Science.gov

Sample records for adaptations impaired oxidative

  1. Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism.

    PubMed

    Wicks, Shawna E; Vandanmagsar, Bolormaa; Haynie, Kimberly R; Fuller, Scott E; Warfel, Jaycob D; Stephens, Jacqueline M; Wang, Miao; Han, Xianlin; Zhang, Jingying; Noland, Robert C; Mynatt, Randall L

    2015-06-23

    The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in increased carbohydrate utilization, along with reduced physical activity; increased circulating nonesterified fatty acids; and increased IMCLs, diacylglycerols, and ceramides. Perhaps more importantly, inhibition of mitochondrial FAO also initiates a local, adaptive response in muscle that invokes mitochondrial biogenesis, compensatory peroxisomal fat oxidation, and amino acid catabolism. Loss of its major fuel source (lipid) induces an energy deprivation response in muscle coordinated by signaling through AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) to maintain energy supply for locomotion and survival. At the whole-body level, these adaptations result in resistance to obesity.

  2. Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism

    PubMed Central

    Wicks, Shawna E.; Vandanmagsar, Bolormaa; Haynie, Kimberly R.; Fuller, Scott E.; Warfel, Jaycob D.; Stephens, Jacqueline M.; Wang, Miao; Han, Xianlin; Zhang, Jingying; Noland, Robert C.; Mynatt, Randall L.

    2015-01-01

    The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in increased carbohydrate utilization, along with reduced physical activity; increased circulating nonesterified fatty acids; and increased IMCLs, diacylglycerols, and ceramides. Perhaps more importantly, inhibition of mitochondrial FAO also initiates a local, adaptive response in muscle that invokes mitochondrial biogenesis, compensatory peroxisomal fat oxidation, and amino acid catabolism. Loss of its major fuel source (lipid) induces an energy deprivation response in muscle coordinated by signaling through AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) to maintain energy supply for locomotion and survival. At the whole-body level, these adaptations result in resistance to obesity. PMID:26056297

  3. Elevated mitochondrial oxidative stress impairs metabolic adaptations to exercise in skeletal muscle.

    PubMed

    Crane, Justin D; Abadi, Arkan; Hettinga, Bart P; Ogborn, Daniel I; MacNeil, Lauren G; Steinberg, Gregory R; Tarnopolsky, Mark A

    2013-01-01

    Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress present in Sod2 (+/-) mice impairs the functional and biochemical mitochondrial adaptations to exercise. Following exercise training Sod2 (+/-) mice fail to increase maximal work capacity, mitochondrial enzyme activity and mtDNA copy number, despite a normal augmentation of mitochondrial proteins. Additionally, exercised Sod2 (+/-) mice cannot compensate for their higher amount of basal mitochondrial oxidative damage and exhibit poor electron transport chain complex assembly that accounts for their compromised adaptation. Overall, these results demonstrate that chronic skeletal muscle mitochondrial oxidative stress does not impact exercise induced mitochondrial biogenesis, but impairs the resulting mitochondrial protein function and can limit metabolic plasticity.

  4. Muscle-specific adaptations, impaired oxidative capacity and maintenance of contractile function characterize diet-induced obese mouse skeletal muscle.

    PubMed

    Shortreed, Karin E; Krause, Matthew P; Huang, Julianna H; Dhanani, Dili; Moradi, Jasmin; Ceddia, Rolando B; Hawke, Thomas J

    2009-10-06

    The effects of diet-induced obesity on skeletal muscle function are largely unknown, particularly as it relates to changes in oxidative metabolism and morphology. Compared to control fed mice, mice fed a high fat diet (HFD; 60% kcal: fat) for 8 weeks displayed increased body mass and insulin resistance without overt fasting hyperglycemia (i.e. pre-diabetic). Histological analysis revealed a greater oxidative potential in the HFD gastrocnemius/plantaris (increased IIA, reduced IIB fiber-type percentages) and soleus (increased I, IIA cross-sectional areas) muscles, but no change in fiber type percentages in tibialis anterior muscles compared to controls. Intramyocellular lipid levels were significantly increased relative to control in HFD gastrocnemius/plantaris, but were similar to control values in the HFD soleus. Using a novel, single muscle fiber approach, impairments in complete palmitate and glucose oxidation (72.8+/-6.6% and 61.8+/-9.1% of control, respectively; p<0.05) with HFD were detected. These reductions were consistent with measures made using intact extensor digitorum longus and soleus muscles. Compared to controls, no difference in succinate dehydrogenase or citrate synthase enzyme activities were observed between groups in any muscle studied, however, short-chain fatty acyl CoA dehydrogenase (SCHAD) activity was elevated in the HFD soleus, but not tibialis anterior muscles. Despite these morphological and metabolic alterations, no significant difference in peak tetanic force or low-frequency fatigue rates were observed between groups. These findings indicate that HFD induces early adaptive responses that occur in a muscle-specific pattern, but are insufficient to prevent impairments in oxidative metabolism with continued high-fat feeding. Moreover, the morphological and metabolic changes which occur with 8 weeks of HFD do not significantly impact muscle contractile properties.

  5. Adapting for Impaired Patrons.

    ERIC Educational Resources Information Center

    Schuyler, Michael

    1999-01-01

    Describes how a library, with an MCI Corporation grant, approached the process of setting up computers for the visually impaired. Discusses preparations, which included hiring a visually-impaired user as a consultant and contacting the VIP (Visually Impaired Persons) group; equipment; problems with the graphical user interface; and training.…

  6. Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress.

    PubMed

    Fu, Jingqi; Woods, Courtney G; Yehuda-Shnaidman, Einav; Zhang, Qiang; Wong, Victoria; Collins, Sheila; Sun, Guifan; Andersen, Melvin E; Pi, Jingbo

    2010-06-01

    Chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with incidence of type 2 diabetes (T2D). A key driver in the pathogenesis of T2D is impairment of pancreatic beta-cell function, with the hallmark of beta-cell function being glucose-stimulated insulin secretion (GSIS). Reactive oxygen species (ROS) derived from glucose metabolism serve as one of the metabolic signals for GSIS. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. We tested the hypothesis that activation of Nrf2 and induction of antioxidant enzymes in response to arsenic exposure impedes glucose-triggered ROS signaling and thus GSIS. Exposure of INS-1(832/13) cells to low levels of arsenite led to decreased GSIS in a dose- and time-dependent fashion. Consistent with our hypothesis, a significantly enhanced Nrf2 activity, determined by its nuclear accumulation and induction of its target genes, was observed in arsenite-exposed cells. In keeping with the activation of Nrf2-mediated antioxidant response, intracellular glutathione and intracellular hydrogen peroxide-scavenging activity was dose dependently increased by arsenite exposure. Although the basal cellular peroxide level was significantly enhanced, the net percentage increase in glucose-stimulated intracellular peroxide production was markedly inhibited in arsenite-exposed cells. In contrast, insulin synthesis and the consensus GSIS pathway, including glucose transport and metabolism, were not significantly reduced by arsenite exposure. Our studies suggest that low levels of arsenic provoke a cellular adaptive oxidative stress response that increases antioxidant levels, dampens ROS signaling involved in GSIS, and thus disturbs beta-cell function.

  7. Adaptive oxide electronics: A review

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Ramanathan, Shriram

    2011-10-01

    Novel information processing techniques are being actively explored to overcome fundamental limitations associated with CMOS scaling. A new paradigm of adaptive electronic devices is emerging that may reshape the frontiers of electronics and enable new modalities. Creating systems that can learn and adapt to various inputs has generally been a complex algorithm problem in information science, albeit with wide-ranging and powerful applications from medical diagnosis to control systems. Recent work in oxide electronics suggests that it may be plausible to implement such systems at the device level, thereby drastically increasing computational density and power efficiency and expanding the potential for electronics beyond Boolean computation. Intriguing possibilities of adaptive electronics include fabrication of devices that mimic human brain functionality: the strengthening and weakening of synapses emulated by electrically, magnetically, thermally, or optically tunable properties of materials.In this review, we detail materials and device physics studies on functional metal oxides that may be utilized for adaptive electronics. It has been shown that properties, such as resistivity, polarization, and magnetization, of many oxides can be modified electrically in a non-volatile manner, suggesting that these materials respond to electrical stimulus similarly as a neural synapse. We discuss what device characteristics will likely be relevant for integration into adaptive platforms and then survey a variety of oxides with respect to these properties, such as, but not limited to, TaOx, SrTiO3, and Bi4-xLaxTi3O12. The physical mechanisms in each case are detailed and analyzed within the framework of adaptive electronics. We then review theoretically formulated and current experimentally realized adaptive devices with functional oxides, such as self-programmable logic and neuromorphic circuits. Finally, we speculate on what advances in materials physics and engineering may

  8. Content adaptation for visual impairment in MPEG-21

    NASA Astrophysics Data System (ADS)

    Yang, Seungji; Thang, Truong C.; Ro, Yong M.

    2004-06-01

    In this paper, we propose content adaptation for visual impairments in MPEG-21. The proposed content adaptation aims to give enhanced visual accessibility to users with visual impairment in MPEG-21. In this paper, we consider two major visual impairments: low vision impairment and color vision deficiency. The proposed method includes description for the visual impairments and content adaptation technique based on it. We have developed a symptom-based description of visual impairment characteristics for users with visual impairment in the context of MPEG-21 digital item adaptation (DIA). To verify usefulness of the proposed method, we performed some experiments with the content adaptation based on the description in MPEG-21. The experiment results showed that the proposed method is effective content adaptation for user with visual impairment and gives enhanced visual accessibility to them.

  9. Impaired Adaptive Response to Mechanical Overloading in Dystrophic Skeletal Muscle

    PubMed Central

    Joanne, Pierre; Hourdé, Christophe; Ochala, Julien; Caudéran, Yvain; Medja, Fadia; Vignaud, Alban; Mouisel, Etienne; Hadj-Said, Wahiba; Arandel, Ludovic; Garcia, Luis; Goyenvalle, Aurélie; Mounier, Rémi; Zibroba, Daria; Sakamato, Kei; Butler-Browne, Gillian; Agbulut, Onnik; Ferry, Arnaud

    2012-01-01

    Dystrophin contributes to force transmission and has a protein-scaffolding role for a variety of signaling complexes in skeletal muscle. In the present study, we tested the hypothesis that the muscle adaptive response following mechanical overloading (ML) would be decreased in MDX dystrophic muscle lacking dystrophin. We found that the gains in muscle maximal force production and fatigue resistance in response to ML were both reduced in MDX mice as compared to healthy mice. MDX muscle also exhibited decreased cellular and molecular muscle remodeling (hypertrophy and promotion of slower/oxidative fiber type) in response to ML, and altered intracellular signalings involved in muscle growth and maintenance (mTOR, myostatin, follistatin, AMPKα1, REDD1, atrogin-1, Bnip3). Moreover, dystrophin rescue via exon skipping restored the adaptive response to ML. Therefore our results demonstrate that the adaptive response in response to ML is impaired in dystrophic MDX muscle, most likely because of the dystrophin crucial role. PMID:22511986

  10. Effective Classroom Adaptations for Students with Visual Impairments.

    ERIC Educational Resources Information Center

    Cox, Penny R.; Dykes, Mary K.

    2001-01-01

    This article discusses strategies for including students with visual impairments in general education settings. It explains categories of visual impairments and how students with visual impairments learn. Auditory learning and visual learning accommodations are addressed, and checklists for orientation and mobility adaptations, and for classroom…

  11. Adaptive Behavior of Children and Adolescents with Visual Impairments

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Metsiou, Katerina; Agaliotis, Ioannis

    2011-01-01

    The present study explored the total adaptive behavior of children and adolescents with visual impairments, as well as their adaptive behavior in each of the domains of Communication, Daily Living Skills, and Socialization. Moreover, the predictors of the performance and developmental delay in adaptive behavior were investigated. Instrumentation…

  12. Adaptive Behavior of Children and Adolescents with Visual Impairments

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Metsiou, Katerina; Agaliotis, Ioannis

    2011-01-01

    The present study explored the total adaptive behavior of children and adolescents with visual impairments, as well as their adaptive behavior in each of the domains of Communication, Daily Living Skills, and Socialization. Moreover, the predictors of the performance and developmental delay in adaptive behavior were investigated. Instrumentation…

  13. Oxidation of multiple methionine residues impairs rapid sodium channel inactivation

    PubMed Central

    Kassmann, Mario; Hansel, Alfred; Leipold, Enrico; Birkenbeil, Jan; Lu, Song-Qing; Hoshi, Toshinori; Heinemann, Stefan H.

    2010-01-01

    Reactive oxygen species (ROS) readily oxidize the sulfur-containing amino acids cysteine and methionine (Met). The impact of Met oxidation on the fast inactivation of the skeletal muscle sodium channel NaV1.4 expressed in human embryonic kidney cells was studied by applying the Met-preferring oxidant chloramine-T (ChT) or by irradiating the ROS-producing dye Lucifer Yellow in the patch pipettes. Both interventions dramatically slowed down inactivation of the sodium channels. Replacement of Met in the Ile-Phe-Met inactivation motif with Leu (M1305L) strongly attenuated the oxidizing effect on inactivation but did not eliminate it completely. Mutagenesis of conserved Met residues in the intracellular linkers connecting the membrane-spanning segments of the channel (M1469L and M1470L) also markedly diminished the oxidation sensitivity of the channel, while that of other conserved Met residues (442, 1139, 1154, 1316) were without any noticeable effect. The results of mutagenesis of results, assays of other NaV channel isoforms (NaV1.2, NaV1.5, NaV1.7) and the kinetics of the oxidation-induced removal of inactivation collectively indicate that multiple Met target residues need to be oxidized to completely impair inactivation. This arrangement using multiple Met residues confers a finely graded oxidative modulation of NaV channels and allows organisms to adapt to a variety of oxidative stress conditions, such as ischemic reperfusion. PMID:18369661

  14. Adapting the Brief COPE for Chinese Adolescents with Visual Impairments

    ERIC Educational Resources Information Center

    Yuan, Wei; Zhang, Li-fang; Li, Bing

    2017-01-01

    Introduction: The present research pioneered the effort in assessing adolescents' coping with visual impairment through adapting the Brief COPE in an eastern context. The first study preliminarily explored the applicability of the Brief COPE to Chinese adolescent students with visual impairments. Based on the results, the Brief COPE was modified…

  15. Secondary tasks impair adaptation to step and gradual visual displacements

    PubMed Central

    Galea, J.M.; Sami, S.; Albert, N.B.; Miall, R.C.

    2016-01-01

    Performing two competing tasks can result in dividing cognitive resources between the tasks and impaired motor adaptation. In previous work we have reported impaired learning when participants had to switch from one visual displacement adaptation task to another. Here we examined whether or not a secondary task had a similar effect on adaptation to a visual displacement . The resource dividing task involved simultaneously adapting to a step visual displacement whilst vocally shadowing an auditory stimulus . The switching task required participants to adapt to opposing visual displacements in an alternating manner with the left and right hands. We found that both manipulations had a detrimental effect on adaptation rate. We then integrated these tasks and found the combination caused a greater decrease in adaptation rate than either manipulation in isolation. Experiment 2 showed that adaptation to a gradually imposed visual displacement was influenced in a similar manner to step adaptation. Therefore although gradual adaptation involves minimal awareness it still can be disrupted by a cognitively demanding secondary task. We propose that awareness and cognitive resource can be regarded as qualitatively different but that awareness may be a marker of the amount of resource required. For example, large errors are both noticed and require substantial cognitive resource to connect. However a lack of awareness does not mean an adaptation task will be resistant to interference from a resource consuming secondary task. PMID:20101396

  16. Familiar Sports and Activities Adapted for Multiply Impaired Persons.

    ERIC Educational Resources Information Center

    Schilling, Mary Lou, Ed.

    1984-01-01

    Means of adapting some familiar and popular physical activities for multiply impaired persons are described. Games reviewed are dice baseball, one base baseball, in-house bowling, wheelchair bowling, ramp bowling, swing-ball bowling, table tennis, shuffleboard, beanbag bingo and tic-tac-toe, balloon basketball, circle football, and wheelchair…

  17. Familiar Sports and Activities Adapted for Multiply Impaired Persons.

    ERIC Educational Resources Information Center

    Schilling, Mary Lou, Ed.

    1984-01-01

    Means of adapting some familiar and popular physical activities for multiply impaired persons are described. Games reviewed are dice baseball, one base baseball, in-house bowling, wheelchair bowling, ramp bowling, swing-ball bowling, table tennis, shuffleboard, beanbag bingo and tic-tac-toe, balloon basketball, circle football, and wheelchair…

  18. Impaired oxidative phosphorylation in overtrained rat myocardium

    PubMed Central

    Kadaja, Lumme; Eimre, Margus; Paju, Kalju; Roosimaa, Mart; Põdramägi, Taavi; Kaasik, Priit; Pehme, Ando; Orlova, Ehte; Mudist, Margareeta; Peet, Nadezhda; Piirsoo, Andres; Seene, Teet; Gellerich, Frank N; Seppet, Enn K

    2010-01-01

    The present study was undertaken to characterize and review the changes in energy metabolism in rat myocardium in response to chronic exhaustive exercise. It was shown that a treadmill exercise program applied for six weeks led the rats into a state characterized by decreased performance, loss of body weight and enhanced muscle catabolism, indicating development of overtraining syndrome. Electron microscopy revealed disintegration of the cardiomyocyte structure, cellular swelling and appearance of peroxisomes. Respirometric assessment of mitochondria in saponin-permeabilized cells in situ revealed a decreased rate of oxidative phosphorylation (OXPHOS) due to diminished control over it by ADP and impaired functional coupling of adenylate kinase to OXPHOS. In parallel, reduced tissue content of cytochrome c was observed, which could limit the maximal rate of OXPHOS. The results are discussed with respect to relationships between the volume of work and corresponding energy metabolism. It is concluded that overtraining syndrome is not restricted to skeletal muscle but can affect cardiac muscle as well. PMID:21264069

  19. Impaired accumulation of granulocytes in the lung during ozone adaptation.

    PubMed

    Fiévez, L; Kirschvink, N; Dogné, S; Jaspar, F; Merville, M P; Bours, V; Lekeux, P; Bureau, F

    2001-09-01

    Respiratory alterations induced by an acute exposure to ozone (O(3)) paradoxically resolve during multiday exposure. This adaptation is characteristically accompanied by a gradual attenuation of lung neutrophilia. As maintenance of neutrophilia at the site of inflammation is due to cytokine-mediated delayed neutrophil apoptosis, which is associated with reduced levels of Bax, a proapoptotic protein, we sought to determine whether defects in these mechanisms could account for O(3) adaptation. Lung granulocytes obtained at different time points from calves exposed to 0.75 ppm O(3) for 12 h/d for 7 consecutive days neither showed enhancement of survival nor Bax deficiency, when compared to blood granulocytes. To further investigate the effects of an exogenous oxidative stress on neutrophil survival, human granulocytes were treated with hydrogen peroxide alone, or in combination with granulocyte/macrophage colony-stimulating factor, an antiapoptotic cytokine. Both treatments led to rapid apoptosis associated with downregulation of Bcl-x(L) and Bcl-2, two antiapoptotic proteins. This study shows that O(3) adaptation is associated with a failure in the mechanisms leading to accumulation of neutrophils at the site of inflammation, and suggests that this defect is due to direct proapoptotic effects of exogenous oxidative stress on granulocytes.

  20. Adaptive Behavior of Primary School Students with Visual Impairments: The Impact of Educational Settings

    ERIC Educational Resources Information Center

    Metsiou, Katerina; Papadopoulos, Konstantinos; Agaliotis, Ioannis

    2011-01-01

    This study explored the adaptive behavior of primary school students with visual impairments, as well as the impact of educational setting on their adaptive behavior. Instrumentation included an informal questionnaire and the Vineland Adaptive Behavior Scales. Participants were 36 primary school students with visual impairments. The educational…

  1. Adaptive Behavior of Primary School Students with Visual Impairments: The Impact of Educational Settings

    ERIC Educational Resources Information Center

    Metsiou, Katerina; Papadopoulos, Konstantinos; Agaliotis, Ioannis

    2011-01-01

    This study explored the adaptive behavior of primary school students with visual impairments, as well as the impact of educational setting on their adaptive behavior. Instrumentation included an informal questionnaire and the Vineland Adaptive Behavior Scales. Participants were 36 primary school students with visual impairments. The educational…

  2. Spatial Compression Impairs Prism Adaptation in Healthy Individuals

    PubMed Central

    Scriven, Rachel J.; Newport, Roger

    2013-01-01

    Neglect patients typically present with gross inattention to one side of space following damage to the contralateral hemisphere. While prism-adaptation (PA) is effective in ameliorating some neglect behaviors, the mechanisms involved and their relationship to neglect remain unclear. Recent studies have shown that conscious strategic control (SC) processes in PA may be impaired in neglect patients, who are also reported to show extraordinarily long aftereffects compared to healthy participants. Determining the underlying cause of these effects may be the key to understanding therapeutic benefits. Alternative accounts suggest that reduced SC might result from a failure to detect prism-induced reaching errors properly either because (a) the size of the error is underestimated in compressed visual space or (b) pathologically increased error-detection thresholds reduce the requirement for error correction. The purpose of this study was to model these two alternatives in healthy participants and to examine whether SC and subsequent aftereffects were abnormal compared to standard PA. Each participant completed three PA procedures within a MIRAGE mediated reality environment with direction errors recorded before, during and after adaptation. During PA, visual feedback of the reach could be compressed, perturbed by noise, or represented veridically. Compressed visual space significantly reduced SC and aftereffects compared to control and noise conditions. These results support recent observations in neglect patients, suggesting that a distortion of spatial representation may successfully model neglect and explain neglect performance while adapting to prisms. PMID:23675332

  3. Adaptive behaviour of silicon oxide memristive nanostructures

    NASA Astrophysics Data System (ADS)

    Korolev, D. S.; Mikhaylov, A. N.; Belov, A. I.; Sergeev, V. A.; Antonov, I. N.; Gorshkov, O. N.; Tetelbaum, D. I.

    2016-08-01

    The response to electrical pulses of various parameters has been studied for the CMOS-compatible memristive nanostructures on the basis of silicon oxide demonstrating reproducible resistive switching. It is established that an increase in the amplitude or width of a single programming pulse is followed by the gradual decrease in the device resistivity. By applying periodic pulse sequences of different polarity it is possible to obtain both lower and higher resistance states. This adaptive behavior is analogous to synaptic plasticity and considered as one of the main conditions for the application of memristive devices in neuromorphic systems and synaptic electronics.

  4. Adaptive changes in autophagy after UPS impairment in Parkinson's disease.

    PubMed

    Shen, Yu-fei; Tang, Yu; Zhang, Xiao-jie; Huang, Kai-xing; Le, Wei-dong

    2013-05-01

    Ubiquitin-proteasome system (UPS) and autophagosome-lysosome pathway (ALP) are the most important machineries responsible for protein degradation in Parkinson's disease (PD). The aim of this study is to investigate the adaptive alterations in autophagy upon proteasome inhibition in dopaminergic neurons in vitro and in vivo. Human dopaminergic neuroblastoma SH-SY5Y cells were treated with the proteasome inhibitor lactacystin (5 μmol/L) for 5, 12, or 24 h. The expression of autophagy-related proteins in the cells was detected with immunoblotting. UPS-impaired mouse model of PD was established by microinjection of lactacystin (2 μg) into the left hemisphere of C57BL/6 mice that were sacrificed 2 or 4 weeks later. The midbrain tissues were dissected to assess alterations in autophagy using immunofluorescence, immunoblotting and electron microscopy assays. Both in SH-SY5Y cells and in the midbrain of UPS-impaired mouse model of PD, treatment with lactacystin significantly increased the expression levels of LC3-I/II and Beclin 1, and reduced the levels of p-mTOR, mTOR and p62/SQSTM1. Furthermore, lactacystin treatment in UPS-impaired mouse model of PD caused significant loss of TH-positive neurons in the substantia nigra, and dramatically increased the number of autophagosomes in the left TH-positive neurons. Inhibition of UPS by lactacystin in dopaminergic neurons activates another protein degradation system, the ALP, which includes both the mTOR signaling pathway and Beclin 1-associated pathway.

  5. Adaptive changes in autophagy after UPS impairment in Parkinson's disease

    PubMed Central

    Shen, Yu-fei; Tang, Yu; Zhang, Xiao-jie; Huang, Kai-xing; Le, Wei-dong

    2013-01-01

    Aim: Ubiquitin-proteasome system (UPS) and autophagosome-lysosome pathway (ALP) are the most important machineries responsible for protein degradation in Parkinson's disease (PD). The aim of this study is to investigate the adaptive alterations in autophagy upon proteasome inhibition in dopaminergic neurons in vitro and in vivo. Methods: Human dopaminergic neuroblastoma SH-SY5Y cells were treated with the proteasome inhibitor lactacystin (5 μmol/L) for 5, 12, or 24 h. The expression of autophagy-related proteins in the cells was detected with immunoblotting. UPS-impaired mouse model of PD was established by microinjection of lactacystin (2 μg) into the left hemisphere of C57BL/6 mice that were sacrificed 2 or 4 weeks later. The midbrain tissues were dissected to assess alterations in autophagy using immunofluorescence, immunoblotting and electron microscopy assays. Results: Both in SH-SY5Y cells and in the midbrain of UPS-impaired mouse model of PD, treatment with lactacystin significantly increased the expression levels of LC3-I/II and Beclin 1, and reduced the levels of p-mTOR, mTOR and p62/SQSTM1. Furthermore, lactacystin treatment in UPS-impaired mouse model of PD caused significant loss of TH-positive neurons in the substantia nigra, and dramatically increased the number of autophagosomes in the left TH-positive neurons. Conclusion: Inhibition of UPS by lactacystin in dopaminergic neurons activates another protein degradation system, the ALP, which includes both the mTOR signaling pathway and Beclin 1-associated pathway. PMID:23503475

  6. Nitric oxide in adaptation to altitude.

    PubMed

    Beall, Cynthia M; Laskowski, Daniel; Erzurum, Serpil C

    2012-04-01

    This review summarizes published information on the levels of nitric oxide gas (NO) in the lungs and NO-derived liquid-phase molecules in the acclimatization of visitors newly arrived at altitudes of 2500 m or more and adaptation of populations whose ancestors arrived thousands of years ago. Studies of acutely exposed visitors to high altitude focus on the first 24-48 h with just a few extending to days or weeks. Among healthy visitors, NO levels in the lung, plasma, and/or red blood cells fell within 2h, but then returned toward baseline or slightly higher by 48 h and increased above baseline by 5 days. Among visitors ill with high-altitude pulmonary edema at the time of the study or in the past, NO levels were lower than those of their healthy counterparts. As for highland populations, Tibetans had NO levels in the lung, plasma, and red blood cells that were at least double and in some cases orders of magnitude greater than other populations regardless of altitude. Red blood cell-associated nitrogen oxides were more than 200 times higher. Other highland populations had generally higher levels although not to the degree shown by Tibetans. Overall, responses of those acclimatized and those presumed to be adapted are in the same direction, although the Tibetans have much larger responses. Missing are long-term data on lowlanders at altitude showing how similar they become to the Tibetan phenotype. Also missing are data on Tibetans at low altitude to see the extent to which their phenotype is a response to the immediate environment or expressed constitutively. The mechanisms causing the visitors' and the Tibetans' high levels of NO and NO-derived molecules at altitude remain unknown. Limited data suggest processes including hypoxic upregulation of NO synthase gene expression, hemoglobin-NO reactions, and genetic variation. Gains in understanding will require integrating appropriate methods and measurement techniques with indicators of adaptive function under hypoxic

  7. Nitric oxide in adaptation to altitude

    PubMed Central

    Laskowski, Daniel; Erzurum, Serpil C.

    2012-01-01

    This review summarizes published information on levels of nitric oxide gas (NO) in the lungs and NO-derived liquid phase molecules in the acclimatization of visitors newly arrived at altitudes of 2500m or more and adaptation of populations whose ancestors arrived thousands of years ago. Studies of acutely exposed visitors to high altitude focus on the first 24–48 hours with just a few extending to days or weeks. Among healthy visitors, NO levels in the lung, plasma and/or red blood cells fell within three hours, but then returned toward baseline or slightly higher by 48 hours, and increased above baseline by 5 days. Among visitors ill with high-altitude pulmonary edema at the time of the study or in the past, NO levels were lower than their healthy counterparts. As for highland populations, Tibetans had NO levels in the lung, plasma and red blood cells that were at least double and in some cases orders of magnitude greater than other populations regardless of altitude. Red blood cell associated nitrogen oxides were more than two hundred times higher. Other highland populations had generally higher levels although not to the degree showed by Tibetans. Overall, responses of those acclimatized and those presumed to be adapted are in the same direction although the Tibetans have much larger responses. Missing are long-term data on lowlanders at altitude showing how similar they become to the Tibetan phenotype. Also missing are data on Tibetans at low altitude to see the extent to which their phenotype is a response to the immediate environment or expressed constitutively. The mechanisms causing the visitors’ and the Tibetans’ high levels of NO and NO-derived molecules at altitude remain unknown. Limited data suggest processes including hypoxic upregulation of NO synthase gene expression, hemoglobin-NO reactions and genetic variation. Gains in understanding will require integrating appropriate methods and measurement techniques with indicators of adaptive function

  8. Symbiosis-induced adaptation to oxidative stress.

    PubMed

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  9. Leptin Gene Epigenetic Adaptation to Impaired Glucose Metabolism During Pregnancy

    PubMed Central

    Bouchard, Luigi; Thibault, Stéphanie; Guay, Simon-Pierre; Santure, Marta; Monpetit, Alexandre; St-Pierre, Julie; Perron, Patrice; Brisson, Diane

    2010-01-01

    OBJECTIVE To verify whether the leptin gene epigenetic (DNA methylation) profile is altered in the offspring of mothers with gestational impaired glucose tolerance (IGT). RESEARCH DESIGN AND METHODS Placental tissues and maternal and cord blood samples were obtained from 48 women at term including 23 subjects with gestational IGT. Leptin DNA methylation, gene expression levels, and circulating concentration were measured using the Sequenom EpiTYPER system, quantitative real-time RT-PCR, and enzyme-linked immunosorbent assay, respectively. IGT was assessed after a 75-g oral glucose tolerance test (OGTT) at 24–28 weeks of gestation. RESULTS We have shown that placental leptin gene DNA methylation levels were correlated with glucose levels (2-h post-OGTT) in women with IGT (fetal side: ρ = −0.44, P ≤ 0.05; maternal side: ρ = 0.53, P ≤ 0.01) and with decreased leptin gene expression (n = 48; ρ ≥ −0.30, P ≤ 0.05) in the whole cohort. Placental leptin mRNA levels accounted for 16% of the variance in maternal circulating leptin concentration (P < 0.05). CONCLUSIONS IGT during pregnancy was associated with leptin gene DNA methylation adaptations with potential functional impacts. These epigenetic changes provide novel mechanisms that could contribute to explaining the detrimental health effects associated with fetal programming, such as long-term increased risk of developing obesity and type 2 diabetes. PMID:20724651

  10. Adaptive behavior of primary school students with visual impairments: the impact of educational settings.

    PubMed

    Metsiou, Katerina; Papadopoulos, Konstantinos; Agaliotis, Ioannis

    2011-01-01

    This study explored the adaptive behavior of primary school students with visual impairments, as well as the impact of educational setting on their adaptive behavior. Instrumentation included an informal questionnaire and the Vineland Adaptive Behavior Scales. Participants were 36 primary school students with visual impairments. The educational setting had an effect on Daily Living Skills and Socialization. Students with visual impairments visiting special schools present worse adaptive behavior (higher developmental delay) compared to students visiting mainstream schools. Moreover, the educational level of parents influences the developmental delay on the Communication and Socialization. The higher the educational level of parents the lower the developmental delay. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Mild Oxidation Promotes and Advanced Oxidation Impairs Remodeling of Human High-Density Lipoprotein in vitro

    PubMed Central

    Gao, Xuan; Jayaraman, Shobini; Gursky, Olga

    2008-01-01

    SUMMARY High-density lipoproteins (HDL) prevent atherosclerosis by removing cholesterol from macrophages and by exerting anti-oxidant and anti-inflammatory effects. Oxidation is thought to impair HDL functions, yet certain oxidative modifications may be advantageous; thus, mild oxidation reportedly enhances cell cholesterol uptake by HDL whereas extensive oxidation impairs it. To elucidate the underlying energetic and structural basis, we analyzed the effects of copper and hypochlorite (that preferentially oxidize lipids and proteins, respectively) on thermal stability of plasma spherical HDL. Circular dichroism, light scattering, calorimetry, gel electrophoresis and electron microscopy showed that mild oxidation destabilizes HDL and accelerates protein dissociation and lipoprotein fusion, while extensive oxidation inhibits these reactions; this inhibition correlates with massive protein cross-linking and lipolysis. We propose that mild oxidation lowers kinetic barriers for HDL remodeling due to diminished apolipoprotein affinity for lipids resulting from oxidation of methionine and aromatic residues in apolipoproteins A-I and A-II followed by protein cross-linking into dimers and/or trimers. In contrast, advanced oxidation inhibits protein dissociation and HDL fusion due to lipid re-distribution from core to surface upon lipolysis and to massive protein cross-linking. Our results help reconcile the apparent controversy in the studies of oxidized HDL and suggest that mild oxidation may benefit HDL functions. PMID:18190928

  12. Mild oxidation promotes and advanced oxidation impairs remodeling of human high-density lipoprotein in vitro.

    PubMed

    Gao, Xuan; Jayaraman, Shobini; Gursky, Olga

    2008-02-29

    High-density lipoproteins (HDLs) prevent atherosclerosis by removing cholesterol from macrophages and by exerting antioxidant and anti-inflammatory effects. Oxidation is thought to impair HDL functions, yet certain oxidative modifications may be advantageous; thus, mild oxidation reportedly enhances cell cholesterol uptake by HDL whereas extensive oxidation impairs it. To elucidate the underlying energetic and structural basis, we analyzed the effects of copper and hypochlorite (which preferentially oxidize lipids and proteins, respectively) on thermal stability of plasma spherical HDL. Circular dichroism, light scattering, calorimetry, gel electrophoresis, and electron microscopy showed that mild oxidation destabilizes HDL and accelerates protein dissociation and lipoprotein fusion, while extensive oxidation inhibits these reactions; this inhibition correlates with massive protein cross-linking and with lipolysis. We propose that mild oxidation lowers kinetic barriers for HDL remodeling due to diminished apolipoprotein affinity for lipids resulting from oxidation of methionine and aromatic residues in apolipoproteins A-I and A-II followed by protein cross-linking into dimers and/or trimers. In contrast, advanced oxidation inhibits protein dissociation and HDL fusion due to lipid redistribution from core to surface upon lipolysis and to massive protein cross-linking. Our results help reconcile the apparent controversy in the studies of oxidized HDL and suggest that mild oxidation may benefit HDL functions.

  13. 5-Lipoxygenase deficiency impairs innate and adaptive immune responses during fungal infection.

    PubMed

    Secatto, Adriana; Rodrigues, Lilian Cataldi; Serezani, Carlos Henrique; Ramos, Simone Gusmão; Dias-Baruffi, Marcelo; Faccioli, Lúcia Helena; Medeiros, Alexandra I

    2012-01-01

    5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/-) mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO(-/-) mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.

  14. Synaptic contacts impaired by styrene-7,8-oxide toxicity

    SciTech Connect

    Corsi, P. D'Aprile, A.; Nico, B.; Costa, G.L.; Assennato, G.

    2007-10-01

    Styrene-7,8-oxide (SO), a chemical compound widely used in industrial applications, is a potential hazard for humans, particularly in occupational settings. Neurobehavioral changes are consistently observed in occupationally exposed individuals and alterations of neurotransmitters associated with neuronal loss have been reported in animal models. Although the toxic effects of styrene have been extensively documented, the molecular mechanisms responsible for SO-induced neurotoxicity are still unclear. A possible dopamine-mediated effect of styrene neurotoxicity has been previously demonstrated, since styrene oxide alters dopamine neurotransmission in the brain. Thus, the present study hypothesizes that styrene neurotoxicity may involve synaptic contacts. Primary striatal neurons were exposed to styrene oxide at different concentrations (0.1-1 mM) for different time periods (8, 16, and 24 h) to evaluate the dose able to induce synaptic impairments. The expression of proteins crucial for synaptic transmission such as Synapsin, Synaptophysin, and RAC-1 were considered. The levels of Synaptophysin and RAC-1 decreased in a dose-dependent manner. Accordingly, morphological alterations, observed at the ultrastructural level, primarily involved the pre-synaptic compartment. In SO-exposed cultures, the biochemical cascade of caspases was activated affecting the cytoskeleton components as their target. Thus the impairments in synaptic contacts observed in SO-exposed cultures might reflect a primarily morphological alteration of neuronal cytoskeleton. In addition, our data support the hypothesis developed by previous authors of reactive oxygen species (ROS) initiating events of SO cytotoxicity.

  15. Impaired Mitochondrial Fat Oxidation Induces FGF21 in Muscle.

    PubMed

    Vandanmagsar, Bolormaa; Warfel, Jaycob D; Wicks, Shawna E; Ghosh, Sujoy; Salbaum, J Michael; Burk, David; Dubuisson, Olga S; Mendoza, Tamra M; Zhang, Jingying; Noland, Robert C; Mynatt, Randall L

    2016-05-24

    Fatty acids are the primary fuel source for skeletal muscle during most of our daily activities, and impaired fatty acid oxidation (FAO) is associated with insulin resistance. We have developed a mouse model of impaired FAO by deleting carnitine palmitoyltransferase-1b specifically in skeletal muscle (Cpt1b(m-/-)). Cpt1b(m-/-) mice have increased glucose utilization and are resistant to diet-induced obesity. Here, we show that inhibition of mitochondrial FAO induces FGF21 expression specifically in skeletal muscle. The induction of FGF21 in Cpt1b-deficient muscle is dependent on AMPK and Akt1 signaling but independent of the stress signaling pathways. FGF21 appears to act in a paracrine manner to increase glucose uptake under low insulin conditions, but it does not contribute to the resistance to diet-induced obesity.

  16. Impaired mitochondrial fat oxidation induces FGF21 in muscle

    PubMed Central

    Vandanmagsar, Bolormaa; Warfel, Jaycob D.; Wicks, Shawna E.; Ghosh, Sujoy; Salbaum, J. Michael; Burk, David; Dubuisson, Olga S.; Mendoza, Tamra M.; Zhang, Jingying; Noland, Robert C.; Mynatt, Randall L.

    2016-01-01

    SUMMARY Fatty acids are the primary fuel source for skeletal muscle during most of our daily activities and impaired fatty acid oxidation (FAO) is associated with insulin resistance. We have developed a mouse model of impaired FAO by deleting carnitine palmitoyltransferase-1b specifically in skeletal muscle (Cpt1bm−/−). Cpt1bm−/− mice have increased glucose utilization and are resistant to diet induced obesity. Here we show that inhibition of mitochondrial FAO induces FGF21 expression specifically in skeletal muscle. The induction of FGF21 in Cpt1b-deficient muscle is dependent on AMPK and Akt1 signaling but independent on the stress signaling pathways. FGF21 appears to act in a paracrine manner to increase glucose uptake under low insulin conditions, but does not contribute to the resistance to diet induced obesity. PMID:27184848

  17. AccesSports: A Model for Adapting Mainstream Sports Activities for Individuals with Visual Impairments.

    ERIC Educational Resources Information Center

    Ponchilla, Paul E.

    1995-01-01

    The AccesSports Model allows professionals with basic knowledge of visual impairments and mainstream sports to analyze any sports activity and design adaptations needed for targets or goals, boundaries, and rules to enable individuals with visual impairments to participate. Suggestions for modifying baseball, table tennis, swim racing, wrestling,…

  18. AccesSports: A Model for Adapting Mainstream Sports Activities for Individuals with Visual Impairments.

    ERIC Educational Resources Information Center

    Ponchilla, Paul E.

    1995-01-01

    The AccesSports Model allows professionals with basic knowledge of visual impairments and mainstream sports to analyze any sports activity and design adaptations needed for targets or goals, boundaries, and rules to enable individuals with visual impairments to participate. Suggestions for modifying baseball, table tennis, swim racing, wrestling,…

  19. Oxidative Stress Adaptation with Acute, Chronic and Repeated Stress

    PubMed Central

    Pickering, Andrew M.; Vojtovich, Lesya; Tower, John; Davies, Kelvin J. A.

    2013-01-01

    Oxidative stress adaptation or hormesis is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells, and the fruit fly Drosophila melanogaster, are capable of adapting to chronic or repeated stress by up-regulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12 hours or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the level of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila, nevertheless also caused significant reductions in lifespan for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. PMID:23142766

  20. Adaptive Assessment of Young Children with Visual Impairment

    ERIC Educational Resources Information Center

    Ruiter, Selma; Nakken, Han; Janssen, Marleen; Van Der Meulen, Bieuwe; Looijestijn, Paul

    2011-01-01

    The aim of this study was to assess the effect of adaptations for children with low vision of the Bayley Scales, a standardized developmental instrument widely used to assess development in young children. Low vision adaptations were made to the procedures, item instructions and play material of the Dutch version of the Bayley Scales of Infant…

  1. Increased oxidative stress and impaired antioxidant response in Lafora disease.

    PubMed

    Romá-Mateo, Carlos; Aguado, Carmen; García-Giménez, José Luis; Ibáñez-Cabellos, José Santiago; Seco-Cervera, Marta; Pallardó, Federico V; Knecht, Erwin; Sanz, Pascual

    2015-01-01

    Lafora disease (LD, OMIM 254780, ORPHA501) is a fatal neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in the vast majority of cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin and malin. In the last years, several reports have revealed molecular details of these two proteins and have identified several processes affected in LD, but the pathophysiology of the disease still remains largely unknown. Since autophagy impairment has been reported as a characteristic treat in both Lafora disease cell and animal models, and as there is a link between autophagy and mitochondrial performance, we sought to determine if mitochondrial function could be altered in those models. Using fibroblasts from LD patients, deficient in laforin or malin, we found mitochondrial alterations, oxidative stress and a deficiency in antioxidant enzymes involved in the detoxification of reactive oxygen species (ROS). Similar results were obtained in brain tissue samples from transgenic mice deficient in either the EPM2A or EPM2B genes. Furthermore, in a proteomic analysis of brain tissue obtained from Epm2b-/- mice, we observed an increase in a modified form of peroxiredoxin-6, an antioxidant enzyme involved in other neurological pathologies, thus corroborating an alteration of the redox condition. These data support that oxidative stress produced by an increase in ROS production and an impairment of the antioxidant enzyme response to this stress play an important role in development of LD.

  2. Development of a psychosocial adaptation questionnaire for Chinese patients with visual impairments.

    PubMed

    Zhang, Xiu-jie; Wang, Ai-ping

    2011-10-01

    To develop a psychosocial adaptation questionnaire for Chinese patients with visual impairments and to examine its reliability and validity. Psychosocial adaptation with disease has been studied, however, there have been few reports on the impact of visual impairment on psychosocial adaptation. An instrument has not been developed to assess psychosocial adaptation with visual impairment specifically for patients in China. Both qualitative and quantitative research methods were used. A questionnaire was developed based on the concept of psychosocial adaptation with visual impairment. Items for the questionnaire were developed by reviewing the literature and carrying out a semi-structured interview with 12 visually impaired patients. Five ophthalmologists and ten patients evaluated the content validity and face validity of the questionnaire, respectively. The method of convenient sampling was used to select 213 visually impaired patients in the Ophthalmology Department of the First Affiliated Hospital of China Medical University to participate in the study. Discriminative index and item-total correlation analyses were used to delete items that were lower than a set criterion. Regarding construct validity, factor analysis was performed. The Self-rating Anxiety Scale (SAS), General Self-Efficacy Scale (GSES) and Self Acceptance Questionnaire (SAQ) were used to evaluate criterion validity. Cronbach's alpha coefficient was used as an index of internal consistency. To evaluate test-retest reliability, 50 patients were re-evaluated after 24 hours. A total of 204 questionnaire items were created. 22 items were deleted by discriminative index and item-total correlation before factor analysis; 38 items were entered into the model for factor analysis. Seven factors were extracted by using principal factor analysis and varimax rotation, with a cumulative contribution of 59·18%. The correlation coefficients between the psychosocial adaptation questionnaire for visual impairment

  3. Adapting Homework for an Older Adult Client with Cognitive Impairment

    ERIC Educational Resources Information Center

    Coon, David W.; Thompson, Larry W.; Gallagher-Thompson, Dolores

    2007-01-01

    There is growing evidence that psychosocial treatments incorporating behavioral intervention strategies can be effective in the treatment of depression in older adults with cognitive impairment. However, less work with such cases has focused on the use of cognitive interventions in tandem with these behavioral intervention strategies. This case…

  4. Adapting Homework for an Older Adult Client with Cognitive Impairment

    ERIC Educational Resources Information Center

    Coon, David W.; Thompson, Larry W.; Gallagher-Thompson, Dolores

    2007-01-01

    There is growing evidence that psychosocial treatments incorporating behavioral intervention strategies can be effective in the treatment of depression in older adults with cognitive impairment. However, less work with such cases has focused on the use of cognitive interventions in tandem with these behavioral intervention strategies. This case…

  5. Poststroke hemiparesis impairs the rate but not magnitude of adaptation of spatial and temporal locomotor features.

    PubMed

    Savin, Douglas N; Tseng, Shih-Chiao; Whitall, Jill; Morton, Susanne M

    2013-01-01

    Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry. Determine whether locomotor adaptation to a novel swing phase perturbation is impaired in persons with chronic stroke and hemiparesis. Participants with ischemic stroke (14) and nondisabled controls (12) walked on a treadmill before, during, and after adaptation to a unilateral perturbing weight that resisted forward leg movement. Leg kinematics were measured bilaterally, including step length and single-limb support (SLS) time symmetry, limb angle center of oscillation, and interlimb phasing, and magnitude of "initial" and "late" locomotor adaptation rates were determined. All participants had similar magnitudes of adaptation and similar initial adaptation rates both spatially and temporally. All 14 participants with stroke and baseline asymmetry temporarily walked with improved SLS time symmetry after adaptation. However, late adaptation rates poststroke were decreased (took more strides to achieve adaptation) compared with controls. Mild to moderate hemiparesis does not interfere with the initial acquisition of novel symmetrical gait patterns in both the spatial and temporal domains, though it does disrupt the rate at which "late" adaptive changes are produced. Impairment of the late, slow phase of learning may be an important rehabilitation consideration in this patient population.

  6. Adaptability of the oxidative capacity of motoneurons

    NASA Technical Reports Server (NTRS)

    Chalmers, G. R.; Roy, R. R.; Edgerton, V. R.

    1992-01-01

    Previous studies have demonstrated that a chronic change in neuronal activation can produce a change in soma oxidative capacity, suggesting that: (i) these 2 variables are directly related in neurons and (ii) ion pumping is an important energy requiring activity of a neuron. Most of these studies, however, have focused on reduced activation levels of sensory systems. In the present study the effect of a chronic increase or decrease in motoneuronal activity on motoneuron oxidative capacity and soma size was studied. In addition, the effect of chronic axotomy was studied as an indicator of whether cytoplasmic volume may also be related to the oxidative capacity of motoneurons. A quantitative histochemical assay for succinate dehydrogenase activity was used as a measure of motoneuron oxidative capacity in experimental models in which chronic electromyography has been used to verify neuronal activity levels. Spinal transection reduced, and spinal isolation virtually eliminated lumbar motoneuron electrical activity. Functional overload of the plantaris by removal of its major synergists was used to chronically increase neural activity of the plantaris motor pool. No change in oxidative capacity or soma size resulted from either a chronic increase or decrease in neuronal activity level. These data indicate that the chronic modulation of ionic transport and neurotransmitter turnover associated with action potentials do not induce compensatory metabolic responses in the metabolic capacity of the soma of lumbar motoneurons. Soma oxidative capacity was reduced in the axotomized motoneurons, suggesting that a combination of axoplasmic transport, intracellular biosynthesis and perhaps neurotransmitter turnover represent the major energy demands on a motoneuron. While soma oxidative capacity may be closely related to neural activity in some neural systems, e.g. visual and auditory, lumbar motoneurons appear to be much less sensitive to modulations in chronic activity levels.

  7. Lipopolysaccharide impairs endothelial nitric oxide synthesis in rat renal arteries.

    PubMed

    Piepot, H A; Boer, C; Groeneveld, A B; Van Lambalgen, A A; Sipkema, P

    2000-06-01

    Impaired endothelium-dependent vasodilation may contribute to hypoperfusion and failure of abdominal organs, including the kidneys during endotoxin or septic shock. In this study, the short-term (2 h) effects of bacterial lipopolysaccharide (LPS) on endothelium-dependent vasodilation in rat renal and superior mesenteric arteries were documented. Rat renal and mesenteric arteries were dissected and exposed in vitro to LPS for two hours. The effects of LPS on vascular reactivity were determined and compared with time-matched controls. Endothelial nitric oxide (NO) release was determined using an NO microsensor in adjacent vessel segments. LPS impaired maximal acetylcholine (ACh)-induced endothelium-dependent vasodilation in renal arteries (62.5 +/- 8.8% vs. 34.4 +/- 7.5% in controls and LPS-exposed arteries), but not in mesenteric arteries. LPS did not alter the sensitivity of renal arteries to exogenous NO. ACh-dependent vasodilation was abolished after blocking NO synthesis with 10-4 mol/L L-NA in control and LPS-incubated renal arteries. When compared with controls, NO release induced by ACh and the receptor-independent calcium ionophore A23187 was significantly decreased (P < 0.05) in LPS-exposed renal segments and was fully abolished in endothelium-denuded segments, indicating that LPS attenuated receptor-dependent as well as receptor-independent endothelial NO release. In contrast, ACh- and A23187-induced NO release was normal in LPS-exposed mesenteric arteries. These results indicate that LPS-induced selective impairment of ACh-induced endothelium-dependent relaxation in rat renal arteries is caused by decreased endothelial NO release. This may contribute to the propensity for acute renal failure during septic shock.

  8. Impairment of 'ileostomy adaptation' in patients after ileal resection.

    PubMed

    Hill, G L; Mair, W S; Goligher, J C

    1974-12-01

    Ileostomists claim that in the months following the establishment of an ileostomy, the faecal output decreases in volume and becomes less fluid. It is claimed that this ;ileostomy adaptation' does not occur in those patients who have had an ileal resection. To determine whether ileostomy adaptation does occur and to examine its physiological mechanisms, 10 ileostomy patients were studied. Five had had ileal resection and five had not. The output of fluid, sodium, and potassium from the ileostomy was studied in each patient for the first 11 days after ileostomy and again at six months. Those patients in whom the terminal ileum was preserved had small faecal outputs of fluid and sodium from the outset, and the water content of the effluent was significantly less at six months. After rapid expansion of the extracellular fluid by intravenous saline, there was a marked increase in faecal volume and sodium output. In those patients with an ileal resection, the faecal volume and sodium output were more than two and a half times greater than those for the non-resected group. At six months there was no change in either the volume or chemistry of the effluent. After intravenous saline, no faecal response was observed. It is therefore concluded that ileostomy adaptation does occur and it is a response of the intestine to conserve body salt. This response is lacking in ileostomists who have had an ileal resection.

  9. Adaptive memory: Animacy enhances free recall but impairs cued recall.

    PubMed

    Popp, Earl Y; Serra, Michael J

    2016-02-01

    Recent research suggests that human memory systems evolved to remember animate things better than inanimate things. In the present experiments, we examined whether these effects occur for both free recall and cued recall. In Experiment 1, we directly compared the effect of animacy on free recall and cued recall. Participants studied lists of objects and lists of animals for free-recall tests, and studied sets of animal-animal pairs and object-object pairs for cued-recall tests. In Experiment 2, we compared participants' cued recall for English-English, Swahili-English, and English-Swahili word pairs involving either animal or object English words. In Experiment 3, we compared participants' cued recall for animal-animal, object-object, animal-object, and object-animal pairs. Although we were able to replicate past effects of animacy aiding free recall, animacy typically impaired cued recall in the present experiments. More importantly, given the interactions found in the present experiments, we conclude that some factor associated with animacy (e.g., attention capture or mental arousal) is responsible for the present patterns of results. This factor seems to moderate the relationship between animacy and memory, producing a memory advantage for animate stimuli in scenarios where the moderator leads to enhanced target retrievability but a memory disadvantage for animate stimuli in scenarios where the moderator leads to impaired association memory. (c) 2016 APA, all rights reserved).

  10. Yoga-teaching protocol adapted for children with visual impairment

    PubMed Central

    Mohanty, Soubhagyalaxmi; Hankey, Alex; Pradhan, Balaram; Ranjita, Rajashree

    2016-01-01

    Context: Childhood visual deficiency impairs children's neuro-psychomotor development, considerably affecting physical, mental, social, and emotional health. Yoga's multifaceted approach may help children with visual impairment (VI) to cope with their challenges. Aim: This study aimed to develop a special protocol for teaching yoga to children with VI, and to evaluate their preferred method of learning. Methods: The study was carried out at Ramana Maharishi Academy for the Blind, Bengaluru, South India. Forty-one students volunteered to learn yoga practices, and classes were held weekly 5 days, 1 hr per session for 16 weeks. The study introduced a new method using a sequence of five teaching steps: verbal instructions, tactile modeling, step-by-step teaching, learning in a group, and physical guidance. A questionnaire concerning the preferred steps of learning was then given to each student, and verbal answers were obtained. Results: A total of 33 (out of 41), aged 11.97 ± 1.94, 15 girls and 18 boys responded. Twenty-six (78.79%) chose physical guidance as their most favored learning mode. Conclusions: Specially designed protocol may pave the way to impart yoga in an exciting and comfortable way to children with VI. More studies are needed to further investigate the effectiveness of this new yoga protocol in similar settings. PMID:27512318

  11. Yoga-teaching protocol adapted for children with visual impairment.

    PubMed

    Mohanty, Soubhagyalaxmi; Hankey, Alex; Pradhan, Balaram; Ranjita, Rajashree

    2016-01-01

    Childhood visual deficiency impairs children's neuro-psychomotor development, considerably affecting physical, mental, social, and emotional health. Yoga's multifaceted approach may help children with visual impairment (VI) to cope with their challenges. This study aimed to develop a special protocol for teaching yoga to children with VI, and to evaluate their preferred method of learning. The study was carried out at Ramana Maharishi Academy for the Blind, Bengaluru, South India. Forty-one students volunteered to learn yoga practices, and classes were held weekly 5 days, 1 hr per session for 16 weeks. The study introduced a new method using a sequence of five teaching steps: verbal instructions, tactile modeling, step-by-step teaching, learning in a group, and physical guidance. A questionnaire concerning the preferred steps of learning was then given to each student, and verbal answers were obtained. A total of 33 (out of 41), aged 11.97 ± 1.94, 15 girls and 18 boys responded. Twenty-six (78.79%) chose physical guidance as their most favored learning mode. Specially designed protocol may pave the way to impart yoga in an exciting and comfortable way to children with VI. More studies are needed to further investigate the effectiveness of this new yoga protocol in similar settings.

  12. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria.

    PubMed

    Makrecka-Kuka, Marina; Volska, Kristine; Antone, Unigunde; Vilskersts, Reinis; Grinberga, Solveiga; Bandere, Dace; Liepinsh, Edgars; Dambrova, Maija

    2017-02-05

    Increased plasma concentration of trimethylamine N-oxide (TMAO), a proatherogenic metabolite, has been linked to adverse cardiovascular outcomes; however, it remains unclear whether TMAO is a biomarker or whether it induces direct detrimental cardiovascular effects. Because altered cardiac energy metabolism and mitochondrial dysfunction play crucial roles in the development of cardiovascular diseases, we hypothesized that increased TMAO concentration may alter mitochondrial energy metabolism. The aim of the present study was to determine the effects of TMAO on cardiac mitochondrial energy metabolism. Acute exposure of cardiac fibers to TMAO decreased LEAK (substrate-dependent) and OXPHOS (oxidative phosphorylation-dependent) mitochondrial respiration with pyruvate and impaired substrate flux via pyruvate dehydrogenase. The administration of TMAO at a dose of 120mg/kg for 8 weeks increased TMAO concentration in plasma and cardiac tissues 22-23 times to about 15μM and 11nmol/g, respectively. Long-term TMAO administration decreased mitochondrial LEAK state respiration with pyruvate by 30% without affecting OXPHOS state respiration. However, no significant changes in mitochondrial reactive oxygen species production were observed after acute exposure of cardiac fibers to TMAO under physiological conditions. In addition, both long-term TMAO administration and acute exposure to TMAO decreased respiration with palmitoyl-CoA indicating impaired β-oxidation. Taken together, our results demonstrate that increased TMAO concentration impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Thus, the accumulation of TMAO in cardiac tissues leads to disturbances in energy metabolism that can increase the severity of cardiovascular events.

