The system comprising, in combination: means for determining the start of combustion in a cylinder; means for monitoring the value of an indicator function during rotation of the crankshaft after the start of combustion; means for sensing the fpeak value of the indicator function; means for determining the crankshaft angle at which the value of the indicator function is one half the sume of the values of the indicator function at the start of combustion and the peak value occurring at the end of combustion; and means for controlling the ignition timing angle to initiate combustion in the cylinders to establish the crankshaft angle and therefore the cylinder burn establish the crankshaft angle and therefore the cylinder burn center at a predetermined crankshaft angle.

  18. Time course of adaptation to stimuli presented along cardinal lines in color space

    NASA Astrophysics Data System (ADS)

    Hughes, Alan; Demarco, Paul J.

    2003-12-01

    Visual sensitivity is a process that allows the visual system to maintain optimal response over a wide range of ambient light levels and chromaticities. Several studies have used variants of the probe-flash paradigm to show that the time course of adaptation to abrupt changes in ambient luminance depends on both receptoral and postreceptoral mechanisms. Though a few studies have explored how these processes govern adaptation to color changes, most of this effort has targeted the L-M-cone pathway. The purpose of our work was to use the probe-flash paradigm to more fully explore light adaptation in both the L-M- and the S-cone pathways. We measured sensitivity to chromatic probes presented after the onset of a 2-s chromatic flash. Test and flash stimuli were spatially coextensive 2° fields presented in Maxwellian view. Flash stimuli were presented as excursions from white and could extended in one of two directions along an equiluminant L-M-cone or S-cone line. Probes were presented as excursions from the adapting flash chromaticity and could extend either toward the spectrum locus or toward white. For both color lines, the data show a fast and slow adaptation component, although this was less evident in the S-cone data. The fast and slow components were modeled as first- and second-site adaptive processes, respectively. We find that the time course of adaptation is different for the two cardinal pathways. In addition, the time course for S-cone stimulation is polarity dependent. Our results characterize the rapid time course of adaptation in the chromatic pathways and reveal that the mechanics of adaptation within the S-cone pathway are distinct from those in the L-M-cone pathways.

  19. Gravity currents produced by constant and time varying inflow in a circular cross-section channel: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Longo, S.; Ungarish, M.; Di Federico, V.; Chiapponi, L.; Addona, F.

    2016-04-01

    We investigate high-Reynolds number gravity currents (GC) in a horizontal channel of circular cross-section. We focus on GC sustained by constant or time varying inflow (volume of injected fluid ∝ tα, with α = 1 and α > 1). The novelty of our work is in the type of the gravity currents: produced by influx/outflux boundary conditions, and propagation in circular (or semi-circular) channel. The objective is to elucidate the main propagation features and correlate them to the governing dimensionless parameters; to this end, we use experimental observations guided by shallow-water (SW) theoretical models. The system is of Boussinesq type with the denser fluid (salt water) injected into the ambient fluid (tap water) at one end section of a circular tube of 19 cm diameter and 605 cm long. The ambient fluid fills the channel of radius r* up to a given height H* = βr* (0 < β < 2) where it is open to the atmosphere. This fluid is displaced by the intruding current and outflows either at the same or at the opposite end-side of the channel. The two different configurations (with return and no-return flow) allow to analyze the impact of the motion of the ambient fluid on the front speed of the intruding current. For Q larger than some threshold value, the current is expected theoretically to undergo a choking process which limits the speed/thickness of propagation. Two series of experiments were conducted with constant and time varying inflow. The choking effect was observed, qualitatively, in both series. The theory correctly predicts the qualitative behavior, but systematically overestimates the front speed of the current (consistent with previously-published data concerning rectangular and non-rectangular cross-sections), with larger discrepancies for the no-return flow case. These discrepancies are mainly due to: (i) the variations of the free-surface of the ambient fluid with respect to its nominal value (the theoretical model assumes a fixed free-slip top of the

  20. Stress avoidance in a common annual: reproductive timing is important for local adaptation and geographic distribution.

    PubMed

    Griffith, T M; Watson, M A

    2005-11-01

    Adaptation to local environments may be an important determinant of species' geographic range. However, little is known about which traits contribute to adaptation or whether their further evolution would facilitate range expansion. In this study, we assessed the adaptive value of stress avoidance traits in the common annual Cocklebur (Xanthium strumarium) by performing a reciprocal transplant across a broad latitudinal gradient extending to the species' northern border. Populations were locally adapted and stress avoidance traits accounted for most fitness differences between populations. At the northern border where growing seasons are cooler and shorter, native populations had evolved to reproduce earlier than native populations in the lower latitude gardens. This clinal pattern in reproductive timing corresponded to a shift in selection from favouring later to earlier reproduction. Thus, earlier reproduction is an important adaptation to northern latitudes and constraint on the further evolution of this trait in marginal populations could potentially limit distribution. PMID:16313471

  1. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  2. Time scale matters: genetic analysis does not support adaptation-by-time as the mechanism for adaptive seasonal declines in kokanee reproductive life span

    PubMed Central

    Morbey, Yolanda E; Jensen, Evelyn L; Russello, Michael A

    2014-01-01

    Seasonal declines of fitness-related traits are often attributed to environmental effects or individual-level decisions about reproductive timing and effort, but genetic variation may also play a role. In populations of Pacific salmon (Oncorhynchus spp.), seasonal declines in reproductive life span have been attributed to adaptation-by-time, in which divergent selection for different traits occurs among reproductively isolated temporal components of a population. We evaluated this hypothesis in kokanee (freshwater obligate Oncorhynchus nerka) by testing for temporal genetic structure in neutral and circadian-linked loci. We detected no genetic differences in presumably neutral loci among kokanee with different arrival and maturation dates within a spawning season. Similarly, we detected no temporal genetic structure in OtsClock1b, Omy1009uw, or OmyFbxw11, candidate loci associated with circadian function. The genetic evidence from this study and others indicates a lack of support for adaptation-by-time as an important evolutionary mechanism underlying seasonal declines in reproductive life span and a need for greater consideration of other mechanisms such as time-dependent, adaptive adjustment of reproductive effort. PMID:25478160

  3. Effect of spike-timing-dependent plasticity on coherence resonance and synchronization transitions by time delay in adaptive neuronal networks

    NASA Astrophysics Data System (ADS)

    Xie, Huijuan; Gong, Yubing; Wang, Qi

    2016-06-01

    In this paper, we numerically study how time delay induces multiple coherence resonance (MCR) and synchronization transitions (ST) in adaptive Hodgkin-Huxley neuronal networks with spike-timing dependent plasticity (STDP). It is found that MCR induced by time delay STDP can be either enhanced or suppressed as the adjusting rate Ap of STDP changes, and ST by time delay varies with the increase of Ap, and there is optimal Ap by which the ST becomes strongest. It is also found that there are optimal network randomness and network size by which ST by time delay becomes strongest, and when Ap increases, the optimal network randomness and optimal network size increase and related ST is enhanced. These results show that STDP can either enhance or suppress MCR and optimal STDP can enhance ST induced by time delay in the adaptive neuronal networks. These findings provide a new insight into STDP's role for the information processing and transmission in neural systems.

  4. Impact of space-time mesh adaptation on solute transport modeling in porous media

    NASA Astrophysics Data System (ADS)

    Esfandiar, Bahman; Porta, Giovanni; Perotto, Simona; Guadagnini, Alberto

    2015-02-01

    We implement a space-time grid adaptation procedure to efficiently improve the accuracy of numerical simulations of solute transport in porous media in the context of model parameter estimation. We focus on the Advection Dispersion Equation (ADE) for the interpretation of nonreactive transport experiments in laboratory-scale heterogeneous porous media. When compared to a numerical approximation based on a fixed space-time discretization, our approach is grounded on a joint automatic selection of the spatial grid and the time step to capture the main (space-time) system dynamics. Spatial mesh adaptation is driven by an anisotropic recovery-based error estimator which enables us to properly select the size, shape, and orientation of the mesh elements. Adaptation of the time step is performed through an ad hoc local reconstruction of the temporal derivative of the solution via a recovery-based approach. The impact of the proposed adaptation strategy on the ability to provide reliable estimates of the key parameters of an ADE model is assessed on the basis of experimental solute breakthrough data measured following tracer injection in a nonuniform porous system. Model calibration is performed in a Maximum Likelihood (ML) framework upon relying on the representation of the ADE solution through a generalized Polynomial Chaos Expansion (gPCE). Our results show that the proposed anisotropic space-time grid adaptation leads to ML parameter estimates and to model results of markedly improved quality when compared to classical inversion approaches based on a uniform space-time discretization.

  5. Does it pay to delay? Flesh flies show adaptive plasticity in reproductive timing.

    PubMed

    Wessels, Frank J; Kristal, Ross; Netter, Fleta; Hatle, John D; Hahn, Daniel A

    2011-02-01

    Life-history plasticity is widespread among organisms. However, an important question is whether it is adaptive. Most models for plasticity in life-history timing predict that animals, once they have reached the minimal nutritional threshold under poor conditions, will accelerate development or time to reproduction. Adaptive delays in reproduction are not common, especially in short-lived species. Examples of adaptive reproductive delays exist in mammalian populations experiencing strong interspecific (e.g., predation) and intraspecific (e.g., infanticide) competition. But are there other environmental factors that may trigger an adaptive delay in reproductive timing? We show that the short-lived flesh fly Sarcophaga crassipalpis will delay reproduction under nutrient-poor conditions, even though it has already met the minimal nutritional threshold for reproduction. We test whether this delay strategy is an adaptive response allowing the scavenger time to locate more resources by experimentally providing supplemental protein pulses (early, mid and late) throughout the reproductive delay period. Flies receiving additional protein produced more and larger eggs, demonstrating a benefit of the delay. In addition, by tracking the allocation of carbon from the pulses using stable isotopes, we show that flies receiving earlier pulses incorporated more carbon into eggs and somatic tissue than those given a later pulse. These results indicate that the reproductive delay in S. crassipalpis is consistent with adaptive post-threshold plasticity, a nutritionally linked reproductive strategy that has not been reported previously in an invertebrate species. PMID:20953961

  6. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    NASA Astrophysics Data System (ADS)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  7. Time domain and frequency domain design techniques for model reference adaptive control systems

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1971-01-01

    Some problems associated with the design of model-reference adaptive control systems are considered and solutions to these problems are advanced. The stability of the adapted system is a primary consideration in the development of both the time-domain and the frequency-domain design techniques. Consequentially, the use of Liapunov's direct method forms an integral part of the derivation of the design procedures. The application of sensitivity coefficients to the design of model-reference adaptive control systems is considered. An application of the design techniques is also presented.

  8. Adaptation to visual or auditory time intervals modulates the perception of visual apparent motion

    PubMed Central

    Zhang, Huihui; Chen, Lihan; Zhou, Xiaolin

    2012-01-01

    It is debated whether sub-second timing is subserved by a centralized mechanism or by the intrinsic properties of task-related neural activity in specific modalities (Ivry and Schlerf, 2008). By using a temporal adaptation task, we investigated whether adapting to different time intervals conveyed through stimuli in different modalities (i.e., frames of a visual Ternus display, visual blinking discs, or auditory beeps) would affect the subsequent implicit perception of visual timing, i.e., inter-stimulus interval (ISI) between two frames in a Ternus display. The Ternus display can induce two percepts of apparent motion (AM), depending on the ISI between the two frames: “element motion” for short ISIs, in which the endmost disc is seen as moving back and forth while the middle disc at the overlapping or central position remains stationary; “group motion” for longer ISIs, in which both discs appear to move in a manner of lateral displacement as a whole. In Experiment 1, participants adapted to either the typical “element motion” (ISI = 50 ms) or the typical “group motion” (ISI = 200 ms). In Experiments 2 and 3, participants adapted to a time interval of 50 or 200 ms through observing a series of two paired blinking discs at the center of the screen (Experiment 2) or hearing a sequence of two paired beeps (with pitch 1000 Hz). In Experiment 4, participants adapted to sequences of paired beeps with either low pitches (500 Hz) or high pitches (5000 Hz). After adaptation in each trial, participants were presented with a Ternus probe in which the ISI between the two frames was equal to the transitional threshold of the two types of motions, as determined by a pretest. Results showed that adapting to the short time interval in all the situations led to more reports of “group motion” in the subsequent Ternus probes; adapting to the long time interval, however, caused no aftereffect for visual adaptation but significantly more reports of group motion for

  9. Predicting Hyper-Chaotic Time Series Using Adaptive Higher-Order Nonlinear Filter

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Shu; Xiao, Xian-Ci

    2001-03-01

    A newly proposed method, i.e. the adaptive higher-order nonlinear finite impulse response (HONFIR) filter based on higher-order sparse Volterra series expansions, is introduced to predict hyper-chaotic time series. The effectiveness of using the adaptive HONFIR filter for making one-step and multi-step predictions is tested based on very few data points by computer-generated hyper-chaotic time series including the Mackey-Glass equation and four-dimensional nonlinear dynamical system. A comparison is made with some neural networks for predicting the Mackey-Glass hyper-chaotic time series. Numerical simulation results show that the adaptive HONFIR filter proposed here is a very powerful tool for making prediction of hyper-chaotic time series.

  10. Adaptive time-lapse optimized survey design for electrical resistivity tomography monitoring

    NASA Astrophysics Data System (ADS)

    Wilkinson, Paul B.; Uhlemann, Sebastian; Meldrum, Philip I.; Chambers, Jonathan E.; Carrière, Simon; Oxby, Lucy S.; Loke, M. H.

    2015-10-01

    Adaptive optimal experimental design methods use previous data and results to guide the choice and design of future experiments. This paper describes the formulation of an adaptive survey design technique to produce optimal resistivity imaging surveys for time-lapse geoelectrical monitoring experiments. These survey designs are time-dependent and, compared to dipole-dipole or static optimized surveys that do not change over time, focus a greater degree of the image resolution on regions of the subsurface that are actively changing. The adaptive optimization method is validated using a controlled laboratory monitoring experiment comprising a well-defined cylindrical target moving along a trajectory that changes its depth and lateral position. The algorithm is implemented on a standard PC in conjunction with a modified automated multichannel resistivity imaging system. Data acquisition using the adaptive survey designs requires no more time or power than with comparable standard surveys, and the algorithm processing takes place while the system batteries recharge. The results show that adaptively designed optimal surveys yield a quantitative increase in image quality over and above that produced by using standard dipole-dipole or static (time-independent) optimized surveys.

  11. Searching for space-time variation of the fine structure constant using QSO spectra: overview and future prospects

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    2010-11-01

    Current theories that seek to unify gravity with the other fundamental interactions suggest that spatial and temporal variation of fundamental constants is a possibility, or even a necessity, in an expanding Universe. Several studies have tried to probe the values of constants at earlier stages in the evolution of the Universe, using tools such as big-bang nucleosynthesis, the Oklo natural nuclear reactor, quasar absorption spectra, and atomic clocks (see, e.g. Flambaum & Berengut (2009)).

  12. Remote mission specialist - A study in real-time, adaptive planning

    NASA Technical Reports Server (NTRS)

    Rokey, Mark J.

    1990-01-01

    A high-level planning architecture for robotic operations is presented. The remote mission specialist integrates high-level directives with low-level primitives executable by a run-time controller for command of autonomous servicing activities. The planner has been designed to address such issues as adaptive plan generation, real-time performance, and operator intervention.

  13. Effect of tidal volume and positive end-expiratory pressure on expiratory time constants in experimental lung injury.

    PubMed

    Henderson, William R; Dominelli, Paolo B; Molgat-Seon, Yannick; Lipson, Rachel; Griesdale, Donald E G; Sekhon, Mypinder; Ayas, Najib; Sheel, A William

    2016-03-01

    We utilized a multicompartment model to describe the effects of changes in tidal volume (VT) and positive end-expiratory pressure (PEEP) on lung emptying during passive deflation before and after experimental lung injury. Expiratory time constants (τE) were determined by partitioning the expiratory flow-volume (V˙EV) curve into multiple discrete segments and individually calculating τE for each segment. Under all conditions of PEEP and VT, τE increased throughout expiration both before and after injury. Segmented τE values increased throughout expiration with a slope that was different than zero (P < 0. 01). On average, τE increased by 45.08 msec per segment. When an interaction between injury status and τE segment was included in the model, it was significant (P < 0.05), indicating that later segments had higher τE values post injury than early τE segments. Higher PEEP and VT values were associated with higher τE values. No evidence was found for an interaction between injury status and VT, or PEEP. The current experiment confirms previous observations that τE values are smaller in subjects with injured lungs when compared to controls. We are the first to demonstrate changes in the pattern of τE before and after injury when examined with a multiple compartment model. Finally, increases in PEEP or VT increased τE throughout expiration, but did not appear to have effects that differed between the uninjured and injured state. PMID:26997633

  14. LPTA: Location Predictive and Time Adaptive Data Gathering Scheme with Mobile Sink for Wireless Sensor Networks

    PubMed Central

    Rodrigues, Joel J. P. C.

    2014-01-01

    This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes. PMID:25302327

  15. Time-domain digital pre-equalization for band-limited signals based on receiver-side adaptive equalizers.

    PubMed

    Zhang, Junwen; Yu, Jianjun; Chi, Nan; Chien, Hung-Chang

    2014-08-25

    We theoretically and experimentally investigate a time-domain digital pre-equalization (DPEQ) scheme for bandwidth-limited optical coherent communication systems, which is based on feedback of channel characteristics from the receiver-side blind and adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi- modulus algorithms (CMA, MMA). Based on the proposed DPEQ scheme, we theoretically and experimentally study its performance in terms of various channel conditions as well as resolutions for channel estimation, such as filtering bandwidth, taps length, and OSNR. Using a high speed 64-GSa/s DAC in cooperation with the proposed DPEQ technique, we successfully synthesized band-limited 40-Gbaud signals in modulation formats of polarization-diversion multiplexed (PDM) quadrature phase shift keying (QPSK), 8-quadrature amplitude modulation (QAM) and 16-QAM, and significant improvement in both back-to-back and transmission BER performances are also demonstrated. PMID:25321257

  16. Time-course proteomic profile of Candida albicans during adaptation to a fetal serum.

    PubMed

    Aoki, Wataru; Ueda, Tomomi; Tatsukami, Yohei; Kitahara, Nao; Morisaka, Hironobu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-02-01

    Candida albicans is a commensal organism; however, it causes fatal diseases if the host immunity is compromised. The mortality rate is very high due to the lack of effective treatment, leading to ceaseless demand for novel pharmaceuticals. In this study, time-course proteomics of C. albicans during adaptation to fetal bovine serum (FBS) was described. Time-course proteomics is a promising way to understand the exact process of going adaptation in dynamically changing environments. Candida albicans was cultivated in yeast nitrogen base (YNB) ± FBS media, and we identified 1418 proteins in the endpoint samples incubated for 0 or 60 min by a LC-MS/MS system with a long monolithic silica capillary column. Next, we carried out time-course proteomics of the YNB + FBS samples to identify top-priority proteins for adaption to FBS. We identified 16 proteins as nascent/newly synthesized proteins, and they were recognized as candidates of important virulent factors. Gene ontology analysis revealed that transport-related proteins were enriched in the 16 proteins, indicating that C. albicans probably put priority in time on the acquisition of essential elements. Time-course proteomics of C. albicans revealed the order of priority to adapt to FBS. Depicting time-course dynamics will lead to profound understandings of virulence of C. albicans. PMID:23620121

  17. Adaptive-grid methods for time-dependent partial differential equations

    SciTech Connect

    Hedstrom, G.W.; Rodrique, G.H.

    1981-01-01

    This paper contains a survey of recent developments of adaptive-grid algorithms for time-dependent partial differential equations. Two lines of research are discussed. One involves the automatic selection of moving grids to follow propagating waves. The other is based on stationary grids but uses local mesh refinement in both space and time. Advantages and disadvantages of both approaches are discussed. The development of adaptive-grid schemes shows promise of greatly increasing our ability to solve problems in several spatial dimensions.

  18. Real-Time Robust Adaptive Modeling and Scheduling for an Electronic Commerce Server

    NASA Astrophysics Data System (ADS)

    Du, Bing; Ruan, Chun

    With the increasing importance and pervasiveness of Internet services, it is becoming a challenge for the proliferation of electronic commerce services to provide performance guarantees under extreme overload. This paper describes a real-time optimization modeling and scheduling approach for performance guarantee of electronic commerce servers. We show that an electronic commerce server may be simulated as a multi-tank system. A robust adaptive server model is subject to unknown additive load disturbances and uncertain model matching. Overload control techniques are based on adaptive admission control to achieve timing guarantees. We evaluate the performance of the model using a complex simulation that is subjected to varying model parameters and massive overload.

  19. Between-Trial Forgetting Due to Interference and Time in Motor Adaptation.

    PubMed

    Kim, Sungshin; Oh, Youngmin; Schweighofer, Nicolas

    2015-01-01

    Learning a motor task with temporally spaced presentations or with other tasks intermixed between presentations reduces performance during training, but can enhance retention post training. These two effects are known as the spacing and contextual interference effect, respectively. Here, we aimed at testing a unifying hypothesis of the spacing and contextual interference effects in visuomotor adaptation, according to which forgetting between trials due to either spaced presentations or interference by another task will promote between-trial forgetting, which will depress performance during acquisition, but will promote retention. We first performed an experiment with three visuomotor adaptation conditions: a short inter-trial-interval (ITI) condition (SHORT-ITI); a long ITI condition (LONG-ITI); and an alternating condition with two alternated opposite tasks (ALT), with the same single-task ITI as in LONG-ITI. In the SHORT-ITI condition, there was fastest increase in performance during training and largest immediate forgetting in the retention tests. In contrast, in the ALT condition, there was slowest increase in performance during training and little immediate forgetting in the retention tests. Compared to these two conditions, in the LONG-ITI, we found intermediate increase in performance during training and intermediate immediate forgetting. To account for these results, we fitted to the data six possible adaptation models with one or two time scales, and with interference in the fast, or in the slow, or in both time scales. Model comparison confirmed that two time scales and some degree of interferences in either time scale are needed to account for our experimental results. In summary, our results suggest that retention following adaptation is modulated by the degree of between-trial forgetting, which is due to time-based decay in single adaptation task and interferences in multiple adaptation tasks. PMID:26599075

  20. A novel algorithm for real-time adaptive signal detection and identification

    SciTech Connect

    Sleefe, G.E.; Ladd, M.D.; Gallegos, D.E.; Sicking, C.W.; Erteza, I.A.

    1998-04-01

    This paper describes a novel digital signal processing algorithm for adaptively detecting and identifying signals buried in noise. The algorithm continually computes and updates the long-term statistics and spectral characteristics of the background noise. Using this noise model, a set of adaptive thresholds and matched digital filters are implemented to enhance and detect signals that are buried in the noise. The algorithm furthermore automatically suppresses coherent noise sources and adapts to time-varying signal conditions. Signal detection is performed in both the time-domain and the frequency-domain, thereby permitting the detection of both broad-band transients and narrow-band signals. The detection algorithm also provides for the computation of important signal features such as amplitude, timing, and phase information. Signal identification is achieved through a combination of frequency-domain template matching and spectral peak picking. The algorithm described herein is well suited for real-time implementation on digital signal processing hardware. This paper presents the theory of the adaptive algorithm, provides an algorithmic block diagram, and demonstrate its implementation and performance with real-world data. The computational efficiency of the algorithm is demonstrated through benchmarks on specific DSP hardware. The applications for this algorithm, which range from vibration analysis to real-time image processing, are also discussed.

  1. The role of time delay in adaptive cellular negative feedback systems.

    PubMed

    Lapytsko, Anastasiya; Schaber, Jörg

    2016-06-01

    Adaptation in cellular systems is often mediated by negative feedbacks, which usually come with certain time delays causing several characteristic response patterns including an overdamped response, damped or sustained oscillations. Here, we analyse generic two-dimensional delay differential equations with delayed negative feedback describing the dynamics of biochemical adaptive signal-response networks. We derive explicit thresholds and boundaries showing how time delay determines characteristic response patterns of these networks. Applying our theoretical analyses to concrete data we show that adaptation to osmotic stress in yeast is optimal in the sense of minimizing adaptation time without causing oscillatory behaviour, i.e., a critically damped response. In addition, our framework demonstrates that a slight increase of time delay in the NF-κB system might induce a switch from damped to sustained oscillatory behaviour. Thus, we demonstrate how delay differential equations can be used to explicitly study the delay in biochemical negative feedback systems. Our analysis also provides insight into how time delay may tune biological signal-response patterns and control the systems behaviour. PMID:26995333

  2. The Doubling Theory: Dark Matter and Dark Energy Finally Explained, Speed of Light and Fine Structure Constant Calculated for the First Time

    NASA Astrophysics Data System (ADS)

    Malet, Jean-Pierre Garnier

    2010-09-01

    Developed in previous papers [1, 2, 3, 4, 5], the ``doubling'' (of space and time) theory uses finite horizons of several virtual space-times which are embedded within the observable space-time. A specific fundamental movement creates imperceptible time instants (called ``temporal openings'') in the time flow. Considering different scale levels, it modifies the perception of the time flow and gives to each horizon instantaneous potential futures. This theory explains the cyclical planetary movement in the solar system, the entanglement between particles, the dissymmetry of matter/antimatter and the existence of the dark matter and dark energy. It can also calculate ``for the first time'' universal constants: the speed of light and the fine structure constant.

  3. Adaptive Output-Feedback Neural Control of Switched Uncertain Nonlinear Systems With Average Dwell Time.

    PubMed

    Long, Lijun; Zhao, Jun

    2015-07-01

    This paper investigates the problem of adaptive neural tracking control via output-feedback for a class of switched uncertain nonlinear systems without the measurements of the system states. The unknown control signals are approximated directly by neural networks. A novel adaptive neural control technique for the problem studied is set up by exploiting the average dwell time method and backstepping. A switched filter and different update laws are designed to reduce the conservativeness caused by adoption of a common observer and a common update law for all subsystems. The proposed controllers of subsystems guarantee that all closed-loop signals remain bounded under a class of switching signals with average dwell time, while the output tracking error converges to a small neighborhood of the origin. As an application of the proposed design method, adaptive output feedback neural tracking controllers for a mass-spring-damper system are constructed. PMID:25122844

  4. Adaptive Fuzzy Control of Strict-Feedback Nonlinear Time-Delay Systems With Unmodeled Dynamics.

    PubMed

    Yin, Shen; Shi, Peng; Yang, Hongyan

    2016-08-01

    In this paper, an approximated-based adaptive fuzzy control approach with only one adaptive parameter is presented for a class of single input single output strict-feedback nonlinear systems in order to deal with phenomena like nonlinear uncertainties, unmodeled dynamics, dynamic disturbances, and unknown time delays. Lyapunov-Krasovskii function approach is employed to compensate the unknown time delays in the design procedure. By combining the advances of the hyperbolic tangent function with adaptive fuzzy backstepping technique, the proposed controller guarantees the semi-globally uniformly ultimately boundedness of all the signals in the closed-loop system from the mean square point of view. Two simulation examples are finally provided to show the superior effectiveness of the proposed scheme. PMID:26302525

  5. A Neural Mechanism for Time-Window Separation Resolves Ambiguity of Adaptive Coding

    PubMed Central

    Hildebrandt, K. Jannis; Ronacher, Bernhard; Hennig, R. Matthias; Benda, Jan

    2015-01-01

    The senses of animals are confronted with changing environments and different contexts. Neural adaptation is one important tool to adjust sensitivity to varying intensity ranges. For instance, in a quiet night outdoors, our hearing is more sensitive than when we are confronted with the plurality of sounds in a large city during the day. However, adaptation also removes available information on absolute sound levels and may thus cause ambiguity. Experimental data on the trade-off between benefits and loss through adaptation is scarce and very few mechanisms have been proposed to resolve it. We present an example where adaptation is beneficial for one task—namely, the reliable encoding of the pattern of an acoustic signal—but detrimental for another—the localization of the same acoustic stimulus. With a combination of neurophysiological data, modeling, and behavioral tests, we show that adaptation in the periphery of the auditory pathway of grasshoppers enables intensity-invariant coding of amplitude modulations, but at the same time, degrades information available for sound localization. We demonstrate how focusing the response of localization neurons to the onset of relevant signals separates processing of localization and pattern information temporally. In this way, the ambiguity of adaptive coding can be circumvented and both absolute and relative levels can be processed using the same set of peripheral neurons. PMID:25761097

  6. A neural mechanism for time-window separation resolves ambiguity of adaptive coding.

    PubMed

    Hildebrandt, K Jannis; Ronacher, Bernhard; Hennig, R Matthias; Benda, Jan

    2015-03-01

    The senses of animals are confronted with changing environments and different contexts. Neural adaptation is one important tool to adjust sensitivity to varying intensity ranges. For instance, in a quiet night outdoors, our hearing is more sensitive than when we are confronted with the plurality of sounds in a large city during the day. However, adaptation also removes available information on absolute sound levels and may thus cause ambiguity. Experimental data on the trade-off between benefits and loss through adaptation is scarce and very few mechanisms have been proposed to resolve it. We present an example where adaptation is beneficial for one task--namely, the reliable encoding of the pattern of an acoustic signal-but detrimental for another--the localization of the same acoustic stimulus. With a combination of neurophysiological data, modeling, and behavioral tests, we show that adaptation in the periphery of the auditory pathway of grasshoppers enables intensity-invariant coding of amplitude modulations, but at the same time, degrades information available for sound localization. We demonstrate how focusing the response of localization neurons to the onset of relevant signals separates processing of localization and pattern information temporally. In this way, the ambiguity of adaptive coding can be circumvented and both absolute and relative levels can be processed using the same set of peripheral neurons. PMID:25761097

  7. From Dinosaurs to Modern Bird Diversity: Extending the Time Scale of Adaptive Radiation

    PubMed Central

    Moen, Daniel; Morlon, Hélène

    2014-01-01

    What explains why some groups of organisms, like birds, are so species rich? And what explains their extraordinary ecological diversity, ranging from large, flightless birds to small migratory species that fly thousand of kilometers every year? These and similar questions have spurred great interest in adaptive radiation, the diversification of ecological traits in a rapidly speciating group of organisms. Although the initial formulation of modern concepts of adaptive radiation arose from consideration of the fossil record, rigorous attempts to identify adaptive radiation in the fossil record are still uncommon. Moreover, most studies of adaptive radiation concern groups that are less than 50 million years old. Thus, it is unclear how important adaptive radiation is over temporal scales that span much larger portions of the history of life. In this issue, Benson et al. test the idea of a “deep-time” adaptive radiation in dinosaurs, compiling and using one of the most comprehensive phylogenetic and body-size datasets for fossils. Using recent phylogenetic statistical methods, they find that in most clades of dinosaurs there is a strong signal of an “early burst” in body-size evolution, a predicted pattern of adaptive radiation in which rapid trait evolution happens early in a group's history and then slows down. They also find that body-size evolution did not slow down in the lineage leading to birds, hinting at why birds survived to the present day and diversified. This paper represents one of the most convincing attempts at understanding deep-time adaptive radiations. PMID:24802950

  8. Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes

    PubMed Central

    Colombo, M; Damerau, M; Hanel, R; Salzburger, W; Matschiner, M

    2015-01-01

    According to theory, adaptive radiation is triggered by ecological opportunity that can arise through the colonization of new habitats, the extinction of antagonists or the origin of key innovations. In the course of an adaptive radiation, diversification and morphological evolution are expected to slow down after an initial phase of rapid adaptation to vacant ecological niches, followed by speciation. Such ‘early bursts’ of diversification are thought to occur because niche space becomes increasingly filled over time. The diversification of Antarctic notothenioid fishes into over 120 species has become one of the prime examples of adaptive radiation in the marine realm and has likely been triggered by an evolutionary key innovation in the form of the emergence of antifreeze glycoproteins. Here, we test, using a novel time-calibrated phylogeny of 49 species and five traits that characterize notothenioid body size and shape as well as buoyancy adaptations and habitat preferences, whether the notothenioid adaptive radiation is compatible with an early burst scenario. Extensive Bayesian model comparison shows that phylogenetic age estimates are highly dependent on model choice and that models with unlinked gene trees are generally better supported and result in younger age estimates. We find strong evidence for elevated diversification rates in Antarctic notothenioids compared to outgroups, yet no sign of rate heterogeneity in the course of the radiation, except that the notothenioid family Artedidraconidae appears to show secondarily elevated diversification rates. We further observe an early burst in trophic morphology, suggesting that the notothenioid radiation proceeds in stages similar to other prominent examples of adaptive radiation. PMID:25495187

  9. Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes.