  13. Oxidative Balance in Rats during Adaptation to Swimming Load.

    PubMed

    Elikov, A V

    2016-12-01

    The main parameters of free radical oxidation and antioxidant defense in the blood plasma, erythrocytes, and homogenates of skeletal muscles, heart, liver, lungs, and kidneys were studied in adult outbred albino male rats with different degree of adaptation to moderate exposure to swimming. The rats were trained to swim regularly over 1 month. Changes in oxidative balance varied in organs and tissues and depended on the level of training. Malonic dialdehyde content in the erythrocytes after swimming increased by 13.8% in non-trained animals, but decreased by 19.2% in trained rats. Parameters of blood plasma reflect the general oxidative balance of organs and tissues.

  14. Adiponectin Deficiency Impairs Maternal Metabolic Adaptation to Pregnancy in Mice.

    PubMed

    Qiao, Liping; Wattez, Jean-Sebastien; Lee, Samuel; Nguyen, Amanda; Schaack, Jerome; Hay, William W; Shao, Jianhua

    2017-05-01

    Hypoadiponectinemia has been widely observed in patients with gestational diabetes mellitus (GDM). To investigate the causal role of hypoadiponectinemia in GDM, adiponectin gene knockout (Adipoq(-/-) ) and wild-type (WT) mice were crossed to produce pregnant mouse models with or without adiponectin deficiency. Adenoviral vector-mediated in vivo transduction was used to reconstitute adiponectin during late pregnancy. Results showed that Adipoq(-/-) dams developed glucose intolerance and hyperlipidemia in late pregnancy. Increased fetal body weight was detected in Adipoq(-/-) dams. Adiponectin reconstitution abolished these metabolic defects in Adipoq(-/-) dams. Hepatic glucose and triglyceride production rates of Adipoq(-/-) dams were significantly higher than those of WT dams. Robustly enhanced lipolysis was found in gonadal fat of Adipoq(-/-) dams. Interestingly, similar levels of insulin-induced glucose disposal and insulin signaling in metabolically active tissues in Adipoq(-/-) and WT dams indicated that maternal adiponectin deficiency does not reduce insulin sensitivity. However, remarkably decreased serum insulin concentrations were observed in Adipoq(-/-) dams. Furthermore, β-cell mass, but not glucose-stimulated insulin release, in Adipoq(-/-) dams was significantly reduced compared with WT dams. Together, these results demonstrate that adiponectin plays an important role in controlling maternal metabolic adaptation to pregnancy. © 2017 by the American Diabetes Association.

  15. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  16. Cross-Cultural Adaptation of a Developmental Assessment for Arabic-Speaking Children with Visual Impairment

    ERIC Educational Resources Information Center

    Macrine, Sheila L.; Heji, Hayat; Sabri, Amel; Dalton, Sara

    2015-01-01

    Developmental screening has become an established component of child health programs in many developed countries. The research objective of this project was to translate and adapt a developmental assessment (Oregon Project Skills Inventory) for use with young children with visual impairments who speak Arabic. The study was prompted by the lack of…

  17. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  18. Adapting the Sheehan Disability Scale to Assess Child and Parent Impairment Related to Childhood Anxiety Disorders

    ERIC Educational Resources Information Center

    Whiteside, Stephen P.

    2009-01-01

    This study describes a child adaptation of the Sheehan Disability Scale, a measure of impairment among anxious adults. Parallel child and parent report forms were created to assess the degree to which anxiety interferes with child and parent social, educational/occupational, and family functioning. Data from 267 anxious children (140 boys ages…

  19. Guidelines for Assessing the Need for Adaptive Devices for Visually Impaired Pedestrians at Signalized Intersections.

    ERIC Educational Resources Information Center

    Gallagher, Brian R.; de Oca, Patricia Montes

    1998-01-01

    Presents guidelines for orientation and mobility instructors and traffic engineers to assess the need for adaptive devices to make crosswalks at signalized intersections accessible to pedestrians with visual impairments. The discussions of audible and tactile pedestrian devices, along with case examples, distinguish when each device should be…

  20. Cross-Cultural Adaptation of a Developmental Assessment for Arabic-Speaking Children with Visual Impairment

    ERIC Educational Resources Information Center

    Macrine, Sheila L.; Heji, Hayat; Sabri, Amel; Dalton, Sara

    2015-01-01

    Developmental screening has become an established component of child health programs in many developed countries. The research objective of this project was to translate and adapt a developmental assessment (Oregon Project Skills Inventory) for use with young children with visual impairments who speak Arabic. The study was prompted by the lack of…

  1. Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy.

    PubMed

    Christiansen, Liselotte B; Dela, Flemming; Koch, Jørgen; Hansen, Christina N; Leifsson, Pall S; Yokota, Takashi

    2015-05-15

    Mitochondrial dysfunction and oxidative stress are important players in the development of various cardiovascular diseases, but their roles in hypertrophic cardiomyopathy (HCM) remain unknown. We examined whether mitochondrial oxidative phosphorylation (OXPHOS) capacity was impaired with enhanced mitochondrial oxidative stress in HCM. Cardiac and skeletal muscles were obtained from 9 domestic cats with spontaneously occurring HCM with preserved left ventricular systolic function and from 15 age-matched control cats. Mitochondrial OXPHOS capacities with nonfatty acid and fatty acid substrates in permeabilized fibers and isolated mitochondria were assessed using high-resolution respirometry. ROS release originating from isolated mitochondria was assessed by spectrofluorometry. Thiobarbituric acid-reactive substances were also measured as a marker of oxidative damage. Mitochondrial ADP-stimulated state 3 respiration with complex I-linked nonfatty acid substrates and with fatty acid substrates, respectively, was significantly lower in the hearts of HCM cats compared with control cats. Mitochondrial ROS release during state 3 with complex I-linked substrates and thiobarbituric acid-reactive substances in the heart were significantly increased in cats with HCM. In contrast, there were no significant differences in mitochondrial OXPHOS capacity, mitochondrial ROS release, and oxidative damage in skeletal muscle between groups. Mitochondrial OXPHOS capacity with both nonfatty acid substrates and fatty acid substrates was impaired with increased mitochondrial ROS release in the feline HCM heart. These findings provide new insights into the pathophysiology of HCM and support the hypothesis that restoration of the redox state in the mitochondria is beneficial in the treatment of HCM. Copyright © 2015 the American Physiological Society.

  2. Adaptive psychological structure in childhood hearing impairment: audiological correlations.

    PubMed

    Serra, A; Spinato, G; Cocuzza, S; Licciardello, L; Pavone, P; Maiolino, L

    2017-06-01

    . On the contrary, in normal hearing children, the emotion 'fear' is the most difficult to identify. Deaf children seem to be more susceptible to recognition of visual emotions. Furthermore, deaf children present significant problem-solving skills and emotional recognition skills, possibly as a result of their hearing impairment. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.

  3. Poststroke Hemiparesis Impairs the Rate but not Magnitude of Adaptation of Spatial and Temporal Locomotor Features

    PubMed Central

    Savin, Douglas N.; Tseng, Shih-Chiao; Whitall, Jill; Morton, Susanne M.

    2015-01-01

    Background Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry. Objective Determine whether locomotor adaptation to a novel swing phase perturbation is impaired in persons with chronic stroke and hemiparesis. Methods Participants with ischemic stroke (14) and nondisabled controls (12) walked on a treadmill before, during, and after adaptation to a unilateral perturbing weight that resisted forward leg movement. Leg kinematics were measured bilaterally, including step length and single-limb support (SLS) time symmetry, limb angle center of oscillation, and interlimb phasing, and magnitude of “initial” and “late” locomotor adaptation rates were determined. Results All participants had similar magnitudes of adaptation and similar initial adaptation rates both spatially and temporally. All 14 participants with stroke and baseline asymmetry temporarily walked with improved SLS time symmetry after adaptation. However, late adaptation rates poststroke were decreased (took more strides to achieve adaptation) compared with controls. Conclusions Mild to moderate hemiparesis does not interfere with the initial acquisition of novel symmetrical gait patterns in both the spatial and temporal domains, though it does disrupt the rate at which “late” adaptive changes are produced. Impairment of the late, slow phase of learning may be an important rehabilitation consideration in this patient population. PMID:22367915

  4. Methionine oxidation as a major cause of the functional impairment of oxidized actin.

    PubMed

    Dalle-Donne, I; Rossi, R; Giustarini, D; Gagliano, N; Di Simplicio, P; Colombo, R; Milzani, A

    2002-05-01

    derivatives would occur at an extent of oxidative insult higher than that causing the oxidation of some critical methionine residues. Therefore, methionine oxidation could be a damaging event preceding the appearance of carbonyl groups on actin and a major cause for the functional impairment of the carbonylated protein recently observed both in vivo and in vitro.

  5. Oxidized low-density lipoprotein decreases VEGFR2 expression in HUVECs and impairs angiogenesis.

    PubMed

    Zhang, Min; Jiang, Li

    2016-12-01

    Atherosclerosis (AS), which is triggered by endothelial cell injury, evolves into a chronic inflammatory disease. Oxidized low-density lipoprotein (ox-LDL) is an important risk factor for the development of atherosclerosis; ox-LDL induces atherosclerotic plaque formation via scavenging receptors. The present study used ox-LDL-treated human umbilical vein endothelial cells (HUVECs) to investigate the effect of ox-LDL on angiogenesis. ox-LDL decreased HUVEC proliferation by MTT, induced apoptosis by Annexin V-fluorescein isothiocyanate (FITC) staining and markedly suppressed HUVEC tube formation by the Matrigel assay in a dose-dependent manner. Angiogenesis has been correlated with monocyte invasion, plaque instability and atherosclerotic lesion formation. In addition, ox-LDL induced the overproduction of reactive oxygen species using DCFH-DA staining and increased caspase-3 activity. Vascular endothelial growth factor receptor 2 (VEGFR2) were detected by quantitative polymerase chain reaction and western blot analysis and has previously been observed to have a key role in angiogenesis. Furthermore, the present study demonstrated that the abundance of VEGFR2 was decreased in ox-LDL-treated HUVECs. These results suggested that ox-LDL impairs angiogenesis via VEGFR2 degradation, thus suggesting that VEGFR2 may be involved in adaptation to oxidative stress and AS.

  6. Oxidized low-density lipoprotein decreases VEGFR2 expression in HUVECs and impairs angiogenesis

    PubMed Central

    Zhang, Min; Jiang, Li

    2016-01-01

    Atherosclerosis (AS), which is triggered by endothelial cell injury, evolves into a chronic inflammatory disease. Oxidized low-density lipoprotein (ox-LDL) is an important risk factor for the development of atherosclerosis; ox-LDL induces atherosclerotic plaque formation via scavenging receptors. The present study used ox-LDL-treated human umbilical vein endothelial cells (HUVECs) to investigate the effect of ox-LDL on angiogenesis. ox-LDL decreased HUVEC proliferation by MTT, induced apoptosis by Annexin V-fluorescein isothiocyanate (FITC) staining and markedly suppressed HUVEC tube formation by the Matrigel assay in a dose-dependent manner. Angiogenesis has been correlated with monocyte invasion, plaque instability and atherosclerotic lesion formation. In addition, ox-LDL induced the overproduction of reactive oxygen species using DCFH-DA staining and increased caspase-3 activity. Vascular endothelial growth factor receptor 2 (VEGFR2) were detected by quantitative polymerase chain reaction and western blot analysis and has previously been observed to have a key role in angiogenesis. Furthermore, the present study demonstrated that the abundance of VEGFR2 was decreased in ox-LDL-treated HUVECs. These results suggested that ox-LDL impairs angiogenesis via VEGFR2 degradation, thus suggesting that VEGFR2 may be involved in adaptation to oxidative stress and AS. PMID:28105106

  7. Adaptive control with state-dependent modeling of patient impairment for robotic movement therapy.

    PubMed

    Bower, C; Taheri, H; Wolbrecht, E

    2013-06-01

    This paper presents an adaptive control approach for robotic movement therapy that learns a state-dependent model of patient impairment. Unlike previous work, this approach uses an unstructured inertial model that depends on both the position and direction of the desired motion in the robot's workspace. This method learns a patient impairment model that accounts for movement specific disability in neuro-muscular output (such as flexion vs. extension and slow vs. dynamic tasks). Combined with assist-as-needed force decay, this approach may promote further patient engagement and participation. Using the robotic therapy device, FINGER (Finger Individuating Grasp Exercise Robot), several experiments are presented to demonstrate the ability of the adaptive control to learn state-dependent abilities.

  8. Problem adaptation therapy for older adults with major depression and cognitive impairment: a randomized clinical trial.

    PubMed

    Kiosses, Dimitris N; Ravdin, Lisa D; Gross, James J; Raue, Patrick; Kotbi, Nabil; Alexopoulos, George S

    2015-01-01

    Problem adaptation therapy (PATH) is a treatment for older adults with major depression, cognitive impairment (from mild cognitive deficits to moderate dementia), and disability. Antidepressants have limited efficacy in this population and psychosocial interventions are inadequately investigated. To test the efficacy of 12-week PATH vs supportive therapy for cognitively impaired patients (ST-CI) in reducing depression and disability in 74 older adults with major depression, cognitive impairment, and disability. A randomized clinical trial at the Weill Cornell Institute of Geriatric Psychiatry from April 1, 2006, to September 31, 2011. Interventions were administered at the participants' homes. Participants included 74 older individuals (age ≥ 65 years) with major depression and cognitive impairment to the level of moderate dementia. They were recruited through collaborating community agencies of Weill Cornell Institute of Geriatric Psychiatry and were randomly assigned to 12 weekly sessions of PATH or ST-CI (14.8% attrition rate). Home-delivered PATH vs home-delivered ST-CI. Problem adaptation therapy integrates a problem-solving approach with compensatory strategies, environmental adaptations, and caregiver participation to improve patients' emotion regulation. Supportive therapy for cognitively impaired patients focuses on expression of affect, understanding, and empathy. Mixed-effects models for longitudinal data compared the efficacy of PATH with that of ST-CI in reducing depression (Montgomery-Asberg Depression Rating Scale) and disability (World Health Organization Disability Assessment Schedule II) during 12 weeks of treatment. Participants in PATH had significantly greater reduction in depression (Cohen d, 0.60; 95% CI, 0.13-1.06; treatment × time, F(1,179) = 8.03; P = .005) and disability (Cohen d, 0.67; 95% CI, 0.20-1.14; treatment × time, F(1,169) = 14.86; P = .001) than ST-CI participants during the 12-week period (primary outcomes). Furthermore

  9. Oxidative stress, radiation-adaptive responses, and aging.

    PubMed

    Miura, Yuri

    2004-09-01

    Organisms living in an aerobic environment were forced to evolve effective cellular strategies to detoxify reactive oxygen species. Besides diverse antioxidant enzymes and compounds, DNA repair enzymes, and disassembly systems, which remove damaged proteins, regulation systems that control transcription, translation, and activation have also been developed. The adaptive responses, especially those to radiation, are defensive regulation mechanisms by which oxidative stress (conditioning irradiation) elicits a response against damage because of subsequent stress (challenging irradiation). Although many researchers have investigated these molecular mechanisms, they remain obscure because of their complex signaling pathways and the involvement of various proteins. This article reviews the factors concerned with radiation-adaptive response, the signaling pathways activated by conditioning irradiation, and the effects of aging on radiation-adaptive response. The proteomics approach is also introduced, which is a useful method for studying stress response in cells.

  10. Brain mediators of systemic oxidative stress on perceptual impairments in Parkinson's disease.

    PubMed

    Lin, Wei-Che; Chou, Kun-Hsien; Lee, Pei-Lin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Cheng, Kuei-Yueh; Wang, Hung-Chen; Lin, Tsu-Kung; Li, Shau-Hsuan; Chen, Meng-Hsiang; Lu, Cheng-Hsien; Lin, Ching-Po

    2015-12-21

    Parkinson's disease (PD) is well documented to be associated with elevated systemic oxidative stress and perceptual impairments. Furthermore, the striatum and extrastriatal cortical areas, which are involved in the coordination of perceptual functions, are impaired at an early stage of the disease. However, the possible pathophysiology involved in perceptual impairments remains unclear. This raises the possibility that structural abnormalities might mediate the relationship between oxidative stress and perceptual impairments. We explored the differences between 27 patients with PD and 25 healthy controls in terms of serum oxidative stress, perceptual functions, and regional gray matter. A single-level three-variable mediation model was used to investigate the possible relationships between serum oxidative stress, regional gray matter volume, and different domains of perceptual functioning. The results demonstrate that increased serum oxidative stress (as indicated by thiobarbituric acid reactive substances) was associated with declined perceptual functioning in PD patients. We further explored significant gray matter volume reductions in the bilateral temporal gyri (middle temporal gyrus and fusiform gyrus), bilateral frontal gyri, limbic lobe (hippocampus and uncus), left inferior parietal lobule, right caudate nucleus, and insula in PD. Further mediation analysis showed that gray matter volumes in the middle temporal gyrus, inferior parietal lobule, hippocampus, and insula served as brain mediators between elevated serum oxidative stress and perceptual impairments. These results suggest that higher oxidative stress levels adversely impact perceptual functions by causing temporal and mesolimbic abnormalities.

  11. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation

    SciTech Connect

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2014-01-01

    Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. We previously showed that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study was focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 hours) and wean: normal circulation (Group-C);transient coronary occlusion (10 minutes) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon labeled lactate, medium-chain and long-chain FAs were infused as oxidative substrates. Substrate fractional contribution to the citric acid cycle (FC) was analyzed by 13-Carbon nuclear magnetic resonance. Results: ECMO depressed circulating T3 levels to 40% baseline at 4 hours and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [ATP]/[ADP] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following ischemia-reperfusion injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  12. The impairment of glucose-stimulated insulin secretion in pancreatic β-cells caused by prolonged glucotoxicity and lipotoxicity is associated with elevated adaptive antioxidant response.

    PubMed

    Fu, Jingqi; Cui, Qi; Yang, Bei; Hou, Yongyong; Wang, Huihui; Xu, Yuanyuan; Wang, Difei; Zhang, Qiang; Pi, Jingbo

    2017-02-01

    Type 2 diabetes (T2D) is a progressive disease characterized by sustained hyperglycemia and is frequently accompanied by hyperlipidemia. Deterioration of β-cell function in T2D patients may be caused, in part, by long-term exposure to high concentrations of glucose and/or lipids. We developed systems to study how chronic glucotoxicity and lipotoxicity might be linked to the impairment of glucose-stimulated insulin secretion (GSIS) machinery in pancreatic β-cells. INS-1 (832/13) were exposed to glucose and/or palmitate for up to 10 weeks. Chronic high glucose and/or palmitate exposure resulted in impaired GSIS accompanied by a dramatic increase in oxidative stress, as determined by basal intracellular peroxide levels. In addition, the GSIS-associated reactive oxygen species (ROS) signals, assessed as glucose-stimulated peroxide accumulation positively correlated with GSIS in glucose- and/or palmitate-exposed cells, as well as glucose-stimulated reductions in GSH/GSSG ratios. Furthermore, the impairment of GSIS caused by chronic high glucose and/or palmitate exposures were attributed to the induction of adaptive antioxidant response and mitochondrial uncoupling, which negatively regulates glucose-derived ROS generation. Taken together, persistent glucotoxicity- and/or lipotoxicity-mediated oxidative stress and subsequent adaptive antioxidant response impair glucose-derived ROS signaling and GSIS in pancreatic β-cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Classification of the hearing impaired for independent living using the Vineland Adaptive Behavior Scale.

    PubMed

    Dunlap, W R; Sands, D I

    1990-12-01

    Training hearing-impaired persons in independent living skills has become a focus of education and rehabilitation programs for the hearing impaired. Yet, few programs and assessment instruments are designed to evaluate a person's potential for acquiring independent living skills. In this study, the Vineland Adaptive Behavior Scale was used to classify 118 hearing-impaired persons in groups based on their ability to be trained in independent living skills. Cluster analysis was used to group the subjects according to four domains: communication, daily living, socialization, and maladaptive behavior. The results indicate that the behavior scale can be used to classify hearing-impaired persons according to their ability to acquire independent living skills. The cluster analysis resulted in three groups. The persons in the lowest group did not have the most severe hearing losses, but they were more likely to have additional handicaps. This suggests that additional handicaps may be more important than degree of hearing loss in determining whether hearing-impaired persons can acquire independent living skills.

  14. Home-delivered Problem Adaptation Therapy (PATH) for Depressed, Cognitively Impaired, Disabled Elders: A Preliminary Study

    PubMed Central

    Kiosses, Dimitris N.; Arean, Patricia A.; Teri, Linda; Alexopoulos, George S.

    2010-01-01

    Objectives This preliminary study examines the efficacy of 12-week home-delivered Problem Adaptation Therapy (PATH) vs. home-delivered Supportive Therapy (ST) in reducing depression and disability in 30 depressed, cognitively impaired, disabled older adults. Design A 12-week randomized clinical trial. Research assistants were unaware of the participants' randomization status. Assessments were conducted at baseline, 6 and 12 weeks. Setting Weill Cornell - Advanced Center for Interventions and Services Research (ACISR). Participants Thirty elders with major depression, cognitive impairment, and disability were recruited through advertisement and the Home-Delivered Meals Program of the Westchester County Department of Senior Programs and Services. Intervention PATH is a home-delivered intervention designed to reduce depression and disability in depressed, cognitively impaired, disabled elders. PATH is based on Problem Solving Therapy (PST) and integrates environmental adaptation and caregiver participation. PATH is consistent with Lawton's ecological model of adaptive functioning in aging. Measurements Depression and disability were measured with Hamilton Depression Rating Scale – 24 items and Sheehan Disability Scale, respectively. Client Satisfaction Questionnaire was used to assess patient satisfaction with treatment. Results Mixed-effects model analyses revealed that PATH was more efficacious than ST in reducing depression and disability at 12 weeks. Participants in both treatment groups were satisfied with treatment. Conclusions This preliminary study suggests that PATH is well accepted and efficacious in depressed elders with major depression, cognitive impairment, and disability. Because this population may not adequately respond to antidepressant medication treatment, PATH may provide relief to many patients who would otherwise remain depressed and suffer. PMID:20808092

  15. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses.

    PubMed

    Mahanty, Siddhartha; Hutchinson, Karen; Agarwal, Sudhanshu; McRae, Michael; Rollin, Pierre E; Pulendran, Bali

    2003-03-15

    Acute infection of humans with Ebola and Lassa viruses, two principal etiologic agents of hemorrhagic fevers, often results in a paradoxical pattern of immune responses: early infection, characterized by an outpouring of inflammatory mediators such as TNF-alpha, IL-1 beta, and IL-6, vs late stage infections, which are associated with poor immune responses. The mechanisms underlying these diverse outcomes are poorly understood. In particular, the role played by cells of the innate immune system, such as dendritic cells (DC), is not known. In this study, we show that Ebola and Lassa viruses infect human monocyte-derived DC and impair their function. Monocyte-derived DC exposed to either virus fail to secrete proinflammatory cytokines, do not up-regulate costimulatory molecules, and are poor stimulators of T cells. These data represent the first evidence for a mechanism by which Ebola and Lassa viruses target DC to impair adaptive immunity.

  16. Mangifera indica Fruit Extract Improves Memory Impairment, Cholinergic Dysfunction, and Oxidative Stress Damage in Animal Model of Mild Cognitive Impairment

    PubMed Central

    Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-Mee, Wipawee; Ingkaninan, Kornkanok; Wittaya-Areekul, Sakchai

    2014-01-01

    To date, the effective preventive paradigm against mild cognitive impairment (MCI) is required. Therefore, we aimed to determine whether Mangifera indica fruit extract, a substance possessing antioxidant and cognitive enhancing effects, could improve memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment. Male Wistar rats, weighing 180–200 g, were orally given the extract at doses of 12.5, 50, and 200 mg·kg−1 BW for 2 weeks before and 1 week after the bilateral injection of AF64A (icv). At the end of study, spatial memory, cholinergic neurons density, MDA level, and the activities of SOD, CAT, and GSH-Px enzymes in hippocampus were determined. The results showed that all doses of extract could improve memory together with the decreased MDA level and the increased SOD and GSH-Px enzymes activities. The increased cholinergic neurons density in CA1 and CA3 of hippocampus was also observed in rats treated with the extract at doses of 50 and 200 mg·kg−1 BW. Therefore, our results suggested that M. indica, the potential protective agent against MCI, increased cholinergic function and the decreased oxidative stress which in turn enhanced memory. However, further researches are essential to elucidate the possible active ingredients and detail mechanism. PMID:24672632

  17. Dopamine Adaptations as a Common Pathway for Neurocognitive Impairment in Diabetes and Obesity: A Neuropsychological Perspective

    PubMed Central

    Small, Dana M.

    2017-01-01

    Evidence accumulates linking obesity and diabetes with cognitive dysfunction. At present the mechanism(s) underlying these associations and the relative contribution of diet, adiposity, and metabolic dysfunction are unknown. In this perspective key gaps in knowledge are outlined and an initial sketch of a neuropsychological profile is developed that points toward a critical role for dopamine (DA) adaptations in neurocognitive impairment secondary to diabetes and obesity. The precise mechanisms by which diet, metabolic dysfunction, and adiposity influence the DA system to impact cognition remains unclear and is an important direction for future research. PMID:28400713

  18. Contribution of Brain Tissue Oxidative Damage in Hypothyroidism-associated Learning and Memory Impairments

    PubMed Central

    Baghcheghi, Yousef; Salmani, Hossein; Beheshti, Farimah; Hosseini, Mahmoud

    2017-01-01

    The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments. PMID:28584813

  19. A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Co-adaptive training paradigms for event-related desynchronization (ERD) based brain-computer interfaces (BCI) have proven effective for healthy users. As of yet, it is not clear whether co-adaptive training paradigms can also benefit users with severe motor impairment. The primary goal of our paper was to evaluate a novel cue-guided, co-adaptive BCI training paradigm with severely impaired volunteers. The co-adaptive BCI supports a non-control state, which is an important step toward intuitive, self-paced control. A secondary aim was to have the same participants operate a specifically designed self-paced BCI training paradigm based on the auto-calibrated classifier. The co-adaptive BCI analyzed the electroencephalogram from three bipolar derivations (C3, Cz, and C4) online, while the 22 end users alternately performed right hand movement imagery (MI), left hand MI and relax with eyes open (non-control state). After less than five minutes, the BCI auto-calibrated and proceeded to provide visual feedback for the MI task that could be classified better against the non-control state. The BCI continued to regularly recalibrate. In every calibration step, the system performed trial-based outlier rejection and trained a linear discriminant analysis classifier based on one auto-selected logarithmic band-power feature. In 24 minutes of training, the co-adaptive BCI worked significantly (p = 0.01) better than chance for 18 of 22 end users. The self-paced BCI training paradigm worked significantly (p = 0.01) better than chance in 11 of 20 end users. The presented co-adaptive BCI complements existing approaches in that it supports a non-control state, requires very little setup time, requires no BCI expert and works online based on only two electrodes. The preliminary results from the self-paced BCI paradigm compare favorably to previous studies and the collected data will allow to further improve self-paced BCI systems for disabled users. PMID:25014055

  20. Impaired secondary oxidant deactivation capacity and enhanced oxidative stress in serum from alveld affected lambs.

    PubMed

    Hegge, Anne Bee; Mysterud, Ivar; Karlsen, Jan; Skulberg, Olav M; Laane, Carl M M; Schumacher, Trond; Tønnesen, Hanne Hjorth

    2013-09-05

    Alveld is a hepatogenous photosensitivity disorder in lambs. The aim of the study was to investigate if alveld affected lambs had a reduced capacity to handle oxidative stress induced from either endogenous and/or exogenous photosensitizers. Serum samples from alveld lambs (n=33) were compared to serum samples from control lambs (n=31) and exposed to a controlled amount of singlet oxygen ((1)O2). The sera from alveld lambs were found to have an impaired ability to deactivate reactive oxygen species (ROS) compared to control sera. A higher degree of initial hemolysis and a higher concentration of the exogenous photosensitizer phytoporphyrin (PP) were detected in alveld sera compared to the controls. The action spectrum for the formation of (1)O2 indicated that PP as well as the endogenous compound protoporphyrin IX (PP IX) may act as in vivo photosensitizers. A relatively high level of iron was detected in pooled serum from alveld lambs that showed a high degree of hemolysis. It was concluded that alveld photosensitivity is likely to be initiated by a photodynamic reaction involving PP and possibly also PP IX followed by a light-independent reaction involving hemoglobin-related products and catalysis by the Fenton reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Neuropsychological presentation and adaptive skills in high-functioning adolescents with visual impairment: A preliminary investigation.

    PubMed

    Greenaway, R; Pring, L; Schepers, A; Isaacs, D P; Dale, N J

    2017-01-01

    Studies in infants and young children with congenital visual impairment (VI) have indicated early developmental vulnerabilities, conversely research with older children and adults have highlighted areas of cognitive strength. A minimal amount is known, however, about the possible combination of strengths and weaknesses in adolescence, and this present study therefore aims to explore the neuropsychological presentation and adaptive behavior profile in high-functioning adolescents with congenital VI. Participants completed a battery of commonly used neuropsychological measures assessing memory, executive function, and attention. The measures utilized focused on auditory neuropsychological function, because only subtests that could be completed with auditory administration were suitable for this sample. Parents completed standardized measures of adaptive behavior, executive function, and social communication. Compared to aged-based norms for normal sight, adolescents with VI demonstrated strengths in aspects of working memory and verbal memory. Furthermore, performance across the neuropsychological battery was within or above the average range for the majority of the sample. In contrast, parent-report measures indicated areas of weakness in adaptive functioning, social communication, and behavioral executive functioning. Overall, this study provides preliminary evidence that relative to fully sighted peers, high-functioning adolescents with VI present with an uneven profile of cognitive and adaptive skills, which has important implications for assessment and intervention.

  2. Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae.

    PubMed

    García-Ríos, Estéfani; Ramos-Alonso, Lucía; Guillamón, José M

    2016-01-01

    Many factors, such as must composition, juice clarification, fermentation temperature, or inoculated yeast strain, strongly affect the alcoholic fermentation and aromatic profile of wine. As fermentation temperature is effectively controlled by the wine industry, low-temperature fermentation (10-15°C) is becoming more prevalent in order to produce white and "rosé" wines with more pronounced aromatic profiles. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. Previous research has shown the strong implication of oxidative stress response in adaptation to low temperature during the fermentation process. Here we aimed first to quantify the correlation between recovery after shock with different oxidants and cold, and then to detect the key genes involved in cold adaptation that belong to sulfur assimilation, peroxiredoxins, glutathione-glutaredoxins, and thioredoxins pathways. To do so, we analyzed the growth of knockouts from the EUROSCARF collection S. cerevisiae BY4743 strain at low and optimal temperatures. The growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted and validated as key genes in the background of two commercial wine strains with a divergent phenotype in their low-temperature growth. We identified three genes, AHP1, MUP1, and URM1, whose deletion strongly impaired low-temperature growth.

  3. Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae

    PubMed Central

    García-Ríos, Estéfani; Ramos-Alonso, Lucía; Guillamón, José M.

    2016-01-01

    Many factors, such as must composition, juice clarification, fermentation temperature, or inoculated yeast strain, strongly affect the alcoholic fermentation and aromatic profile of wine. As fermentation temperature is effectively controlled by the wine industry, low-temperature fermentation (10–15°C) is becoming more prevalent in order to produce white and “rosé” wines with more pronounced aromatic profiles. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. Previous research has shown the strong implication of oxidative stress response in adaptation to low temperature during the fermentation process. Here we aimed first to quantify the correlation between recovery after shock with different oxidants and cold, and then to detect the key genes involved in cold adaptation that belong to sulfur assimilation, peroxiredoxins, glutathione-glutaredoxins, and thioredoxins pathways. To do so, we analyzed the growth of knockouts from the EUROSCARF collection S. cerevisiae BY4743 strain at low and optimal temperatures. The growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted and validated as key genes in the background of two commercial wine strains with a divergent phenotype in their low-temperature growth. We identified three genes, AHP1, MUP1, and URM1, whose deletion strongly impaired low-temperature growth. PMID:27536287

  4. [Interrupted alcohol treatment and liver: free radical homeostasis, nitric oxide, adaptive mechanisms].

    PubMed

    Miskevich, D A; Borodinskiĭ, A N; Petushok, N E; Konovalenko, O V; Lelevich, V V

    2006-01-01

    Alcohol administration can result in liver damage. Reactive oxygen species (ROS), nitric oxide (NO) and their interaction are crucial factors in this process. The aim of work was to investigate, free radical state and mechanisms of adaptation of the antioxidant system (AOS) to stress, caused by interrupted alcohol intake. Repeated cycles of alcoholization caused an imbalance between production and utilization of various ROS. This imbalance was due to impairments in the system superoxide dismutase/catalase. Nevertheless, in most experimental groups there was clear reduction of lipid peroxidation (LPO) products evaluated by thiobarbituric acid reactive substances. This might be attributed to the antioxidant effect of NO. However, there was an increased level of transaminases in blood plasma. After 28 days of this experimental scheme all the parameters studied normalized.

  5. Neuroprotective Effects of Centella asiatica against Intracerebroventricular Colchicine-Induced Cognitive Impairment and Oxidative Stress

    PubMed Central

    Kumar, Anil; Dogra, Samrita; Prakash, Atish

    2009-01-01

    Oxidative stress appears to be an early event involved in the pathogenesis of Alzheimer's disease. The present study was designed to investigate the neuroprotective effects of Centella asiatica against colchicine-induced memory impairment and oxidative damage in rats. Colchicine (15 μg/5 μL) was administered intracerebroventricularly in the lateral ventricle of male wistar rats. Morris water maze and plus-maze performance tests were used to assess memory performance tasks. Various biochemical parameters such as lipid peroxidation, nitrite, reduced glutathione, glutathione-S-transferase, superoxide dismutase, acetylcholinesterase were also assessed. ICV colchicine resulted marked memory impairment and oxidative damage. Chronic treatment with Centella asiatica extract (150 and 300 mg/kg, p.o.) for a period of 25 days, beginning 4 days prior to colchicine administration, significantly attenuated colchicine-induced memory impairment and oxidative damage. Besides, Centella asiatica significantly reversed colchicines administered increase in acetylcholinesterase activity. Thus, present study indicates protective effect of Centella asiatica against colchicine-induced cognitive impairment and associated oxidative damage. PMID:20798885

  6. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL

    PubMed Central

    Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R.; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  7. Adaptation of the Fresenius PD+ Cycler for a hearing-impaired patient.

    PubMed

    Kushner, A

    2000-01-01

    Continuous cycling peritoneal dialysis (CCPD) uses a cycler to perform dialysis exchanges and requires the patient to respond to an audible alarm signifying an interruption in the therapy. Consequently, an unassisted hearing-impaired patient could not use the system. By converting the standard alarm to a vibrating signal, the cycler was successfully adapted to accommodate the special needs of our hearing-impaired patient. The items required for the modification were the Sonic Alert Wake Up Alarm (Model SA-WA300: Sonic Alert, Troy, MI, U.S.A.) and the Sonic Alert Super Shaker Bed Vibrator (Model SA-SS120V: Sonic Alert). The patient can place the vibrator under either the pillow or the mattress. When the cycler alarm is activated, vibration wakens the patient. The equipment was purchased from Harris Communications (Eden Prairie, MN, U.S.A.) through a referral by the Easter Seal Society. Three days were needed to complete training compared to an average of one or two days for patients previously trained for continuous ambulatory peritoneal dialysis (CAPD). The patient remained on cycler therapy for approximately four months when the unrelated development of an abdominal hernia required termination of peritoneal dialysis and subsequent transfer to hemodialysis. In conclusion, a modified cycler can provide a safe and efficient renal replacement therapy option for a hearing-impaired patient.

  8. Adaptation and validation into Portuguese language of the six-item cognitive impairment test (6CIT).

    PubMed

    Apóstolo, João Luís Alves; Paiva, Diana Dos Santos; Silva, Rosa Carla Gomes da; Santos, Eduardo José Ferreira Dos; Schultz, Timothy John

    2017-07-25

    The six-item cognitive impairment test (6CIT) is a brief cognitive screening tool that can be administered to older people in 2-3 min. To adapt the 6CIT for the European Portuguese and determine its psychometric properties based on a sample recruited from several contexts (nursing homes; universities for older people; day centres; primary health care units). The original 6CIT was translated into Portuguese and the draft Portuguese version (6CIT-P) was back-translated and piloted. The accuracy of the 6CIT-P was assessed by comparison with the Portuguese Mini-Mental State Examination (MMSE). A convenience sample of 550 older people from various geographical locations in the north and centre of the country was used. The test-retest reliability coefficient was high (r = 0.95). The 6CIT-P also showed good internal consistency (α = 0.88) and corrected item-total correlations ranged between 0.32 and 0.90. Total 6CIT-P and MMSE scores were strongly correlated. The proposed 6CIT-P threshold for cognitive impairment is ≥10 in the Portuguese population, which gives sensitivity of 82.78% and specificity of 84.84%. The accuracy of 6CIT-P, as measured by area under the ROC curve, was 0.91. The 6CIT-P has high reliability and validity and is accurate when used to screen for cognitive impairment.

  9. Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents.

    PubMed

    Nicolle, M M; Gonzalez, J; Sugaya, K; Baskerville, K A; Bryan, D; Lund, K; Gallagher, M; McKinney, M

    2001-01-01

    Neurons and glia within the hippocampus of aged, spatial learning-impaired Long-Evans rats exhibit uniquely altered gene expression profiles, and we have postulated oxidative stress as the basis for this. To test this hypothesis we quantitated the extent of protein and nucleic acid oxidative damage, evaluated the status of mitochondrial DNA integrity, and examined several signaling entities and molecular indicators frequently associated with oxidative stress and gliosis. Immunoblotting demonstrated elevated heme oxygenase-1 in the aged-impaired hippocampus and immunocytochemistry suggested that heme oxygenase-1 is largely cytosolic and at least partly neuronal in nature. In the aged-impaired group, immunoreactivity to 8-hydroxy-2'-deoxyguanosine, an oxidative nucleic acid adduct, was found to be elevated in the dentate gyrus and in area CA1 of the hippocampal formation. Isolated mitochondrial DNA was found to be significantly damaged in the aged-impaired group. In the aged learning-impaired rats only, proteins in a 65-kDa band were found to contain excessive levels of carbonyl residues. Glial activation was examined by in situ hybridization histochemistry to tumor necrosis factor alpha and by immunocytochemistry with OX-6, which detects activated microglia. White matter in aged brains exhibited a modest up-regulation of tumor necrosis factor alpha mRNA and OX-6 immunoreactivity, but the hippocampal formation expressed tumor necrosis factor alpha mRNA equivalent to young animals and few OX-6-positive microglia. The mRNA for manganese-dependent superoxide dismutase, which is elevated in the aged hippocampus, was found preferentially expressed in neurons. We conclude that aged hippocampal neurons appear to be under oxidative stress and this is more severe in the learning-impaired subjects, suggesting a possible basis for age-induced cognitive decline.

  10. Effect of individual Fc methionine oxidation on FcRn binding: Met252 oxidation impairs FcRn binding more profoundly than Met428 oxidation.

    PubMed

    Gao, Xuan; Ji, Junyan A; Veeravalli, Karthik; Wang, Y John; Zhang, Taylor; Mcgreevy, William; Zheng, Kai; Kelley, Robert F; Laird, Michael W; Liu, Jun; Cromwell, Mary

    2015-02-01

    The long serum half-lives of mAbs are conferred by pH-dependent binding of IgG-Fc to the neonatal Fc receptor (FcRn). The Fc region of human IgG1 has three conserved methionine residues, Met252, Met358, and Met428. Recent studies showed oxidation of these Met residues impairs FcRn binding and consequently affects pharmacokinetics of therapeutic antibodies. However, the quantitative effect of individual Met oxidation on Fc-FcRn binding has not been addressed. This information is valuable for defining critical quality attributes. In the present study, two sets of homodimeric site-directed IgG1 mutations were generated to understand how individual Fc Met oxidation affects FcRn binding. The first approach used Met to Leu mutants to block site-specific Met oxidation. In the other approach, Met to Gln mutants were designed to mimic site-specific Met oxidation. Both mutagenesis approaches show that either Met252 or Met428 oxidation alone significantly impairs Fc-FcRn binding. Met252 oxidation has a more deleterious effect on FcRn binding than M428 oxidation, whereas Met428 oxidation has a bigger destabilization effect on the thermal stability. Our results also show that Met358 oxidation does not affect FcRn binding. In addition, our study suggests that Met to Gln mutation may serve as an important tool to understand Met oxidation. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Impaired calcium calmodulin kinase signaling and muscle adaptation response in the absence of calpain 3.

    PubMed

    Kramerova, I; Kudryashova, E; Ermolova, N; Saenz, A; Jaka, O; López de Munain, A; Spencer, M J

    2012-07-15

    Mutations in the non-lysosomal, cysteine protease calpain 3 (CAPN3) result in the disease limb girdle muscular dystrophy type 2A (LGMD2A). CAPN3 is localized to several subcellular compartments, including triads, where it plays a structural, rather than a proteolytic, role. In the absence of CAPN3, several triad components are reduced, including the major Ca(2+) release channel, ryanodine receptor (RyR). Furthermore, Ca(2+) release upon excitation is impaired in the absence of CAPN3. In the present study, we show that Ca-calmodulin protein kinase II (CaMKII) signaling is compromised in CAPN3 knockout (C3KO) mice. The CaMK pathway has been previously implicated in promoting the slow skeletal muscle phenotype. As expected, the decrease in CaMKII signaling that was observed in the absence of CAPN3 is associated with a reduction in the slow versus fast muscle fiber phenotype. We show that muscles of WT mice subjected to exercise training activate the CaMKII signaling pathway and increase expression of the slow form of myosin; however, muscles of C3KO mice do not exhibit these adaptive changes to exercise. These data strongly suggest that skeletal muscle's adaptive response to functional demand is compromised in the absence of CAPN3. In agreement with our mouse studies, RyR levels were also decreased in biopsies from LGMD2A patients. Moreover, we observed a preferential pathological involvement of slow fibers in LGMD2A biopsies. Thus, impaired CaMKII signaling and, as a result, a weakened muscle adaptation response identify a novel mechanism that may underlie LGMD2A and suggest a pharmacological target that should be explored for therapy.

  12. Accessible weight loss: Adapting a lifestyle intervention for adults with impaired mobility.

    PubMed

    Betts, Andrea C; Froehlich-Grobe, Katherine

    2017-01-01

    Despite disparities in obesity between those with and without disability, there is limited evidence to guide weight loss intervention in people with impaired mobility (IM), particularly those with severe impairments. Examine the usability, feasibility, and effectiveness of adapting an existing evidence-based weight loss program for people with IM. In this single-group pre-test post-test pilot study, 10 overweight or obese individuals with permanent IM (e.g. spinal cord injury, spina bifida, osteoarthritis) participated in a 20-week modification of the DPP Group Lifestyle Balance™ (DPP GLB) program, a group-based adaptation of the Diabetes Prevention Program (DPP). Fifteen conference calls encouraged reducing calorie and fat intake and increasing exercise through self-monitoring and problem solving. We defined feasibility as retention and engagement, usability as participants' program satisfaction ratings, and effectiveness as physiological and psychosocial change measured on three occasions over 20 weeks. Analytic methods included basic descriptive statistics (feasibility and usability) and repeated measures ANOVA (effectiveness). The program retained 70% of participants. These individuals attended an average of 79.3% of conference calls and self-monitored more than half of the weeks. Participants rated the program highly, with mean overall scores of 6.3 ± 0.3 and 6.2 ± 0.6 out of 7 on helpfulness and satisfaction scales, respectively. Program completers experienced a significant mean weight loss of 8.86 ± 8.37 kg (p = 0.024), or 7.4% of their start weight, and significantly reduced their BMI. An adapted version of the DPP GLB is a feasible, usable, and potentially effective intervention for promoting weight loss among persons with IM. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The role of nitrogen oxides in human adaptation to hypoxia

    PubMed Central

    Levett, Denny Z.; Fernandez, Bernadette O.; Riley, Heather L.; Martin, Daniel S.; Mitchell, Kay; Leckstrom, Carl A.; Ince, Can; Whipp, Brian J.; Mythen, Monty G.; Montgomery, Hugh E.; Grocott, Mike P.; Feelisch, Martin

    2011-01-01

    Lowland residents adapt to the reduced oxygen availability at high altitude through a process known as acclimatisation, but the molecular changes underpinning these functional alterations are not well understood. Using an integrated biochemical/whole-body physiology approach we here show that plasma biomarkers of NO production (nitrite, nitrate) and activity (cGMP) are elevated on acclimatisation to high altitude while S-nitrosothiols are initially consumed, suggesting multiple nitrogen oxides contribute to improve hypoxia tolerance by enhancing NO availability. Unexpectedly, oxygen cost of exercise and mechanical efficiency remain unchanged with ascent while microvascular blood flow correlates inversely with nitrite. Our results suggest that NO is an integral part of the human physiological response to hypoxia. These findings may be of relevance not only to healthy subjects exposed to high altitude but also to patients in whom oxygen availability is limited through disease affecting the heart, lung or vasculature, and to the field of developmental biology. PMID:22355626

  14. Impact of Adaptive Materials on Teachers and their Students with Visual Impairments in Secondary Science and Mathematics Classes

    NASA Astrophysics Data System (ADS)

    Rule, Audrey C.; Stefanich, Greg P.; Boody, Robert M.; Peiffer, Belinda

    2011-04-01

    Science, technology, engineering, and mathematics (STEM) fields, important in today's world, are underrepresented by students with disabilities. Students with visual impairments, although cognitively similar to sighted peers, face challenges as STEM subjects are often taught using visuals. They need alternative forms of access such as enlarged or audio-converted text, tactile graphics, and involvement in hands-on science. This project focused on increasing teacher awareness of and providing funds for the purchase of supplemental adaptive resources, supplies, and equipment. We examined attitude and instructional changes across the year of the programme in 15 science and mathematics teachers educating students with visual impairments. Positive changes were noted from pretest to posttest in student and teacher perspectives, and in teacher attitudes towards students with disabilities in STEM classes. Teachers also provided insights into their challenges and successes through a reflective narrative. Several adolescent students resisted accommodations to avoid appearing conspicuous to peers. Teachers implemented three strategies to address this: providing the adaptations to all students in the class; convincing the student of the need for adaptation; and involving the class in understanding and accepting the student's impairment. A variety of teacher-created adaptations for various science and mathematics labs are reported. Another finding was many adaptations provided for the student with visual impairment benefitted the entire class. This study supports the claim that given knowledgeable, supportive teachers, and with appropriate accommodations such as tactile or auditory materials, students with visual impairments can be as successful and engaged as other students in science and mathematics.

  15. Platelet hyperaggregability in obesity: is there a role for nitric oxide impairment and oxidative stress?

    PubMed

    Leite, Natália Rodrigues Pereira; Siqueira de Medeiros, Mariana; Mury, Wanda Vianna; Matsuura, Cristiane; Perszel, Monique Bandeira Moss; Noronha Filho, Gerson; Brunini, Tatiana Mc; Mendes-Ribeiro, Antônio Claúdio

    2016-08-01

    Epidemiological evidence has shown that platelet activation markers are consistently elevated in obesity, contributing to its prothrombotic state. In order to improve the understanding of the regulation of platelet function in obesity, the aim of this study was to investigate the l-arginine-nitric oxide (NO) pathway in obese adults without other cardiovascular risk factor. Seventeen obese (body mass index [BMI] 35.9±1.0 kg/m(2) ) and eighteen age-matched normal weight subjects (BMI 22.0±0.6 kg/m(2) ) were included in this study. l-arginine influx was measured with incubation of l-[(3) H]-arginine. NO synthase (NOS) and arginase activities were determined by the citrulline assay and the conversion of l-[(14) C]-arginine to [(14) C]-urea, respectively. Cyclic guanosine monophosphate (cGMP) content was evaluated by enzyme-linked immunosorbent assay. In addition, the study analyzed: platelet aggregation; intraplatelet antioxidant enzymes, via superoxide dismutase (SOD) and catalase activities; and systemic levels of l-arginine, fibrinogen, and C-reactive protein (CRP). Obese patients presented a significant decrease of platelet l-arginine influx, NOS activity, and cGMP levels, along with platelet hyperaggregability. On the presence of NO donor, platelet aggregation was similar between the groups. The fibrinogen and CRP systemic levels were significantly higher and SOD activity was reduced in obesity. No significant differences were observed in plasma levels of l-arginine and intraplatelet arginase and catalase activities between groups. The diminished NO bioavailability associated with inflammatory status and impaired enzymatic antioxidant defence may contribute to future cardiovascular complications in obesity. © 2016 John Wiley & Sons Australia, Ltd.

  16. Melatonin prevents memory impairment induced by high-fat diet: Role of oxidative stress.

    PubMed

    Alzoubi, Karem H; Mayyas, Fadia A; Mahafzah, Rania; Khabour, Omar F

    2018-01-15

    Consumption of high-fat diet (HFD) induces oxidative stress in the hippocampus that leads to memory impairment. Melatonin has antioxidant and neuroprotective effects. In this study, we hypothesized that chronic administration of melatonin can prevent memory impairment induced by consumption of HFD. Melatonin was administered to rats via oral gavage (100mg/kg/day) for 4 weeks. HFD was also instituted for the same duration. Behavioral studies were conducted to test spatial memory using the radial arm water maze. Additionally, oxidative stress biomarkers were assessed in the hippocampus. Results showed that HFD impaired both short- and long- term memory (P<0.05), while melatonin treatment prevented such effects. Furthermore, melatonin prevented HFD-induced reduction in levels of GSH, and ratio of GSH/GSSG, and increase in GSSG in the hippocampus. Melatonin also prevented reduction in the catalase activity in hippocampus of animals on HFD. In conclusion, HFD induced memory impairment and melatonin prevented this impairment probably by preventing alteration of oxidative stress in the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nitric oxide evokes an adaptive response to oxidative stress by arresting respiration.

    PubMed

    Husain, Maroof; Bourret, Travis J; McCollister, Bruce D; Jones-Carson, Jessica; Laughlin, James; Vázquez-Torres, Andrés

    2008-03-21

    Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFNgamma-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO(-)) and hydrogen peroxide (H(2)O(2)). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H(2)O(2). NADH antagonizes the hydroxyl radical (OH(.)) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.

  18. Adaptation of Sensorimotor Coupling in Postural Control Is Impaired by Sleep Deprivation

    PubMed Central

    2015-01-01

    The purpose of the study was to investigate the effects of sleep deprivation (SD) in adaptation of the coupling between visual information and body sway in young adults’ postural control due to changes in optic flow characteristics. Fifteen young adults were kept awake for approximately 25 hours and formed the SD group, while fifteen adults who slept normally the night before the experiment participated as part of the control group. All participants stood as still as possible in a moving room before and after being exposed to one trial with higher amplitude and velocity of room movement. Postural performance and the coupling between visual information, provided by a moving room, and body sway were examined. Results showed that after an abrupt change in visual cues, larger amplitude, and higher velocity of the room, the influence of room motion on body sway was decreased in both groups. However, such a decrease was less pronounced in sleep deprived as compared to control subjects. Sleep deprived adults were able to adapt motor responses to the environmental change provided by the increase in room motion amplitude. Nevertheless, they were not as efficient as control subjects in doing so, which demonstrates that SD impairs the ability to adapt sensorimotor coupling while controlling posture when a perturbation occurs. PMID:25799560

  19. Impaired Nitric Oxide Synthase Signaling Dissociates Social Investigation and Aggression

    PubMed Central

    Trainor, Brian C.; Workman, Joanna L.; Jessen, Ruth; Nelson, Randy J.

    2007-01-01

    A combination of social withdrawal and increased aggression is characteristic of several mental disorders. Most previous studies have investigated the neurochemical bases of social behavior and aggression independently, as opposed to how these behaviors are regulated in concert. Neuronal nitric oxide synthase (nNOS) produces gaseous nitric oxide, which functions as a neurotransmitter and is known to affect several types of behavior including mating and aggression. Compared with wild-type mice, we observed that nNOS knockout mice showed reduced behavioral responses to an intruder behind a wire barrier. Similar results were observed in mice treated with the selective nNOS inhibitor 3-bromo-7-nitroindazole (3BrN). In habituation–dishabituation tests, treatment with 3BrN did not block recognition of male urine but did attenuate investigation time compared with oil-treated animals. Finally, nNOS knockout mice and 3BrN treated mice were significantly more aggressive than wild-type and oil-treated males, respectively. In general, these behavioral effects are less pronounced in pair-housed males compared with singly-housed males. Thus, nNOS inhibition results in a phenotype that displays reduced social investigation and increased aggression. These data suggest that further study of nNOS signaling is warranted in mental disorders characterized by social withdrawal and increased aggression. PMID:17469926

  20. Centella asiatica Attenuates D-Galactose-Induced Cognitive Impairment, Oxidative and Mitochondrial Dysfunction in Mice.

    PubMed

    Kumar, Anil; Prakash, Atish; Dogra, Samrita

    2011-01-01

    D-galactose induced neurotoxicity is well known model for studying aging and related oxidative damage and memory impairment. Aging is a biological process, characterized by the gradual loss of physiological functions by unknown mechanism. Centella asiatica, Indian pennywort has been documented in the treatment of various neurological disorders including aging. Therefore, present study has been conducted in order to explore the possible role of Centella asiatica against D-galactose induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Chronic administration of D-galactose (100 mg/kg s.c.) for a period of six weeks significantly impaired cognitive task (both in both Morris water maze and elevated plus maze) and oxidative defense (Increased lipid peroxidation, nitrite concentration and decreased activity of superoxide dismutase, catalase and non-protein thiols) and impaired mitochondrial complex (I, II and III) enzymes activities as compared to sham group. Six weeks Centella asiatica (150 and 300 mg/kg, p.o) treatment significantly improved behavioral alterations, oxidative damage and mitochondrial enzyme complex activities as compared to contro l (D-galactose). Centella asiatica also attenuated enhanced acetylcholine esterase enzyme level in D-galactose senescence mice. Present study highlights the protective effect of Centella asiatica against D-galactose induced behavioral, biochemical and mitochondrial dysfunction in mice.

  1. Centella asiatica Attenuates D-Galactose-Induced Cognitive Impairment, Oxidative and Mitochondrial Dysfunction in Mice

    PubMed Central

    Kumar, Anil; Prakash, Atish; Dogra, Samrita

    2011-01-01

    D-galactose induced neurotoxicity is well known model for studying aging and related oxidative damage and memory impairment. Aging is a biological process, characterized by the gradual loss of physiological functions by unknown mechanism. Centella asiatica, Indian pennywort has been documented in the treatment of various neurological disorders including aging. Therefore, present study has been conducted in order to explore the possible role of Centella asiatica against D-galactose induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Chronic administration of D-galactose (100 mg/kg s.c.) for a period of six weeks significantly impaired cognitive task (both in both Morris water maze and elevated plus maze) and oxidative defense (Increased lipid peroxidation, nitrite concentration and decreased activity of superoxide dismutase, catalase and non-protein thiols) and impaired mitochondrial complex (I, II and III) enzymes activities as compared to sham group. Six weeks Centella asiatica (150 and 300 mg/kg, p.o) treatment significantly improved behavioral alterations, oxidative damage and mitochondrial enzyme complex activities as compared to contro l (D-galactose). Centella asiatica also attenuated enhanced acetylcholine esterase enzyme level in D-galactose senescence mice. Present study highlights the protective effect of Centella asiatica against D-galactose induced behavioral, biochemical and mitochondrial dysfunction in mice. PMID:21629743

  2. Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer's disease brain.

    PubMed

    Abolhassani, Nona; Leon, Julio; Sheng, Zijing; Oka, Sugako; Hamasaki, Hideomi; Iwaki, Toru; Nakabeppu, Yusaku

    2017-01-01

    In normal brain, neurons in the cortex and hippocampus produce insulin, which modulates glucose metabolism and cognitive functions. It has been shown that insulin resistance impairs glucose metabolism and mitochondrial function, thus increasing production of reactive oxygen species. Recent progress in Alzheimer's disease (AD) research revealed that insulin production and signaling are severely impaired in AD brain, thereby resulting in mitochondrial dysfunction and increased oxidative stress. Among possible oxidative DNA lesions, 8-oxoguanine (8-oxoG) is highly accumulated in the brain of AD patients. Previously we have shown that incorporating 8-oxoG in nuclear and mitochondrial DNA promotes MUTYH (adenine DNA glycosylase) dependent neurodegeneration. Moreover, cortical neurons prepared from MTH1 (8-oxo-dGTPase)/OGG1 (8-oxoG DNA glycosylase)-double deficient adult mouse brains is shown to exhibit significantly poor neuritogenesis in vitro with increased 8-oxoG accumulation in mitochondrial DNA in the absence of antioxidants. Therefore, 8-oxoG can be considered involved in the neurodegenerative process in AD brain. In mild cognitive impairment, mitochondrial dysfunction and oxidative damage may induce synaptic dysfunction due to energy failures in neurons thus resulting in impaired cognitive function. If such abnormality lasts long, it can lead to vicious cycles of oxidative damage, which may then trigger the neurodegenerative process seen in Alzheimer type dementia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Impaired nitric oxide-mediated vasodilation in transgenic sickle mouse.