    PubMed

    Colombo, M; Damerau, M; Hanel, R; Salzburger, W; Matschiner, M

    2015-02-01

    According to theory, adaptive radiation is triggered by ecological opportunity that can arise through the colonization of new habitats, the extinction of antagonists or the origin of key innovations. In the course of an adaptive radiation, diversification and morphological evolution are expected to slow down after an initial phase of rapid adaptation to vacant ecological niches, followed by speciation. Such 'early bursts' of diversification are thought to occur because niche space becomes increasingly filled over time. The diversification of Antarctic notothenioid fishes into over 120 species has become one of the prime examples of adaptive radiation in the marine realm and has likely been triggered by an evolutionary key innovation in the form of the emergence of antifreeze glycoproteins. Here, we test, using a novel time-calibrated phylogeny of 49 species and five traits that characterize notothenioid body size and shape as well as buoyancy adaptations and habitat preferences, whether the notothenioid adaptive radiation is compatible with an early burst scenario. Extensive Bayesian model comparison shows that phylogenetic age estimates are highly dependent on model choice and that models with unlinked gene trees are generally better supported and result in younger age estimates. We find strong evidence for elevated diversification rates in Antarctic notothenioids compared to outgroups, yet no sign of rate heterogeneity in the course of the radiation, except that the notothenioid family Artedidraconidae appears to show secondarily elevated diversification rates. We further observe an early burst in trophic morphology, suggesting that the notothenioid radiation proceeds in stages similar to other prominent examples of adaptive radiation. PMID:25495187

  10. Genomic Evidence of Rapid and Stable Adaptive Oscillations over Seasonal Time Scales in Drosophila

    PubMed Central

    Bergland, Alan O.; Behrman, Emily L.; O'Brien, Katherine R.; Schmidt, Paul S.; Petrov, Dmitri A.

    2014-01-01

    In many species, genomic data have revealed pervasive adaptive evolution indicated by the fixation of beneficial alleles. However, when selection pressures are highly variable along a species' range or through time adaptive alleles may persist at intermediate frequencies for long periods. So called “balanced polymorphisms” have long been understood to be an important component of standing genetic variation, yet direct evidence of the strength of balancing selection and the stability and prevalence of balanced polymorphisms has remained elusive. We hypothesized that environmental fluctuations among seasons in a North American orchard would impose temporally variable selection on Drosophila melanogaster that would drive repeatable adaptive oscillations at balanced polymorphisms. We identified hundreds of polymorphisms whose frequency oscillates among seasons and argue that these loci are subject to strong, temporally variable selection. We show that these polymorphisms respond to acute and persistent changes in climate and are associated in predictable ways with seasonally variable phenotypes. In addition, our results suggest that adaptively oscillating polymorphisms are likely millions of years old, with some possibly predating the divergence between D. melanogaster and D. simulans. Taken together, our results are consistent with a model of balancing selection wherein rapid temporal fluctuations in climate over generational time promotes adaptive genetic diversity at loci underlying polygenic variation in fitness related phenotypes. PMID:25375361

  11. A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control

    NASA Astrophysics Data System (ADS)

    Li, Yancheng; Li, Jianchun; Tian, Tongfei; Li, Weihua

    2013-09-01

    Inspired by its controllable and field-dependent stiffness/damping properties, there has been increasing research and development of magnetorheological elastomer (MRE) for mitigation of unwanted structural or machinery vibrations using MRE isolators or absorbers. Recently, a breakthrough pilot research on the development of a highly innovative prototype adaptive MRE base isolator, with the ability for real-time adaptive control of base isolated structures against various types of earthquakes including near- or far-fault earthquakes, has been reported by the authors. As a further effort to improve the proposed MRE adaptive base isolator and to address some of the shortcomings and challenges, this paper presents systematic investigations on the development of a new highly adjustable MRE base isolator, including experimental testing and characterization of the new isolator. A soft MR elastomer has been designed, fabricated and incorporated in the laminated structure of the new MRE base isolator, which aims to obtain a highly adjustable shear modulus under a medium level of magnetic field. Comprehensive static and dynamic testing was conducted on this new adaptive MRE base isolator to examine its characteristics and evaluate its performance. The experimental results show that this new MRE base isolator can remarkably change the lateral stiffness of the isolator up to 1630% under a medium level of magnetic field. Such highly adjustable MRE base isolator makes the design and implementation of truly real-time adaptive (e.g. semi-active or smart passive) seismic isolation systems become feasible.

  12. Future Time Perspective as a Predictor of Adolescents' Adaptive Behavior in School

    ERIC Educational Resources Information Center

    Carvalho, Renato Gil Gomes

    2015-01-01

    Future time perspective (FTP) has been associated with positive outcomes in adolescents' development across different contexts. However, the extent to which FTP influences adaptation needs additional understanding. In this study, we analysed the relationship between FTP and adolescents' behavior in school, as expressed in several indicators of…

  13. Adaptive Responses to Prochloraz Exposure That Alter Dose-Response and Time-Course Behaviors

    EPA Science Inventory

    Dose response and time-course (DRTC) are, along with exposure, the major determinants of health risk. Adaptive changes within exposed organisms in response to environmental stress are common, and alter DRTC behaviors to minimize the effects caused by stressors. In this project, ...

  14. Features: Real-Time Adaptive Feature and Document Learning for Web Search.

    ERIC Educational Resources Information Center

    Chen, Zhixiang; Meng, Xiannong; Fowler, Richard H.; Zhu, Binhai

    2001-01-01

    Describes Features, an intelligent Web search engine that is able to perform real-time adaptive feature (i.e., keyword) and document learning. Explains how Features learns from users' document relevance feedback and automatically extracts and suggests indexing keywords relevant to a search query, and learns from users' keyword relevance feedback…

  15. Consequences of Part-Time Work on the Academic and Psychosocial Adaptation of Adolescents

    ERIC Educational Resources Information Center

    Dumont, Michelle; Leclerc, Danielle; McKinnon, Suzie

    2009-01-01

    Part-time work is becoming a common fact of life for high school students. Furthermore, its short and intermediate term impacts on the academic and psychosocial adaptation of students between the middle and end of high school are fairly unknown. To compensate for this lack of information, students in Grades 9 and 11 were consulted and asked to…

  16. Multi-channel holographic birfurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Diep, J.; Huang, K.

    1991-01-01

    Viewgraphs on multi-channel holographic bifurcative neural network system for real-time adaptive Earth Observing System (EOS) data analysis are presented. The objective is to research and develop an optical bifurcating neuromorphic pattern recognition system for making optical data array comparisons and to evaluate the use of the system for EOS data classification, reduction, analysis, and other applications.

  17. Asynchrony adaptation reveals neural population code for audio-visual timing

    PubMed Central

    Roach, Neil W.; Heron, James; Whitaker, David; McGraw, Paul V.

    2011-01-01

    The relative timing of auditory and visual stimuli is a critical cue for determining whether sensory signals relate to a common source and for making inferences about causality. However, the way in which the brain represents temporal relationships remains poorly understood. Recent studies indicate that our perception of multisensory timing is flexible—adaptation to a regular inter-modal delay alters the point at which subsequent stimuli are judged to be simultaneous. Here, we measure the effect of audio-visual asynchrony adaptation on the perception of a wide range of sub-second temporal relationships. We find distinctive patterns of induced biases that are inconsistent with the previous explanations based on changes in perceptual latency. Instead, our results can be well accounted for by a neural population coding model in which: (i) relative audio-visual timing is represented by the distributed activity across a relatively small number of neurons tuned to different delays; (ii) the algorithm for reading out this population code is efficient, but subject to biases owing to under-sampling; and (iii) the effect of adaptation is to modify neuronal response gain. These results suggest that multisensory timing information is represented by a dedicated population code and that shifts in perceived simultaneity following asynchrony adaptation arise from analogous neural processes to well-known perceptual after-effects. PMID:20961905

  18. Estimation of the rate constants associated with the inhibitory effect of okadaic acid on type 2A protein phosphatase by time-course analysis.

    PubMed Central

    Takai, A; Ohno, Y; Yasumoto, T; Mieskes, G

    1992-01-01

    As is often the case with tightly binding inhibitors, okadaic acid produces its inhibitory effect on type 2A protein phosphatase (PP2A) in a time-dependent manner. We measured the rate constants associated with the binding of okadaic acid to PP2A by analysing the time-course of the reduction of the p-nitrophenyl phosphate (pNPP) phosphatase activity of the enzyme after application of okadaic acid. The rate constants for dissociation of okadaic acid from PP2A were also estimated from the time-course of the recovery of the activity from inhibition by okadaic acid after addition of a mouse IgG1 monoclonal antibody raised against the inhibitor. Our results show that the rate constants for the binding of okadaic acid and PP2A are of the order of 10(7) M-1.s-1, a typical value for reactions involving relatively large molecules, whereas those for their dissociation are in the range 10(-4)-10(-3) s-1. The very low values of the latter seems to be the determining factor for the exceedingly high affinity of okadaic acid for PP2A. The dissociation constants for the interaction of okadaic acid with the free enzyme and the enzyme-substrate complex, estimated as the ratio of the rate constants, are both in the range 30-40 pM, in agreement with the results of previous dose-inhibition analyses. PMID:1329723

  19. Derivation and Inter-relationship of Planck time, the Hubble constant, and Cosmic Microwave Background Radiation from the Neutron and the Quantum Properties of Hydrogen

    NASA Astrophysics Data System (ADS)

    Chakeres, D. W.; Vento, R.; Moses, S. S.; Sauza, J. B.; Andrianarijaona, V. M.

    Planck time, tP, is presently the only fundamental constant that unites the physical domains of c, h, and G, and is therefore a globally defined normalized time constant. This study shows a method to derive tP, H0, G, and the Cosmic Microwave Background Radiation (CMBR) peak spectral radiance from the frequency equivalents of the neutron and the quantum properties of hydrogen such as Rydberg's constant, Bohr radius, electron mass and electron charge. All of the derivations are within the experimental ranges, including errors. Moreover, these results exceed what is experimentally possible because the natural unit data are of high precision. The constants are evaluated within a combined classic integer and harmonic fraction, power law relationship. The logarithmic base of the annihilation frequency of the neutron, approximately 2.27 ×1023 Hz, scales the independent axis to an integer and partial harmonic fraction system. The dependent axis is scaled by the properties of hydrogen. On the line that defines Planck time squared, tP2,there exist unique points directly related to H0, and the CMBR. Therefore these three fundamental cosmic constants are mathematically and conceptually closely inter-related, and each derivable from the others.

  20. Matched elastic constants for a perfect helical planar state and a fast switching time in chiral nematic liquid crystals.

    PubMed

    Yu, Meina; Zhou, Xiaochen; Jiang, Jinghua; Yang, Huai; Yang, Deng-Ke

    2016-05-11

    Chiral nematic liquid crystals possess a self-assembled helical structure and exhibit unique selective reflection in visible and infrared light regions. Their optical properties can be electrically tuned. The tuning involves the unwinding and restoring of the helical structure. We carried out an experimental study on the mechanism of the restoration of the helical structure. We constructed chiral nematic liquid crystals with variable elastic constants by doping bent-dimers and studied their impact on the restoration. With matched twist and bend elastic constants, the helical structure can be restored dramatically fast from the field-induced homeotropic state. Furthermore, defects can be eliminated to produce a perfect planar state which exhibits high selective reflection. PMID:27116620

  1. Adaptive Network Dynamics - Modeling and Control of Time-Dependent Social Contacts

    PubMed Central

    Schwartz, Ira B.; Shaw, Leah B.; Shkarayev, Maxim S.

    2013-01-01

    Real networks consisting of social contacts do not possess static connections. That is, social connections may be time dependent due to a variety of individual behavioral decisions based on current network connections. Examples of adaptive networks occur in epidemics, where information about infectious individuals may change the rewiring of healthy people, or in the recruitment of individuals to a cause or fad, where rewiring may optimize recruitment of susceptible individuals. In this paper, we will review some of the dynamical properties of adaptive networks, and show how they predict novel phenomena as well as yield insight into new controls. The applications will be control of epidemic outbreaks and terrorist recruitment modeling. PMID:25414913

  2. Adaptive Synchronization of Memristor-Based Neural Networks with Time-Varying Delays.

    PubMed

    Wang, Leimin; Shen, Yi; Yin, Quan; Zhang, Guodong

    2015-09-01

    In this paper, adaptive synchronization of memristor-based neural networks (MNNs) with time-varying delays is investigated. The dynamical analysis here employs results from the theory of differential equations with discontinuous right-hand sides as introduced by Filippov. Sufficient conditions for the global synchronization of MNNs are established with a general adaptive controller. The update gain of the controller can be adjusted to control the synchronization speed. The obtained results complement and improve the previously known results. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results. PMID:25389244

  3. An Adaptive Fourier Filter for Relaxing Time Stepping Constraints for Explicit Solvers

    SciTech Connect

    Gelb, Anne; Archibald, Richard K

    2015-01-01

    Filtering is necessary to stabilize piecewise smooth solutions. The resulting diffusion stabilizes the method, but may fail to resolve the solution near discontinuities. Moreover, high order filtering still requires cost prohibitive time stepping. This paper introduces an adaptive filter that controls spurious modes of the solution, but is not unnecessarily diffusive. Consequently we are able to stabilize the solution with larger time steps, but also take advantage of the accuracy of a high order filter.

  4. A low-dimensional, time-resolved and adapting model neuron.

    PubMed

    Cartling, B

    1996-07-01

    A low-dimensional, time-resolved and adapting model neuron is formulated and evaluated. The model is an extension of the integrate-and-fire type of model with respect to adaptation and of a recent adapting firing-rate model with respect to time-resolution. It is obtained from detailed conductance-based models by a separation of fast and slow ionic processes of action potential generation. The model explicitly includes firing-rate regulation via the slow afterhyperpolarization phase of action potentials, which is controlled by calcium-sensitive potassium channels. It is demonstrated that the model closely reproduces the firing pattern and excitability behaviour of a detailed multicompartment conductance-based model of a neocortical pyramidal cell. The inclusion of adaptation in a model neuron is important for its capability to generate complex dynamics of networks of interconnected neurons. The time-resolution is required for studies of systems in which the temporal aspects of neural coding are important. The simplicity of the model facilitates analytical studies, insight into neurocomputational mechanisms and simulations of large-scale systems. The capability to generate complex network computations may also make the model useful in practical applications of artificial neural networks. PMID:8891839

  5. Hierarchical Adaptive Means (HAM) clustering for hardware-efficient, unsupervised and real-time spike sorting.

    PubMed

    Paraskevopoulou, Sivylla E; Wu, Di; Eftekhar, Amir; Constandinou, Timothy G

    2014-09-30

    This work presents a novel unsupervised algorithm for real-time adaptive clustering of neural spike data (spike sorting). The proposed Hierarchical Adaptive Means (HAM) clustering method combines centroid-based clustering with hierarchical cluster connectivity to classify incoming spikes using groups of clusters. It is described how the proposed method can adaptively track the incoming spike data without requiring any past history, iteration or training and autonomously determines the number of spike classes. Its performance (classification accuracy) has been tested using multiple datasets (both simulated and recorded) achieving a near-identical accuracy compared to k-means (using 10-iterations and provided with the number of spike classes). Also, its robustness in applying to different feature extraction methods has been demonstrated by achieving classification accuracies above 80% across multiple datasets. Last but crucially, its low complexity, that has been quantified through both memory and computation requirements makes this method hugely attractive for future hardware implementation. PMID:25035965

  6. A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: A multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking

    PubMed Central

    Colvill, Emma; Booth, Jeremy; Nill, Simeon; Fast, Martin; Bedford, James; Oelfke, Uwe; Nakamura, Mitsuhiro; Poulsen, Per; Worm, Esben; Hansen, Rune; Ravkilde, Thomas; Scherman Rydhög, Jonas; Pommer, Tobias; Munck af Rosenschold, Per; Lang, Stephanie; Guckenberger, Matthias; Groh, Christian; Herrmann, Christian; Verellen, Dirk; Poels, Kenneth; Wang, Lei; Hadsell, Michael; Sothmann, Thilo; Blanck, Oliver; Keall, Paul

    2016-01-01

    Purpose A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. Methods and materials Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for γ-tests recorded. Results For all lung traces all measurement sets show improved dose accuracy with a mean 2%/2 mm γ-fail rate of 1.6% with adaptation and 15.2% without adaptation (p < 0.001). For all prostate the mean 2%/2 mm γ-fail rate was 1.4% with adaptation and 17.3% without adaptation (p < 0.001). The difference between the four systems was small with an average 2%/2 mm γ-fail rate of <3% for all systems with adaptation for lung and prostate. Conclusions The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods. PMID:27016171

  7. Digital timing recovery combined with adaptive equalization for optical coherent receivers

    NASA Astrophysics Data System (ADS)

    Zhou, Xian; Chen, Xue; Zhou, Weiqing; Fan, Yangyang; Zhu, Hai; Li, Zhiyu

    2009-11-01

    We propose a novel equalization and timing recovery scheme, which adds an adaptive butterfly-structured equalizer in an all-digital timing recovery loop, for polarization multiplexing (POLMUX) coherent receivers. It resolves an incompatible problem that digital equalizer requires the timing recovered (synchronous) signal and Gardner timing-error detection algorithm requires the equalized signal because of its small tolerance on dispersion. This joint module can complete synchronization, equalization and polarization de-multiplexing simultaneously without any extra computational cost. Finally, we demonstrate the good performance of the new scheme in a 112-Gbit/s POLMUX-NRZ-DQPSK digital optical coherent receiver.

  8. Automatic Adaptation to Fast Input Changes in a Time-Invariant Neural Circuit.

    PubMed

    Bharioke, Arjun; Chklovskii, Dmitri B

    2015-08-01

    Neurons must faithfully encode signals that can vary over many orders of magnitude despite having only limited dynamic ranges. For a correlated signal, this dynamic range constraint can be relieved by subtracting away components of the signal that can be predicted from the past, a strategy known as predictive coding, that relies on learning the input statistics. However, the statistics of input natural signals can also vary over very short time scales e.g., following saccades across a visual scene. To maintain a reduced transmission cost to signals with rapidly varying statistics, neuronal circuits implementing predictive coding must also rapidly adapt their properties. Experimentally, in different sensory modalities, sensory neurons have shown such adaptations within 100 ms of an input change. Here, we show first that linear neurons connected in a feedback inhibitory circuit can implement predictive coding. We then show that adding a rectification nonlinearity to such a feedback inhibitory circuit allows it to automatically adapt and approximate the performance of an optimal linear predictive coding network, over a wide range of inputs, while keeping its underlying temporal and synaptic properties unchanged. We demonstrate that the resulting changes to the linearized temporal filters of this nonlinear network match the fast adaptations observed experimentally in different sensory modalities, in different vertebrate species. Therefore, the nonlinear feedback inhibitory network can provide automatic adaptation to fast varying signals, maintaining the dynamic range necessary for accurate neuronal transmission of natural inputs. PMID:26247884

  9. Cross-cultural adaptation of research instruments: language, setting, time and statistical considerations

    PubMed Central

    2010-01-01

    Background Research questionnaires are not always translated appropriately before they are used in new temporal, cultural or linguistic settings. The results based on such instruments may therefore not accurately reflect what they are supposed to measure. This paper aims to illustrate the process and required steps involved in the cross-cultural adaptation of a research instrument using the adaptation process of an attitudinal instrument as an example. Methods A questionnaire was needed for the implementation of a study in Norway 2007. There was no appropriate instruments available in Norwegian, thus an Australian-English instrument was cross-culturally adapted. Results The adaptation process included investigation of conceptual and item equivalence. Two forward and two back-translations were synthesized and compared by an expert committee. Thereafter the instrument was pretested and adjusted accordingly. The final questionnaire was administered to opioid maintenance treatment staff (n=140) and harm reduction staff (n=180). The overall response rate was 84%. The original instrument failed confirmatory analysis. Instead a new two-factor scale was identified and found valid in the new setting. Conclusions The failure of the original scale highlights the importance of adapting instruments to current research settings. It also emphasizes the importance of ensuring that concepts within an instrument are equal between the original and target language, time and context. If the described stages in the cross-cultural adaptation process had been omitted, the findings would have been misleading, even if presented with apparent precision. Thus, it is important to consider possible barriers when making a direct comparison between different nations, cultures and times. PMID:20144247

  10. Comparison of Constant Time Delay and Simultaneous Prompting Procedures: Teaching Functional Sight Words to Students with Intellectual Disabilities and Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Swain, Rasheeda; Lane, Justin D.; Gast, David L.

    2015-01-01

    Constant time delay (CTD) and simultaneous prompting (SP) are effective response prompting procedures for teaching students with moderate to severe disabilities. The purpose of this study was to compare the efficiency of CTD and SP when teaching functional sight words to four students, 8-11 years of age, with moderate intellectual disability (ID)…

  11. The Effectiveness of a Constant Time Delay Procedure on Teaching Lifetime Sport Skills to Adolescents with Severe to Profound Intellectual Disabilities.

    ERIC Educational Resources Information Center

    Zhang, Jiabei; And Others

    1995-01-01

    A constant time delay (CTD) procedure was used to teach four adolescents with severe/profound intellectual disabilities to perform bowling, throwing, and putting. Results indicated that the adolescents could be effectively taught gross motor lifetime sport skills with the CTD procedure and that verbal description plus physical assistance could be…

  12. Using a Three-Step Decoding Strategy with Constant Time Delay to Teach Word Reading to Students with Mild and Moderate Mental Retardation

    ERIC Educational Resources Information Center

    Tucker Cohen, Elisabeth; Heller, Kathryn Wolff; Alberto, Paul; Fredrick, Laura D.

    2008-01-01

    The use of a three-step decoding strategy with constant time delay for teaching decoding and word reading to students with mild and moderate mental retardation was investigated in this study. A multiple probe design was used to examine the percentage of words correctly decoded and read as well as the percentage of sounds correctly decoded. The…

  13. Effect of coil orientation on strength–duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation

    PubMed Central

    D’Ostilio, Kevin; Goetz, Stefan M.; Hannah, Ricci; Ciocca, Matteo; Chieffo, Raffaella; Chen, Jui-Cheng A.; Peterchev, Angel V.; Rothwell, John C.

    2016-01-01

    Objective To compare the strength–duration (S–D) time constants of motor cortex structures activated by current pulses oriented posterior–anterior (PA) or anterior–posterior (AP) across the central sulcus. Methods Motor threshold and input–output curve, along with motor evoked potential (MEP) latencies, of first dorsal interosseus were determined at pulse widths of 30, 60, and 120 μs using a controllable pulse parameter (cTMS) device, with the coil oriented PA or AP. These were used to estimate the S–D time constant and we compared with data for responses evoked by cTMS of the ulnar nerve at the elbow. Results The S–D time constant with PA was shorter than for AP stimulation (230.9 ± 97.2 vs. 294.2 ± 90.9 μs; p < 0.001). These values were similar to those calculated after stimulation of ulnar nerve (197 ± 47 μs). MEP latencies to AP, but not PA stimulation were affected by pulse width, showing longer latencies following short duration stimuli. Conclusion PA and AP stimuli appear to activate the axons of neurons with different time constants. Short duration AP pulses are more selective than longer pulses in recruiting longer latency corticospinal output. Significance More selective stimulation of neural elements may be achieved by manipulating pulse width and orientation. PMID:26077634

  14. Heteronuclear correlations by multiple-quantum evolution. II. Proton-proton "decoupling" and multiplicity labeling in a constant-time experiment using carbon detection

    NASA Astrophysics Data System (ADS)

    Batta, Gyula; Kövér, Katalin E.

    Modified Müller-Bolton type heteronuclear multiple-quantum correlation experiments are analyzed theoretically and experimentally. It is shown that the constant-time version offers homonuclear decoupling, multiplicity labeling, and a very efficient suppression of strong coupling artifacts. Such sequences may have advantages for studying macromolecules.

  15. The Effects of Constant Time Delay Embedded into Teaching Activities for Teaching the Names of Clothes for Preschool Children with Developmental Disabilities

    ERIC Educational Resources Information Center

    Odluyurt, Serhat

    2011-01-01

    The general purpose of this study was to examine the effectiveness of constant time delay embedded in activities for teaching clothes name for preschool children with developmental disabilities. This study included four participants having Down syndrome with an age range of 43-46 months. All experimental sessions were conducted in one to one…

  16. Adaptive dynamic surface control for MIMO nonlinear time-varying systems with prescribed tracking performance

    NASA Astrophysics Data System (ADS)

    Wang, Chenliang; Lin, Yan

    2015-04-01

    In this paper, an adaptive dynamic surface control scheme is proposed for a class of multi-input multi-output (MIMO) nonlinear time-varying systems. By fusing a bound estimation approach, a smooth function and a time-varying matrix factorisation, the obstacle caused by unknown time-varying parameters is circumvented. The proposed scheme is free of the problem of explosion of complexity and needs only one updated parameter at each design step. Moreover, all tracking errors can converge to predefined arbitrarily small residual sets with a prescribed convergence rate and maximum overshoot. Such features result in a simple adaptive controller which can be easily implemented in applications with less computational burden and satisfactory tracking performance. Simulation results are presented to illustrate the effectiveness of the proposed scheme.

  17. From wavelets to adaptive approximations: time-frequency parametrization of EEG.

    PubMed

    Durka, Piotr J

    2003-01-01

    This paper presents a summary of time-frequency analysis of the electrical activity of the brain (EEG). It covers in details two major steps: introduction of wavelets and adaptive approximations. Presented studies include time-frequency solutions to several standard research and clinical problems, encountered in analysis of evoked potentials, sleep EEG, epileptic activities, ERD/ERS and pharmaco-EEG. Based upon these results we conclude that the matching pursuit algorithm provides a unified parametrization of EEG, applicable in a variety of experimental and clinical setups. This conclusion is followed by a brief discussion of the current state of the mathematical and algorithmical aspects of adaptive time-frequency approximations of signals. PMID:12605721

  18. A new adaptive exponential smoothing method for non-stationary time series with level shifts

    NASA Astrophysics Data System (ADS)

    Monfared, Mohammad Ali Saniee; Ghandali, Razieh; Esmaeili, Maryam

    2014-07-01

    Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting process. This paper generalizes the SES method into a new adaptive method called revised simple exponential smoothing (RSES), as an alternative method to recognize non-stationary level shifts in the time series. We show that the new method improves the accuracy of the forecasting process. This is done by controlling the number of observations and the smoothing parameter in an adaptive approach, and in accordance with the laws of statistical control limits and the Bayes rule of conditioning. We use a numerical example to show how the new RSES method outperforms its traditional counterpart, SES.

  19. A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation

    NASA Astrophysics Data System (ADS)

    Barnbaum, Cecilia; Bradley, Richard F.

    1998-11-01

    Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have

  20. Seasonal signal capturing in time series of up coordinates by means of adaptive filters

    NASA Astrophysics Data System (ADS)

    Yalvac, S.; Ustun, A.

    2013-12-01

    Digital filters, is a system that performs mathematical operations on a sampled or discrete time signals. Adaptive filters designed for noise canceling are capable tools of decomposing correlated parts of data sets. This kind of filters which optimize itself using Least Mean Square (LMS) algorithm is a powerful tool for understand the truth hidden into the complex data sets like time series in Geosciences. The complex data sets such as CGPS (Continuously operating reference station) station's time series can be understood better with adaptive noise canceling by means of decompose coherent (seasonal effect, tectonic plate motion) and incoherent (noise; site-specific effects) parts of data. In this study, it is aimed to model the subsidence caused by groundwater withdrawal based on the seasonal correlation between consecutive years of CGPS time series. For this purpose, two stations where located into subsidence area of 3 year time series have analyzed with adaptive noise canceling filter. According to the results, the annual movement of these two stations have strong relationship. Also, subsidence behavior are correlated with annual rainfall data. BELD station one year filtered movement KAMN station one year filtered movements

  1. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod

    PubMed Central

    Hut, R. A.; Beersma, D. G. M.

    2011-01-01

    Virtually all species have developed cellular oscillations and mechanisms that synchronize these cellular oscillations to environmental cycles. Such environmental cycles in biotic (e.g. food availability and predation risk) or abiotic (e.g. temperature and light) factors may occur on a daily, annual or tidal time scale. Internal timing mechanisms may facilitate behavioural or physiological adaptation to such changes in environmental conditions. These timing mechanisms commonly involve an internal molecular oscillator (a ‘clock’) that is synchronized (‘entrained’) to the environmental cycle by receptor mechanisms responding to relevant environmental signals (‘Zeitgeber’, i.e. German for time-giver). To understand the evolution of such timing mechanisms, we have to understand the mechanisms leading to selective advantage. Although major advances have been made in our understanding of the physiological and molecular mechanisms driving internal cycles (proximate questions), studies identifying mechanisms of natural selection on clock systems (ultimate questions) are rather limited. Here, we discuss the selective advantage of a circadian system and how its adaptation to day length variation may have a functional role in optimizing seasonal timing. We discuss various cases where selective advantages of circadian timing mechanisms have been shown and cases where temporarily loss of circadian timing may cause selective advantage. We suggest an explanation for why a circadian timing system has emerged in primitive life forms like cyanobacteria and we evaluate a possible molecular mechanism that enabled these bacteria to adapt to seasonal variation in day length. We further discuss how the role of the circadian system in photoperiodic time measurement may explain differential selection pressures on circadian period when species are exposed to changing climatic conditions (e.g. global warming) or when they expand their geographical range to different latitudes or

  2. Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics

    NASA Astrophysics Data System (ADS)

    Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu

    2016-01-01

    An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.

  3. Development of a protocol to quantify local bone adaptation over space and time: Quantification of reproducibility.

    PubMed

    Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Bellantuono, Ilaria; Viceconti, Marco

    2016-07-01

    In vivo micro-computed tomography (µCT) scanning of small rodents is a powerful method for longitudinal monitoring of bone adaptation. However, the life-time bone growth in small rodents makes it a challenge to quantify local bone adaptation. Therefore, the aim of this study was to develop a protocol, which can take into account large bone growth, to quantify local bone adaptations over space and time. The entire right tibiae of eight 14-week-old C57BL/6J female mice were consecutively scanned four times in an in vivo µCT scanner using a nominal isotropic image voxel size of 10.4µm. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration. 80% of tibia length (starting from the endpoint of the proximal growth plate) was selected as the volume of interest and partitioned into 40 regions along the tibial long axis (10 divisions) and in the cross-section (4 sectors). The bone mineral content (BMC) was used to quantify bone adaptation and was calculated in each region. All local BMCs have precision errors (PE%CV) of less than 3.5% (24 out of 40 regions have PE%CV of less than 2%), least significant changes (LSCs) of less than 3.8%, and 38 out of 40 regions have intraclass correlation coefficients (ICCs) of over 0.8. The proposed protocol allows to quantify local bone adaptations over an entire tibia in longitudinal studies, with a high reproducibility, an essential requirement to reduce the number of animals to achieve the necessary statistical power. PMID:27262181

  4. Searching for space-time variation of the fine structure constant using QSO spectra: overview and future prospects

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    Theories unifying gravity with other interactions suggest the possibility of spatial and temporal variation of fundamental ``constants'' in the Universe. Using quasar absorption systems we can probe the value of the fine-structure constant, alpha = e2/hbar c, over the history of the universe. Previous studies of three independent samples of data, containing 143 absorption systems spread from 2 to 10 billion years after big bang, hint that alpha was smaller 7 - 11 billion years ago. However competing studies show no such alpha -variation. The studies can be improved by utilising more atomic transitions that are seen in quasar spectra, however in many cases this is hampered by a lack of accurate laboratory frequency measurements. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions from the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 Å, and require an accuracy of better than 10-4 Å. We also discuss isotope shift measurements that are needed in order to resolve systematic effects in the study. Researchers who are interested in performing these measurements should contact the authors directly.