    PubMed

    Kaul, D K; Liu, X D; Fabry, M E; Nagel, R L

    2000-06-01

    Transgenic sickle mice expressing human beta(S)- and beta(S-Antilles)-globins show intravascular sickling, red blood cell adhesion, and attenuated arteriolar constriction in response to oxygen. We hypothesize that these abnormalities and the likely endothelial damage, also reported in sickle cell anemia, alter nitric oxide (NO)-mediated microvascular responses and hemodynamics in this mouse model. Transgenic mice showed a lower mean arterial pressure (MAP) compared with control groups (90 +/- 7 vs. 113 +/- 8 mmHg, P < 0.00001), accompanied by increased endothelial nitric oxide synthase (eNOS) expression. N(G)-nitro-L-arginine methyl ester (L-NAME), a nonselective inhibitor of NOS, caused an approximately 30% increase in MAP and approximately 40% decrease in the diameters of cremaster muscle arterioles (branching orders: A2 and A3) in both control and transgenic mice, confirming NOS activity; these changes were reversible after L-arginine administration. Aminoguanidine, an inhibitor of inducible NOS, had no effect. Transgenic mice showed a decreased (P < 0.02-0.01) arteriolar dilation in response to NO-mediated vasodilators, i.e., ACh and sodium nitroprusside (SNP). Indomethacin did not alter the responses to ACh and SNP. Forskolin, a cAMP-activating agent, caused a comparable dilation of A2 and A3 vessels ( approximately 44 and 70%) in both groups of mice. Thus in transgenic mice, an increased eNOS/NO activity results in lower blood pressure and diminished arteriolar responses to NO-mediated vasodilators. Although the increased NOS/NO activity may compensate for flow abnormalities, it may also cause pathophysiological alterations in vascular tone.

  4. Impairment of Sulfite Reductase Decreases Oxidative Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Wang, Meiping; Jia, Yunli; Xu, Ziwei; Xia, Zongliang

    2016-01-01

    As an essential enzyme in the sulfate assimilation reductive pathway, sulfite reductase (SiR) plays important roles in diverse metabolic processes such as sulfur homeostasis and cysteine metabolism. However, whether plant SiR is involved in oxidative stress response is largely unknown. Here, we show that SiR functions in methyl viologen (MV)-induced oxidative stress in Arabidopsis. The transcript levels of SiR were higher in leaves, immature siliques, and roots and were markedly and rapidly up-regulated by MV exposure. The SiR knock-down transgenic lines had about 60% residual transcripts and were more susceptible than wild-type when exposed to oxidative stress. The severe damage phenotypes of the SiR-impaired lines were accompanied by increases of hydrogen peroxide (H2O2), malondialdehyde (MDA), and sulfite accumulations, but less amounts of glutathione (GSH). Interestingly, application of exogenous GSH effectively rescued corresponding MV hypersensitivity in SiR-impaired plants. qRT-PCR analysis revealed that there was significantly increased expression of several sulfite metabolism-related genes in SiR-impaired lines. Noticeably, enhanced transcripts of the three APR genes were quite evident in SiR-impaired plants; suggesting that the increased sulfite in the SiR-impaired plants could be a result of the reduced SiR coupled to enhanced APR expression during oxidative stress. Together, our results indicate that SiR is involved in oxidative stress tolerance possibly by maintaining sulfite homeostasis, regulating GSH levels, and modulating sulfite metabolism-related gene expression in Arabidopsis. SiR could be exploited for engineering environmental stress-tolerant plants in molecular breeding of crops. PMID:27994615

  5. Oxidative Stress Impairs Learning and Memory in apoE Knockout Mice

    PubMed Central

    Evola, Marianne; Hall, Allyson; Wall, Trevor; Young, Alice; Grammas, Paula

    2010-01-01

    Cardiovascular risk factors, such as oxidative stress and elevated lipids, are linked to the development of cognitive impairment. A mediator common to both stressors is the apolipoprotein E (apoE). The objectives of this study are to determine the effects of apoE deficiency and diet-induced systemic oxidative stress in mice on vascular expression of inflammatory proteins and on cognitive function. Mice are placed on a diet enriched in homocysteine for fifteen weeks and then assessed for spatial learning using an eight-arm radial maze and for inflammatory protein expression by immunohistochemistry. Our results show that diet-induced oxidative stress does not affect cognitive function in normal mice. In contrast, apoE−/− mice on the homocysteine diet show significantly impaired (p < 0. 001) maze performance. ApoE−/− mice also have high cholesterol levels. There is no expression of inflammatory proteins IL-6 and IL-8 in the vasculature of control mice on normal or homocysteine diet and little in apoE−/− mice on normal diet. In contrast, apoE−/− mice on homocysteine diet show pronounced vascular reactivity to IL-6 and IL-8 antibodies. These data show that systemic oxidative stress correlates with expression of inflammatory proteins in the cerebral vasculature and impaired cognitive function. These results are consistent with the hypothesis that an oxidative-inflammatory cycle in the cerebral vasculature could have deleterious consequences for cognition. PMID:20457176

  6. Exercise-induced muscle damage impairs insulin signaling pathway associated with IRS-1 oxidative modification.

    PubMed

    Aoi, W; Naito, Y; Tokuda, H; Tanimura, Y; Oya-Ito, T; Yoshikawa, T

    2012-01-01

    Strenuous exercise induces delayed-onset muscle damage including oxidative damage of cellular components. Oxidative stress to muscle cells impairs glucose uptake via disturbance of insulin signaling pathway. We investigated glucose uptake and insulin signaling in relation to oxidative protein modification in muscle after acute strenuous exercise. ICR mice were divided into sedentary and exercise groups. Mice in the exercise group performed downhill running exercise at 30 m/min for 30 min. At 24 hr after exercise, metabolic performance and insulin-signaling proteins in muscle tissues were examined. In whole body indirect calorimetry, carbohydrate utilization was decreased in the exercised mice along with reduction of the respiratory exchange ratio compared to the rested control mice. Insulin-stimulated uptake of 2-deoxy-[(3)H]glucose in damaged muscle was decreased after acute exercise. Tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidyl-3-kinase/Akt signaling were impaired by exercise, leading to inhibition of the membrane translocation of glucose transporter 4. We also found that acute exercise caused 4-hydroxy-nonenal modification of IRS-1 along with elevation of oxidative stress in muscle tissue. Impairment of insulin-induced glucose uptake into damaged muscle after strenuous exercise would be related to disturbance of insulin signal transduction by oxidative modification of IRS-1.

  7. Early mitochondrial adaptations in skeletal muscle to diet-induced obesity are strain dependent and determine oxidative stress and energy expenditure but not insulin sensitivity.

    PubMed

    Boudina, Sihem; Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T; Cooksey, Robert C; Jones, Deborah; Holland, William L; McClain, Donald A; Abel, E Dale

    2012-06-01

    This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake.

  8. Mammalian adaptation to extrauterine environment: mitochondrial functional impairment caused by prematurity.

    PubMed Central

    Valcarce, C; Izquierdo, J M; Chamorro, M; Cuezva, J M

    1994-01-01

    In this paper we report that, compared with term rat neonates, both mitochondrial content and function are diminished in liver of preterm neonates (delivered 24 h before full term) compromising cellular energy provision in the postnatal period. In addition, there is a parallel reduction in the content of mRNAs encoding mitochondrial proteins in preterm rats. Also, efficient oxidative phosphorylation is not attained in these pups until 3 h after birth. Although isolated liver mitochondria from preterm neonates show a two-fold increase in F1-ATPase beta-subunit and cytochrome c oxidase activity 1 h after birth, the abnormal coupling efficiency between respiration and oxidative phosphorylation (ADP/O ratio) is due to maintenance of high H(+)-leakage values in the inner mitochondrial membrane. Postnatal reduction of the H+ leak occurs concomitantly with an increase in intra-mitochondrial adenine nucleotide concentration. Accumulation of adenine nucleotides in preterm and term liver mitochondria parallels the postnatal increase in total liver adenine nucleotides. Delayed postnatal induction of adenine biosynthesis most likely accounts for the lower adenine nucleotide pool in the liver of preterm neonates. The delayed postnatal accumulation of adenine nucleotides in mitochondria is thus responsible for the impairment in oxidative phosphorylation displayed by organelles of the preterm liver. Images Figure 1 PMID:7980455

  9. Wfs1-deficient mice display impaired behavioural adaptation in stressful environment.

    PubMed

    Luuk, Hendrik; Plaas, Mario; Raud, Sirli; Innos, Jürgen; Sütt, Silva; Lasner, Helena; Abramov, Urho; Kurrikoff, Kaido; Kõks, Sulev; Vasar, Eero

    2009-03-17

    Wfs1-deficient mice were generated by disrupting the 8th exon of Wfs1 gene. Reproduction rates of homozygous Wfs1-deficient mice were slightly below the expected values, they displayed intolerance to glucose and overall lower body weight. The present behavioural study was performed in female Wfs1-deficient mice due to their milder metabolic disturbances. Non-fasting blood glucose levels did not differ between homozygous Wfs1-deficient mice and wild-type littermates. While there was no difference in baseline plasma corticosterone, exposure to stress induced a nearly three-fold elevation of corticosterone in Wfs1-deficient mice in relation to wild-type littermates. Wfs1-deficient mice did not display obvious shortcomings in sensory and motor functioning as exemplified by intact responses in conditioned learning paradigms and rota-rod test. Locomotor activity of Wfs1-deficient mice was significantly lower only in brightly lit environment. Short-term isolation had a significant anxiogenic-like effect on the behaviour of Wfs1-deficient mice in dark/light exploration test. Lower exploratory activity of Wfs1-deficient mice in the plus-maze was antagonised by pre-treatment with diazepam (1 mg/kg), a GABA(A) receptor agonist. Wfs1-deficient mice displayed increased anxiety-like behaviour in hyponeophagia test. The locomotor stimulatory effects of amphetamine (2.5-7.5 mg/kg) and apomorphine (3 mg/kg) were significantly attenuated and facilitated, respectively, in Wfs1-deficient mice. There were no differences between Wfs1-deficient mice and wild-types in forced swimming behaviour and conditioned fear responses. Subtle impairments in reversal learning were apparent in Wfs1-deficient mice in the Morris water maze. Altogether, the present study demonstrates impaired behavioural adaptation of Wfs1-deficient mice in stress-inducing situations. It is likely that Wfs1 protein plays a major role in the behavioural adaptation mechanisms to novel and stressful environments.

  10. Functional adaptation to oxidative stress by memory T cells: an analysis of the role in the cardiovascular disease process.

    PubMed

    Elahi, Maqsood M; Matata, Bashir M

    2008-11-21

    T cells participate in combating infection and critically determine the outcomes in any given disease process. Impaired immune response occurs in a number disease processes such as in cancer and atherosclerosis although the underlying mechanisms are still not fully understood. This article gives an up-to-date review of T cells development and functional adaptation to pathophysiological stimuli and participation in the cardiovascular disease process. In addition, we have discussed the signaling pathways controlled by the microenvironment that determine T cells function and resultant type of immune response. We have also discussed in detail how oxidative stress is a key component of the micro environmental interaction.

  11. Impaired Hepatic Adaptation to Chronic Cholestasis induced by Primary Sclerosing Cholangitis

    PubMed Central

    Milkiewicz, Malgorzata; Klak, Marta; Kempinska-Podhorodecka, Agnieszka; Wiechowska-Kozlowska, Anna; Urasinska, Elzbieta; Blatkiewicz, Malgorzata; Wunsch, Ewa; Elias, Elwyn; Milkiewicz, Piotr

    2016-01-01

    Pathogenesis of primary sclerosing cholangitis (PSC) may involve impaired bile acid (BA) homeostasis. We analyzed expressions of factors mediating enterohepatic circulation of BA using ileal and colonic (ascending and sigmoid) biopsies obtained from patients with PSC with and without ulcerative colitis (UC) and explanted PSC livers. Two-fold increase of BA-activated farnesoid X receptor (FXR) protein levels were seen in ascending and sigmoid colon of PSC patients with correspondingly decreased apical sodium-dependent BA transporter (ASBT) gene expression. This was associated with increased OSTβ protein levels in each part of analyzed gut. An intestinal fibroblast growth factor (FGF19) protein expression was significantly enhanced in ascending colon. Despite increased hepatic nuclear receptors (FXR, CAR, SHP), and FGF19, neither CYP7A1 suppression nor CYP3A4 induction were observed. The lack of negative regulation of BA synthesis may be accountable for lower levels of cholesterol observed in PSC in comparison to primary biliary cholangitis (PBC). In conclusion, chronic cholestasis in PSC induces adaptive changes in expression of BA transporters and FXR in the intestine. However hepatic impairment of expected in chronic cholestasis downregulation of CYP7A1 and upregulation of CYP3A4 may promote BA-induced liver injury in PSC. PMID:28008998

  12. Improving vocational outcomes in first-episode psychosis by addressing cognitive impairments using Cognitive Adaptation Training.

    PubMed

    Allott, Kelly A; Killackey, Eoin; Sun, Pamela; Brewer, Warrick J; Velligan, Dawn I

    2017-01-01

    Cognitive Adaptation Training (CAT) uses compensatory strategies and environmental supports to support cognitive impairments and improve functioning. CAT may be useful for addressing vocational recovery in first-episode psychosis (FEP) because cognitive impairments are common and vocational recovery is a key goal of young people with FEP. To describe clinical observations and practice experience when delivering CAT with FEP clients and explore potential benefits via objective outcome measures for improving vocational outcomes. In this pilot study, five FEP participants received 9 months of CAT. Participant goals and functional needs and clinical observations were recorded. Formal measures of functioning, quality of life and motivation were independently administered pre- and post-intervention. Vocational recovery (education, employment) was found to be a primary functional goal of FEP participants. Accordingly, CAT had a strong focus on vocational functioning, including functional domains required for successful work or educational outcomes, such as organization and planning, transportation and activities of daily living. Factors of clinical importance when delivering CAT with the FEP participants included cognitive heterogeneity, family involvement, flexibility in compensatory and environmental supports used, and experience of stigma. Improvements from baseline to post-intervention were observed on most measures, with the largest improvements seen in global functioning (including vocation), planning and organization, and quality of life. CAT is an intervention that appears well suited to addressing vocational functioning in FEP, but larger controlled trials are needed.

  13. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease.

    PubMed

    Toda, Noboru; Okamura, Tomio

    2016-08-01

    Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic) nerves and nitric oxide (NO) liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS)/neuronal NOS (nNOS) inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD). Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  14. Chronic oxidative-nitrosative stress impairs coronary vasodilation in metabolic syndrome model rats.

    PubMed

    Kagota, Satomi; Maruyama, Kana; Tada, Yukari; Fukushima, Kazuhito; Umetani, Keiji; Wakuda, Hirokazu; Shinozuka, Kazumasa

    2013-07-01

    Metabolic syndrome (MetS) is a combination of clinical disorders that together increase the risk for cardiovascular disease and diabetes. SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP.ZF) rats with MetS show impaired nitric oxide-mediated relaxation in coronary and mesenteric arteries, and angiotensin II receptor type 1 blockers protect against dysfunction and oxidative-nitrosative stress independently of metabolic effects. We hypothesize that superoxide contributes to functional deterioration in SHRSP.ZF rats. To test our hypothesis, we studied effects of treatment with tempol, a membrane-permeable radical scavenger, on impaired vasodilation in SHRSP.ZF rats. Tempol did not alter body weight, high blood pressure, or metabolic abnormalities, but prevented impairment of acetylcholine-induced and nitroprusside-induced vasodilation in the coronary and mesenteric arteries. Furthermore, tempol reduced the levels of serum thiobarbituric acid reactive substance (TBARS) and 3-nitrotyrosine content in mesenteric arteries. Systemic administration of tempol elevated the expression of soluble guanylate cyclase (sGC) above basal levels in mesenteric arteries of SHRSP.ZF rats. However, acute treatment with tempol or ebselen, a peroxynitrite scavenger, did not ameliorate impaired relaxation of isolated mesenteric arteries. No nitration of tyrosine residues in sGC was observed; however, sGC mRNA expression levels in the arteries of SHRSP.ZF rats were lower than those in the arteries of Wistar-Kyoto rats. Levels of Thr(496)- and Ser(1177)-phosphorylated endothelial nitric oxide synthase (eNOS) were lower in arteries of SHRSP.ZF rats, and acetylcholine decreased Thr(496)-phosphorylated eNOS levels. These results indicated that prolonged superoxide production, leading to oxidative-nitrosative stress, was associated with impaired vasodilation in SHRSP.ZF rats with MetS. Down-regulated sGC expression may be linked to dysfunction, while reduced NO bioavailability/eNOS activity and modified s

  15. Cognitive impairment and Alzheimer’s disease: Links with oxidative stress and cholesterol metabolism

    PubMed Central

    Sekler, Alejandra; Jiménez, José M; Rojo, Leonel; Pastene, Edgard; Fuentes, Patricio; Slachevsky, Andrea; Maccioni, Ricardo B

    2008-01-01

    Oxidative stress has been implicated in the progression of a number of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease and amyotrophic lateral sclerosis. We carried out an in-depth study of cognitive impairment and its relationships with oxidative stress markers such as ferric-reducing ability of plasma (FRAP), plasma malondialdehyde and total antioxidative capacity (TAC), as well as cholesterol parameters, in two subsets of subjects, AD patients (n = 59) and a control group of neurologically normal subjects (n = 29), attending the University Hospital Salvador in Santiago, Chile. Cognitive impairment was assessed by a set of neuropsychological tests (Mini-Mental State Examination, Boston Naming Test, Ideomotor Praxia by imitation, Semantic Verbal Fluency of animals or words with initial A, Test of Memory Alteration, Frontal Assessment Battery), while the levels of those oxidative stress markers and cholesterol metabolism parameters were determined according with standard bioassays in fresh plasma samples of the two subgroups of patients. No significant differences were observed when the cholesterol parameters (low-, high-density lipoprotein, total cholesterol) of the AD group were compared with normal controls. Interestingly, a correlation was evidenced when the levels of cognitive impairment were analyzed with respect to the plasma antioxidant capacity (AOC) of patients. In this context, the subset of subjects exhibiting cognitive impairment were divided into two subgroups according with their Global Dementia Scale performance: a subgroup with mild AD and a subgroup with moderate to severe AD. Significant differences in AOC were found between subgroups. The different correlations between cognitive impairment of subgroups of subjects with the oxidative stress profile are discussed in the context of AD pathogenesis. PMID:19043515

  16. Cognitive impairment and Alzheimer's disease: Links with oxidative stress and cholesterol metabolism.

    PubMed

    Sekler, Alejandra; Jiménez, José M; Rojo, Leonel; Pastene, Edgard; Fuentes, Patricio; Slachevsky, Andrea; Maccioni, Ricardo B

    2008-08-01

    Oxidative stress has been implicated in the progression of a number of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease and amyotrophic lateral sclerosis. We carried out an in-depth study of cognitive impairment and its relationships with oxidative stress markers such as ferric-reducing ability of plasma (FRAP), plasma malondialdehyde and total antioxidative capacity (TAC), as well as cholesterol parameters, in two subsets of subjects, AD patients (n = 59) and a control group of neurologically normal subjects (n = 29), attending the University Hospital Salvador in Santiago, Chile. Cognitive impairment was assessed by a set of neuropsychological tests (Mini-Mental State Examination, Boston Naming Test, Ideomotor Praxia by imitation, Semantic Verbal Fluency of animals or words with initial A, Test of Memory Alteration, Frontal Assessment Battery), while the levels of those oxidative stress markers and cholesterol metabolism parameters were determined according with standard bioassays in fresh plasma samples of the two subgroups of patients. No significant differences were observed when the cholesterol parameters (low-, high-density lipoprotein, total cholesterol) of the AD group were compared with normal controls. Interestingly, a correlation was evidenced when the levels of cognitive impairment were analyzed with respect to the plasma antioxidant capacity (AOC) of patients. In this context, the subset of subjects exhibiting cognitive impairment were divided into two subgroups according with their Global Dementia Scale performance: a subgroup with mild AD and a subgroup with moderate to severe AD. Significant differences in AOC were found between subgroups. The different correlations between cognitive impairment of subgroups of subjects with the oxidative stress profile are discussed in the context of AD pathogenesis.

  17. Nitric oxide synthetic pathway in red blood cells is impaired in coronary artery disease.

    PubMed

    Eligini, Sonia; Porro, Benedetta; Lualdi, Alessandro; Squellerio, Isabella; Veglia, Fabrizio; Chiorino, Elisa; Crisci, Mauro; Garlaschè, Anna; Giovannardi, Marta; Werba, Josè-Pablo; Tremoli, Elena; Cavalca, Viviana

    2013-01-01

    All the enzymatic factors/cofactors involved in nitric oxide (NO) metabolism have been recently found in red blood cells. Increased oxidative stress impairs NO bioavailability and has been described in plasma of coronary artery disease (CAD) patients. The aim of the study was to highlight a potential dysfunction of the metabolic profile of NO in red blood cells and in plasma from CAD patients compared with healthy controls. We determined L-arginine/NO pathway by liquid-chromatography tandem mass spectrometry and high performance liquid chromatography methods. The ratio of oxidized and reduced forms of glutathione, as index of oxidative stress, was measured by liquid-chromatography tandem mass spectrometry method. NO synthase expression and activity were evaluated by immunofluorescence staining and ex-vivo experiments of L-[(15)N2]arginine conversion to L-[(15)N]citrulline respectively. Increased amounts of asymmetric and symmetric dimethylarginines were found both in red blood cells and in plasma of CAD patients in respect to controls. Interestingly NO synthase expression and activity were reduced in CAD red blood cells. In contrast, oxidized/reduced glutathione ratio was increased in CAD and was associated to arginase activity. Our study analyzed for the first time the whole metabolic pathway of L-arginine/NO, both in red blood cells and in plasma, highlighting an impairment of NO pathway in erythrocytes from CAD patients, associated with decreased NO synthase expression/activity and increased oxidative stress.

  18. Nitric Oxide Synthetic Pathway in Red Blood Cells Is Impaired in Coronary Artery Disease

    PubMed Central

    Eligini, Sonia; Porro, Benedetta; Lualdi, Alessandro; Squellerio, Isabella; Veglia, Fabrizio; Chiorino, Elisa; Crisci, Mauro; Garlaschè, Anna; Giovannardi, Marta; Werba, Josè-Pablo; Tremoli, Elena; Cavalca, Viviana

    2013-01-01

    Background All the enzymatic factors/cofactors involved in nitric oxide (NO) metabolism have been recently found in red blood cells. Increased oxidative stress impairs NO bioavailability and has been described in plasma of coronary artery disease (CAD) patients. The aim of the study was to highlight a potential dysfunction of the metabolic profile of NO in red blood cells and in plasma from CAD patients compared with healthy controls. Methods We determined L-arginine/NO pathway by liquid-chromatography tandem mass spectrometry and high performance liquid chromatography methods. The ratio of oxidized and reduced forms of glutathione, as index of oxidative stress, was measured by liquid-chromatography tandem mass spectrometry method. NO synthase expression and activity were evaluated by immunofluorescence staining and ex-vivo experiments of L-[15N2]arginine conversion to L-[15N]citrulline respectively. Results Increased amounts of asymmetric and symmetric dimethylarginines were found both in red blood cells and in plasma of CAD patients in respect to controls. Interestingly NO synthase expression and activity were reduced in CAD red blood cells. In contrast, oxidized/reduced glutathione ratio was increased in CAD and was associated to arginase activity. Conclusion Our study analyzed for the first time the whole metabolic pathway of L-arginine/NO, both in red blood cells and in plasma, highlighting an impairment of NO pathway in erythrocytes from CAD patients, associated with decreased NO synthase expression/activity and increased oxidative stress. PMID:23940508

  19. Prenatal exposure to testosterone impairs oxidative damage repair efficiency in the domestic chicken (Gallus gallus).

    PubMed

    Treidel, L A; Whitley, B N; Benowitz-Fredericks, Z M; Haussmann, M F

    2013-10-23

    Elevated levels of maternal androgens in avian eggs affect numerous traits, including oxidative stress. However, current studies disagree as to whether prenatal androgen exposure enhances or ameliorates oxidative stress. Here, we tested how prenatal testosterone exposure affects oxidative stress in female domestic chickens (Gallus gallus) during the known oxidative challenge of an acute stressor. Prior to incubation, eggs were either injected with an oil vehicle or 5 ng testosterone. At either 17 or 18 days post-hatch, several oxidative stress markers were assessed from blood taken before and after a 20 min acute stressor, as well as following a 25 min recovery from the stressor. We found that, regardless of yolk treatment, during both stress and recovery all individuals were in a state of oxidative stress, with elevated levels of oxidative damage markers accompanied by a reduced total antioxidant capacity. In addition, testosterone-exposed individuals exhibited poorer DNA damage repair efficiencies in comparison with control individuals. Our work suggests that while yolk androgens do not alter oxidative stress directly, they may impair mechanisms of oxidative damage repair.

  20. The mediating effect of adaptive and maladaptive emotion regulation strategies on executive functioning impairment and depressive symptoms among adolescents.

    PubMed

    Wante, Laura; Mezulis, Amy; Van Beveren, Marie-Lotte; Braet, Caroline

    2017-11-01

    Past research results suggest that executive functioning (EF) impairment represents an important vulnerability factor in depression. Little research, however, has examined mechanisms underlying this association. The current study investigates the associations between EF impairment, emotion regulation (ER) strategies, and depressive symptoms in a sample of 579 adolescents (320 females, mean age = 12.06 years). Parents reported on adolescents' EF and general psychopathology, and adolescents self-reported ER strategies and depressive symptoms. The results indicate that greater EF impairment is associated with more depressive symptoms. Youth with greater EF impairment reported more maladaptive ER and less adaptive ER, and maladaptive and adaptive ER strategies jointly mediated the association between EF impairment and depressive symptoms. The results highlight an important role of both maladaptive and adaptive ER in explaining the relationship between EF and depressive symptoms and suggest that clinical interventions targeting ER skills may provide one strategy for the prevention and treatment of depression. Further longitudinal research is needed to replicate these results and evaluate the causality of the relations.

  1. Development and Adaptation of an Employment-Integration Program for People Who Are Visually Impaired in Quebec, Canada

    ERIC Educational Resources Information Center

    Wittich, Walter; Watanabe, Donald H.; Scully, Lizabeth; Bergevin , Martin

    2013-01-01

    Introduction: In the Province of Quebec, Canada, it is estimated that only about one-third of working-age adults with visual impairments are part of the workforce, despite ongoing efforts of rehabilitation and government agencies to integrate these individuals. The present article describes the development and adaptation of a pre-employment…

  2. Development and Adaptation of an Employment-Integration Program for People Who Are Visually Impaired in Quebec, Canada

    ERIC Educational Resources Information Center

    Wittich, Walter; Watanabe, Donald H.; Scully, Lizabeth; Bergevin , Martin

    2013-01-01

    Introduction: In the Province of Quebec, Canada, it is estimated that only about one-third of working-age adults with visual impairments are part of the workforce, despite ongoing efforts of rehabilitation and government agencies to integrate these individuals. The present article describes the development and adaptation of a pre-employment…

  3. Cardiovascular Disease, the Nitric Oxide Pathway and Risk of Cognitive Impairment and Dementia.

    PubMed

    Stephan, Blossom C M; Harrison, Stephanie L; Keage, Hannah A D; Babateen, Abrar; Robinson, Louise; Siervo, Mario

    2017-08-11

    In this review, we summarise the evidence on the association between cardiovascular disease (CVD) and cognitive impairment and explore the role of the nitric oxide (NO) pathway as a causal mechanism. Evidence from epidemiological studies suggests that the presence of CVD and its risk factors in midlife is associated with an increased risk of later life cognitive impairment and dementia. It is unclear what is driving this association but risk may be conveyed via an increase in neurodegeneration (e.g. amyloid deposition), vascular changes (e.g. small vessel disease) and mechanistically due to increased levels of oxidative stress and inflammation as well as changes in NO bioavailability. CVDs and dementia are major challenges to global health worldwide. The NO pathway may be a promising biological candidate for future studies focused on reducing not only CVD but also risk of cognitive decline and dementia.

  4. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    SciTech Connect

    Haffar, T.; Bérubé-Simard, F.; Bousette, N.

    2015-12-04

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring {sup 14}C–CO{sub 2} production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO

  5. Partial genetic deficiency in tissue kallikrein impairs adaptation to high potassium intake in humans.

    PubMed

    Monteiro, Joana S; Blanchard, Anne; Curis, Emmanuel; Chambrey, Régine; Jeunemaitre, Xavier; Azizi, Michel

    2013-12-01

    Inactivation of the tissue kallikrein gene in mice impairs renal handling of potassium due to enhanced H, K-ATPase activity, and induces hyperkalemia. We investigated whether the R53H loss-of-function polymorphism of the human tissue kallikrein gene affects renal potassium handling. In a crossover study, 30 R53R homozygous and 10 R53H heterozygous healthy males were randomly assigned to a low-sodium/high-potassium or a high-sodium/low-potassium diet to modulate tissue kallikrein synthesis. On the seventh day of each diet, participants were studied before and during a 2-h infusion of furosemide to stimulate distal potassium secretion. Urinary kallikrein activity was significantly lower in R53H than in R53R subjects on the low-sodium/high-potassium diet and was similarly reduced in both genotypes on high-sodium/low-potassium. Plasma potassium and renal potassium reabsorption were similar in both genotypes on an ad libitum sodium/potassium diet or after 7 days of a high-sodium/low-potassium diet. However, the median plasma potassium was significantly higher after 7 days of low-sodium/high-potassium diet in R53H than in R53R individuals. Urine potassium excretion and plasma aldosterone concentrations were similar. On the low-sodium/high-potassium diet, furosemide-induced decrease in plasma potassium was significantly larger in R53H than in R53R subjects. Thus, impaired tissue kallikrein stimulation by a low-sodium/high-potassium diet in R53H subjects with partial tissue kallikrein deficiency highlights an inappropriate renal adaptation to potassium load, consistent with experimental data in mice.

  6. The adaptation dynamics of chronic functional impairment: what we can learn from older adults with vision loss.

    PubMed

    Schilling, Oliver K; Wahl, Hans-Werner; Horowitz, Amy; Reinhardt, Joann P; Boerner, Kathrin

    2011-03-01

    This study used vision loss due to age-related macular degeneration to learn about adaptation processes related to chronic functional impairment, focusing on Horowitz and Reinhardt's (1998) concept of Adaptation to Age-related Vision Loss (AVL) as the outcome. We hypothesized that impacts of visual acuity on AVL are mediated by perceived functional vision losses and functional abilities, and tested for "adaptive" weakening of this impact with ongoing loss. Longitudinal data covering a one-year interval from samples with age-related macular degeneration gathered in New York (N = 361) and Heidelberg (Germany, N = 90) were used. We analyzed the hypothesized causal structure by modeling latent change scores, and checked if those with low, medium, and high levels of vision loss at baseline differ in the relations between one-year change scores. Results confirmed that impacts of vision loss on AVL are mediated by decline in functional ability. However, under the most severe levels of vision loss at baseline, functional decline showed only a minor impact on AVL change not explained by a lack of further decline in vision. Findings confirm the effectiveness of adaptation in terms of reduced reactivity to functional losses across increasing level of chronic impairment. Thus, adaptation, weakening the impact of chronic functional impairment on psychological outcomes over time with disease progression, deserves consideration in the study of psychological consequences of chronic physical health conditions in old age.

  7. Does vitamin C and E supplementation impair the favorable adaptations of regular exercise?

    PubMed

    Nikolaidis, Michalis G; Kerksick, Chad M; Lamprecht, Manfred; McAnulty, Steven R

    2012-01-01

    The detrimental outcomes associated with unregulated and excessive production of free radicals remains a physiological concern that has implications to health, medicine and performance. Available evidence suggests that physiological adaptations to exercise training can enhance the body's ability to quench free radicals and circumstantial evidence exists to suggest that key vitamins and nutrients may provide additional support to mitigate the untoward effects associated with increased free radical production. However, controversy has risen regarding the potential outcomes associated with vitamins C and E, two popular antioxidant nutrients. Recent evidence has been put forth suggesting that exogenous administration of these antioxidants may be harmful to performance making interpretations regarding the efficacy of antioxidants challenging. The available studies that employed both animal and human models provided conflicting outcomes regarding the efficacy of vitamin C and E supplementation, at least partly due to methodological differences in assessing oxidative stress and training adaptations. Based on the contradictory evidence regarding the effects of higher intakes of vitamin C and/or E on exercise performance and redox homeostasis, a permanent intake of non-physiological dosages of vitamin C and/or E cannot be recommended to healthy, exercising individuals.

  8. Reduced nitric oxide causes age-associated impairment of circadian rhythmicity.

    PubMed

    Kunieda, Takeshige; Minamino, Tohru; Miura, Kentaro; Katsuno, Taro; Tateno, Kaoru; Miyauchi, Hideyuki; Kaneko, Shuichi; Bradfield, Christopher A; FitzGerald, Garret A; Komuro, Issei

    2008-03-14

    Impairment of circadian rhythmicity in the elderly has been suggested to cause age-associated diseases such as atherosclerosis and hypertension. Endothelium-derived nitric oxide (NO) is a critical regulator of cardiovascular homeostasis, but its production declines with aging, thereby inducing vascular dysfunction. We show here that impaired circadian rhythmicity is related to a decrease of NO production with aging. Treatment with an NO donor significantly upregulated the promoter activity of the clock gene Period via the cAMP response element-dependent and the E-box enhancer element-dependent pathways. Both phosphorylation and S-nitrosylation by NO are involved in this upregulation. In aged animals, endothelial NO synthase activity was markedly decreased during the daytime, along with impairment of clock gene expression and the circadian variation in blood pressure. Treatment of aged animals with an NO donor significantly improved the impairments. Inhibition of NO synthase activity also led to impairment of clock gene expression and blood pressure rhythm. These results suggest that NO is a key regulator of the circadian clock in the cardiovascular system and may be a novel target for the treatment of age-associated alteration of circadian rhythms.

  9. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    SciTech Connect

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.; Fenwick, Peter S.; Chana, Kirandeep K.; Donnelly, Louise E.; Biswal, Shyam; Ito, Kazuhiro; Barnes, Peter J.

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.

  10. Aldosterone Increases Oxidant Stress to Impair Guanylyl Cyclase Activity by Cysteinyl Thiol Oxidation in Vascular Smooth Muscle Cells*S⃞

    PubMed Central

    Maron, Bradley A.; Zhang, Ying-Yi; Handy, Diane E.; Beuve, Annie; Tang, Shiow-Shih; Loscalzo, Joseph; Leopold, Jane A.

    2009-01-01

    Hyperaldosteronism is associated with impaired endothelium-dependent vascular reactivity owing to increased reactive oxygen species and decreased bioavailable nitric oxide (NO·); however, the effects of aldosterone on vasodilatory signaling pathways in vascular smooth muscle cells (VSMC) remain unknown. Soluble guanylyl cyclase (GC) is a heterodimer that is activated by NO· to convert cytosolic GTP to cGMP, a second messenger required for normal VSMC relaxation. Here, we show that aldosterone (10-9-10-7 mol/liter) diminishes GC activity by activating NADPH oxidase in bovine aortic VSMC to increase reactive oxygen species levels and induce oxidative posttranslational modification(s) of Cys-122, a β1-subunit cysteinyl residue demonstrated previously to modulate NO· sensing by GC. In VSMC treated with aldosterone, Western immunoblotting detected evidence of GC β1-subunit disulfide bonding, whereas mass spectrometry analysis of a homologous peptide containing the Cys-122-bearing sequence exposed to conditions of increased oxidant stress confirmed cysteinyl sulfinic acid (m/z 435), sulfonic acid (m/z 443), and disulfide (m/z 836) bond formation. The functional effect of these modifications was examined by transfecting COS-7 cells with wild-type GC or mutant GC containing an alanine substitution at Cys-122 (C122A). Exposure to aldosterone or hydrogen peroxide (H2O2) significantly decreased cGMP levels in cells expressing wild-type GC. In contrast, aldosterone or H2O2 did not influence cGMP levels in cells expressing the mutant C122A GC, confirming that oxidative modification of Cys-122 specifically impairs GC activity. These findings demonstrate that pathophysiologically relevant concentrations of aldosterone increase oxidant stress to convert GC to an NO·-insensitive state, resulting in disruption of normal vasodilatory signaling pathways in VSMC. PMID:19141618

  11. Hyperhomocysteinaemia in rats is associated with erectile dysfunction by impairing endothelial nitric oxide synthase activity

    PubMed Central

    Jiang, Weijun; Xiong, Lei; Bin Yang; Li, Weiwei; Zhang, Jing; Zhou, Qing; Wu, Qiuyue; Li, Tianfu; Zhang, Cui; Zhang, Mingchao; Xia, Xinyi

    2016-01-01

    To investigate the effect of hyperhomocysteinaemia (HHCy) on penile erectile function in a rat model, a methionine-rich diet was used in which erectile function, the reproductive system, and nitric oxide synthase were characterized. The intracavernous pressure, apomorphine experiments, measurement of oxidative stress, hematoxylin and eosin staining, immunohistochemistry analysis, reverse transcription-polymerase chain reactions and measurement of endothelial nitric oxide synthase activity were utilized. Our results showed that erections in the middle-dose, high-dose, and interference (INF) groups were significantly lower than the control (P < 0.05). INF group, being fed with vitamins B and folic acid, demonstrated markedly improved penile erections compared with the middle-dose group (P < 0.05). HHCy-induced eNOS and phospho-eNOS protein expression was reduced and the antioxidant effect was markedly impaired. The data of the present data provide evidence that HHCy is a vascular risk factor for erectile dysfunction by impairing cavernosa endothelial nitric oxide synthase activity. Intake of vitamins B can alleviate this abnormality. PMID:27221552

  12. Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage.

    PubMed

    Cervellati, Carlo; Sticozzi, Claudia; Romani, Arianna; Belmonte, Giuseppe; De Rasmo, Domenico; Signorile, Anna; Cervellati, Franco; Milanese, Chiara; Mastroberardino, Pier Giorgio; Pecorelli, Alessandra; Savelli, Vinno; Forman, Henry J; Hayek, Joussef; Valacchi, Giuseppe

    2015-10-01

    A strong correlation between oxidative stress (OS) and Rett syndrome (RTT), a rare neurodevelopmental disorder affecting females in the 95% of the cases, has been well documented although the source of OS and the effect of a redox imbalance in this pathology has not been yet investigated. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have demonstrated in RTT cells high levels of H2O2 and HNE protein adducts. These findings correlated with the constitutive activation of NADPH-oxidase (NOX) and that was prevented by a NOX inhibitor and iron chelator pre-treatment, showing its direct involvement. In parallel, we demonstrated an increase in mitochondrial oxidant production, altered mitochondrial biogenesis and impaired proteasome activity in RTT samples. Further, we found that the key cellular defensive enzymes: glutathione peroxidase, superoxide dismutase and thioredoxin reductases activities were also significantly lower in RTT. Taken all together, our findings suggest that the systemic OS levels in RTT can be a consequence of both: increased endogenous oxidants as well as altered mitochondrial biogenesis with a decreased activity of defensive enzymes that leads to posttranslational oxidant protein modification and a proteasome activity impairment.

  13. Impairments in Dark Adaptation are Associated with Age-Related Macular Degeneration Severity and Reticular Pseudodrusen

    PubMed Central

    Flamendorf, J; Agrón, E; Wong, WT; Thompson, D; Wiley, HE; Doss, EL; Al-Holou, S; Ferris, FL; Chew, EY; Cukras, C

    2015-01-01

    Purpose We investigate whether ocular and person-based characteristics are associated with dark adaptation (DA) measured using the AdaptRx™ device (Apeliotus Technologies, Atlanta, GA). Design Cross-sectional, single-center, observational study. Participants 116 participants >50 years with a range in age-related macular degeneration (AMD) severity. Methods Participants underwent best-corrected visual acuity (BCVA) testing, ophthalmoscopic examination and multimodal imaging. Presence of reticular pseudodrusen (RPD) was assessed by masked grading of fundus images and confirmed with OCT. Eyes were also graded for AMD features (drusen, pigmentary changes, late AMD) to generate a person-based AMD severity groups. One eye was designated the study eye for DA testing using the AdaptRx™ device. Nonparametric statistical testing was performed on all comparisons. Main Outcome Measure The primary outcome of this study was the rod-intercept time (RIT) which is defined as the time for a participant's visual sensitivity to recover to a stimulus intensity of 5 × 10−3 cd/m2 (a decrease of 3 log units), or until a maximum test duration of 40 minutes was reached. Results A total of 116 study eyes in 116 participants (mean age=75.4±9.4 years, 58% female) were analyzed. Increased RIT was significantly associated with increasing age (r=0.34, p=0.0002), decreasing BCVA (r=−0.54, p<0.0001), pseudophakia (p=0.03), decreasing subfoveal choroidal thickness (r=−0.27, p=0.003). Study eyes with RPD (15/116, 13%) had a significantly greater mean RIT compared to eyes without RPD in any AMD severity group (p<0.02 for all comparisons) with 80% reaching the DA test ceiling. Conclusion Impairments in DA increase with age, worse visual acuity, presence of RPD, AMD severity and decreased subfoveal choroidal thickness. Analysis of covariance found the multivariable model that best fit our data included age, AMD group, and presence of RPD (R2=0.56) with the presence of RPD conferring the

  14. Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine

    PubMed Central

    Abdel-Salam, Omar M.E.; El-Sayed El-Shamarka, Marwa; Salem, Neveen A.; El-Mosallamy, Aliaa E.M.K.; Sleem, Amany A.

    2012-01-01

    Haloperidol is a classic antipsychotic drug known for its propensity to cause extrapyramidal symptoms and impaired memory, owing to blockade of striatal dopamine D2 receptors. Cinnarizine is a calcium channel blocker with D2 receptor blocking properties which is widely used in treatment of vertiginous disorders. The present study aimed to see whether cinnarizine would worsen the effect of haloperidol on memory function and on oxidative stress in mice brain. Cinnarizine (5, 10 or 20 mg/kg), haloperidol, or haloperidol combined with cinnarizine was administered daily via the subcutaneous route and mice were examined on weekly basis for their ability to locate a submerged plate in the water maze test. Mice were euthanized 30 days after starting drug injection. Malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide (nitrite/nitrate) were determined in brain. Haloperidol substantially impaired water maze performance. The mean time taken to find the escape platform (latency) was significantly delayed by haloperidol (2 mg/kg, i.p.) on weeks 1-8 of the test, compared with saline control group. In contrast, those treated with haloperidol and cinnarizine showed significantly shorter latencies, which indicated that learning had occurred immediately. Haloperidol resulted in increased MDA in cortex, striatum, cerebellum and midbrain. GSH decreased in cortex, striatum and cerebellum and nitric oxide increased in cortex. Meanwhile, treatment with cinnarizine (20 mg/kg) and haloperidol resulted in significant decrease in MDA cortex, striatum, cerebellum and midbrain and an increase in GSH in cortex and striatum, compared with haloperidol group. These data suggest that cinnarizine improves the haloperidol induced brain oxidative stress and impairment of learning and memory in the water maze test in mice. PMID:27540345

  15. Clothing Construction: An Instructional Package with Adaptations for Visually Impaired Individuals.

    ERIC Educational Resources Information Center

    Crawford, Glinda B.; And Others

    Developed for the home economics teacher of mainstreamed visually impaired students, this guide provides clothing instruction lesson plans for the junior high level. First, teacher guidelines are given, including characteristics of the visually impaired, orienting such students to the classroom, orienting class members to the visually impaired,…

  16. The usability of a Norwegian adaptation of the Children's Communication Checklist Second Edition (CCC-2) in differentiating between language impaired and non-language impaired 6- to 12-year-olds.

    PubMed

    Helland, Wenche Andersen; Biringer, Eva; Helland, Turid; Heimann, Mikael

    2009-06-01

    The aim of the present study was to evaluate if the Norwegian adaptation of the Children's Communication Checklist-2 (CCC-2) differentiates between a language impaired and a non-language impaired population and to make a first evaluation of the psychometric qualities of the questionnaire on a Norwegian sample. A total of 153 children aged 6-12 years participated in the study (45 language impaired and 108 non-language impaired). The Norwegian adaptation of the CCC-2 distinguished language impaired from non-language impaired children and thus seems to provide a useful screening tool for communication impairments in Norwegian children. The reliability of the CCC-2 appeared to be reasonable with internal consistency values ranging from 0.73 to 0.89.

  17. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    PubMed

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Oxidative stress with tau hyperphosphorylation in memory impaired 1,2-diacetylbenzene-treated mice.

    PubMed

    Kang, Sin-Woo; Kim, Sung Jin; Kim, Min-Sun

    2017-09-05

    Long-term exposure to organic solvent may be related to the incidence of neuronal diseases, such as, Alzheimer's disease, depression, multiple sclerosis, dementia, Parkinson's disease. Previously, the authors reported 1,2-diacetylbenzene (DAB; a neurotoxic metabolite of 1,2-diethylbenzene) causes central and peripheral neuropathies that lead to motor neuronal deficits. Furthermore, it is known DAB increases oxidative stress and protein adduct levels and impairs hippocampal neurogenesis in mice. The authors examined the relevance of oxidative stress and tau hyperphosphorylation in the hippocampus. Five-week-old male C57BL/6 mice were treated with 1 or 5mg/kg/day DAB for 2weeks. Neither overall body weight increases nor behavioral differences were observed after treatment, but kidney and liver weights decreased. Increased ROS production, activated glycogen synthase kinase-3β (GSK-3β) and tau hyperphosphorylation were observed in hippocampal homogenates. To assess memory impairment, the Morris Water Maze was used. Animals in the DAB-treated groups took longer to reach the platform. Movement patterns of DAB treated mice were more complicated and their swimming speeds were lower than those of controls. When SHSY5Y neuroblastoma cells were pretreated with NAC (an antioxidant) or a GSK-3β inhibitor, the expression of active GSK-3β and tau hyperphosphorylation were reduced. These results suggest ROS produced by DAB causes tau hyperphosphorylation via GSK-3β phosphorylation and it might be related to impaired memory deficit. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Impaired cognitive performance in neuronal nitric oxide synthase knockout mice is associated with hippocampal protein derangements.

    PubMed

    Kirchner, Liselotte; Weitzdoerfer, Rachel; Hoeger, Harald; Url, Angelika; Schmidt, Peter; Engelmann, Mario; Villar, Santiago Rosell; Fountoulakis, Michael; Lubec, Gert; Lubec, Barbara

    2004-12-01

    Nitric oxide is implicated in modulation of memory and pharmacological as well as genetic inhibition of neuronal nitric oxide synthase (nNOS) leads to impaired cognitive function. We therefore decided to study learning and memory functions and cognitive flexibility in the Morris water maze (MWM) in 1-month-old male mice lacking nNOS (nNOS KO). Hippocampal protein profiling was carried out to possibly link protein derangement to impaired cognitive function. Two-dimensional gel electrophoresis with in-gel digestion of spots and subsequent MALDI-TOF identification of proteins and quantification of proteins using specific software was applied. In the memory as well as in the relearning task of the MWM, most of the nNOS KO failed to find the submerged platform within a given time. Proteomic evaluation of hippocampus, the main anatomical structure computing cognitive functions, revealed aberrant expression of a synaptosomal associated protein of the exocytotic machinery (NSF), glycolytic enzymes, chaperones 78 kDa glucose-regulated protein, T-complex protein 1; the signaling structure guanine nucleotide-binding protein G(I)/G(S)/G(T) and heterogeneous nuclear ribonucleoprotein H of the splicing machinery. We conclude that nNOS knockout mice show impaired spatial performance in the MWM, a finding that may be either linked to direct effects of nNOS/NO and/or to specific hippocampal protein derangements.

  20. Monochloramine Impairs Caspase-3 Through Thiol Oxidation and Zn2+ Release

    PubMed Central

    Kohler, Jonathan E.; Mathew, Jeff; Tai, Kaniza; Blass, Amy L.; Kelly, Edward; Soybel, David I.

    2009-01-01

    Background Caspase-3, a pro-apoptotic enzyme, represents a class of proteins in which the active site contains reduced thiol (S-H) groups and is modulated by heavy metal cations such as Zn2+. We explored the effects of the thiol oxidant monochloramine (NH2Cl) on caspase-3 activity within cells of isolated rabbit gastric glands. In addition, we tested the hypothesis that NH2Cl-induced alterations of caspase-3 activity are modulated by oxidant-induced accumulation of Zn2+ within the cytoplasm. Materials and Methods Isolated gastric glands were prepared from rabbit mucosa by collagenase digestion. Caspase-3 activity was measured colorimetrically in suspensions of healthy rabbit gastric glands, following exposure to various concentrations of NH2Cl with or without the zinc chelator TPEN for 1 hour, and re-equilibration in Ringer's solution for 5 hours. Conversion of procaspase 3 to active caspase-3 was monitored by Western blot. Results Monochloramine inhibited caspase-3 activity in a dose dependent fashion. At concentrations of NH2Cl up to 100μM, these effects were prevented if TPEN was given concurrently and were partly reversed if TPEN was given one hour later. Caspase-3 activity was preserved by concurrent treatment with a thiol-reducing agent, dithiothreitol (DTT). Conclusions At pathologically relevant concentrations, NH2Cl impairs caspase-3 activity through oxidation of its thiol groups. Independently from its thiol oxidant effects on the enzyme, NH2Cl-induced accumulation of Zn2+ in the cytoplasm is sufficient to restrain endogenous caspase-3 activity. Our studies suggest that some bacterially generated oxidants such as NH2Cl impair host pathways of apoptosis through release of Zn2+ from endogenous pools. PMID:19118843

  1. Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy.

    PubMed

    López-Erauskin, J; Galino, J; Ruiz, M; Cuezva, J M; Fabregat, I; Cacabelos, D; Boada, J; Martínez, J; Ferrer, I; Pamplona, R; Villarroya, F; Portero-Otín, M; Fourcade, S; Pujol, A

    2013-08-15

    X-linked adrenoleukodystrophy (X-ALD) is an inherited metabolic disorder of the nervous system characterized by axonopathy in spinal cords and/or cerebral demyelination, adrenal insufficiency and accumulation of very long-chain fatty acids (VLCFAs) in plasma and tissues. The disease is caused by malfunction of the ABCD1 gene, which encodes a peroxisomal transporter of VLCFAs or VLCFA-CoA. In the mouse, Abcd1 loss causes late onset axonal degeneration in the spinal cord, associated with locomotor disability resembling the most common phenotype in patients, adrenomyeloneuropathy. We have formerly shown that an excess of the VLCFA C26:0 induces oxidative damage, which underlies the axonal degeneration exhibited by the Abcd1(-) mice. In the present study, we sought to investigate the noxious effects of C26:0 on mitochondria function. Our data indicate that in X-ALD patients' fibroblasts, excess of C26:0 generates mtDNA oxidation and specifically impairs oxidative phosphorylation (OXPHOS) triggering mitochondrial ROS production from electron transport chain complexes. This correlates with impaired complex V phosphorylative activity, as visualized by high-resolution respirometry on spinal cord slices of Abcd1(-) mice. Further, we identified a marked oxidation of key OXPHOS system subunits in Abcd1(-) mouse spinal cords at presymptomatic stages. Altogether, our results illustrate some of the mechanistic intricacies by which the excess of a fatty acid targeted to peroxisomes activates a deleterious process of oxidative damage to mitochondria, leading to a multifaceted dysfunction of this organelle. These findings may be of relevance for patient management while unveiling novel therapeutic targets for X-ALD.

  2. Impaired metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes.

    PubMed

    Baraibar, Martin; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina; Bulteau, Anne-Laure; Prip-Buus, Carina; Butler-Browne, Gillian; Friguet, Bertrand

    2014-10-01

    Accumulation of damaged macromolecules, including irreversibly oxidized proteins, is a hallmark of cellular and organismal ageing. Failure of protein homesotasis is a major contributor to the age-related accumulation of damaged proteins. In skeletal muscle, tissue maintenance and regeneration is assured by resident adult stem cells known as satellite cells. During senescence their replication and differentiation is compromised contributing to sarcopenia. In this study we have addressed the impact of oxidatively modified proteins in the impaired metabolism of senescent human satellite cells. By using a targeted proteomics analysis we have found that proteins involved in protein quality control and glycolytic enzymes are the main targets of oxidation (carbonylation) and modification with advanced glycation/lipid peroxidation end products during replicative senescence of satellite cells. Inactivation of the proteasome in aged cells appeared as a key contributor to the accumulation of such damaged proteins. Untargeted metabolomic profiling and functional analyses indicated glucose metabolism impairment in senescent cells, although mitochondrial respiration remained unaffected. A metabolic shift leading to increased mobilization of non-carbohydrate substrates as branched chain amino acids or long chain fatty acids was observed in senescent cells. In addition, phospho-and glycerolipids metabolism was altered. Increased levels of acyl-carnitines indicated augmented turnover of storage and membrane lipids for energy production. Such changes reflect alterations in membrane composition and dysregulation of sphingolipids signaling during senescence. This study establishes a new concept connecting oxidative protein modifications with the altered cellular metabolism associated with the senescent phenotype. In addition, these findings highlight the molecular mechanisms implicated in satellite cells dysfunction during ageing, paving the road for future therapeutic interventions

  3. An adaptive breath sampler for use with human subjects with an impaired respiratory function.

    PubMed

    Basanta, M; Koimtzis, T; Singh, D; Wilson, I; Thomas, C L P

    2007-02-01

    An adaptive sampler for collecting 2.5 dm(3) samples of exhaled air from human subjects with an impaired respiratory function is described. Pressure in the upper respiratory tract is continuously monitored and the data used to control an automated system to collect select portions of the expired breathing cycle onto a mixed bed Tenax(trade mark) and Carbotrap(trade mark) adsorbent trap for analysis by GC-MS. The sampling approach is intended for use in metabolomic profiling of volatiles in human breath at concentrations greater than microg m(-3). The importance of experimental reproducibility in metabolomic data is emphasised and consequently a high purity air supply is used to maintain a stable exogenous volatile organic compound profile at concentrations in the range 5 to 30 microg m(-3). The results of a 90 day stability study showed that exogenous VOCs were maintained at significantly lower levels (40 times lower for isopropyl alcohol) and with significantly higher reproducibility (80 times lower standard deviation for isopropyl alcohol) than would have been be the case if ambient air had been used. The sampling system was evaluated with healthy controls alongside subjects with chronic obstructive pulmonary disease. Subjects were able to breathe normally with control subjects observed to breathe at a rate of 9 to 17 breaths per minute, compared to 16 to 30 breaths per minute for subjects with COPD. This study presents, for the first time, observations and estimates of intra-subject breath sample reproducibility from human subjects. These reproducibility studies indicated that VOCs in exhaled breath exhibit a variety of dynamic behaviours, with some species recovered with a RSD <30%, while other species were observed to have significantly more variable concentrations, 30 to 130% RSD. The approach was also demonstrated to reliably differentiate the differences in the VOC profiles between alveolar and dead space air.

  4. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia

    PubMed Central

    Steullet, P; Cabungcal, J-H; Coyle, J; Didriksen, M; Gill, K; Grace, A A; Hensch, T K; LaMantia, A-S; Lindemann, L; Maynard, T M; Meyer, U; Morishita, H; O'Donnell, P; Puhl, M; Cuenod, M; Do, K Q

    2017-01-01

    Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex. Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress. PMID:28322275

  5. A comparative study on oxidative stress role in nasal breathing impairment and obstructive sleep apnoea syndrome.

    PubMed

    Passali, D; Corallo, G; Petti, A; Longini, M; Passali, F M; Buonocore, G; Bellussi, L M

    2016-12-01

    Obstructive sleep apnoea syndrome (OSAS) is a sleep disorder that leads to metabolic abnormalities and increased cardiovascular risk. This study aimed to define the expression and clinical significance of biomarkers involved in oxidative stress in patients with OSAS. A prospective study was designed to compare outcomes of oxidative stress laboratory tests in three groups of subjects. The study involved the recruitment of three groups of subjects, 10 patients with obstructive sleep apnoea syndrome with AHI > 30; 10 patients suffering from snoring at night with AHI < 15; 10 patients with nasal respiratory impairment with AHI < 5. Patients were subjected to skin prick tests for common aero-allergens, nasal endoscopy, active anterior rhinomanometry, fibrolaryngoscopy and polysomnography; and extra-routine diagnostic tests and procedures; analysis of oxidative and antioxidant (plasma thiol groups) biomarkers in blood and urine samples. No statistical differences in age, sex distribution or body mass index were present between the three groups (p > 0.05). There were significant differences in AHI among the three groups of patients (p < 0.05). No statistical significance was found in the Analysis of Variance (ANOVA) test (p > 0.05) between the levels of biomarkers of oxidative stress in the three populations studied. The results of our study show that the nose can play a role in the pathogenesis of OSAS through the production of biomarkers of oxidative stress.