  5. Adaptive time stepping algorithm for Lagrangian transport models: Theory and idealised test cases

    NASA Astrophysics Data System (ADS)

    Shah, Syed Hyder Ali Muttaqi; Heemink, Arnold Willem; Gräwe, Ulf; Deleersnijder, Eric

    2013-08-01

    Random walk simulations have an excellent potential in marine and oceanic modelling. This is essentially due to their relative simplicity and their ability to represent advective transport without being plagued by the deficiencies of the Eulerian methods. The physical and mathematical foundations of random walk modelling of turbulent diffusion have become solid over the years. Random walk models rest on the theory of stochastic differential equations. Unfortunately, the latter and the related numerical aspects have not attracted much attention in the oceanic modelling community. The main goal of this paper is to help bridge the gap by developing an efficient adaptive time stepping algorithm for random walk models. Its performance is examined on two idealised test cases of turbulent dispersion; (i) pycnocline crossing and (ii) non-flat isopycnal diffusion, which are inspired by shallow-sea dynamics and large-scale ocean transport processes, respectively. The numerical results of the adaptive time stepping algorithm are compared with the fixed-time increment Milstein scheme, showing that the adaptive time stepping algorithm for Lagrangian random walk models is more efficient than its fixed step-size counterpart without any loss in accuracy.

  6. Adaptive correction method for an OCXO and investigation of analytical cumulative time error upper bound.

    PubMed

    Zhou, Hui; Kunz, Thomas; Schwartz, Howard

    2011-01-01

    Traditional oscillators used in timing modules of CDMA and WiMAX base stations are large and expensive. Applying cheaper and smaller, albeit more inaccurate, oscillators in timing modules is an interesting research challenge. An adaptive control algorithm is presented to enhance the oscillators to meet the requirements of base stations during holdover mode. An oscillator frequency stability model is developed for the adaptive control algorithm. This model takes into account the control loop which creates the correction signal when the timing module is in locked mode. A recursive prediction error method is used to identify the system model parameters. Simulation results show that an oscillator enhanced by our adaptive control algorithm improves the oscillator performance significantly, compared with uncorrected oscillators. Our results also show the benefit of explicitly modeling the control loop. Finally, the cumulative time error upper bound of such enhanced oscillators is investigated analytically and comparison results between the analytical and simulated upper bound are provided. The results show that the analytical upper bound can serve as a practical guide for system designers. PMID:21244973

  7. Model reference adaptive control in fractional order systems using discrete-time approximation methods

    NASA Astrophysics Data System (ADS)

    Abedini, Mohammad; Nojoumian, Mohammad Ali; Salarieh, Hassan; Meghdari, Ali

    2015-08-01

    In this paper, model reference control of a fractional order system has been discussed. In order to control the fractional order plant, discrete-time approximation methods have been applied. Plant and reference model are discretized by Grünwald-Letnikov definition of the fractional order derivative using "Short Memory Principle". Unknown parameters of the fractional order system are appeared in the discrete time approximate model as combinations of parameters of the main system. The discrete time MRAC via RLS identification is modified to estimate the parameters and control the fractional order plant. Numerical results show the effectiveness of the proposed method of model reference adaptive control.

  8. A comparison between constant volume induction times and results from spatially resolved simulation of ignition behind reflected shocks: implications for shock tube experiments

    NASA Astrophysics Data System (ADS)

    Melguizo-Gavilanes, J.; Bauwens, L.

    2013-05-01

    The induction time measured in shock tube experiments is typically converted into kinetic data assuming that the reaction takes place in a constant volume process, thus neglecting spatial gradients. The actual process of shock ignition is, however, both time- and space-dependent; ignition takes place at a well-defined location, and subsequently a front travels, which may couple with the pressure wave that it created and forms a detonation wave behind the shock that reflects off the wall. To assess how different the actual processes are compared with the constant volume assumption, a numerical study was performed using a simplified three step chain-branching kinetic scheme. To overcome the difficulties that arise when simulating shock-induced ignition due to the initial absence of a domain filled with shocked reactive mixture, the problem is solved in a transformed frame of reference. Furthermore, initial conditions are derived from short-time asymptotics, which resolves the initial singularity. The induction times obtained using the full unsteady formulation with those of the homogeneous explosion are compared for various values of the heat release. Results for the spatially dependent formulation show that the evolution of the post-shock flow is complex, and that it leads to a gradient in induction times, after the passage of the reflected shock. For all cases simulated, thermal explosion initially occurs very close to the wall, and the corresponding induction time is found to be larger than that predicted under the constant volume assumption. As the measurement is made further away however, the actual time interval between passage of the reflected shock, and the specified pressure increase denoting ignition, decreases to a value close to zero, corresponding to that obtained along a Rayleigh line matching that of a steady ZND process (assuming a long enough tube). In situations where the constant volume assumption is expected to be weak, more accurate kinetic data

  9. H∞ Adaptive tracking control for switched systems based on an average dwell-time method

    NASA Astrophysics Data System (ADS)

    Wu, Caiyun; Zhao, Jun

    2015-10-01

    This paper investigates the H∞ state tracking model reference adaptive control (MRAC) problem for a class of switched systems using an average dwell-time method. First, a stability criterion is established for a switched reference model. Then, an adaptive controller is designed and the state tracking control problem is converted into the stability analysis. The global practical stability of the error switched system can be guaranteed under a class of switching signals characterised by an average dwell time. Consequently, sufficient conditions for the solvability of the H∞ state tracking MRAC problem are derived. An example of highly manoeuvrable aircraft technology vehicle is given to demonstrate the feasibility and effectiveness of the proposed design method.

  10. Tracking rhythmicity in nonstationary quasi-periodic biomedical signals using adaptive time-varying covariance.

    PubMed

    Li, Dan; Jung, Ranu

    2002-07-01

    A time-varying covariance method for detecting and quantifying the evolution of rhythmicity (frequency) in persistently varying quasi-periodic nonstationary signals is presented. The basic method, evaluated using chirp signals, utilizes a shifting window of fixed length. A substantial reduction in estimation bias and variability are obtained by utilizing an adaptive window whose length is dependent on past frequency estimates. The adaptive window yields estimates that are comparable in accuracy to those obtained using high-resolution time-frequency representation but with lower computation requirements and the potential for on-line application. Finally, an example of the application of the method for analyzing a neural recording is also illustrated. PMID:11931864

  11. Time reversal versus adaptive optimization for spatiotemporal nanolocalization in a random nanoantenna

    NASA Astrophysics Data System (ADS)

    Differt, Dominik; Hensen, Matthias; Pfeiffer, Walter

    2016-05-01

    Spatiotemporal nanolocalization of ultrashort pulses in a random scattering nanostructure via time reversal and adaptive optimization employing a genetic algorithm and a suitably defined fitness function is studied for two embedded nanoparticles that are separated by only a tenth of the free space wavelength. The nanostructure is composed of resonant core-shell nanoparticles (TiO2 core and Ag shell) placed randomly surrounding these two nanoparticles acting as targets. The time reversal scheme achieves selective nanolocalization only by chance if the incident radiation can couple efficiently to dipolar local modes interacting with the target/emitter particle. Even embedding the structure in a reverberation chamber fails improving the nanolocalization. In contrast, the adaptive optimization strategy reliably yields nanolocalization of the radiation and allows a highly selective excitation of either target position. This demonstrates that random scattering structures are interesting multi-purpose optical nanoantennas to realize highly flexible spatiotemporal optical near-field control.

  12. Link flexibility: evidence for environment-dependent adaptive foraging in a food web time-series.

    PubMed

    Henri, D C; Van Veen, F J F

    2016-06-01

    Temporal variability in the distribution of feeding links in a food web can be an important stabilizing factor for these complex systems. Adaptive foraging and prey choice have been hypothesized to cause this link flexibility as organisms adjust their behavior to variation in the prey community. Here, we analyze a 10-yr time series of monthly aphid-parasitoid-secondary-parasitoid networks and show that interaction strengths for polyphagous secondary parasitoids are generally biased toward the larger host species within their fundamental niche; however, in months of higher competition for hosts, size-based biases are reduced. The results corroborate a previous hypothesis stating that host selectivity of parasitoids should be correlated to the relative likelihood of egg limitation vs. time limitation. Our results evince adaptation of foraging behavior to varying conditions affects the distribution of host-parasitoid link strengths, where link-rewiring may be integral to stability in complex communities. PMID:27459769

  13. A time-accurate adaptive grid method and the numerical simulation of a shock-vortex interaction

    NASA Technical Reports Server (NTRS)

    Bockelie, Michael J.; Eiseman, Peter R.

    1990-01-01

    A time accurate, general purpose, adaptive grid method is developed that is suitable for multidimensional steady and unsteady numerical simulations. The grid point movement is performed in a manner that generates smooth grids which resolve the severe solution gradients and the sharp transitions in the solution gradients. The temporal coupling of the adaptive grid and the PDE solver is performed with a grid prediction correction method that is simple to implement and ensures the time accuracy of the grid. Time accurate solutions of the 2-D Euler equations for an unsteady shock vortex interaction demonstrate the ability of the adaptive method to accurately adapt the grid to multiple solution features.

  14. Adaptive mesh refinement for time-domain electromagnetics using vector finite elements :a feasibility study.

    SciTech Connect

    Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis

    2005-12-01

    This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.

  15. Oppositional children and their families: an adaptational dance in space and time.

    PubMed

    Mones, A G

    1998-01-01

    A conceptual map is proposed in which oppositional behavior is seen as an adaptational struggle within a context of interpersonal and intrapsychic spheres of family systems. Preservation of self is viewed as inherent in all childhood psychological symptomatology, and oppositionalism serves as a prime survival strategy, aimed at navigating the conflictual forces of connectedness and individuation and regulating the progression, through time, of the family life cycle. PMID:9494652

  16. Speech perception at positive signal-to-noise ratios using adaptive adjustment of time compression.

    PubMed

    Schlueter, Anne; Brand, Thomas; Lemke, Ulrike; Nitzschner, Stefan; Kollmeier, Birger; Holube, Inga

    2015-11-01

    Positive signal-to-noise ratios (SNRs) characterize listening situations most relevant for hearing-impaired listeners in daily life and should therefore be considered when evaluating hearing aid algorithms. For this, a speech-in-noise test was developed and evaluated, in which the background noise is presented at fixed positive SNRs and the speech rate (i.e., the time compression of the speech material) is adaptively adjusted. In total, 29 younger and 12 older normal-hearing, as well as 24 older hearing-impaired listeners took part in repeated measurements. Younger normal-hearing and older hearing-impaired listeners conducted one of two adaptive methods which differed in adaptive procedure and step size. Analysis of the measurements with regard to list length and estimation strategy for thresholds resulted in a practical method measuring the time compression for 50% recognition. This method uses time-compression adjustment and step sizes according to Versfeld and Dreschler [(2002). J. Acoust. Soc. Am. 111, 401-408], with sentence scoring, lists of 30 sentences, and a maximum likelihood method for threshold estimation. Evaluation of the procedure showed that older participants obtained higher test-retest reliability compared to younger participants. Depending on the group of listeners, one or two lists are required for training prior to data collection. PMID:26627804

  17. Medical alert management: a real-time adaptive decision support tool to reduce alert fatigue.

    PubMed

    Lee, Eva K; Wu, Tsung-Lin; Senior, Tal; Jose, James

    2014-01-01

    With the adoption of electronic medical records (EMRs), drug safety alerts are increasingly recognized as valuable tools for reducing adverse drug events and improving patient safety. However, even with proper tuning of the EMR alert parameters, the volume of unfiltered alerts can be overwhelming to users. In this paper, we design an adaptive decision support tool in which past cognitive overriding decisions of users are learned, adapted and used for filtering actions to be performed on current alerts. The filters are designed and learned based on a moving time window, number of alerts, overriding rates, and monthly overriding fluctuations. Using alerts from two separate years to derive filters and test performance, predictive accuracy rates of 91.3%-100% are achieved. The moving time window works better than a static training approach. It allows continuous learning and capturing of the most recent decision characteristics and seasonal variations in drug usage. The decision support system facilitates filtering of non-essential alerts and adaptively learns critical alerts and highlights them prominently to catch providers' attention. The tool can be plugged into an existing EMR system as an add-on, allowing real-time decision support to users without interfering with existing EMR functionalities. By automatically filtering the alerts, the decision support tool mitigates alert fatigue and allows users to focus resources on potentially vital alerts, thus reducing the occurrence of adverse drug events. PMID:25954391

  18. Development of a scalable generic platform for adaptive optics real time control

    NASA Astrophysics Data System (ADS)

    Surendran, Avinash; Burse, Mahesh P.; Ramaprakash, A. N.; Parihar, Padmakar

    2015-06-01

    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well-defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.

  19. Throwing accuracy in the vertical direction during prism adaptation: not simply timing of ball release.

    PubMed

    Martin, T A; Greger, B E; Norris, S A; Thach, W T

    2001-05-01

    In a previous study, others have hypothesized that the variance in vertical errors that occurs while throwing at visual targets is caused by changes in any of three throw parameters: hand location in space, hand translational velocity, and hand orientation. From an analysis of skilled throwers, those authors concluded that vertical error is best correlated with variance in hand orientation, which in turn is related to the timing of ball release. We used a vertical prism adaptation paradigm to investigate which of these throwing parameters subjects use when adapting to external perturbation. Our subjects showed no correlation between hand position or hand translational velocity and ball impact height in normal, over-practiced throwing. However, video-based motion analysis showed that modifications both of position and speed of the hand play an important role when subjects are forced to compensate for a vertically shifting prism perturbation during a dart-like throw (these factors contribute approximately 30% of the adaptation). We concluded that, during adaptation, more degrees of freedom and more sources of potential error are modified to achieve the gaze-throw recalibration required to hit the target than are employed in this type of throw during normal conditions. PMID:11353043

  20. Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 2; Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III

    2006-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. Past input-output data and an estimate of the open-loop pulse response sequence are all that is needed to implement the algorithm for application at fixed Mach numbers. Transient measurements made during controller adaptation revealed that the controller coefficients converged to a steady state in the mean, and this implies that adaptation can be turned off at some point with no degradation in control performance. When converged, the control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. However, as in the case of fixed-gain GPC, the adaptive GPC performance was limited by spillover in sidebands around the suppressed Rossiter modes. The algorithm was also able to maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Beyond this range, stable operation of the control algorithm was not possible due to the fixed plant model in the algorithm.

  1. Space-time adaptive approach to variational data assimilation using wavelets

    NASA Astrophysics Data System (ADS)

    Souopgui, Innocent; Wieland, Scott A.; Yousuff Hussaini, M.; Vasilyev, Oleg V.

    2016-02-01

    This paper focuses on one of the main challenges of 4-dimensional variational data assimilation, namely the requirement to have a forward solution available when solving the adjoint problem. The issue is addressed by considering the time in the same fashion as the space variables, reformulating the mathematical model in the entire space-time domain, and solving the problem on a near optimal computational mesh that automatically adapts to spatio-temporal structures of the solution. The compressed form of the solution eliminates the need to save or recompute data for every time slice as it is typically done in traditional time marching approaches to 4-dimensional variational data assimilation. The reduction of the required computational degrees of freedom is achieved using the compression properties of multi-dimensional second generation wavelets. The simultaneous space-time discretization of both the forward and the adjoint models makes it possible to solve both models either concurrently or sequentially. In addition, the grid adaptation reduces the amount of saved data to the strict minimum for a given a priori controlled accuracy of the solution. The proposed approach is demonstrated for the advection diffusion problem in two space-time dimensions.

  2. Studies on effects of feedback delay on the convergence performance of adaptive time-domain equalizers for fiber dispersive channels

    NASA Astrophysics Data System (ADS)

    Guo, Qun; Xu, Bo; Qiu, Kun

    2016-04-01

    Adaptive time-domain equalizer (TDE) is an important module for digital optical coherent receivers. From an implementation perspective, we analyze and compare in detail the effects of error signal feedback delay on the convergence performance of TDE using either least-mean square (LMS) or constant modulus algorithm (CMA). For this purpose, a simplified theoretical model is proposed based on which iterative equations on the mean value and the variance of the tap coefficient are derived with or without error signal feedback delay for both LMS- and CMA-based methods for the first time. The analytical results show that decreased step size has to be used for TDE to converge and a slower convergence speed cannot be avoided as the feedback delay increases. Compared with the data-aided LMS-based method, the CMA-based method has a slower convergence speed and larger variation after convergence. Similar results are confirmed using numerical simulations for fiber dispersive channels. As the step size increases, a feedback delay of 20 clock cycles might cause the TDE to diverge. Compared with the CMA-based method, the LMS-based method has a higher tolerance on the feedback delay and allows a larger step size for a faster convergence speed.

  3. Changes in cortical activity associated with adaptive behavior during repeated balance perturbation of unpredictable timing

    PubMed Central

    Mierau, Andreas; Hülsdünker, Thorben; Strüder, Heiko K.

    2015-01-01

    The compensation for a sudden balance perturbation, unpracticed and unpredictable in timing and magnitude is accompanied by pronounced postural instability that is suggested to be causal to falls. However, subsequent presentations of an identical perturbation are characterized by a marked decrease of the amplitude of postural reactions; a phenomenon called adaptation or habituation. This study aimed to identify cortical characteristics associated with adaptive behavior during repetitive balance perturbations based on single-trial analyses of the P1 and N1 perturbation-evoked potentials. Thirty-seven young men were exposed to ten transient balance perturbations while balancing on the dominant leg. Thirty two-channel electroencephalography (EEG), surface electromyography (EMG) of the ankle plantar flexor muscles and postural sway (i.e., Euclidean distance of the supporting platform) were recorded simultaneously. The P1 and N1 potentials were localized and the amplitude/latency was analyzed trial by trial. The best match sources for P1 and N1 potentials were located in the parietal (Brodmann area (BA) 5) and midline fronto-central cortex (BA 6), respectively. The amplitude and latency of the P1 potential remained unchanged over trials. In contrast, a significant adaptation of the N1 amplitude was observed. Similar adaptation effects were found with regard to postural sway and ankle plantarflexors EMG activity of the non-dominant (free) leg; i.e., an indicator for reduced muscular co-contraction and/or less temporary bipedal stance to regain stability. Significant but weak correlations were found between N1 amplitude and postural sway as well as EMG activity. These results highlight the important role of the midline fronto-central cortex for adaptive behavior associated with balance control. PMID:26528154

  4. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chang; Huang, An-Chyau

    2005-04-01

    An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car suspension system with time-varying loadings. The bound of the car-body loading is assumed to be available. Then, the reference coordinate is placed at the static position under the nominal loading so that the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into two unknown time-varying functions. Since the variation bound of one of the unknown functions is not available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem, the function approximation technique is employed to represent the unknown function as a finite combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the position and velocity measurements of the unsprung mass are lumped into the unknown function, there is no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results are presented to show the performance of the proposed strategy.

  5. Prototype adaptive bow-tie filter based on spatial exposure time modulation

    NASA Astrophysics Data System (ADS)

    Badal, Andreu

    2016-03-01

    In recent years, there has been an increased interest in the development of dynamic bow-tie filters that are able to provide patient-specific x-ray beam shaping. We introduce the first physical prototype of a new adaptive bow-tie filter design based on the concept of "spatial exposure time modulation." While most existing bow-tie filters operate by attenuating the radiation beam differently in different locations using partially attenuating objects, the presented filter shapes the radiation field using two movable completely radio-opaque collimators. The aperture and speed of the collimators is modulated in synchrony with the x-ray exposure to selectively block the radiation emitted to different parts of the object. This mode of operation does not allow the reproduction of every possible attenuation profile, but it can reproduce the profile of any object with an attenuation profile monotonically decreasing from the center to the periphery, such as an object with an elliptical cross section. Therefore, the new adaptive filter provides the same advantages as the currently existing static bow-tie filters, which are typically designed to work for a pre-determined cylindrical object at a fixed distance from the source, and provides the additional capability to adapt its performance at image acquisition time to better compensate for the actual diameter and location of the imaged object. A detailed description of the prototype filter, the implemented control methods, and a preliminary experimental validation of its performance are presented.

  6. Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Lallman, Frederick J.; Bundick, W. Thomas

    2001-01-01

    Abstract This paper presents the development and application of one approach to the control of aircraft with large numbers of control effectors. This approach, referred to as real-time adaptive control allocation, combines a nonlinear method for control allocation with actuator failure detection and isolation. The control allocator maps moment (or angular acceleration) commands into physical control effector commands as functions of individual control effectiveness and availability. The actuator failure detection and isolation algorithm is a model-based approach that uses models of the actuators to predict actuator behavior and an adaptive decision threshold to achieve acceptable false alarm/missed detection rates. This integrated approach provides control reconfiguration when an aircraft is subjected to actuator failure, thereby improving maneuverability and survivability of the degraded aircraft. This method is demonstrated on a next generation military aircraft Lockheed-Martin Innovative Control Effector) simulation that has been modified to include a novel nonlinear fluid flow control control effector based on passive porosity. Desktop and real-time piloted simulation results demonstrate the performance of this integrated adaptive control allocation approach.

  7. Real-Time Tracking Framework with Adaptive Features and Constrained Labels.

    PubMed

    Li, Daqun; Xu, Tingfa; Chen, Shuoyang; Zhang, Jizhou; Jiang, Shenwang

    2016-01-01

    This paper proposes a novel tracking framework with adaptive features and constrained labels (AFCL) to handle illumination variation, occlusion and appearance changes caused by the variation of positions. The novel ensemble classifier, including the Forward-Backward error and the location constraint is applied, to get the precise coordinates of the promising bounding boxes. The Forward-Backward error can enhance the adaptation and accuracy of the binary features, whereas the location constraint can overcome the label noise to a certain degree. We use the combiner which can evaluate the online templates and the outputs of the classifier to accommodate the complex situation. Evaluation of the widely used tracking benchmark shows that the proposed framework can significantly improve the tracking accuracy, and thus reduce the processing time. The proposed framework has been tested and implemented on the embedded system using TMS320C6416 and Cyclone Ⅲ kernel processors. The outputs show that achievable and satisfying results can be obtained. PMID:27618052

  8. The Information Adaptive System - A demonstration of real-time onboard image processing

    NASA Technical Reports Server (NTRS)

    Thomas, G. L.; Carney, P. C.; Meredith, B. D.

    1983-01-01

    The Information Adaptive System (IAS) program has the objective to develop and demonstrate, at the brassboard level, an architecture which can be used to perform advanced signal procesing functions on board the spacecraft. Particular attention is given to the processing of high-speed multispectral imaging data in real-time, and the development of advanced technology which could be employed for future space applications. An IAS functional description is provided, and questions of radiometric correction are examined. Problems of data packetization are considered along with data selection, a distortion coefficient processor, an adaptive system controller, an image processing demonstration system, a sensor simulator and output data buffer, a test support and demonstration controller, and IAS demonstration operating modes.

  9. A modified implicit Monte Carlo method for time-dependent radiative transfer with adaptive material coupling

    SciTech Connect

    McClarren, Ryan G. Urbatsch, Todd J.

    2009-09-01

    In this paper we develop a robust implicit Monte Carlo (IMC) algorithm based on more accurately updating the linearized equilibrium radiation energy density. The method does not introduce oscillations in the solution and has the same limit as {delta}t{yields}{infinity} as the standard Fleck and Cummings IMC method. Moreover, the approach we introduce can be trivially added to current implementations of IMC by changing the definition of the Fleck factor. Using this new method we develop an adaptive scheme that uses either standard IMC or the modified method basing the adaptation on a zero-dimensional problem solved in each cell. Numerical results demonstrate that the new method can avoid the nonphysical overheating that occurs in standard IMC when the time step is large. The method also leads to decreased noise in the material temperature at the cost of a potential increase in the radiation temperature noise.

  10. [Non-linear real-time adaptive filtration of ultrasound TI628A echotomoscope images].

    PubMed

    Barannik, E A; Volokhov, Iu V; Marusenko, A I

    1997-01-01

    The statistical uncertainty caused by speckle noise artifacts is the reason for the great importance of the problem which is the optimum choice between the medical diagnostic systems resolution and the statistical accuracy of histological tissue identification. The way of speckle noise suppression, which is closely associated with the well-known idea of adaptive filtration and based on the physical analysis of the origin of true and false signals, is very promising. The testing results of the nonlinear real-time adaptive filter which has been designed for a TI628A echotomoscope are presented. The filter has been shown to have a rather high contrast and space resolution and reduces the speckle noise and other artifacts of the images. PMID:9445983

  11. Non-linear adaptive sliding mode switching control with average dwell-time

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Zhang, Maoqing; Fei, Shumin

    2013-03-01

    In this article, an adaptive integral sliding mode control scheme is addressed for switched non-linear systems in the presence of model uncertainties and external disturbances. The control law includes two parts: a slide mode controller for the reduced model of the plant and a compensation controller to deal with the non-linear systems with parameter uncertainties. The adaptive updated laws have been derived from the switched multiple Lyapunov function method, also an admissible switching signal with average dwell-time technique is given. The simplicity of the proposed control scheme facilitates its implementation and the overall control scheme guarantees the global asymptotic stability in the Lyapunov sense such that the sliding surface of the control system is well reached. Simulation results are presented to demonstrate the effectiveness and the feasibility of the proposed approach.

  12. Pitch Adaptation Patterns in Bimodal Cochlear Implant Users: Over Time and After Experience

    PubMed Central

    Reiss, Lina A.J.; Ito, Rindy A.; Eggleston, Jessica L.; Liao, Selena; Becker, Jillian J.; Lakin, Carrie E.; Warren, Frank M.; McMenomey, Sean O.

    2014-01-01

    Background Pitch plasticity has been observed in Hybrid cochlear implant (CI) users. Does pitch plasticity also occur in bimodal CI users with traditional long-electrode CIs, and is pitch adaptation pattern associated with electrode discrimination or speech recognition performance? Objective Characterize pitch adaptation patterns in long-electrode CI users, correlate these patterns with electrode discrimination and speech perception outcomes, and analyze which subject factors are associated with the different patterns. Methods Electric-to-acoustic pitch matches were obtained in 19 subjects over time from CI activation to at least 12 months after activation, and in a separate group of 18 subjects in a single visit after at least 24 months of CI experience. Audiometric thresholds, electrode discrimination performance, and speech perception scores were also measured. Results Subjects measured over time had pitch adaptation patterns that fit one of the following categories: 1) “Pitch-adapting”, i.e. the mismatch between perceived electrode pitch and the corresponding frequency-to-electrode allocations decreased; 2) “Pitch-dropping”, i.e. the pitches of multiple electrodes dropped and converged to a similar low pitch; 3) “Pitch-unchanging”, i.e. electrode pitches did not change. Subjects measured after CI experience had a parallel set of adaptation patterns: 1) “Matched-pitch”, i.e. the electrode pitch was matched to the frequency allocation; 2) “Low-pitch”, i.e. the pitches of multiple electrodes were all around the lowest frequency allocation; 3) “Nonmatched-pitch”, i.e. the pitch patterns were compressed relative to the frequency allocations and did not fit either the matched-pitch or low-pitch categories. Unlike Hybrid CI users which were mostly in the pitch-adapting/matched-pitch category, the majority of bimodal CI users were in the latter two categories, pitch-dropping/low-pitch or pitch-unchanging/nonmatched-pitch. Subjects with pitch-adapting

  13. The Subarray MVDR Beamformer: A Space-Time Adaptive Processor Applied to Active Sonar

    NASA Astrophysics Data System (ADS)

    Bezanson, Leverett Guidroz

    The research for this thesis was mainly performed at the NATO Underwater Research Center, now named the Center for Maritime Research and Experimentation (CMRE). The purpose of the research was to improve the detection of underwater targets in the littoral ocean when using active sonar. Currently these detections are being made by towed line arrays using a delay and sum beamformer for bearing measurements and noise suppression. This method of beamforming has can suffer from reverberation that commonly is present in the littoral environment. A proposed solution is to use an adaptive beamformer which can attenuate reverberation and increase the bearing resolution. The adaptive beamforming algorithms have existed for a long time and typically are not used in the active case due to limited amount of observable data that is needed for adaptation. This deficiency is caused by the conflicting requirements for high Doppler resolution for target detection and small time windows for building up full-rank covariance estimates. The algorithms also are sensitive to bearing estimate errors that commonly occur in active sonar systems. Recently it has been proposed to overcome these limitations through the use of reduced beamspace adaptive beamforming. The Subarray MVDR beamformer is analyzed, both against simulated data and against experimental data collected by CMRE during the GLINT/NGAS11 experiment in 2011. Simulation results indicate that the Subarray MVDR beamformer rejects interfering signals that are not effectively attenuated by conventional beamforming. The application of the Subarray MVDR beamformer to the experimental data shows that the Doppler spread of the reverberation ridge is reduced, and the bearing resolution improved. The signal to noise ratio is calculated at the target location and also shows improvement. These calculated and observed performance metrics indicate an improvement of detection in reverberation noise.

  14. A new time-adaptive discrete bionic wavelet transform for enhancing speech from adverse noise environment

    NASA Astrophysics Data System (ADS)

    Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui

    2012-04-01

    Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.

  15. A time self-adaptive multilevel algorithm for large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Terracol, M.; Sagaut, P.; Basdevant, C.

    2003-01-01

    An extension of the multilevel method applied to LES proposed in Terracol et al. [J. Comput. Phys. 167 (2001) 439] is introduced here to reduce the CPU times in unsteady simulation of turbulent flows. Flow variables are decomposed into several wavenumber bands, each band being associated to a computational grid in physical space. The general framework associated to such a decomposition is presented, and a new adapted closure is proposed for the subgrid terms which appear at each filtering level, while the closure at the finest level is performed with a classical LES model. CPU time saving is obtained by the use of V-cycles, as in the multigrid terminology. The main part of the simulation is thus performed on the coarse levels, while the smallest resolved scales are kept frozen (quasi-static approximation [Comput. Methods Appl. Mech. Engrg. 159 (1998) 123]). This allows to reduce significantly the CPU times in comparison with classical LES, while the accuracy of the simulation is preserved by the use of a fine discretization level. To ensure the validity of the quasi-static approximation, a dynamic evaluation of the time during which it remains valid is performed at each level through an a priori error estimation of the small-scales time variation. This leads to a totally self-adaptive method in which both the number of levels and the integration times on each grid level are evaluated dynamically. The method is assessed on a fully unsteady time-developing compressible mixing layer at a low-Reynolds number for which a DNS has also been performed, and in the inviscid case. Finally, a plane channel flow configuration has been considered. In all cases, the results obtained are in good agreement with classical LES performed on a fine grid, with CPU time reduction factors of up to five.

  16. Cross-cultural adaptation and validation of the Persian version of the Intermittent and Constant Osteoarthritis Pain Measure for the knee

    PubMed Central

    Panah, Sara Hojat; Baharlouie, Hamze; Rezaeian, Zahra Sadat; Hawker, Gilian

    2016-01-01

    Objective: The present study aimed to translate and evaluate the reliability and validity of the Persian version of the 11-item Intermittent and Constant Osteoarthritis Pain (ICOAP) measure in Iranian subjects with Knee Osteoarthritis (KOA). Materials and Methods: The ICOAP questionnaire was translated according to the Manufacturers Alliance for Productivity and Innovation (MAPI) protocol. The procedure consisted of forward and backward translation, as well as the assessment of the psychometric properties of the Persian version of the questionnaire. A sample of 230 subjects with KOA was asked to complete the Persian versions of ICOAP and Knee injury and Osteoarthritis Outcome Score (KOOS). The ICOAP was readministered to forty subjects five days after the first visit. Test–retest reliability was assessed using Intraclass Correlation Coefficient (ICC), and internal consistency was assessed by Cronbach's alpha and item-total correlation. The correlation between ICOAP and KOOS was determined using Spearman's correlation coefficient. Result: Subjects found the Persian-version of the ICOAP to be clear, simple, and unambiguous, confirming its face validity. Spearman correlations between ICOAP total and subscale scores with KOOS scores were between 0.5 and 0.7, confirming construct validity. Cronbach's alpha, used to assess internal consistency, was 0.89, 0.93, and 0.92 for constant pain, intermittent pain, and total pain scores, respectively. The ICC was 0.90 for constant pain and 0.91 for the intermittent pain and total pain score. Conclusion: The Persian version of the ICOAP is a reliable and valid outcome measure that can be used in Iranian subjects with KOA. PMID:27563327

  17. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows

    PubMed Central

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon’s 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158

  18. Real-time blind deconvolution of retinal images in adaptive optics scanning laser ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong

    2011-06-01

    With the use of adaptive optics (AO), the ocular aberrations can be compensated to get high-resolution image of living human retina. However, the wavefront correction is not perfect due to the wavefront measure error and hardware restrictions. Thus, it is necessary to use a deconvolution algorithm to recover the retinal images. In this paper, a blind deconvolution technique called Incremental Wiener filter is used to restore the adaptive optics confocal scanning laser ophthalmoscope (AOSLO) images. The point-spread function (PSF) measured by wavefront sensor is only used as an initial value of our algorithm. We also realize the Incremental Wiener filter on graphics processing unit (GPU) in real-time. When the image size is 512 × 480 pixels, six iterations of our algorithm only spend about 10 ms. Retinal blood vessels as well as cells in retinal images are restored by our algorithm, and the PSFs are also revised. Retinal images with and without adaptive optics are both restored. The results show that Incremental Wiener filter reduces the noises and improve the image quality.