  6. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress.

    PubMed

    Jaiswal, Manish; Haelterman, Nele A; Sandoval, Hector; Xiong, Bo; Donti, Taraka; Kalsotra, Auinash; Yamamoto, Shinya; Cooper, Thomas A; Graham, Brett H; Bellen, Hugo J

    2015-07-01

    Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.

  7. Oral administration of d-galactose induces cognitive impairments and oxidative damage in rats.

    PubMed

    Budni, Josiane; Pacheco, Robson; da Silva, Sabrina; Garcez, Michelle Lima; Mina, Francielle; Bellettini-Santos, Tatiani; de Medeiros, Jesiel; Voss, Bruna Constantino; Steckert, Amanda Valnier; Valvassori, Samira da Silva; Quevedo, João

    2016-04-01

    d-Galactose (d-gal) is a reducing sugar that can be used to mimic the characteristics of aging in rodents; however, the effects of d-gal administration by oral route are not clear. Therefore, the aim of this study was to elucidate if the oral administration of d-gal induces cognitive impairments, neuronal loss, and oxidative damage, mimicking an animal model of aging. Male adult Wistar rats (4 months old) received d-gal (100mg/kg) via the oral route for a period of 1, 2, 4, 6 or 8 weeks. The results showed cognitive impairments in the open-field test in the 4th and 6th weeks after d-gal administration, as well as an impairment in spatial memory in the radial maze test after the 6th week of d-gal administration. The results indicated increase of levels of thiobarbituric acid reactive species-TBARS-and carbonyl group content in the prefrontal cortex from the 4th week, and in all weeks of d-gal administration, respectively. An increase in the levels of TBARS and carbonyl group content was observed in the hippocampus over the entire period of d-gal treatment. In the 8th week of d-gal administration, we also observed reductions in synaptophysin and TAU protein levels in the prefrontal cortex. Thus, d-gal given by oral route caused cognitive impairments which were accompanied by oxidative damage. Therefore, these results indicate that orally administered d-gal can induce the behavioral and neurochemical alterations that are observed in the natural aging process. However, oral d-gal effect in rats deserve further studies to be better described. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    EPA Science Inventory

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  9. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    EPA Science Inventory

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  10. Impairment of extramitochondrial oxidative phosphorylation in mouse rod outer segments by blue light irradiation.

    PubMed

    Calzia, Daniela; Panfoli, Isabella; Heinig, Nora; Schumann, Ulrike; Ader, Marius; Traverso, Carlo Enrico; Funk, Richard H W; Roehlecke, Cora

    2016-06-01

    Exposure to short wavelength light causes increased reactive oxygen intermediates production in the outer retina, particularly in the rod Outer Segments (OS). Consistently, the OS were shown to conduct aerobic ATP production through the ectopic expression of the electron transfer chain complexes I-IV and F1Fo-ATP synthase. These facts prompted us to verify if the oxidative phosphorylation in the OS is implied in the oxidative damage of the blue-light (BL) treated OS, in an organotypic model of mouse retina. Whole mouse eyeball cultures were treated with short wavelength BL (peak at 405 nm, output power 1 mW/cm(2)) for 6 h. Immunogold transmission electron microscopy confirmed the expression of Complex I and F1Fo-ATP synthase in the OS. In situ histochemical assays on unfixed sections showed impairment of respiratory Complexes I and II after BL exposure, both in the OS and IS, utilized as a control. Basal O2 consumption and ATP synthesis were impaired in the OS purified from blue-light irradiated eyeball cultures. Electron transfer capacity between Complex I and II as well as activity of Complexes I and II was decreased in blue-light irradiated purified OS. The severe malfunctioning of the OS aerobic respiratory capacity after 6 h BL treatment may be the consequence of a self-induced damage. BL exposure would cause an initial over-functioning of both the phototransduction and respiratory chain, with reactive oxygen species production. In a self-renewal vicious cycle, membrane and protein oxidative damage, proton leakage and uncoupling, would impair redox chains, perpetuating the damage and causing hypo-metabolism with eventual apoptosis of the rod. Data may shed new light on the rod-driven retinopathies such as Age Related Macular Degeneration, of which blue-light irradiated retina represents a model.

  11. Senescence accelerated mouse strain is sensitive to neurodegeneration induced by mild impairment of oxidative metabolism.

    PubMed

    Zhang, Qipeng; Ding, Hanqing; Li, Wenxia; Fan, Zhiqin; Sun, Anyang; Luo, Jia; Ke, Zun-Ji

    2009-04-06

    Neuronal loss and impairment of oxidative metabolism are frequently observed in aging associated neurodegenerative diseases. Thiamine deficiency (TD) induces the region selective neuronal loss in the brain, which has been used to model neurodegeneration, accompanied by mild impairment of oxidative metabolism. C57BL/6 mice were commonly used animals for TD experiments; however, the individual variations among C57BL/6 mice in response to TD limited the consistence of brain pathology. The senescence accelerated prone 8 (SAMP8) mouse strain exhibits age-related morphological changes in the brain and deficits in learning and memory. In this study, we compared the effects of TD on SAMP8 mice, senescence accelerated resistant 1 (SAMR1) mice and C57BL/6 mice. TD-induced body weight loss in SAMP8 mice was much greater than in SAMR1 and C57BL/6 mice. In addition, earlier and more severe loss of neurons in the submedial thalamic nucleus (SmTN) of the thalamus was detected in the SAMP8 mice. After 8 days of TD (TD8), the loss of NeuN-positive neurons in the SmTN of SAMP8, SAMR1 and C57BL/6 mice was 65%, 50%, and 36%, respectively. TD also caused accumulation of amyloid precursor protein (APP) in the thalamus. After TD10, APP immunoreactivity in the thalamus of SAMP8 was much more intense than that of SAMR1 and C57BL/6 mice. These results suggest that SAMP8 mice are sensitive to TD and therefore offer a useful model for studying aging related neurodegeneration caused by the impairment of oxidative metabolism.

  12. Src-dependent impairment of autophagy by oxidative stress in a mouse model of Duchenne muscular dystrophy

    PubMed Central

    Pal, Rituraj; Palmieri, Michela; Loehr, James A.; Li, Shumin; Abo-Zahrah, Reem; Monroe, Tanner O.; Thakur, Poulami Basu; Sardiello, Marco; Rodney, George G.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a fatal degenerative muscle disease resulting from mutations in the dystrophin gene. Increased oxidative stress and altered Ca2+ homeostasis are hallmarks of dystrophic muscle. While impaired autophagy has recently been implicated in the disease process, the mechanisms underlying the impairment have not been elucidated. Here we show that nicotinamide adenine dinucleotide phosphatase (Nox2)-induced oxidative stress impairs both autophagy and lysosome formation in mdx mice. Persistent activation of Src kinase leads to activation of the autophagy repressor mammalian target of rapamycin (mTOR) via PI3K/Akt phosphorylation. Inhibition of Nox2 or Src kinase reduces oxidative stress and partially rescues the defective autophagy and lysosome biogenesis. Genetic down regulation of Nox2 activity in the mdx mouse decreases ROS production, abrogates defective autophagy and rescues histological abnormalities and contractile impairment. Our data highlight mechanisms underlying the pathogenesis of DMD and identify NADPH oxidase and Src kinase as potential therapeutic targets. PMID:25028121

  13. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection

    PubMed Central

    Richner, Justin M.; Gmyrek, Grzegorz B.; Govero, Jennifer; Tu, Yizheng; van der Windt, Gerritje J. W.; Metcalf, Talibah U.; Haddad, Elias K.; Textor, Johannes; Miller, Mark J.; Diamond, Michael S.

    2015-01-01

    Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV), an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN). Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection. PMID:26204259

  14. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection.

    PubMed

    Richner, Justin M; Gmyrek, Grzegorz B; Govero, Jennifer; Tu, Yizheng; van der Windt, Gerritje J W; Metcalf, Talibah U; Haddad, Elias K; Textor, Johannes; Miller, Mark J; Diamond, Michael S

    2015-07-01

    Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV), an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN). Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection.

  15. KSR2 Mutations Are Associated with Obesity, Insulin Resistance, and Impaired Cellular Fuel Oxidation

    PubMed Central

    Pearce, Laura R.; Atanassova, Neli; Banton, Matthew C.; Bottomley, Bill; van der Klaauw, Agatha A.; Revelli, Jean-Pierre; Hendricks, Audrey; Keogh, Julia M.; Henning, Elana; Doree, Deon; Jeter-Jones, Sabrina; Garg, Sumedha; Bochukova, Elena G.; Bounds, Rebecca; Ashford, Sofie; Gayton, Emma; Hindmarsh, Peter C.; Shield, Julian P.H.; Crowne, Elizabeth; Barford, David; Wareham, Nick J.; O’Rahilly, Stephen; Murphy, Michael P.; Powell, David R.; Barroso, Ines; Farooqi, I. Sadaf

    2013-01-01

    Summary Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEK-ERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes. PaperFlick PMID:24209692

  16. Beyond the redox imbalance: oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease

    PubMed Central

    Covarrubias-Pinto, Adriana; Moll, Pablo; Solís-Maldonado, Macarena; Acuña, Aníbal I.; Riveros, Andrea; Miró, María Paz; Papic, Eduardo; Beltrán, Felipe A.; Cepeda, Carlos; Concha, Ilona I.; Brauchi, Sebastián; Castro, Maite A.

    2016-01-01

    Failure in energy metabolism and oxidative damage are associated with Huntington’s disease (HD). Ascorbic acid released during synaptic activity inhibits use of neuronal glucose, favouring lactate uptake to sustain brain activity. Here, we observe a decreased expression of GLUT3 in STHdhQ111 cells (HD cells) and R6/2 mice (HD mice). Localisation of GLUT3 is decreased at the plasma membrane in HD cells affecting the modulation of glucose uptake by ascorbic acid. An ascorbic acid analogue without antioxidant activity is able to inhibit glucose uptake in HD cells. The impaired modulation of glucose uptake by ascorbic acid is directly related to ROS levels indicating that oxidative stress sequesters the ability of ascorbic acid to modulate glucose utilisation. Therefore, in HD, a decrease in GLUT3 localisation at the plasma membrane would contribute to an altered neuronal glucose uptake during resting periods while redox imbalance should contribute to metabolic failure during synaptic activity. PMID:26456058

  17. Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism.

    PubMed

    Jhala, Shivraj S; Hazell, Alan S

    2011-02-01

    Emerging evidence suggests that thiamine deficiency (TD), the cause of Wernicke's encephalopathy, produces alterations in brain function and structural damage that closely model a number of maladies in which neurodegeneration is a characteristic feature, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, multiple sclerosis, along with alcoholic brain disease, stroke, and traumatic brain injury. Impaired oxidative metabolism in TD due to decreased activity of thiamine-dependent enzymes leads to a multifactorial cascade of events in the brain that include focal decreases in energy status, oxidative stress, lactic acidosis, blood-brain barrier disruption, astrocyte dysfunction, glutamate-mediated excitotoxicity, amyloid deposition, decreased glucose utilization, immediate-early gene induction, and inflammation. This review describes our current understanding of the basis of these abnormal processes in TD, their interrelationships, and why this disorder can be useful for our understanding of how decreased cerebral energy metabolism can give rise to cell death in different neurodegenerative disease states.

  18. KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation.

    PubMed

    Pearce, Laura R; Atanassova, Neli; Banton, Matthew C; Bottomley, Bill; van der Klaauw, Agatha A; Revelli, Jean-Pierre; Hendricks, Audrey; Keogh, Julia M; Henning, Elana; Doree, Deon; Jeter-Jones, Sabrina; Garg, Sumedha; Bochukova, Elena G; Bounds, Rebecca; Ashford, Sofie; Gayton, Emma; Hindmarsh, Peter C; Shield, Julian P H; Crowne, Elizabeth; Barford, David; Wareham, Nick J; O'Rahilly, Stephen; Murphy, Michael P; Powell, David R; Barroso, Ines; Farooqi, I Sadaf

    2013-11-07

    Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEKERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes.

  19. Homocysteine predicts increased NT-pro-BNP through impaired fatty acid oxidation.

    PubMed

    Guéant Rodriguez, R M; Spada, R; Pooya, S; Jeannesson, E; Moreno Garcia, M A; Anello, G; Bosco, P; Elia, M; Romano, A; Alberto, J M; Juillière, Y; Guéant, J L

    2013-08-10

    The deficiency in methyl donors, folate and vitamin B12, increases homocysteine and produces myocardium hypertrophy with impaired mitochondrial fatty acid oxidation and increased BNP, through hypomethylation of peroxisome-proliferator-activated-receptor gamma co-activator-1α, in rat. This may help to understand better the elusive link previously reported between hyperhomocysteinemia and BNP, in human. We investigated therefore the influence of methyl donors on heart mitochondrial fatty acid oxidation and brain natriuretic peptide, in two contrasted populations. Biomarkers of heart disease, of one carbon metabolism and of mitochondrial fatty acid oxidation were assessed in 1020 subjects, including patients undergoing coronarography and ambulatory elderly subjects from OASI cohort. Folate deficit was more frequent in the coronarography population than in the elderly ambulatory volunteers and produced a higher concentration of homocysteine (19.3 ± 6.8 vs. 15.3 ± 5.6, P<0.001). Subjects with homocysteine in the upper quartile (≥ 18 μmol/L) had higher concentrations of NT-pro-BNP (or BNP in ambulatory subjects) and of short chain-, medium chain-, and long chain-acylcarnitines, compared to those in the lower quartile (≤ 12 μmol/L), in both populations (P<0.001). Homocysteine and NT-pro-BNP were positively correlated with short chain-, medium chain-, long chain-acylcarnitines and with acylcarnitine ratios indicative of decreased mitochondrial acyldehydrogenase activities (P<0.001). In multivariate analysis, homocysteine and long chain acylcarnitines were two interacting determinants of NT-pro-BNP, in addition to left ventricular ejection fraction, body mass index, creatinine and folate. This study showed that homocysteine predicts increased NT-pro-BNP (or BNP) through a link with impaired mitochondrial fatty oxidation, in two contrasted populations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Adapting Artworks for People Who Are Blind or Visually Impaired Using Raised Printing

    ERIC Educational Resources Information Center

    Krivec, Tjaša; Muck, Tadeja; Germadnik, Rolanda Fugger; Majnaric, Igor; Golob, Gorazd

    2014-01-01

    Everyone has the right to freely participate in the cultural life of the community (United Nations, 2012). In Europe and around the globe, many efforts have been made in order to include people with visual impairments and blindness into the cultural life. The objects and artifacts exhibited in museums for people with visual impairments are…

  1. Adapting Artworks for People Who Are Blind or Visually Impaired Using Raised Printing

    ERIC Educational Resources Information Center

    Krivec, Tjaša; Muck, Tadeja; Germadnik, Rolanda Fugger; Majnaric, Igor; Golob, Gorazd

    2014-01-01

    Everyone has the right to freely participate in the cultural life of the community (United Nations, 2012). In Europe and around the globe, many efforts have been made in order to include people with visual impairments and blindness into the cultural life. The objects and artifacts exhibited in museums for people with visual impairments are…

  2. Adaptation of Psychological Assessment Tools for Administration by Blind and Visually Impaired Psychologists and Trainees.

    ERIC Educational Resources Information Center

    Keller, Richard M.

    This paper focuses on challenges to psychologists and psychology graduate students who are blind or visually impaired in the administration and scoring of various psychological tests. Organized by specific tests, the paper highlights those aspects of testing which pose particular difficulty to testers with visual impairments and also describes…

  3. Ischemia Reperfusion Unveils Impaired Capacity of Older Adults to Restrain Oxidative Insult

    PubMed Central

    Davies, Sean S.; Traustadóttir, Tinna; Stock, Anthoney A.; Ye, Fei; Shyr, Yu; Harman, S. Mitchell; Roberts, L. Jackson

    2009-01-01

    Age independently predicts poor outcome in a variety of medical settings including sepsis, trauma, severe burns, and surgery. Since these conditions are associated with oxidative stress, we hypothesized that the capacity to constrain oxidative insult diminishes with age, leading to more extensive oxidative damage during trauma. To test this hypothesis, we used supra-systolic inflation of an arm blood pressure cuff to safely induce localized forearm ischemia/reperfusion (I/R) and quantified plasma F2-isoprostane (IsoP) levels in serial blood samples. Prior to I/R, IsoP levels were similar in young (20-33 yrs) and older adults (62-81 yrs). After I/R challenge, the magnitude and duration of increased IsoP levels was significantly greater in older adults. Because aging is associated with declining levels of sex hormones that contribute to regulation of antioxidant enzyme expression, we then examined the response to I/R in older women receiving hormone replacement therapy, and found these women did not manifest the amplified IsoP response found in untreated older women. These finding demonstrate that aging impairs the ability to restrain oxidative damage after an acute insult, which may contribute to the increased vulnerability of older adults to traumatic conditions, and establishes a useful method to identify effective interventions to ameliorate this deficiency. PMID:19596063

  4. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes

    PubMed Central

    Baraibar, Martín A.; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina; Bulteau, Anne-Laure; Prip-Buus, Carina; Butler-Browne, Gillian; Friguet, Bertrand

    2016-01-01

    Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging are not completely understood. In the present study we have addressed the potential impact of oxidatively modified proteins on the altered metabolism of senescent human satellite cells. By using a modified proteomics analysis we have found that proteins involved in protein quality control and glycolytic enzymes are the main targets of oxidation (carbonylation) and modification with advanced glycation/lipid peroxidation end products during the replicative senescence of satellite cells. Inactivation of the proteasome appeared to be a likely contributor to the accumulation of such damaged proteins. Metabolic and functional analyses revealed an impaired glucose metabolism in senescent cells. A metabolic shift leading to increased mobilization of non-carbohydrate substrates such as branched chain amino acids or long chain fatty acids was observed. Increased levels of acyl-carnitines indicated an increased turnover of storage and membrane lipids for energy production. Taken together, these results support a link between oxidative protein modifications and the altered cellular metabolism associated with the senescent phenotype of human myoblasts. PMID:27922824

  5. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice.

    PubMed

    Al-Amin, Md Mamun; Reza, Hasan Mahmud; Saadi, Hasan Mahmud; Mahmud, Waich; Ibrahim, Abdirahman Adam; Alam, Musrura Mefta; Kabir, Nadia; Saifullah, A R M; Tropa, Sarjana Tarannum; Quddus, A H M Ruhul

    2016-04-15

    Aluminum chloride induces neurodegenerative disease in animal model. Evidence suggests that aluminum intake results in the activation of glial cells and generation of reactive oxygen species. By contrast, astaxanthin is an antioxidant having potential neuroprotective activity. In this study, we investigate the effect of astaxanthin on aluminum chloride-exposed behavioral brain function and neuronal oxidative stress (OS). Male Swiss albino mice (4 months old) were divided into 4 groups: (i) control (distilled water), (ii) aluminum chloride, (iii) astaxanthin+aluminum chloride, and (iv) astaxanthin. Two behavioral tests; radial arm maze and open field test were conducted, and OS markers were assayed from the brain and liver tissues following 42 days of treatment. Aluminum exposed group showed a significant reduction in spatial memory performance and anxiety-like behavior. Moreover, aluminum group exhibited a marked deterioration of oxidative markers; lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH) and advanced oxidation of protein products (AOPP) in the brain. To the contrary, co-administration of astaxanthin and aluminum has shown improved spatial memory, locomotor activity, and OS. These results indicate that astaxanthin improves aluminum-induced impaired memory performances presumably by the reduction of OS in the distinct brain regions. We suggest a future study to determine the underlying mechanism of astaxanthin in improving aluminum-exposed behavioral deficits. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes.

    PubMed

    Baraibar, Martín A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina; Bulteau, Anne-Laure; Prip-Buus, Carina; Butler-Browne, Gillian; Friguet, Bertrand

    2016-12-04

    Accumulation of oxidized proteins is a hallmark of cellular and organismal aging. Adult muscle stem cell (or satellite cell) replication and differentiation is compromised with age contributing to sarcopenia. However, the molecular events related to satellite cell dysfunction during aging are not completely understood. In the present study we have addressed the potential impact of oxidatively modified proteins on the altered metabolism of senescent human satellite cells. By using a modified proteomics analysis we have found that proteins involved in protein quality control and glycolytic enzymes are the main targets of oxidation (carbonylation) and modification with advanced glycation/lipid peroxidation end products during the replicative senescence of satellite cells. Inactivation of the proteasome appeared to be a likely contributor to the accumulation of such damaged proteins. Metabolic and functional analyses revealed an impaired glucose metabolism in senescent cells. A metabolic shift leading to increased mobilization of non-carbohydrate substrates such as branched chain amino acids or long chain fatty acids was observed. Increased levels of acyl-carnitines indicated an increased turnover of storage and membrane lipids for energy production. Taken together, these results support a link between oxidative protein modifications and the altered cellular metabolism associated with the senescent phenotype of human myoblasts.

  7. Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4

    PubMed Central

    Dumitrescu, Cristian; Biondi, Roberto; Xia, Yong; Cardounel, Arturo J.; Druhan, Lawrence J.; Ambrosio, Giuseppe; Zweier, Jay L.

    2007-01-01

    Coronary vasodilation is impaired in the postischemic heart with a loss of endothelial nitric oxide synthase (eNOS) activity, but the mechanisms underlying ischemia-induced eNOS dysfunction are not understood. For nitric oxide (NO) synthesis, eNOS requires the redox-sensitive cofactor tetrahydrobiopterin (BH4); however, the role of BH4 in ischemia-induced endothelial dysfunction remains unknown. Therefore, isolated rat hearts were subjected to varying durations of ischemia, and the alterations in NOS-dependent vasodilation were measured and correlated with assays of eNOS activity and cardiac BH4 concentrations. Ischemia time-dependently decreased cardiac BH4 content with 85, 95, or 97% irreversible degradation after 30, 45, or 60 min of ischemia, respectively. Paralleling the decreases in BH4, reductions of eNOS activity were seen of 58, 86, or 92%, and NOS-derived superoxide production was greatly increased. Addition of 10 μM BH4 enhanced eNOS activity in nonischemic hearts and partially restored activity after ischemia. It also suppressed NOS-derived superoxide production. Impaired coronary flow during postischemic reperfusion was improved by BH4 infusion. Thus, BH4 depletion contributes to postischemic eNOS dysfunction, and BH4 treatment is effective in partial restoration of endothelium-dependent coronary flow. Supplementation of BH4 may therefore be an important therapeutic approach to reverse endothelial dysfunction in postischemic tissues. PMID:17848522

  8. Vanillic acid attenuates Aβ1-42-induced oxidative stress and cognitive impairment in mice

    PubMed Central

    Amin, Faiz Ul; Shah, Shahid Ali; Kim, Myeong Ok

    2017-01-01

    Increasing evidence demonstrates that β-amyloid (Aβ) elicits oxidative stress, which contributes to the pathogenesis and disease progression of Alzheimer’s disease (AD). The aims of the present study were to determine and explore the antioxidant nature and potential mechanism of vanillic acid (VA) in Aβ1-42-induced oxidative stress and neuroinflammation mediated cognitive impairment in mice. An intracerebroventricular (i.c.v.) injection of Aβ1-42 into the mouse brain triggered increased reactive oxygen species (ROS) levels, neuroinflammation, synaptic deficits, memory impairment, and neurodegeneration. In contrast, the i.p. (intraperitoneal) administration of VA (30 mg/kg, for 3 weeks) after Aβ1-42-injection enhanced glutathione levels (GSH) and abrogated ROS generation accompanied by an induction of the endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) via the activation of Akt and glycogen synthase kinase 3β (GSK-3β) in the brain mice. Additionally, VA treatment decreased Aβ1-42-induced neuronal apoptosis and neuroinflammation and improved synaptic and cognitive deficits. Moreover, VA was nontoxic to HT22 cells and increased cell viability after Aβ1-42 exposure. To our knowledge, this study is the first to reveal the neuroprotective effect of VA against Aβ1-42-induced neurotoxicity. Our findings demonstrate that VA could potentially serve as a novel, promising, and accessible neuroprotective agent against progressive neurodegenerative diseases such as AD. PMID:28098243

  9. Pathogenesis and treatment of the cardiorenal syndrome: Implications of L-arginine-nitric oxide pathway impairment.

    PubMed

    Rajapakse, Niwanthi W; Nanayakkara, Shane; Kaye, David M

    2015-10-01

    A highly complex interplay exists between the heart and kidney in the setting of both normal and abnormal physiology. In the context of heart failure, a pathophysiological condition termed the cardiorenal syndrome (CRS) exists whereby dysfunction in the heart or kidney can accelerate pathology in the other organ. The mechanisms that underpin CRS are complex, and include neuro-hormonal activation, oxidative stress and endothelial dysfunction. The endothelium plays a central role in the regulation of both cardiac and renal function, and as such impairments in endothelial function can lead to dysfunction of both these organs. In particular, reduced bioavailability of nitric oxide (NO) is a key pathophysiologic component of endothelial dysfunction. The synthesis of NO by the endothelium is critically dependent on the plasmalemmal transport of its substrate, L-arginine, via the cationic amino acid transporter-1 (CAT1). Impaired L-arginine-NO pathway activity has been demonstrated individually in heart and renal failure. Recent findings suggest abnormalities of the L-arginine-NO pathway also play a role in the pathogenesis of CRS and thus this pathway may represent a potential new target for the treatment of heart and renal failure.

  10. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet.

    PubMed

    Gao, Xiang; Liu, Xiaofang; Xu, Jie; Xue, Changhu; Xue, Yong; Wang, Yuming

    2014-10-01

    Trimethylamine N-oxide (TMAO) is an oxidation product of trimethylamine (TMA) and is present in many aquatic foods. Here, we investigated the effects of TMAO on glucose tolerance in high fat diet (HFD)-fed mice. Male C57BL/6 mice were randomly assigned to the control, high fat (HF), and TMAO groups. The HF group was fed a diet containing 25% fat, and the TMAO group was fed the HFD plus 0.2% TMAO for 4 weeks. After 3 weeks of feeding, oral glucose tolerance tests were performed. Dietary TMAO increased fasting insulin levels and homeostasis model assessment-estimated insulin resistance (HOMA-IR) and exacerbated the impaired glucose tolerance in HFD-fed mice. These effects were associated with the expression of genes related to the insulin signal pathway, glycogen synthesis, gluconeogenesis and glucose transport in liver. mRNA levels of the pro-inflammatory cytokine MCP-1 increased significantly and of the anti-inflammatory cytokine IL-10 greatly decreased in adipose tissue. Our results suggest that dietary TMAO exacerbates impaired glucose tolerance, obstructs the hepatic insulin signaling pathway, and causes adipose tissue inflammation in mice fed a high fat diet.

  11. The Role of Oxidative Stress in Etiopathogenesis of Chemotherapy Induced Cognitive Impairment (CICI)-“Chemobrain”

    PubMed Central

    Gaman, Amelia Maria; Uzoni, Adriana; Popa-Wagner, Aurel; Andrei, Anghel; Petcu, Eugen-Bogdan

    2016-01-01

    Chemobrain or chemotherapy induced cognitive impairment (CICI) represents a new clinical syndrome characterised by memory, learning and motor function impairment. As numerous patients with cancer are long-term survivors, CICI represent a significant factor which may interfere with their quality of life. However, this entity CICI must be distinguished from other cognitive syndromes and addressed accordingly. At the present time, experimental and clinical research suggests that CICI could be induced by numerous factors including oxidative stress. This type of CNS injury has been previously described in cancer patients treated with common anti-neoplastic drugs such as doxorubicine, carmustine, methotrexate and cyclophosphamide. It seems that all these pharmacological factors promote neuronal death through a final common pathway represented by TNF alpha (tumour necrosis factor). However, as cancer in general is diagnosed more commonly in the aging population, the elderly oncological patient must be treated with great care since aging per se is also impacted by oxidative stress and potentiually by TNF alpha deleterious action on brain parenchyma. In this context, some patients may develop cognitive dysfunction well before the appearance of CICI. In addition, chemotherapy may worsen their cognitive function. Therefore, at the present time, there is an acute need for development of effective therapeutic methods to prevent CICI as well as new methods of early CICI diagnosis. PMID:27330845

  12. Methamphetamine causes mitrochondrial oxidative damage in human T lymphocytes leading to functional impairment.

    PubMed

    Potula, Raghava; Hawkins, Brian J; Cenna, Jonathan M; Fan, Shongshan; Dykstra, Holly; Ramirez, Servio H; Morsey, Brenda; Brodie, Michael R; Persidsky, Yuri

    2010-09-01

    Methamphetamine (METH) abuse is known to be associated with an inordinate rate of infections. Although many studies have described the association of METH exposure and immunosuppression, so far the underlying mechanism still remains elusive. In this study, we present evidence that METH exposure resulted in mitochondrial oxidative damage and caused dysfunction of primary human T cells. METH treatment of T lymphocytes led to a rise in intracellular calcium levels that enhanced the generation of reactive oxygen species. TCR-CD28 linked calcium mobilization and subsequent uptake by mitochondria in METH-treated T cells correlated with an increase in mitochondrion-derived superoxide. Exposure to METH-induced mitochondrial dysfunction in the form of marked decrease in mitochondrial membrane potential, increased mitochondrial mass, enhanced protein nitrosylation and diminished protein levels of complexes I, III, and IV of the electron transport chain. These changes paralleled reduced IL-2 secretion and T cell proliferative responses after TCR-CD28 stimulation indicating impaired T cell function. Furthermore, antioxidants attenuated METH-induced mitochondrial damage by preserving the protein levels of mitochondrial complexes I, III, and IV. Altogether, our data indicate that METH can cause T cell dysfunction via induction of oxidative stress and mitochondrial injury as underlying mechanism of immune impairment secondary to METH abuse.

  13. High concentrations of stavudine impair fatty acid oxidation without depleting mitochondrial DNA in cultured rat hepatocytes.

    PubMed

    Igoudjil, Anissa; Massart, Julie; Begriche, Karima; Descatoire, Véronique; Robin, Marie-Anne; Fromenty, Bernard

    2008-06-01

    The antiretroviral nucleoside reverse-transcriptase inhibitor (NRTI) stavudine (d4T) can induce mild to severe liver injuries such as steatosis (i.e. triglyceride accumulation), steatohepatitis and liver failure. NRTI-induced toxicity has been ascribed to the inhibition of mitochondrial DNA (mtDNA) replication causing mtDNA depletion and respiratory chain dysfunction. This can secondarily impair the tricarboxylic acid cycle and fatty acid oxidation (FAO), thus leading to lactic acidosis and hepatic steatosis. However, NRTIs could also impair mitochondrial function and induce hepatic steatosis through other mechanisms. In this study, we sought to determine whether d4T could inhibit mitochondrial FAO and induce triglyceride accumulation through a mtDNA-independent mechanism. Since human tumoral and non-tumoral hepatic cell lines were unable to efficiently oxidize palmitic acid, the effects of d4T on mitochondrial FAO were assessed on cultured rat hepatocytes. Our results showed that 750 microM of d4T significantly inhibited palmitic acid oxidation after 48 or 72 h of culture, without inducing cell death. Importantly, high concentrations of zidovudine and zalcitabine (two other NRTIs that can induce hepatic steatosis), or beta-aminoisobutyric acid (a d4T metabolite), did not impair FAO in rat hepatocytes. D4T-induced FAO inhibition was observed without mtDNA depletion and lactate production, and was fully prevented with l-carnitine or clofibrate coincubation. l-carnitine also prevented the accretion of neutral lipids within rat hepatocytes. High concentrations of d4T were unable to inhibit FAO on freshly isolated liver mitochondria. Moreover, a microarray analysis was performed to clarify the mechanism whereby d4T can inhibit mitochondrial FAO and induce triglyceride accumulation in rat hepatocytes. The microarray data, confirmed by quantitative real-time PCR analysis, showed that d4T increased the expression of sterol regulatory element-binding protein-1c (SREBP1c

  14. Diabetes impairs synaptic plasticity in the superior cervical ganglion: possible role for BDNF and oxidative stress.

    PubMed

    Alzoubi, K H; Khabour, O F; Alhaidar, I A; Aleisa, A M; Alkadhi, K A

    2013-11-01

    The majority of diabetics develop serious disorders of the autonomic nervous system; however, there is no clear understanding on the causes of these complications. In this study, we examined the effect of streptozocin (STZ)-induced diabetes on activity-dependent synaptic plasticity, associated levels of brain-derived neurotrophic factor (BDNF) and antioxidant biomarkers in the rat sympathetic superior cervical ganglion. Diabetes (STZ-induced) was achieved by a single intraperitoneal injection of streptozocin (55 mg/kg).Compound action potentials were recorded from isolated ganglia before (basal) and after repetitive stimulation, or trains of paired pulses to express ganglionic long-term potentiation (gLTP) or long-term depression (gLTD). The input/output curves of ganglia from STZ-treated animals showed a marked rightward shift along most stimulus intensities, compared to those of ganglia from control animals, indicating impaired basal synaptic transmission in ganglia from STZ-induced diabetic animals. Repetitive stimulation induced robust gLTP and gLTD in ganglia isolated from control animals; the same protocols failed to induce gLTP or gLTD in ganglia from STZ-induced diabetic animals, indicating impairment of activity-dependent synaptic plasticity in these animals. Molecular analysis revealed significant reduction in the levels of BDNF and the ratio of glutathione/oxidized glutathione. Additionally, the activity of glutathione peroxidase, glutathione reductase, catalase, and the levels of thiobarbituric acid-reactive substances were increased in ganglia from STZ-treated animals. In conclusion, impaired basal synaptic transmission and synaptic plasticity are associated with reduced BDNF and altered oxidative stress biomarkers in the sympathetic ganglia from STZ-induced diabetic animals, suggesting a possible correlation of these factors with the manifestations of STZ-induced diabetes in the peripheral nervous system.

  15. The ameliorative effects of sesamol against seizures, cognitive impairment and oxidative stress in the experimental model of epilepsy

    PubMed Central

    Hassanzadeh, Parichehr; Arbabi, Elham; Rostami, Fatemeh

    2014-01-01

    Objective(s): A growing interest has recently been attracted towards the identification of plant-based medications including those with protective effects against cognitive impairment. Sesamol has shown promising antioxidant and neuroprotective effects, therefore, we aimed to evaluate its therapeutic potential in epilepsy which is commonly associated with oxidative stress and cognitive impairment. Materials and Methods: Male Wistar rats received pentylenetetrazole (PTZ) (30 mg/kg, IP) once every other day until the development of kindling, i.e., the occurrence of stage 5 of seizures for three consecutive trials. After the completion of kindling procedure, behavioural tests including elevated plus maze and passive avoidance were performed in order to assess learning and memory. Oxidative stress was assessed by estimation of lipid peroxidation and reduced glutathione. The effects of pretreatment with sesamol (10, 20, and 30 mg/kg, IP) against PTZ-induced seizures, cognitive impairment and oxidative stress were investigated. Results: 32.45 ± 1.86 days after treatment with PTZ, kindling was developed that was associated with myoclonic jerks and generalized tonic-clonic seizures. Moreover, PTZ kindling induced a remarkable cognitive impairment and oxidative stress. Sesamol (30 mg/kg) significantly delayed the development of kindling and prevented seizure-induced cognitive impairment and oxidative stress. Conclusion: Sesamol exerts ameliorative effects in the experimental model of epilepsy. This phytochemical may be considered as a beneficial adjuvant for antiepileptic drugs. PMID:24711892

  16. Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications

    PubMed Central

    Ilc, Tina; Parage, Claire; Boachon, Benoît; Navrot, Nicolas; Werck-Reichhart, Danièle

    2016-01-01

    Plants use monoterpenols as precursors for the production of functionally and structurally diverse molecules, which are key players in interactions with other organisms such as pollinators, flower visitors, herbivores, fungal, or microbial pathogens. For humans, many of these monoterpenol derivatives are economically important because of their pharmaceutical, nutraceutical, flavor, or fragrance applications. The biosynthesis of these derivatives is to a large extent catalyzed by enzymes from the cytochrome P450 superfamily. Here we review the knowledge on monoterpenol oxidative metabolism in plants with special focus on recent elucidations of oxidation steps leading to diverse linalool and geraniol derivatives. We evaluate the common features between oxidation pathways of these two monoterpenols, such as involvement of the CYP76 family, and highlight the differences. Finally, we discuss the missing steps and other open questions in the biosynthesis of oxygenated monoterpenol derivatives. PMID:27200002

  17. Leucine-enriched protein feeding does not impair exercise-induced free fatty acid availability and lipid oxidation: beneficial implications for training in carbohydrate-restricted states.

    PubMed

    Impey, Samuel G; Smith, Dominic; Robinson, Amy L; Owens, Daniel J; Bartlett, Jonathan D; Smith, Kenneth; Limb, Marie; Tang, Jonathan; Fraser, William D; Close, Graeme L; Morton, James P

    2015-02-01

    Given that the enhanced oxidative adaptations observed when training in carbohydrate (CHO)-restricted states is potentially regulated through free fatty acid (FFA)-mediated signalling and that leucine-rich protein elevates muscle protein synthesis, the present study aimed to test the hypothesis that leucine-enriched protein feeding enhances circulating leucine concentration but does not impair FFA availability or whole body lipid oxidation during exercise. Nine males cycled for 2 h at 70% VO2peak when fasted (PLACEBO) or having consumed a whey protein solution (WHEY) or a leucine-enriched whey protein gel (GEL), administered as 22 g 1 h pre-exercise, 11 g/h during and 22 g 30 min post-exercise. Total leucine administration was 14.4 g and 6.3 in GEL and WHEY, respectively. Mean plasma leucine concentrations were elevated in GEL (P = 0.001) compared with WHEY and PLACEBO (375 ± 100, 272 ± 51, 146 ± 14 µmol L(-1), respectively). No differences (P = 0.153) in plasma FFA (WHEY 0.53 ± 0.30, GEL 0.45 ± 0.25, PLACEBO 0.65 ± 0.30, mmol L(-1)) or whole body lipid oxidation during exercise (WHEY 0.37 ± 0.26, GEL 0.36 ± 0.24, PLACEBO 0.34 ± 0.24 g/min) were apparent between trials, despite elevated (P = 0.001) insulin in WHEY and GEL compared with PLACEBO (38 ± 16, 35 ± 16, 22 ± 11 pmol L(-1), respectively). We conclude that leucine-enriched protein feeding does not impair FFA availability or whole body lipid oxidation during exercise, thus having practical applications for athletes who deliberately train in CHO-restricted states to promote skeletal muscle adaptations.

  18. Plant-Adapted Escherichia coli Show Increased Lettuce Colonizing Ability, Resistance to Oxidative Stress and Chemotactic Response

    PubMed Central

    Dublan, Maria de los Angeles; Ortiz-Marquez, Juan Cesar Federico; Lett, Lina; Curatti, Leonardo

    2014-01-01

    Background Escherichia coli is a widespread gut commensal and often a versatile pathogen of public health concern. E. coli are also frequently found in different environments and/or alternative secondary hosts, such as plant tissues. The lifestyle of E. coli in plants is poorly understood and has potential implications for food safety. Methods/Principal Findings This work shows that a human commensal strain of E. coli K12 readily colonizes lettuce seedlings and produces large microcolony-like cell aggregates in leaves, especially in young leaves, in proximity to the vascular tissue. Our observations strongly suggest that those cell aggregates arise from multiplication of single bacterial cells that reach those spots. We showed that E. coli isolated from colonized leaves progressively colonize lettuce seedlings to higher titers, suggesting a fast adaptation process. E. coli cells isolated from leaves presented a dramatic rise in tolerance to oxidative stress and became more chemotactic responsive towards lettuce leaf extracts. Mutant strains impaired in their chemotactic response were less efficient lettuce colonizers than the chemotactic isogenic strain. However, acclimation to oxidative stress and/or minimal medium alone failed to prime E. coli cells for enhanced lettuce colonization efficiency. Conclusion/Significance These findings help to understand the physiological adaptation during the alternative lifestyle of E. coli in/on plant tissues. PMID:25313845

  19. Plant-adapted Escherichia coli show increased lettuce colonizing ability, resistance to oxidative stress and chemotactic response.

    PubMed

    Dublan, Maria de los Angeles; Ortiz-Marquez, Juan Cesar Federico; Lett, Lina; Curatti, Leonardo

    2014-01-01

    Escherichia coli is a widespread gut commensal and often a versatile pathogen of public health concern. E. coli are also frequently found in different environments and/or alternative secondary hosts, such as plant tissues. The lifestyle of E. coli in plants is poorly understood and has potential implications for food safety. This work shows that a human commensal strain of E. coli K12 readily colonizes lettuce seedlings and produces large microcolony-like cell aggregates in leaves, especially in young leaves, in proximity to the vascular tissue. Our observations strongly suggest that those cell aggregates arise from multiplication of single bacterial cells that reach those spots. We showed that E. coli isolated from colonized leaves progressively colonize lettuce seedlings to higher titers, suggesting a fast adaptation process. E. coli cells isolated from leaves presented a dramatic rise in tolerance to oxidative stress and became more chemotactic responsive towards lettuce leaf extracts. Mutant strains impaired in their chemotactic response were less efficient lettuce colonizers than the chemotactic isogenic strain. However, acclimation to oxidative stress and/or minimal medium alone failed to prime E. coli cells for enhanced lettuce colonization efficiency. These findings help to understand the physiological adaptation during the alternative lifestyle of E. coli in/on plant tissues.

  20. Increase in oxidative stress and mitochondrial impairment in hypothalamus of streptozotocin treated diabetic rat: Antioxidative effect of Withania somnifera.

    PubMed

    Parihar, P; Shetty, R; Ghafourifar, P; Parihar, M S

    2016-01-22

    Hypothalamus, the primary brain region for glucose sensing, is severely affected by oxidative stress in diabetes mellitus. Oxidative stress in this region of brain may cause severe impairment in neuronal metabolic functions. Mitochondria are prominent targets of oxidative stress and the combination of increased oxidative stress and mitochondrial dysfunctions may further decline hypothalamic neuronal functions. In the present study we examined the oxidative damage response, antioxidative responses and mitochondrial membrane permeability transition in hypothalamus of streptozotocin-treated diabetic rats. Our results show that streptozotocin significantly increases hypothalamic lipid peroxidation, protein carbonyl content while glutathione peroxidase and reduced glutathione were declined. Mitochondrial impairment marked by an increase in mitochondrial membrane permeabilization was seen following streptozotocin treatment in the hypothalamus. The oral administration of Withania somnifera root extract stabilized mitochondrial functions and prevented oxidative damage in the hypothalamus of diabetic rat. These findings suggest an increase in the oxidative stress and decline in antioxidative responses in the hypothalamus of streptozotocin treated diabetic rats. Withania somnifera root extract was found useful in reducing oxidative stress and mitochondrial impairment in hypothalamus of diabetic rat.

  1. Resident microglia from adult mice are refractory to nitric oxide-inducing stimuli due to impaired NOS2 gene expression.

    PubMed

    Brannan, Courtney A; Roberts, Margo R

    2004-11-01

    Microglia are the immunoregulatory cells of the central nervous system (CNS) and share many characteristics with resident macrophages in extracerebral tissues. Nitric oxide (NO) is secreted by macrophages following induction of the NO synthase gene NOS2 by stimuli elicited during a T-cell response and/or by microbial products. NO regulates both innate and adaptive immune responses, such as killing intracellular pathogens and inhibiting T-cell proliferation. Regulation of NO production by microglia, however, is poorly understood. We find that microglia from healthy adult mice produce negligible amounts of NO compared with resident macrophages during restimulation of peptide-specific CD8 T cells, and therefore cannot block T-cell proliferation. The impaired NO response extends to exogenous NOS2-inducing stimuli, including cytokines, CD40 ligation, and lipopolysaccharide. In contrast, microglia produce proinflammatory cytokines in response to these same stimuli, and therefore possess a relatively selective block in NO production. We go on to show that resident microglia fail to produce detectable levels of either the NOS2 enzyme or NOS2 RNA in response to NO-inducing stimuli. We therefore propose that microglia in the healthy adult brain exist in an "NO-incompetent" state in which NO production is blocked at the level of NOS2 RNA. The inability of resident microglia in the healthy CNS to produce NO may allow these immunoregulatory cells to modulate immune processes temporally, and may serve to protect the CNS from irreparable damage at the onset of infection or injury.

  2. Response to photo-oxidative stress of Pseudomonas aeruginosa PAO1 mutants impaired in different functions.

    PubMed

    Orlandi, Viviana Teresa; Bolognese, Fabrizio; Martegani, Eleonora; Cantaluppi, Vincenzo; Medana, Claudio; Barbieri, Paola

    2017-10-12

    Clinicians often have to deal with infections that are difficult to control because they are caused by superbugs resistant to many antibiotics. Alternatives to antibiotic treatment include antimicrobial photodynamic therapy (aPDT). The photodynamic process causes bacterial death, inducing oxidative stress through the photoactivation of photosensitizer molecules in the presence of oxygen. No PDT-resistant bacteria have been selected to date, thus the response to photo-oxidative stress in non-phototrophic bacteria needs further investigation. The opportunistic pathogen Pseudomonas aeruginosa, in particular, has been shown to be more tolerant to PDT than other micro-organisms. In order to find any genetic determinants involved in PDT-tolerance, a panel of transposon mutants of P. aeruginosa PAO1 involved in the quorum sensing signalling system and membrane cytoplasmic transport were photoinactivated as part of this study. Two pseudomonas quinolone signalling (PQS) knock-out mutants, pqsH(-) and pqsC(-), were as PDT-sensitive as the PAO1 wild-type strains. Two PQS hyperproducer variants, pqsA(-) and rsaL(-), were shown to be more tolerant to photo-oxidative stress than the wild-type strain. In the pqsA(-) mutant, the hyperpigmentation due to the presence of phenazines could protect cells against PDT stress, while in rsaL(-) no pigmentation was detectable. Furthermore, a mutant impaired in an ATP-binding cassette transport involved in maintaining the asymmetry of the outer membrane was significantly more tolerant to photo-oxidative stress than the wild-type strain. These observations support the involvement of quorum sensing and the importance of the bacterial cell envelope when dealing with photo-oxidative stress induced by photodynamic treatment.

  3. Selective response of various brain cell types during neurodegeneration induced by mild impairment of oxidative metabolism.

    PubMed

    Ke, Zun-Ji; Gibson, Gary E

    2004-01-01

    Age-related neurodegenerative diseases are characterized by selective neuron loss, glial activation, inflammation and abnormalities in oxidative metabolism. Thiamine deficiency (TD) is a model of neurodegeneration induced by impairment of oxidative metabolism. TD produces a time-dependent, selective neuronal death in specific brain regions, while other cell types are either activated or unaffected. TD-induced neurodegeneration occurs first in a small, well-defined brain region, the submedial thalamic nucleus (SmTN). This discrete localization permits careful analysis of the relationship between neuronal loss and the response of other cell types. The temporal analysis of the changes in the region in combination with the use of transgenic mice permits testing of proposed mechanisms of how the interaction of neurons with other cell types produces neurodegeneration. Loss of neurons and elevation in markers of neurodegeneration are accompanied by changes in microglia including increased redox active iron, the induction of nitric oxide synthase (NOS) and hemeoxygenase-1, a marker of oxidative stress. Endothelial cells also show changes in early stages of TD including induction of intracellular adhesion molecule-1 (ICAM-1) and endothelial NOS. The number of degranulating mast cells also increases in early stages of TD. Alterations in astrocytes and neutrophils occur at later stages of TD. Studies with transgenic knockouts indicate that the endothelial cell changes are particularly important. We hypothesize that TD-induced abnormalities in oxidative metabolism promote release of neuronal inflammatory signals that activate microglia, astrocytes and endothelial cells. Although at early stages the responses of non-neuronal cells may be neuroprotective, at late phases they lead to entry of peripheral inflammatory cells into the brain and promote neurodegeneration.

  4. Adaptive Blood Glucose Monitoring and Insulin Measurement Devices for Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Petzinger, R. A.

    1993-01-01

    This article describes devices that people with visual impairments and diabetes can use to monitor blood glucose levels and measure insulin. A table lists devices, their manufacturers (including address and telephone number), and comments about the devices. (DB)

  5. Adaptive Blood Glucose Monitoring and Insulin Measurement Devices for Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Petzinger, R. A.

    1993-01-01

    This article describes devices that people with visual impairments and diabetes can use to monitor blood glucose levels and measure insulin. A table lists devices, their manufacturers (including address and telephone number), and comments about the devices. (DB)

  6. The Adaptive Response to Intestinal Oxidative Stress in Mammalian Hibernation

    DTIC Science & Technology

    2007-11-02

    signaling pathways that minimize oxidative damage to sensitive tissues like the gut. Aim 1: Effect of hibernation on intestinal lipid peroxidation ...in gut mucosa during the hibernation season, indicating increased lipid peroxidation . Conjugated dienes are intermediate compounds produced by... peroxidation of polyunsaturated fatty acids (PUFAs). Levels of malondialdehyde, an end product of lipid peroxidation , estimate the amount of lipid

  7. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women.

    PubMed

    Brownlie, Thomas; Utermohlen, Virginia; Hinton, Pamela S; Haas, Jere D

    2004-03-01

    We previously showed that iron supplementation significantly improves iron status and maximal work capacity in previously untrained, marginally iron-deficient women with a baseline serum transferrin receptor concentration > 8.0 mg/L. However, the effect of transferrin receptor status on adaptation in endurance capacity after aerobic training in these subjects has not been fully explored. Our objective was to examine the effect of baseline serum transferrin receptor status on adaptations in endurance capacity. Forty-one untrained, iron-depleted, nonanemic women were randomly assigned to receive either 100 mg FeSO(4) or a placebo for 6 wk in a double-blind trial. All subjects trained on cycle ergometers 5 d/wk for the last 4 wk of the study. Endurance capacity was assessed at baseline and after treatment by using a 15-km time trial conducted on a cycle ergometer. Significant treatment effects were observed for time to complete the 15-km time trial, work rate, and percentage of maximal oxygen uptake in subjects with a baseline serum transferrin receptor concentration > 8.0 mg/L. No significant treatment effects were observed in subjects with a normal baseline transferrin receptor concentration. Our findings suggest that, in the presence of overt tissue iron deficiency, iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. This impairment can be corrected with iron supplementation.

  8. Ketones prevent oxidative impairment of hippocampal synaptic integrity through KATP channels.

    PubMed

    Kim, Do Young; Abdelwahab, Mohammed G; Lee, Soo Han; O'Neill, Derek; Thompson, Roger J; Duff, Henry J; Sullivan, Patrick G; Rho, Jong M

    2015-01-01

    Dietary and metabolic therapies are increasingly being considered for a variety of neurological disorders, based in part on growing evidence for the neuroprotective properties of the ketogenic diet (KD) and ketones. Earlier, we demonstrated that ketones afford hippocampal synaptic protection against exogenous oxidative stress, but the mechanisms underlying these actions remain unclear. Recent studies have shown that ketones may modulate neuronal firing through interactions with ATP-sensitive potassium (KATP) channels. Here, we used a combination of electrophysiological, pharmacological, and biochemical assays to determine whether hippocampal synaptic protection by ketones is a consequence of KATP channel activation. Ketones dose-dependently reversed oxidative impairment of hippocampal synaptic integrity, neuronal viability, and bioenergetic capacity, and this action was mirrored by the KATP channel activator diazoxide. Inhibition of KATP channels reversed ketone-evoked hippocampal protection, and genetic ablation of the inwardly rectifying K+ channel subunit Kir6.2, a critical component of KATP channels, partially negated the synaptic protection afforded by ketones. This partial protection was completely reversed by co-application of the KATP blocker, 5-hydoxydecanoate (5HD). We conclude that, under conditions of oxidative injury, ketones induce synaptic protection in part through activation of KATP channels.

  9. Ketones Prevent Oxidative Impairment of Hippocampal Synaptic Integrity through KATP Channels

    PubMed Central

    Kim, Do Young; Abdelwahab, Mohammed G.; Lee, Soo Han; O’Neill, Derek; Thompson, Roger J.; Duff, Henry J.; Sullivan, Patrick G.; Rho, Jong M.

    2015-01-01

    Dietary and metabolic therapies are increasingly being considered for a variety of neurological disorders, based in part on growing evidence for the neuroprotective properties of the ketogenic diet (KD) and ketones. Earlier, we demonstrated that ketones afford hippocampal synaptic protection against exogenous oxidative stress, but the mechanisms underlying these actions remain unclear. Recent studies have shown that ketones may modulate neuronal firing through interactions with ATP-sensitive potassium (KATP) channels. Here, we used a combination of electrophysiological, pharmacological, and biochemical assays to determine whether hippocampal synaptic protection by ketones is a consequence of KATP channel activation. Ketones dose-dependently reversed oxidative impairment of hippocampal synaptic integrity, neuronal viability, and bioenergetic capacity, and this action was mirrored by the KATP channel activator diazoxide. Inhibition of KATP channels reversed ketone-evoked hippocampal protection, and genetic ablation of the inwardly rectifying K+ channel subunit Kir6.2, a critical component of KATP channels, partially negated the synaptic protection afforded by ketones. This partial protection was completely reversed by co-application of the KATP blocker, 5-hydoxydecanoate (5HD). We conclude that, under conditions of oxidative injury, ketones induce synaptic protection in part through activation of KATP channels. PMID:25848768

  10. Impaired pulmonary artery contractile responses in a rat model of microgravity: role of nitric oxide

    NASA Technical Reports Server (NTRS)

    Nyhan, Daniel; Kim, Soonyul; Dunbar, Stacey; Li, Dechun; Shoukas, Artin; Berkowitz, Dan E.

    2002-01-01

    Vascular contractile hyporesponsiveness is an important mechanism underlying orthostatic intolerance after microgravity. Baroreceptor reflexes can modulate both pulmonary resistance and capacitance function and thus cardiac output. We hypothesized, therefore, that pulmonary vasoreactivity is impaired in the hindlimb-unweighted (HLU) rat model of microgravity. Pulmonary artery (PA) contractile responses to phenylephrine (PE) and U-46619 (U4) were significantly decreased in the PAs from HLU vs. control (C) animals. N(G)-nitro-L-arginine methyl ester (10(-5) M) enhanced the contractile responses in the PA rings from both C and HLU animals and completely abolished the differential responses to PE and U4 in HLU vs. C animals. Vasorelaxant responses to ACh were significantly enhanced in PA rings from HLU rats compared with C. Moreover, vasorelaxant responses to sodium nitroprusside were also significantly enhanced. Endothelial nitric oxide synthase (eNOS) and soluble guanlyl cyclase expression were significantly enhanced in PA and lung tissue from HLU rats. In marked contrast, the expression of inducible nitric oxide synthase was unchanged in lung tissue. These data support the hypothesis that vascular contractile responsiveness is attenuated in PAs from HLU rats and that this hyporesponsiveness is due at least in part to increased nitric oxide synthase activity resulting from enhanced eNOS expression. These findings may have important implications for blood volume distribution and attenuated stroke volume responses to orthostatic stress after microgravity exposure.

  11. Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease.

    PubMed

    García-Blanco, Ana; Baquero, Miguel; Vento, Máximo; Gil, Esperanza; Bataller, Luis; Cháfer-Pericás, Consuelo

    2017-02-15

    The high and increasing incidence of Alzheimer Disease (AD) worldwide is a major global concern. Classical diagnosis is carried out in the dementia phase, often in the moderate stages when treatment efficacy is limited. Nowadays, early diagnosis, even in pre-dementia stages, is possible in selected cases within an appropriate clinical setting, employing cerebral spinal fluid (CSF) sample analysis and neuroimaging procedures. In spite of the accurate diagnosis achieved by novel CSF biomarkers or positron emission tomography beta-amyloid tracers, these tests are invasive and expensive. Therefore, important work is being carried out to discover reliable biomarkers in peripheral biofluids (blood, plasma, urine) to be incorporated in clinical routine for early AD diagnosis. Although the nature of AD pathogenesis is complex, it is known that oxidative stress plays a key role, for which biomarkers are easily determined in peripheral biofluids. This review summarizes recent research on oxidative stress biomarkers in mild cognitive impairment due to AD. Among them, a promising research line is the study of the relationship between lipid peroxidation biomarkers and early AD clinical features. Results show a pronounced imbalance between scientific production and clinical reality due to the lack of clinical validation. We conclude that an important field in oxidative stress biomarkers could be developed with the aim to help clinicians in early disease diagnosis, effective treatment initiation and reliable disease monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ginger pharmacopuncture improves cognitive impairment and oxidative stress following cerebral ischemia.

    PubMed

    Jittiwat, Jinatta; Wattanathorn, Jintanaporn

    2012-12-01

    Recent findings have demonstrated that acupuncture and ginger can each improve memory impairment following cerebral ischemia. We hypothesized that ginger pharmacopuncture, a combination of these two treatments, could increase the beneficial effects. Due to the limitation of supporting evidence, we aimed to determine whether ginger pharmacopuncture could improve cognitive function and oxidative stress following cerebral ischemia. Male Wistar rats were induced by right middle cerebral artery occlusion (Rt. MCAO) and subjected to either acupuncture or ginger pharmacopuncture once daily over a period of 14 days after Rt. MCAO. Cognitive function was determined every 7 days, using escape latency and retention time as indices, and the oxidative stress status of the rats was determined at the end of the study. Rats subjected either to acupuncture or to ginger pharmacopuncture at GV20 demonstrated enhanced spatial memory, and the activities of catalase and glutathione peroxidase in both cerebral cortex and hippocampus were improved. Elevation of superoxide dismutase activity was observed only in the hippocampus. Cognitive enhancement was observed sooner with ginger pharmacopuncture than with acupuncture. The cognitive enhancing effect of acupuncture and ginger pharmacopuncture is likely to be at least partially attributable to decreased oxidative stress. However, other mechanisms may also be involved, and this requires further study.

  13. Normal adaptations to exercise despite protection against oxidative stress.

    PubMed

    Higashida, Kazuhiko; Kim, Sang Hyun; Higuchi, Mitsuru; Holloszy, John O; Han, Dong-Ho

    2011-11-01

    It has been reported that supplementation with the antioxidant vitamins C and E prevents the adaptive increases in mitochondrial biogenesis and GLUT4 expression induced by endurance exercise. We reevaluated the effects of these antioxidants on the adaptive responses of rat skeletal muscle to swimming in a short-term study consisting of 9 days of vitamins C and E with exercise during the last 3 days and a longer-term study consisting of 8 wk of antioxidant vitamins with exercise during the last 3 wk. The rats in the antioxidant groups were given 750 mg·kg body wt(-1)·day(-1) vitamin C and 150 mg·kg body wt(-1)·day(-1) vitamin E. In rats euthanized immediately after exercise, plasma TBARs were elevated in the control rats but not in the antioxidant-supplemented rats, providing evidence for an antioxidant effect. In rats euthanized 18 h after exercise there were large increases in insulin responsiveness of glucose transport in epitrochlearis muscles mediated by an approximately twofold increase in GLUT4 expression in both the short- and long-term treatment groups. The protein levels of a number of mitochondrial marker enzymes were also increased about twofold. Superoxide dismutases (SOD) 1 and 2 were increased about twofold in triceps muscle after 3 days of exercise, but only SOD2 was increased after 3 wk of exercise. There were no differences in the magnitudes of any of these adaptive responses between the control and antioxidant groups. These results show that very large doses of antioxidant vitamins do not prevent the exercise-induced adaptive responses of muscle mitochondria, GLUT4, and insulin action to exercise and have no effect on the level of these proteins in sedentary rats.

  14. Maternal Obesity during Gestation Impairs Fatty Acid Oxidation and Mitochondrial SIRT3 Expression in Rat Offspring at Weaning

    PubMed Central

    Borengasser, Sarah J.; Lau, Franchesca; Kang, Ping; Blackburn, Michael L.; Ronis, Martin J. J.; Badger, Thomas M.; Shankar, Kartik

    2011-01-01

    In utero exposure to maternal obesity increases the offspring's risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND)21. In the current study, we examined systemic and hepatic adaptations in male Sprague-Dawley offspring from lean and obese dams at PND21. Indirect calorimetry revealed decreases in energy expenditure (p<0.001) and increases in RER values (p<0.001), which were further exacerbated by high fat diet (45% kcals from fat) consumption indicating an impaired ability to utilize fatty acids in offspring of obese dams as analyzed by PRCF. Mitochondrial function is known to be associated with fatty acid oxidation (FAO) in the liver. Several markers of hepatic mitochondrial function were reduced in offspring of obese dams. These included SIRT3 mRNA (p = 0.012) and mitochondrial protein content (p = 0.002), electron transport chain complexes (II, III, and ATPase), and fasting PGC-1α mRNA expression (p<0.001). Moreover, hepatic LCAD, a SIRT3 target, was not only reduced 2-fold (p<0.001) but was also hyperacetylated in offspring of obese dams (p<0.005) suggesting decreased hepatic FAO. In conclusion, exposure to maternal obesity contributes to early perturbations in whole body and liver energy metabolism. Mitochondrial dysfunction may be an underlying event that reduces hepatic fatty acid oxidation and precedes the development of detrimental obesity associated co-morbidities such as insulin resistance and NAFLD. PMID:21901160

  15. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria.

    PubMed

    Liu, Shuai; Hu, Baolan; He, Zhanfei; Zhang, Bin; Tian, Guangming; Zheng, Ping; Fang, Fang

    2015-10-01

    Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Few studies compared the adaptability of AOA and AOB for oxygenated/hypoxic alternant conditions in water-level-fluctuating zones. Here, using qPCR and 454 high-throughput sequencing of functional amoA genes of AOA and AOB, we examined the changes of abundances, diversities, and community structures of AOA and AOB in periodically flooded soils compared to the non-flooded soils in Three Gorges Reservoir. The increased AOA operational taxonomic unit (OTU) numbers and the higher ratios of abundance (AOA:AOB) in the periodically flooded soils suggested AOA have better adaptability for oxygenated/hypoxic alternant conditions in the water-level-fluctuating zones in the Three Gorges Reservoir and probably responsible for the ammonia oxidation there. Canonical correspondence analysis (CCA) showed that oxidation-reduction potential (ORP) had the most significant effect on the community distribution of AOA (p < 0.01). Pearson analysis also indicated that ORP was the most important factor influencing the abundances and diversities of ammonia-oxidizing microbes. ORP was significantly negatively correlated with AOA OTU numbers (p < 0.05), ratio of OTU numbers (AOA:AOB) (p < 0.01), and ratio of amoA gene abundances (AOA:AOB) (p < 0.05). ORP was also significantly positively correlated with AOB abundance (p < 0.05).

  16. Lipotoxic Palmitate Impairs the Rate of β-Oxidation and Citric Acid Cycle Flux in Rat Neonatal Cardiomyocytes.

    PubMed

    Haffar, Taha; Akoumi, Ali; Bousette, Nicolas

    2016-01-01

    Diabetic hearts exhibit intracellular lipid accumulation. This suggests that the degree of fatty acid oxidation (FAO) in these hearts is insufficient to handle the elevated lipid uptake. We previously showed that palmitate impaired the rate of FAO in primary rat neonatal cardiomyocytes. Here we were interested in characterizing the site of FAO impairment induced by palmitate since it may shed light on the metabolic dysfunction that leads to lipid accumulation in diabetic hearts. We measured fatty acid oxidation, acetyl-CoA oxidation, and carnitine palmitoyl transferase (Cpt1b) activity. We measured both forward and reverse aconitase activity, as well as NAD+ dependent isocitrate dehydrogenase activity. We also measured reactive oxygen species using the 2', 7'-Dichlorofluorescin Diacetate (DCFDA) assay. Finally we used thin layer chromatography to assess diacylglycerol (DAG) levels. We found that palmitate significantly impaired mitochondrial β-oxidation as well as citric acid cycle flux, but not Cpt1b activity. Palmitate negatively affected net aconitase activity and isocitrate dehydrogenase activity. The impaired enzyme activities were not due to oxidative stress but may be due to DAG mediated PKC activation. This work demonstrates that palmitate, a highly abundant fatty acid in human diets, causes impaired β-oxidation and citric acid cycle flux in primary neonatal cardiomyocytes. This metabolic defect occurs prior to cell death suggesting that it is a cause, rather than a consequence of palmitate mediated lipotoxicity. This impaired mitochondrial metabolism can have important implications for metabolic diseases such as diabetes and obesity. © 2016 The Author(s) Published by S. Karger AG, Basel.

  17. Prostate cancer and physical activity: adaptive response to oxidative stress.

    PubMed

    Rebillard, Amélie; Lefeuvre-Orfila, Luz; Gueritat, Jordan; Cillard, Josiane

    2013-07-01

    Prostate cancer is the most common form of cancer affecting men in the Western world. Its relative incidence increases exponentially with age and a steady increase is observed with extended life span. A sedentary lifestyle represents an important risk factor and a decrease in prostate cancer prevalence is associated with exercise. However, the molecular mechanisms involved in this process remain unknown. We hypothesize that reactive oxygen species generated by physical exercise are a key regulatory factor in prostate cancer prevention. Aging is correlated with increased oxidative stress (OS), which in turn provides a favorable environment for tumorigenesis. Running training is known to enhance the antioxidant defense system, reducing oxidative stress. In this context, the decrease in OS induced by exercise may delay the development of prostate cancer. This review focuses on oxidative stress-based mechanisms leading to prostate cancer sensitization to exercise, which could have some impact on the development of novel cancer therapeutic strategies. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Proanthocyanidins prevent ethanol-induced cognitive impairment by suppressing oxidative and inflammatory stress in adult rat brain.

    PubMed

    Chen, Qian; Hu, Pingping

    2017-10-18

    Excessive chronic alcohol consumption enhances brain oxidative and inflammatory stress, resulting in cognitive deficit. This study investigated the potential alleviating effects of proanthocyanidins (PACs) on ethanol-induced cognitive impairment and stress in brain regions including the prefrontal cortex, hippocampus, and amygdala. Adult male rats were administered saline, PACs, ethanol, or combinations of ethanol with different doses of PACs for 8 weeks. Then, the Morris water-maze test was performed. Thiobarbituric acid-reactive substances, superoxide dismutase activity, total antioxidant capacity, and nitric oxide were chosen as parameters of oxidative stress, whereas tumor necrosis factor-α and interleukin-1β chosen as parameters of inflammatory stress. The results indicated that ethanol led to cognitive impairment along with enhanced oxidative and inflammatory stress in brain regions, whereas PACs per se had no significant effects. Moreover, coadministration with PACs in ethanol-treated rats dose dependently rescued cognitive impairment accompanied by suppressed oxidative and inflammatory stress in brain regions. Thus, the protective effects of PACs on ethanol-induced cognitive impairments may be because of their antioxidant and anti-inflammatory activities.

  19. Short dysfunctional telomeres impair the repair of arsenite-induced oxidative damage in mouse cells.

    PubMed

    Newman, Jennifer P A; Banerjee, Birendranath; Fang, Wanru; Poonepalli, Anuradha; Balakrishnan, Lakshmidevi; Low, Grace Kah Mun; Bhattacharjee, Rabindra N; Akira, Shizuo; Jayapal, Manikandan; Melendez, Alirio J; Baskar, Rajamanickam; Lee, Han-Woong; Hande, M Prakash

    2008-03-01

    Telomeres and telomerase appear to participate in the repair of broken DNA ends produced by oxidative damage. Arsenite is an environmental contaminant and a potent human carcinogen, which induces oxidative stress on cells via the generation of reactive oxygen species affecting cell viability and chromosome stability. It promotes telomere attrition and reduces cell survival by apoptosis. In this study, we used mouse embryonic fibroblasts (MEFs) from mice lacking telomerase RNA component (mTERC(-/-) mice) with long (early passage or EP) and short (late passage or LP) telomeres to investigate the extent of oxidative damage by comparing the differences in DNA damage, chromosome instability, and cell survival at 24 and 48 h of exposure to sodium arsenite (As3+; NaAsO2). There was significantly high level of DNA damage in mTERC(-/-) cells with short telomeres as determined by alkaline comet assay. Consistent with elevated DNA damage, increased micronuclei (MN) induction reflecting gross genomic instability was also observed. Fluorescence in situ hybridization (FISH) analysis revealed that increasing doses of arsenite augmented the chromosome aberrations, which contributes to genomic instability leading to possibly apoptotic cell death and cell cycle arrest. Microarray analysis has revealed that As3+ treatment altered the expression of 456 genes of which 20% of them have known functions in cell cycle and DNA damage signaling and response, cell growth, and/or maintenance. Results from our studies imply that short dysfunctional telomeres impair the repair of oxidative damage caused by arsenite. The results will have implications in risk estimation as well as cancer chemotherapy. (c) 2007 Wiley-Liss, Inc.

  20. Deletion of Cyclophilin D Impairs β-Oxidation and Promotes Glucose Metabolism

    PubMed Central

    Tavecchio, Michele; Lisanti, Sofia; Bennett, Michael J.; Languino, Lucia R.; Altieri, Dario C.

    2015-01-01

    Cyclophilin D (CypD) is a mitochondrial matrix protein implicated in cell death, but a potential role in bioenergetics is not understood. Here, we show that loss or depletion of CypD in cell lines and mice induces defects in mitochondrial bioenergetics due to impaired fatty acid β-oxidation. In turn, CypD loss triggers a global compensatory shift towards glycolysis, with transcriptional upregulation of effectors of glucose metabolism, increased glucose consumption and higher ATP production. In vivo, the glycolytic shift secondary to CypD deletion is associated with expansion of insulin-producing β-cells, mild hyperinsulinemia, improved glucose tolerance, and resistance to high fat diet-induced liver damage and weight gain. Therefore, CypD is a novel regulator of mitochondrial bioenergetics, and unexpectedly controls glucose homeostasis, in vivo. PMID:26515038

  1. Intrauterine pulmonary hypertension impairs angiogenesis in vitro: role of vascular endothelial growth factor nitric oxide signaling.

    PubMed

    Gien, Jason; Seedorf, Gregory J; Balasubramaniam, Vivek; Markham, Neil; Abman, Steven H

    2007-12-01

    Mechanisms that impair angiogenesis in neonatal persistent pulmonary hypertension (PPHN) are poorly understood. To determine if PPHN alters fetal pulmonary artery endothelial cell (PAEC) phenotype and impairs growth and angiogenesis in vitro, and if altered vascular endothelial growth factor-nitric oxide (VEGF-NO) signaling contributes to this abnormal phenotype. Proximal PAECs were harvested from fetal sheep that had undergone partial ligation of the ductus arteriosus in utero (PPHN) and age-matched control animals. Growth and tube formation +/- VEGF and NO stimulation and inhibition were studied in normal and PPHN PAECs. Western blot analysis was performed for VEGF, VEGF receptor-2 (VEGF-R2), and endothelial NO synthase (eNOS) protein content. NO production with VEGF administration was measured in normal and PPHN PAECs. PPHN PAECs demonstrate decreased growth and tube formation in vitro. VEGF and eNOS protein expression were decreased in PPHN PAECs, whereas VEGF-R2 protein expression was not different. VEGF and NO increased PPHN PAEC growth and tube formation to values achieved in normal PAECs. VEGF inhibition decreased growth and tube formation in normal and PPHN PAECs. NOS inhibition decreased growth in normal and PPHN PAECs, but tube formation was only reduced in normal PAECs. NO reversed the inhibitory effects of VEGF-R2 inhibition on tube formation in normal and PPHN PAECs. VEGF increased NO production in normal and PPHN PAECs. PPHN in utero causes sustained impairment of PAEC phenotype in vitro, with reduced PAEC growth and tube formation and down-regulation of VEGF and eNOS protein. VEGF and NO enhanced growth and tube formation of PPHN PAECs.

  2. 25-Hydroxycholesterol impairs endothelial function and vasodilation by uncoupling and inhibiting endothelial nitric oxide synthase.

    PubMed

    Ou, Zhi-Jun; Chen, Jing; Dai, Wei-Ping; Liu, Xiang; Yang, Yin-Ke; Li, Yan; Lin, Ze-Bang; Wang, Tian-Tian; Wu, Ying-Ying; Su, Dan-Hong; Cheng, Tian-Pu; Wang, Zhi-Ping; Tao, Jun; Ou, Jing-Song

    2016-10-01

    Endothelial dysfunction is a key early step in atherosclerosis. 25-Hydroxycholesterol (25-OHC) is found in atherosclerotic lesions. However, whether 25-OHC promotes atherosclerosis is unclear. Here, we hypothesized that 25-OHC, a proinflammatory lipid, can impair endothelial function, which may play an important role in atherosclerosis. Bovine aortic endothelial cells were incubated with 25-OHC. Endothelial cell proliferation, migration, and tube formation were measured. Nitric oxide (NO) production and superoxide anion generation were determined. The expression and phosphorylation of endothelial NO synthase (eNOS) and Akt as well as the association of eNOS and heat shock protein (HSP)90 were detected by immunoblot analysis and immunoprecipitation. Endothelial cell apoptosis was monitored by TUNEL staining and caspase-3 activity, and expression of Bcl-2, Bax, cleaved caspase-9, and cleaved caspase-3 were detected by immunoblot analysis. Finally, aortic rings from Sprague-Dawley rats were isolated and treated with 25-OHC, and endothelium-dependent vasodilation was evaluated. 25-OHC significantly inhibited endothelial cell proliferation, migration, and tube formation. 25-OHC markedly decreased NO production and increased superoxide anion generation. 25-OHC reduced the phosphorylation of Akt and eNOS and the association of eNOS and HSP90. 25-OHC also enhanced endothelial cell apoptosis by decreasing Bcl-2 expression and increasing cleaved caspase-9 and cleaved caspase-3 expressions as well as caspase-3 activity. 25-OHC impaired endothelium-dependent vasodilation. These data demonstrated that 25-OHC could impair endothelial function by uncoupling and inhibiting eNOS activity as well as by inducing endothelial cell apoptosis. Our findings indicate that 25-OHC may play an important role in regulating atherosclerosis. Copyright © 2016 the American Physiological Society.

  3. Simvastatin impairs ADP-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes

    PubMed Central

    Kwak, Hyo-Bum; Thalacker-Mercer, Anna; Anderson, Ethan J.; Lin, Chien-Te; Kane, Daniel A.; Lee, Nam-Sihk; Cortright, Ronald N.; Bamman, Marcas M.; Neufer, P. Darrell

    2012-01-01

    Statins, the widely prescribed cholesterol-lowering drugs for the treatment of cardiovascular disease, cause adverse skeletal muscle side effects ranging from fatigue to fatal rhabdomyolysis. The purpose of this study was to determine the effects of simvastatin on mitochondrial respiration, oxidative stress, and cell death in differentiated primary human skeletal muscle cells (i.e. myotubes). Simvastatin induced a dose dependent decrease in viability of proliferating and differentiating primary human muscle precursor cells, and a similar dose-dependent effect was noted in differentiated myoblasts and myotubes. Additionally, there were decreases in myotube number and size following 48 h of simvastatin treatment (5 µM). In permeabilized myotubes, maximal ADP-stimulated oxygen consumption, supported by palmitoyl-carnitine + malate (PCM, complex I and II substrates) and glutamate + malate (GM, complex I substrates), was 32–37% lower (P<0.05) in simvastatin treated (5 µM) vs. control myotubes, providing evidence of impaired respiration at complex I. Mitochondrial superoxide and hydrogen peroxide generation were significantly greater in the simvastatin treated human skeletal myotube cultures compared to control. In addition, simvastatin markedly increased protein levels of Bax (pro-apoptotic, +53%) and Bcl-2 (anti-apoptotic, +100%, P<0.05), mitochondrial PTP opening (+44%, P<0.05), and TUNEL-positive nuclei in human skeletal myotubes, demonstrating up-regulation of mitochondrial-mediated myonuclear apoptotic mechanisms. These data demonstrate that simvastatin induces myotube atrophy and cell loss associated with impaired ADP-stimulated maximal mitochondrial respiratory capacity, mitochondrial oxidative stress, and apoptosis in primary human skeletal myotubes, suggesting mitochondrial dysfunction may underlie human statin-induced myopathy. PMID:22080086

  4. Puerarin alleviates cognitive impairment and oxidative stress in APP/PS1 transgenic mice.

    PubMed

    Zhou, Yanyan; Xie, Ning; Li, Libo; Zou, Yu; Zhang, Xiaojie; Dong, Miaoxian

    2014-04-01

    Increasing evidence demonstrates that β-amyloid (Aβ) elicits oxidative stress, which contributes to the pathogenesis and disease progression of Alzheimer's disease (AD). Thus, there is interest in developing antioxidant therapies for the prevention/treatment of cognitive decline during AD. We reported previously that puerarin has antioxidative properties in vitro. Therefore, the aim of the present study was to determine whether puerarin improves cognitive function and reduces oxidative stress in amyloid precursor protein/presenilin-1 (APP/PS1) mice, a well established AD mouse model, and explore its potential mechanism. Our results show that oral administration of puerarin significantly ameliorates cognitive impairment in APP/PS1 mice assessed by the Morris water maze (MWM) test. This was accompanied by a significant decrease in the levels of lipid peroxidation (LPO) through, at least in part, induction of nuclear factor erythroid 2-related factor 2 (Nrf2) target gene heme oxygenase 1 (HO-1) in the hippocampus of APP/PS1 transgenic mice at 9 months of age, but without altering brain Aβ burden. Furthermore, puerarin significantly activated Akt, reduced activation of glycogen synthase kinase 3β (GSK-3β), and induced nuclear translocation of Nrf2 in the hippocampus of APP/PS1 mice but did not alter ERK1/2 phosphorylation. Thus, puerarin may improve cognitive performance in APP/PS1 mice through activation of the Akt/GSK-3β signaling pathway. These findings suggest that puerarin might be an attractive agent for prevention and treatment of cognitive impairment and dementia.

  5. Simvastatin impairs ADP-stimulated respiration and increases mitochondrial oxidative stress in primary human skeletal myotubes.

    PubMed

    Kwak, Hyo-Bum; Thalacker-Mercer, Anna; Anderson, Ethan J; Lin, Chien-Te; Kane, Daniel A; Lee, Nam-Sihk; Cortright, Ronald N; Bamman, Marcas M; Neufer, P Darrell

    2012-01-01

    Statins, the widely prescribed cholesterol-lowering drugs for the treatment of cardiovascular disease, cause adverse skeletal muscle side effects ranging from fatigue to fatal rhabdomyolysis. The purpose of this study was to determine the effects of simvastatin on mitochondrial respiration, oxidative stress, and cell death in differentiated primary human skeletal muscle cells (i.e., myotubes). Simvastatin induced a dose-dependent decrease in viability of proliferating and differentiating primary human muscle precursor cells, and a similar dose-dependent effect was noted in differentiated myoblasts and myotubes. Additionally, there were decreases in myotube number and size following 48 h of simvastatin treatment (5 μM). In permeabilized myotubes, maximal ADP-stimulated oxygen consumption, supported by palmitoylcarnitine+malate (PCM, complex I and II substrates) and glutamate+malate (GM, complex I substrates), was 32-37% lower (P<0.05) in simvastatin-treated (5 μM) vs control myotubes, providing evidence of impaired respiration at complex I. Mitochondrial superoxide and hydrogen peroxide generation were significantly greater in the simvastatin-treated human skeletal myotube cultures compared to control. In addition, simvastatin markedly increased protein levels of Bax (proapoptotic, +53%) and Bcl-2 (antiapoptotic, +100%, P<0.05), mitochondrial PTP opening (+44%, P<0.05), and TUNEL-positive nuclei in human skeletal myotubes, demonstrating up-regulation of mitochondrial-mediated myonuclear apoptotic mechanisms. These data demonstrate that simvastatin induces myotube atrophy and cell loss associated with impaired ADP-stimulated maximal mitochondrial respiratory capacity, mitochondrial oxidative stress, and apoptosis in primary human skeletal myotubes, suggesting that mitochondrial dysfunction may underlie human statin-induced myopathy.

  6. Factorial and Hierarchical Cluster Analysis of the Adaptive Behavior Scales (Part I & II) in a Population of Older People (50 Years +) with Severe Intellectual Impairment (Mental Handicap).

    ERIC Educational Resources Information Center

    Moss, S. C.; Hogg, J.

    1990-01-01

    Principal components analysis was employed on the Adaptive Behavior Scales with scores of 122 older (mean age 63.5) individuals with severe intellectual impairment living in England. The study found the structure of adaptive skills and interpersonal maladaptive behaviors similar to that found for younger retarded adults. Two factors, personal…

  7. Adaptation of office workers to a new building - impaired well-being as part of the sick-building-syndrome.

    PubMed

    Neuner, Ralf; Seidel, Hans-Joachim

    2006-07-01

    The focus of our study was the assessment of the effects of spatial relocation on office staff. Our aim was to investigate whether psychosocial or personal factors are better predictors of the occurrence of impaired well-being. Before relocation the administration of the university hospital of Ulm (Germany) was located in ten different buildings. Chemical and physical parameters of the indoor air were measured. The employees were surveyed with a questionnaire for their health status and psychosocial determinants. After moving to a new wide-spaced building, the same procedure was reapplied shortly afterwards and half a year later. Only respondents who had taken part in all three surveys are taken into account (n=84). The definition of impaired well-being as defined by the ProKlimA-study group was used as the criterion variable. The overall prevalence of impaired well-being rose from 24% to 36% after relocation. Contrarily, persons who were formerly accommodated in a wide spaced-building showed a reduced risk (OR(post1)=0.3). Affected persons had at all times a more negative response pattern. Chemical and physical parameters did not have any influence in this context. The adaptation to a new environment is influenced by the old "socialization" of the former buildings. Impaired well-being is not limited to bodily complaints, it rather has a systemic character in the form of a distinctive overall response pattern. For an adequate analysis of impaired well-being - and the sick-building-syndrome in consequence - the elucidation of individual and other potentially intervening factors is essential. Taking this into consideration, the search for norm values or a framework seems to be of limited value.

  8. Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment

    PubMed Central

    Faller, Josef; Scherer, Reinhold; Friedrich, Elisabeth V. C.; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.

    2014-01-01

    Individuals with severe motor impairment can use event-related desynchronization (ERD) based BCIs as assistive technology. Auto-calibrating and adaptive ERD-based BCIs that users control with motor imagery tasks (“SMR-AdBCI”) have proven effective for healthy users. We aim to find an improved configuration of such an adaptive ERD-based BCI for individuals with severe motor impairment as a result of spinal cord injury (SCI) or stroke. We hypothesized that an adaptive ERD-based BCI, that automatically selects a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (“Auto-AdBCI”) could allow for higher control performance than a conventional SMR-AdBCI. To answer this question we performed offline analyses on two sessions (21 data sets total) of cue-guided, five-class electroencephalography (EEG) data recorded from individuals with SCI or stroke. On data from the twelve individuals in Session 1, we first identified three bipolar derivations for the SMR-AdBCI. In a similar way, we determined three bipolar derivations and four mental tasks for the Auto-AdBCI. We then simulated both, the SMR-AdBCI and the Auto-AdBCI configuration on the unseen data from the nine participants in Session 2 and compared the results. On the unseen data of Session 2 from individuals with SCI or stroke, we found that automatically selecting a user specific class-combination from motor-related and non motor-related mental tasks during initial auto-calibration (Auto-AdBCI) significantly (p < 0.01) improved classification performance compared to an adaptive ERD-based BCI that only used motor imagery tasks (SMR-AdBCI; average accuracy of 75.7 vs. 66.3%). PMID:25368546

  9. Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion.

    PubMed

    Osburn, William O; Wakabayashi, Nobunao; Misra, Vikas; Nilles, Tricia; Biswal, Shyam; Trush, Michael A; Kensler, Thomas W

    2006-10-01

    Mouse embryonic fibroblasts derived from Nrf2-/- mice (N0) and Nrf2+/+ mice (WT) have been used to characterize both basal and diquat (DQ)-induced oxidative stress levels and to examine Nrf2 activation during exposure to DQ-generated superoxide anion. Microarray analysis revealed that N0 cells have similar constitutive mRNA expression of genes responsible for the direct metabolism of reactive oxygen species but decreased expression of genes responsible for the production of reducing equivalents, repair of oxidized proteins and defense against lipid peroxidation, compared to WT cells. Nonetheless, the basal levels of ROS flux and oxidative damage biomarkers in WT and N0 cells were not different. Diquat dibromide (DQ), a non-electrophilic redox cycling bipyridylium herbicide, was used to generate intracellular superoxide anion. Isolated mitochondria from both cell lines exposed to DQ produced equivalent amounts of ROS, indicating a similar cellular capacity to generate ROS. However, N0 cells exposed to DQ for 24-h exhibited markedly decreased cell viability and aconitase activity as well as increased lipid peroxidation and glutathione oxidation, relative to WT cells. 2',7'-Dichlorofluorescein fluorescence was not increased in WT and N0 cells after 30-min of DQ exposure. However, increased levels of ROS were detected in N0 cells but not WT cells after 13-h of DQ treatment. Additionally, total glutathione concentrations increased in WT, but not N0 cells following a 24-h exposure to DQ. DQ exposure resulted in activation of an antioxidant response element-luciferase reporter gene, as well as induction of Nrf2-regulated genes in WT, but not N0 cells. Thus the enhanced sensitivity of N0 cells does not reflect basal differences in antioxidative capacity, but rather an impaired ability to mount an adaptive response to sustained oxidative stress.

  10. Nrf2 Regulates an Adaptive Response Protecting Against Oxidative Damage Following Diquat-Mediated Formation of Superoxide Anion

    PubMed Central

    Osburn, William O.; Wakabayashi, Nobunao; Misra, Vikas; Nilles, Tricia; Biswal, Shyam; Trush, Michael A.; Kensler, Thomas W.

    2006-01-01

    Mouse embryonic fibroblasts derived from Nrf2 −/− mice (N0) and Nrf2 +/+ mice (WT) have been used to characterize both basal and diquat (DQ)-induced oxidative stress levels and to examine Nrf2 activation during exposure to DQ-generated superoxide anion. Microarray analysis revealed that N0 cells have similar constitutive mRNA expression of genes responsible for the direct metabolism of reactive oxygen species but decreased expression of genes responsible for the production of reducing equivalents, repair of oxidized proteins and defense against lipid peroxidation, compared to WT cells. Nonetheless, the basal levels of ROS flux and oxidative damage biomarkers in WT and N0 cells were not different. Diquat dibromide (DQ), a non-electrophilic redox cycling bipyridylium herbicide, was used to generate intracellular superoxide anion. Isolated mitochondria from both cell lines exposed to DQ produced equivalent amounts of ROS, indicating a similar cellular capacity to generate ROS. However, N0 cells exposed to DQ for 24-hr exhibited markedly decreased cell viability and aconitase activity as well as increased lipid peroxidation and glutathione oxidation, relative to WT cells. 2′,7′-Dichlorofluorescein fluorescence was not increased in WT and N0 cells after 30-min of DQ exposure. However, increased levels of ROS were detected in N0 cells but not WT cells after 13-hr of DQ treatment. Additionally, total glutathione concentrations increased in WT, but not N0 cells following a 24-hr exposure to DQ. DQ exposure resulted in activation of an antioxidant response element-luciferase reporter gene, as well as induction of Nrf2-regulated genes in WT, but not N0 cells. Thus the enhanced sensitivity of N0 cells does not reflect basal differences in antioxidative capacity, but rather an impaired ability to mount an adaptive response to sustained oxidative stress. PMID:16962985

  11. EP300 contributes to high-altitude adaptation in Tibetans by regulating nitric oxide production.

    PubMed

    Zheng, Wang-Shan; He, Yao-Xi; Cui, Chao-Ying; Ouzhu, Luobu; Deji, Quzong; Peng, Yi; Bai, Cai-Juan; Duoji, Zhuoma; Gongga, Lanzi; Bian, Ba; Baima, Kangzhuo; Pan, Yong-Yue; Qu, la; Kang, Min; Ciren, Yangji; Baima, Yangji; Guo, Wei; Yang, la; Zhang, Hui; Zhang, Xiao-Ming; Guo, Yong-Bo; Xu, Shu-Hua; Chen, Hua; Zhao, Sheng-Guo; Cai, Yuan; Liu, Shi-Ming; Wu, Tian-Yi; Qi, Xue-Bin; Su, Bing

    2017-05-18

    The genetic adaptation of Tibetans to high altitude hypoxia likely involves a group of genes in the hypoxic pathway, as suggested by earlier studies. To test the adaptive role of the previously reported candidate gene EP300 (histone acetyltransferase p300), we conducted resequencing of a 108.9 kb gene region of EP300 in 80 unrelated Tibetans. The allele-frequency and haplotype-based neutrality tests detected signals of positive Darwinian selection on EP300 in Tibetans, with a group of variants showing allelic divergence between Tibetans and lowland reference populations, including Han Chinese, Europeans, and Africans. Functional prediction suggested the involvement of multiple EP300 variants in gene expression regulation. More importantly, genetic association tests in 226 Tibetans indicated significant correlation of the adaptive EP300 variants with blood nitric oxide (NO) concentration. Collectively, we propose that EP300 harbors adaptive variants in Tibetans, which might contribute to high-altitude adaptation through regulating NO production.

  12. Adaptation and Diversification of an RNA Replication System under Initiation- or Termination-Impaired Translational Conditions.

    PubMed

    Mizuuchi, Ryo; Ichihashi, Norikazu; Yomo, Tetsuya

    2016-07-01

    Adaptation to various environments is a remarkable characteristic of life. Is this limited to extant complex living organisms, or is it also possible for a simpler self-replication system to adapt? In this study, we addressed this question by using a translation-coupled RNA replication system that comprised a reconstituted translation system and an RNA "genome" that encoded a replicase gene. We performed RNA replication reactions under four conditions, under which different components of translation were partly inhibited. We found that replication efficiency increased with the number of rounds of replication under all the tested conditions. The types of dominant mutations differed depending on the condition, thus indicating that this simple system adapted to different environments in different ways. This suggests that even a primitive self-replication system composed of a small number of genes on the early earth could have had the ability to adapt to various environments.

  13. Individuals with medial knee osteoarthritis show neuromuscular adaptation when perturbed during walking despite functional and structural impairments.

    PubMed

    Kumar, Deepak; Swanik, Charles Buz; Reisman, Darcy S; Rudolph, Katherine S

    2014-01-01

    Neuromuscular control relies on sensory feedback that influences responses to changing external demands, and the normal response is for movement and muscle activation patterns to adapt to repeated perturbations. People with knee osteoarthritis (OA) are known to have pain, quadriceps weakness, and neuromotor deficits that could affect adaption to external perturbations. The aim of this study was to analyze neuromotor adaptation during walking in people with knee OA (n = 38) and controls (n = 23). Disability, quadriceps strength, joint space width, malalignment, and proprioception were assessed. Kinematic and EMG data were collected during undisturbed walking and during perturbations that caused lateral translation of the foot at initial contact. Knee excursions and EMG magnitudes were analyzed. Subjects with OA walked with less knee motion and higher muscle activation and had greater pain, limitations in function, quadriceps weakness, and malalignment, but no difference was observed in proprioception. Both groups showed increased EMG and decreased knee motion in response to the first perturbation, followed by progressively decreased EMG activity and increased knee motion during midstance over the first five perturbations, but no group differences were observed. Over 30 trials, EMG levels returned to those of normal walking. The results illustrate that people with knee OA respond similarly to healthy individuals when exposed to challenging perturbations during functional weight-bearing activities despite structural, functional, and neuromotor impairments. Mechanisms underlying the adaptive response in people with knee OA need further study.

  14. Impaired genomic stability and increased oxidative stress exacerbate different features of Ataxia-telangiectasia.

    PubMed

    Ziv, Shelly; Brenner, Ori; Amariglio, Ninette; Smorodinsky, Nechama I; Galron, Ronit; Carrion, Danaise V; Zhang, Weijia; Sharma, Girdhar G; Pandita, Raj K; Agarwal, Manjula; Elkon, Ran; Katzin, Nirit; Bar-Am, Irit; Pandita, Tej K; Kucherlapati, Raju; Rechavi, Gideon; Shiloh, Yosef; Barzilai, Ari

    2005-10-01

    Ataxia-telangiectasia (A-T) is a multisystem, cancer-predisposing genetic disorder caused by deficiency of the ATM protein. To dissect the A-T phenotype, we augmented specific features of the human disease by generating mouse strains that combine Atm deficiency with dysfunction of other proteins. Increasing oxidative stress by combining deficiencies in Atm and superoxide dismutase 1 (Sod1) exacerbated growth retardation and markedly reduced the mean survival time following ionizing radiation. In contrast, increasing genomic instability by combining deficiencies of Atm and the mismatch repair protein Mlh1 caused a moderate increase in radiation sensitivity and dramatic increase in aggressive lymphomas, compared with thes Atm-/- single knockout. Remarkably, Atm, Mlh1 or Mlh1/Atm single or double heterozygosity did not significantly affect the life span of the various genotypes. Mlh1/Atm double null tumors were polyclonal, whereas the tumors in other genotypes were mono- or oligoclonal, demonstrating the high predisposition of thymocytes with this genotype to become malignant. Chromosomal aberrations in the tumors were localized mainly in chromosomes 12 and 15. The genomic region on chromosome 15, which contains the gene for the c-Myc oncoprotein, was commonly amplified, and elevated levels of the c-Myc protein were subsequently observed in the tumors. Our data suggest that impaired genomic instability is an important contributing factor to cancer predisposition in A-T, whereas oxidative stress is more important in the radiation sensitivity and growth retardation facets of this disease.

  15. Systemic oxidative stress in older patients with mild cognitive impairment or late onset Alzheimer's disease.

    PubMed

    Cervellati, Carlo; Cremonini, Eleonora; Bosi, Cristina; Magon, Stefania; Zurlo, Amedeo; Bergamini, Carlo M; Zuliani, Giovanni

    2013-05-01

    A large body of evidences obtained in human and animal brain tissue suggest a role of oxidative stress (OxS) in the pathogenesis of late onset Alzheimer's disease (LOAD); on the contrary, data on peripheral markers of OxS in LOAD are still controversial. We evaluated the serum levels of products of lipid peroxidation, hydroperoxides, advanced oxidation protein products, total and residual antioxidant power, thiols, and uric acid in a sample of 334 older individuals: 101 LOAD patients, 134 patients with mild cognitive impairment (MCI), and 99 controls. At univariate analysis, serum hydroperoxides were higher while residual antioxidant power was lower in MCI and LOAD compared with in controls. By multivariate logistic regression analysis we found that, compared with controls, high levels (over median value) of serum hydroperoxides were independently associated with an increase in the likehood of having MCI (Odd Ratio: 2.59, 95% Confidence Interval: 1.08-6.21) or LOAD (OR: 4.09, 95%CI: 1.36-11.81). Furthermore, low levels of residual antioxidant power (below the median value) were associated with increased risk of having MCI (OR: 3.97, 95% CI: 1.62-9.72), but not dementia (OR: 2.31, 95%CI: 0.83-6.63). Our study suggests that a systemic redox-imbalance leading to OxS might be associated not only with LOAD but also with MCI.

  16. Neuronal MCP-1 Mediates Microglia Recruitment and Neurodegeneration Induced by the Mild Impairment of Oxidative Metabolism

    PubMed Central

    Yang, Guang; Meng, Ya; Li, Wenxia; Yong, Yue; Fan, Zhiqin; Ding, Hanqing; Wei, Youzhen; Luo, Jia; Ke, Zun-Ji

    2010-01-01

    Chemokines are implicated in the neuroinflammation of several chronic neurodegenerative disorders. However, the precise role of chemokines in neurodegeneration is unknown. Thiamine deficiency (TD) causes abnormal oxidative metabolism in the brain as well as a well-defined microglia activation and neurodegeneration in the submedial thalamus nucleus (SmTN), which are common features of neurodegenerative diseases. We evaluated the role of chemokines in neurodegeneration and the underlying mechanism in a TD model. Among the chemokines examined, TD selectively induced neuronal expression of monocyte chemoattractant protein-1 (MCP-1) in the SmTN prior to microglia activation and neurodegeneration. The conditioned medium collected from TD-induced neurons caused microglia activation. With a neuron/microglia co-culture system, we showed that MCP-1-induced neurotoxicity required the presence of microglia and exogenous MCP-1 was able to activate microglia and stimulated microglia to produce cytokines. A MCP-1 neutralizing antibody inhibited MCP-1-induced microglia activation and neuronal death in culture and in the thalamus. MCP-1 knock-out mice were resistant to TD-induced neuronal death in SmTN. TD selectively induced the accumulation of reactive oxygen species in neurons, and antioxidants blocked TD-induced MCP-1 expression. Together, our results indicated an induction of neuronal MCP-1 during mild impairment of oxidative metabolism caused microglia recruitment/activation, which exacerbated neurodegeneration. PMID:21029241

  17. Impaired fatty acid oxidation in a Drosophila model of mitochondrial trifunctional protein (MTP) deficiency.

    PubMed

    Kishita, Yoshihito; Tsuda, Manabu; Aigaki, Toshiro

    2012-03-09

    Mitochondrial trifunctional protein (MTP), which consists of the MTPα and MTPβ subunits, catalyzes long-chain fatty acid β-oxidation. MTP deficiency in humans results in Reye-like syndrome. Here, we generated Drosophila models of MTP deficiency by targeting two genes encoding Drosophila homologs of human MTPα and MTPβ, respectively. Both Mtpα(KO) and Mtpβ(KO) flies were viable, but demonstrated reduced lifespan, defective locomotor activity, and reduced fecundity represented by the number of eggs laid by the females. The phenotypes of Mtpα(KO) flies were generally more striking than those of Mtpβ(KO) flies. Mtpα(KO) flies were hypersensitive to fasting, and retained lipid droplets in their fat body cells as in non-fasting conditions. The amount of triglyceride was also unchanged upon fasting in Mtpα(KO) flies, suggesting that lipid mobilization was disrupted. Finally, we showed that both Mtpα(KO) and Mtpβ(KO) flies accumulated acylcarnitine and hydroxyacylcarnitine, diagnostic markers of MTP deficiencies in humans. Our results indicated that both Mtpα(KO) and Mtpβ(KO) flies were impaired in long-chain fatty acid β-oxidation. These flies should be useful as a model system to investigate the molecular pathogenesis of MTP deficiency.

  18. An intestinal microRNA modulates the homeostatic adaptation to chronic oxidative stress in C. elegans

    PubMed Central

    Kato, Masaomi; Kashem, Mohammed Abul; Cheng, Chao

    2016-01-01

    Adaptation to an environmental or metabolic perturbation is a feature of the evolutionary process. Recent insights into microRNA function suggest that microRNAs serve as key players in a robust adaptive response against stress in animals through their capacity to fine-tune gene expression. However, it remains largely unclear how a microRNA-modulated downstream mechanism contributes to the process of homeostatic adaptation. Here we show that loss of an intestinally expressed microRNA gene, mir-60, in the nematode C. elegans promotes an adaptive response to chronic – a mild and long-term – oxidative stress exposure. The pathway involved appears to be unique since the canonical stress-responsive factors, such as DAF-16/FOXO, are dispensable for mir-60 loss to enhance oxidative stress resistance. Gene expression profiles revealed that genes encoding lysosomal proteases and those involved in xenobiotic metabolism and pathogen defense responses are up-regulated by the loss of mir-60. Detailed genetic studies and computational microRNA target prediction suggest that endocytosis components and a bZip transcription factor gene zip-10, which functions in innate immune response, are directly modulated by miR-60 in the intestine. Our findings suggest that the mir-60 loss facilitates adaptive response against chronic oxidative stress by ensuring the maintenance of cellular homeostasis. PMID:27623524

  19. Effect of Cinnamomum zeylanicum extract on scopolamine-induced cognitive impairment and oxidative stress in rats.

    PubMed

    Jain, Seema; Sangma, Tultul; Shukla, Santosh Kumar; Mediratta, Pramod Kumari

    2015-07-01

    Cinnamomum zeylanicum (CZ) is commonly known as cinnamon in traditional system of medicine having antibacterial, antioxidant, antidiabetic, hypolipidemic, and other activities. The present study was designed to assess the effect of extract of CZ bark on cognitive performance of scopolamine (SCOP)-treated rats and on associated altered oxidative stress markers in the brain of rats. The extract was administered orally in three doses (100, 200, and 400 mg/kg) for a period of 21 days. SCOP was administered in the dose of 1.0 mg/kg intraperitoneally. The Morris water maze and passive avoidance step-down tasks were performed to assess cognitive functions. At the end of the study, oxidative stress parameters namely, malondialdehyde (MDA) and reduced glutathione (GSH) were also analyzed in the brain tissue of rats. SCOP-treated group showed significantly impaired acquisition and retention of memory as compared to the saline- and vehicle-treated groups. Pretreatment with CZ extract (200 and 400 mg/kg) for 21 days significantly reversed SCOP-induced amnesia as evidenced by increased step-down latency in passive avoidance and decreased latency in Morris water maze test compared to the SCOP-treated group. SCOP administration also caused the increase of MDA and reduction of GSH levels. Pretreatment with CZ extract (200 and 400 mg/kg) resulted in a significant decrease in MDA levels and increase in GSH levels as compared to the SCOP-treated animals. The results suggest that CZ can induce cognitive improvement in SCOP-treated rats and this effect can be attributed to a certain extent to decreased oxidative stress.

  20. Differentiation impairs Bach1 dependent HO-1 activation and increases sensitivity to oxidative stress in SH-SY5Y neuroblastoma cells.

    PubMed

    Piras, Sabrina; Furfaro, Anna Lisa; Brondolo, Lorenzo; Passalacqua, Mario; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Nitti, Mariapaola

    2017-08-08

    Neuronal adaptation to oxidative stress is crucially important in order to prevent degenerative diseases. The role played by the Nrf2/HO-1 system in favoring cell survival of neuroblastoma (NB) cells exposed to hydrogen peroxide (H2O2) has been investigated using undifferentiated or all-trans retinoic acid (ATRA) differentiated SH-SY5Y cells. While undifferentiated cells were basically resistant to the oxidative stimulus, ATRA treatment progressively decreased cell viability in response to H2O2. HO-1 silencing decreased undifferentiated cell viability when exposed to H2O2, proving the role of HO-1 in cell survival. Conversely, ATRA differentiated cells exposed to H2O2 showed a significantly lower induction of HO-1, and only the supplementation with low doses of bilirubin (0,5-1 μM) restored viability. Moreover, the nuclear level of Bach1, repressor of HO-1 transcription, strongly decreased in undifferentiated cells exposed to oxidative stress, while did not change in ATRA differentiated cells. Furthermore, Bach1 was displaced from HO-1 promoter in undifferentiated cells exposed to H2O2, enabling the binding of Nrf2. On the contrary, in ATRA differentiated cells treated with H2O2, Bach1 displacement was impaired, preventing Nrf2 binding and limiting HO-1 transcription. In conclusion, our findings highlight the central role of Bach1 in HO-1-dependent neuronal response to oxidative stress.

  1. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    PubMed Central

    Zhang, Weipeng; Wang, Yong; Lee, On On; Tian, Renmao; Cao, Huiluo; Gao, Zhaoming; Li, Yongxin; Yu, Li; Xu, Ying; Qian, Pei-Yuan

    2013-01-01

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses. PMID:24212283

  2. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses.

    PubMed

    Zhang, Weipeng; Wang, Yong; Lee, On On; Tian, Renmao; Cao, Huiluo; Gao, Zhaoming; Li, Yongxin; Yu, Li; Xu, Ying; Qian, Pei-Yuan

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  3. A new primary mobility tool for the visually impaired: A white cane-adaptive mobility device hybrid.

    PubMed

    Rizzo, John-Ross; Conti, Kyle; Thomas, Teena; Hudson, Todd E; Wall Emerson, Robert; Kim, Dae Shik

    2017-05-16

    This article describes pilot testing of an adaptive mobility device-hybrid (AMD-H) combining properties of two primary mobility tools for people who are blind: the long cane and adaptive mobility devices (AMDs). The long cane is the primary mobility tool used by people who are blind and visually impaired for independent and safe mobility and AMDs are adaptive devices that are often lightweight frames approximately body width in lateral dimension that are simply pushed forward to clear the space in front of a person. The prototype cane built for this study had a wing apparatus that could be folded around the shaft of a cane but when unfolded, deployed two wheeled wings 25 cm (9.8 in) to each side of the canetip. This project explored drop-off and obstacle detection for 6 adults with visual impairment using the deployed AMD-H and a standard long cane. The AMD-H improved obstacle detection overall, and was most effective for the smallest obstacles (2 and 6 inch diameter). The AMD-H cut the average drop off threshold from 1.79 inches (4.55 cm) to .96 inches (2.44 cm). All participants showed a decrease in drop off detection threshold and an increase in detection rate (13.9% overall). For drop offs of 1 in (2.54 cm) and 3 in (7.62 cm), all participants showed large improvements with the AMD-H, ranging from 8.4 to 50%. The larger drop offs of 5 in (12.7 cm) and 7 in (17.8 cm) were well detected by both types of canes.

  4. Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans.

    PubMed

    Bito, Tomohiro; Misaki, Taihei; Yabuta, Yukinori; Ishikawa, Takahiro; Kawano, Tsuyoshi; Watanabe, Fumio

    2017-04-01

    Oxidative stress is implicated in various human diseases and conditions, such as a neurodegeneration, which is the major symptom of vitamin B12 deficiency, although the underlying disease mechanisms associated with vitamin B12 deficiency are poorly understood. Vitamin B12 deficiency was found to significantly increase cellular H2O2 and NO content in Caenorhabditis elegans and significantly decrease low molecular antioxidant [reduced glutathione (GSH) and L-ascorbic acid] levels and antioxidant enzyme (superoxide dismutase and catalase) activities, indicating that vitamin B12 deficiency induces severe oxidative stress leading to oxidative damage of various cellular components in worms. An NaCl chemotaxis associative learning assay indicated that vitamin B12 deficiency did not affect learning ability but impaired memory retention ability, which decreased to approximately 58% of the control value. When worms were treated with 1mmol/L GSH, L-ascorbic acid, or vitamin E for three generations during vitamin B12 deficiency, cellular malondialdehyde content as an index of oxidative stress decreased to the control level, but the impairment of memory retention ability was not completely reversed (up to approximately 50%). These results suggest that memory retention impairment formed during vitamin B12 deficiency is partially attributable to oxidative stress.

  5. Ethylene oxide sterilization: how hospitals can adapt to the changes.

    PubMed

    1994-12-01

    Ethylene oxide (EtO) gas sterilizers have been used by hospitals for over 40 years to sterilize surgical equipment and supplies that are heat sensitive or that cannot tolerate excessive moisture. However, in recent decades, EtO has been recognized as a potential mutagenic, reproductive, neurologic, and fire and explosion hazard to workers, and one agency has reportedly voted to classify EtO as carcinogenic to humans. Strict regulations concerning EtO exposure have been imposed by the Occupational Safety and Health Administration (OSHA), and the use of EtO, along with other toxic pollutants, is also being monitored by the Environmental Protection Agency (EPA) under the Clean Air Act. In addition, the use of chlorofluorocarbons (CFCs) as EtO diluents has focused attention on the EtO-CFC mixtures used in many sterilizers because CFCs have been linked to destruction of the ozone layer. Concerns about restrictive regulations related to these issues have prompted many hospitals to examine their use of EtO sterilization and propagated the misinformation that EtO sterilization is being phased out. In this article, we address some commonly asked questions regarding the use and regulation of EtO mixtures, as well as alternative sterilization agents and methods; provide two case studies illustrating how hospitals can evaluate various sterilization options; and summarize our conclusions and recommendations for hospitals facing decisions about sterilization techniques. For related topics, also see our Evaluation Update on endoscope reprocessors and our Hazard Report on improperly connected EtO-CFC cylinders to EtO sterilizers in this issue.

  6. Gamma irradiation-induced oxidative stress and developmental impairment in the hermaphroditic fish, Kryptolebias marmoratus embryo.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Kang, Chang-Mo; Lee, Young-Mi; Lee, Jae-Seong

    2012-08-01

    This study investigated the effects of gamma radiation on the early developmental stages in hermaphroditic fish embryos of Kryptolebias marmoratus. The authors measured reactive oxygen species (ROS) level and antioxidant enzyme activities with the endpoint hatching rate after gamma irradiation of different embryonic stages. Then, the transcriptional changes of antioxidant enzyme-coding genes were evaluated by quantitative real-time reverse transcription polymerase chain reaction in response to gamma radiation on embryonic stages. Gamma radiation inhibited hatching rate and caused developmental impairment in a dose-dependent manner. Embryos showed tolerances in a developmental stage-dependent manner, indicating that early embryonic stages were more sensitive to the negative effects of gamma radiation than were later stages. After 5 Gy rate of radiation, the ROS level increased significantly at embryonic stages 2, 3, and 4 with a significant induction of all antioxidant enzyme activities. The expressions of glutathione S-transferase isoforms, catalase, superoxide dismutase (Mn-SOD, Cu/Zn-SOD), glutathione reductase, and glutathione peroxidase mRNA were upregulated in a dose-and-developmental stage-dependent manner. This finding indicates that gamma radiation can induce oxidative stress and subsequently modulates the expression of antioxidant enzyme-coding genes as one of the defense mechanisms. Interestingly, embryonic stage 1 exposed to gamma radiation showed a decreased expression in most antioxidant enzyme-coding genes, suggesting that this is also related to a lower hatching rate and developmental impairment. The results of this study provide a better understanding of the molecular mode of action of gamma radiation in aquatic organisms.

  7. Dietary sodium loading impairs microvascular function independent of blood pressure in humans: role of oxidative stress

    PubMed Central

    Greaney, Jody L; DuPont, Jennifer J; Lennon-Edwards, Shannon L; Sanders, Paul W; Edwards, David G; Farquhar, William B

    2012-01-01

    Animal studies have reported dietary salt-induced reductions in vascular function independent of increases in blood pressure (BP). The purpose of this study was to determine if short-term dietary sodium loading impairs cutaneous microvascular function in normotensive adults with salt resistance. Following a control run-in diet, 12 normotensive adults (31 ± 2 years) were randomized to a 7 day low-sodium (LS; 20 mmol day−1) and 7 day high-sodium (HS; 350 mmol day−1) diet (controlled feeding study). Salt resistance, defined as a ≤5 mmHg change in 24 h mean BP determined while on the LS and HS diets, was confirmed in all subjects undergoing study (LS: 84 ± 1 mmHg vs. HS: 85 ± 2 mmHg; P > 0.05). On the last day of each diet, subjects were instrumented with two microdialysis fibres for the local delivery of Ringer solution and 20 mm ascorbic acid (AA). Laser Doppler flowmetry was used to measure red blood cell flux during local heating-induced vasodilatation (42°C). After the established plateau, 10 mm l-NAME was perfused to quantify NO-dependent vasodilatation. All data were expressed as a percentage of maximal cutaneous vascular conductance (CVC) at each site (28 mm sodium nitroprusside; 43°C). Sodium excretion increased during the HS diet (P < 0.05). The plateau % CVCmax was reduced during HS (LS: 93 ± 1 % CVCmax vs. HS: 80 ± 2 % CVCmax; P < 0.05). During the HS diet, AA improved the plateau % CVCmax (Ringer: 80 ± 2 % CVCmax vs. AA: 89 ± 3 % CVCmax; P < 0.05) and restored the NO contribution (Ringer: 44 ± 3 % CVCmax vs. AA: 59 ± 6 % CVCmax; P < 0.05). These data demonstrate that dietary sodium loading impairs cutaneous microvascular function independent of BP in normotensive adults and suggest a role for oxidative stress. PMID:22907057

  8. Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension.

    PubMed

    Dikalova, Anna E; Itani, Hana A; Nazarewicz, Rafal R; McMaster, William G; Flynn, Charles R; Uzhachenko, Roman; Fessel, Joshua P; Gamboa, Jorge L; Harrison, David G; Dikalov, Sergey I

    2017-08-18

    Clinical studies have shown that Sirt3 (Sirtuin 3) expression declines by 40% by 65 years of age paralleling the increased incidence of hypertension and metabolic conditions further inactivate Sirt3 because of increased NADH (nicotinamide adenine dinucleotide, reduced form) and acetyl-CoA levels. Sirt3 impairment reduces the activity of a key mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2) because of hyperacetylation. In this study, we examined whether the loss of Sirt3 activity increases vascular oxidative stress because of SOD2 hyperacetylation and promotes endothelial dysfunction and hypertension. Hypertension was markedly increased in Sirt3-knockout (Sirt3(-/)(-)) and SOD2-depleted (SOD2(+/)(-)) mice in response to low dose of angiotensin II (0.3 mg/kg per day) compared with wild-type C57Bl/6J mice. Sirt3 depletion increased SOD2 acetylation, elevated mitochondrial O2(· -), and diminished endothelial nitric oxide. Angiotensin II-induced hypertension was associated with Sirt3 S-glutathionylation, acetylation of vascular SOD2, and reduced SOD2 activity. Scavenging of mitochondrial H2O2 in mCAT mice expressing mitochondria-targeted catalase prevented Sirt3 and SOD2 impairment and attenuated hypertension. Treatment of mice after onset of hypertension with a mitochondria-targeted H2O2 scavenger, mitochondria-targeted hydrogen peroxide scavenger ebselen, reduced Sirt3 S-glutathionylation, diminished SOD2 acetylation, and reduced blood pressure in wild-type but not in Sirt3(-/-) mice, whereas an SOD2 mimetic, (2-[2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino]-2-oxoethyl) triphenylphosphonium (mitoTEMPO), reduced blood pressure and improved vasorelaxation both in Sirt3(-/-) and wild-type mice. SOD2 acetylation had an inverse correlation with SOD2 activity and a direct correlation with the severity of hypertension. Analysis of human subjects with essential hypertension showed 2.6-fold increase in SOD2 acetylation and 1.4-fold decrease in Sirt3 levels

  9. Immune adjuvants in early life: targeting the innate immune system to overcome impaired adaptive response.

    PubMed

    de Brito, Cyro Alves; Goldoni, Adriana Letícia; Sato, Maria Notomi

    2009-09-01

    The neonatal phase is a transitory period characterized by an absence of memory cells, favoring a slow adaptive response prone to tolerance effects and the development of Th2-type responses. However, when appropriately stimulated, neonates may achieve an immune response comparable with adult counterparts. One strategy to stimulate the immunological response of neonates or children in early infancy has been to explore natural or synthetic ligands of cell receptors to stimulate innate immunity. The use of adjuvants for activating different cell receptors may be the key to enhancing neonatal adaptive immunity. This review highlights recent advances in the emerging field of molecular adjuvants of innate immune response and their implications for the development of immunotherapies, with particular focus on the neonatal period.