  19. OFDM Radar Space-Time Adaptive Processing by Exploiting Spatio-Temporal Sparsity

    SciTech Connect

    Sen, Satyabrata

    2013-01-01

    We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data and produces an equivalent performance as the other existing STAP techniques. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we apply a residual sparse-recovery technique based on the LASSO estimator to estimate the target and interference covariance matrices, and subsequently compute the optimal STAP-filter weights. Our numerical results demonstrate a comparative performance analysis of the proposed sparse-STAP algorithm with four other existing STAP methods. Furthermore, we discover that the OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.

  20. Constant Energy of Time Involute Particles of Biharmonic Particles in Bianchi Type-I Cosmological Model Spacetime

    NASA Astrophysics Data System (ADS)

    Körpinar, Talat; Turhan, Essin

    2015-05-01

    In this paper, we study energy of time involute particles of biharmonic particles in Bianchi type-I (B-I) cosmological model spacetime. We give a geometrical description of energy for a Frenet vector fields of timelike biharmonic particle. Finally, using the Frenet frame of the given particle, we obtain different cases for this particles and give important characterizations about them in Bianchi type-I (B-I) cosmological model spacetime.

  1. Hard real-time beam scheduler enables adaptive images in multi-probe systems

    NASA Astrophysics Data System (ADS)

    Tobias, Richard J.

    2014-03-01

    Real-time embedded-system concepts were adapted to allow an imaging system to responsively control the firing of multiple probes. Large-volume, operator-independent (LVOI) imaging would increase the diagnostic utility of ultrasound. An obstacle to this innovation is the inability of current systems to drive multiple transducers dynamically. Commercial systems schedule scanning with static lists of beams to be fired and processed; here we allow an imager to adapt to changing beam schedule demands, as an intelligent response to incoming image data. An example of scheduling changes is demonstrated with a flexible duplex mode two-transducer application mimicking LVOI imaging. Embedded-system concepts allow an imager to responsively control the firing of multiple probes. Operating systems use powerful dynamic scheduling algorithms, such as fixed priority preemptive scheduling. Even real-time operating systems lack the timing constraints required for ultrasound. Particularly for Doppler modes, events must be scheduled with sub-nanosecond precision, and acquired data is useless without this requirement. A successful scheduler needs unique characteristics. To get close to what would be needed in LVOI imaging, we show two transducers scanning different parts of a subjects leg. When one transducer notices flow in a region where their scans overlap, the system reschedules the other transducer to start flow mode and alter its beams to get a view of the observed vessel and produce a flow measurement. The second transducer does this in a focused region only. This demonstrates key attributes of a successful LVOI system, such as robustness against obstructions and adaptive self-correction.

  2. Practical Method of Adaptive Radiotherapy for Prostate Cancer Using Real-Time Electromagnetic Tracking

    SciTech Connect

    Olsen, Jeffrey R.; Noel, Camille E.; Baker, Kenneth; Santanam, Lakshmi; Michalski, Jeff M.; Parikh, Parag J.

    2012-04-01

    Purpose: We have created an automated process using real-time tracking data to evaluate the adequacy of planning target volume (PTV) margins in prostate cancer, allowing a process of adaptive radiotherapy with minimal physician workload. We present an analysis of PTV adequacy and a proposed adaptive process. Methods and Materials: Tracking data were analyzed for 15 patients who underwent step-and-shoot multi-leaf collimation (SMLC) intensity-modulated radiation therapy (IMRT) with uniform 5-mm PTV margins for prostate cancer using the Calypso Registered-Sign Localization System. Additional plans were generated with 0- and 3-mm margins. A custom software application using the planned dose distribution and structure location from computed tomography (CT) simulation was developed to evaluate the dosimetric impact to the target due to motion. The dose delivered to the prostate was calculated for the initial three, five, and 10 fractions, and for the entire treatment. Treatment was accepted as adequate if the minimum delivered prostate dose (D{sub min}) was at least 98% of the planned D{sub min}. Results: For 0-, 3-, and 5-mm PTV margins, adequate treatment was obtained in 3 of 15, 12 of 15, and 15 of 15 patients, and the delivered D{sub min} ranged from 78% to 99%, 96% to 100%, and 99% to 100% of the planned D{sub min}. Changes in D{sub min} did not correlate with magnitude of prostate motion. Treatment adequacy during the first 10 fractions predicted sufficient dose delivery for the entire treatment for all patients and margins. Conclusions: Our adaptive process successfully used real-time tracking data to predict the need for PTV modifications, without the added burden of physician contouring and image analysis. Our methods are applicable to other uses of real-time tracking, including hypofractionated treatment.

  3. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.

    PubMed

    Vaughan, Adam; Bohac, Stanislav V

    2015-10-01

    Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines. PMID:26164437

  4. Visualization of Time-Series Sensor Data to Inform the Design of Just-In-Time Adaptive Stress Interventions

    PubMed Central

    Sharmin, Moushumi; Raij, Andrew; Epstien, David; Nahum-Shani, Inbal; Beck, J. Gayle; Vhaduri, Sudip; Preston, Kenzie; Kumar, Santosh

    2015-01-01

    We investigate needs, challenges, and opportunities in visualizing time-series sensor data on stress to inform the design of just-in-time adaptive interventions (JITAIs). We identify seven key challenges: massive volume and variety of data, complexity in identifying stressors, scalability of space, multifaceted relationship between stress and time, a need for representation at multiple granularities, interperson variability, and limited understanding of JITAI design requirements due to its novelty. We propose four new visualizations based on one million minutes of sensor data (n=70). We evaluate our visualizations with stress researchers (n=6) to gain first insights into its usability and usefulness in JITAI design. Our results indicate that spatio-temporal visualizations help identify and explain between- and within-person variability in stress patterns and contextual visualizations enable decisions regarding the timing, content, and modality of intervention. Interestingly, a granular representation is considered informative but noise-prone; an abstract representation is the preferred starting point for designing JITAIs. PMID:26539566

  5. Gas image enhancement based on adaptive time-domain filtering and morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Changxing; Wang, Lingxue; Li, Jiakun; Long, Yunting; Zhang, Bei

    2011-05-01

    The fingerprint region of most gases is within 3 to 14μm. A mid-wave or long-wave infrared thermal imager is therefore commonly applied in gas detection. With further influence of low gas concentration and heterogeneity of infrared focal plane arrays, the image has numerous drawbacks. These include loud noise, weak gas signal, gridding, and dead points, all of which are particularly evident in sequential images. In order to solve these problems, we take into account the characteristics of the leaking gas image and propose an enhancement method based on adaptive time-domain filtering with morphology. The adaptive time-domain filtering which operates on time sequence images is a hybrid method combining the recursive filtering and mean filtering. It segments gas and background according to a selected threshold; removes speckle noise according to the median; and removes background domain using weighted difference image. The morphology method can not only dilate the gas region along the direction of gas diffusion to greatly enhance the visibility of the leakage area, but also effectively remove the noise, and smooth the contour. Finally, the false color is added to the gas domain. Results show that the gas infrared region is effectively enhanced.

  6. Evolving curriculum design: a novel framework for continuous, timely, and relevant curriculum adaptation in faculty development.

    PubMed

    Lieff, Susan Janet

    2009-01-01

    The time lag between needs assessment and implementation of faculty development curricula assumes a certain stability of participants' individual and contextual needs which may not reflect the often complex and shifting priorities in health professional schools. In addition to the variability of issues they face, participants are typically better able to recognize and articulate their needs once engaged in a curriculum.This article is a conceptual description of how applying an umbrella strategy to curriculum design illuminated an iterative methodology for continuous adaptation of the 2004-2006 University of Toronto Education Scholars Program in real time to the emergent needs of participants and their context. The general goals or umbrella for the core curriculum were determined by a broad-based environmental scan. In keeping with a learner-centered collaborative program, a number of process strategies were developed to solicit input from participants during the two years of the program. These included creating a dialogue space, use of class and program evaluations, modified Delphi needs assessments, and opinion leader interviews. Adaptation of curriculum was enabled by protection of curriculum time and flexibility of course leadership. The application of strategy theory to curriculum design has not been previously described. This iterative approach enabled course leadership to successfully identify multiple unperceived issues to address. With this unique and cyclical process, curricular relevance and timeliness are ensured as well as enhancing participant motivation and engagement, consistent with adult learning principles. This methodology should be considered by course directors of all continuing professional development programs. PMID:19116491

  7. Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems.

    PubMed

    Vrabie, Draguna; Lewis, Frank

    2009-04-01

    In this paper we present in a continuous-time framework an online approach to direct adaptive optimal control with infinite horizon cost for nonlinear systems. The algorithm converges online to the optimal control solution without knowledge of the internal system dynamics. Closed-loop dynamic stability is guaranteed throughout. The algorithm is based on a reinforcement learning scheme, namely Policy Iterations, and makes use of neural networks, in an Actor/Critic structure, to parametrically represent the control policy and the performance of the control system. The two neural networks are trained to express the optimal controller and optimal cost function which describes the infinite horizon control performance. Convergence of the algorithm is proven under the realistic assumption that the two neural networks do not provide perfect representations for the nonlinear control and cost functions. The result is a hybrid control structure which involves a continuous-time controller and a supervisory adaptation structure which operates based on data sampled from the plant and from the continuous-time performance dynamics. Such control structure is unlike any standard form of controllers previously seen in the literature. Simulation results, obtained considering two second-order nonlinear systems, are provided. PMID:19362449

  8. Adaptive instant record signals applied to detection with time reversal operator decomposition.

    PubMed

    Folegot, Thomas; de Rosny, Julien; Prada, Claire; Fink, Mathias

    2005-06-01

    Time reversal arrays are becoming common tools whether for detection or tomography. These applications require the measurement of the response from the array to one or several receivers. The most natural way to record the impulse responses for several sources is to generate pulses successively from each emitting point and record simultaneously the signals from the receivers. However, this method is very time consuming or inefficient in terms of signal-to-noise ratio. To overcome this limitation quasi-orthogonal pseudonoise signals like Kasami sequences can be used. For guided wave propagation, a very high degree of orthogonality between the signal is necessary to allow an accurate measure of the whole multipath structure of the transfer function. Hence, in this work, we propose a new family of pseudo-orthogonal signals that is adapted to the environment and more specifically, to highly dispersive media. These adaptive instant records signals are used experimentally to detect targets using the time reversal operator decomposition method. The accuracy of the 15 x 15 transfer functions acquired simultaneously, and therefore the detection capability, are demonstrated in an experimental ultrasonic waveguide as a small-scale model of shallow water propagation including bottom absorption and reverberation. PMID:16018479

  9. Congruency sequence effects and previous response times: conflict adaptation or temporal learning?

    PubMed

    Schmidt, James R; Weissman, Daniel H

    2016-07-01

    In the present study, we followed up on a recent report of two experiments in which the congruency sequence effect-the reduction of the congruency effect after incongruent relative to congruent trials in Stroop-like tasks-was observed without feature repetition or contingency learning confounds. Specifically, we further scrutinized these data to determine the plausibility of a temporal learning account as an alternative to the popular conflict adaptation account. To this end, we employed a linear mixed effects model to investigate the role of previous response time in producing the congruency sequence effect, because previous response time is thought to influence temporal learning. Interestingly, slower previous response times were associated with a reduced current-trial congruency effect, but only when the previous trial was congruent. An adapted version of the parallel episodic processing (PEP) model was able to fit these data if it was additionally assumed that attention "wanders" during different parts of the experiment (e.g., due to fatigue or other factors). Consistent with this assumption, the magnitude of the congruency effect was correlated across small blocks of trials. These findings demonstrate that a temporal learning mechanism provides a plausible account of the congruency sequence effect. PMID:26093801

  10. Adaptive and optimal detection of elastic object scattering with single-channel monostatic iterative time reversal

    NASA Astrophysics Data System (ADS)

    Ying, Ying-Zi; Ma, Li; Guo, Sheng-Ming

    2011-05-01

    In active sonar operation, the presence of background reverberation and the low signal-to-noise ratio hinder the detection of targets. This paper investigates the application of single-channel monostatic iterative time reversal to mitigate the difficulties by exploiting the resonances of the target. Theoretical analysis indicates that the iterative process will adaptively lead echoes to converge to a narrowband signal corresponding to a scattering object's dominant resonance mode, thus optimising the return level. The experiments in detection of targets in free field and near a planar interface have been performed. The results illustrate the feasibility of the method.

  11. Discrete-time entropy formulation of optimal and adaptive control problems

    NASA Technical Reports Server (NTRS)

    Tsai, Yweting A.; Casiello, Francisco A.; Loparo, Kenneth A.

    1992-01-01

    The discrete-time version of the entropy formulation of optimal control of problems developed by G. N. Saridis (1988) is discussed. Given a dynamical system, the uncertainty in the selection of the control is characterized by the probability distribution (density) function which maximizes the total entropy. The equivalence between the optimal control problem and the optimal entropy problem is established, and the total entropy is decomposed into a term associated with the certainty equivalent control law, the entropy of estimation, and the so-called equivocation of the active transmission of information from the controller to the estimator. This provides a useful framework for studying the certainty equivalent and adaptive control laws.

  12. Adaptive mode control of a few-mode fiber by real-time mode decomposition.

    PubMed

    Huang, Liangjin; Leng, Jinyong; Zhou, Pu; Guo, Shaofeng; Lü, Haibin; Cheng, Xiang'ai

    2015-10-19

    A novel approach to adaptively control the beam profile in a few-mode fiber is experimentally demonstrated. We stress the fiber through an electric-controlled polarization controller, whose driven voltage depends on the current and target modal content difference obtained with the real-time mode decomposition. We have achieved selective excitations of LP01 and LP11 modes, as well as significant improvement of the beam quality factor, which may play crucial roles for high-power fiber lasers, fiber based telecommunication systems and other fundamental researches and applications. PMID:26480466

  13. Time series analysis of Adaptive Optics wave-front sensor telemetry data

    SciTech Connect

    Poyneer, L A; Palmer, D

    2004-03-22

    Time series analysis techniques are applied to wave-front sensor telemetry data from the Lick Adaptive Optics System. For 28 fully-illuminated subapertures, telemetry data of 4096 consecutive slope estimates for each subaperture are available. The primary problem is performance comparison of alternative wave-front sensing algorithms. Using direct comparison of data in open loop and closed-loop trials, we analyze algorithm performance in terms of gain, noise and residual power. We also explore the benefits of multi-input Wiener filtering and analyze the open-loop and closed-loop spatial correlations of the sensor measurements.

  14. Numerical simulation of diffusion MRI signals using an adaptive time-stepping method.

    PubMed

    Li, Jing-Rebecca; Calhoun, Donna; Poupon, Cyril; Le Bihan, Denis

    2014-01-20

    The effect on the MRI signal of water diffusion in biological tissues in the presence of applied magnetic field gradient pulses can be modelled by a multiple compartment Bloch-Torrey partial differential equation. We present a method for the numerical solution of this equation by coupling a standard Cartesian spatial discretization with an adaptive time discretization. The time discretization is done using the explicit Runge-Kutta-Chebyshev method, which is more efficient than the forward Euler time discretization for diffusive-type problems. We use this approach to simulate the diffusion MRI signal from the extra-cylindrical compartment in a tissue model of the brain gray matter consisting of cylindrical and spherical cells and illustrate the effect of cell membrane permeability. PMID:24351275

  15. Adaptive feedback synchronisation of complex dynamical network with discrete-time communications and delayed nodes

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Ding, Yongsheng; Zhang, Lei; Hao, Kuangrong

    2016-08-01

    This paper considered the synchronisation of continuous complex dynamical networks with discrete-time communications and delayed nodes. The nodes in the dynamical networks act in the continuous manner, while the communications between nodes are discrete-time; that is, they communicate with others only at discrete time instants. The communication intervals in communication period can be uncertain and variable. By using a piecewise Lyapunov-Krasovskii function to govern the characteristics of the discrete communication instants, we investigate the adaptive feedback synchronisation and a criterion is derived to guarantee the existence of the desired controllers. The globally exponential synchronisation can be achieved by the controllers under the updating laws. Finally, two numerical examples including globally coupled network and nearest-neighbour coupled networks are presented to demonstrate the validity and effectiveness of the proposed control scheme.

  16. Real-time artificial intelligence issues in the development of the adaptive tactical navigator

    NASA Technical Reports Server (NTRS)

    Green, Peter E.; Glasson, Douglas P.; Pomarede, Jean-Michel L.; Acharya, Narayan A.

    1987-01-01

    Adaptive Tactical Navigation (ATN) is a laboratory prototype of a knowledge based system to provide navigation system management and decision aiding in the next generation of tactical aircraft. ATN's purpose is to manage a set of multimode navigation equipment, dynamically selecting the best equipment to use in accordance with mission goals and phase, threat environment, equipment malfunction status, and battle damage. ATN encompasses functions as diverse as sensor data interpretation, diagnosis, and planning. Real time issues that were identified in ATN and the approaches used to address them are addressed. Functional requirements and a global architecture for the ATN system are described. Decision making with time constraints are discussed. Two subproblems are identified; making decisions with incomplete information and with limited resources. Approaches used in ATN to address real time performance are described and simulation results are discussed.

  17. Numerical simulation of diffusion MRI signals using an adaptive time-stepping method

    NASA Astrophysics Data System (ADS)

    Li, Jing-Rebecca; Calhoun, Donna; Poupon, Cyril; Le Bihan, Denis

    2014-01-01

    The effect on the MRI signal of water diffusion in biological tissues in the presence of applied magnetic field gradient pulses can be modelled by a multiple compartment Bloch-Torrey partial differential equation. We present a method for the numerical solution of this equation by coupling a standard Cartesian spatial discretization with an adaptive time discretization. The time discretization is done using the explicit Runge-Kutta-Chebyshev method, which is more efficient than the forward Euler time discretization for diffusive-type problems. We use this approach to simulate the diffusion MRI signal from the extra-cylindrical compartment in a tissue model of the brain gray matter consisting of cylindrical and spherical cells and illustrate the effect of cell membrane permeability.

  18. Multi-layer holographic bifurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Huang, K.; Diep, J.

    1992-01-01

    Optical data processing techniques have the inherent advantage of high data throughout, low weight and low power requirements. These features are particularly desirable for onboard spacecraft in-situ real-time data analysis and data compression applications. The proposed multi-layer optical holographic neural net pattern recognition technique will utilize the nonlinear photorefractive devices for real-time adaptive learning to classify input data content and recognize unexpected features. Information can be stored either in analog or digital form in a nonlinear photorefractive device. The recording can be accomplished in time scales ranging from milliseconds to microseconds. When a system consisting of these devices is organized in a multi-layer structure, a feed forward neural net with bifurcating data classification capability is formed. The interdisciplinary research will involve the collaboration with top digital computer architecture experts at the University of Southern California.

  19. Multi-layer holographic bifurcative neural network system for real-time adaptive EOS data analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Huang, K. S.; Diep, J.

    1993-01-01

    Optical data processing techniques have the inherent advantage of high data throughout, low weight and low power requirements. These features are particularly desirable for onboard spacecraft in-situ real-time data analysis and data compression applications. the proposed multi-layer optical holographic neural net pattern recognition technique will utilize the nonlinear photorefractive devices for real-time adaptive learning to classify input data content and recognize unexpected features. Information can be stored either in analog or digital form in a nonlinear photofractive device. The recording can be accomplished in time scales ranging from milliseconds to microseconds. When a system consisting of these devices is organized in a multi-layer structure, a feedforward neural net with bifurcating data classification capability is formed. The interdisciplinary research will involve the collaboration with top digital computer architecture experts at the University of Southern California.

  20. Exponential time-differencing with embedded Runge–Kutta adaptive step control

    SciTech Connect

    Whalen, P.; Brio, M.; Moloney, J.V.

    2015-01-01

    We have presented the first embedded Runge–Kutta exponential time-differencing (RKETD) methods of fourth order with third order embedding and fifth order with third order embedding for non-Rosenbrock type nonlinear systems. A procedure for constructing RKETD methods that accounts for both order conditions and stability is outlined. In our stability analysis, the fast time scale is represented by a full linear operator in contrast to particular scalar cases considered before. An effective time-stepping strategy based on reducing both ETD function evaluations and rejected steps is described. Comparisons of performance with adaptive-stepping integrating factor (IF) are carried out on a set of canonical partial differential equations: the shock-fronts of Burgers equation, interacting KdV solitons, KS controlled chaos, and critical collapse of two-dimensional NLS.

  1. Adaptive finite volume methods for time-dependent P.D.E.S.

    SciTech Connect

    Ware, J.; Berzins, M.

    1995-12-31

    The aim of adaptive methods for time-dependent p.d.e.s is to control the numerical error so that it is less than a user-specified tolerance. This error depends on the spatial discretization method, the spatial mesh, the method of time integration and the timestep. The spatial discretization method and positioning of the spatial mesh points should attempt to ensure that the spatial error is controlled to meet the user`s requirements. It is then desirable to integrate the o.d.e. system in time with sufficient accuracy so that the temporal error does not corrupt the spatial accuracy or the reliability of the spatial error estimates. This paper is concerned with the development of a prototype algorithm of this type, based on a cell-centered triangular finite volume scheme, for two space dimensional convection-dominated problems.

  2. Development of a non-delay line constant fraction discriminator based on the Padé approximant for time-of-flight positron emission tomography scanners

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Ko, G. B.; Kwon, S. I.; Lee, J. S.

    2015-01-01

    In positron emission tomography, the constant fraction discriminator (CFD) circuit is used to acquire accurate arrival times for the annihilation photons with minimum sensitivity to time walk. As the number of readout channels increases, it becomes difficult to use conventional CFDs because of the large amount of space required for the delay line part of the circuit. To make the CFD compact, flexible, and easily controllable, a non-delay-line CFD based on the Padé approximant is proposed. The non-delay-line CFD developed in this study is shown to have timing performance that is similar to that of a conventional delay-line-based CFD in terms of the coincidence resolving time of a fast photomultiplier tube detector. This CFD can easily be applied to various positron emission tomography system designs that contain high-density detectors with multi-channel structures.

  3. Adaptive and phase selective spike timing dependent plasticity in synaptically coupled neuronal oscillators.

    PubMed

    Kazantsev, Victor; Tyukin, Ivan

    2012-01-01

    We consider and analyze the influence of spike-timing dependent plasticity (STDP) on homeostatic states in synaptically coupled neuronal oscillators. In contrast to conventional models of STDP in which spike-timing affects weights of synaptic connections, we consider a model of STDP in which the time lags between pre- and/or post-synaptic spikes change internal state of pre- and/or post-synaptic neurons respectively. The analysis reveals that STDP processes of this type, modeled by a single ordinary differential equation, may ensure efficient, yet coarse, phase-locking of spikes in the system to a given reference phase. Precision of the phase locking, i.e. the amplitude of relative phase deviations from the reference, depends on the values of natural frequencies of oscillators and, additionally, on parameters of the STDP law. These deviations can be optimized by appropriate tuning of gains (i.e. sensitivity to spike-timing mismatches) of the STDP mechanism. However, as we demonstrate, such deviations can not be made arbitrarily small neither by mere tuning of STDP gains nor by adjusting synaptic weights. Thus if accurate phase-locking in the system is required then an additional tuning mechanism is generally needed. We found that adding a very simple adaptation dynamics in the form of slow fluctuations of the base line in the STDP mechanism enables accurate phase tuning in the system with arbitrary high precision. Adaptation operating at a slow time scale may be associated with extracellular matter such as matrix and glia. Thus the findings may suggest a possible role of the latter in regulating synaptic transmission in neuronal circuits. PMID:22412830

  4. Adaptive and Phase Selective Spike Timing Dependent Plasticity in Synaptically Coupled Neuronal Oscillators

    PubMed Central

    Kazantsev, Victor; Tyukin, Ivan

    2012-01-01

    We consider and analyze the influence of spike-timing dependent plasticity (STDP) on homeostatic states in synaptically coupled neuronal oscillators. In contrast to conventional models of STDP in which spike-timing affects weights of synaptic connections, we consider a model of STDP in which the time lags between pre- and/or post-synaptic spikes change internal state of pre- and/or post-synaptic neurons respectively. The analysis reveals that STDP processes of this type, modeled by a single ordinary differential equation, may ensure efficient, yet coarse, phase-locking of spikes in the system to a given reference phase. Precision of the phase locking, i.e. the amplitude of relative phase deviations from the reference, depends on the values of natural frequencies of oscillators and, additionally, on parameters of the STDP law. These deviations can be optimized by appropriate tuning of gains (i.e. sensitivity to spike-timing mismatches) of the STDP mechanism. However, as we demonstrate, such deviations can not be made arbitrarily small neither by mere tuning of STDP gains nor by adjusting synaptic weights. Thus if accurate phase-locking in the system is required then an additional tuning mechanism is generally needed. We found that adding a very simple adaptation dynamics in the form of slow fluctuations of the base line in the STDP mechanism enables accurate phase tuning in the system with arbitrary high precision. Adaptation operating at a slow time scale may be associated with extracellular matter such as matrix and glia. Thus the findings may suggest a possible role of the latter in regulating synaptic transmission in neuronal circuits. PMID:22412830

  5. Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors

    PubMed Central

    Prezioso, M.; Merrikh Bayat, F.; Hoskins, B.; Likharev, K.; Strukov, D.

    2016-01-01

    Metal-oxide memristors have emerged as promising candidates for hardware implementation of artificial synapses – the key components of high-performance, analog neuromorphic networks - due to their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic networks, which explicitly model individual neural pulses (“spikes”) in biological neural systems, it is crucial for memristive synapses to support the spike-time-dependent plasticity (STDP). A major challenge for the STDP implementation is that, in contrast to some simplistic models of the plasticity, the elementary change of a synaptic weight in an artificial hardware synapse depends not only on the pre-synaptic and post-synaptic signals, but also on the initial weight (memristor’s conductance) value. Here we experimentally demonstrate, for the first time, an STDP behavior that ensures self-adaptation of the average memristor conductance, making the plasticity stable, i.e. insensitive to the initial state of the devices. The experiments have been carried out with 200-nm Al2O3/TiO2−x memristors integrated into 12 × 12 crossbars. The experimentally observed self-adaptive STDP behavior has been complemented with numerical modeling of weight dynamics in a simple system with a leaky-integrate-and-fire neuron with a random spike-train input, using a compact model of memristor plasticity, fitted for quantitatively correct description of our memristors. PMID:26893175

  6. Data rate management and real time operation: recursive adaptive frame integration of limited data

    NASA Astrophysics Data System (ADS)

    Rafailov, Michael K.

    2006-08-01

    Recursive Limited Frame Integration was proposed as a way to improve frame integration performance and mitigate issues related to high data rate needed to support conventional frame integration. The technique uses two thresholds -one tuned for optimum probability of detection, the other to manage required false alarm rate, and places integration process between those thresholds. This configuration allows a non-linear integration process that, along with Signal-to-Noise Ratio (SNR) gain, provides system designers more capability where cost, weight, or power considerations limit system data rate, processing, or memory capability. However, Recursive Frame Integration Limited may have performance issues when single-frame SNR is really low. Recursive Adaptive Limited Frame Integration was proposed as a means to improve limited integration performance with really low single-frame SNR. It combines the benefits of nonlinear recursive limited frame integration and adaptive thresholds with a kind of conventional frame integration. Adding the third threshold may help in managing real time operations. In the paper the Recursive Frame Integration is presented in form of multiple parallel recursive integration. Such an approach can help not only in data rate management but in mitigation of low single frame SNR issue for Recursive Integration as well as in real time operations with frame integration.

  7. Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors.

    PubMed

    Prezioso, M; Merrikh Bayat, F; Hoskins, B; Likharev, K; Strukov, D

    2016-01-01

    Metal-oxide memristors have emerged as promising candidates for hardware implementation of artificial synapses - the key components of high-performance, analog neuromorphic networks - due to their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic networks, which explicitly model individual neural pulses ("spikes") in biological neural systems, it is crucial for memristive synapses to support the spike-time-dependent plasticity (STDP). A major challenge for the STDP implementation is that, in contrast to some simplistic models of the plasticity, the elementary change of a synaptic weight in an artificial hardware synapse depends not only on the pre-synaptic and post-synaptic signals, but also on the initial weight (memristor's conductance) value. Here we experimentally demonstrate, for the first time, an STDP behavior that ensures self-adaptation of the average memristor conductance, making the plasticity stable, i.e. insensitive to the initial state of the devices. The experiments have been carried out with 200-nm Al2O3/TiO2-x memristors integrated into 12 × 12 crossbars. The experimentally observed self-adaptive STDP behavior has been complemented with numerical modeling of weight dynamics in a simple system with a leaky-integrate-and-fire neuron with a random spike-train input, using a compact model of memristor plasticity, fitted for quantitatively correct description of our memristors. PMID:26893175

  8. Finite-approximation-error-based discrete-time iterative adaptive dynamic programming.

    PubMed

    Wei, Qinglai; Wang, Fei-Yue; Liu, Derong; Yang, Xiong

    2014-12-01

    In this paper, a new iterative adaptive dynamic programming (ADP) algorithm is developed to solve optimal control problems for infinite horizon discrete-time nonlinear systems with finite approximation errors. First, a new generalized value iteration algorithm of ADP is developed to make the iterative performance index function converge to the solution of the Hamilton-Jacobi-Bellman equation. The generalized value iteration algorithm permits an arbitrary positive semi-definite function to initialize it, which overcomes the disadvantage of traditional value iteration algorithms. When the iterative control law and iterative performance index function in each iteration cannot accurately be obtained, for the first time a new "design method of the convergence criteria" for the finite-approximation-error-based generalized value iteration algorithm is established. A suitable approximation error can be designed adaptively to make the iterative performance index function converge to a finite neighborhood of the optimal performance index function. Neural networks are used to implement the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the developed method. PMID:25265640

  9. Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors

    NASA Astrophysics Data System (ADS)

    Prezioso, M.; Merrikh Bayat, F.; Hoskins, B.; Likharev, K.; Strukov, D.

    2016-02-01

    Metal-oxide memristors have emerged as promising candidates for hardware implementation of artificial synapses - the key components of high-performance, analog neuromorphic networks - due to their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic networks, which explicitly model individual neural pulses (“spikes”) in biological neural systems, it is crucial for memristive synapses to support the spike-time-dependent plasticity (STDP). A major challenge for the STDP implementation is that, in contrast to some simplistic models of the plasticity, the elementary change of a synaptic weight in an artificial hardware synapse depends not only on the pre-synaptic and post-synaptic signals, but also on the initial weight (memristor’s conductance) value. Here we experimentally demonstrate, for the first time, an STDP behavior that ensures self-adaptation of the average memristor conductance, making the plasticity stable, i.e. insensitive to the initial state of the devices. The experiments have been carried out with 200-nm Al2O3/TiO2-x memristors integrated into 12 × 12 crossbars. The experimentally observed self-adaptive STDP behavior has been complemented with numerical modeling of weight dynamics in a simple system with a leaky-integrate-and-fire neuron with a random spike-train input, using a compact model of memristor plasticity, fitted for quantitatively correct description of our memristors.

  10. Real-Time Adaptive Control of Flow-Induced Cavity Tones

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; Cabell, Randolph H.; Cattafesta, Louis N.

    2004-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. The adaptive control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. The algorithm was also able t o maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Controller performance was evaluated with a measure of output disturbance rejection and an input sensitivity transfer function. The results suggest that disturbances entering the cavity flow are colocated with the control input at the cavity leading edge. In that case, only tonal components of the cavity wall-pressure fluctuations can be suppressed and arbitrary broadband pressure reduction is not possible. In the control-algorithm development, the cavity dynamics are treated as linear and time invariant (LTI) for a fixed Mach number. The experimental results lend support this treatment.

  11. Real-Time Adaptive EEG Source Separation Using Online Recursive Independent Component Analysis.

    PubMed

    Hsu, Sheng-Hsiou; Mullen, Tim R; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2016-03-01

    Independent component analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: 1) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; 2) capability to detect and adapt to nonstationarity in 64-ch simulated EEG data; and 3) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257

  12. Application of fuzzy adaptive control to a MIMO nonlinear time-delay pump-valve system.

    PubMed

    Lai, Zhounian; Wu, Peng; Wu, Dazhuan

    2015-07-01

    In this paper, a control strategy to balance the reliability against efficiency is introduced to overcome the common off-design operation problem in pump-valve systems. The pump-valve system is a nonlinear multi-input-multi-output (MIMO) system with time delays which cannot be accurately measured but can be approximately modeled using Bernoulli Principle. A fuzzy adaptive controller is applied to approximate system parameters and achieve the control of delay-free model since the system model is inaccurate and the direct feedback linearization method cannot be applied. An extended Smith predictor is introduced to compensate time delays of the system using the inaccurate system model. The experiment is carried out to verify the effectiveness of the control strategy whose results show that the control performance is well achieved. PMID:25681018

  13. Adaptive Neural Control of MIMO Nonstrict-Feedback Nonlinear Systems With Time Delay.

    PubMed

    Zhao, Xudong; Yang, Haijiao; Karimi, Hamid Reza; Zhu, Yanzheng

    2016-06-01

    In this paper, an adaptive neural output-feedback tracking controller is designed for a class of multiple-input and multiple-output nonstrict-feedback nonlinear systems with time delay. The system coefficient and uncertain functions of our considered systems are both unknown. By employing neural networks to approximate the unknown function entries, and constructing a new input-driven filter, a backstepping design method of tracking controller is developed for the systems under consideration. The proposed controller can guarantee that all the signals in the closed-loop systems are ultimately bounded, and the time-varying target signal can be tracked within a small error as well. The main contributions of this paper lie in that the systems under consideration are more general, and an effective design procedure of output-feedback controller is developed for the considered systems, which is more applicable in practice. Simulation results demonstrate the efficiency of the proposed algorithm. PMID:26099151

  14. Nonlinear adaptive control for teleoperation systems with symmetrical and unsymmetrical time-varying delay

    NASA Astrophysics Data System (ADS)

    Islam, S.; Liu, P. X.; El Saddik, A.

    2015-12-01

    The stability and trajectory tracking control problem of passive teleoperation systems with the presence of the symmetrical and unsymmetrical time-varying communication delay is addressed in this paper. The proposed teleoperator is designed by coupling local and remote sites by delaying position signals of the master and slave manipulator. The design also comprises local proportional and derivative signals with nonlinear adaptive terms to cope with parametric uncertainty associated with the master and slave dynamics. The Lyapunov-Krasovskii function is employed to establish stability conditions for the closed-loop teleoperators under both symmetrical and unsymmetrical time-varying communication delay. These delay-dependent conditions allow the designer to estimate the control gains a priori in order to achieve asymptotic property of the position, velocity and synchronisation errors of the master and slave systems. Finally, simulation results along with comparative studies are presented to illustrate the effectiveness of the proposed method.

  15. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media

    PubMed Central

    Ma, Cheng; Xu, Xiao; Liu, Yan; Wang, Lihong V.

    2014-01-01

    The ability to steer and focus light inside scattering media has long been sought for a multitude of applications. To form optical foci inside scattering media, the only feasible strategy at present is to guide photons by using either implanted1 or virtual2–4 guide stars, which can be inconvenient and limits potential applications. Here, we report a scheme for focusing light inside scattering media by employing intrinsic dynamics as guide stars. By time-reversing the perturbed component of the scattered light adaptively, we show that it is possible to focus light to the origin of the perturbation. Using the approach, we demonstrate non-invasive dynamic light focusing onto moving targets and imaging of a time-variant object obscured by highly scattering media. Anticipated applications include imaging and photoablation of angiogenic vessels in tumours as well as other biomedical uses. PMID:25530797

  16. Adaptive load-stand design for real-time HWIL JSOW missile control section characterization

    NASA Astrophysics Data System (ADS)

    Strauss, E. Paul

    1996-05-01

    The purpose of having dynamically adaptive load stand capability is to verify and monitor control section actuator performance under simulated free-flight aerodynamic load conditions in a Closed Loop Real Time HWIL environment. HWIL testing is a cost effective and risk reducing means of evaluating missile system prior to flight testing. This article develops methods of designing, analyzing, and testing of an extension spring driven load stand. Load stand spring natural and surging frequencies are evaluated. Nonlinear control section actuator anomalies are discussed in terms of load stand testing. Actuator time response data is examined under hinge moment and normal force loaded conditions. A design verification procedure was executed to provide a high degree of assurance that the load stand would perform as predicted by analytical methods.

  17. Adaptive filters for monitoring localized brain activity from surface potential time series

    SciTech Connect

    Spencer, M.E. |; Leahy, R.M.; Mosher, J.C. |; Lewis, P.S.

    1992-12-01

    We address the problem of processing electroencephalographic (EEG) data to monitor the time series of the components of a current dipole source vector at a given location in the head. This is the spatial filtering problem for vector sources in a lossy, three dimensional, zero delay medium. Dipolar and distributed sources at other than the desired location are canceled or attenuated with an adaptive linearly constrained minimum variance (LCMV) beamformer. Actual EEG data acquired from a human subject serves as the interference in a case where the desired source is simulated and superimposed on the actual data. It is shown that the LCMV beamformer extracts the desired dipole time series while effectively canceling the subjects interference.

  18. Adaptive filters for monitoring localized brain activity from surface potential time series

    SciTech Connect

    Spencer, M.E. . Signal and Image Processing Inst. TRW, Inc., Redondo Beach, CA ); Leahy, R.M. . Signal and Image Processing Inst.); Mosher, J.C. . Signal and Image Processing Inst. Lo

    1992-01-01

    We address the problem of processing electroencephalographic (EEG) data to monitor the time series of the components of a current dipole source vector at a given location in the head. This is the spatial filtering problem for vector sources in a lossy, three dimensional, zero delay medium. Dipolar and distributed sources at other than the desired location are canceled or attenuated with an adaptive linearly constrained minimum variance (LCMV) beamformer. Actual EEG data acquired from a human subject serves as the interference in a case where the desired source is simulated and superimposed on the actual data. It is shown that the LCMV beamformer extracts the desired dipole time series while effectively canceling the subjects interference.

  19. A Space-Time Adaptive Method for Simulating Complex Cardiac Dynamics

    NASA Astrophysics Data System (ADS)

    Cherry, E. M.; Greenside, H. S.; Henriquez, C. S.

    2000-03-01

    A new space-time adaptive mesh refinement algorithm (AMRA) is presented and analyzed which, by automatically adding and deleting local patches of higher-resolution Cartesian meshes, can simulate quantitatively accurate models of cardiac electrical dynamics efficiently in large domains. We find in two space dimensions that the AMRA is able to achieve a factor of 5 speedup and a factor of 5 reduction in memory while achieving the same accuracy compared to a code based on a uniform space-time mesh at the highest resolution of the AMRA method. We summarize applications of the code to the Luo-Rudy 1 cardiac model in large two- and three-dimensional domains and discuss the implications of our results for understanding the initiation of arrhythmias.

  20. Adaptive, spatially-varying aberration correction for real-time holographic projectors.

    PubMed

    Kaczorowski, Andrzej; Gordon, George S D; Wilkinson, Timothy D

    2016-07-11

    A method of generating an aberration- and distortion-free wide-angle holographically projected image in real time is presented. The target projector is first calibrated using an automated adaptive-optical mechanism. The calibration parameters are then fed into the hologram generation program, which applies a novel piece-wise aberration correction algorithm. The method is found to offer hologram generation times up to three orders of magnitude faster than the standard method. A projection of an aberration- and distortion-free image with a field of view of 90x45 degrees is demonstrated. The implementation on a mid-range GPU achieves high resolution at a frame rate up to 12fps. The presented methods are automated and can be performed on any holographic projector. PMID:27410846

  1. Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Colella, Phillip

    2007-11-01

    We present a new numerical algorithm for the solution of coupled collisional and collisionless systems, based on the block structured adaptive mesh and time refinement strategy (AMR). We describe the issues associated with the discretization of the system equations and the synchronization of the numerical solution on the hierarchy of grid levels. We implement a code based on a higher order, conservative and directionally unsplit Godunov’s method for hydrodynamics; a symmetric, time centered modified symplectic scheme for collisionless component; and a multilevel, multigrid relaxation algorithm for the elliptic equation coupling the two components. Numerical results that illustrate the accuracy of the code and the relative merit of various implemented schemes are also presented.

  2. Constraint on the time variation of the fine-structure constant with the SDSS-III/BOSS DR12 quasar sample

    NASA Astrophysics Data System (ADS)

    Albareti, Franco D.; Comparat, Johan; Gutiérrez, Carlos M.; Prada, Francisco; Pâris, Isabelle; Schlegel, David; López-Corredoira, Martín; Schneider, Donald P.; Manchado, Arturo; García-Hernández, D. A.; Petitjean, Patrick; Ge, Jian

    2015-10-01

    From the Sloan Digital Sky Survey (SDSS) Data Release 12, which covers the full Baryonic Oscillation Spectroscopic Survey (BOSS) footprint, we investigate the possible variation of the fine-structure constant over cosmological time-scales. We analyse the largest quasar sample considered so far in the literature, which contains 13 175 spectra (10 363 from SDSS-III/BOSS DR12 + 2812 from SDSS-II DR7) with redshift z < 1. We apply the emission-line method on the [O III] doublet (λλ 4960, 5008 Å) and obtain Δα/α = (0.9 ± 1.8) × 10-5 for the relative variation of the fine-structure constant. We also investigate the possible sources of systematics: misidentification of the lines, sky OH lines, H β and broad line contamination, Gaussian and Voigt fitting profiles, optimal wavelength range for the Gaussian fits, chosen polynomial order for the continuum spectrum, signal-to-noise ratio and good quality of the fits. The uncertainty of the measurement is dominated by the sky subtraction. The results presented in this work, being systematics limited, have sufficient statistics to constrain robustly the variation of the fine-structure constant in redshift bins (Δz ≈ 0.06) over the last 7.9 Gyr. In addition, we study the [Ne III] doublet (λλ 3869, 3968 Å) present in 462 quasar spectra and discuss the systematic effects on using these emission lines to constrain the fine-structure constant variation. Better constraints on Δα/α (< 10-6) using the emission-line method would be possible with high-resolution spectroscopy and large galaxy/qso surveys.

  3. Real-time motion-adaptive-optimization (MAO) in TomoTherapy

    NASA Astrophysics Data System (ADS)

    Lu, Weiguo; Chen, Mingli; Ruchala, Kenneth J.; Chen, Quan; Langen, Katja M.; Kupelian, Patrick A.; Olivera, Gustavo H.

    2009-07-01

    IMRT delivery follows a planned leaf sequence, which is optimized before treatment delivery. However, it is hard to model real-time variations, such as respiration, in the planning procedure. In this paper, we propose a negative feedback system of IMRT delivery that incorporates real-time optimization to account for intra-fraction motion. Specifically, we developed a feasible workflow of real-time motion-adaptive-optimization (MAO) for TomoTherapy delivery. TomoTherapy delivery is characterized by thousands of projections with a fast projection rate and ultra-fast binary leaf motion. The technique of MAO-guided delivery calculates (i) the motion-encoded dose that has been delivered up to any given projection during the delivery and (ii) the future dose that will be delivered based on the estimated motion probability and future fluence map. These two pieces of information are then used to optimize the leaf open time of the upcoming projection right before its delivery. It consists of several real-time procedures, including 'motion detection and prediction', 'delivered dose accumulation', 'future dose estimation' and 'projection optimization'. Real-time MAO requires that all procedures are executed in time less than the duration of a projection. We implemented and tested this technique using a TomoTherapy® research system. The MAO calculation took about 100 ms per projection. We calculated and compared MAO-guided delivery with two other types of delivery, motion-without-compensation delivery (MD) and static delivery (SD), using simulated 1D cases, real TomoTherapy plans and the motion traces from clinical lung and prostate patients. The results showed that the proposed technique effectively compensated for motion errors of all test cases. Dose distributions and DVHs of MAO-guided delivery approached those of SD, for regular and irregular respiration with a peak-to-peak amplitude of 3 cm, and for medium and large prostate motions. The results conceptually proved that

  4. Real-Time Accelerated Interactive MRI With Adaptive TSENSE and UNFOLD

    PubMed Central

    Guttman, Michael A.; Kellman, Peter; Dick, Alexander J.; Lederman, Robert J.; McVeigh, Elliot R.

    2007-01-01

    Reduced field-of-view (FOV) acceleration using time-adaptive sensitivity encoding (TSENSE) or unaliasing by Fourier encoding the overlaps using the temporal dimension (UNFOLD) can improve the depiction of motion in real-time MRI. However, increased computational resources are required to maintain a high frame rate and low latency in image reconstruction and display. A high-performance software system has been implemented to perform TSENSE and UNFOLD reconstructions for real-time MRI with interactive, on-line display. Images were displayed in the scanner room to investigate image-guided procedures. Examples are shown for normal volunteers and cardiac interventional experiments in animals using a steady-state free precession (SSFP) sequence. In order to maintain adequate image quality for interventional procedures, the imaging rate was limited to seven frames per second after an acceleration factor of 2 with a voxel size of 1.8 × 3.5 × 8 mm. Initial experiences suggest that TSENSE and UNFOLD can each improve the compromise between spatial and temporal resolution in real-time imaging, and can function well in interactive imaging. UNFOLD places no additional constraints on receiver coils, and is therefore more flexible than SENSE methods; however, the temporal image filtering can blur motion and reduce the effective acceleration. Methods are proposed to overcome the challenges presented by the use of TSENSE in interactive imaging. TSENSE may be temporarily disabled after changing the imaging plane to avoid transient artifacts as the sensitivity coefficients adapt. For imaging with a combination of surface and interventional coils, a hybrid reconstruction approach is proposed whereby UNFOLD is used for the interventional coils, and TSENSE with or without UNFOLD is used for the surface coils. PMID:12876708

  5. Experimental investigation of the excess charge and time constant of minority carriers in the thin diffused layer of 0.1 ohm-cm silicon solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Brandhorst, H. W., Jr.; Lindholm, F. A.; Sah, C. T.

    1976-01-01

    An experimental method is presented that can be used to interpret the relative roles of bandgap narrowing and recombination processes in the diffused layer. This method involves measuring the device time constant by open-circuit voltage decay and the base region diffusion length by X-ray excitation. A unique illuminated diode method is used to obtain the diode saturation current. These data are interpreted using a simple model to determine individually the minority carrier lifetime and the excess charge. These parameters are then used to infer the relative importance of bandgap narrowing and recombination processes in the diffused layer.

  6. New definitions of pointing stability - ac and dc effects. [constant and time-dependent pointing error effects on image sensor performance

    NASA Technical Reports Server (NTRS)

    Lucke, Robert L.; Sirlin, Samuel W.; San Martin, A. M.

    1992-01-01

    For most imaging sensors, a constant (dc) pointing error is unimportant (unless large), but time-dependent (ac) errors degrade performance by either distorting or smearing the image. When properly quantified, the separation of the root-mean-square effects of random line-of-sight motions into dc and ac components can be used to obtain the minimum necessary line-of-sight stability specifications. The relation between stability requirements and sensor resolution is discussed, with a view to improving communication between the data analyst and the control systems engineer.

  7. Space Weather Prediction Error Bounding for Real-Time Ionospheric Threat Adaptation of GNSS Augmentation Systems

    NASA Astrophysics Data System (ADS)

    Lee, J.; Yoon, M.; Lee, J.

    2014-12-01

    Current Global Navigation Satellite Systems (GNSS) augmentation systems attempt to consider all possible ionospheric events in their correction computations of worst-case errors. This conservatism can be mitigated by subdividing anomalous conditions and using different values of ionospheric threat-model bounds for each class. A new concept of 'real-time ionospheric threat adaptation' that adjusts the threat model in real time instead of always using the same 'worst-case' model was introduced in my previous research. The concept utilizes predicted values of space weather indices for determining the corresponding threat model based on the pre-defined worst-case threat as a function of space weather indices. Since space weather prediction is not reliable due to prediction errors, prediction errors are needed to be bounded to the required level of integrity of the system being supported. The previous research performed prediction error bounding using disturbance, storm time (Dst) index. The distribution of Dst prediction error over the 15-year data was bounded by applying 'inflated-probability density function (pdf) Gaussian bounding'. Since the error distribution has thick and non-Gaussian tails, investigation on statistical distributions which properly describe heavy tails with less conservatism is required for the system performance. This paper suggests two potential approaches for improving space weather prediction error bounding. First, we suggest using different statistical models when fit the error distribution, such as the Laplacian distribution which has fat tails, and the folded Gaussian cumulative distribution function (cdf) distribution. Second approach is to bound the error distribution by segregating data based on the overall level of solar activity. Bounding errors using only solar minimum period data will have less uncertainty and it may allow the use of 'solar cycle prediction' provided by NASA when implementing to real-time threat adaptation. Lastly

  8. Electromagnetic Detection and Real-Time DMLC Adaptation to Target Rotation During Radiotherapy

    SciTech Connect

    Wu Junqing; Ruan, Dan; Cho, Byungchul; Sawant, Amit; Petersen, Jay; Newell, Laurence J.; Cattell, Herbert; Keall, Paul J.

    2012-03-01

    Purpose: Intrafraction rotation of more than 45 Degree-Sign and 25 Degree-Sign has been observed for lung and prostate tumors, respectively. Such rotation is not routinely adapted to during current radiotherapy, which may compromise tumor dose coverage. The aim of the study was to investigate the geometric and dosimetric performance of an electromagnetically guided real-time dynamic multileaf collimator (DMLC) tracking system to adapt to intrafractional tumor rotation. Materials/Methods: Target rotation was provided by changing the treatment couch angle. The target rotation was measured by a research Calypso system integrated with a real-time DMLC tracking system employed on a Varian linac. The geometric beam-target rotational alignment difference was measured using electronic portal images. The dosimetric accuracy was quantified using a two-dimensional ion chamber array. For each beam, the following five delivery modes were tested: 1) nonrotated target (reference); 2) fixed rotated target with tracking; 3) fixed rotated target without tracking; 4) actively rotating target with tracking; and 5) actively rotating target without tracking. Dosimetric performance of the latter four modes was measured and compared to the reference dose distribution using a 3 mm/3% {gamma}-test. Results: Geometrically, the beam-target rotational alignment difference was 0.3 Degree-Sign {+-} 0.6 Degree-Sign for fixed rotation and 0.3 Degree-Sign {+-} 1.3 Degree-Sign for active rotation. Dosimetrically, the average failure rate for the {gamma}-test for a fixed rotated target was 11% with tracking and 36% without tracking. The average failure rate for an actively rotating target was 9% with tracking and 35% without tracking. Conclusions: For the first time, real-time target rotation has been accurately detected and adapted to during radiation delivery via DMLC tracking. The beam-target rotational alignment difference was mostly within 1 Degree-Sign . Dose distributions to fixed and actively

  9. A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements

    NASA Astrophysics Data System (ADS)

    Kilicarslan, Atilla; Grossman, Robert G.; Contreras-Vidal, Jose Luis

    2016-04-01

    Objective. Non-invasive measurement of human neural activity based on the scalp electroencephalogram (EEG) allows for the development of biomedical devices that interface with the nervous system for scientific, diagnostic, therapeutic, or restorative purposes. However, EEG recordings are often considered as prone to physiological and non-physiological artifacts of different types and frequency characteristics. Among them, ocular artifacts and signal drifts represent major sources of EEG contamination, particularly in real-time closed-loop brain-machine interface (BMI) applications, which require effective handling of these artifacts across sessions and in natural settings. Approach. We extend the usage of a robust adaptive noise cancelling (ANC) scheme ({H}∞ filtering) for removal of eye blinks, eye motions, amplitude drifts and recording biases simultaneously. We also characterize the volume conduction, by estimating the signal propagation levels across all EEG scalp recording areas due to ocular artifact generators. We find that the amplitude and spatial distribution of ocular artifacts vary greatly depending on the electrode location. Therefore, fixed filtering parameters for all recording areas would naturally hinder the true overall performance of an ANC scheme for artifact removal. We treat each electrode as a separate sub-system to be filtered, and without the loss of generality, they are assumed to be uncorrelated and uncoupled. Main results. Our results show over 95-99.9% correlation between the raw and processed signals at non-ocular artifact regions, and depending on the contamination profile, 40-70% correlation when ocular artifacts are dominant. We also compare our results with the offline independent component analysis and artifact subspace reconstruction methods, and show that some local quantities are handled better by our sample-adaptive real-time framework. Decoding performance is also compared with multi-day experimental data from 2 subjects

  10. Adaptive Kalman filtering for real-time mapping of the visual field

    PubMed Central

    Ward, B. Douglas; Janik, John; Mazaheri, Yousef; Ma, Yan; DeYoe, Edgar A.

    2013-01-01

    This paper demonstrates the feasibility of real-time mapping of the visual field for clinical applications. Specifically, three aspects of this problem were considered: (1) experimental design, (2) statistical analysis, and (3) display of results. Proper experimental design is essential to achieving a successful outcome, particularly for real-time applications. A random-block experimental design was shown to have less sensitivity to measurement noise, as well as greater robustness to error in modeling of the hemodynamic impulse response function (IRF) and greater flexibility than common alternatives. In addition, random encoding of the visual field allows for the detection of voxels that are responsive to multiple, not necessarily contiguous, regions of the visual field. Due to its recursive nature, the Kalman filter is ideally suited for real-time statistical analysis of visual field mapping data. An important feature of the Kalman filter is that it can be used for nonstationary time series analysis. The capability of the Kalman filter to adapt, in real time, to abrupt changes in the baseline arising from subject motion inside the scanner and other external system disturbances is important for the success of clinical applications. The clinician needs real-time information to evaluate the success or failure of the imaging run and to decide whether to extend, modify, or terminate the run. Accordingly, the analytical software provides real-time displays of (1) brain activation maps for each stimulus segment, (2) voxel-wise spatial tuning profiles, (3) time plots of the variability of response parameters, and (4) time plots of activated volume. PMID:22100663

  11. Designing Adaptive Low-Dissipative High Order Schemes for Long-Time Integrations. Chapter 1

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sjoegreen, B.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    A general framework for the design of adaptive low-dissipative high order schemes is presented. It encompasses a rather complete treatment of the numerical approach based on four integrated design criteria: (1) For stability considerations, condition the governing equations before the application of the appropriate numerical scheme whenever it is possible; (2) For consistency, compatible schemes that possess stability properties, including physical and numerical boundary condition treatments, similar to those of the discrete analogue of the continuum are preferred; (3) For the minimization of numerical dissipation contamination, efficient and adaptive numerical dissipation control to further improve nonlinear stability and accuracy should be used; and (4) For practical considerations, the numerical approach should be efficient and applicable to general geometries, and an efficient and reliable dynamic grid adaptation should be used if necessary. These design criteria are, in general, very useful to a wide spectrum of flow simulations. However, the demand on the overall numerical approach for nonlinear stability and accuracy is much more stringent for long-time integration of complex multiscale viscous shock/shear/turbulence/acoustics interactions and numerical combustion. Robust classical numerical methods for less complex flow physics are not suitable or practical for such applications. The present approach is designed expressly to address such flow problems, especially unsteady flows. The minimization of employing very fine grids to overcome the production of spurious numerical solutions and/or instability due to under-resolved grids is also sought. The incremental studies to illustrate the performance of the approach are summarized. Extensive testing and full implementation of the approach is forthcoming. The results shown so far are very encouraging.

  12. Time course of shape and category selectivity revealed by EEG rapid adaptation.

    PubMed

    Scholl, Clara A; Jiang, Xiong; Martin, Jacob G; Riesenhuber, Maximilian

    2014-02-01

    A hallmark of human cognition is the ability to rapidly assign meaning to sensory stimuli. It has been suggested that this fast visual object categorization ability is accomplished by a feedforward processing hierarchy consisting of shape-selective neurons in occipito-temporal cortex that feed into task circuits in frontal cortex computing conceptual category membership. We performed an EEG rapid adaptation study to test this hypothesis. Participants were trained to categorize novel stimuli generated with a morphing system that precisely controlled both stimulus shape and category membership. We subsequently performed EEG recordings while participants performed a category matching task on pairs of successively presented stimuli. We used space-time cluster analysis to identify channels and latencies exhibiting selective neural responses. Neural signals before 200 msec on posterior channels demonstrated a release from adaptation for shape changes, irrespective of category membership, compatible with a shape- but not explicitly category-selective neural representation. A subsequent cluster with anterior topography appeared after 200 msec and exhibited release from adaptation consistent with explicit categorization. These signals were subsequently modulated by perceptual uncertainty starting around 300 msec. The degree of category selectivity of the anterior signals was strongly predictive of behavioral performance. We also observed a posterior category-selective signal after 300 msec exhibiting significant functional connectivity with the initial anterior category-selective signal. In summary, our study supports the proposition that perceptual categorization is accomplished by the brain within a quarter second through a largely feedforward process culminating in frontal areas, followed by later category-selective signals in posterior regions. PMID:24001003

  13. An Adaptive Framework for Real-Time ECG Transmission in Mobile Environments

    PubMed Central

    2014-01-01

    Wireless electrocardiogram (ECG) monitoring involves the measurement of ECG signals and their timely transmission over wireless networks to remote healthcare professionals. However, fluctuations in wireless channel conditions pose quality-of-service challenges for real-time ECG monitoring services in a mobile environment. We present an adaptive framework for layered coding and transmission of ECG data that can cope with a time-varying wireless channel. The ECG is segmented into layers with differing importance with respect to the quality of the reconstructed signal. According to this observation, we have devised a simple and efficient real-time scheduling algorithm based on the earliest deadline first (EDF) policy, which decides the order of transmitting or retransmitting packets that contain ECG data at any given time for the delivery of scalable ECG data over a lossy channel. The algorithm takes into account the differing priorities of packets in each layer, which prevents the perceived quality of the reconstructed ECG signal from degrading abruptly as channel conditions worsen, while using the available bandwidth efficiently. Extensive simulations demonstrate this improvement in perceived quality. PMID:25097886

  14. Real Time Updating Genetic Network Programming for Adapting to the Change of Stock Prices

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro

    The key in stock trading model is to take the right actions for trading at the right time, primarily based on the accurate forecast of future stock trends. Since an effective trading with given information of stock prices needs an intelligent strategy for the decision making, we applied Genetic Network Programming (GNP) to creating a stock trading model. In this paper, we propose a new method called Real Time Updating Genetic Network Programming (RTU-GNP) for adapting to the change of stock prices. There are three important points in this paper: First, the RTU-GNP method makes a stock trading decision considering both the recommendable information of technical indices and the candlestick charts according to the real time stock prices. Second, we combine RTU-GNP with a Sarsa learning algorithm to create the programs efficiently. Also, sub-nodes are introduced in each judgment and processing node to determine appropriate actions (buying/selling) and to select appropriate stock price information depending on the situation. Third, a Real Time Updating system has been firstly introduced in our paper considering the change of the trend of stock prices. The experimental results on the Japanese stock market show that the trading model with the proposed RTU-GNP method outperforms other models without real time updating. We also compared the experimental results using the proposed method with Buy&Hold method to confirm its effectiveness, and it is clarified that the proposed trading model can obtain much higher profits than Buy&Hold method.

  15. Vibrational resonance in adaptive small-world neuronal networks with spike-timing-dependent plasticity

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang; Deng, Bin; Wei, Xile

    2015-10-01

    The phenomenon of vibrational resonance is investigated in adaptive Newman-Watts small-world neuronal networks, where the strength of synaptic connections between neurons is modulated based on spike-timing-dependent plasticity. Numerical results demonstrate that there exists appropriate amplitude of high-frequency driving which is able to optimize the neural ensemble response to the weak low-frequency periodic signal. The effect of networked vibrational resonance can be significantly affected by spike-timing-dependent plasticity. It is shown that spike-timing-dependent plasticity with dominant depression can always improve the efficiency of vibrational resonance, and a small adjusting rate can promote the transmission of weak external signal in small-world neuronal networks. In addition, the network topology plays an important role in the vibrational resonance in spike-timing-dependent plasticity-induced neural systems, where the system response to the subthreshold signal is maximized by an optimal network structure. Furthermore, it is demonstrated that the introduction of inhibitory synapses can considerably weaken the phenomenon of vibrational resonance in the hybrid small-world neuronal networks with spike-timing-dependent plasticity.

  16. Multi time-step wavefront reconstruction for tomographic adaptive-optics systems.

    PubMed

    Ono, Yoshito H; Akiyama, Masayuki; Oya, Shin; Lardiére, Olivier; Andersen, David R; Correia, Carlos; Jackson, Kate; Bradley, Colin

    2016-04-01

    In tomographic adaptive-optics (AO) systems, errors due to tomographic wavefront reconstruction limit the performance and angular size of the scientific field of view (FoV), where AO correction is effective. We propose a multi time-step tomographic wavefront reconstruction method to reduce the tomographic error by using measurements from both the current and previous time steps simultaneously. We further outline the method to feed the reconstructor with both wind speed and direction of each turbulence layer. An end-to-end numerical simulation, assuming a multi-object AO (MOAO) system on a 30 m aperture telescope, shows that the multi time-step reconstruction increases the Strehl ratio (SR) over a scientific FoV of 10 arc min in diameter by a factor of 1.5-1.8 when compared to the classical tomographic reconstructor, depending on the guide star asterism and with perfect knowledge of wind speeds and directions. We also evaluate the multi time-step reconstruction method and the wind estimation method on the RAVEN demonstrator under laboratory setting conditions. The wind speeds and directions at multiple atmospheric layers are measured successfully in the laboratory experiment by our wind estimation method with errors below 2  ms-1. With these wind estimates, the multi time-step reconstructor increases the SR value by a factor of 1.2-1.5, which is consistent with a prediction from the end-to-end numerical simulation. PMID:27140785

  17. A Time Scheduling Model of Logistics Service Supply Chain Based on the Customer Order Decoupling Point: A Perspective from the Constant Service Operation Time

    PubMed Central

    Yang, Yi; Xu, Haitao; Liu, Xiaoyan; Wang, Yijia; Liang, Zhicheng

    2014-01-01

    In mass customization logistics service, reasonable scheduling of the logistics service supply chain (LSSC), especially time scheduling, is benefit to increase its competitiveness. Therefore, the effect of a customer order decoupling point (CODP) on the time scheduling performance should be considered. To minimize the total order operation cost of the LSSC, minimize the difference between the expected and actual time of completing the service orders, and maximize the satisfaction of functional logistics service providers, this study establishes an LSSC time scheduling model based on the CODP. Matlab 7.8 software is used in the numerical analysis for a specific example. Results show that the order completion time of the LSSC can be delayed or be ahead of schedule but cannot be infinitely advanced or infinitely delayed. Obtaining the optimal comprehensive performance can be effective if the expected order completion time is appropriately delayed. The increase in supply chain comprehensive performance caused by the increase in the relationship coefficient of logistics service integrator (LSI) is limited. The relative concern degree of LSI on cost and service delivery punctuality leads to not only changes in CODP but also to those in the scheduling performance of the LSSC. PMID:24715818

  18. A time scheduling model of logistics service supply chain based on the customer order decoupling point: a perspective from the constant service operation time.