  10. Increased nitric oxide production in lymphatic endothelial cells causes impairment of lymphatic drainage in cirrhotic rats.

    PubMed

    Ribera, Jordi; Pauta, Montse; Melgar-Lesmes, Pedro; Tugues, Sònia; Fernández-Varo, Guillermo; Held, Kara F; Soria, Guadalupe; Tudela, Raúl; Planas, Anna M; Fernández-Hernando, Carlos; Arroyo, Vicente; Jiménez, Wladimiro; Morales-Ruiz, Manuel

    2013-01-01

    The lymphatic network plays a major role in maintaining tissue fluid homoeostasis. Therefore several pathological conditions associated with oedema formation result in deficient lymphatic function. However, the role of the lymphatic system in the pathogenesis of ascites and oedema formation in cirrhosis has not been fully clarified. The aim of this study was to investigate whether the inability of the lymphatic system to drain tissue exudate contributes to the oedema observed in cirrhosis. Cirrhosis was induced in rats by CCl(4) inhalation. Lymphatic drainage was evaluated using fluorescent lymphangiography. Expression of endothelial nitric oxide synthase (eNOS) was measured in primary lymphatic endothelial cells (LyECs). Inhibition of eNOS activity in cirrhotic rats with ascites (CH) was carried out by L-N(G)-methyl-L-arginine (L-NMMA) treatment (0.5 mg/kg/day). The (CH) rats had impaired lymphatic drainage in the splanchnic and peripheral regions compared with the control (CT) rats. LyECs isolated from the CH rats showed a significant increase in eNOS and nitric oxide (NO) production. In addition, the lymphatic vessels of the CH rats showed a significant reduction in smooth muscle cell (SMC) coverage compared with the CT rats. CH rats treated with L-NMMA for 7 days showed a significant improvement in lymphatic drainage and a significant reduction in ascites volume, which were associated with increased plasma volume. This beneficial effect of L-NMMA inhibition was also associated with a significant increase in lymphatic SMC coverage. The upregulation of eNOS in the LyECs of CH rats causes long-term lymphatic remodelling, which is characterised by a loss of SMC lymphatic coverage. The amelioration of this lymphatic abnormality by chronic eNOS inhibition results in improved lymphatic drainage and reduced ascites.

  11. CD71(+) erythroid suppressor cells impair adaptive immunity against Bordetella pertussis.

    PubMed

    Namdar, Afshin; Koleva, Petya; Shahbaz, Shima; Strom, Stacy; Gerdts, Volker; Elahi, Shokrollah

    2017-08-10

    Infant's immune system cannot control infection or respond to vaccination as efficiently as older individuals, a phenomenon that has been attributed to immunological immaturity. Recently, we challenged this notion and proposed the presence of actively immunosuppressive and physiologically enriched CD71(+) erythroid cells in neonates. Here we utilized Bordetella pertussis, a common neonatal respiratory tract pathogen, as a proof of concept to investigate the role of these cells in adaptive immunity. We observed that CD71(+) cells have distinctive immunosuppressive properties and prevent recruitment of immune cells to the mucosal site of infection. CD71(+) cells ablation unleashed induction of B. pertussis-specific protective cytokines (IL-17 and IFN-γ) in the lungs and spleen upon re-infection or vaccination. We also found that CD71(+) cells suppress systemic and mucosal B. pertussis-specific antibody responses. Enhanced antigen-specific adaptive immunity following CD71(+) cells depletion increased resistance of mice to B. pertussis infection. Furthermore, we found that human cord blood CD71(+) cells also suppress T and B cell functions in vitro. Collectively, these data provide important insight into the role of CD71(+) erythroid cells in adaptive immunity. We anticipate our results will spark renewed investigation in modulating the function of these cells to enhance host defense to infections in newborns.

  12. Adaptation and validation of the Spanish version of the Clinical Impairment Assessment Questionnaire.

    PubMed

    Martín, Josune; Padierna, Angel; Unzurrunzaga, Anette; González, Nerea; Berjano, Belén; Quintana, José M

    2015-08-01

    The Clinical Impairment Assessment (CIA) assesses psychosocial impairment secondary to an eating disorder. The aim of this study was to create and validate a Spanish-language version of the CIA. Using a forward-backward translation methodology, we translated the CIA into Spanish and evaluated its psychometric characteristics in a clinical sample of 178 ED patients. Cronbach's alpha values, confirmatory factor analysis (CFA), and correlations between the CIA and the Eating Attitudes Test-12 and the Health-Related Quality of Life in ED-short form questionnaires evaluated the reliability, construct validity, and convergent validity, respectively. Known-groups validity was also studied comparing the CIA according to different groups; responsiveness was assessed by means of effect sizes. Data revealed a three-factor structure similar to that of the original CIA. Cronbach alpha coefficient of 0.91 for the total CIA score supported its internal consistency and correlations with other instruments demonstrated convergent validity. The total CIA score and factor scores also significantly discriminated between employment status, evidencing known-groups validity. Responsiveness parameters showed moderate changes for patients with restrictive eating disorders. These findings suggest that the CIA can be reliably and validly used in Spain in a number of different clinical contexts, by researchers and clinicians alike.

  13. Vitamin E prevents high-fat high-carbohydrates diet-induced memory impairment: the role of oxidative stress.

    PubMed

    Alzoubi, Karem H; Khabour, Omar F; Salah, Heba A; Hasan, Zuheir

    2013-07-02

    Memory and learning are impaired by imbalanced diet consumption. High-fat high-carbohydrate diet (HFCD) induces oxidative stress, which results in neuronal damage and interference with synaptic transmission; hence, a decline in cognitive function. Vitamin E is a fat soluble antioxidant that is believed to have positive effects on learning and memory. In this study, we tested the hypothesis that chronic administration of vitamin E prevents learning and memory impairment induced by HFCD. In addition, possible molecular targets for HFCD, and vitamin E that lead to cognitive effects were examined. Vitamin E and/or HFCD were concurrently administered to animals for 6 weeks. Thereafter, behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM). Additionally, brain derived neurotrophic factor (BDNF) level and antioxidant markers were assessed in the hippocampus. The results of this project revealed that HFCD impairs both short-term and long-term memories (p<0.05). The administration of vitamin E prevented the memory impairment induced by HFCD consumption (p<0.05). The consumption of HFCD reduced activities of hippocampal superoxide dismutase (SOD) and catalase (p<0.05); whereas the levels of thiobarbituric acid reactive substances (TBARS) and oxidized glutathione (GSSG) were elevated (p<0.05). The administration of vitamin E normalized the effect of HFCD on the oxidative stress markers. None of the treatments induced changes in the levels of BDNF or glutathione peroxidase (GPx). In conclusion, HFCD induces memory impairment, and the administration of vitamin E prevented this impairment probably through normalizing antioxidant mechanisms in the hippocampus.

  14. [Role of restricted nitric oxide overproduction in the cardioprotective effect of adaptation to intermittent hypoxia].

    PubMed

    goriacheva, A V; Belkina, L M; Terekhina, O L; Dawney, H F; Mallet, R T; Smirin, B V; Smirnova, E A; Mashina, S Iu; Manukhina, E B

    2012-01-01

    Adaptation to intermittent normobaric hypoxia is cardioprotective and can stimulate nitric oxide (NO) synthesis. However the role of nitric oxide (NO) in prevention of ischemia-reperfusion (IR) injury of myocardium is controversial. This study was focused on evaluating the effect of adaptation to hypoxia and IR on NO production and development of nitrative stress in the myocardium. Adaptation to hypoxia tended to increase NO production, which was determined by the total level of plasma nitrite and nitrate, and prevented IR-induced NO overproduction. The IR-induced NO overproduction was associated with significant 3-nitrotyrosine (3-NT) accumulation in the left ventricle but not in septum or aorta. In hypoxia-adapted rats, 3-NT after IR was similar to that of control rats without IR. IHC induced marked accumulation of HIF-1alpha in the left ventricle. We suggest that HIF-1alpha contributes to NO-synthase expression during adaptation to hypoxia and thereby facilitates the increase in NO production. NO, in turn, may subsequently prevent NO overproduction during IR by a negative feedback mechanism.

  15. Systemic oxidative stress and conversion to dementia of elderly patients with mild cognitive impairment.

    PubMed

    Cervellati, Carlo; Romani, Arianna; Seripa, Davide; Cremonini, Eleonora; Bosi, Cristina; Magon, Stefania; Bergamini, Carlo M; Valacchi, Giuseppe; Pilotto, Alberto; Zuliani, Giovanni

    2014-01-01

    Mild cognitive impairment (MCI) is regarded as a prodromal phase of late onset Alzheimer's disease (LOAD). It has been proposed that oxidative stress (OxS) might be implicated in the pathogenesis of LOAD. The aim of this study was to investigate whether a redox imbalance measured as serum level of hydroperoxides (i.e., by-products of lipid peroxidation) and/or serum antioxidant capacity might be predictive of the clinical progression of MCI to LOAD. The levels of these two markers were measured in 111 patients with MCI (follow-up: 2.0 ± 0.6 years), 105 patients with LOAD, and 118 nondemented healthy controls. Multivariate analysis adjusted for potential confounding factors, including age, gender, smoking, and comorbidities, showed a significant increase (P < 0.05) in baseline levels of OxS in MCI and LOAD as compared to cognitive healthy controls. No differences in either of OxS markers were found by comparing MCI patients who converted (n = 29) or not converted (n = 82) to LOAD. Overall, these results suggest that systemic OxS might be a precocious feature of MCI and LOAD. However, the role of OxS as an early prognostic marker of progression to LOAD needs further investigations.

  16. Systemic Oxidative Stress and Conversion to Dementia of Elderly Patients with Mild Cognitive Impairment

    PubMed Central

    Romani, Arianna; Seripa, Davide; Cremonini, Eleonora; Bosi, Cristina; Magon, Stefania; Bergamini, Carlo M.; Pilotto, Alberto; Zuliani, Giovanni

    2014-01-01

    Mild cognitive impairment (MCI) is regarded as a prodromal phase of late onset Alzheimer's disease (LOAD). It has been proposed that oxidative stress (OxS) might be implicated in the pathogenesis of LOAD. The aim of this study was to investigate whether a redox imbalance measured as serum level of hydroperoxides (i.e., by-products of lipid peroxidation) and/or serum antioxidant capacity might be predictive of the clinical progression of MCI to LOAD. The levels of these two markers were measured in 111 patients with MCI (follow-up: 2.0 ± 0.6 years), 105 patients with LOAD, and 118 nondemented healthy controls. Multivariate analysis adjusted for potential confounding factors, including age, gender, smoking, and comorbidities, showed a significant increase (P < 0.05) in baseline levels of OxS in MCI and LOAD as compared to cognitive healthy controls. No differences in either of OxS markers were found by comparing MCI patients who converted (n = 29) or not converted (n = 82) to LOAD. Overall, these results suggest that systemic OxS might be a precocious feature of MCI and LOAD. However, the role of OxS as an early prognostic marker of progression to LOAD needs further investigations. PMID:24524075

  17. Impaired cerebral mitochondrial oxidative phosphorylation function in a rat model of ventricular fibrillation and cardiopulmonary resuscitation.

    PubMed

    Jiang, Jun; Fang, Xiangshao; Fu, Yue; Xu, Wen; Jiang, Longyuan; Huang, Zitong

    2014-01-01

    Postcardiac arrest brain injury significantly contributes to mortality and morbidity in patients suffering from cardiac arrest (CA). Evidence that shows that mitochondrial dysfunction appears to be a key factor in tissue damage after ischemia/reperfusion is accumulating. However, limited data are available regarding the cerebral mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) and its relationship to the alterations of high-energy phosphate. Here, we sought to identify alterations of mitochondrial morphology and oxidative phosphorylation function as well as high-energy phosphates during CA and CPR in a rat model of ventricular fibrillation (VF). We found that impairment of mitochondrial respiration and partial depletion of adenosine triphosphate (ATP) and phosphocreatine (PCr) developed in the cerebral cortex and hippocampus following a prolonged cardiac arrest. Optimal CPR might ameliorate the deranged phosphorus metabolism and preserve mitochondrial function. No obvious ultrastructural abnormalities of mitochondria have been found during CA. We conclude that CA causes cerebral mitochondrial dysfunction along with decay of high-energy phosphates, which would be mitigated with CPR. This study may broaden our understanding of the pathogenic processes underlying global cerebral ischemic injury and provide a potential therapeutic strategy that aimed at preserving cerebral mitochondrial function during CA.

  18. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    PubMed

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems. © 2015 SETAC.

  19. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII.

    PubMed

    Zhang, Lei; Zhang, Hu-Qin; Liang, Xiang-Yan; Zhang, Hai-Feng; Zhang, Ting; Liu, Fang-E

    2013-11-01

    Sleep deprivation (SD) has been shown to induce oxidative stress which causes cognitive impairment. Melatonin, an endogenous potent antioxidant, protects neurons from oxidative stress in many disease models. The present study investigated the effect of melatonin against SD-induced cognitive impairment and attempted to define the possible mechanisms involved. SD was induced in rats using modified multiple platform model. Melatonin (15 mg/kg) was administered to the rats via intraperitoneal injection. The open field test and Morris water maze were used to evaluate cognitive ability. The cerebral cortex (CC) and hippocampus were dissected and homogenized. Nitric oxide (NO) and malondialdehyde (MDA) levels and the superoxide dismutase (SOD) enzyme activity of hippocampal and cortical tissues (10% wet weight per volume) were performed to determine the level of oxidative stress. The expression of brain-derived neurotrophic factor (BDNF) and calcium-calmodulin dependent kinase II (CaMKII) proteins in CC and hippocampus was assayed by means of immunohistochemistry. The results revealed that SD impairs cognitive ability, while melatonin treatment prevented these changes. In addition, melatonin reversed SD-induced changes in NO, MDA and SOD in both of the CC and hippocampus. The results of immunoreactivity showed that SD decreased gray values of BDNF and CaMKII in CC and hippocamal CA1, CA3 and dentate gyrus regions, whereas melatonin improved the gray values. In conclusion, our results suggest that melatonin prevents cognitive impairment induced by SD. The possible mechanism may be attributed to its ability to reduce oxidative stress and increase the levels of CaMKII and BDNF in CC and hippocampus.

  20. Functional impairment of skeletal muscle oxidative metabolism during knee extension exercise after bed rest

    PubMed Central

    Salvadego, Desy; Lazzer, Stefano; Marzorati, Mauro; Porcelli, Simone; Rejc, Enrico; Šimunič, Bostjan; Pišot, Rado; di Prampero, Pietro Enrico

    2011-01-01

    A functional evaluation of skeletal muscle oxidative metabolism during dynamic knee extension (KE) incremental exercises was carried out following a 35-day bed rest (BR) (Valdoltra 2008 BR campaign). Nine young male volunteers (age: 23.5 ± 2.2 yr; mean ± SD) were evaluated. Pulmonary gas exchange, heart rate and cardiac output (by impedance cardiography), skeletal muscle (vastus lateralis) fractional O2 extraction, and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined during incremental KE. Values at exhaustion were considered “peak”. Peak heart rate (147 ± 18 beats/min before vs. 146 ± 17 beats/min after BR) and peak cardiac output (17.8 ± 3.3 l/min before vs. 16.1 ± 1.8 l/min after BR) were unaffected by BR. As expected, brain oxygenation did not decrease during KE. Peak O2 uptake was lower after vs. before BR, both when expressed as liters per minute (0.99 ± 0.17 vs. 1.26 ± 0.27) and when normalized per unit of quadriceps muscle mass (46.5 ± 6.4 vs. 56.9 ± 11.0 ml·min−1·100 g−1). Skeletal muscle peak fractional O2 extraction, expressed as a percentage of the maximal values obtained during a transient limb ischemia, was lower after (46.3 ± 12.1%) vs. before BR (66.5 ± 11.2%). After elimination, by the adopted exercise protocol, of constraints related to cardiovascular O2 delivery, a decrease in peak O2 uptake and muscle peak capacity of fractional O2 extraction was found after 35 days of BR. These findings suggest a substantial impairment of oxidative function at the muscle level, “downstream” with respect to bulk blood flow to the exercising muscles, that is possibly at the level of blood flow distribution/O2 utilization inside the muscle, peripheral O2 diffusion, and intracellular oxidative metabolism. PMID:21921243

  1. A Systematic Review of the Literature on Parenting of Young Children with Visual Impairments and the Adaptions for Video-Feedback Intervention to Promote Positive Parenting (VIPP).

    PubMed

    van den Broek, Ellen G C; van Eijden, Ans J P M; Overbeek, Mathilde M; Kef, Sabina; Sterkenburg, Paula S; Schuengel, Carlo

    2017-01-01

    Secure parent-child attachment may help children to overcome the challenges of growing up with a visual or visual-and-intellectual impairment. A large literature exists that provides a blueprint for interventions that promote parental sensitivity and secure attachment. The Video-feedback Intervention to promote Positive Parenting (VIPP) is based on that blueprint. While it has been adapted to several specific at risk populations, children with visual impairment may require additional adjustments. This study aimed to identify the themes that should be addressed in adapting VIPP and similar interventions. A Delphi-consultation was conducted with 13 professionals in the field of visual impairment to select the themes for relationship-focused intervention. These themes informed a systematic literature search. Interaction, intersubjectivity, joint attention, exploration, play and specific behavior were the themes mentioned in the Delphi-group. Paired with visual impairment or vision disorders, infants or young children (and their parents) the search yielded 74 articles, making the six themes for intervention adaptation more specific and concrete. The rich literature on six visual impairment specific themes was dominated by the themes interaction, intersubjectivity, and joint attention. These themes need to be addressed in adapting intervention programs developed for other populations, such as VIPP which currently focuses on higher order constructs of sensitivity and attachment.

  2. Localization of nervonic acid beta-oxidation in human and rodent peroxisomes: impaired oxidation in Zellweger syndrome and X-linked adrenoleukodystrophy.

    PubMed

    Sandhir, R; Khan, M; Chahal, A; Singh, I

    1998-11-01

    Studies with purified subcellular organelles from rat liver indicate that nervonic acid (C24:1) is beta-oxidized preferentially in peroxisomes. Lack of effect by etomoxir, inhibitor of mitochondrial beta-oxidation, on beta-oxidation of lignoceric acid (C24:0), a peroxisomal function, and that of nervonic acid (24:1) compared to the inhibition of palmitic acid (16:0) oxidation, a mitochondrial function, supports the conclusion that nervonic acid is oxidized in peroxisomes. Moreover, the oxidation of nervonic and lignoceric acids was deficient in fibroblasts from patients with defects in peroxisomal beta-oxidation [Zellweger syndrome (ZS) and X-linked adrenoleukodystrophy (X-ALD)]. Similar to lignoceric acid, the activation and beta-oxidation of nervonic acid was deficient in peroxisomes isolated from X-ALD fibroblasts. Transfection of X-ALD fibroblasts with human cDNA encoding for ALDP (X-ALD gene product) restored the oxidation of both nervonic and lignoceric acids, demonstrating that the same molecular defect may be responsible for the abnormality in the oxidation of nervonic as well as lignoceric acid. Moreover, immunoprecipitation of activities for acyl-CoA ligase for both lignoceric acid and nervonic acid indicate that saturated and monoenoic very long chain (VLC) fatty acids may be activated by the same enzyme. These results clearly demonstrate that similar to saturated VLC fatty acids (e.g., lignoceric acid), VLC monounsaturated fatty acids (e.g., nervonic acid) are oxidized preferentially in peroxisomes and that this activity is impaired in X-ALD. In view of the fact that the oxidation of unsaturated VLC fatty acids is defective in X-ALD patients, the efficacy of dietary monoene therapy, "Lorenzo's oil," in X-ALD needs to be evaluated.

  3. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle

    PubMed Central

    Malkus, Kristen A; Tsika, Elpida; Ischiropoulos, Harry

    2009-01-01

    While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death. Using Parkinson's disease (PD) as the paradigm, this review explores the hypothesis that oxidative modifications, mitochondrial functional disruption, and impairment of protein degradation constitute three interrelated molecular pathways that execute neuron death. These intertwined events are the consequence of environmental exposure, genetic factors, and endogenous risks and constitute a "Bermuda triangle" that may be considered the underlying cause of neurodegenerative pathogenesis. PMID:19500376

  4. Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle.

    PubMed

    Malkus, Kristen A; Tsika, Elpida; Ischiropoulos, Harry

    2009-06-05

    While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death. Using Parkinson's disease (PD) as the paradigm, this review explores the hypothesis that oxidative modifications, mitochondrial functional disruption, and impairment of protein degradation constitute three interrelated molecular pathways that execute neuron death. These intertwined events are the consequence of environmental exposure, genetic factors, and endogenous risks and constitute a "Bermuda triangle" that may be considered the underlying cause of neurodegenerative pathogenesis.

  5. Lycopene protects against memory impairment and mito-oxidative damage induced by colchicine in rats: an evidence of nitric oxide signaling.

    PubMed

    Prakash, Atish; Kumar, Anil

    2013-12-05

    Oxidative-nitrosative stress and mitochondrial dysfunction plays an important role in the onset of various neurodegenerative diseases. Lycopene, a carotenoid antioxidant, has received considerable scientific interest in recent years. Present study was designed to evaluate the possible nitric oxide mechanism in protective effects of lycopene against the colchicine induced cognitive impairment and mito-oxidative damage in rats. Wistar rats were received i.c.v. colchicine (15 µg/5 µl). Lycopene (2.5 and 5mg/kg), NO modulators e.g. l-Arginine (50mg/kg) l-NAME (5mg/kg) administered for 21 days. Behavioural alterations were assessed in between study period. Animals were killed immediately following the last behavioral session, and mitochondrial enzymes, oxidative parameters, inflammatory mediators (TNF-α, IL-6) and caspase-3 activity were measured. I.C.V. administration of colchicine impaired memory performance in Morris water maze, oxidative defense and mitochondrial complex enzymes activities as compared to sham group. A significant increase of TNF-α, IL-6 and caspase-3 activity in hippocampus and cortex was also noted. Chronic treatment lycopene significantly improved memory retention and attenuated mito-oxidative damage parameters, inflammatory markers and apoptosis in colchicine treated rats. Further, l-arginine pretreatment with sub effective dose of lycopene significantly reversed the protective effect of lycopene. However, l-NAME pretreatment with sub effective dose of lycopene significantly potentiated the protective effect of lycopene which was significant as compared to their effect per se. These results suggest that lycopene exhibit a neuroprotective effect by accelerating brain anti-oxidant defense mechanisms and down regulating nitric oxide pathways. Thus, lycopene may be used as therapeutic agent in preventing complications in memory dysfunction.

  6. Adaptations to exercise training within skeletal muscle in adults with type 2 diabetes or impaired glucose tolerance: a systematic review.

    PubMed

    Wang, Yi; Simar, David; Fiatarone Singh, Maria A

    2009-01-01

    The aim of this investigation was to review morphological and metabolic adaptations within skeletal muscle to exercise training in adults with type 2 diabetes mellitus (T2DM) or impaired glucose tolerance (IGT). A comprehensive, systematic database search for manuscripts was performed from 1966 to March 2008 using computerized databases, including Medline, Premedline, CINAHL, AMED, EMBASE and SportDiscus. Three reviewers independently assessed studies for potential inclusion (exposure to exercise training, T2DM or IGT, muscle biopsy performed). A total of 18 exercise training studies were reviewed. All morphological and metabolic outcomes from muscle biopsies were collected. The metabolic outcomes were divided into six domains: glycogen, glucose facilitated transporter 4 (GLUT4) and insulin signalling, enzymes, markers of inflammation, lipids metabolism and so on. Beneficial adaptations to exercise were seen primarily in muscle fiber area and capillary density, glycogen, glycogen synthase and GLUT4 protein expressions. Few randomized controlled trials including muscle biopsy data existed, with a small number of subjects involved. More trials, especially robustly designed exercise training studies, are needed in this field. Future research should focus on the insulin signalling pathway to better understand the mechanism of the improvements in insulin sensitivity and glucose homeostasis in response to various modalities and doses of exercise in this cohort.

  7. Cobalamin inactivation by nitrous oxide produces severe neurological impairment in fruit bats: protection by methionine and aggravation by folates

    SciTech Connect

    van der Westhuyzen, J.; Fernandes-Costa, F.; Metz, J.

    1982-11-01

    Nitrous oxide, which inactivates cobalamin when administered to fruit bats, results in severe neurological impairment leading to ataxia, paralysis and death. This occurs after about 6 weeks in animals depleted of cobalamin by dietary restriction, and after about 10 weeks in cobalamin replete bats. Supplementation of the diet with pteroylglutamic acid caused acceleration of the neurological impairment--the first unequivocal demonstration of aggravation of the neurological lesion in cobalamin deficiency by pteroylglutamic acid. The administration of formyltetrahydropteroylglutamic acid produced similar aggravation of the neurological lesion. Supplementation of the diet with methionine protected the bats from neurological impairment, but failed to prevent death. Methionine supplementation protected against the exacerbating effect of folate, preventing the development of neurological changes. These findings lend support to the hypothesis that the neurological lesion in cobalamin deficiency may be related to a deficiency in the methyl donor S-adenosylmethionine which follows diminished synthesis of methionine.

  8. Genome-wide transcriptional responses to a lipid hydroperoxide: adaptation occurs without induction of oxidant defenses.

    PubMed

    Alic, Nazif; Felder, Thomas; Temple, Mark D; Gloeckner, Christian; Higgins, Vincent J; Briza, Peter; Dawes, Ian W

    2004-07-01

    Free radicals can initiate the oxidation of polyunsaturated fatty acids in cells through the process of lipid peroxidation. The genome-wide transcriptional changes in Saccharomyces cerevisiae after treatment with the toxic lipid peroxidation product linoleic acid hydroperoxide (LoaOOH) were identified. High-dose treatment led to a switch in transcription from biosynthetic to protective functions. This response encompassed a set of genes stimulated predominantly by LoaOOH, and not by other oxidants or heat shock, which contained components of the pleiotropic drug resistance system. The dose dependence of the transcriptional response revealed that large and widespread changes occur only in response to higher doses. Pretreatment of cells with sublethal doses of LoaOOH induces resistance to an otherwise lethal dose through the process of adaptation. Adaptive doses elicited a more subtle transcriptional response affecting metabolic functions, including an increase in the capacity for detoxification and downregulation of the rate of protein synthesis. Surprisingly, the cellular response to adaptive doses did not include induction of oxidative-stress defense enzymes nor of transcripts involved in general cellular defense systems.

  9. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress.

    PubMed

    Glorieux, Christophe; Sandoval, Juan Marcelo; Fattaccioli, Antoine; Dejeans, Nicolas; Garbe, James C; Dieu, Marc; Verrax, Julien; Renard, Patricia; Huang, Peng; Calderon, Pedro Buc

    2016-10-01

    Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H2O2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H2O2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells.

  10. Nitric oxide pathway activity modulation alters the protective effects of (-)Epigallocatechin-3-gallate on reserpine-induced impairment in rats.

    PubMed

    Chen, Cheng-Neng; Chang, Kuo-Chi; Lin, Rui-Feng; Wang, Mao-Hsien; Shih, Ruoh-Lan; Tseng, Hsiang-Chien; Soung, Hung-Sheng; Tsai, Cheng-Chia

    2016-05-15

    Reserpine (RES) has been reported to increase the brain's neural oxidative stress and cause cognitive dysfunction. Having powerful antioxidative properties, green tea catechins, especially (-)epigallocatechin-3-gallate (EGCG), are able to protect against many oxidative injuries. In this study, we examined the protecting properties of EGCG on RES-induced impairment of short-term memory in three-month-old male Wistar rats. RES (1mg/kg i.p.) induced memory impairment (p<0.001) as evaluated by the social recognition task. EGCG treatment (100mg/kg i.p. for 7days, starting 6days before RES injection) was able to improve the impaired memory caused by RES. RES treatment increased the nitric oxide (NO) level and lipid peroxidation (LPO) production, and decreased the antioxidation power in hippocampi. EGCG treatment was able to counteract the RES-induced NO level and LPO production, as well as enhanced the hippocampal antioxidation power in RES-treated rats. In order to examine the implication of NO pathway activity in RES treatment, either NO precursor (L-arginine; L-A) or NO synthase inhibitor (L-NAME; L-N) was co-pretreated with EGCG; NO precursor treatment eliminated the protective effect of EGCG, in contrast to that NO synthase inhibitor treatment significantly increased the EGCG effects on cognitive and biochemical protection in RES-treated rats. These results suggested that the NO pathway was implicated, at least in part, in the RES-induced impairment, as well as in the protective effect of EGCG in treating RES-induced impairment of memory. The above evidence provides a clinically relevant value for EGCG in preventing RES-induced cognitive dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Oxidative stress accelerates amyloid deposition and memory impairment in a double-transgenic mouse model of Alzheimer's disease.

    PubMed

    Kanamaru, Takuya; Kamimura, Naomi; Yokota, Takashi; Iuchi, Katsuya; Nishimaki, Kiyomi; Takami, Shinya; Akashiba, Hiroki; Shitaka, Yoshitsugu; Katsura, Ken-Ichiro; Kimura, Kazumi; Ohta, Shigeo

    2015-02-05

    Oxidative stress is known to play a prominent role in the onset and early stage progression of Alzheimer's disease (AD). For example, protein oxidation and lipid peroxidation levels are increased in patients with mild cognitive impairment. Here, we created a double-transgenic mouse model of AD to explore the pathological and behavioral effects of oxidative stress. Double transgenic (APP/DAL) mice were constructed by crossing Tg2576 (APP) mice, which express a mutant form of human amyloid precursor protein (APP), with DAL mice expressing a dominant-negative mutant of mitochondrial aldehyde dehydrogenase 2 (ALDH2), in which oxidative stress is enhanced. Y-maze and object recognition tests were performed at 3 and 6 months of age to evaluate learning and memory. The accumulation of amyloid plaques, deposition of phosphorylated-tau protein, and number of astrocytes in the brain were assessed histopathologically at 3, 6, 9, and 12-15 months of age. The life span of APP/DAL mice was significantly shorter than that of APP or DAL mice. In addition, they showed accelerated amyloid deposition, tau phosphorylation, and gliosis. Furthermore, these mice showed impaired performance on Y-maze and object recognition tests at 3 months of age. These data suggest that oxidative stress accelerates cognitive dysfunction and pathological insults in the brain. APP/DAL mice could be a useful model for exploring new approaches to AD treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Adaptive cluster expansion approach for predicting the structure evolution of graphene oxide

    SciTech Connect

    Li, Xi-Bo; Guo, Pan; Wang, D.; Liu, Li-Min; Zhang, Yongsheng

    2014-12-14

    An adaptive cluster expansion (CE) method is used to explore surface adsorption and growth processes. Unlike the traditional CE method, suitable effective cluster interaction (ECI) parameters are determined, and then the selected fixed number of ECIs is continually optimized to predict the stable configurations with gradual increase of adatom coverage. Comparing with traditional CE method, the efficiency of the adaptive CE method could be greatly enhanced. As an application, the adsorption and growth of oxygen atoms on one side of pristine graphene was carefully investigated using this method in combination with first-principles calculations. The calculated results successfully uncover the structural evolution of graphene oxide for the different numbers of oxygen adatoms on graphene. The aggregation behavior of the stable configurations for different oxygen adatom coverages is revealed for increasing coverages of oxygen atoms. As a targeted method, adaptive CE can also be applied to understand the evolution of other surface adsorption and growth processes.

  13. Systemic Retinaldehyde Treatment Corrects Retinal Oxidative Stress, Rod Dysfunction, and Impaired Visual Performance in Diabetic Mice.

    PubMed

    Berkowitz, Bruce A; Kern, Timothy S; Bissig, David; Patel, Priya; Bhatia, Ankit; Kefalov, Vladimir J; Roberts, Robin

    2015-10-01

    Diabetes appears to induce a visual cycle defect because rod dysfunction is correctable with systemic treatment of the visual cycle chromophore 11-cis-retinaldehyde. However, later studies have found no evidence for visual cycle impairment. Here, we further examined whether photoreceptor dysfunction is corrected with 11-cis-retinaldehyde. Because antioxidants correct photoreceptor dysfunction in diabetes, the hypothesis that exogenous visual chromophores have antioxidant activity in the retina of diabetic mice in vivo was tested. Rod function in 2-month-old diabetic mice was evaluated using transretinal electrophysiology in excised retinas and apparent diffusion coefficient (ADC) MRI to measure light-evoked expansion of subretinal space (SRS) in vivo. Optokinetic tracking was used to evaluate cone-based visual performance. Retinal production of superoxide free radicals, generated mostly in rod cells, was biochemically measured with lucigenin. Diabetic mice were systemically treated with a single injection of either 11-cis-retinaldehyde, 9-cis-retinaldehyde (a chromophore surrogate), or all-trans-retinaldehyde (the photoisomerization product of 11-cis-retinaldehyde). Consistent with previous reports, diabetes significantly reduced (1) dark-adapted rod photo responses (transretinal recording) by ∼18%, (2) rod-dominated light-stimulated SRS expansion (ADC MRI) by ∼21%, and (3) cone-dominated contrast sensitivity (using optokinetic tracking [OKT]) by ∼30%. Both 11-cis-retinaldehyde and 9-cis-retinaldehyde largely corrected these metrics of photoreceptor dysfunction. Higher-than-normal retinal superoxide production in diabetes by ∼55% was also significantly corrected following treatment with 11-cis-retinaldehyde, 9-cis-retinaldehyde, or all-trans-retinaldehyde. Collectively, data suggest that retinaldehydes improve photoreceptor dysfunction in diabetic mice, independent of the visual cycle, via an antioxidant mechanism.

  14. Systemic Retinaldehyde Treatment Corrects Retinal Oxidative Stress, Rod Dysfunction, and Impaired Visual Performance in Diabetic Mice

    PubMed Central

    Berkowitz, Bruce A.; Kern, Timothy S.; Bissig, David; Patel, Priya; Bhatia, Ankit; Kefalov, Vladimir J.; Roberts, Robin

    2015-01-01

    Purpose Diabetes appears to induce a visual cycle defect because rod dysfunction is correctable with systemic treatment of the visual cycle chromophore 11-cis-retinaldehyde. However, later studies have found no evidence for visual cycle impairment. Here, we further examined whether photoreceptor dysfunction is corrected with 11-cis-retinaldehyde. Because antioxidants correct photoreceptor dysfunction in diabetes, the hypothesis that exogenous visual chromophores have antioxidant activity in the retina of diabetic mice in vivo was tested. Methods Rod function in 2-month-old diabetic mice was evaluated using transretinal electrophysiology in excised retinas and apparent diffusion coefficient (ADC) MRI to measure light-evoked expansion of subretinal space (SRS) in vivo. Optokinetic tracking was used to evaluate cone-based visual performance. Retinal production of superoxide free radicals, generated mostly in rod cells, was biochemically measured with lucigenin. Diabetic mice were systemically treated with a single injection of either 11-cis-retinaldehyde, 9-cis-retinaldehyde (a chromophore surrogate), or all-trans-retinaldehyde (the photoisomerization product of 11-cis-retinaldehyde). Results Consistent with previous reports, diabetes significantly reduced (1) dark-adapted rod photo responses (transretinal recording) by ∼18%, (2) rod-dominated light-stimulated SRS expansion (ADC MRI) by ∼21%, and (3) cone-dominated contrast sensitivity (using optokinetic tracking [OKT]) by ∼30%. Both 11-cis-retinaldehyde and 9-cis-retinaldehyde largely corrected these metrics of photoreceptor dysfunction. Higher-than-normal retinal superoxide production in diabetes by ∼55% was also significantly corrected following treatment with 11-cis-retinaldehyde, 9-cis-retinaldehyde, or all-trans-retinaldehyde. Conclusions Collectively, data suggest that retinaldehydes improve photoreceptor dysfunction in diabetic mice, independent of the visual cycle, via an antioxidant mechanism. PMID

  15. Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse.

    PubMed

    Nakajima, Akira; Aoyama, Yuki; Nguyen, Thuy-Ty Lan; Shin, Eun-Joo; Kim, Hyoung-Chun; Yamada, Shinnosuke; Nakai, Tsuyoshi; Nagai, Taku; Yokosuka, Akihito; Mimaki, Yoshihiro; Ohizumi, Yasushi; Yamada, Kiyofumi

    2013-08-01

    Senescence-accelerated mouse prone 8 (SAMP8) is a model of aging characterized by the early onset of learning and memory impairment and various pathological features of Alzheimer's disease (AD). Our recent studies have demonstrated that nobiletin, a polymethoxylated flavone from citrus peels, ameliorates learning and memory impairment in olfactory-bulbectomized mice, amyloid precursor protein transgenic mice, and NMDA receptor antagonist-treated mice. Here, we present evidence that this natural compound improves age-related cognitive impairment and reduces oxidative stress and tau phosphorylation in SAMP8 mice. Treatment with nobiletin (10 or 50mg/kg) reversed the impairment of recognition memory and context-dependent fear memory in SAMP8 mice. Treatment with nobiletin also restored the decrease in the GSH/GSSG ratio in the brain of SAMP8 mice. In addition, increases in glutathione peroxidase and manganese-superoxide dismutase activities, as well as a decrease in protein carbonyl level, were observed in the brain of nobiletin-treated SAMP8 mice. Furthermore, nobiletin reduced tau phosphorylation in the hippocampus of SAMP8 mice. Together, the markedly beneficial effects of nobiletin represent a potentially useful treatment for ameliorating the learning and memory deficits, oxidative stress, and hyperphosphorylation of tau in aging as well as age-related neurodegenerative diseases such as AD.

  16. Calpain-3 Impairs Cell Proliferation and Stimulates Oxidative Stress-Mediated Cell Death in Melanoma Cells

    PubMed Central

    Moretti, Daniele; Del Bello, Barbara; Allavena, Giulia; Corti, Alessandro; Signorini, Cinzia; Maellaro, Emilia

    2015-01-01

    Calpain-3 is an intracellular cysteine protease, belonging to Calpain superfamily and predominantly expressed in skeletal muscle. In human melanoma cell lines and biopsies, we previously identified two novel splicing variants (hMp78 and hMp84) of Calpain-3 gene (CAPN3), which have a significant lower expression in vertical growth phase melanomas and, even lower, in metastases, compared to benign nevi. In the present study, in order to investigate the pathophysiological role played by the longer Calpain-3 variant, hMp84, in melanoma cells, we over-expressed it in A375 and HT-144 cells. In A375 cells, the enforced expression of hMp84 induces p53 stabilization, and modulates the expression of a few p53- and oxidative stress-related genes. Consistently, hMp84 increases the intracellular production of ROS (Reactive Oxygen Species), which lead to oxidative modification of phospholipids (formation of F2-isoprostanes) and DNA damage. Such events culminate in an adverse cell fate, as indicated by the decrease of cell proliferation and by cell death. To a different extent, either the antioxidant N-acetyl-cysteine or the p53 inhibitor, Pifithrin-α, recover cell viability and decrease ROS formation. Similarly to A375 cells, hMp84 over-expression causes inhibition of cell proliferation, cell death, and increase of both ROS levels and F2-isoprostanes also in HT-144 cells. However, in these cells no p53 accumulation occurs. In both cell lines, no significant change of cell proliferation and cell damage is observed in cells over-expressing the mutant hMp84C42S devoid of its enzymatic activity, suggesting that the catalytic activity of hMp84 is required for its detrimental effects. Since a more aggressive phenotype is expected to benefit from down-regulation of mechanisms impairing cell growth and survival, we envisage that Calpain-3 down-regulation can be regarded as a novel mechanism contributing to melanoma progression. PMID:25658320

  17. Tracing the trajectory of behavioral impairments and oxidative stress in an animal model of neonatal inflammation.

    PubMed

    MacRae, M; Macrina, T; Khoury, A; Migliore, M M; Kentner, A C

    2015-07-09

    Exposure to early-life inflammation results in time-of-challenge-dependent changes in both brain and behavior. The consequences of this neural and behavioral reprogramming are most often reported in adulthood. However, the trajectory for the expression of these various changes is not well delineated, particularly between the juvenile and adult phases of development. Moreover, interventions to protect against these neurodevelopmental disruptions are rarely evaluated. Here, female Sprague-Dawley rats were housed in either environmental enrichment (EE) or standard care (SC) and their male and female offspring were administered 50 μg/kg i.p. of lipopolysaccharide (LPS) or pyrogen-free saline in a dual-administration neonatal protocol. All animals maintained their respective housing assignments from breeding until the end of the study. LPS exposure on postnatal days (P) 3 and 5 of life resulted in differential expression of emotional and cognitive disruptions and evidence of oxidative stress across development. Specifically, social behavior was reduced in neonatal-treated (n)LPS animals at adolescence (P40), but not adulthood (P70). In contrast, male nLPS rats exhibited intact spatial memory as adolescents which was impaired in later life. Moreover, these males had decreased prefrontal cortex levels of glutathione at P40, which was normalized in adult animals. Notably, EE appeared to offer some protection against the consequences of inflammation on juvenile social behavior and fully prevented reduced glutathione levels in the juvenile prefrontal cortex. Combined, these time-dependent effects provide evidence that early-life inflammation interacts with other developmental variables, specifically puberty and EE, in the expression (and prevention) of select behavioral and molecular programs. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Protein restriction does not impair adaptations induced in cardiomyocytes by exercise in rats.

    PubMed

    Cabral, C A C; Natali, A J; Natali, A Y; Novaes, R D; Lavorato, V N; Drumond, L R; Carneiro Júnior, M A; Silva, M F; Quintão-Junior, J F; Gontijo, L N; Silva, C H O; Felix, L B; Silva, M E

    2013-11-01

    The effect of a treadmill running program on physical performance and morphofunctional adaptations was investigated in control and malnourished rats. Male 4-week old Wistar rats were randomized in groups of 12 animals: control trained (CT), control sedentary (CS), malnourished trained (MT) and malnourished sedentary (MS). Control and malnourished animals received chow with 12% protein or 6% protein, respectively. Trained groups were subjected to a treadmill running program for 8 weeks. Physical performance, biochemical parameters, cardiomyocytes morphology and biomechanics were determined. Malnourished animals presented reduction in body mass, serum levels of total protein, albumin and hemoglobin compared to the control groups. At 1 and 3 Hz cardiomyocytes from CT and MT showed higher cell shortening, speed of contraction and relaxation compared to the other groups. At 3 Hz cardiomyocytes from MS showed reduction in cell shortening and speed of contraction compared to CS. Protein restriction does not prevent the improvement in physical performance or cardiomyocytes biomechanical efficiency and growth in response to exercise. These findings could represent a modulatory effect of exercise to maintain cardiomyocyte growth at the expense of reducing the rate of body growth in order to ensure proper cellular function in conditions of cardiovascular overload imposed by exercise.

  19. Tactile Defensiveness and Impaired Adaptation of Neuronal Activity in the Fmr1 Knock-Out Mouse Model of Autism.

    PubMed

    He, Cynthia X; Cantu, Daniel A; Mantri, Shilpa S; Zeiger, William A; Goel, Anubhuti; Portera-Cailliau, Carlos

    2017-07-05

    Sensory hypersensitivity is a common symptom in autism spectrum disorders (ASDs), including fragile X syndrome (FXS), and frequently leads to tactile defensiveness. In mouse models of ASDs, there is mounting evidence of neuronal and circuit hyperexcitability in several brain regions, which could contribute to sensory hypersensitivity. However, it is not yet known whether or how sensory stimulation might trigger abnormal sensory processing at the circuit level or abnormal behavioral responses in ASD mouse models, especially during an early developmental time when experience-dependent plasticity shapes such circuits. Using a novel assay, we discovered exaggerated motor responses to whisker stimulation in young Fmr1 knock-out (KO) mice (postnatal days 14-16), a model of FXS. Adult Fmr1 KO mice actively avoided a stimulus that was innocuous to wild-type controls, a sign of tactile defensiveness. Using in vivo two-photon calcium imaging of layer 2/3 barrel cortex neurons expressing GCaMP6s, we found no differences between wild-type and Fmr1 KO mice in overall whisker-evoked activity, though 45% fewer neurons in young Fmr1 KO mice responded in a time-locked manner. Notably, we identified a pronounced deficit in neuronal adaptation to repetitive whisker stimulation in both young and adult Fmr1 KO mice. Thus, impaired adaptation in cortical sensory circuits is a potential cause of tactile defensiveness in autism.SIGNIFICANCE STATEMENT We use a novel paradigm of repetitive whisker stimulation and in vivo calcium imaging to assess tactile defensiveness and barrel cortex activity in young and adult Fmr1 knock-out mice, the mouse model of fragile X syndrome (FXS). We describe evidence of tactile defensiveness, as well as a lack of L2/3 neuronal adaptation in barrel cortex, during whisker stimulation. We propose that a defect in sensory adaptation within local neuronal networks, beginning at a young age and continuing into adulthood, likely contributes to sensory overreactivity

  20. N-acetylcysteine reverses existing cognitive impairment and increased oxidative stress in glutamate transporter type 3 deficient mice.

    PubMed

    Cao, L; Li, L; Zuo, Z

    2012-09-18

    Oxidative stress contributes significantly to brain aging. Animals lacking glutamate transporter type 3 (EAAT3) have a decreased level of glutathione, the major intracellular anti-oxidant, in neurons, and present with early onset of brain aging including brain atrophy and cognitive impairment at 11 months of age. Here, 12-month-old male EAAT3 knockout mice received intraperitoneal injection of N-acetylcysteine (NAC) at 150 mg/kg once every day for 4 weeks. NAC is a membrane permeable cysteine precursor that can work as a substrate for glutathione synthesis. EAAT3 knockout mice that received saline injection or did not receive any injection were also included in the study. EAAT3 knockout mice had significantly less freezing behavior than age- and gender-matched wild-type mice in context- and tone-related fear conditioning tests. The knockout mice also had decreased levels of glutathione and increased levels of 4-hydroxy-2-nonenal and proteins containing nitrotyrosine, indicators of oxidative stress, in the cerebral cortex and hippocampus. NAC but not saline injection attenuated these behavioral and biochemical changes in the EAAT3 knockout mice. These results suggest that improvement of anti-oxidative capacity in neurons reverses the existing cognitive impairment in aging brains, implying a potential role of glutathione replacement in cognitive improvement of aging population.

  1. Inhibitory effect of ethanol extract of Nannochloropsis oceanica on lipopolysaccharide-induced neuroinflammation, oxidative stress, amyloidogenesis and memory impairment

    PubMed Central

    Choi, Ji Yeon; Hwang, Chul Ju; Lee, Hee Pom; Kim, Hee Sik; Han, Sang-Bae; Hong, Jin Tae

    2017-01-01

    Oxidative stress and neuroinflammation is implicated in the pathogenesis and development of Alzheimer's disease (AD). Here, we investigated the suppressive possibility of ethanol extract of Nannochloropsis oceanica (N. oceanica) on memory deficiency along with the fundamental mechanisms in lipopolysaccharide (LPS)-treated mice model. Among several extracts of 32 marine microalgae, ethanol extract of N. oceanica showed the most significant inhibitory effect on nitric oxide (NO) generation, NF-κB activity and β-secretase activity in cultured BV-2 cells, neuronal cells and Raw 264.7 cells. Ethanol extract of N. oceanica (50, 100 mg/kg) also ameliorated LPS (250 μg/kg)-induced memory impairment. We also found that ethanol extract of N. oceanica inhibited the LPS-induced expression of iNOS and COX-2. Furthermore, the production of reactive oxygen species (ROS), malondialdehyde (MDA) level as well as glutathione (GSH) level was also decreased by treatment of ethanol extract of N.oceanica. The ethanol extract of N. oceanica also suppresses IκB degradation as well as p50 and p65 translocation into the nucleus in LPS-treated mice brain. Associated with the inhibitory effect on neuroinflammation and oxidative stress, ethanol extract of N. oceanica suppressed Aβ1-42 generation through down-regulation of APP and BACE1 expression in in vivo. These results suggest that ethanol extract of N. oceanica ameliorated memory impairment via anti-inflammatory, anti-oxidant and anti-amyloidogenic mechanisms. PMID:28489589

  2. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    PubMed

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  3. Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic.

    PubMed

    Alawi, Mashal; Lipski, André; Sanders, Tina; Pfeiffer, Eva Maria; Spieck, Eva

    2007-07-01

    Permafrost-affected soils of the Siberian Arctic were investigated with regard to identification of nitrite oxidizing bacteria active at low temperature. Analysis of the fatty acid profiles of enrichment cultures grown at 4 degrees C, 10 degrees C and 17 degrees C revealed a pattern that was different from that of known nitrite oxidizers but was similar to fatty acid profiles of Betaproteobacteria. Electron microscopy of two enrichment cultures grown at 10 degrees C showed prevalent cells with a conspicuous ultrastructure. Sequence analysis of the 16S rRNA genes allocated the organisms to a so far uncultivated cluster of the Betaproteobacteria, with Gallionella ferruginea as next related taxonomically described organism. The results demonstrate that a novel genus of chemolithoautotrophic nitrite oxidizing bacteria is present in polygonal tundra soils and can be enriched at low temperatures up to 17 degrees C. Cloned sequences with high sequence similarities were previously reported from mesophilic habitats like activated sludge and therefore an involvement of this taxon in nitrite oxidation in nonarctic habitats is suggested. The presented culture will provide an opportunity to correlate nitrification with nonidentified environmental clones in moderate habitats and give insights into mechanisms of cold adaptation. We propose provisional classification of the novel nitrite oxidizing bacterium as 'Candidatus Nitrotoga arctica'.

  4. Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil.

    PubMed

    Ke, Xiubin; Lu, Yahai

    2012-04-01

    Adaptation of microorganisms to the environment is a central theme in microbial ecology. The objective of this study was to investigate the response of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) to a soil medium shift. We employed two rice field soils collected from Beijing and Hangzhou, China. These soils contained distinct AOB communities dominated by Nitrosomonas in Beijing rice soil and Nitrosospira in Hangzhou rice soil. Three mixtures were generated by mixing equal quantities of Beijing soil and Hangzhou soil (BH), Beijing soil with sterilized Hangzhou soil (BSH), and Hangzhou soil with sterilized Beijing soil (HSB). Pure and mixed soils were permanently flooded, and the surface-layer soil where ammonia oxidation occurred was collected to determine the response of AOB and AOA to the soil medium shift. AOB populations increased during the incubation, and the rates were initially faster in Beijing soil than in Hangzhou soil. Nitrosospira (cluster 3a) and Nitrosomonas (communis cluster) increased with time in correspondence with ammonia oxidation in the Hangzhou and Beijing soils, respectively. The 'BH' mixture exhibited a shift from Nitrosomonas at day 0 to Nitrosospira at days 21 and 60 when ammonia oxidation became most active. In 'HSB' and 'BSH' mixtures, Nitrosospira showed greater stimulation than Nitrosomonas, both with and without N amendment. These results suggest that Nitrosospira spp. were better adapted to soil environment shifts than Nitrosomonas. Analysis of the AOA community revealed that the composition of AOA community was not responsive to the soil environment shifts or to nitrogen amendment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Impairment of neutrophil oxidative burst in children with sickle cell disease is associated with heme oxygenase-1.

    PubMed

    Evans, Ceri; Orf, Katharine; Horvath, Erzsebet; Levin, Michael; De La Fuente, Josu; Chakravorty, Subarna; Cunnington, Aubrey J

    2015-12-01

    Sickle cell disease is a risk factor for invasive bacterial infections, and splenic dysfunction is believed to be the main underlying cause. We have previously shown that the liberation of heme in acute hemolysis can induce heme oxygenase-1 during granulopoiesis, impairing the ability of developing neutrophils to mount a bactericidal oxidative burst, and increasing susceptibility to bacterial infection. We hypothesized that this may also occur with the chronic hemolysis of sickle cell disease, potentially contributing to susceptibility to infections. We found that neutrophil oxidative burst activity was significantly lower in treatment-naïve children with sickle cell disease compared to age-, gender- and ethnicity-matched controls, whilst degranulation was similar. The defect in neutrophil oxidative burst was quantitatively related to both systemic heme oxygenase-1 activity (assessed by carboxyhemoglobin concentration) and neutrophil mobilization. A distinct population of heme oxygenase-1-expressing cells was present in the bone marrow of children with sickle cell disease, but not in healthy children, with a surface marker profile consistent with neutrophil progenitors (CD49d(Hi) CD24(Lo) CD15(Int) CD16(Int) CD11b(+/-)). Incubation of promyelocytic HL-60 cells with the heme oxygenase-1 substrate and inducer, hemin, demonstrated that heme oxygenase-1 induction during neutrophilic differentiation could reduce oxidative burst capacity. These findings indicate that impairment of neutrophil oxidative burst activity in sickle cell disease is associated with hemolysis and heme oxygenase-1 expression. Neutrophil dysfunction might contribute to risk of infection in sickle cell disease, and measurement of neutrophil oxidative burst might be used to identify patients at greatest risk of infection, who might benefit from enhanced prophylaxis. Copyright© Ferrata Storti Foundation.

  6. The novel adaptive rotating beam test unmasks sensorimotor impairments in a transgenic mouse model of Parkinson's disease.

    PubMed

    Gerstenberger, Julia; Bauer, Anne; Helmschrodt, Christin; Richter, Angelika; Richter, Franziska

    2016-05-01

    Development of disease modifying therapeutics for Parkinson's disease (PD), the second most common neurodegenerative disorder, relies on availability of animal models which recapitulate the disease hallmarks. Only few transgenic mouse models, which mimic overexpression of alpha-synuclein, show dopamine loss, behavioral impairments and protein aggregation. Mice overexpressing human wildtype alpha-synuclein under the Thy-1 promotor (Thy1-aSyn) replicate these features. However, female mice do not exhibit a phenotype. This was attributed to a potentially lower transgene expression located on the X chromosome. Here we support that female mice overexpress human wildtype alpha-synuclein only about 1.5 fold in the substantia nigra, compared to about 3 fold in male mice. Since female Thy1-aSyn mice were shown previously to exhibit differences in corticostriatal communication and synaptic plasticity similar to their male counterparts we hypothesized that female mice use compensatory mechanisms and strategies to not show overt motor deficits despite an underlying endophenotype. In order to unmask these deficits we translated recent findings in PD patients that sensory abnormalities can enhance motor dysfunction into a novel behavioral test, the adaptive rotating beam test. We found that under changing sensory input female Thy1-aSyn mice showed an overt phenotype. Our data supports that the integration of sensorimotor information is likely a major contributor to symptoms of movement disorders and that even low levels of overexpression of human wildtype alpha-synuclein has the potential to disrupt processing of these information. The here described adaptive rotating beam test represents a sensitive behavioral test to detect moderate sensorimotor alterations in mouse models.

  7. Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics.

    PubMed

    Swomley, Aaron M; Butterfield, D Allan

    2015-10-01

    Alzheimer disease (AD) is a neurodegenerative disease with many known pathological features, yet there is still much debate into the exact cause and mechanisms for progression of this degenerative disorder. The amyloid-beta (Aβ)-induced oxidative stress hypothesis postulates that it is the oligomeric Aβ that inserts into membrane systems to initiate much of the oxidative stress observed in brain during the progression of the disease. In order to study the effects of oxidative stress on tissue from patients with AD and amnestic mild cognitive impairment (MCI), we have developed a method called redox proteomics that identifies specific brain proteins found to be selectively oxidized. Here, we discuss experimental findings of oxidatively modified proteins involved in three key cellular processes implicated in the pathogenesis of AD progression: energy metabolism, cell signaling and neurotransmission, as well as the proteasomal degradation pathways and antioxidant response systems. These proteomics studies conducted by our laboratory and others in the field shed light on the molecular changes imposed on the cells of AD and MCI brain, through the deregulated increase in oxidative/nitrosative stress inflicted by Aβ and mitochondrial dysfunction.

  8. Impaired acetylcholine-induced cutaneous vasodilation in young smokers: roles of nitric oxide and prostanoids.

    PubMed

    Fujii, Naoto; Reinke, Maggie C; Brunt, Vienna E; Minson, Christopher T

    2013-03-01

    Cigarette smoking attenuates acetylcholine (ACh)-induced cutaneous vasodilation in humans, but the underlying mechanisms are unknown. We tested the hypothesis that smokers have impaired nitric oxide (NO)- and cyclooxygenase (COX)-dependent cutaneous vasodilation to ACh infusion. Twelve young smokers, who have smoked more than 5.2 ± 0.7 yr with an average daily consumption of 11.4 ± 1.2 cigarettes, and 12 nonsmokers were tested. Age, body mass index, and resting mean arterial pressure were similar between the groups. Cutaneous vascular conductance (CVC) was evaluated as laser-Doppler flux divided by mean arterial pressure, normalized to maximal CVC (local heating to 43.0°C plus sodium nitroprusside administration). We evaluated the increase in CVC from baseline to peak (CVCΔpeak) and area under the curve of CVC (CVCAUC) during a bolus infusion (1 min) of 137.5 μM ACh at four intradermal microdialysis sites: 1) Ringer (control), 2) 10 mM N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor), 3) 10 mM ketorolac (COX inhibitor), and 4) combination of l-NAME + ketorolac. CVCΔpeak and CVCAUC at the Ringer site in nonsmokers were greater than in smokers (CVCΔpeak, 42.9 ± 5.1 vs. 22.3 ± 3.5%max, P < 0.05; and CVCAUC, 8,085 ± 1,055 vs. 3,145 ± 539%max·s, P < 0.05). In nonsmokers, CVCΔpeak and CVCAUC at the l-NAME site were lower than the Ringer site (CVCΔpeak, 29.5 ± 6.2%max, P < 0.05; and CVCAUC, 5,377 ± 1,109%max·s, P < 0.05), but in smokers, there were no differences between the Ringer and l-NAME sites (CVCΔpeak, 16.8 ± 4.3%max, P = 0.11; and CVCAUC, 2,679 ± 785%max·s, P = 0.30). CVCΔpeak and CVCAUC were reduced with ketorolac in nonsmokers (CVCΔpeak, 13.3 ± 3.6%max, P < 0.05; and CVCAUC, 1,967 ± 527%max·s, P < 0.05) and smokers (CVCΔpeak, 7.8 ± 1.8%max, P < 0.05; and CVCAUC, 1,246 ± 305%max·s, P < 0.05) and at the combination site in nonsmokers (CVCΔpeak, 15.9 ± 3.1%max, P < 0.05; and CVCAUC, 2,660 ± 512%max·s, P < 0

  9. Impaired acetylcholine-induced cutaneous vasodilation in young smokers: roles of nitric oxide and prostanoids

    PubMed Central

    Fujii, Naoto; Reinke, Maggie C.; Brunt, Vienna E.

    2013-01-01

    Cigarette smoking attenuates acetylcholine (ACh)-induced cutaneous vasodilation in humans, but the underlying mechanisms are unknown. We tested the hypothesis that smokers have impaired nitric oxide (NO)- and cyclooxygenase (COX)-dependent cutaneous vasodilation to ACh infusion. Twelve young smokers, who have smoked more than 5.2 ± 0.7 yr with an average daily consumption of 11.4 ± 1.2 cigarettes, and 12 nonsmokers were tested. Age, body mass index, and resting mean arterial pressure were similar between the groups. Cutaneous vascular conductance (CVC) was evaluated as laser-Doppler flux divided by mean arterial pressure, normalized to maximal CVC (local heating to 43.0°C plus sodium nitroprusside administration). We evaluated the increase in CVC from baseline to peak (CVCΔpeak) and area under the curve of CVC (CVCAUC) during a bolus infusion (1 min) of 137.5 μM ACh at four intradermal microdialysis sites: 1) Ringer (control), 2) 10 mM NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor), 3) 10 mM ketorolac (COX inhibitor), and 4) combination of l-NAME + ketorolac. CVCΔpeak and CVCAUC at the Ringer site in nonsmokers were greater than in smokers (CVCΔpeak, 42.9 ± 5.1 vs. 22.3 ± 3.5%max, P < 0.05; and CVCAUC, 8,085 ± 1,055 vs. 3,145 ± 539%max·s, P < 0.05). In nonsmokers, CVCΔpeak and CVCAUC at the l-NAME site were lower than the Ringer site (CVCΔpeak, 29.5 ± 6.2%max, P < 0.05; and CVCAUC, 5,377 ± 1,109%max·s, P < 0.05), but in smokers, there were no differences between the Ringer and l-NAME sites (CVCΔpeak, 16.8 ± 4.3%max, P = 0.11; and CVCAUC, 2,679 ± 785%max·s, P = 0.30). CVCΔpeak and CVCAUC were reduced with ketorolac in nonsmokers (CVCΔpeak, 13.3 ± 3.6%max, P < 0.05; and CVCAUC, 1,967 ± 527%max·s, P < 0.05) and smokers (CVCΔpeak, 7.8 ± 1.8%max, P < 0.05; and CVCAUC, 1,246 ± 305%max·s, P < 0.05) and at the combination site in nonsmokers (CVCΔpeak, 15.9 ± 3.1%max, P < 0.05; and CVCAUC, 2,660 ± 512%max·s, P < 0.05) and

  10. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence.

    PubMed

    Tai, Haoran; Wang, Zhe; Gong, Hui; Han, Xiaojuan; Zhou, Jiao; Wang, Xiaobo; Wei, Xiawei; Ding, Yi; Huang, Ning; Qin, Jianqiong; Zhang, Jie; Wang, Shuang; Gao, Fei; Chrzanowska-Lightowlers, Zofia M; Xiang, Rong; Xiao, Hengyi

    2017-01-02

    Macroautophagy/autophagy has profound implications for aging. However, the true features of autophagy in the progression of aging remain to be clarified. In the present study, we explored the status of autophagic flux during the development of cell senescence induced by oxidative stress. In this system, although autophagic structures increased, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence and the activity of lysosomal proteolytic enzymes all decreased in senescent cells, indicating impaired autophagic flux with lysosomal dysfunction. The influence of autophagy activity on senescence development was confirmed by both positive and negative autophagy modulators; and MTOR-dependent autophagy activators, rapamycin and PP242, efficiently suppressed cellular senescence through a mechanism relevant to restoring autophagic flux. By time-phased treatment of cells with the antioxidant N-acetylcysteine (NAC), the mitochondria uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and ambroxol, a reagent with the effect of enhancing lysosomal enzyme maturation, we found that mitochondrial dysfunction plays an initiating role, while lysosomal dysfunction is more directly responsible for autophagy impairment and senescence. Interestingly, the effect of rapamycin on autophagy flux is linked to its role in functional revitalization of both mitochondrial and lysosomal functions. Together, this study demonstrates that autophagy impairment is crucial for oxidative stress-induced cell senescence, thus restoring autophagy activity could be a promising way to retard senescence.

  11. The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress.

    PubMed

    Pomatto, Laura C D; Carney, Caroline; Shen, Brenda; Wong, Sarah; Halaszynski, Kelly; Salomon, Matthew P; Davies, Kelvin J A; Tower, John

    2017-01-09

    Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However, a possible molecular mechanism for the sex bias in physiological adaptation to oxidative stress remains unclear. Here, we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex requires the conserved mitochondrial Lon protease and is associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress is lost with age in both sexes. Transgenic expression of transformer gene during development transforms chromosomal males into pseudo-females and confers the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction, and H2O2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminates the female-specific Lon isoform expression, Lon proteolytic activity induction, and H2O2 stress adaptation and produces the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual dimorphism in human disease.

  12. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response

    PubMed Central

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-01-01

    Objective To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. Design We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Results Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. Conclusions We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. PMID:26838600

  13. Prenatal acetaminophen affects maternal immune and endocrine adaptation to pregnancy, induces placental damage, and impairs fetal development in mice.

    PubMed

    Thiele, Kristin; Solano, M Emilia; Huber, Samuel; Flavell, Richard A; Kessler, Timo; Barikbin, Roja; Jung, Roman; Karimi, Khalil; Tiegs, Gisa; Arck, Petra C

    2015-10-01

    Acetaminophen (APAP; ie, Paracetamol or Tylenol) is generally self-medicated to treat fever or pain and recommended to pregnant women by their physicians. Recent epidemiological studies reveal an association between prenatal APAP use and an increased risk for asthma. Our aim was to identify the effects of APAP in pregnancy using a mouse model. Allogeneically mated C57Bl/6J females were injected i.p. with 50 or 250 mg/kg APAP or phosphate-buffered saline on gestation day 12.5; nonpregnant females served as controls. Tissue samples were obtained 1 or 4 days after injection. APAP-induced liver toxicity was mirrored by significantly increased plasma alanine aminotransferase levels. In uterus-draining lymph nodes of pregnant dams, the frequencies of mature dendritic cells and regulatory T cells significantly increased on 250 mg/kg APAP. Plasma progesterone levels significantly decreased in dams injected with APAP, accompanied by a morphologically altered placenta. Although overall litter sizes and number of fetal loss remained unaltered, a reduced fetal weight and a lower frequency of hematopoietic stem cells in the fetal liver were observed on APAP treatment. Our data provide strong evidence that prenatal APAP interferes with maternal immune and endocrine adaptation to pregnancy, affects placental function, and impairs fetal maturation and immune development. The latter may have long-lasting consequences on children's immunity and account for the increased risk for asthma observed in humans. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Human Immunodeficiency Virus-1 Inhibition of Immunoamphisomes in Dendritic Cells Impairs Early Innate and Adaptive Immune Responses

    PubMed Central

    Blanchet, Fabien P.; Moris, Arnaud; Nikolic, Damjan S.; Lehmann, Martin; Cardinaud, Sylvain; Stalder, Romaine; Garcia, Eduardo; Dinkins, Christina; Leuba, Florence; Wu, Li; Schwartz, Olivier; Deretic, Vojo; Piguet, Vincent

    2010-01-01

    SUMMARY Dendritic cells (DCs) in mucosal surfaces are early targets for human immunodeficiency virus-1 (HIV-1). DCs mount rapid and robust immune responses upon pathogen encounter. However, immune response in the early events of HIV-1 transmission appears limited, suggesting that HIV-1 evade early immune control by DCs. We report that HIV-1 induces a rapid shutdown of autophagy and immunoamphisomes in DCs. HIV-1 envelope activated the mammalian target of rapamycin pathway in DCs, leading to autophagy exhaustion. HIV-1-induced inhibition of autophagy in DC increased cell-associated HIV-1 and transfer of HIV-1 infection to CD4+ T cells. HIV-1-mediated downregulation of autophagy in DCs impaired innate and adaptive immune responses. Immunoamphisomes in DCs engulf incoming pathogens and appear to amplify pathogen degradation as well as Toll-like receptor responses and antigen presentation. The findings that HIV-1 downregulates autophagy and impedes immune functions of DCs represent a pathogenesis mechanism that can be pharmacologically countered with therapeutic and prophylactic implications. PMID:20451412

  15. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows

    PubMed Central

    Derno, Michael; Otten, Winfried; Mielenz, Manfred; Nürnberg, Gerd

    2015-01-01

    High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS) and one pair-fed (PF) at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1), cows were challenged for 6 days (P2) by heat stress (temperature humidity index (THI) = 76) or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows. PMID:25938406

  16. Olmesartan Attenuates the Impairment of Endothelial Cells Induced by Oxidized Low Density Lipoprotein through Downregulating Expression of LOX-1

    PubMed Central

    Zhang, Hua; Ma, Genshan; Yao, Yuyu; Qian, Huidong; Li, Weizhang; Chen, Xinjun; Jiang, Wenlong; Zheng, Ruolong

    2012-01-01

    Oxidized low density lipoprotein (ox-LDL) and its receptor, lectin-Like ox-LDL receptor-1 (LOX-1), play important roles in the development of endothelial injuries. Olmesartan can protect endothelial cells from the impairment caused by various pathological stimulations. In the present study we investigated whether olmesartan decreased the impairment of endothelial cells induced by ox-LDL by exerting its effects on LOX-1 both in vitro and in vivo. Incubation of cultured endothelial cells of neonatal rats with ox-LDL for 24 h or infusion of ox-LDL in mice for 3 weeks led to the remarkable impairment of endothelial cells, including increased lactate dehydrogenase synthesis, phosphorylation of p38 mitogen-activated protein kinases (p38 MAPK) and expression of apoptotic genes such as B-cell leukemia/lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-3. Simultaneously, the cell vitality and expression of Bcl-2 gene were greatly reduced. All these effects, however, were significantly suppressed by the treatment with olmesartan. Furthermore, ox-LDL promoted up-regulation of LOX-1 expression either in cultured endothelial cells or in the aortas of mice, which was reversed with the administration of olmesartan. Our data indicated that olmesartan may attenuate the impairment of endothelial cell via down-regulation of the increased LOX-1 expression induced by ox-LDL. PMID:22408405

  17. High salt diet impairs memory-related synaptic plasticity via increased oxidative stress and suppressed synaptic protein expression.

    PubMed

    Ge, Qian; Wang, Zhengjun; Wu, Yuwei; Huo, Qing; Qian, Zhaoqiang; Tian, Zhongmin; Ren, Wei; Zhang, Xia; Han, Jing

    2017-10-01

    A high salt (HS) diet is detrimental to cognitive function, in addition to having a role in cardiovascular disorders. However, the method by which an HS diet impairs cognitive functions such as learning and memory remains open. In this study, we found that mice on a 7 week HS diet demonstrated disturbed short-term memory in an object-place recognition task, and both 4 week and 7 week HS treatments impaired long-term memory, as evidenced in a fear conditioning test. Mechanistically, the HS diet inhibited memory-related long-term potentiation (LTP) in the hippocampus, while also increasing the levels of reactive oxygen species (ROS) in hippocampal cells and downregulating the expression of synapsin I, synaptophysin, and brain-derived neurotrophic factor in specific encephalic region. This suggests that oxidative stress or synaptic protein/neurotrophin deregulation was involved in the HS diet-induced memory impairment. Thus, the present study provides novel insights into the mechanisms of memory impairment caused by excessive dietary salt, and underlined the importance of controlling to salt absorb quantity. © 2017 The Authors. Molecular Nutrition & Food Research Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: Role of oxidative stress and inflammatory responses.

    PubMed

    Escudero-Lourdes, Claudia

    2016-03-01

    Arsenic (As) is a worldwide naturally occurring metalloid. Human chronic exposure to inorganic As compounds (iAs), which are at the top of hazardous substances (ATSDR, 2013), is associated with different diseases including cancer and non- cancerous diseases. The neurotoxic effects of iAs and its methylated metabolites have been demonstrated in exposed populations and experimental models. Impaired cognitive abilities have been described in children and adults chronically exposed to iAs through drinking water. Even though different association studies failed to demonstrate that As causes neurodegenerative diseases, several toxicity mechanisms of iAs parallel those mechanisms associated with neurodegeneration, including oxidative stress and inflammation, impaired protein degradation, autophagy, and intracellular accumulation, endoplasmic reticulum stress, and mitochondrial dysfunction. Additionally, different reports have shown that specifically in brain tissue, iAs and its metabolites induce hyper-phosphorylation of the tau protein and over-regulation of the amyloid precursor protein, impaired neurotransmitters synthesis and synaptic transmission, increased glutamate receptors activation, and decreased glutamate transporters expression. Interestingly, increased and sustained pro-inflammatory responses mediated by cytokines and related factors, seems to be the triggering factor for all of such cellular pathological effects. Therefore, this review proposes that iAs-associated cognitive impairment could be the result of the activation of pro-inflammatory responses in the brain tissue, which also may favor neurodegeneration or increase the risk for neurodegenerative diseases in exposed human populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. CIA2 deficiency results in impaired oxidative stress response and enhanced intracellular basal UPR activity in Saccharomyces cerevisiae.

    PubMed

    Zhao, Wei; Zheng, Hua-Zhen; Niu, Yu-Jie; Yuan, Yuan; Fang, Bing-Xiong; Liu, Yi-Na; Cai, Lu-Hui; Zhou, Zhong-Jun; Liu, Xin-Guang

    2015-03-01

    Yeast Cia2p is a component of the cytosolic Fe/S protein assembly (CIA) machinery. Initial studies of the CIA machinery were performed in yeast, but the precise role of Cia2p in this eukaryote is still unknown. We report that CIA2 deficiency results in impaired oxidative stress response, as evidenced by increased sensitivity to the oxidant cumene hydroperoxide (CHP), impaired activities of superoxide dismutases and aconitase and decreased replicative lifespan in the mutants. Moreover, intracellular reactive oxygen species levels were significantly increased in CIA2-deficient cells after treatment with CHP. We also show that CIA2-deficient cells display an increased resistance to tunicamycin-induced endoplasmic reticulum (ER) stress, as evidenced by the upregulated splicing of the mRNA of HAC1, which encodes a functional transcription factor that regulates the transcription of unfolded protein response (UPR) target genes, suggesting enhanced intracellular UPR activity. Furthermore, the transcription of several canonical UPR target genes is strongly induced in CIA2-deficient cells as compared with wild-type controls. Taken together, these results suggest the involvement of Cia2p in oxidative and ER stress responses in yeast. Published by Oxford University Press on behalf of FEMS 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Anticonvulsant effect of piperine ameliorates memory impairment, inflammation and oxidative stress in a rat model of pilocarpine-induced epilepsy

    PubMed Central

    Mao, Ke; Lei, Ding; Zhang, Heng; You, Chao

    2017-01-01

    The primary active component of black pepper is piperine, which is purified and used to treat epilepsy, achieving higher efficiency when purified. The present study was conducted to evaluate whether the anticonvulsant effect of piperine ameliorates pilocarpine-induced epilepsy, and to investigate the mechanism underlying these effects. Epilepsy was induced in Sprague Dawley rats using pilocarpine. Pilocarpine-induced epilepsy in the rats was treated with 40 mg/kg piperine for 45 consecutive days. Status epilepticus and a Morris water maze test were used to analyze the anticonvulsant effects of piperine in the epileptic rats. Inflammation and oxidative stress were then measured using commercially-available kits following piperine treatment. Lastly, the activity of caspase-3 and the protein expression levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were evaluated using commercially-available kits and western blot analysis, respectively. The results demonstrated that treatment with piperine was able to reduce the status epilepticus and prevented memory impairment following pilocarpine-induced epilepsy in rats. The anticonvulsant effects of piperine decreased inflammation and oxidative stress following pilocarpine-induced epilepsy in rats. The upregulated activity of caspase-3 and expression levels of Bax/Bcl-2 were suppressed following treatment with piperine in the rats with pilocarpine-induced epilepsy. These results suggest that the anticonvulsant effects of piperine ameliorate memory impairment, inflammation and oxidative stress in a rat model of pilocarpine-induced epilepsy. PMID:28352353

  1. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade

    PubMed Central

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases. PMID:27069362

  2. Macrophage Depletion Impairs Skeletal Muscle Regeneration: the Roles of Pro-fibrotic Factors, Inflammation, and Oxidative Stress.

    PubMed

    Xiao, Weihua; Liu, Yu; Chen, Peijie

    2016-12-01

    Muscle contusion is one of the most common muscle injuries in sports medicine. Macrophages play complex roles in the regeneration of skeletal muscle. However, the roles of macrophages, especially the mechanisms involved, in the regeneration of muscle contusion are still not fully understood. We hypothesize that the depletion of macrophages impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may be involved in the process. To test these hypotheses, we constructed a muscle contusion injury and a macrophage depletion model and followed it up with morphological and gene expression analyses. The data showed that fibrotic scars were formed in the muscle of contusion injury, and they deteriorated in the mice of macrophage depletion. Furthermore, the sizes of regenerating myofibers were significantly reduced by macrophage depletion. Pro-fibrotic factors, inflammatory cytokines, chemokines, and oxidative stress-related enzymes increased significantly after muscle injury. Moreover, the expression of these factors was delayed by macrophage depletion. Most of them were still significantly higher in the later stage of regeneration. These results suggest that macrophage depletion impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may play important roles in the process.

  3. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK-PKC-CBP signaling cascade.

    PubMed

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5'-adenine monophosphate-activated protein kinase-protein kinase C-cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases.

  4. Sex-dependent mitochondrial respiratory impairment and oxidative stress in a rat model of neonatal hypoxic-ischemic encephalopathy.

    PubMed

    Demarest, Tyler G; Schuh, Rosemary A; Waddell, Jaylyn; McKenna, Mary C; Fiskum, Gary

    2016-06-01

    Increased male susceptibility to long-term cognitive deficits is well described in clinical and experimental studies of neonatal hypoxic-ischemic encephalopathy. While cell death signaling pathways are known to be sexually dimorphic, a sex-dependent pathophysiological mechanism preceding the majority of secondary cell death has yet to be described. Mitochondrial dysfunction contributes to cell death following cerebral hypoxic-ischemia (HI). Several lines of evidence suggest that there are sex differences in the mitochondrial metabolism of adult mammals. Therefore, this study tested the hypothesis that brain mitochondrial respiratory impairment and associated oxidative stress is more severe in males than females following HI. Maximal brain mitochondrial respiration during oxidative phosphorylation was two-fold more impaired in males following HI. The endogenous antioxidant glutathione was 30% higher in the brain of sham females compared to males. Females also exhibited increased glutathione peroxidase (GPx) activity following HI injury. Conversely, males displayed a reduction in mitochondrial GPx4 protein levels and mitochondrial GPx activity. Moreover, a 3-4-fold increase in oxidative protein carbonylation was observed in the cortex, perirhinal cortex, and hippocampus of injured males, but not females. These data provide the first evidence for sex-dependent mitochondrial respiratory dysfunction and oxidative damage, which may contribute to the relative male susceptibility to adverse long-term outcomes following HI. Lower basal GSH levels, lower post-hypoxic mitochondrial glutathione peroxidase (mtGPx) activity, and mitochondrial glutathione peroxidase 4 (mtGPx4) protein levels may contribute to the susceptibility of the male brain to oxidative damage and mitochondrial dysfunction following neonatal hypoxic-ischemia (HI). Treatment of male pups with acetyl-L-carnitine (ALCAR) protects against the loss of mtGPx activity, mtGPx4 protein, and increases in protein

  5. Gestational Diabetes Mellitus Impairs Nrf2-Mediated Adaptive Antioxidant Defenses and Redox Signaling in Fetal Endothelial Cells In Utero

    PubMed Central

    Cheng, Xinghua; Chapple, Sarah J.; Patel, Bijal; Puszyk, William; Sugden, David; Yin, Xiaoke; Mayr, Manuel; Siow, Richard C.M.; Mann, Giovanni E.

    2013-01-01

    In utero exposure to gestational diabetes mellitus (GDM) is associated with an increased risk of type 2 diabetes and cardiovascular disease in later life, yet the underlying mechanisms remain to be elucidated. We examined the effects of GDM on the proteome, redox status, and nuclear factor erythroid 2–related factor 2 (Nrf2)-mediated antioxidant gene expression in human fetal endothelial cells. Proteomic analysis revealed that proteins involved in redox homeostasis were significantly altered in GDM and associated with increased mitochondrial superoxide generation, protein oxidation, DNA damage, and diminished glutathione (GSH) synthesis. In GDM cells, the lipid peroxidation product 4-hydroxynonenal (HNE) failed to induce nuclear Nrf2 accumulation and mRNA and/or protein expression of Nrf2 and its target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), Bach1, cystine/glutamate transporter, and glutamate cysteine ligase. Although methylation of CpG islands in Nrf2 or NQO1 promoters was unaltered by GDM, decreased DJ-1 and increased phosphorylated glycogen synthase kinase 3β levels may account for impaired Nrf2 signaling. HNE-induced increases in GSH and NQO1 levels were abrogated by Nrf2 small interfering RNA in normal cells, and overexpression of Nrf2 in GDM cells partially restored NQO1 induction. Dysregulation of Nrf2 in fetal endothelium may contribute to the increased risk of type 2 diabetes and cardiovascular disease in offspring. PMID:23974919

  6. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph

    PubMed Central

    Harrold, Zoë R.; Skidmore, Mark L.; Hamilton, Trinity L.; Desch, Libby; Amada, Kirina; van Gelder, Will; Glover, Kevin; Roden, Eric E.

    2015-01-01

    Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O32−), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O32− that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO42−) several orders of magnitude higher than those of S2O32−. Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O32−, CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O32− as the electron donor was lower at 5.1°C than 14.4°C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O32−-oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O32− by RG5-like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment. PMID:26712544

  7. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph.

    PubMed

    Harrold, Zoë R; Skidmore, Mark L; Hamilton, Trinity L; Desch, Libby; Amada, Kirina; van Gelder, Will; Glover, Kevin; Roden, Eric E; Boyd, Eric S

    2015-12-28

    Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O3 (2-)), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O3 (2-) that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO4 (2-)) several orders of magnitude higher than those of S2O3 (2-). Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O3 (2-), CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O3 (2-) as the electron donor was lower at 5.1°C than 14.4°C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O3 (2-)-oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O3 (2-) by RG5-like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions.

    PubMed

    Castells-Roca, Laia; Pijuan, Jordi; Ferrezuelo, Francisco; Bellí, Gemma; Herrero, Enrique

    2016-01-01

    Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution) upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon). In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations.

  9. Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions

    PubMed Central

    Ferrezuelo, Francisco; Bellí, Gemma; Herrero, Enrique

    2016-01-01

    Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution) upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon). In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations. PMID:26824473

  10. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  11. In dialyzed squid axons oxidative stress inhibits the Na+/Ca2+ exchanger by impairing the Cai2+-regulatory site.

    PubMed

    DiPolo, Reinaldo; Beaugé, Luis

    2011-09-01

    The Na(+)/Ca(2+) exchanger, a major mechanism by which cells extrude calcium, is involved in several physiological and physiopathological interactions. In this work we have used the dialyzed squid giant axon to study the effects of two oxidants, SIN-1-buffered peroxynitrite and hydrogen peroxide (H(2)O(2)), on the Na(+)/Ca(2+) exchanger in the absence and presence of MgATP upregulation. The results show that oxidative stress induced by peroxynitrite and hydrogen peroxide inhibits the Na(+)/Ca(2+) exchanger by impairing the intracellular Ca(2+) (Ca(i)(2+))-regulatory sites, leaving unharmed the intracellular Na(+)- and Ca(2+)-transporting sites. This effect is efficiently counteracted by the presence of MgATP and by intracellular alkalinization, conditions that also protect H(i)(+) and (H(i)(+) + Na(i)(+)) inhibition of Ca(i)(2+)-regulatory sites. In addition, 1 mM intracellular EGTA reduces oxidant inhibition. However, once the effects of oxidants are installed they cannot be reversed by either MgATP or EGTA. These results have significant implications regarding the role of the Na(+)/Ca(2+) exchanger in response to pathological conditions leading to tissue ischemia-reperfusion and anoxia/reoxygenation; they concur with a marked reduction in ATP concentration, an increase in oxidant production, and a rise in intracellular Ca(2+) concentration that seems to be the main factor responsible for cell damage.

  12. Aminoguanidine alleviated MMA-induced impairment of cognitive ability in rats by downregulating oxidative stress and inflammatory reaction.

    PubMed

    Li, Qiliang; Song, Wenqi; Tian, Ze; Wang, Peichang

    2017-02-13

    Methylmalonic acidemia (MMA) is the most common organic acidemia in childhood. Many "treated" patients continued to display various degrees of mental retardation and psychomotor delay, which could be caused by brain damage from elevated oxidative stress. Aminoguanidine (AG), a synthetic antioxidant, was tested in a MMA rat model for its potential therapeutic effects on memory impairment. The effects of AG on MMA-induced cognitive impairment in Wistar rats were evaluated with Morris Water Maze. The levels of nerve cell apoptosis and microglial activation were investigated to illustrate the mechanisms of the improvement of cognition with AG treatment in MMA rats. To further explore the mechanism of neuroprotection induced by AG, several biomarkers including free radicals and inflammatory cytokines in the hippocampus were quantified. The results showed that the rats treated with AG exhibited better neurological behavior performances than MMA model rats. The AG-treated rats had a decreased level of apoptosis of the hippocampal neurons, which could be the structural basis of the observed neural behavior protection. In addition, AG treatment significantly inhibited the activation of microglia. The AG-treated rats had decreased levels of IL-1β, IL-6, TNF-α, NO, malonaldehyde and iNOS activities in the hippocampus. The level of glutathione and superoxide dismutase activity in the hippocampus of the AG-treated rats increased significantly. In conclusion, AG could alleviate the MMA-induced cognitive impairment via down-regulating of oxidative stress and inflammatory reaction and provide a basis as a therapeutic potential against MMA-induced cognitive impairment.

  13. Impaired training-induced adaptation of blood pressure in COPD patients: implication of the muscle capillary bed

    PubMed Central

    Gouzi, Fares; Maury, Jonathan; Bughin, François; Blaquière, Marine; Ayoub, Bronia; Mercier, Jacques; Perez-Martin, Antonia; Pomiès, Pascal; Hayot, Maurice

    2016-01-01

    Background and aims Targeting the early mechanisms in exercise-induced arterial hypertension (which precedes resting arterial hypertension in its natural history) may improve cardiovascular morbidity and mortality in COPD patients. Capillary rarefaction, an early event in COPD before vascular remodeling, is a potential mechanism of exercise-induced and resting arterial hypertension. Impaired training-induced capillarization was observed earlier in COPD patients; thus, this study compares the changes in blood pressure (BP) during exercise in COPD patients and matches control subjects (CSs) after a similar exercise training program, in relationship with muscle capillarization. Methods Resting and maximal exercise diastolic pressure (DP) and systolic pressure (SP) were recorded during a standardized cardiopulmonary exercise test, and a quadriceps muscle biopsy was performed before and after training. Results A total of 35 CSs and 49 COPD patients (forced expiratory volume in 1 second =54%±22% predicted) completed a 6-week rehabilitation program and improved their symptom-limited maximal oxygen uptake (VO2SL: 25.8±6.1 mL/kg per minute vs 27.9 mL/kg per minute and 17.0±4.7 mL/kg per minute vs 18.3 mL/kg per minute; both P<0.001). The improvement in muscle capillary-to-fiber (C/F) ratio was significantly greater in CSs vs COPD patients (+11%±9% vs +23%±21%; P<0.05). Although maximal exercise BP was reduced in CSs (DP: 89±10 mmHg vs 85±9 mmHg; P<0.001/SP: 204±25 mmHg vs 196±27 mmHg; P<0.05), it did not change in COPD patients (DP: 94±14 mmHg vs 97±16 mmHg; P=0.46/SP: 202±27 mmHg vs 208±24 mmHg; P=0.13). The change in muscle C/F ratio was negatively correlated with maximal exercise SP in CSs and COPD patients (r=−0.41; P=0.02). Conclusion COPD patients showed impaired training-induced BP adaptation related to a change in muscle capillarization, suggesting the possibility of blunted angiogenesis. PMID:27703345

  14. Nitric oxide synthase inhibitor, aminoguanidine reduces intracerebroventricular colchicine induced neurodegeneration, memory impairments and changes of systemic immune responses in rats.

    PubMed

    Sil, Susmita; Ghosh, Tusharkanti; Ghosh, Rupsa; Gupta, Pritha

    2017-02-15

    Intracerebroventricular (i.c.v.) injection of colchicine induces neurodegeneration, memory impairments and changes of some systemic immune responses in rats. Though the role of cox 2 in these colchicine induced changes have been evaluated, the influence of nitric oxide synthase (NOS) remains to be studied. The present study was designed to assess the role of NOS on the i.c.v. colchicine induced neurodegeneration, memory impairments and changes of some systemic immune responses by inhibiting its activity with aminoguanidine. In the present study the impairments of working and reference memories, neurodegeneration (chromatolysis and plaque formation) and changes of neuroinflammatory markers in the hippocampus (increased TNF α, IL 1β, ROS and nitrite) along with changes of serum inflammatory markers (TNF α, IL 1β, ROS and nitrite) and alteration of systemic immune responses (higher phagocytic activity of blood WBC and splenic PMN, higher cytotoxicity and lower leukocyte adhesion inhibition index of splenic MNC) were measured in the intracerebroventricular colchicine injected rats (ICIR). Administration of aminoguanidine (p.o. 30/50mg/kg body weight) to ICIR resulted in recovery of neuroinflammation and partial prevention of neurodegeneration which could be corroborated with the partial recovery of memory impairments in this model. The recovery of serum inflammatory markers and the systemic immune responses in ICIR was also observed after administration of aminoguanidine. Therefore, the present study shows that aminoguanidine can protect the colchicine induced neurodegeneration, memory impairments, and changes of systemic immune systemic responses in ICIR by inhibiting the iNOS. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effect of protein oxidation on the impaired quality of dry-cured loins produced from frozen pork meat.

    PubMed

    Lorido, Laura; Ventanas, Sonia; Akcan, Tolga; Estévez, Mario

    2016-04-01

    Dry-cured loins elaborated from frozen (-20 °C/20 weeks)/thawed longissimus dorsi muscles (F) were compared with counterparts elaborated from fresh (unfrozen) muscles (UF) for the extent of protein oxidation (carbonylation and Schiff base formation) and their sensory profile (quantitative-descriptive analysis). All samples had similar moisture, fat and protein contents (p>0.05). In accordance with previous studies, freezing meat prior to processing affected the oxidative stability of meat proteins. This chemical change occurred concomitantly with modifications of the sensory profile of the loins as F-samples received significantly (p<0.05) higher scores for rancid and salty flavor, hardness and fibrousness than UF-counterparts. The formation of cross-links (assessed as Schiff bases) during freezing and the subsequent processing may have contributed to strengthening the meat structure and hence, impairing the texture properties of dry-cured loins.

  16. Apnea stimulates the adaptive response to oxidative stress in elephant seal pups.

    PubMed

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Tift, Michael S; Forman, Henry Jay; Crocker, Daniel E; Ortiz, Rudy M

    2011-12-15

    Extended breath-hold (apnea) bouts are routine during diving and sleeping in seals. These apneas result in oxygen store depletion and blood flow redistribution towards obligatory oxygen-dependent tissues, exposing seals to critical levels of ischemia and hypoxemia. The subsequent reperfusion/reoxygenation has the potential to increase oxidant production and thus oxidative stress. The contributions of extended apnea to oxidative stress in adapted mammals are not well defined. To address the hypothesis that apnea in seals is not associated with increased oxidative damage, blood samples were collected from northern elephant seal pups (N=6) during eupnea, rest- and voluntary submersion-associated apneas, and post-apnea (recovery). Plasma 4-hydroxynonenal (HNE), 8-isoprostanes (8-isoPGF(2α)), nitrotyrosine (NT), protein carbonyls, xanthine and hypoxanthine (HX) levels, along with xanthine oxidase (XO) activity, were measured. Protein content of XO, superoxide dismutase 1 (Cu,ZnSOD), catalase and myoglobin (Mb), as well as the nuclear content of hypoxia inducible factor 1α (HIF-1α) and NF-E2-related factor 2 (Nrf2), were measured in muscle biopsies collected before and after the breath-hold trials. HNE, 8-iso PGF(2α), NT and protein carbonyl levels did not change among eupnea, apnea or recovery. XO activity and HX and xanthine concentrations were increased at the end of the apneas and during recovery. Muscle protein content of XO, CuZnSOD, catalase, Mb, HIF-1α and Nrf2 increased 25-70% after apnea. Results suggest that rather than inducing the damaging effects of hypoxemia and ischemia/reperfusion that have been reported in non-diving mammals, apnea in seals stimulates the oxidative stress and hypoxic hormetic responses, allowing these mammals to cope with the potentially detrimental effects associated with this condition.

  17. Experimental hyperprolinemia induces mild oxidative stress, metabolic changes, and tissue adaptation in rat liver.

    PubMed

    Ferreira, Andréa G K; da Cunha, Aline A; Machado, Fernanda R; Pederzolli, Carolina D; Dalazen, Giovana R; de Assis, Adriano M; Lamers, Marcelo L; dos Santos, Marinilce F; Dutra-Filho, Carlos S; Wyse, Angela T S

    2012-01-01

    The present study investigated the effects of chronic hyperprolinemia on oxidative and metabolic status in liver and serum of rats. Wistar rats received daily subcutaneous injections of proline from their 6th to 28th day of life. Twelve hours after the last injection the rats were sacrificed and liver and serum were collected. Results showed that hyperprolinemia induced a significant reduction in total antioxidant potential and thiobarbituric acid-reactive substances. The activities of the antioxidant enzymes catalase and superoxide dismutase were significantly increased after chronic proline administration, while glutathione (GSH) peroxidase activity, dichlorofluorescin oxidation, GSH, sulfhydryl, and carbonyl content remained unaltered. Histological analyses of the liver revealed that proline treatment induced changes of the hepatic microarchitecture and increased the number of inflammatory cells and the glycogen content. Biochemical determination also demonstrated an increase in glycogen concentration, as well as a higher synthesis of glycogen in liver of hyperprolinemic rats. Regarding to hepatic metabolism, it was observed an increase on glucose oxidation and a decrease on lipid synthesis from glucose. However, hepatic lipid content and serum glucose levels were not changed. Proline administration did not alter the aminotransferases activities and serum markers of hepatic injury. Our findings suggest that hyperprolinemia alters the liver homeostasis possibly by induction of a mild degree of oxidative stress and metabolic changes. The hepatic alterations caused by proline probably do not implicate in substantial hepatic tissue damage, but rather demonstrate a process of adaptation of this tissue to oxidative stress. However, the biological significance of these findings requires additional investigation. Copyright © 2011 Wiley Periodicals, Inc.

  18. Apnea stimulates the adaptive response to oxidative stress in elephant seal pups

    PubMed Central

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Tift, Michael S.; Forman, Henry Jay; Crocker, Daniel E.; Ortiz, Rudy M.

    2011-01-01

    SUMMARY Extended breath-hold (apnea) bouts are routine during diving and sleeping in seals. These apneas result in oxygen store depletion and blood flow redistribution towards obligatory oxygen-dependent tissues, exposing seals to critical levels of ischemia and hypoxemia. The subsequent reperfusion/reoxygenation has the potential to increase oxidant production and thus oxidative stress. The contributions of extended apnea to oxidative stress in adapted mammals are not well defined. To address the hypothesis that apnea in seals is not associated with increased oxidative damage, blood samples were collected from northern elephant seal pups (N=6) during eupnea, rest- and voluntary submersion-associated apneas, and post-apnea (recovery). Plasma 4-hydroxynonenal (HNE), 8-isoprostanes (8-isoPGF2α), nitrotyrosine (NT), protein carbonyls, xanthine and hypoxanthine (HX) levels, along with xanthine oxidase (XO) activity, were measured. Protein content of XO, superoxide dismutase 1 (Cu,ZnSOD), catalase and myoglobin (Mb), as well as the nuclear content of hypoxia inducible factor 1α (HIF-1α) and NF-E2-related factor 2 (Nrf2), were measured in muscle biopsies collected before and after the breath-hold trials. HNE, 8-iso PGF2α, NT and protein carbonyl levels did not change among eupnea, apnea or recovery. XO activity and HX and xanthine concentrations were increased at the end of the apneas and during recovery. Muscle protein content of XO, CuZnSOD, catalase, Mb, HIF-1α and Nrf2 increased 25–70% after apnea. Results suggest that rather than inducing the damaging effects of hypoxemia and ischemia/reperfusion that have been reported in non-diving mammals, apnea in seals stimulates the oxidative stress and hypoxic hormetic responses, allowing these mammals to cope with the potentially detrimental effects associated with this condition. PMID:22116762

  19. Prenatal exposure to integerrimine N-oxide impaired the maternal care and the physical and behavioral development of offspring rats.

    PubMed

    Sandini, Thaísa M; Udo, Mariana S B; Reis-Silva, Thiago M; Bernardi, Maria Martha; Spinosa, Helenice de S

    2014-08-01

    Plants that contain pyrrolizidine alkaloids (PAs) have been reported as contaminants of pastures and food, as well as being used in herbal medicine. PAs are responsible for poisoning events in livestock and human beings. The aim of this present study was to evaluate effects of prenatal exposure to integerrimine N-oxide, the main PA found in the butanolic residue (BR) of Senecio brasiliensis, on both physical and behavioral parameters of Wistar rat offspring. The toxicity and maternal behavior were also evaluated. For this, pregnant Wistar rats received integerrimine N-oxide from the BR of Senecio brasiliensis, by gavage, on gestational days 6-20 (during organogenesis and fetal development period) at doses of 3, 6 and 9 mg/kg. During treatment, maternal body weight gain, and food and water intake were evaluated. After parturition, maternal behavior and aggressive maternal behavior were analyzed. In addition, physical development and behavioral assessments were observed in both male and female pups. Results showed that prenatal exposure to integerrimine N-oxide of S. brasiliensis induced maternal toxicity, impairment in maternal behavior and aggressive maternal behavior, mainly in the highest dose group. Between sexes comparison of pups showed loss of body weight, delayed physical development such as pinna detachment, hair growth, eruption of incisor teeth, eye and vaginal openings. These pups also showed a delay of palmar grasp, surface righting reflex, negative geotaxis and auditory startle reflexes. Thus, prenatal exposure to integerrimine N-oxide induces maternal toxicity, impairment of maternal care and delayed in physical and behavioral development of the offspring.

  20. Decreased long-chain fatty acid oxidation impairs postischemic recovery of the insulin-resistant rat heart.

    PubMed

    Harmancey, Romain; Vasquez, Hernan G; Guthrie, Patrick H; Taegtmeyer, Heinrich

    2013-10-01

    Diabetic patients with acute myocardial infarction are more likely to die than nondiabetic patients. In the present study we examined the effect of insulin resistance on myocardial ischemia tolerance. Hearts of rats, rendered insulin resistant by high-sucrose feeding, were subjected to ischemia/reperfusion ex vivo. Cardiac power of control hearts from chow-fed rats recovered to 93%, while insulin-resistant hearts recovered only to 80% (P<0.001 vs. control). Unexpectedly, impaired contractile recovery did not result from an impairment of glucose oxidation (576±36 vs. 593±42 nmol/min/g dry weight; not significant), but from a failure to increase and to sustain oxidation of the long-chain fatty acid oleate on reperfusion (1878±56 vs. 2070±67 nmol/min/g dry weight; P<0.05). This phenomenon was due to a reduced ability to transport oleate into mitochondria and associated with a 38-58% decrease in the mitochondrial uncoupling protein 3 (UCP3) levels. Contractile function was rescued by replacing oleate with a medium-chain fatty acid or by restoring UCP3 levels with 24 h of food withdrawal. Lastly, the knockdown of UCP3 in rat L6 myocytes also decreased oleate oxidation by 13-18% following ischemia. Together the results expose UCP3 as a critical regulator of long-chain fatty acid oxidation in the stressed heart postischemia and identify octanoate as an intervention by which myocardial metabolism can be manipulated to improve function of the insulin-resistant heart.

  1. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response.

    PubMed

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-05-01

    To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Impaired Endothelial Nitric Oxide Synthase Homodimer Formation Triggers Development of Transplant Vasculopathy - Insights from a Murine Aortic Transplantation Model

    PubMed Central

    Oberhuber, Rupert; Riede, Gregor; Cardini, Benno; Bernhard, David; Messner, Barbara; Watschinger, Katrin; Steger, Christina; Brandacher, Gerald; Pratschke, Johann; Golderer, Georg; Werner, Ernst R.; Maglione, Manuel

    2016-01-01

    Transplant vasculopathy (TV) represents a major obstacle to long-term graft survival and correlates with severity of ischemia reperfusion injury (IRI). Donor administration of the nitric oxide synthases (NOS) co-factor tetrahydrobiopterin has been shown to prevent IRI. Herein, we analysed whether tetrahydrobiopterin is also involved in TV development. Using a fully allogeneic mismatched (BALB/c to C57BL/6) murine aortic transplantation model grafts subjected to long cold ischemia time developed severe TV with intimal hyperplasia (α-smooth muscle actin positive cells in the neointima) and endothelial activation (increased P-selectin expression). Donor pretreatment with tetrahydrobiopterin significantly minimised these changes resulting in only marginal TV development. Severe TV observed in the non-treated group was associated with increased protein oxidation and increased occurrence of endothelial NOS monomers in the aortic grafts already during graft procurement. Tetrahydrobiopterin supplementation of the donor prevented all these early oxidative changes in the graft. Non-treated allogeneic grafts without cold ischemia time and syngeneic grafts did not develop any TV. We identified early protein oxidation and impaired endothelial NOS homodimer formation as plausible mechanistic explanation for the crucial role of IRI in triggering TV in transplanted aortic grafts. Therefore, targeting endothelial NOS in the donor represents a promising strategy to minimise TV. PMID:27883078

  3. Nicotine versus 6-hydroxy-l-nicotine against chlorisondamine induced memory impairment and oxidative stress in the rat hippocampus.

    PubMed

    Hritcu, Lucian; Ionita, Radu; Motei, Diana Elena; Babii, Cornelia; Stefan, Marius; Mihasan, Marius

    2017-02-01

    6-Hydroxy-l-nicotine (6HLN), a nicotine derivative from nicotine degradation by Arthrobacter nicotinovorans pAO1 strain was found to improve behavioral deficits and to reverse oxidative stress in the rat hippocampus. Rats were given CHL (10mg/kg, i.p.) were used as an Alzheimer's disease-like model. The nicotine (0.3mg/kg) and 6HLN (0.3mg/kg) were administered alone or in combination in the CHL-treated rats. Memory-related behaviors were evaluated using Y-maze and radial arm-maze tests. The antioxidant enzymes activity and the levels of the biomarkers of oxidative stress were measured in the hippocampus. Statistical analyses were performed using two-way ANOVA and Tukey's post hoc test. F values for which p<0.05 were regarded as statistically significant. CHL-caused memory deficits and oxidative stress enhancing were observed. Both nicotine and 6HLN administration attenuated the cognitive deficits and recovered the antioxidant capacity in the rat hippocampus of the CHL rat model. Our results suggest that 6HLN versus nicotine confers anti-amnesic properties in the CHL-induced a rat model of memory impairment via reversing cholinergic function and decreasing brain oxidative stress, suggesting the use of this compound as an alternative agent in AD treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice.

    PubMed

    Yokota, Takashi; Kinugawa, Shintaro; Hirabayashi, Kagami; Matsushima, Shouji; Inoue, Naoki; Ohta, Yukihiro; Hamaguchi, Sanae; Sobirin, Mochamad A; Ono, Taisuke; Suga, Tadashi; Kuroda, Satoshi; Tanaka, Shinya; Terasaki, Fumio; Okita, Koichi; Tsutsui, Hiroyuki

    2009-09-01

    Insulin resistance or diabetes is associated with limited exercise capacity, which can be caused by the abnormal energy metabolism in skeletal muscle. Oxidative stress is involved in mitochondrial dysfunction in diabetes. We hypothesized that increased oxidative stress could cause mitochondrial dysfunction in skeletal muscle and make contribution to exercise intolerance in diabetes. C57/BL6J mice were fed on normal diet or high fat diet (HFD) for 8 wk to induce obesity with insulin resistance and diabetes. Treadmill tests with expired gas analysis were performed to determine the exercise capacity and whole body oxygen uptake (Vo(2)). The work (vertical distance x body weight) to exhaustion was reduced in the HFD mice by 36%, accompanied by a 16% decrease of peak Vo(2). Mitochondrial ADP-stimulated respiration, electron transport chain complex I and III activities, and mitochondrial content in skeletal muscle were decreased in the HFD mice. Furthermore, superoxide production and NAD(P)H oxidase activity in skeletal muscle were significantly increased in the HFD mice. Intriguingly, the treatment of HFD-fed mice with apocynin [10 mmol/l; an inhibitor of NAD(P)H oxidase activation] improved exercise intolerance and mitochondrial dysfunction in skeletal muscle without affecting glucose metabolism itself. The exercise capacity and mitochondrial function in skeletal muscle were impaired in type 2 diabetes, which might be due to enhanced oxidative stress. Therapies designed to regulate oxidative stress and maintain mitochondrial function could be beneficial to improve the exercise capacity in type 2 diabetes.

  5. [Influence of polyethylene oxide Polyox WSR-301 on the pressure in mesenteric arterial microvessels in rats pre-adapted to anti-orthostatic states].

    PubMed

    Grigorian, S S; Sokolova, I A; Shakhnazarov, A A; Rudneva, R I; Timkina, M I

    1998-01-01

    High-molecular polymers apt to directly influence flow microstructure were tested as a fundamentally new method for correcting microhemodynamics in microgravity. Pressure in the mesenteric arterial microvessels was measured two weeks in rats adapted to the head-down suspension. Intravenous polyethylene oxide (Polyox WSR-301, end-concentration in the order of 2.10(-7) g/ml), reduced the microvascular pressure by 26%, whereas in the control pressure was reduced by only 15%. Systemic arterial pressure showed an equal drop in the groups (by 10 to 11%). These results suggest that the biomechanical agent weakens resistance to the blood flow in the body region where blood supply is impaired by microgravity.

  6. Lipid mobilisation and oxidative stress as metabolic adaptation processes in dairy heifers during transition period.

    PubMed

    Turk, R; Podpečan, O; Mrkun, J; Kosec, M; Flegar-Meštrić, Z; Perkov, S; Starič, J; Robić, M; Belić, M; Zrimšek, P

    2013-10-01

    The objective of this study was to evaluate metabolic disorders and oxidative stress in dairy heifers during the transition period. Possible relationships between lipid mobilisation indicators and oxidative stress markers were investigated as well. Nineteen dairy heifers were included in the study. Blood samples were collected at the time of estrus synchronisation in heifers, at insemination, three weeks after insemination, one week before calving, at calving and 1, 2, 4 and 8 weeks postpartum. Common metabolic parameters, beta-hydroxybutyrate (BHB), free fatty acids (FFA), paraoxonase-1 (PON1) activity and total antioxidative status (TAS) were analysed. Around insemination, no significant difference was observed in the majority of tested parameters (P>0.05). However, the transition period markedly affected the concentration of triglycerides, total cholesterol, HDL-C, BHB, FFA, TAS and PON1activity. Positive correlations between PON1 activity and total cholesterol, HDL-C and triglycerides were noted but inverse correlations with FFA, BHB and bilirubin were found indicating that PON1 activity changed with lipid metabolism and was influenced by negative energy balance. These findings suggest that lipid mobilisation and oxidative stress are part of a complex metabolic adaptation to low energy balance which reaches equilibrium later in advanced lactation. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Panchagavya Ghrita, an Ayurvedic formulation attenuates seizures, cognitive impairment and oxidative stress in pentylenetetrazole induced seizures in rats.

    PubMed

    Joshi, R; Reeta, K H; Sharma, S K; Tripathi, M; Gupta, Y K

    2015-07-01

    Panchagavya Ghrita (PG), according to Ayurvedic formulary of India (AFI), is used to treat epilepsy (apasmara), fever (jvara), mania (unmade) and jaundice (kamala). In the present study, we examined its effect on convulsions, oxidative stress and cognitive impairment in pentylenetetrazole (PTZ) induced seizures in rats. PG @ 250, 500, 1000, 2000 and 4000 mg/kg was administered orally for 7 days to male Wistar rats. On day 7, PTZ (60 mg/kg) was injected intraperitoneally 2 h after the last dose of PG. Sodium valproate (300 mg/kg) was used as positive control. Latency to myoclonic jerks, clonus and generalized tonic clonic seizures (GTCS) were recorded for seizure severity. Cognitive impairment was assessed using elevated plus maze and passive avoidance tests. Malondialdehyde and reduced glutathione levels were measured in rat brain. The results have shown that pretreatment with PG @ 500, 1000, 2000 and 4000 mg/kg exhibited 16.6, 33.3, 50 and 100% protection against occurrence of GTCS. The pretreatment with PG has significantly improved cognitive functions and the oxidative stress induced by seizures demonstrating its protective effect against PTZ induced seizures, and further, use of PG as an anticonvulsant in Ayurvedic system of medicine.

  8. Gamma radiation induces growth retardation, impaired egg production, and oxidative stress in the marine copepod Paracyclopina nana.

    PubMed

    Won, Eun-Ji; Lee, Jae-Seong

    2014-05-01

    Accidental nuclear radioisotope release into the ocean from nuclear power plants is of concern due to ecological and health risks. In this study, we used the marine copepod Paracyclopina nana to examine the effects of radioisotopes on marine organisms upon gamma radiation, and to measure the effects on growth and fecundity, which affect population and community structure. Upon gamma radiation, mortality (LD50 - 96 h=172 Gy) in P. nana was significantly increased in a dose-dependent manner in ovigerous P. nana females. For developmental impairment of gamma-irradiated nauplii, we observed growth retardation; in over 30 Gy-irradiated groups, offspring did not grow to adults. Particularly, over 50 Gy-irradiated ovigerous P. nana females did not have normal bilateral egg sacs, and their offspring did not develop normally to adulthood. Additionally, at over 30 Gy, we found dose-dependent increases in oxidative levels with elevated antioxidant enzyme activities and DNA repair activities. These findings indicate that gamma radiation can induce oxidative stress and DNA damage with growth retardation and impaired reproduction. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Inorganic greywater matrix impact on photocatalytic oxidation: does flocculation of TiO2 nanoparticles impair process efficiency?

    PubMed

    Armanious, A; Ozkan, A; Sohmen, U; Gulyas, H

    2011-01-01

    This study was conducted in order to clarify whether photocatalyst flocculation--as observed in biologically pretreated greywater--contributes to photocatalytic oxidation (PCO) efficiency impairment. Aqueous solutions of tetraethyleneglycol dimethylether spiked with different inorganic salts in concentrations as found in biologically treated greywater were investigated with respect to TiO2 flocculation and PCO mineralisation kinetics. Flocculation of the photocatalyst primarily depended on pH (which was affected by the salts) and how close pH was to the point of zero charge (PZC). Photocatalyst agglomeration was maximum at pH 5.5. With salt concentrations >7 mmol L(-1), flocculation was strong even at pH far above PZC due to electric double layer compression. PCO rate constants were not unequivocally related to flocculation. Increasing pH was observed as the clearest factor deteriorating PCO efficiency. This was interpreted to result from impaired adsorbability of negatively charged oxidation intermediates as well as from enhanced CO2 absorption with increasing pH and subsequent formation of HCO3(-) anions which are OH radical scavengers.

  10. VPO1 mediates ApoE oxidation and impairs the clearance of plasma lipids.

    PubMed

    Yang, Youfeng; Cao, Zehong; Tian, Ling; Garvey, W Timothy; Cheng, Guangjie

    2013-01-01

    ApoE is an abundant component of chylomicron, VLDL, IDL, and HDL. It binds to multiple types of lipids and is implicated in cholesterol and triglyceride homeostasis. Oxidation of ApoE plays a crucial role in the genesis of atherosclerosis. It is proposed that heme-containing peroxidases (hPx) are major mediators of lipoprotein oxidization. Vascular peroxidase 1 (VPO1) is a recently-discovered hPx, which is expressed in cardiovascular system, lung, liver etc. and secreted into plasma. Its plasma concentration is three orders of magnitude of that of myeloperoxidase. If VPO1 mediates ApoE oxidation and affects the lipid metabolism remains to be elucidated. Recombinant ApoE and VPO1 were expressed and purified from stably-expressing cell lines deriving from HEK293 cells. ApoE oxidation was carried out by VPO1 in the presence of H2O2 and chloride. ApoE oxidation was verified by a variety of approaches including immunoblot and amino acid analyses. To evaluate the functional changes in VPO1-oxidized ApoE, lipid emulsion particle binding assays were employed. Oxidized ApoE binds weaker to lipid emulsion particles, which mimic the large lipid complexes in vivo. In lipid efflux assay, oxidized ApoE showed reduced capability in efflux of lipids from foam cells. Mice administrated with oxidized ApoE via blood exhibited weaker clearance ability of plasma lipids. Our data suggest that VPO1 is a new mediator regulating lipid homeostasis, implying a role in genesis and development of atherosclerosis.

  11. VPO1 Mediates ApoE Oxidation and Impairs the Clearance of Plasma Lipids

    PubMed Central

    Yang, Youfeng; Cao, Zehong; Tian, Ling; Garvey, W. Timothy; Cheng, Guangjie

    2013-01-01

    Objective ApoE is an abundant component of chylomicron, VLDL, IDL, and HDL. It binds to multiple types of lipids and is implicated in cholesterol and triglyceride homeostasis. Oxidation of ApoE plays a crucial role in the genesis of atherosclerosis. It is proposed that heme-containing peroxidases (hPx) are major mediators of lipoprotein oxidization. Vascular peroxidase 1 (VPO1) is a recently-discovered hPx, which is expressed in cardiovascular system, lung, liver etc. and secreted into plasma. Its plasma concentration is three orders of magnitude of that of myeloperoxidase. If VPO1 mediates ApoE oxidation and affects the lipid metabolism remains to be elucidated. Methods Recombinant ApoE and VPO1 were expressed and purified from stably-expressing cell lines deriving from HEK293 cells. ApoE oxidation was carried out by VPO1 in the presence of H2O2 and chloride. ApoE oxidation was verified by a variety of approaches including immunoblot and amino acid analyses. To evaluate the functional changes in VPO1-oxidized ApoE, lipid emulsion particle binding assays were employed. Results Oxidized ApoE binds weaker to lipid emulsion particles, which mimic the large lipid complexes in vivo. In lipid efflux assay, oxidized ApoE showed reduced capability in efflux of lipids from foam cells. Mice administrated with oxidized ApoE via blood exhibited weaker clearance ability of plasma lipids. Conclusions Our data suggest that VPO1 is a new mediator regulating lipid homeostasis, implying a role in genesis and development of atherosclerosis. PMID:23451244

  12. Nitric oxide-mediated cutaneous microvascular function is impaired in polycystic ovary sydrome but can be improved by exercise training.