    PubMed

    Liu, Weihua; Yang, Yi; Xu, Haitao; Liu, Xiaoyan; Wang, Yijia; Liang, Zhicheng

    2014-01-01

    In mass customization logistics service, reasonable scheduling of the logistics service supply chain (LSSC), especially time scheduling, is benefit to increase its competitiveness. Therefore, the effect of a customer order decoupling point (CODP) on the time scheduling performance should be considered. To minimize the total order operation cost of the LSSC, minimize the difference between the expected and actual time of completing the service orders, and maximize the satisfaction of functional logistics service providers, this study establishes an LSSC time scheduling model based on the CODP. Matlab 7.8 software is used in the numerical analysis for a specific example. Results show that the order completion time of the LSSC can be delayed or be ahead of schedule but cannot be infinitely advanced or infinitely delayed. Obtaining the optimal comprehensive performance can be effective if the expected order completion time is appropriately delayed. The increase in supply chain comprehensive performance caused by the increase in the relationship coefficient of logistics service integrator (LSI) is limited. The relative concern degree of LSI on cost and service delivery punctuality leads to not only changes in CODP but also to those in the scheduling performance of the LSSC. PMID:24715818

  19. Measurement of homonuclear magnetic dipole-dipole interactions in multiple 1/2-spin systems using constant-time DQ-DRENAR NMR

    NASA Astrophysics Data System (ADS)

    Ren, Jinjun; Eckert, Hellmut

    2015-11-01

    A new pulse sequence entitled DQ-DRENAR (Double-Quantum based Dipolar Recoupling Effects Nuclear Alignment Reduction) was recently described for the quantitative measurement of magnetic dipole-dipole interactions in homonuclear spin-1/2 systems involving multiple nuclei. As described in the present manuscript, the efficiency and performance of this sequence can be significantly improved, if the measurement is done in the constant-time mode. We describe both the theoretical analysis of this method and its experimental validation of a number of crystalline model compounds, considering both symmetry-based and back-to-back (BABA) DQ-coherence excitation schemes. Based on the combination of theoretical analysis and experimental results we discuss the effect of experimental parameters such as the chemical shift anisotropy (CSA), the spinning rate, and the radio frequency field inhomogeneity upon its performance. Our results indicate that constant-time (CT-) DRENAR is a method of high efficiency and accuracy for compounds with multiple homonuclear spin systems with particular promise for the analysis of stronger-coupled and short T2 spin systems.

  20. Frequency Ratio of Two Optical Clock Transitions in Yb+ 171 and Constraints on the Time Variation of Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Godun, R. M.; Nisbet-Jones, P. B. R.; Jones, J. M.; King, S. A.; Johnson, L. A. M.; Margolis, H. S.; Szymaniec, K.; Lea, S. N.; Bongs, K.; Gill, P.

    2014-11-01

    Singly ionized ytterbium, with ultranarrow optical clock transitions at 467 and 436 nm, is a convenient system for the realization of optical atomic clocks and tests of present-day variation of fundamental constants. We present the first direct measurement of the frequency ratio of these two clock transitions, without reference to a cesium primary standard, and using the same single ion of Yb+ 171 . The absolute frequencies of both transitions are also presented, each with a relative standard uncertainty of 6 ×1 0-16. Combining our results with those from other experiments, we report a threefold improvement in the constraint on the time variation of the proton-to-electron mass ratio, μ ˙ /μ =0.2 (1.1 )×1 0-16 yr-1 , along with an improved constraint on time variation of the fine structure constant, α ˙ /α =-0.7 (2.1 )×1 0-17 yr-1 .

  1. Adaptive algorithm for blind separation from noisy time-varying mixtures.

    PubMed

    Koivunen, V; Enescu, M; Oja, E

    2001-10-01

    This article addresses the problem of blind source separation from time-varying noisy mixtures using a state variable model and recursive estimation. An estimate of each source signal is produced real time at the arrival of new observed mixture vector. The goal is to perform the separation and attenuate noise simultaneously, as well as to adapt to changes that occur in the mixing system. The observed data are projected along the eigenvectors in signal subspace. The subspace is tracked real time. Source signals are modeled using low-order AR (autoregressive) models, and noise is attenuated by trading off between the model and the information provided by measurements. The type of zero-memory nonlinearity needed in separation is determined on-line. Predictor-corrector filter structures are proposed, and their performance is investigated in simulation using biomedical and communications signals at different noise levels and a time-varying mixing system. In quantitative comparison to other widely used methods, significant improvement in output signal-to-noise ratio is achieved. PMID:11571001

  2. Uncertainties of reverberation time estimation via adaptively identified room impulse responses.

    PubMed

    Wu, Lifu; Qiu, Xiaojun; Burnett, Ian; Guo, Yecai

    2016-03-01

    This paper investigates the reverberation time estimation methods which employ backward integration of adaptively identified room impulse responses (RIRs). Two kinds of conditions are considered; the first is the "ideal condition" where the anechoic and reverberant signals are both known a priori so that the RIRs can be identified using system identification methods. The second is that only the reverberant speech signal is available, and blind identification of the RIRs via dereverberation is employed for reverberation time estimation. Results show that under the "ideal condition," the average relative errors in 7 octave bands are less than 2% for white noise and 15% for speech, respectively, when both the anechoic and reverberant signals are available. In contrast, under the second condition, the average relative errors of the blindly identified RIR-based reverberation time estimation are around 20%-30% except the 63 Hz octave band. The fluctuation of reverberation times estimated under the second condition is more severe than that under the ideal condition and the relative error for low frequency octave bands is larger than that for high octave bands under both conditions. PMID:27036246

  3. Directional selection for flowering time leads to adaptive evolution in Raphanus raphanistrum (Wild radish).

    PubMed

    Ashworth, Michael B; Walsh, Michael J; Flower, Ken C; Vila-Aiub, Martin M; Powles, Stephen B

    2016-04-01

    Herbicides have been the primary tool for controlling large populations of yield depleting weeds from agro-ecosystems, resulting in the evolution of widespread herbicide resistance. In response, nonherbicidal techniques have been developed which intercept weed seeds at harvest before they enter the soil seed bank. However, the efficiency of these techniques allows an intense selection for any trait that enables weeds to evade collection, with early-flowering ecotypes considered likely to result in early seed shedding. Using a field-collected wild radish population, five recurrent generations were selected for early maturity and three generations for late maturity. Phenology associated with flowering time and growth traits were measured. Our results demonstrate the adaptive capacity of wild radish to halve its time to flowering following five generations of early-flowering selection. Early-maturing phenotypes had reduced height and biomass at maturity, leading to less competitive, more prostrate growth forms. Following three generations of late-flowering selection, wild radish doubled its time to flowering time leading to increased biomass and flowering height at maturity. This study demonstrates the potential for the rapid evolution in growth traits in response to highly effective seed collection techniques that imposed a selection on weed populations within agro-ecosystems at harvest. PMID:27099626

  4. Wavelet-Based Speech Enhancement Using Time-Adapted Noise Estimation

    NASA Astrophysics Data System (ADS)

    Lei, Sheau-Fang; Tung, Ying-Kai

    Spectral subtraction is commonly used for speech enhancement in a single channel system because of the simplicity of its implementation. However, this algorithm introduces perceptually musical noise while suppressing the background noise. We propose a wavelet-based approach in this paper for suppressing the background noise for speech enhancement in a single channel system. The wavelet packet transform, which emulates the human auditory system, is used to decompose the noisy signal into critical bands. Wavelet thresholding is then temporally adjusted with the noise power by time-adapted noise estimation. The proposed algorithm can efficiently suppress the noise while reducing speech distortion. Experimental results, including several objective measurements, show that the proposed wavelet-based algorithm outperforms spectral subtraction and other wavelet-based denoising approaches for speech enhancement for nonstationary noise environments.

  5. Real-time wavefront control for the PALM-3000 high order adaptive optics system

    NASA Astrophysics Data System (ADS)

    Truong, Tuan N.; Bouchez, Antonin H.; Dekany, Richard G.; Shelton, Jean C.; Troy, Mitchell; Angione, John R.; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Roberts, Jennifer E.

    2008-07-01

    We present a cost-effective scalable real-time wavefront control architecture based on off-the-shelf graphics processing units hosted in an ultra-low latency, high-bandwidth interconnect PC cluster environment composed of modules written in the component-oriented language of nesC. We demonstrate the architecture is capable of supporting the most computation and memory intensive wavefront reconstruction method (vector-matrix-multiply) at frame rates up to 2 KHz with latency under 250 μs for the PALM-3000 adaptive optics systems, a state-of-the-art upgrade on the 5.1 meter Hale Telescope that consists of a 64x64 subaperture Shack-Hartmann wavefront sensor and a 3368 active actuator high order deformable mirror in series with a 349 actuator "woofer" DM. This architecture can easily scale up to support larger AO systems at higher rates and lower latency.

  6. Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Liu, Derong; Wang, Ding

    2014-03-01

    In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.

  7. Riemannian mean and space-time adaptive processing using projection and inversion algorithms

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Barbaresco, Frédéric

    2013-05-01

    The estimation of the covariance matrix from real data is required in the application of space-time adaptive processing (STAP) to an airborne ground moving target indication (GMTI) radar. A natural approach to estimation of the covariance matrix that is based on the information geometry has been proposed. In this paper, the output of the Riemannian mean is used in inversion and projection algorithms. It is found that the projection class of algorithms can yield very significant gains, even when the gains due to inversion-based algorithms are marginal over standard algorithms. The performance of the projection class of algorithms does not appear to be overly sensitive to the projected subspace dimension.

  8. Real-time infrared gas detection based on an adaptive Savitzky-Golay algorithm

    NASA Astrophysics Data System (ADS)

    Li, Jingsong; Deng, Hao; Li, Pengfei; Yu, Benli

    2015-08-01

    Based on the Savitzky-Golay filter, we have developed in the present study a simple but robust method for real-time processing of tunable diode laser absorption spectroscopy (TDLAS) signals. Our method was developed to resolve the blindness of selecting the input filter parameters and to mitigate potential signal distortion induced in digital signal processing. Application of the developed adaptive Savitzky-Golay filter algorithm to the simulated and experimentally observed signals and comparison with the wavelet-based de-noising technique indicate that the newly developed method is effective in obtaining high-quality TDLAS data for a wide variety of applications including atmospheric environmental monitoring and industrial processing control.

  9. Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming.

    PubMed

    Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan

    2014-12-01

    In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method. PMID:25420238

  10. A real-time digital adaptive tracking controller for a dc motor

    SciTech Connect

    Hwang, S.

    1995-12-31

    The objective of this design is to implement an accurate and cost effective adaptive tracking controller for a DC motor using an 80C196kr microcontroller system. The on-chip embedded functions, optical quadrature encoder and a Pulse Width Modulated (PWM) waveform generator, are used to measure motor positions and generate DC voltages to drive a DC motor respectively. A homing routine that incorporates a photo electric sensor is used to position the motor at a reference point. Users communicate with the system through a 4x4 matrix keypad and 20x2 LCD display or through a PC. The experimental results have shown the validity of this simple microcontroller-based digital control system. This system is performed on a real-time basis, and the control law can be easily replaced by any advanced control laws without changing the hardware setup.

  11. An adaptive learning rate for RBFNN using time-domain feedback analysis.

    PubMed

    Ali, Syed Saad Azhar; Moinuddin, Muhammad; Raza, Kamran; Adil, Syed Hasan

    2014-01-01

    Radial basis function neural networks are used in a variety of applications such as pattern recognition, nonlinear identification, control and time series prediction. In this paper, the learning algorithm of radial basis function neural networks is analyzed in a feedback structure. The robustness of the learning algorithm is discussed in the presence of uncertainties that might be due to noisy perturbations at the input or to modeling mismatch. An intelligent adaptation rule is developed for the learning rate of RBFNN which gives faster convergence via an estimate of error energy while giving guarantee to the l 2 stability governed by the upper bounding via small gain theorem. Simulation results are presented to support our theoretical development. PMID:24987745

  12. Real-Time Wavefront Control for the PALM-3000 High Order Adaptive Optics System

    NASA Technical Reports Server (NTRS)

    Truong, Tuan N.; Bouchez, Antonin H.; Dekany, Richard G.; Guiwits, Stephen R.; Roberts, Jennifer E.; Troy, Mitchell

    2008-01-01

    We present a cost-effective scalable real-time wavefront control architecture based on off-the-shelf graphics processing units hosted in an ultra-low latency, high-bandwidth interconnect PC cluster environment composed of modules written in the component-oriented language of nesC. The architecture enables full-matrix reconstruction of the wavefront at up to 2 KHz with latency under 250 us for the PALM-3000 adaptive optics systems, a state-of-the-art upgrade on the 5.1 meter Hale Telescope that consists of a 64 x 64 subaperture Shack-Hartmann wavefront sensor and a 3368 active actuator high order deformable mirror in series with a 241 active actuator tweeter DM. The architecture can easily scale up to support much larger AO systems at higher rates and lower latency.

  13. A stereoscopic movie player with real-time content adaptation to the display geometry

    NASA Astrophysics Data System (ADS)

    Duch"ne, Sylvain; Lambers, Martin; Devernay, Frédéric

    2012-03-01

    3D shape perception in a stereoscopic movie depends on several depth cues, including stereopsis. For a given content, the depth perceived from stereopsis highly depends on the camera setup as well as on the display size and distance. This can lead to disturbing depth distortions such as the cardboard effect or the puppet theater effect. As more and more stereoscopic 3D content is produced in 3D (feature movies, documentaries, sports broadcasts), a key point is to get the same 3D experience on any display. For this purpose, perceived depth distortions can be resolved by performing view synthesis. We propose a real time implementation of a stereoscopic player based on the open-source software Bino, which is able to adapt a stereoscopic movie to any display, based on user-provided camera and display parameters.

  14. Field and polarity dependence of time-to-resistance increase in Fe-O films studied by constant voltage stress method

    NASA Astrophysics Data System (ADS)

    Eriguchi, Koji; Wei, Zhiqiang; Takagi, Takeshi; Ohta, Hiroaki; Ono, Kouichi

    2009-01-01

    Constant voltage stress (CVS) was applied to Fe-O films prepared by a sputtering process to investigate a stress-induced resistance increase leading to a fundamental mechanism for switching behaviors. Under the CVS, an abrupt resistance increase was found for both stress polarities. A conduction mechanism after the resistance increase exhibited non-Ohmic transport. The time-to-resistance increase (tr) under the CVS was revealed to strongly depend on stress voltage as well as the polarity. From a polarity-dependent resistance increase determined by a time-zero measurement, the voltage and polarity-dependent tr were discussed on the basis of field- and structure-enhanced thermochemical reaction mechanisms.

  15. Field and polarity dependence of time-to-resistance increase in Fe-O films studied by constant voltage stress method

    SciTech Connect

    Eriguchi, Koji; Ohta, Hiroaki; Ono, Kouichi; Wei Zhiqiang; Takagi, Takeshi

    2009-01-05

    Constant voltage stress (CVS) was applied to Fe-O films prepared by a sputtering process to investigate a stress-induced resistance increase leading to a fundamental mechanism for switching behaviors. Under the CVS, an abrupt resistance increase was found for both stress polarities. A conduction mechanism after the resistance increase exhibited non-Ohmic transport. The time-to-resistance increase (t{sub r}) under the CVS was revealed to strongly depend on stress voltage as well as the polarity. From a polarity-dependent resistance increase determined by a time-zero measurement, the voltage and polarity-dependent t{sub r} were discussed on the basis of field- and structure-enhanced thermochemical reaction mechanisms.

  16. Real-time optimal adaptation for planetary geometry and texture: 4-8 tile hierarchies.

    PubMed

    Hwa, Lok M; Duchaineau, Mark A; Joy, Kenneth I

    2005-01-01

    The real-time display of huge geometry and imagery databases involves view-dependent approximations, typically through the use of precomputed hierarchies that are selectively refined at runtime. A classic motivating problem is terrain visualization in which planetary databases involving billions of elevation and color values are displayed on PC graphics hardware at high frame rates. This paper introduces a new diamond data structure for the basic selective-refinement processing, which is a streamlined method of representing the well-known hierarchies of right triangles that have enjoyed much success in real-time, view-dependent terrain display. Regular-grid tiles are proposed as the payload data per diamond for both geometry and texture. The use of 4-8 grid refinement and coarsening schemes allows level-of-detail transitions that are twice as gradual as traditional quadtree-based hierarchies, as well as very high-quality low-pass filtering compared to subsampling-based hierarchies. An out-of-core storage organization is introduced based on Sierpinski indices per diamond, along with a tile preprocessing framework based on fine-to-coarse, same-level, and coarse-to-fine gathering operations. To attain optimal frame-to-frame coherence and processing-order priorities, dual split and merge queues are developed similar to the Realtime Optimally Adapting Meshes (ROAM) Algorithm, as well as an adaptation of the ROAM frustum culling technique. Example applications of lake-detection and procedural terrain generation demonstrate the flexibility of the tile processing framework. PMID:16138547

  17. Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty

    NASA Astrophysics Data System (ADS)

    Armah, Stephen Kofi

    Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining 'go-to-goal', 'avoid-obstacle', and 'follow-wall' controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor's nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized

  18. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    SciTech Connect

    Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis; Rude, Bruce S.; Bluhm, Hendrik; Neppl, Stefan; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Fraund, Matthew W.; Khurmi, Champak; Wright, Travis W.; Schoenlein, Robert W.; Gessner, Oliver; Hertlein, Marcus P.; Tyliszczak, Tolek; Huse, Nils; and others

    2014-09-15

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ∼0.1 mm spatial resolution and ∼150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ∼9 ns at a pass energy of 50 eV and ∼1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular

  19. Manipulation of visual biofeedback during gait with a time delayed adaptive Virtual Mirror Box

    PubMed Central

    2014-01-01

    Background A mirror placed in the mid-sagittal plane of the body has been used to reduce phantom limb pain and improve movement function in medical conditions characterised by asymmetrical movement control. The mirrored illusion of unimpaired limb movement during gait might enhance the effect, but a physical mirror is only capable of showing parallel movement of limbs in real time typically while sitting. We aimed to overcome the limitations of physical mirrors by developing and evaluating a Virtual Mirror Box which delays the mirrored image of limbs during gait to ensure temporal congruency with the impaired physical limb. Methods An application was developed in the CAREN system’s D-Flow software which mirrors selected limbs recorded by real-time motion capture to the contralateral side. To achieve phase shifted movement of limbs during gait, the mirrored virtual limbs are also delayed by a continuously calculated amount derived from past gait events. In order to accommodate non-normal proportions and offsets of pathological gait, the movements are morphed so that the physical and virtual contact events match on the mirrored side. Our method was tested with a trans-femoral amputee walking on a treadmill using his artificial limb. Joint angles of the elbow and knee were compared between the intact and mirrored side using cross correlation, root mean squared difference and correlation coefficients. Results The time delayed adaptive virtual mirror box produced a symmetrical looking gait of the avatar coupled with a reduction of the difference between the intact and virtual knee and elbow angles (10.86° and 5.34° reduced to 4.99° and 2.54° respectively). Dynamic morphing of the delay caused a non-significant change of toe-off events when compared to delaying by 50% of the previous gait cycle, as opposed to the initial contact events which showed a practically negligible but statistically significant increase (p < 0.05). Conclusions Adding an adaptive time

  20. The method of constant stimuli is inefficient

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Fitzhugh, Andrew

    1990-01-01

    Simpson (1988) has argued that the method of constant stimuli is as efficient as adaptive methods of threshold estimation and has supported this claim with simulations. It is shown that Simpson's simulations are not a reasonable model of the experimental process and that more plausible simulations confirm that adaptive methods are much more efficient that the method of constant stimuli.

  1. Toward fast feature adaptation and localization for real-time face recognition systems

    NASA Astrophysics Data System (ADS)

    Zuo, Fei; de With, Peter H.

    2003-06-01

    In a home environment, video surveillance employing face detection and recognition is attractive for new applications. Facial feature (e.g. eyes and mouth) localization in the face is an essential task for face recognition because it constitutes an indispensable step for face geometry normalization. This paper presents a new and efficient feature localization approach for real-time personal surveillance applications with low-quality images. The proposed approach consists of three major steps: (1) self-adaptive iris tracing, which is preceded by a trace-point selection process with multiple initializations to overcome the local convergence problem, (2) eye structure verification using an eye template with limited deformation freedom, and (3) eye-pair selection based on a combination of metrics. We have tested our facial feature localization method on about 100 randomly selected face images from the AR database and 30 face images downloaded from the Internet. The results show that our approach achieves a correct detection rate of 96%. Since our eye-selection technique does not involve time-consuming deformation processes, it yields relatively fast processing. The proposed algorithm has been successfully applied to a real-time home video surveillance system and proven to be an effective and computationally efficient face normalization method preceding the face recognition.

  2. A novel adaptive, real-time algorithm to detect gait events from wearable sensors.

    PubMed

    Chia Bejarano, Noelia; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Monticone, Marco; Ferrante, Simona

    2015-05-01

    A real-time, adaptive algorithm based on two inertial and magnetic sensors placed on the shanks was developed for gait-event detection. For each leg, the algorithm detected the Initial Contact (IC), as the minimum of the flexion/extension angle, and the End Contact (EC) and the Mid-Swing (MS), as minimum and maximum of the angular velocity, respectively. The algorithm consisted of calibration, real-time detection, and step-by-step update. Data collected from 22 healthy subjects (21 to 85 years) walking at three self-selected speeds were used to validate the algorithm against the GaitRite system. Comparable levels of accuracy and significantly lower detection delays were achieved with respect to other published methods. The algorithm robustness was tested on ten healthy subjects performing sudden speed changes and on ten stroke subjects (43 to 89 years). For healthy subjects, F1-scores of 1 and mean detection delays lower than 14 ms were obtained. For stroke subjects, F1-scores of 0.998 and 0.944 were obtained for IC and EC, respectively, with mean detection delays always below 31 ms. The algorithm accurately detected gait events in real time from a heterogeneous dataset of gait patterns and paves the way for the design of closed-loop controllers for customized gait trainings and/or assistive devices. PMID:25069118

  3. Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems.

    PubMed

    Liu, Derong; Wei, Qinglai

    2014-03-01

    This paper is concerned with a new discrete-time policy iteration adaptive dynamic programming (ADP) method for solving the infinite horizon optimal control problem of nonlinear systems. The idea is to use an iterative ADP technique to obtain the iterative control law, which optimizes the iterative performance index function. The main contribution of this paper is to analyze the convergence and stability properties of policy iteration method for discrete-time nonlinear systems for the first time. It shows that the iterative performance index function is nonincreasingly convergent to the optimal solution of the Hamilton-Jacobi-Bellman equation. It is also proven that any of the iterative control laws can stabilize the nonlinear systems. Neural networks are used to approximate the performance index function and compute the optimal control law, respectively, for facilitating the implementation of the iterative ADP algorithm, where the convergence of the weight matrices is analyzed. Finally, the numerical results and analysis are presented to illustrate the performance of the developed method. PMID:24807455

  4. Seismic random noise attenuation based on adaptive time-frequency peak filtering

    NASA Astrophysics Data System (ADS)

    Deng, Xinhuan; Ma, Haitao; Li, Yue; Zeng, Qian

    2015-02-01

    Time-frequency peak filtering (TFPF) method uses a specific window with fixed length to recover band-limited signal in stationary random noise. However, the derivatives of signal such as seismic wavelets may change rapidly in some short time intervals. In this case, TFPF equipped with fixed window length will not provide an optimal solution. In this letter, we present an adaptive version of TFPF for seismic random noise attenuation. In our version, the improved intersection of confidence intervals combined with short-time energy criterion is used to preprocess the noisy signal. And then, we choose an appropriate threshold to divide the noisy signal into signal, buffer and noise. Different optimal window lengths are used in each type of segments. We test the proposed method on both synthetic and field seismic data. The experimental results illustrate that the proposed method makes the degree of amplitude preservation raise more than 10% and signal-to-noise (SNR) improve 2-4 dB compared with the original algorithm.

  5. Real-time detection of generic objects using objectness estimation and locally adaptive regression kernels matching

    NASA Astrophysics Data System (ADS)

    Zheng, Zhihui; Gao, Lei; Xiao, Liping; Zhou, Bin; Gao, Shibo

    2015-12-01

    Our purpose is to develop a detection algorithm capable of searching for generic interest objects in real time without large training sets and long-time training stages. Instead of the classical sliding window object detection paradigm, we employ an objectness measure to produce a small set of candidate windows efficiently using Binarized Normed Gradients and a Laplacian of Gaussian-like filter. We then extract Locally Adaptive Regression Kernels (LARKs) as descriptors both from a model image and the candidate windows which measure the likeness of a pixel to its surroundings. Using a matrix cosine similarity measure, the algorithm yields a scalar resemblance map, indicating the likelihood of similarity between the model and the candidate windows. By employing nonparametric significance tests and non-maxima suppression, we detect the presence of objects similar to the given model. Experiments show that the proposed detection paradigm can automatically detect the presence, the number, as well as location of similar objects to the given model. The high quality and efficiency of our method make it suitable for real time multi-category object detection applications.

  6. Improved tomographic reconstructions using adaptive time-dependent intensity normalization

    PubMed Central

    Titarenko, Valeriy; Titarenko, Sofya; Withers, Philip J.; De Carlo, Francesco; Xiao, Xianghui

    2010-01-01

    The first processing step in synchrotron-based micro-tomography is the normalization of the projection images against the background, also referred to as a white field. Owing to time-dependent variations in illumination and defects in detection sensitivity, the white field is different from the projection background. In this case standard normalization methods introduce ring and wave artefacts into the resulting three-dimensional reconstruction. In this paper the authors propose a new adaptive technique accounting for these variations and allowing one to obtain cleaner normalized data and to suppress ring and wave artefacts. The background is modelled by the product of two time-dependent terms representing the illumination and detection stages. These terms are written as unknown functions, one scaled and shifted along a fixed direction (describing the illumination term) and one translated by an unknown two-dimensional vector (describing the detection term). The proposed method is applied to two sets (a stem Salix variegata and a zebrafish Danio rerio) acquired at the parallel beam of the micro-tomography station 2-BM at the Advanced Photon Source showing significant reductions in both ring and wave artefacts. In principle the method could be used to correct for time-dependent phenomena that affect other tomographic imaging geometries such as cone beam laboratory X-ray computed tomography. PMID:20724791

  7. DRAGON, the Durham real-time, tomographic adaptive optics test bench: progress and results

    NASA Astrophysics Data System (ADS)

    Reeves, Andrew P.; Myers, Richard M.; Morris, Timothy J.; Basden, Alastair G.; Bharmal, Nazim A.; Rolt, Stephen; Bramall, David G.; Dipper, Nigel A.; Younger, Edward J.

    2014-08-01

    DRAGON is a real-time, tomographic Adaptive Optics test bench currently under development at Durham University. Optical and mechanical design work for DRAGON is now complete, and the system is close to becoming fully operational. DRAGON emulates current 4.2 m and 8 m telescopes, and can also be used to investigate ELT scale issues. The full system features 4 Laser Guide Star (LGS) Wavefront Sensors (WFS), 3 Natural Guide Star (NGS) WFSs and one Truth Sensor, all of which are 31 × 31 sub-aperture Shack-Hartmann WFS. Two Deformable Mirrors (DMs), a Boston MEMS Kilo DM and a Xinetics 97 actuator DM, correct for turbulence induced aberrations and these can be configured to be either open or closed loop of the WFS. A novel method of LGS emulation is implemented which includes the effects of uplink turbulence and elongation in real-time. The atmosphere is emulated by 4 rotating phase screens which can be translated in real-time to replicate altitude evolution of turbulent layers. DRAGON will be used to extensively study tomographic AO algorithms, such as those required for Multi-Object AO. As DRAGON has been designed to be compatible with CANARY, the MOAO demonstrator, results can be compared to those from the CANARY MOAO demonstrator on the 4.2m William Herschel Telescope. We present here an overview of the current status of DRAGON and some early results, including investigations into the validity of the LGS emulation method.

  8. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, M.; Cherubini, P.; Fravolini, G.; Ascher, J.; Schärer, M.; Synal, H.-A.; Bertoldi, D.; Camin, F.; Larcher, R.; Egli, M.

    2015-09-01

    Due to the large size and highly heterogeneous spatial distribution of deadwood, the time scales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests have been poorly investigated and are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the five-decay class system commonly employed for forest surveys, based on a macromorphological and visual assessment. For the decay classes 1 to 3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) and some others not having enough tree rings, radiocarbon dating was used. In addition, density, cellulose and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model. In the decay classes 1 to 3, the ages of the CWD were similar varying between 1 and 54 years for spruce and 3 and 40 years for larch with no significant differences between the classes; classes 1-3 are therefore not indicative for deadwood age. We found, however, distinct tree species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were 0.012 to 0.018 yr-1 for spruce and 0.005 to 0.012 yr-1 for larch. Cellulose and lignin time trends half-lives (using a multiple-exponential model) could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 yr for spruce and 50 yr for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD.

  9. Full solution, for crystal class 3m, of the Holland-EerNisse complex material-constant theory of lossy piezoelectrics for harmonic time dependence.

    PubMed

    Piquette, Jean C; McLaughlin, Elizabeth A

    2007-06-01

    A complex material-constant theory of lossy piezoelectrics is fully solved for crystal class 3m for harmonic time dependence of the fields and stresses. A new demonstration that the theory's eigen coupling factor equation applies to the lossy alternating current (AC) case also is given. The solution presented for crystal class 3m provides a complete orthonormal set of eigenvectors and eigenvalues for the eigen coupling factor problem, and it also provides a complete orthonormal set of eigenvectors and eigenvalues for the eigen loss tangent problem, for this crystal class. It is shown that two positive coupling factors are sufficient to express an arbitrary 3m crystal state. Despite the complex nature of the material constants, the Holland-EerNisse theory produces fully real expressions for the coupling factors. The loss tangent eigenvalues also are fully real and positive. The loss eigenstates are important because driving a crystal in a loss eigenstate tends to minimize the impact of material losses. Given also is a set of loss inequalities for crystal class 3m. The loss inequalities of crystal class 6mm are recovered from these when d22 and s(E)14 both vanish. PMID:17571823

  10. Real-time nutrient monitoring in rivers: adaptive sampling strategies, technological challenges and future directions

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Bradley, Chris

    2016-04-01

    Excessive nutrient concentrations in river waters threaten aquatic ecosystem functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive spatiotemporal patterns in nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of continuous in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. However, such instruments can be costly to run and difficult to maintain (e.g. due to high power consumption and memory requirements), leading to trade-offs between temporal and spatial monitoring resolutions. Here, we highlight how adaptive monitoring strategies, comprising a mixture of temporal sample frequencies controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid environmental changes. In addition, we discuss the advantages and disadvantages of current nutrient monitoring techniques, and suggest new research directions based on emerging technologies and highlight how these might improve: 1) monitoring strategies, and 2) understanding of linkages between catchment processes and river nutrient fluxes.

  11. An Adaptive Algorithm for Detection of Onset Times of Low Amplitude Seismic Phases Based on Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Gravirov, V. V.; Kislov, K. V.; Ovchinnikova, T.

    2010-12-01

    A very important task for detection of onset times of low amplitude seismic phases is to identify the type of seismic source, or the problem of seismic signal classification. The problem consists in using the seismogram to find the cause of the recorded event, that is, to detect an earthquake in natural noise. The ultimate goal of processing is to measure the characteristics of a useful signal in a situation where the seismogram is a complicated superposition of very different types of wave motion. The very process of obtaining these characteristics can be viewed as a mathematical problem in its own right. The process is based on a search for patterns that connect the original signal to the physical parameters listed above, as well as formulating these patterns as efficient computational techniques. Unlike the Fourier transform, the wavelet transform provides a 2D representation of the signal under study, frequency and time being treated as independent variables. As a result, we are able to examine the properties of the signal in a physical space (the time) and a scale space (the frequency). The detection of events in noise can successfully be dealt with by neural networks.The algorithm in question is designed for the fastest real time detection of a sudden change in the properties of a process as more information is becoming available. The problem is formulated so that the onset of low amplitude seismic phases is to be automatically identified during a time interval no longer than four seconds. The algorithm is based on the continuous wavelet transform and neural network. This is an adaptive algorithm, since it incorporates time-dependent individual characteristics of the time series of interest. This study was based on a data base of seismic signals consisting of more than 120 sample earthquakes and natural noise. Different wavelet types have been tried during the debugging of the algorithm: Haar, Daubechies of different orders, Symlet of different orders, Meyer

  12. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU.

    PubMed

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  13. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    PubMed Central

    Xu, Hailong; Cui, Xiaowei; Lu, Mingquan

    2016-01-01

    Nowadays, software-defined radio (SDR) has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS) adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU) are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP) and Space-Frequency Adaptive Processing (SFAP) are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications. PMID:26978363

  14. Oculomotor Adaptation Elicited By Intra-Saccadic Visual Stimulation: Time-Course of Efficient Visual Target Perturbation

    PubMed Central

    Panouillères, Muriel T. N.; Gaveau, Valerie; Debatisse, Jeremy; Jacquin, Patricia; LeBlond, Marie; Pélisson, Denis

    2016-01-01

    Perception of our visual environment strongly depends on saccadic eye movements, which in turn are calibrated by saccadic adaptation mechanisms elicited by systematic movement errors. Current models of saccadic adaptation assume that visual error signals are acquired only after saccade completion, because the high speed of saccade execution disturbs visual processing (saccadic “suppression” and “mislocalization”). Complementing a previous study from our group, here we report that visual information presented during saccades can drive adaptation mechanisms and we further determine the critical time window of such error processing. In 15 healthy volunteers, shortening adaptation of reactive saccades toward a ±8° visual target was induced by flashing the target for 2 ms less eccentrically than its initial location either near saccade peak velocity (“PV” condition) or peak deceleration (“PD”) or saccade termination (“END”). Results showed that, as compared to the “CONTROL” condition (target flashed at its initial location upon saccade termination), saccade amplitude decreased all throughout the “PD” and “END” conditions, reaching significant levels in the second adaptation and post-adaptation blocks. The results of nine other subjects tested in a saccade lengthening adaptation paradigm with the target flashing near peak deceleration (“PD” and “CONTROL” conditions) revealed no significant change of gain, confirming that saccade shortening adaptation is easier to elicit. Also, together with this last result, the stable gain observed in the “CONTROL” conditions of both experiments suggests that mislocalization of the target flash is not responsible for the saccade shortening adaptation demonstrated in the first group. Altogether, these findings reveal that the visual “suppression” and “mislocalization” phenomena related to saccade execution do not prevent brief visual information delivered “in-flight” from being

  15. Using preconditioned adaptive step size Runge-Kutta methods for solving the time-dependent Schroedinger equation

    SciTech Connect

    Tremblay, Jean Christophe; Carrington, Tucker Jr.

    2004-12-15

    If the Hamiltonian is time dependent it is common to solve the time-dependent Schroedinger equation by dividing the propagation interval into slices and using an (e.g., split operator, Chebyshev, Lanczos) approximate matrix exponential within each slice. We show that a preconditioned adaptive step size Runge-Kutta method can be much more efficient. For a chirped laser pulse designed to favor the dissociation of HF the preconditioned adaptive step size Runge-Kutta method is about an order of magnitude more efficient than the time sliced method.

  16. Predicting demographically sustainable rates of adaptation: can great tit breeding time keep pace with climate change?

    PubMed Central

    Gienapp, Phillip; Lof, Marjolein; Reed, Thomas E.; McNamara, John; Verhulst, Simon; Visser, Marcel E.

    2013-01-01

    Populations need to adapt to sustained climate change, which requires micro-evolutionary change in the long term. A key question is how the rate of this micro-evolutionary change compares with the rate of environmental change, given that theoretically there is a ‘critical rate of environmental change’ beyond which increased maladaptation leads to population extinction. Here, we parametrize two closely related models to predict this critical rate using data from a long-term study of great tits (Parus major). We used stochastic dynamic programming to predict changes in optimal breeding time under three different climate scenarios. Using these results we parametrized two theoretical models to predict critical rates. Results from both models agreed qualitatively in that even ‘mild’ rates of climate change would be close to these critical rates with respect to great tit breeding time, while for scenarios close to the upper limit of IPCC climate projections the calculated critical rates would be clearly exceeded with possible consequences for population persistence. We therefore tentatively conclude that micro-evolution, together with plasticity, would rescue only the population from mild rates of climate change, although the models make many simplifying assumptions that remain to be tested. PMID:23209174

  17. Highly Dynamic and Adaptive Traffic Congestion Avoidance in Real-Time Inspired by Honey Bee Behavior

    NASA Astrophysics Data System (ADS)

    Wedde, Horst F.; Lehnhoff, Sebastian; van Bonn, Bernhard; Bay, Z.; Becker, S.; Böttcher, S.; Brunner, C.; Büscher, A.; Fürst, T.; Lazarescu, A. M.; Rotaru, E.; Senge, S.; Steinbach, B.; Yilmaz, F.; Zimmermann, T.

    Traffic congestions have become a major problem in metropolitan areas world-wide, within and between cities, to an extent where they make driving and transportation times largely unpredictable. Due to the highly dynamic character of congestion building and dissolving this phenomenon appears even to resist a formal treatment. Static approaches, and even more their global management, have proven counterproductive in practice. Given the latest progress in VANET technology and the remarkable commercially driven efforts like in the European C2C consortium, or the VSC Project in the US, allow meanwhile to tackle various aspects of traffic regulation through VANET communication. In this paper we introduce a novel, completely decentralized multi-agent routing algorithm (termed BeeJamA) which we have derived from the foraging behavior of honey bees. It is highly dynamic, adaptive, robust, and scalable, and it allows for both avoiding congestions, and minimizing traveling times to individual destinations. Vehicle guidance is provided well ahead of every intersection, depending on the individual speeds. Thus strict deadlines are imposed on, and respected by, the BeeJamA algorithm. We report on extensive simulation experiments which show the superior performance of BeeJamA over conventional approaches.

  18. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    PubMed

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems. PMID:25607665

  19. Adaptive Multilevel Splitting Method for Molecular Dynamics Calculation of Benzamidine-Trypsin Dissociation Time.

    PubMed

    Teo, Ivan; Mayne, Christopher G; Schulten, Klaus; Lelièvre, Tony

    2016-06-14

    Adaptive multilevel splitting (AMS) is a rare event sampling method that requires minimal parameter tuning and allows unbiased sampling of transition pathways of a given rare event. Previous simulation studies have verified the efficiency and accuracy of AMS in the calculation of transition times for simple systems in both Monte Carlo and molecular dynamics (MD) simulations. Now, AMS is applied for the first time to an MD simulation of protein-ligand dissociation, representing a leap in complexity from the previous test cases. Of interest is the dissociation rate, which is typically too low to be accessible to conventional MD. The present study joins other recent efforts to develop advanced sampling techniques in MD to calculate dissociation rates, which are gaining importance in the pharmaceutical field as indicators of drug efficacy. The system investigated here, benzamidine bound to trypsin, is an example common to many of these efforts. The AMS estimate of the dissociation rate was found to be (2.6 ± 2.4) × 10(2) s(-1), which compares well with the experimental value. PMID:27159059

  20. Time-Varying, Multi-Scale Adaptive System Reliability Analysis of Lifeline Infrastructure Networks

    SciTech Connect

    Gearhart, Jared Lee; Kurtz, Nolan Scot

    2014-09-01

    The majority of current societal and economic needs world-wide are met by the existing networked, civil infrastructure. Because the cost of managing such infrastructure is high and increases with time, risk-informed decision making is essential for those with management responsibilities for these systems. To address such concerns, a methodology that accounts for new information, deterioration, component models, component importance, group importance, network reliability, hierarchical structure organization, and efficiency concerns has been developed. This methodology analyzes the use of new information through the lens of adaptive Importance Sampling for structural reliability problems. Deterioration, multi-scale bridge models, and time-variant component importance are investigated for a specific network. Furthermore, both bridge and pipeline networks are studied for group and component importance, as well as for hierarchical structures in the context of specific networks. Efficiency is the primary driver throughout this study. With this risk-informed approach, those responsible for management can address deteriorating infrastructure networks in an organized manner.

  1. Motion-adapted catheter navigation with real-time instantiation and improved visualisation

    PubMed Central

    Kwok, Ka-Wai; Wang, Lichao; Riga, Celia; Bicknell, Colin; Cheshire, Nicholas; Yang, Guang-Zhong

    2014-01-01

    The improvements to catheter manipulation by the use of robot-assisted catheter navigation for endovascular procedures include increased precision, stability of motion and operator comfort. However, navigation through the vasculature under fluoroscopic guidance is still challenging, mostly due to physiological motion and when tortuous vessels are involved. In this paper, we propose a motion-adaptive catheter navigation scheme based on shape modelling to compensate for these dynamic effects, permitting predictive and dynamic navigations. This allows for timed manipulations synchronised with the vascular motion. The technical contribution of the paper includes the following two aspects. Firstly, a dynamic shape modelling and real-time instantiation scheme based on sparse data obtained intra-operatively is proposed for improved visualisation of the 3D vasculature during endovascular intervention. Secondly, a reconstructed frontal view from the catheter tip using the derived dynamic model is used as an interventional aid to user guidance. To demonstrate the practical value of the proposed framework, a simulated aortic branch cannulation procedure is used with detailed user validation to demonstrate the improvement in navigation quality and efficiency. PMID:24744817

  2. Real-Time Reconfigurable Adaptive Speech Recognition Command and Control Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Salazar, George A. (Inventor); Haynes, Dena S. (Inventor); Sommers, Marc J. (Inventor)

    1998-01-01

    An adaptive speech recognition and control system and method for controlling various mechanisms and systems in response to spoken instructions and in which spoken commands are effective to direct the system into appropriate memory nodes, and to respective appropriate memory templates corresponding to the voiced command is discussed. Spoken commands from any of a group of operators for which the system is trained may be identified, and voice templates are updated as required in response to changes in pronunciation and voice characteristics over time of any of the operators for which the system is trained. Provisions are made for both near-real-time retraining of the system with respect to individual terms which are determined not be positively identified, and for an overall system training and updating process in which recognition of each command and vocabulary term is checked, and in which the memory templates are retrained if necessary for respective commands or vocabulary terms with respect to an operator currently using the system. In one embodiment, the system includes input circuitry connected to a microphone and including signal processing and control sections for sensing the level of vocabulary recognition over a given period and, if recognition performance falls below a given level, processing audio-derived signals for enhancing recognition performance of the system.

  3. Replanning Criteria and Timing Definition for Parotid Protection-Based Adaptive Radiation Therapy in Nasopharyngeal Carcinoma

    PubMed Central

    Yao, Wei-Rong; Xu, Shou-Ping; Liu, Bo; Cao, Xiu-Tang; Ren, Gang; Du, Lei; Zhou, Fu-Gen; Feng, Lin-Chun; Qu, Bao-Lin; Xie, Chuan-Bin; Ma, Lin

    2015-01-01

    The goal of this study was to evaluate real-time volumetric and dosimetric changes of the parotid gland so as to determine replanning criteria and timing for parotid protection-based adaptive radiation therapy in nasopharyngeal carcinoma. Fifty NPC patients were treated with helical tomotherapy; volumetric and dosimetric (Dmean, V1, and D50) changes of the parotid gland at the 1st, 6th, 11th, 16th, 21st, 26th, 31st, and 33rd fractions were evaluated. The clinical parameters affecting these changes were studied by analyses of variance methods for repeated measures. Factors influencing the actual parotid dose were analyzed by a multivariate logistic regression model. The cut-off values predicting parotid overdose were developed from receiver operating characteristic curves and judged by combining them with a diagnostic test consistency check. The median absolute value and percentage of parotid volume reduction were 19.51 cm3 and 35%, respectively. The interweekly parotid volume varied significantly (p < 0.05). The parotid Dmean, V1, and D50 increased by 22.13%, 39.42%, and 48.45%, respectively. The actual parotid dose increased by an average of 11.38% at the end of radiation therapy. Initial parotid volume, initial parotid Dmean, and weight loss rate are valuable indicators for parotid protection-based replanning. PMID:26793717

  4. Adaptation to shifted interaural time differences changes encoding of sound location in human auditory cortex.

    PubMed

    Trapeau, Régis; Schönwiesner, Marc

    2015-09-01

    The auditory system infers the location of sound sources from the processing of different acoustic cues. These cues change during development and when assistive hearing devices are worn. Previous studies have found behavioral recalibration to modified localization cues in human adults, but very little is known about the neural correlates and mechanisms of this plasticity. We equipped participants with digital devices, worn in the ear canal that allowed us to delay sound input to one ear, and thus modify interaural time differences, a major cue for horizontal sound localization. Participants wore the digital earplugs continuously for nine days while engaged in day-to-day activities. Daily psychoacoustical testing showed rapid recalibration to the manipulation and confirmed that adults can adapt to shifted interaural time differences in their daily multisensory environment. High-resolution functional MRI scans performed before and after recalibration showed that recalibration was accompanied by changes in hemispheric lateralization of auditory cortex activity. These changes corresponded to a shift in spatial coding of sound direction comparable to the observed behavioral recalibration. Fitting the imaging results with a model of auditory spatial processing also revealed small shifts in voxel-wise spatial tuning within each hemisphere. PMID:26054873

  5. Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems.

    PubMed

    Ziganshin, Ayrat M; Schmidt, Thomas; Lv, Zuopeng; Liebetrau, Jan; Richnow, Hans Hermann; Kleinsteuber, Sabine; Nikolausz, Marcell

    2016-10-01

    The effects of hydraulic retention time (HRT) reduction at constant high organic loading rate on the activity of hydrogen-producing bacteria and methanogens were investigated in reactors digesting thin stillage. Stable isotope fingerprinting was additionally applied to assess methanogenic pathways. Based on hydA gene transcripts, Clostridiales was the most active hydrogen-producing order in continuous stirred tank reactor (CSTR), fixed-bed reactor (FBR) and anaerobic sequencing batch reactor (ASBR), but shorter HRT stimulated the activity of Spirochaetales. Further decreasing HRT diminished Spirochaetales activity in systems with biomass retention. Based on mcrA gene transcripts, Methanoculleus and Methanosarcina were the predominantly active in CSTR and ASBR, whereas Methanosaeta and Methanospirillum activity was more significant in stably performing FBR. Isotope values indicated the predominance of aceticlastic pathway in FBR. Interestingly, an increased activity of Methanosaeta was observed during shortening HRT in CSTR and ASBR despite high organic acids concentrations, what was supported by stable isotope data. PMID:26853042

  6. Symposium on 'nutritional adaptation to pregnancy and lactation'. Pregnancy as a time for dietary change?

    PubMed

    Anderson, A S

    2001-11-01

    It is thought that nutrition during pregnancy plays a key role in the well-being of the mother and the newborn infant, and further influences health during childhood and adulthood. Pregnancy is a time of increased nutritional requirements, but many of these requirements will be met by adaptive physiological changes that occur during gestation, with little need to alter maternal dietary intake. A modest increment of food which provides 0.8 MJ/d (above prepregnant requirements) during the third trimester is considered adequate to meet the needs of fetal and maternal growth, and to satisfy the small increase in requirements of many macro- and micronutrients. However, requirements for vitamin D and folic acid increase substantially, and should be met primarily by supplementation. Food selection may also be altered to avoid a range of food-borne diseases and toxic constituents. There are a number of psycho-social reasons why pregnancy might be considered a good time for promoting changes in dietary behaviour for the health of the wider family. However, pregnancy may be a bad time to promote dietary change if it is perceived to involve slimming, if nutritional requirements are greatest before pregnancy, or if dietary changes made are harmful. There is little evidence to support educational interventions as successful at changing dietary behaviour during pregnancy. Pregnancy may be best viewed as an opportunity for maintaining good dietary selections and for building knowledge for future action, and should not be seen as the only opportunity for promoting dietary change within the life course. PMID:12069403

  7. Comparison of constant and time-variant optimal forcing approaches in El Niño simulations by using the Zebiak-Cane model

    NASA Astrophysics Data System (ADS)

    Tian, Ben; Duan, Wansuo

    2016-06-01

    Model errors offset by constant and time-variant optimal forcing vector approaches (termed COF and OFV, respectively) are analyzed within the framework of El Ni˜no simulations. Applying the COF and OFV approaches to the well-known Zebiak-Cane model, we re-simulate the 1997 and 2004 El Ni˜no events, both of which were poorly degraded by a certain amount of model error when the initial anomalies were generated by coupling the observed wind forcing to an ocean component. It is found that the Zebiak-Cane model with the COF approach roughly reproduced the 1997 El Ni˜no, but the 2004 El Ni˜no simulated by this approach defied an ENSO classification, i.e., it was hardly distinguishable as CP-El Ni˜no or EP-El Ni˜no. In both El Ni˜no simulations, substituting the COF with the OFV improved the fit between the simulations and observations because the OFV better manages the time-variant errors in the model. Furthermore, the OFV approach effectively corrected the modeled El Ni˜no events even when the observational data (and hence the computational time) were reduced. Such a cost-effective offset of model errors suggests a role for the OFV approach in complicated CGCMs.

  8. Use of Time Information in Models behind Adaptive System for Building Fluency in Mathematics

    ERIC Educational Resources Information Center

    Rihák, Jirí

    2015-01-01

    In this work we introduce the system for adaptive practice of foundations of mathematics. Adaptivity of the system is primarily provided by selection of suitable tasks, which uses information from a domain model and a student model. The domain model does not use prerequisites but works with splitting skills to more concrete sub-skills. The student…

  9. Neural Time Course of Conflict Adaptation Effects on the Stroop Task

    ERIC Educational Resources Information Center

    Larson, Michael J.; Kaufman, David A. S.; Perlstein, William M.

    2009-01-01

    Cognitive control theory suggests conflict effects are reduced following high- relative to low-conflict trials. Such reactive adjustments in control, frequently termed "conflict adaptation effects," indicate a dynamic interplay between regulative and evaluative components of cognitive control necessary for adaptable goal-directed behavior. The…

  10. On the Issue of Item Selection in Computerized Adaptive Testing with Response Times

    ERIC Educational Resources Information Center

    Veldkamp, Bernard P.

    2016-01-01

    Many standardized tests are now administered via computer rather than paper-and-pencil format. The computer-based delivery mode brings with it certain advantages. One advantage is the ability to adapt the difficulty level of the test to the ability level of the test taker in what has been termed computerized adaptive testing (CAT). A second…

  11. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Petrillo, Marta; Cherubini, Paolo; Fravolini, Giulia; Marchetti, Marco; Ascher-Jenull, Judith; Schärer, Michael; Synal, Hans-Arno; Bertoldi, Daniela; Camin, Federica; Larcher, Roberto; Egli, Markus

    2016-03-01

    Due to the large size (e.g. sections of tree trunks) and highly heterogeneous spatial distribution of deadwood, the timescales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the chronosequence approach and the five-decay class system that is based on a macromorphological assessment. For the decay classes 1-3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) radiocarbon dating was used. In addition, density, cellulose, and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model, a regression approach, and the stage-based matrix model. In the decay classes 1-3, the ages of the CWD were similar and varied between 1 and 54 years for spruce and 3 and 40 years for larch, with no significant differences between the classes; classes 1-3 are therefore not indicative of deadwood age. This seems to be due to a time lag between the death of a standing tree and its contact with the soil. We found distinct tree-species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were estimated to be in the range 0.018 to 0.022 y-1 for spruce and to about 0.012 y-1 for larch. Snapshot sampling (chronosequences) may overestimate the age and mean residence time of CWD. No sampling bias was, however, detectable using the stage-based matrix model. Cellulose and lignin time trends could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 years for spruce and 50 years for larch. The half-life of lignin is considerably higher and may be more than

  12. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    PubMed Central

    2012-01-01

    Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from

  13. Time synchronization over the Internet using an adaptive frequency-locked loop.

    PubMed

    Levine, J

    1999-01-01

    This paper describes the operation of an algorithm for synchronizing the time of computers using messages transmitted over packet-switched networks such as the Internet. The algorithm configures itself to realize any specified performance level at minimum cost (measured in computer cycles or network bandwidth). If the highest possible accuracy is requested, the performance will be limited by the larger of the instability of the local clock oscillator or the noise in the measurement process between the client and the server; uncertainties of about 8 ms RMS have been obtained using standard workstations and average network connections. Lower accuracy can be realized at substantially lower cost because the cost varies approximately as the inverse of the accuracy squared over a wide range of these parameters. The algorithm makes better use of scarce network bandwidth than previous methods. This improvement is realized by using a pure frequency-locked loop (rather than mixed frequency/phase locking algorithms currently proposed for the NTP) with unequal spacing between calibration cycles. The result is a cleaner separation between network noise and clock noise, which is especially important when the highest possible accuracy is desired. In addition, the algorithm is an improvement over the pure-FLL "Interlock" algorithm described previously because it is self configuring. In addition to supporting an explicit trade-off between cost and accuracy, the algorithm provides better performance than previous methods because it is better able to adapt itself to fluctuations in the asymmetry of the network delay. PMID:18238493

  14. Power and Performance Trade-offs for Space Time Adaptive Processing

    SciTech Connect

    Gawande, Nitin A.; Manzano Franco, Joseph B.; Tumeo, Antonino; Tallent, Nathan R.; Kerbyson, Darren J.; Hoisie, Adolfy

    2015-07-27

    Computational efficiency – performance relative to power or energy – is one of the most important concerns when designing RADAR processing systems. This paper analyzes power and performance trade-offs for a typical Space Time Adaptive Processing (STAP) application. We study STAP implementations for CUDA and OpenMP on two computationally efficient architectures, Intel Haswell Core I7-4770TE and NVIDIA Kayla with a GK208 GPU. We analyze the power and performance of STAP’s computationally intensive kernels across the two hardware testbeds. We also show the impact and trade-offs of GPU optimization techniques. We show that data parallelism can be exploited for efficient implementation on the Haswell CPU architecture. The GPU architecture is able to process large size data sets without increase in power requirement. The use of shared memory has a significant impact on the power requirement for the GPU. A balance between the use of shared memory and main memory access leads to an improved performance in a typical STAP application.

  15. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed. PMID:25577254

  16. Refinement and evaluation of helicopter real-time self-adaptive active vibration controller algorithms

    NASA Technical Reports Server (NTRS)

    Davis, M. W.

    1984-01-01

    A Real-Time Self-Adaptive (RTSA) active vibration controller was used as the framework in developing a computer program for a generic controller that can be used to alleviate helicopter vibration. Based upon on-line identification of system parameters, the generic controller minimizes vibration in the fuselage by closed-loop implementation of higher harmonic control in the main rotor system. The new generic controller incorporates a set of improved algorithms that gives the capability to readily define many different configurations by selecting one of three different controller types (deterministic, cautious, and dual), one of two linear system models (local and global), and one or more of several methods of applying limits on control inputs (external and/or internal limits on higher harmonic pitch amplitude and rate). A helicopter rotor simulation analysis was used to evaluate the algorithms associated with the alternative controller types as applied to the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test Apparatus (RTA) which represents the fuselage. After proper tuning all three controllers provide more effective vibration reduction and converge more quickly and smoothly with smaller control inputs than the initial RTSA controller (deterministic with external pitch-rate limiting). It is demonstrated that internal limiting of the control inputs a significantly improves the overall performance of the deterministic controller.

  17. OTACT: ONU Turning with Adaptive Cycle Times in Long-Reach PONs

    NASA Astrophysics Data System (ADS)

    Zare, Sajjad; Ghaffarpour Rahbar, Akbar

    2015-01-01

    With the expansion of PON networks as Long-Reach PON (LR-PON) networks, the problem of degrading the efficiency of centralized bandwidth allocation algorithms threatens this network due to high propagation delay. This is because these algorithms are based on bandwidth negotiation messages frequently exchanged between the optical line terminal (OLT) in the Central Office and optical network units (ONUs) near the users, which become seriously delayed when the network is extended. To solve this problem, some decentralized algorithms are proposed based on bandwidth negotiation messages frequently exchanged between the Remote Node (RN)/Local Exchange (LX) and ONUs near the users. The network has a relatively high delay since there are relatively large distances between RN/LX and ONUs, and therefore, control messages should travel twice between ONUs and RN/LX in order to go from one ONU to another ONU. In this paper, we propose a novel framework, called ONU Turning with Adaptive Cycle Times (OTACT), that uses Power Line Communication (PLC) to connect two adjacent ONUs. Since there is a large population density in urban areas, ONUs are closer to each other. Thus, the efficiency of the proposed method is high. We investigate the performance of the proposed scheme in contrast with other decentralized schemes under the worst case conditions. Simulation results show that the average upstream packet delay can be decreased under the proposed scheme.

  18. Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system

    SciTech Connect

    Fijany, A.; Milman, M.; Redding, D.

    1994-12-31

    In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm, designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.

  19. Sparsity-Based Space-Time Adaptive Processing Using OFDM Radar

    SciTech Connect

    Sen, Satyabrata

    2012-01-01

    We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain, and hence we exploit that sparsity to develop an efficient STAP technique. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. To estimate the target and interference covariance matrices, we apply a residual sparse-recovery technique that enables us to incorporate the partially known support of the sparse vector. Our numerical results demonstrate that the sparsity-based STAP algorithm, with considerably lesser number of secondary data, produces an equivalent performance as the other existing STAP techniques.

  20. A low power CMOS 3.3 Gbps continuous-time adaptive equalizer for serial link

    NASA Astrophysics Data System (ADS)

    Hao, Ju; Yumei, Zhou; Jianzhong, Zhao

    2011-09-01

    This paper describes using a high-speed continuous-time analog adaptive equalizer as the front-end of a receiver for a high-speed serial interface, which is compliant with many serial communication specifications such as USB2.0, PCI-E2.0 and Rapid IO. The low and high frequency loops are merged to decrease the effect of delay between the two paths, in addition, the infinite input impedance facilitates the cascade stages in order to improve the high frequency boosting gain. The implemented circuit architecture could facilitate the wide frequency range from 1 to 3.3 Gbps with different length FR4-PCB traces, which brings as much as 25 dB loss. The replica control circuits are injected to provide a convenient way to regulate common-mode voltage for full differential operation. In addition, AC coupling is adopted to suppress the common input from the forward stage. A prototype chip was fabricated in 0.18-μm 1P6M mixed-signal CMOS technology. The actual area is 0.6 × 0.57 mm2 and the analog equalizer operates up to 3.3 Gbps over FR4-PCB trace with 25 dB loss. The overall power dissipation is approximately 23.4 mW.

  1. Towards real-time wavefront sensorless adaptive optics using a graphical processing unit (GPU) in a line scanning system

    NASA Astrophysics Data System (ADS)

    Biss, David P.; Patel, Ankit H.; Ferguson, R. Daniel; Mujat, Mircea; Iftimia, Nicusor; Hammer, Daniel X.

    2011-03-01

    Adaptive optics ophthalmic imaging systems that rely on a standalone wave-front sensor can be costly to build and difficult for non-technical personnel to operate. As an alternative we present a simplified wavefront sensorless adaptive optics laser scanning ophthalmoscope. This sensorless system is based on deterministic search algorithms that utilize the image's spatial frequency as an optimization metric. We implement this algorithm on a NVIDIA video card to take advantage of the graphics processing unit (GPU)'s parallel architecture to reduce algorithm computation times and approach real-time correction.

  2. Time course of salinity adaptation in a strongly euryhaline estuarine teleost, fundulus heteroclitus: A multivariable approach

    USGS Publications Warehouse

    Marshall, W.S.; Emberley, T.R.; Singer, T.D.; Bryson, S.E.; McCormick, S.D.

    1999-01-01

    Freshwater-adapted killifish (Fundulus heteroclitus) were transferred directly from soft fresh water to full-strength sea water for periods of 1h, 3h, 8h and 1, 2, 7, 14 and 30 days. Controls were transferred to fresh water for 24 h. Measured variables included: blood [Na+], osmolality, glucose and cortisol levels, basal and stimulated rates of ion transport and permeability of in vitro opercular epithelium, gill Na+/K+-ATPase and citrate synthase activity and chloride cell ultrastructure. These data were compared with previously published killifish cystic fibrosis transmembrane conductance regulator (kfCFTR) expression in the gills measured over a similar time course. Plasma cortisol levels peaked at 1 h, coincident with a rise in plasma [Na+]. At 8 h after transfer to sea water, a time at which previous work has shown kfCFTR expression to be elevated, blood osmolality and [Na+] were high, and cortisol levels and opercular membrane short-circuit current (I(SC); a measure of Cl- secretion rate) were low. The 24h group, which showed the highest level of kfCFTR expression, had the highest plasma [Na+] and osmolality, elevated plasma cortisol levels, significantly lower opercular membrane resistance, an increased opercular membrane ion secretion rate and collapsed tubule inclusions in mitochondria-rich cells, but no change in gill Na+/K+-ATPase and citrate synthase activity or plasma glucose levels. Apparently, killifish have a rapid (<1h) cortisol response to salinity coupled to subsequent (8-48 h) expression of kfCFTR anion channel proteins in existing mitochondria-rich cells that convert transport from ion uptake to ion secretion.

  3. Adaptive reconstruction of radar reflectivity maps based on their space-time structure

    NASA Astrophysics Data System (ADS)

    Park, Shinju; Berenguer, Marc

    2013-04-01

    The production of Radar Quantitative Precipitation Estimates (QPE) requires processing the observations to ensure their quality and its conversion into the variable of interest (i.e. precipitation rates). This processing is done through a chain of algorithms applied to mitigate the sources of uncertainty affecting radar observations. Some algorithms involve the reconstruction of the meteorological signal in areas where the signal is lost or strongly contaminated, for instance in areas affected by ground, sea clutter, total beam blockage or severe path attenuation by heavy rain. For post-processing of radar uncorrected moment data, the reconstruction has been done with spatial interpolation after the identification of clutter based on the analysis of statistical properties of radar measurements. The aim of this work has been to develop an improved reconstruction method that adapts to the different rainfall situations by using the information of the time and space variability of the rainfall field. The n-dimensional semi-variogram is formulated to reconstruct the radar fields in a n-Dimensional Ordinary Kriging framework: i.e., (i) the horizontal plane, (ii) the closest non-contaminated PPI, and (iii) the closest radar volume scan in time. The last one takes into account the effect of the motion that is very similar to the extrapolation of reflectivity observations to the future in many nowcasting algorithms. Each formulation of the reconstruction methods and their combinations have been studied. The radar fields have been reconstructed over the areas labeled as clutter (with a fuzzy logic algorithm) under different rainfall situations, including scattered convection, organized convection, and widespread precipitation. Also, the comparison between the reconstructed radar rainfall accumulations and collocated raingauge observations have been used for the evaluation.

  4. Structure of nitrogen-converting communities induced by hydraulic retention time and COD/N ratio in constantly aerated granular sludge reactors treating digester supernatant.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Rusanowska, Paulina; Zielińska, Magdalena; Bernat, Katarzyna; Wojnowska-Baryła, Irena

    2014-02-01

    This study investigated how hydraulic retention time (HRT) and COD/N ratio affect nitrogen-converting consortia in constantly aerated granules treating high-ammonium digester supernatant. Three HRTs (10, 13, 19 h) were tested at COD/N ratios of 4.5 and 2.3. Denaturing gradient gel electrophoresis and relative real-time PCR were used to characterize the microbial communities. When changes in HRT and COD/N increased nitrogen loading, the ratio of the relative abundance of aerobic to anaerobic ammonium-oxidizers decreased. The COD/N ratio determined the species composition of the denitrifiers; however, Thiobacillus denitrificans, Pseudomonas denitrificans and Azoarcus sp. showed a high tolerance to the environmental conditions and occurred in the granules from all reactors. Denitrifier genera that support granule formation were identified, such as Pseudomonas, Shinella, and Flavobacterium. In aerated granules, nirK-possessing bacteria were more diverse than nirS-possessing bacteria. At a low COD/N ratio, N2O-reducer diversity increased because of the presence of bacteria known as aerobic denitrifiers. PMID:24384323

  5. In situ real-time monitoring of profile evolution during plasma etching of mesoporous low-dielectric-constant SiO{sub 2}

    SciTech Connect

    Gerung, Henry; Brinker, C. Jeffrey; Brueck, Steven R.J.; Han, Sang M.

    2005-03-01

    We have employed attenuated total reflection Fourier transforms infrared spectroscopy (ATR-FTIRS) to monitor the profile evolution of patterned mesoporous, low-dielectric-constant SiO{sub 2} films in situ and in real time during plasma etching. A stack of patterned photoresist, anti-reflective coating, and mesoporous SiO{sub 2} is etched in an inductively coupled plasma reactor, using CHF{sub 3} and Ar. During etching, the IR absorbance of Si-O-Si stretching modes near 1080 cm{sup -1} decreases, and the rate of decrease in Si-O-Si absorbance translates to the SiO{sub 2} removal rate. When corrected for the exponentially decaying evanescent electric field, the removal rate helps monitor the profile evolution and predict the final etch profile. The predicted profiles are in excellent agreement with the cross-sectional images taken by scanning electron microscopy. In a similar approach, we calculate the absolute total number of C-F bonds in the sidewall passivation and observe its formation rate as a function of time. Assuming that the thickness of the sidewall passivation tapers down towards the trench bottom, we deduce that C-F formation occurs mostly in the final stage of etching when the trench bottom meets the Ge ATR crystal and that a critical amount of C-F buildup is necessary to maintain the anisotropic etch profile.

  6. Time-resolved two-wavelength contouring of adaptive fluidic PDMS-lenses

    NASA Astrophysics Data System (ADS)

    Hansel, Thomas; Grunwald, Ruediger; Steinmeyer, Günter; Griebner, Uwe; Schneider, Florian; Wallrabe, Ulrike

    2009-05-01

    We present a synthesized sub-ps dual-wavelength laser source for digital holographic interferometry with a wide reconstruction range. The developed laser source generates two spectrally separated parts within one pulse. The sub-ps pulse duration desensitizes the holographic setup to environmental impacts. A center wavelength distance of only 12 nm with a high contrast was demonstrated by spectral shaping of the 50 nm broad seed spectrum of a CPA Ti:sapphire laser system centered at 800 nm. Time-resolved two-wavelength contouring requires the simultaneous and separable recording of two holograms. In general, a single CCD-camera is applied, and the spectral separation is realized by different reference wave tilts, which requires ambitious interferometric setups. Contrary to this, we introduce two CCD-cameras for digital holographic recording, thus essentially simplifying the interferometric setup by the need of only one propagation direction of the reference wave. To separate the holograms for the simultaneous recording process, a Mach-Zehnder interferometer was extended by a polarization encoding sequence. To study our approach of time-resolved digital holographic two-wavelength contouring, an adaptive fluidic PDMS-lens with integrated piezoelectric actuator served as test object. The PDMS-lens consists of an oil-filled lens chamber and a pump actuator. If a voltage is applied to the piezoelectric bending actuator the fluid is pumped into the lens chamber which causes a curvature change of the 60-μm thick lens membrane and thus a shift of the focal length. The dynamic behavior of the PDMS-lens, driven at a frequency of 1 Hz, was investigated at a frame rate of 410 frames per second. The measured temporal change of the lens focal length between 98 and 44 mm followed the modulation of the piezoelectric voltage with a 30 V peak-to-peak amplitude. Due to the performed time-resolved two wavelength contouring, we are able to extract the optical path length differences

  7. Rate constant for the reaction of OH with methyl iodide, a re-determination by flash photolysis of water vapour and time resolved resonance fluorescence of OH

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoliang; Strekowski, Rafal; Zetzsch, Cornelius

    2010-05-01

    Methyl iodide is a major source gas for atmospheric iodine, and it is mainly emitted from the ocean. Aqueous-phase reactions, such as hydrolysis and exchange reactions with chloride control its emissions to the atmosphere, where its lifetime is limited to less than a week, mainly by photolysis. A minor contribution to the loss processes in the troposphere is the gas-phase reaction with OH radicals, that has been investigated by several authors. On the other hand, this reaction turned out to be uncertain in spite of interest in nuclear safety after the International Phebus Fission Product programme, initiated in 1988. Some of the most important observed phenomena with regard to the chemistry of iodine were not predicted, clearly showing the need for carrying out rate constant determinations for the reactions of I2 and CH3I with OH, which is a major oxidant product from the air radiolysis under accident conditions. We have measured the rate constant for the reaction OH + CH3I - H2O + CH2I in He at 260 mbar in the temperature range from 298 to 362 K. OH radicals were produced by flash photolysis of H2O in the vacuum-UV at wavelengths > 115 nm using a Xe flash lamp with a MgF2 window. Time profiles of OH radicals are monitored by resonance fluorescence of the A2 Σ - X2 Π transition at 308 nm, induced by the emission from a microwave discharge of a flow of He and H2O, a few Torr each. The signal is monitored by photon counting and multichannel scaling, collecting the counts from 50 flashes each, obtaind by pulsed photolysis of various mixtures of H2O and CH3I under slow-flow conditions. Decays of OH in the presence of CH3I are observed to be exponential, and the decay rates are found to be linearly dependent on the concentration of CH3I. Rate constants, k ± 2σ (in units of 10-14 cm3 s-1) of 4.14±0.20, 6.33±0.68, 7.31±1.18 and 8.24±1.60 at 298, 326, 352 and 362 K, respectively, are obtained from linear regressions and lead to an Arrhenius expression of k = 1.5

  8. Low-cost high performance adaptive optics real-time controller in free space optical communication system

    NASA Astrophysics Data System (ADS)

    Chen, Shanqiu; Liu, Chao; Zhao, Enyi; Xian, Hao; Xu, Bing; Ye, Yutang

    2014-11-01

    This paper proposed a low-cost and high performance adaptive optics real-time controller in free space optical communication system. Real-time controller is constructed with a 4-core CPU with Linux operation system patched with Real-Time Application Interface (RTAI) and a frame-grabber, and the whole cost is below $6000. Multi-core parallel processing scheme and SSE instruction optimization for reconstruction process result in about 5 speedup, and overall processing time for this 137-element adaptive optic system can reach below 100 us and with latency about 50 us by utilizing streamlined processing scheme, which meet the requirement of processing at frequency over 1709 Hz. Real-time data storage system designed by circle buffer make this system to store consecutive image frames and provide an approach to analysis the image data and intermediate data such as slope information.

  9. How constant momentum acceleration decouples energy and space focusing in distance-of-flight and time-of-flight mass spectrometries.

    PubMed

    Dennis, Elise A; Gundlach-Graham, Alexander W; Enke, Christie G; Ray, Steven J; Carado, Anthony J; Barinaga, Charles J; Koppenaal, David W; Hieftje, Gary M

    2013-05-01

    Resolution in time-of-flight mass spectrometry (TOFMS) is ordinarily limited by the initial energy and space distributions within an instrument's acceleration region and by the length of the field-free flight zone. With gaseous ion sources, these distributions lead to systematic flight-time errors that cannot be simultaneously corrected with conventional static-field ion-focusing devices (i.e., an ion mirror). It is known that initial energy and space distributions produce non-linearly correlated errors in both ion velocity and exit time from the acceleration region. Here we reinvestigate an old acceleration technique, constant-momentum acceleration (CMA), to decouple the effects of initial energy and space distributions. In CMA, only initial ion energies (and not their positions) affect the velocity ions gain. Therefore, with CMA, the spatial distribution within the acceleration region can be manipulated without creating ion-velocity error. The velocity differences caused by a spread in initial ion energy can be corrected with an ion mirror. We discuss here the use of CMA and independent focusing of energy and space distributions for both distance-of-flight mass spectrometry (DOFMS) and TOFMS. Performance characteristics of our CMA-DOFMS and CMA-TOFMS instrument, fitted with a glow-discharge ionization source, are described. In CMA-DOFMS, resolving powers (FWHM) of greater than 1000 are achieved for atomic ions with a flight length of 285 mm. In CMA-TOFMS, only ions over a narrow range of m/z values can be energy-focused; however, the technique offers improved resolution for these focused ions, with resolving powers of greater than 2000 for a separation distance of 350 mm. PMID:23526167

  10. Connecting Fundamental Constants

    SciTech Connect

    Di Mario, D.

    2008-05-29

    A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension will appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a {pi}{radical}(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment.

  11. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations.

    PubMed

    Cavalier-Smith, Thomas

    2009-01-01

    I discuss eukaryote megaphylogeny and the timing of major innovations in the light of multigene trees and the rarity of marine/freshwater evolutionary transitions. The first eukaryotes were aerobic phagotrophs, probably substratum-associated heterotrophic amoeboflagellates. The primary eukaryote bifurcation generated unikonts (ancestrally probably unicentriolar, with a conical microtubular [MT] cytoskeleton) and bikonts (ciliary transformation from anterior cilium to ancestrally gliding posterior cilium; cytoskeleton of ventral MT bands). Unikonts diverged into Amoebozoa with anterior cilia, lost when lobosan broad pseudopods evolved for locomotion, and Choanozoa with posterior cilium and filose pseudopods that became unbranched tentacles/microvilli in holozoa and eventually the choanoflagellate/choanocyte collar. Of choanozoan ancestry, animals evolved epithelia, fibroblasts, eggs, and sperm. Fungi and Ichthyosporea evolved walls. Bikonts, ancestrally with ventral grooves, include three adaptively divergent megagroups: Rhizaria (Retaria and Cercozoa, ancestrally reticulofilose soft-surfaced gliding amoeboflagellates), and the originally planktonic Excavata, and the corticates (Plantae and chromalveolates) that suppressed pseudopodia. Excavata evolved cilia-generated feeding currents for grooval ingestion; corticates evolved cortical alveoli and ciliary hairs. Symbiogenetic origin and transfers of chloroplasts stimulated an explosive radiation of corticates--hard to resolve on multigene trees--and opisthokonts, and ensuing Cambrian explosions of animals and protists. Plantae lost phagotrophy and multiply evolved walls and macroalgae. Apusozoa, with dorsal pellicle and ventral pseudopods, are probably the most divergent bikonts or related to opisthokonts. Eukaryotes probably originated 800-850 My ago. Amoebozoa, Apusozoa, Loukozoa, and Metamonada may be the only extant eukaryote phyla pre-dating Neoproterozoic snowball earth. New subphyla are established for

  12. Adaptive anisotropic gaussian filtering to reduce acquisition time in cardiac diffusion tensor imaging.

    PubMed

    Mazumder, Ria; Clymer, Bradley D; Mo, Xiaokui; White, Richard D; Kolipaka, Arunark

    2016-06-01

    Diffusion tensor imaging (DTI) is used to quantify myocardial fiber orientation based on helical angles (HA). Accurate HA measurements require multiple excitations (NEX) and/or several diffusion encoding directions (DED). However, increasing NEX and/or DED increases acquisition time (TA). Therefore, in this study, we propose to reduce TA by implementing a 3D adaptive anisotropic Gaussian filter (AAGF) on the DTI data acquired from ex-vivo healthy and infarcted porcine hearts. DTI was performed on ex-vivo hearts [9-healthy, 3-myocardial infarction (MI)] with several combinations of DED and NEX. AAGF, mean (AVF) and median filters (MF) were applied on the primary eigenvectors of the diffusion tensor prior to HA estimation. The performance of AAGF was compared against AVF and MF. Root mean square error (RMSE), concordance correlation-coefficients and Bland-Altman's technique was used to determine optimal combination of DED and NEX that generated the best HA maps in the least possible TA. Lastly, the effect of implementing AAGF on the infarcted porcine hearts was also investigated. RMSE in HA estimation for AAGF was lower compared to AVF or MF. Post-filtering (AAGF) fewer DED and NEX were required to achieve HA maps with similar integrity as those obtained from higher NEX and/or DED. Pathological alterations caused in HA orientation in the MI model were preserved post-filtering (AAGF). Our results demonstrate that AAGF reduces TA without affecting the integrity of the myocardial microstructure. PMID:26843150

  13. On the potential strength and consequences for nonrandom gene flow caused by local adaptation in flowering time.

    PubMed

    Weis, A E

    2015-03-01

    Gene flow is generally considered a random process, that is the loci under consideration have no effect on dispersal success. Edelaar and Bolnick (Trends Ecol Evol, 27, 2012 659) recently argued that nonrandom gene flow could exert a significant evolutionary force. It can, for instance, ameliorate the maladaptive effects of immigration into locally adapted populations. I examined the potential strength for nonrandom gene flow for flowering time genes, a trait frequently found to be locally adapted. The idea is that plants that successfully export pollen into a locally adapted resident population will be a genetically biased subset of their natal population - they will have resident-like flowering times. Reciprocally, recipients will be more migrant-like than the resident population average. I quantified the potential for biased pollen exchange among three populations along a flowering time cline in Brassica rapa from southern California. A two-generation line cross experiment demonstrated genetic variance in flowering time, both within and among populations. Calculations based on the variation in individual flowering schedules showed that resident plants with the most migrant-like flowering times could expect to have up to 10 times more of the their flowers pollinated by immigrant pollen than the least migrant-like. Further, the mean flowering time of the pollen exporters that have access to resident mates differs by up to 4 weeks from the mean in the exporters' natal population. The data from these three populations suggest that the bias in gene flow for flowering time cuts the impact on the resident population by as much as half. This implies that when selection is divergent between populations, migrants with the highest mating success tend to be resident-like in their flowering times, and so, fewer maladaptive alleles will be introduced into the locally adapting gene pool. PMID:25728931

  14. A Neurophysiological Approach for Evaluating Noise-Induced Sleep Disturbance: Calculating the Time Constant of the Dynamic Characteristics in the Brainstem.

    PubMed

    Tagusari, Junta; Matsui, Toshihito

    2016-04-01

    Chronic sleep disturbance induced by traffic noise is considered to cause environmental sleep disorder, which increases the risk of cardiovascular disease, stroke, diabetes and other stress-related diseases. However, noise indices for the evaluation of sleep disturbance are not based on the neurophysiological process of awakening regulated by the brainstem. In this study, through the neurophysiological approach, we attempted (1) to investigate the thresholds of awakening due to external stimuli in the brainstem; (2) to evaluate the dynamic characteristics in the brainstem and (3) to verify the validity of existing noise indices. Using the mathematical Phillips-Robinson model, we obtained thresholds of awakening in the brainstem for different durations of external stimuli. The analysis revealed that the brainstem seemed insensitive to short stimuli and that the response to external stimuli in the brainstem could be approximated by a first-order lag system with a time constant of 10-100 s. These results suggest that the brainstem did not integrate sound energy as external stimuli, but neuroelectrical signals from auditory nerve. To understand the awakening risk accumulated in the brainstem, we introduced a new concept of "awakening potential" instead of sound energy. PMID:27023587

  15. Green technology effect of injection pressure, timing and compression ratio in constant pressure heat addition cycle by an eco-friendly material.

    PubMed

    Karthikayan, S; Sankaranarayanan, G; Karthikeyan, R

    2015-11-01

    Present energy strategies focus on environmental issues, especially environmental pollution prevention and control by eco-friendly green technologies. This includes, increase in the energy supplies, encouraging cleaner and more efficient energy management, addressing air pollution, greenhouse effect, global warming, and climate change. Biofuels provide the panorama of new fiscal opportunities for people in rural area for meeting their need and also the demand of the local market. Biofuels concern protection of the environment and job creation. Renewable energy sources are self-reliance resources, have the potential in energy management with less emissions of air pollutants. Biofuels are expected to reduce dependability on imported crude oil with connected economic susceptibility, reduce greenhouse gases, other pollutants and invigorate the economy by increasing demand and prices for agricultural products. The use of neat paradise tree oil and induction of eco-friendly material Hydrogen through inlet manifold in a constant pressure heat addition cycle engine (diesel engine) with optimized engine operating parameters such as injection timing, injection pressure and compression ratio. The results shows the heat utilization efficiency for neat vegetable oil is 29% and neat oil with 15% Hydrogen as 33%. The exhaust gas temperature (EGT) for 15% of H2 share as 450°C at full load and the heat release of 80J/deg. crank angle for 15% Hydrogen energy share. PMID:26025643

  16. A Neurophysiological Approach for Evaluating Noise-Induced Sleep Disturbance: Calculating the Time Constant of the Dynamic Characteristics in the Brainstem

    PubMed Central

    Tagusari, Junta; Matsui, Toshihito

    2016-01-01

    Chronic sleep disturbance induced by traffic noise is considered to cause environmental sleep disorder, which increases the risk of cardiovascular disease, stroke, diabetes and other stress-related diseases. However, noise indices for the evaluation of sleep disturbance are not based on the neurophysiological process of awakening regulated by the brainstem. In this study, through the neurophysiological approach, we attempted (1) to investigate the thresholds of awakening due to external stimuli in the brainstem; (2) to evaluate the dynamic characteristics in the brainstem and (3) to verify the validity of existing noise indices. Using the mathematical Phillips–Robinson model, we obtained thresholds of awakening in the brainstem for different durations of external stimuli. The analysis revealed that the brainstem seemed insensitive to short stimuli and that the response to external stimuli in the brainstem could be approximated by a first-order lag system with a time constant of 10–100 s. These results suggest that the brainstem did not integrate sound energy as external stimuli, but neuroelectrical signals from auditory nerve. To understand the awakening risk accumulated in the brainstem, we introduced a new concept of “awakening potential” instead of sound energy. PMID:27023587

  17. A quantitative comparison of the time-course of sensitivity changes produced by calcium injection and light adaptation in Limulus ventral photoreceptors.

    PubMed Central

    Fein, A; Charlton, J S

    1978-01-01

    The time-course of light and dark adaptation was quantitatively compared with the time-course of the onset of and recovery from desensitization produced by intracellular calcium injection in Limulus ventral photoreceptors. The onset of light adaptation tended to be faster (by 60-90 s) than the onset of desensitization produced by intracellular Ca++ injection. The initial portion of the time-course of dark adaptation was faster (about 10-20 s) than the time-course of recovery from desensitization produced by intracellular Ca++ injection. The final portion of recovery from Ca++ injection had the same time-course as a comparable dark adaptation. PMID:638219

  18. New Quasar Studies Keep Fundamental Physical Constant Constant

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold

  19. Detecting unstable periodic orbits in high-dimensional chaotic systems from time series: reconstruction meeting with adaptation.

    PubMed

    Ma, Huanfei; Lin, Wei; Lai, Ying-Cheng

    2013-05-01

    Detecting unstable periodic orbits (UPOs) in chaotic systems based solely on time series is a fundamental but extremely challenging problem in nonlinear dynamics. Previous approaches were applicable but mostly for low-dimensional chaotic systems. We develop a framework, integrating approximation theory of neural networks and adaptive synchronization, to address the problem of time-series-based detection of UPOs in high-dimensional chaotic systems. An example of finding UPOs from the classic Mackey-Glass equation is presented. PMID:23767476

  20. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    SciTech Connect

    Datta, Dipayan Gauss, Jürgen

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  1. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    SciTech Connect

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  2. Real-time 3D adaptive filtering for portable imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.

  3. Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks

    NASA Astrophysics Data System (ADS)

    Yu, Wenwu; Cao, Jinde

    2006-06-01

    In this paper, a new type of generalized Q-S (lag, anticipated, and complete) time-varying synchronization is defined. Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks have been considered, where the delays are multiple time-varying delays. A novel control method is given by using the Lyapunov functional method. With this new and effective method, parameters identification and Q-S (lag, anticipated, and complete) time-varying synchronization can be achieved simultaneously. Simulation results are given to justify the theoretical analysis in this paper.

  4. Leading in times of turmoil: adaptation when there are no easy answers.

    PubMed

    Kerfoot, Karlene M

    2009-01-01

    Adapting to change is the hallmark of survival. We can't predict accurately what is around the corner in 2010 and beyond, but we know it will be very different than 2009 and the pace of change will be greatly accelerated. Successful leaders balance the tension between optimism and realism in healthy ways that create the motivation among their people to mobilize and produce productive solutions. The successful leader will help staff prepare for several possible scenarios and will equip them with possibilities for the future. Adaptive leadership is a viable model to carry us into the future. PMID:19927452

  5. Study of Interpolated Timing Recovery Phase-Locked Loop with Linearly Constrained Adaptive Prefilter for Higher-Density Optical Disc

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yoshiyuki; Shiraishi, Junya; Kobayashi, Shoei; Yamagami, Tamotsu

    2009-03-01

    A digital phase-locked loop (PLL) with a linearly constrained adaptive filter (LCAF) has been studied for higher-linear-density optical discs. LCAF has been implemented before an interpolated timing recovery (ITR) PLL unit in order to improve the quality of phase error calculation by using an adaptively equalized partial response (PR) signal. Coefficient update of an asynchronous sampled adaptive FIR filter with a least-mean-square (LMS) algorithm has been constrained by a projection matrix in order to suppress the phase shift of the tap coefficients of the adaptive filter. We have developed projection matrices that are suitable for Blu-ray disc (BD) drive systems by numerical simulation. Results have shown the properties of the projection matrices. Then, we have designed the read channel system of the ITR PLL with an LCAF model on the FPGA board for experiments. Results have shown that the LCAF improves the tilt margins of 30 gigabytes (GB) recordable BD (BD-R) and 33 GB BD read-only memory (BD-ROM) with a sufficient LMS adaptation stability.

  6. Online adaptive policy learning algorithm for H∞ state feedback control of unknown affine nonlinear discrete-time systems.

    PubMed

    Zhang, Huaguang; Qin, Chunbin; Jiang, Bin; Luo, Yanhong

    2014-12-01

    The problem of H∞ state feedback control of affine nonlinear discrete-time systems with unknown dynamics is investigated in this paper. An online adaptive policy learning algorithm (APLA) based on adaptive dynamic programming (ADP) is proposed for learning in real-time the solution to the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in the H∞ control problem. In the proposed algorithm, three neural networks (NNs) are utilized to find suitable approximations of the optimal value function and the saddle point feedback control and disturbance policies. Novel weight updating laws are given to tune the critic, actor, and disturbance NNs simultaneously by using data generated in real-time along the system trajectories. Considering NN approximation errors, we provide the stability analysis of the proposed algorithm with Lyapunov approach. Moreover, the need of the system input dynamics for the proposed algorithm is relaxed by using a NN identification scheme. Finally, simulation examples show the effectiveness of the proposed algorithm. PMID:25095274

  7. Use of adaptive cruise control functions on motorways and urban roads: Changes over time in an on-road study.

    PubMed

    Pereira, Marta; Beggiato, Matthias; Petzoldt, Tibor

    2015-09-01

    The study aimed at investigating how drivers use Adaptive Cruise Control and its functions in distinct road environments and to verify if changes occur over time. Fifteen participants were invited to drive a vehicle equipped with a Stop & Go Adaptive Cruise Control system on nine occasions. The course remained the same for each test run and included roads on urban and motorway environments. Results showed significant effect of experience for ACC usage percentage, and selection of the shortest time headway value in the urban road environment. This indicates that getting to know a system is not a homogenous process, as mastering the use of all the system's functions can take differing lengths of time in distinct road environments. Results can be used not only for the development of the new generation of systems that integrate ACC functionalities but also for determining the length of training required to operate an ACC system. PMID:25959324

  8. Neural Network-Based Adaptive Optimal Controller - A Continuous-Time Formulation

    NASA Astrophysics Data System (ADS)

    Vrabie, Draguna; Lewis, Frank; Levine, Daniel

    We present a new online adaptive control scheme, for partially unknown nonlinear systems, which converges to the optimal state-feedback control solution for affine in the input nonlinear systems. The main features of the algorithm map on the characteristics of the rewards-based decision making process in the mammal brain.

  9. Homonuclear BIRD-decoupled spectra for measuring one-bond couplings with highest resolution: CLIP/CLAP-RESET and constant-time-CLIP/CLAP-RESET.

    PubMed

    Reinsperger, Tony; Luy, Burkhard

    2014-02-01

    Heteronuclear one-bond couplings are of interest for various aspects of structural analysis of small organic molecules, including for example the distinction of axial and equatorial protons or the use of RDCs as angular constraints. Such couplings are most easily measured from pure doublets in HSQC-type spectra. Recently, the fully decoupled RESET HSQC experiment was reported and several other so-called pure-shift methods followed that allow for the removal of splittings due to homonuclear scalar interactions in one and two-dimensional NMR. In this work we present broadband homonuclear decoupled CLIP/CLAP-RESET experiments based on an isotope-selective BIRD filter element using a recently reported improved version of Zangger-Sterk data chunking. The concatenated FIDs result in multiplets in which most homonuclear splittings are removed while the heteronuclear one-bond couplings are retained. Couplings can be extracted in an IPAP fashion without scaling of subspectra by the use of optimized coherence transfer elements like the COB-INEPT. The method leads to complete homonuclear decoupling for CH groups and CH3 groups in isotropic samples, but leaves residual splittings with antiphase contributions for e.g. CH2 groups due to (2)JHH coupling evolution that is not affected by the BIRD element. For this case we present a constant-time version of the proposed BIRD decoupling scheme with full homonuclear decoupling. In addition, the effects of strong coupling are discussed. Strong coupling artifacts cannot be circumvented, but the proposed experiments allow their distinct recognition. PMID:24365099

  10. Finite time-Lyapunov based approach for robust adaptive control of wind-induced oscillations in power transmission lines

    NASA Astrophysics Data System (ADS)

    Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza

    2016-06-01

    Large amplitude oscillation of the power transmission lines, which is also known as galloping phenomenon, has hazardous consequences such as short circuiting and failure of transmission line. In this article, to suppress the undesirable vibrations of the transmission lines, first the governing equations of transmission line are derived via mode summation technique. Then, due to the occurrence of large amplitude vibrations, nonlinear quadratic and cubic terms are included in the derived linear equations. To suppress the vibrations, arbitrary number of the piezoelectric actuators is assumed to exert the actuation forces. Afterwards, a Lyapunov based approach is proposed for the robust adaptive suppression of the undesirable vibrations in the finite time. To compensate the supposed parametric uncertainties with unknown bands, proper adaption laws are introduced. To avoid the vibration devastating consequences as quickly as possible, appropriate control laws are designed. The vibration suppression in the finite time with supposed adaption and control laws is mathematically proved via Lyapunov finite time stability theory. Finally, to illustrate and validate the efficiency and robustness of the proposed finite time control scheme, a parametric case study with three piezoelectric actuators is performed. It is observed that the proposed active control strategy is more efficient and robust than the passive control methods.

  11. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope

    NASA Astrophysics Data System (ADS)

    Wang, Zhibin; Wei, Dan; Wei, Ling; He, Yi; Shi, Guohua; Wei, Xunbin; Zhang, Yudong

    2014-08-01

    We have demonstrated adaptive correction of specimen-induced aberration during in vivo imaging of mouse bone marrow vasculature with confocal fluorescence microscopy. Adaptive optics system was completed with wavefront sensorless correction scheme based on stochastic parallel gradient descent algorithm. Using image sharpness as the optimization metric, aberration correction was performed based upon Zernike polynomial modes. The experimental results revealed the improved signal and resolution leading to a substantially enhanced image contrast with aberration correction. The image quality of vessels at 38- and 75-μm depth increased three times and two times, respectively. The corrections allowed us to detect clearer bone marrow vasculature structures at greater contrast and improve the signal-to-noise ratio.

  12. Detecting discontinuities in time series of upper air data: Demonstration of an adaptive filter technique

    SciTech Connect

    Zurbenko, I.; Chen, J.; Rao, S.T.

    1997-11-01

    The issue of global climate change due to increased anthropogenic emissions of greenhouse gases in the atmosphere has gained considerable attention and importance. Climate change studies require the interpretation of weather data collected in numerous locations and/or over the span of several decades. Unfortunately, these data contain biases caused by changes in instruments and data acquisition procedures. It is essential that biases are identified and/or removed before these data can be used confidently in the context of climate change research. The purpose of this paper is to illustrate the use of an adaptive moving average filter and compare it with traditional parametric methods. The advantage of the adaptive filter over traditional parametric methods is that it is less effected by seasonal patterns and trends. The filter has been applied to upper air relative humidity and temperature data. Applied to generated data, the filter has a root mean squared error accuracy of about 600 days when locating changes of 0.1 standard deviations and about 20 days for changes of 0.5 standard deviations. In some circumstances, the accuracy of location estimation can be improved through parametric techniques used in conjunction with the adaptive filter.

  13. From nestling calls to fledgling silence: adaptive timing of change in response to aerial alarm calls

    PubMed Central

    Magrath, Robert D; Platzen, Dirk; Kondo, Junko

    2006-01-01

    Young birds and mammals are extremely vulnerable to predators and so should benefit from responding to parental alarm calls warning of danger. However, young often respond differently from adults. This difference may reflect: (i) an imperfect stage in the gradual development of adult behaviour or (ii) an adaptation to different vulnerability. Altricial birds provide an excellent model to test for adaptive changes with age in response to alarm calls, because fledglings are vulnerable to a different range of predators than nestlings. For example, a flying hawk is irrelevant to a nestling in a enclosed nest, but is dangerous to that individual once it has left the nest, so we predict that young develop a response to aerial alarm calls to coincide with fledging. Supporting our prediction, recently fledged white-browed scrubwrens, Sericornis frontalis, fell silent immediately after playback of their parents' aerial alarm call, whereas nestlings continued to calling despite hearing the playback. Young scrubwrens are therefore exquisitely adapted to the changing risks faced during development. PMID:16928636

  14. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  15. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of

  16. Developmental times and life table statistics of Aulacorthum solani (Hemiptera: Aphididae) at six constant temperatures, with recommendations on the application of temperature-dependent development models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developmental rates and age-specific life tables were determined for Aulacorthum solani (Kaltenbach) (known as foxglove aphid or glasshouse potato aphid) at 6 constant temperatures feeding on pansy (Viola × wittrockiana) (Gams.). Previously, there were no complete life table studies of this species...

  17. Daytime sleep has no effect on the time course of motor sequence and visuomotor adaptation learning.

    PubMed

    Backhaus, Winifried; Braaß, Hanna; Renné, Thomas; Krüger, Christian; Gerloff, Christian; Hummel, Friedhelm C

    2016-05-01

    Sleep has previously been claimed to be essential for the continued learning processes of declarative information as well as procedural learning. This study was conducted to examine the importance of sleep, especially the effects of midday naps, on motor sequence and visuomotor adaptation learning. Thirty-five (27 females) healthy, young adults aged between 18 and 30years of age participated in the current study. Addressing potential differences in explicit sequence and motor adaptation learning participants were asked to learn both, a nine-element explicit sequence and a motor adaptation task, in a crossover fashion on two consecutive days. Both tasks were performed with their non-dominant left hand. Prior to learning, each participant was randomized to one of three interventions; (1) power nap: 10-20min sleep, (2) long nap: 50-80min sleep or (3) a 45-min wake-condition. Performance of the motor learning task took place prior to and after a midday rest period, as well as after a night of sleep. Both sleep conditions were dominated by Stage N2 sleep with embedded sleep spindles, which have been described to be associated with enhancement of motor performance. Significant performance changes were observed in both tasks across all interventions (sleep and wake) confirming that learning took place. In the present setup, the magnitude of motor learning was not sleep-dependent in young adults - no differences between the intervention groups (short nap, long nap, no nap) could be found. The effect of the following night of sleep was not influenced by the previous midday rest or sleep period. This finding may be related to the selectiveness of the human brain enhancing especially memory being thought of as important in the future. Previous findings on motor learning enhancing effects of sleep, especially of daytime sleep, are challenged. PMID:27021017

  18. Time-dependent grid adaptation for meshes of triangles and tetrahedra

    NASA Technical Reports Server (NTRS)

    Rausch, Russ D.

    1993-01-01

    This paper presents in viewgraph form a method of optimizing grid generation for unsteady CFD flow calculations that distributes the numerical error evenly throughout the mesh. Adaptive meshing is used to locally enrich in regions of relatively large errors and to locally coarsen in regions of relatively small errors. The enrichment/coarsening procedures are robust for isotropic cells; however, enrichment of high aspect ratio cells may fail near boundary surfaces with relatively large curvature. The enrichment indicator worked well for the cases shown, but in general requires user supervision for a more efficient solution.

  19. Iterative time independent calculation of the cumulative reaction probability within a basis adapted preconditioner

    NASA Astrophysics Data System (ADS)

    Woittequand, F.; Monnerville, M.; Briquez, S.

    2006-01-01

    A band preconditioner matrix coupled to an iterative approach based on the generalized minimal residual (GMRes) method is presented to determine the cumulative reaction probability (CRP) N( E). The CRP is calculated using the Seideman, Manthe and Miller Lanczos-based boundary condition method [J. Chem. Phys. 96 (1992) 4412; 99 (1993) 3411]. Using this basis adapted preconditioner, the iterative GMRes scheme is found to be more efficient than a direct method based on the LU decomposition. The efficiency of this approach is illustrated by calculating the CRP for the H + O 2 → HO + O reaction, assuming zero total angular momentum.

  20. Bayesian Procedures for Identifying Aberrant Response-Time Patterns in Adaptive Testing

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Guo, Fanmin

    2008-01-01

    In order to identify aberrant response-time patterns on educational and psychological tests, it is important to be able to separate the speed at which the test taker operates from the time the items require. A lognormal model for response times with this feature was used to derive a Bayesian procedure for detecting aberrant response times.…