    PubMed

    Sprung, V S; Cuthbertson, D J; Pugh, C J A; Daousi, C; Atkinson, G; Aziz, N F; Kemp, G J; Green, D J; Cable, N T; Jones, H

    2013-03-15

    Polycystic ovary syndrome (PCOS) is associated with cardiovascular disease. The contribution of the nitric oxide (NO) dilator system to cutaneous endothelial dysfunction is currently unknown in PCOS. Our aim was to examine whether women with PCOS demonstrate impaired cutaneous microvascular NO function and whether exercise training can ameliorate any impairment. Eleven women with PCOS (age, 29 ± 7 years; body mass index, 34 ± 6 kg m(-2)) were compared with six healthy obese control women (age, 29 ± 7 years; body mass index, 34 ± 5 kg m(-2)). Six women with PCOS (30 ± 7 years; 31 ± 6 kg m(-2)) then completed 16 weeks of exercise training. Laser Doppler flowmetry, combined with intradermal microdialysis of l-N(G)-monomethyl-l-arginine, a nitric oxide antagonist, in response to incremental local heating of the forearm was assessed in women with PCOS and control women, and again in women with PCOS following exercise training. Cardiorespiratory fitness, homeostasis model assessment for insulin resistance, hormone and lipid profiles were also assessed. Differences between women with PCOS and control women and changes with exercise were analysed using Student's unpaired t tests. Differences in the contribution of NO to cutaneous blood flow [expressed as a percentage of maximal cutaneous vasodilatation (CVCmax)] were analysed using general linear models. At 42°C heating, cutaneous NO-mediated vasodilatation was attenuated by 17.5%CVCmax (95% confidence interval, 33.3, 1.7; P = 0.03) in women with PCOS vs. control women. Exercise training improved cardiorespiratory fitness by 5.0 ml kg(-1) min(-1) (95% confidence interval, 0.9, 9.2; P = 0.03) and NO-mediated cutaneous vasodilatation at 42°C heating by 19.6% CVCmax (95% confidence interval, 4.3, 34.9; P = 0.02). Cutaneous microvascular NO function is impaired in women with PCOS compared with obese matched control women but can be improved with exercise training.

  13. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    PubMed

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  14. Adaptation of oxidative phosphorylation to photoperiod-induced seasonal metabolic states in migratory songbirds.

    PubMed

    Trivedi, Amit Kumar; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod

    2015-06-01

    Eukaryotic cells produce chemical energy in the form of ATP by oxidative phosphorylation of metabolic fuels via a series of enzyme mediated biochemical reactions. We propose that the rates of these reactions are altered, as per energy needs of the seasonal metabolic states in avian migrants. To investigate this, blackheaded buntings were photoperiodically induced with non-migratory, premigratory, migratory and post-migratory phenotypes. High plasma levels of free fatty acids, citrate (an intermediate that begins the TCA cycle) and malate dehydrogenase (mdh, an enzyme involved at the end of the TCA cycle) confirmed increased availability of metabolic reserves and substrates to the TCA cycle during the premigratory and migratory states, respectively. Further, daily expression pattern of genes coding for enzymes involved in the oxidative decarboxylation of pyruvate to acetyl-CoA (pdc and pdk) and oxidative phosphorylation in the TCA cycle (cs, odgh, sdhd and mdh) was monitored in the hypothalamus and liver. Reciprocal relationship between pdc and pdk expressions conformed with the altered requirements of acetyl-CoA for the TCA cycle in different metabolic states. Except for pdk, all genes had a daily expression pattern, with high mRNA expression during the day in the premigratory/migratory phenotypes, and at night (cs, odhg, sdhd and mdh) in the nonmigratory phenotype. Differences in mRNA expression patterns of pdc, sdhd and mdh, but not of pdk, cs and odgh, between the hypothalamus and liver indicated a tissue dependent metabolism in buntings. These results suggest the adaptation of oxidative phosphorylation pathway(s) at gene levels to the seasonal alternations in metabolism in migratory songbirds.

  15. Apple juice concentrate prevents oxidative damage and impaired maze performance in aged mice.

    PubMed

    Tchantchou, Flaubert; Chan, Amy; Kifle, Lydia; Ortiz, Daniela; Shea, Thomas B

    2005-12-01

    Oxidative stress contributes to age-related cognitive decline. In some instances, consumption of fruits and vegetables rich in antioxidant can provide superior protection than supplementation with purified antioxidants. Our prior studies have shown that supplementation with apple juice concentrate (AJC) alleviates oxidative damage and cognitive decline in a transgenic murine model compromised in endogenous antioxidant potential when challenged with a vitamin-deficient, oxidative stress-promoting diet. Herein, we demonstrate that AJC, administered in drinking water, is neuroprotective in normal, aged mice. Normal mice aged either 9-10 months or 2-2.5 years were maintained for 1 month on a complete diet or a diet lacking folate and vitamin E and containing iron as a pro-oxidant, after which oxidative damage was assayed by thiobarbituric acid-reactive substances and cognitive decline as assayed by performance in a standard Y-maze. Mice 9-12 months of age were unaffected by the deficient diet, while older mice demonstrated statistically-increased oxidative damage and poorer performance in a Y maze test. Supplementation with AJC prevented these neurodegenerative effects. These data are consistent with normal aged individuals being susceptible to neurodegeneration following dietary compromise such as folate deficiency, and a hastened onset of neurodegeneration in those individuals harboring a genetic risk factor such as ApoE deficiency. These findings also support the efficacy of antioxidant supplementation, including consumption of antioxidant-rich foods such as apples, in preventing the decline in cognitive performance that accompanies normal aging.

  16. Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension

    PubMed Central

    Eis, Annie; Alexander, Maxwell; Michalkiewicz, Teresa; Teng, Ru-Jeng; Lakshminrusimha, Satyan; Konduri, Girija G.

    2015-01-01

    Impaired vasodilation in persistent pulmonary hypertension of the newborn (PPHN) is characterized by mitochondrial dysfunction. We investigated the hypothesis that a decreased endothelial nitric oxide synthase level leads to impaired mitochondrial biogenesis and function in a lamb model of PPHN induced by prenatal ductus arteriosus constriction. We ventilated PPHN lambs with 100% O2 alone or with inhaled nitric oxide (iNO). We treated pulmonary artery endothelial cells (PAECs) from normal and PPHN lambs with detaNONOate, an NO donor. We observed decreased mitochondrial (mt) DNA copy number, electron transport chain (ETC) complex subunit levels, and ATP levels in PAECs and lung tissue of PPHN fetal lambs at baseline compared with gestation matched controls. Phosphorylation of AMP-activated kinase (AMPK) and levels of peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) and sirtuin-1, which facilitate mitochondrial biogenesis, were decreased in PPHN. Ventilation with 100% O2 was associated with larger decreases in ETC subunits in the lungs of PPHN lambs compared with unventilated PPHN lambs. iNO administration, which facilitated weaning of FiO2, partly restored mtDNA copy number, ETC subunit levels, and ATP levels. DetaNONOate increased eNOS phosphorylation and its interaction with heat shock protein 90 (HSP90); increased levels of superoxide dismutase 2 (SOD2) mRNA, protein, and activity; and decreased the mitochondrial superoxide levels in PPHN-PAECs. Knockdown of eNOS decreased ETC protein levels in control PAECs. We conclude that ventilation with 100% O2 amplifies oxidative stress and mitochondrial dysfunction in PPHN, which are partly improved by iNO and weaning of oxygen. PMID:26519208

  17. Adapt

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  18. Aging Impairs Myocardial Fatty Acid and Ketone Oxidation and Modifies Cardiac Functional and Metabolic Responses to Insulin in Mice

    SciTech Connect

    Hyyti, Outi M.; Ledee, Dolena; Ning, Xue-Han; Ge, Ming; Portman, Michael A.

    2010-07-02

    Aging presumably initiates shifts in substrate oxidation mediated in part by changes in insulin sensitivity. Similar shifts occur with cardiac hypertrophy and may contribute to contractile dysfunction. We tested the hypothesis that aging modifies substrate utilization and alters insulin sensitivity in mouse heart when provided multiple substrates. In vivo cardiac function was measured with microtipped pressure transducers in the left ventricle from control (4–6 mo) and aged (22–24 mo) mice. Cardiac function was also measured in isolated working hearts along with substrate and anaplerotic fractional contributions to the citric acid cycle (CAC) by using perfusate containing 13C-labeled free fatty acids (FFA), acetoacetate, lactate, and unlabeled glucose. Stroke volume and cardiac output were diminished in aged mice in vivo, but pressure development was preserved. Systolic and diastolic functions were maintained in aged isolated hearts. Insulin prompted an increase in systolic function in aged hearts, resulting in an increase in cardiac efficiency. FFA and ketone flux were present but were markedly impaired in aged hearts. These changes in myocardial substrate utilization corresponded to alterations in circulating lipids, thyroid hormone, and reductions in protein expression for peroxisome proliferator-activated receptor (PPAR)α and pyruvate dehydrogenase kinase (PDK)4. Insulin further suppressed FFA oxidation in the aged. Insulin stimulation of anaplerosis in control hearts was absent in the aged. The aged heart shows metabolic plasticity by accessing multiple substrates to maintain function. However, fatty acid oxidation capacity is limited. Impaired insulin-stimulated anaplerosis may contribute to elevated cardiac efficiency, but may also limit response to acute stress through depletion of CAC intermediates.

  19. Real-World Executive Functions in Adults with Autism Spectrum Disorder: Profiles of Impairment and Associations with Adaptive Functioning and Co-morbid Anxiety and Depression.

    PubMed

    Wallace, Gregory L; Kenworthy, Lauren; Pugliese, Cara E; Popal, Haroon S; White, Emily I; Brodsky, Emily; Martin, Alex

    2016-03-01

    Although executive functioning (EF) difficulties are well documented among children and adolescents with autism spectrum disorder (ASD), little is known about real-world measures of EF among adults with ASD. Therefore, this study examined parent-reported real-world EF problems among 35 adults with ASD without intellectual disability and their correlations with adaptive functioning and co-morbid anxiety and depression symptomatology. A variable EF profile was found with prominent deficits occurring in flexibility and metacognition. Flexibility problems were associated with anxiety-related symptoms while metacognition difficulties were associated with depression symptoms and impaired adaptive functioning (though the metacognition-adaptive functioning relationship was moderated by ADHD symptoms). These persistent EF problems are predictors of broader functioning and therefore remain an important treatment target among adults with ASD.

  20. Real-World Executive Functions in Adults with Autism Spectrum Disorder: Profiles of Impairment and Associations with Adaptive Functioning and Co-morbid Anxiety and Depression

    PubMed Central

    Kenworthy, Lauren; Pugliese, Cara E.; Popal, Haroon S.; White, Emily I.; Brodsky, Emily; Martin, Alex

    2016-01-01

    Although executive functioning (EF) difficulties are well documented among children and adolescents with autism spectrum disorder (ASD), little is known about real-world measures of EF among adults with ASD. Therefore, this study examined parent-reported real-world EF problems among 35 adults with ASD without intellectual disability and their correlations with adaptive functioning and co-morbid anxiety and depression symptomatology. A variable EF profile was found with prominent deficits occurring in flexibility and metacognition. Flexibility problems were associated with anxiety-related symptoms while metacognition difficulties were associated with depression symptoms and impaired adaptive functioning (though the metacognition-adaptive functioning relationship was moderated by ADHD symptoms). These persistent EF problems are predictors of broader functioning and therefore remain an important treatment target among adults with ASD. PMID:26572659

  1. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling

    PubMed Central

    Alrob, Osama Abo; Sankaralingam, Sowndramalingam; Ma, Cary; Wagg, Cory S.; Fillmore, Natasha; Jaswal, Jagdip S.; Sack, Michael N.; Lehner, Richard; Gupta, Mahesh P.; Michelakis, Evangelos D.; Padwal, Raj S.; Johnstone, David E.; Sharma, Arya M.; Lopaschuk, Gary D.

    2014-01-01

    Aims Lysine acetylation is a novel post-translational pathway that regulates the activities of enzymes involved in both fatty acid and glucose metabolism. We examined whether lysine acetylation controls heart glucose and fatty acid oxidation in high-fat diet (HFD) obese and SIRT3 knockout (KO) mice. Methods and results C57BL/6 mice were placed on either a HFD (60% fat) or a low-fat diet (LFD; 4% fat) for 16 or 18 weeks. Cardiac fatty acid oxidation rates were significantly increased in HFD vs. LFD mice (845 ± 76 vs. 551 ± 87 nmol/g dry wt min, P < 0.05). Activities of the fatty acid oxidation enzymes, long-chain acyl-CoA dehydrogenase (LCAD), and β-hydroxyacyl-CoA dehydrogenase (β-HAD) were increased in hearts from HFD vs. LFD mice, and were associated with LCAD and β-HAD hyperacetylation. Cardiac protein hyperacetylation in HFD-fed mice was associated with a decrease in SIRT3 expression, while expression of the mitochondrial acetylase, general control of amino acid synthesis 5 (GCN5)-like 1 (GCN5L1), did not change. Interestingly, SIRT3 deletion in mice also led to an increase in cardiac fatty acid oxidation compared with wild-type (WT) mice (422 ± 29 vs. 291 ± 17 nmol/g dry wt min, P < 0.05). Cardiac lysine acetylation was increased in SIRT3 KO mice compared with WT mice, including increased acetylation and activity of LCAD and β-HAD. Although the HFD and SIRT3 deletion decreased glucose oxidation, pyruvate dehydrogenase acetylation was unaltered. However, the HFD did increase Akt acetylation, while decreasing its phosphorylation and activity. Conclusion We conclude that increased cardiac fatty acid oxidation in response to high-fat feeding is controlled, in part, via the down-regulation of SIRT3 and concomitant increased acetylation of mitochondrial β-oxidation enzymes. PMID:24966184

  2. Adaptive organic nanoparticles of a teflon-coated iron (III) porphyrin catalytically activate dioxygen for cyclohexene oxidation.

    PubMed

    Aggarwal, Amit; Singh, Sunaina; Samson, Jacopo; Drain, Charles Michael

    2012-07-26

    Self-organized organic nanoparticles (ONP) are adaptive to the environmental reaction conditions. ONP of fluorous alkyl iron(III) porphyrin catalytically oxidize cyclohexene to the allylic oxidation products. In contrast, the solvated metalloporphyrin yields both allylic oxidation and epoxidation products. The ONP system facilitates a greener reaction because about 89% reaction medium is water, molecular oxygen is used in place of synthetic oxidants, and the ambient reaction conditions used require less energy. The enhanced catalytic activity of these ONP is unexpected because the metalloporphyrins in the nanoaggregates are in the close proximity and the TON should diminish by self-oxidative degradation. The fluorous alkyl chain stabilizes the ONP toward self-oxidative degradation.

  3. Oxidative stress-induced cognitive impairment in obesity can be reversed by vitamin D administration in rats.

    PubMed

    Hajiluian, Ghazaleh; Abbasalizad Farhangi, Mahdieh; Nameni, Ghazaleh; Shahabi, Parviz; Megari-Abbasi, Mehran

    2017-07-06

    There is evidence that obesity leads to cognitive impairments via several markers of oxidative stress including glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase and malondialdehyde (MDA) in the hippocampus. Increased inflammatory markers in the brain have obesity triggering effects. In the current study we aimed to investigate the effects of vitamin D on cognitive function, nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α concentration and markers of oxidative stress in the hippocampus of high-fat diet-induced obese rats. Forty male Wistar rats were divided into two groups: control diet (CD) and high-fat diet (HFD) for 16 weeks; then each group subdivided into two groups including: CD, CD + vitamin D, HFD and HFD + vitamin D. Vitamin D was administered at 500 IU/kg dosage for 5 weeks. Four weeks after supplementation, Morris water maze test was performed. NF-κB and TNF-α concentration in the hippocampus were determined using ELISA kits. Moreover, oxidative stress markers in the hippocampus including GPx, SOD, MDA and CAT concentrations were measured by spectrophotometry methods. HFD significantly increased TNF-α (P = 0.04) and NF-κB (P = 0.01) concentrations in the hippocampus compared with CD. Vitamin D treatment led to a significant reduction in hippocampus NF-κB concentrations in HFD + vitamin D group (P = 0.001); however, vitamin D had no effect on TNF-α concentrations. Moreover, HFD significantly induced oxidative stress by reducing GPx, SOD and increasing MDA concentrations in the hippocampus. Vitamin D supplementation in HFD group also significantly increased GPx, SOD and reduced MDA concentrations. Vitamin D improved hippocampus oxidative stress and inflammatory markers in HFD-induced obese rats and improved cognitive performance. Further studies are needed to better clarify the underlying mechanisms.

  4. Anhydroecgonine Methyl Ester (AEME), a Product of Cocaine Pyrolysis, Impairs Spatial Working Memory and Induces Striatal Oxidative Stress in Rats.

    PubMed

    Gomes, Elisa Fraga; Lipaus, Ingryd Fortes Souza; Martins, Cleciane Waldetário; Araújo, Andrezza Menezes; Mendonça, Josidéia Barreto; Pelição, Fabrício Souza; Lebarch, Evandro Carlos; de Melo Rodrigues, Lívia Carla; Nakamura-Palacios, Ester Miyuki

    2017-09-15

    When burning crack cocaine, the pyrolysis of cocaine generates anhydroecgonine methyl ester (AEME). AEME has been shown to be highly neurotoxic but its effects on cognitive function and oxidative stress are still unknown. Thus, this study investigated the effects of AEME on spatial working memory and on parameters of oxidative stress in the prefrontal cortex, hippocampus, and striatum. First, 18 well-trained rats in 8-arm radial maze (8-RM) procedures received acute intracerebroventricular (icv) administration of AEME at doses of 10, 32, or 100 μg or saline (SAL) in a counterbalanced order and were tested 5 min later in 1-h delayed tasks in the 8-RM. Secondly, separated animals received acute icv administration of AEME at doses of 10 (n = 5), 32 (n = 5), or 100 μg (n = 5) or SAL (n = 5) for analysis of advanced oxidation protein products, thiobarbituric acid, catalase, glutathione peroxidase, and superoxide dismutase. A higher number of errors were seen in the 1-h post-delay performance after AEME 32 μg and AEME 100 μg when compared to SAL. In the striatum, animals receiving AEME 100 μg icv showed increased advanced oxidation protein products levels when compared to 10 μg, and also showed increased activity of glutathione peroxidase enzyme when compared to SAL but also comparing to AEME 32 μg and AEME 10 μg. These results showed that AEME impairs long-term spatial working memory and also induces greater protein oxidation and increased levels of antioxidant enzymes in the striatum.

  5. Energy Efficient Glazing for Adaptive Solar Control Fabricated with Photothermotropic Hydrogels Containing Graphene Oxide

    PubMed Central

    Kim, Dowan; Lee, Eunsu; Lee, Heon Sang; Yoon, Jinhwan

    2015-01-01

    Glazing for adaptive solar control is the most promising for energy efficient development, because the use of this technology in buildings can be expected to significantly impact energy use and efficiency by screening sunlight that enters a building in summer. To achieve autonomous adjustable transparency, we have developed photothermotropic material system by combining photothermal materials with thermotropic hydrogels. We found that graphene oxide dispersed within a hydrogel matrix effectively converts the photo energy of sunlight into thermal energy, providing the efficient means to trigger transparency of thermotropic hydrogels. Therefore, we could develop switchable glazing of novel photothermotropic mechanism that screen strong sunlight and heat radiation in response to the sunlight intensity, as well as the temperature. Furthermore, in this study, a prototype device was manufactured with developed materials and successfully operated in outdoor testing. PMID:25561372

  6. Energy efficient glazing for adaptive solar control fabricated with photothermotropic hydrogels containing graphene oxide.

    PubMed

    Kim, Dowan; Lee, Eunsu; Lee, Heon Sang; Yoon, Jinhwan

    2015-01-06

    Glazing for adaptive solar control is the most promising for energy efficient development, because the use of this technology in buildings can be expected to significantly impact energy use and efficiency by screening sunlight that enters a building in summer. To achieve autonomous adjustable transparency, we have developed photothermotropic material system by combining photothermal materials with thermotropic hydrogels. We found that graphene oxide dispersed within a hydrogel matrix effectively converts the photo energy of sunlight into thermal energy, providing the efficient means to trigger transparency of thermotropic hydrogels. Therefore, we could develop switchable glazing of novel photothermotropic mechanism that screen strong sunlight and heat radiation in response to the sunlight intensity, as well as the temperature. Furthermore, in this study, a prototype device was manufactured with developed materials and successfully operated in outdoor testing.

  7. Naringin protects memory impairment and mitochondrial oxidative damage against aluminum-induced neurotoxicity in rats.

    PubMed

    Prakash, Atish; Shur, Bhargabi; Kumar, Anil

    2013-09-01

    Aluminum has been indicated in neurodegenerative disorders and naringin, a bioflavonoid has been used to reduce neurotoxic effects of aluminum against aluminum chloride-induced rats. Therefore, present study has been designed to explore the possible role of naringin against aluminum-induced cognitive dysfunction and oxidative damage in rats. Aluminum (100 mg/kg) and naringin (40 and 80 mg/kg) drug treatment were administered orally for six weeks to male wistar rats. Various behavioral performance tasks, biochemical, mitochondrial oxidative parameters, and aluminum concentration in the brain were assessed. Aluminum chloride treatment significantly caused cognitive dysfunction and mitochondria oxidative damage as compared to vehicle treated control group. Besides, aluminum chloride treatment significantly increased acetyl cholinesterase activity and aluminum concentration in the brain as compared to sham. Chronic administration of naringin significantly improved cognitive performance and attenuated mitochondria oxidative damage, acetyl cholinesterase activity, and aluminum concentration in aluminum-treated rats as compared to control rats. Results of the study demonstrate neuroprotective potential of naringin against aluminum chloride-induced cognitive dysfunction and mitochondrial oxidative damage.

  8. Arsenosugar induced blood and brain oxidative stress, DNA damage and neurobehavioral impairments.

    PubMed

    Bin Sayeed, Muhammad Shahdaat; Ratan, Md; Hossen, Farhad; Hassan, Faizule; Faisal, Mohammad; Kadir, Mohammad Fahim

    2013-02-01

    The effect of Arsenosugar on motor function and contextual memory-related to place and event; the extent of DNA damage and oxidative stress in male swiss albino mice was investigated. Passive avoidance test was used for memory test; rota motor test was used for motor function. Several biochemical parameters were used for assessing oxidative stress due to arsenosugar ingestion. Decreased passive avoidance time and decreased retention time in rotating rod indicated disruption of normal neurobehavior. Significant dose-dependent DNA damage was found in mice blood and brain. Decreased super oxide dismutase, increased lipid peroxidation, decreased protein sulfohydryl content, increased protein carbonyl content in blood and hippocampal tissue; glutathione in blood and glutathione peroxidase in hippocampal tissue indicated the ability of arsenosugar to cause oxidative stress. This study concludes with evidence that arsenosugar ingestion causes higher oxidative stress, increases DNA damage in the blood and hippocampus in vivo. This might be responsible for the dysfunction of cognitive and motor functions. However, further investigation is suggested for deciphering the biomolecular mechanism.

  9. Roles of Fatty Acid Oversupply and Impaired Oxidation in Lipid Accumulation in Tissues of Obese Rats

    PubMed Central

    Oakes, Nicholas D.; Kjellstedt, Ann; Thalén, Pia; Ljung, Bengt; Turner, Nigel

    2013-01-01

    To test the roles of lipid oversupply versus oxidation in causing tissue lipid accumulation associated with insulin resistance/obesity, we studied in vivo fatty acid (FA) metabolism in obese (Obese) and lean (Lean) Zucker rats. Indices of local FA utilization and storage were calculated using the partially metabolizable [9,10-3H]-(R)-2-bromopalmitate (3H-R-BrP) and [U-14C]-palmitate (14C-P) FA tracers, respectively. Whole-body FA appearance (R a) was estimated from plasma 14C-P kinetics. Whole-body FA oxidation rate (R ox) was assessed using 3H2O production from 3H-palmitate infusion, and tissue FA oxidative capacity was evaluated ex vivo. In the basal fasting state Obese had markedly elevated FA levels and R a, associated with elevated FA utilization and storage in most tissues. Estimated rates of muscle FA oxidation were not lower in obese rats and were similarly enhanced by contraction in both lean and obese groups. At comparable levels of FA availability, achieved by nicotinic acid, R ox was lower in Obese than Lean. In Obese rats, FA oxidative capacity was 35% higher than that in Lean in skeletal muscle, 67% lower in brown fat and comparable in other organs. In conclusion, lipid accumulation in non-adipose tissues of obese Zucker rats appears to result largely from systemic FA oversupply. PMID:23762564

  10. Roles of Fatty Acid oversupply and impaired oxidation in lipid accumulation in tissues of obese rats.

    PubMed

    Oakes, Nicholas D; Kjellstedt, Ann; Thalén, Pia; Ljung, Bengt; Turner, Nigel

    2013-01-01

    To test the roles of lipid oversupply versus oxidation in causing tissue lipid accumulation associated with insulin resistance/obesity, we studied in vivo fatty acid (FA) metabolism in obese (Obese) and lean (Lean) Zucker rats. Indices of local FA utilization and storage were calculated using the partially metabolizable [9,10-(3)H]-(R)-2-bromopalmitate ((3)H-R-BrP) and [U-(14)C]-palmitate ((14)C-P) FA tracers, respectively. Whole-body FA appearance (R a ) was estimated from plasma (14)C-P kinetics. Whole-body FA oxidation rate (R ox) was assessed using (3)H2O production from (3)H-palmitate infusion, and tissue FA oxidative capacity was evaluated ex vivo. In the basal fasting state Obese had markedly elevated FA levels and R a , associated with elevated FA utilization and storage in most tissues. Estimated rates of muscle FA oxidation were not lower in obese rats and were similarly enhanced by contraction in both lean and obese groups. At comparable levels of FA availability, achieved by nicotinic acid, R ox was lower in Obese than Lean. In Obese rats, FA oxidative capacity was 35% higher than that in Lean in skeletal muscle, 67% lower in brown fat and comparable in other organs. In conclusion, lipid accumulation in non-adipose tissues of obese Zucker rats appears to result largely from systemic FA oversupply.

  11. Effect of progesterone on phosphamidon-induced impairment of memory and oxidative stress in rats.

    PubMed

    Sharma, Amit K; Bhattacharya, Swapan K; Khanna, Naresh; Tripathi, Ashok K; Arora, Tarun; Mehta, Ashish K; Mehta, Kapil D; Joshi, Vikas

    2011-10-01

    Progesterone (a neurosteroid) is an important modulator of the nervous system functioning. Organophosphorus pesticides like phosphamidon have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was therefore designed to investigate the effects of progesterone (PROG) on phosphamidon-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of thiobarbituric acid reactive species (TBARS) and non-protein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and prolongation of TL in the phosphamidon (1.74 mg/kg/d; p.o.) treated group at weeks 6 and 8 as compared to the control group. Two weeks treatment with PROG (15 mg/kg/d; i.p.) antagonized the effect of phosphamidon on SDL as well as TL. Phosphamidon alone produced a significant increase in the brain TBARS levels and decrease in the brain NP-SH levels. Treatment with PROG (15 mg/kg/d; i.p.) attenuated the effect of phosphamidon on oxidative stress. Together, the results showed that progesterone attenuated the cognitive dysfunction and increased oxidative stress induced by phosphamidon in the brain.

  12. Impaired neuronal nitric oxide synthase-mediated vasodilator responses to mental stress in essential hypertension.

    PubMed

    Khan, Sitara G; Geer, Amber; Fok, Henry W; Shabeeh, Husain; Brett, Sally E; Shah, Ajay M; Chowienczyk, Philip J

    2015-04-01

    Neuronal NO synthase (nNOS) regulates blood flow in resistance vasculature at rest and during mental stress. To investigate whether nNOS signaling is dysfunctional in essential hypertension, forearm blood flow responses to mental stress were examined in 88 subjects: 48 with essential hypertension (42±14 years; blood pressure, 141±17/85±15 mm Hg; mean±SD) and 40 normotensive controls (38±14 years; 117±13/74±9 mm Hg). A subsample of 34 subjects (17 hypertensive) participated in a single blind 2-phase crossover study, in which placebo or sildenafil 50 mg PO was administered before an intrabrachial artery infusion of the selective nNOS inhibitor S-methyl-l-thiocitrulline (SMTC, 0.05, 0.1, and 0.2 μmol/min) at rest and during mental stress. In a further subsample (n=21) with an impaired blood flow response to mental stress, responses were measured in the presence and absence of the α-adrenergic antagonist phentolamine. The blood flow response to mental stress was impaired in hypertensive compared with normotensive subjects (37±7% versus 70±8% increase over baseline; P<0.001). SMTC blunted responses to mental stress in normotensive but not in hypertensive subjects (reduction of 40±11% versus 3.0±14%, respectively, P=0.01, between groups). Sildenafil reduced the blood flow response to stress in normotensive subjects from 89±14% to 43±14% (P<0.03) but had no significant effect in hypertensive subjects. Phentolamine augmented impaired blood flow responses to mental stress from 39±8% to 67±13% (P<0.02). Essential hypertension is associated with impaired mental stress-induced nNOS-mediated vasodilator responses; this may relate to increased sympathetic outflow in hypertension. nNOS dysfunction may impair vascular homeostasis in essential hypertension and contribute to stress-induced cardiovascular events. © 2015 American Heart Association, Inc.

  13. The swan-neck lesion: proximal tubular adaptation to oxidative stress in nephropathic cystinosis.

    PubMed

    Galarreta, Carolina I; Forbes, Michael S; Thornhill, Barbara A; Antignac, Corinne; Gubler, Marie-Claire; Nevo, Nathalie; Murphy, Michael P; Chevalier, Robert L

    2015-05-15

    Cystinosis is an inherited disorder resulting from a mutation in the CTNS gene, causing progressive proximal tubular cell flattening, the so-called swan-neck lesion (SNL), and eventual renal failure. To determine the role of oxidative stress in cystinosis, histologic sections of kidneys from C57BL/6 Ctns(-/-) and wild-type mice were examined by immunohistochemistry and morphometry from 1 wk to 20 mo of age. Additional mice were treated from 1 to 6 mo with vehicle or mitoquinone (MitoQ), an antioxidant targeted to mitochondria. The leading edge of the SNL lost mitochondria and superoxide production, and became surrounded by a thickened tubular basement membrane. Progression of the SNL as determined by staining with lectin from Lotus tetragonolobus accelerated after 3 mo, but was delayed by treatment with MitoQ (38 ± 4% vs. 28 ± 1%, P < 0.01). Through 9 mo, glomeruli had retained renin staining and intact macula densa, whereas SNL expressed transgelin, an actin-binding protein, but neither kidney injury molecule-1 (KIM-1) nor cell death was observed. After 9 mo, clusters of proximal tubules exhibited localized oxidative stress (4-hydroxynonenal binding), expressed KIM-1, and underwent apoptosis, leading to the formation of atubular glomeruli and accumulation of interstitial collagen. We conclude that nephron integrity is initially maintained in the Ctns(-/-) mouse by adaptive flattening of cells of the SNL through loss of mitochondria, upregulation of transgelin, and thickened basement membrane. This adaptation ultimately fails in adulthood, with proximal tubular disruption, formation of atubular glomeruli, and renal failure. Antioxidant treatment targeted to mitochondria delays initiation of the SNL, and may provide therapeutic benefit in children with cystinosis.

  14. Gross motor function in children with spastic Cerebral Palsy and Cerebral Visual Impairment: A comparison between outcomes of the original and the Cerebral Visual Impairment adapted Gross Motor Function Measure-88 (GMFM-88-CVI).

    PubMed

    Salavati, M; Rameckers, E A A; Waninge, A; Krijnen, W P; Steenbergen, B; van der Schans, C P

    2017-01-01

    To investigate whether the adapted version of the Gross Motor Function Measure-88 (GMFM-88) for children with Cerebral Palsy (CP) and Cerebral Visual Impairment (CVI) results in higher scores. This is most likely to be a reflection of their gross motor function, however it may be the result of a better comprehension of the instruction of the adapted version. The scores of the original and adapted GMFM-88 were compared in the same group of children (n=21 boys and n=16 girls), mean (SD) age 113 (30) months with CP and CVI, within a time span of two weeks. A paediatric physical therapist familiar with the child assessed both tests in random order. The GMFCS level, mental development and age at testing were also collected. The Wilcoxon signed-rank test was used to compare two different measurements (the original and adapted GMFM-88) on a single sample, (the same child with CP and CVI; p<0.05). The comparison between scores on the original and adapted GMFM-88 in all children with CP and CVI showed a positive difference in percentage score on at least one of the five dimensions and positive percentage scores for the two versions differed on all five dimensions for fourteen children. For six children a difference was seen in four dimensions and in 10 children difference was present in three dimensions (GMFM dimension A, B& C or C, D & E) (p<0.001). The adapted GMFM-88 provides a better estimate of gross motor function per se in children with CP and CVI that is not adversely impacted bytheir visual problems. On the basis of these findings, we recommend using the adapted GMFM-88 to measure gross motor functioning in children with CP and CVI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Protection against oxidative stress mediated by the Nrf2/Keap1 axis is impaired in Primary Biliary Cholangitis

    PubMed Central

    Wasik, Urszula; Milkiewicz, Małgorzata; Kempinska-Podhorodecka, Agnieszka; Milkiewicz, Piotr

    2017-01-01

    In response to oxidative stress, nuclear factor (erythroid-derived 2)-like2 (Nrf2) induces expression of cytoprotective genes. The Nrf2 pathway is controlled by microRNAs and Kelch-like ECH-associated protein1 (Keap1). Nrf2 is stabilized when Keap1 is degraded through the autophagy pathway in a p62-dependent manner. The inhibition of autophagy causes protein accumulation, and Keap1 is inactivated by binding to p62. We investigated the role of the Nrf2/Keap1 axis in the amelioration of oxidative stress in primary biliary cholangitis (PBC). Liver specimens from patients with PBC, with (n = 24) or without cirrhosis (n = 14), and from controls (n = 16) were used for molecular analyses. We found that Nrf2 protein levels were elevated in PBC compared to controls, but Nrf2 gene expression was significantly reduced in cirrhotic PBC. Nrf2 target gene products, HO-1 and GCLC proteins, were reduced compared to controls and reduction of Nrf2 gene expression was associated with elevated levels of microRNA-132 and microRNA-34a. Both Keap1 and p62 protein levels were substantially increased in PBC compared to controls. PBC was associated with reduced Nrf2 expression and autophagy deterioration and these impairments were more advanced in patients with cirrhosis. Aberrant Nrf2/Keap1 system integrity may affect self-defence mechanisms against oxidative stress in PBC. PMID:28333129

  16. Escin attenuates behavioral impairments, oxidative stress and inflammation in a chronic MPTP/probenecid mouse model of Parkinson's disease.

    PubMed

    Selvakumar, Govindasamy Pushpavathi; Janakiraman, Udaiyappan; Essa, Musthafa Mohamed; Justin Thenmozhi, Arokiasamy; Manivasagam, Thamilarasan

    2014-10-17

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that results mainly due to the death of dopaminergic neurons in the substantia nigra (SN), and subsequently has an effect on one's motor function and coordination. The current investigation explored the neuroprotective potential of escin, a natural triterpene-saponin on chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p) induced mouse model of PD. Administration of MPTP led to the depleted striatal dopamine content, impaired patterns of behavior, enhanced oxidative stress and diminished expression of tyrosine hydroxylase (TH), dopamine transporter (DAT) and vesicular monoamine transporter-2 (VMAT-2). The expressions of interleukin-6 and -10, glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor protein-1 (IBA-1), tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) in SN were also enhanced. Oral treatment of escin significantly attenuated MPTP/p induced dopaminergic markers depletion, physiological abnormalities, oxidative stress and inhibit neuroinflammatory cytokine expressions in SN. The result of our study confirmed that escin mediated its protection against experimental PD through its antioxidant and anti-inflammatory properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Mitochondrial impairment and melatonin protection in parkinsonian mice do not depend of inducible or neuronal nitric oxide synthases

    PubMed Central

    López, Ana; Ortiz, Francisco; Doerrier, Carolina; Venegas, Carmen; Fernández-Ortiz, Marisol; Aranda, Paula; Díaz-Casado, María E.; Fernández-Gil, Beatriz; Barriocanal-Casado, Eliana; Escames, Germaine; López, Luis C.

    2017-01-01

    MPTP-mouse model constitutes a well-known model of neuroinflammation and mitochondrial failure occurring in Parkinson’s disease (PD). Although it has been extensively reported that nitric oxide (NO●) plays a key role in the pathogenesis of PD, the relative roles of nitric oxide synthase isoforms iNOS and nNOS in the nigrostriatal pathway remains, however, unclear. Here, the participation of iNOS/nNOS isoforms in the mitochondrial dysfunction was analyzed in iNOS and nNOS deficient mice. Our results showed that MPTP increased iNOS activity in substantia nigra and striatum, whereas it sharply reduced complex I activity and mitochondrial bioenergetics in all strains. In the presence of MPTP, mice lacking iNOS showed similar restricted mitochondrial function than wild type or mice lacking nNOS. These results suggest that iNOS-dependent elevated nitric oxide, a major pathological hallmark of neuroinflammation in PD, does not contribute to mitochondrial impairment. Therefore, neuroinflammation and mitochondrial dysregulation seem to act in parallel in the MPTP model of PD. Melatonin administration, with well-reported neuroprotective properties, counteracted these effects, preventing from the drastic changes in mitochondrial oxygen consumption, increased NOS activity and prevented reduced locomotor activity induced by MPTP. The protective effects of melatonin on mitochondria are also independent of its anti-inflammatory properties, but both effects are required for an effective anti-parkinsonian activity of the indoleamine as reported in this study. PMID:28800639

  18. Mitochondrial impairment and melatonin protection in parkinsonian mice do not depend of inducible or neuronal nitric oxide synthases.

    PubMed

    López, Ana; Ortiz, Francisco; Doerrier, Carolina; Venegas, Carmen; Fernández-Ortiz, Marisol; Aranda, Paula; Díaz-Casado, María E; Fernández-Gil, Beatriz; Barriocanal-Casado, Eliana; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2017-01-01

    MPTP-mouse model constitutes a well-known model of neuroinflammation and mitochondrial failure occurring in Parkinson's disease (PD). Although it has been extensively reported that nitric oxide (NO●) plays a key role in the pathogenesis of PD, the relative roles of nitric oxide synthase isoforms iNOS and nNOS in the nigrostriatal pathway remains, however, unclear. Here, the participation of iNOS/nNOS isoforms in the mitochondrial dysfunction was analyzed in iNOS and nNOS deficient mice. Our results showed that MPTP increased iNOS activity in substantia nigra and striatum, whereas it sharply reduced complex I activity and mitochondrial bioenergetics in all strains. In the presence of MPTP, mice lacking iNOS showed similar restricted mitochondrial function than wild type or mice lacking nNOS. These results suggest that iNOS-dependent elevated nitric oxide, a major pathological hallmark of neuroinflammation in PD, does not contribute to mitochondrial impairment. Therefore, neuroinflammation and mitochondrial dysregulation seem to act in parallel in the MPTP model of PD. Melatonin administration, with well-reported neuroprotective properties, counteracted these effects, preventing from the drastic changes in mitochondrial oxygen consumption, increased NOS activity and prevented reduced locomotor activity induced by MPTP. The protective effects of melatonin on mitochondria are also independent of its anti-inflammatory properties, but both effects are required for an effective anti-parkinsonian activity of the indoleamine as reported in this study.

  19. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas.

  20. Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors

    NASA Astrophysics Data System (ADS)

    Prezioso, M.; Merrikh Bayat, F.; Hoskins, B.; Likharev, K.; Strukov, D.

    2016-02-01

    Metal-oxide memristors have emerged as promising candidates for hardware implementation of artificial synapses - the key components of high-performance, analog neuromorphic networks - due to their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic networks, which explicitly model individual neural pulses (“spikes”) in biological neural systems, it is crucial for memristive synapses to support the spike-time-dependent plasticity (STDP). A major challenge for the STDP implementation is that, in contrast to some simplistic models of the plasticity, the elementary change of a synaptic weight in an artificial hardware synapse depends not only on the pre-synaptic and post-synaptic signals, but also on the initial weight (memristor’s conductance) value. Here we experimentally demonstrate, for the first time, an STDP behavior that ensures self-adaptation of the average memristor conductance, making the plasticity stable, i.e. insensitive to the initial state of the devices. The experiments have been carried out with 200-nm Al2O3/TiO2-x memristors integrated into 12 × 12 crossbars. The experimentally observed self-adaptive STDP behavior has been complemented with numerical modeling of weight dynamics in a simple system with a leaky-integrate-and-fire neuron with a random spike-train input, using a compact model of memristor plasticity, fitted for quantitatively correct description of our memristors.

  1. Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors

    PubMed Central

    Prezioso, M.; Merrikh Bayat, F.; Hoskins, B.; Likharev, K.; Strukov, D.

    2016-01-01

    Metal-oxide memristors have emerged as promising candidates for hardware implementation of artificial synapses – the key components of high-performance, analog neuromorphic networks - due to their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic networks, which explicitly model individual neural pulses (“spikes”) in biological neural systems, it is crucial for memristive synapses to support the spike-time-dependent plasticity (STDP). A major challenge for the STDP implementation is that, in contrast to some simplistic models of the plasticity, the elementary change of a synaptic weight in an artificial hardware synapse depends not only on the pre-synaptic and post-synaptic signals, but also on the initial weight (memristor’s conductance) value. Here we experimentally demonstrate, for the first time, an STDP behavior that ensures self-adaptation of the average memristor conductance, making the plasticity stable, i.e. insensitive to the initial state of the devices. The experiments have been carried out with 200-nm Al2O3/TiO2−x memristors integrated into 12 × 12 crossbars. The experimentally observed self-adaptive STDP behavior has been complemented with numerical modeling of weight dynamics in a simple system with a leaky-integrate-and-fire neuron with a random spike-train input, using a compact model of memristor plasticity, fitted for quantitatively correct description of our memristors. PMID:26893175

  2. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes.

    PubMed

    Wang, Bin; Li, Xianglong; Zhang, Xianfeng; Luo, Bin; Jin, Meihua; Liang, Minghui; Dayeh, Shadi A; Picraux, S T; Zhi, Linjie

    2013-02-26

    Silicon has been touted as one of the most promising anode materials for next generation lithium ion batteries. Yet, how to build energetic silicon-based electrode architectures by addressing the structural and interfacial stability issues facing silicon anodes still remains a big challenge. Here, we develop a novel kind of self-supporting binder-free silicon-based anodes via the encapsulation of silicon nanowires (SiNWs) with dual adaptable apparels (overlapped graphene (G) sheaths and reduced graphene oxide (RGO) overcoats). In the resulted architecture (namely, SiNW@G@RGO), the overlapped graphene sheets, as adaptable but sealed sheaths, prevent the direct exposure of encapsulated silicon to the electrolyte and enable the structural and interfacial stabilization of silicon nanowires. Meanwhile, the flexible and conductive RGO overcoats accommodate the volume change of embedded SiNW@G nanocables and thus maintain the structural and electrical integrity of the SiNW@G@RGO. As a result, the SiNW@G@RGO electrodes exhibit high reversible specific capacity of 1600 mAh g⁻¹ at 2.1 A g⁻¹, 80% capacity retention after 100 cycles, and superior rate capability (500 mAh g⁻¹ at 8.4 A g⁻¹) on the basis of the total electrode weight.

  3. Distinct Phenotypes Caused by Mutation of MSH2 in Trypanosome Insect and Mammalian Life Cycle Forms Are Associated with Parasite Adaptation to Oxidative Stress

    PubMed Central

    Bolderson, Jason; Campos, Priscila C.; Miranda, Julia B.; Alves, Ceres L.; Machado, Carlos R.; McCulloch, Richard; Teixeira, Santuza M. R.

    2015-01-01

    Background DNA repair mechanisms are crucial for maintenance of the genome in all organisms, including parasites where successful infection is dependent both on genomic stability and sequence variation. MSH2 is an early acting, central component of the Mismatch Repair (MMR) pathway, which is responsible for the recognition and correction of base mismatches that occur during DNA replication and recombination. In addition, recent evidence suggests that MSH2 might also play an important, but poorly understood, role in responding to oxidative damage in both African and American trypanosomes. Methodology/Principal Findings To investigate the involvement of MMR in the oxidative stress response, null mutants of MSH2 were generated in Trypanosoma brucei procyclic forms and in Trypanosoma cruzi epimastigote forms. Unexpectedly, the MSH2 null mutants showed increased resistance to H2O2 exposure when compared with wild type cells, a phenotype distinct from the previously observed increased sensitivity of T. brucei bloodstream forms MSH2 mutants. Complementation studies indicated that the increased oxidative resistance of procyclic T. brucei was due to adaptation to MSH2 loss. In both parasites, loss of MSH2 was shown to result in increased tolerance to alkylation by MNNG and increased accumulation of 8-oxo-guanine in the nuclear and mitochondrial genomes, indicating impaired MMR. In T. cruzi, loss of MSH2 also increases the parasite capacity to survive within host macrophages. Conclusions/Significance Taken together, these results indicate MSH2 displays conserved, dual roles in MMR and in the response to oxidative stress. Loss of the latter function results in life cycle dependent differences in phenotypic outcomes in T. brucei MSH2 mutants, most likely because of the greater burden of oxidative stress in the insect stage of the parasite. PMID:26083967

  4. Increased Oxidative Stress Impairs Adipose Tissue Function in Sphingomyelin Synthase 1 Null Mice

    PubMed Central

    Nishimura, Naotaka; Gotoh, Tomomi; Watanabe, Ken; Ikeda, Kazutaka; Garan, Yohei; Taguchi, Ryo; Node, Koichi; Okazaki, Toshiro; Oike, Yuichi

    2013-01-01

    Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we found that SMS1 null mice showed lipodystrophic phenotype. Mutant mice showed up-regulation of plasma triglyceride concentrations accompanied by reduction of white adipose tissue (WAT) as they aged. Lipoprotein lipase (LPL) activity was severely reduced in mutant mice. In vivo analysis indicated that fatty acid uptake in WAT but not in liver decreased in SMS1 null compared to wild-type mice. In vitro analysis using cultured cell revealed that SMS1 depletion reduced fatty acid uptake. Proteins extracted from WAT of mutant mice were severely modified by oxidative stress, and up-regulation of mRNAs related to apoptosis, redox adjustment, mitochondrial stress response and mitochondrial biogenesis was observed. ATP content of WAT was reduced in SMS1 null mice. Blue native gel analysis indicated that accumulation of mitochondrial respiratory chain complexes was reduced. These results suggest that WAT of SMS1 null mice is severely damaged by oxidative stress and barely functional. Indeed, mutant mice treated with the anti-oxidant N-acetyl cysteine (NAC) showed partial recovery of lipodystrophic phenotypes together with normalized plasma triglyceride concentrations. Altogether, our data suggest that SMS1 is crucial to control oxidative stress in order to maintain WAT function. PMID:23593476

  5. Catalase expression impairs oxidative stress-mediated signalling in Trypanosoma cruzi.

    PubMed

    Freire, Anna Cláudia Guimarães; Alves, Ceres Luciana; Goes, Grazielle Ribeiro; Resende, Bruno Carvalho; Moretti, Nilmar Silvio; Nunes, Vinícius Santana; Aguiar, Pedro Henrique Nascimento; Tahara, Erich Birelli; Franco, Glória Regina; Macedo, Andréa Mara; Pena, Sérgio Danilo Junho; Gadelha, Fernanda Ramos; Guarneri, Alessandra Aparecida; Schenkman, Sergio; Vieira, Leda Quercia; Machado, Carlos Renato

    2017-09-01

    Trypanosoma cruzi is exposed to oxidative stresses during its life cycle, and amongst the strategies employed by this parasite to deal with these situations sits a peculiar trypanothione-dependent antioxidant system. Remarkably, T. cruzi's antioxidant repertoire does not include catalase. In an attempt to shed light on what are the reasons by which this parasite lacks this enzyme, a T. cruzi cell line stably expressing catalase showed an increased resistance to hydrogen peroxide (H2O2) when compared with wild-type cells. Interestingly, preconditioning carried out with low concentrations of H2O2 led untransfected parasites to be as much resistant to this oxidant as cells expressing catalase, but did not induce the same level of increased resistance in the latter ones. Also, presence of catalase decreased trypanothione reductase and increased superoxide dismutase levels in T. cruzi, resulting in higher levels of residual H2O2 after challenge with this oxidant. Although expression of catalase contributed to elevated proliferation rates of T. cruzi in Rhodnius prolixus, it failed to induce a significant increase of parasite virulence in mice. Altogether, these results indicate that the absence of a gene encoding catalase in T. cruzi has played an important role in allowing this parasite to develop a shrill capacity to sense and overcome oxidative stress.

  6. Increased palmitate intake: higher acylcarnitine concentrations without impaired progression of β-oxidation1[S

    PubMed Central

    Kien, C. Lawrence; Matthews, Dwight E.; Poynter, Matthew E.; Bunn, Janice Y.; Fukagawa, Naomi K.; Crain, Karen I.; Ebenstein, David B.; Tarleton, Emily K.; Stevens, Robert D.; Koves, Timothy R.; Muoio, Deborah M.

    2015-01-01

    Palmitic acid (PA) is associated with higher blood concentrations of medium-chain acylcarnitines (MCACs), and we hypothesized that PA may inhibit progression of FA β-oxidation. Using a cross-over design, 17 adults were fed high PA (HPA) and low PA/high oleic acid (HOA) diets, each for 3 weeks. The [1-13C]PA and [13-13C]PA tracers were administered with food in random order with each diet, and we assessed PA oxidation (PA OX) and serum AC concentration to determine whether a higher PA intake promoted incomplete PA OX. Dietary PA was completely oxidized during the HOA diet, but only about 40% was oxidized during the HPA diet. The [13-13C]PA/[1-13C]PA ratio of PA OX had an approximate value of 1.0 for either diet, but the ratio of the serum concentrations of MCACs to long-chain ACs (LCACs) was significantly higher during the HPA diet. Thus, direct measurement of PA OX did not confirm that the HPA diet caused incomplete PA OX, despite the modest, but statistically significant, increase in the ratio of MCACs to LCACs in blood. PMID:26156077

  7. Protective effect of melatonin on propoxur-induced impairment of memory and oxidative stress in rats.

    PubMed

    Mehta, Kapil D; Mehta, Ashish K; Halder, Sumita; Khanna, Naresh; Tripathi, Ashok K; Sharma, Krishna K

    2014-06-01

    Propoxur (a carbamate pesticide) has been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. This study was designed to explore the modulation of the effects of propoxur over cognitive function by melatonin (MEL). Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus, and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining brain malondialdehyde (MDA) and reduced glutathione (GSH) levels and catalase (CAT) activity. A significant reduction in SDL and prolongation of TL was observed for the propoxur (10 mg/kg/d; p.o.) treated group at weeks 6 and 7 when compared with control. One week treatment with MEL (50 mg/kg/d; i.p.) antagonized the effect of propoxur on SDL, as well as TL. Propoxur produced a statistically significant increase in the brain MDA levels and decrease in the brain GSH levels and CAT activity. Treatment with MEL attenuated the effect of propoxur on oxidative stress. The results of the present study thus show that MEL has the potential to attenuate cognitive dysfunction and oxidative stress induced by toxicants like propoxur in the brain.

  8. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling.

    PubMed

    Alrob, Osama Abo; Sankaralingam, Sowndramalingam; Ma, Cary; Wagg, Cory S; Fillmore, Natasha; Jaswal, Jagdip S; Sack, Michael N; Lehner, Richard; Gupta, Mahesh P; Michelakis, Evangelos D; Padwal, Raj S; Johnstone, David E; Sharma, Arya M; Lopaschuk, Gary D

    2014-09-01

    Lysine acetylation is a novel post-translational pathway that regulates the activities of enzymes involved in both fatty acid and glucose metabolism. We examined whether lysine acetylation controls heart glucose and fatty acid oxidation in high-fat diet (HFD) obese and SIRT3 knockout (KO) mice. C57BL/6 mice were placed on either a HFD (60% fat) or a low-fat diet (LFD; 4% fat) for 16 or 18 weeks. Cardiac fatty acid oxidation rates were significantly increased in HFD vs. LFD mice (845 ± 76 vs. 551 ± 87 nmol/g dry wt min, P < 0.05). Activities of the fatty acid oxidation enzymes, long-chain acyl-CoA dehydrogenase (LCAD), and β-hydroxyacyl-CoA dehydrogenase (β-HAD) were increased in hearts from HFD vs. LFD mice, and were associated with LCAD and β-HAD hyperacetylation. Cardiac protein hyperacetylation in HFD-fed mice was associated with a decrease in SIRT3 expression, while expression of the mitochondrial acetylase, general control of amino acid synthesis 5 (GCN5)-like 1 (GCN5L1), did not change. Interestingly, SIRT3 deletion in mice also led to an increase in cardiac fatty acid oxidation compared with wild-type (WT) mice (422 ± 29 vs. 291 ± 17 nmol/g dry wt min, P < 0.05). Cardiac lysine acetylation was increased in SIRT3 KO mice compared with WT mice, including increased acetylation and activity of LCAD and β-HAD. Although the HFD and SIRT3 deletion decreased glucose oxidation, pyruvate dehydrogenase acetylation was unaltered. However, the HFD did increase Akt acetylation, while decreasing its phosphorylation and activity. We conclude that increased cardiac fatty acid oxidation in response to high-fat feeding is controlled, in part, via the down-regulation of SIRT3 and concomitant increased acetylation of mitochondrial β-oxidation enzymes. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  9. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    PubMed

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  10. Apolipoprotein A-I mimetic peptide reverses impaired arterial healing after injury by reducing oxidative stress.

    PubMed

    Rosenbaum, Michael A; Chaudhuri, Pinaki; Abelson, Benjamin; Cross, Brandy N; Graham, Linda M

    2015-08-01

    Endothelial cell (EC) migration is essential for healing of arterial injuries caused by angioplasty, but a high cholesterol diet inhibits endothelial repair. In vivo studies suggest that apolipoprotein A-I (apoA-I), the major protein constituent of HDL, is essential for normal healing of arterial injuries. ApoA-I mimetics, including 4F, have been designed to mimic the amphipathic portion of the apoA-I molecule. This study was undertaken to determine if 4F improves endothelial migration and healing. A razor scrape assay was used to analyze the effect of 4F on EC migration in vitro. Endothelial healing in vivo was assessed following electrical injury of carotid arteries in mice. Markers of oxidative stress were also examined. Lipid oxidation products inhibited EC migration in vitro, but preincubation with L-4F preserved EC migration. Endothelial healing of carotid arterial injuries in mice on a high cholesterol diet was delayed compared with mice on a chow diet with 27.8% vs. 48.2% healing, respectively, at 5 days. Administration of D-4F improved endothelial healing in mice on a high cholesterol diet to 43.4%. D-4F administration had no effect on lipid levels but decreased markers of oxidation. In vivo, there was a significant inverse correlation between endothelial healing and plasma markers of oxidative stress. These studies suggested that an apoA-I mimetic can improve endothelial healing of arterial injuries by decreasing oxidative stress. Published by Elsevier Ireland Ltd.

  11. Impairment of mitochondrial β-oxidation in rats under cold-hypoxic environment

    NASA Astrophysics Data System (ADS)

    Dutta, Arkadeb; Vats, Praveen; Singh, Vijay K.; Sharma, Yogendra K.; Singh, Som N.; Singh, Shashi B.

    2009-09-01

    Mitochondrial ß-oxidation of fatty acid provides a major source of energy in mammals. High altitude (HA), characterized by hypobaric hypoxia and low ambient temperatures, causes alteration in metabolic homeostasis. Several studies have depicted that hypoxic exposure in small mammals causes hypothermia due to hypometabolic state. Moreover, cold exposure along with hypoxia reduces hypoxia tolerance in animals. The present study investigated the rate of β-oxidation and key enzymes, carnitine palmitoyl transferase-I (CPT-I) and hydroxyacyl CoA dehydrogenase (HAD), in rats exposed to cold-hypobaric hypoxic environment. Male Sprague Dawley rats (190-220 g) were randomly divided into eight groups ( n = 6 rats in each group): 1 day hypoxia (H1); 7 days hypoxia (H7); 1 day cold (C1); 7 days cold (C7); 1 day cold-hypoxia (CH1); 7 days cold-hypoxia (CH7) exposed; and unexposed control for 1 and 7 days (UC1 and UC7). After exposure, animals were anaesthetized with ketamine (50 mg/kg body weight) and xylazine (10 mg/kg body weight) intraperitonialy and sacrificed. Mitochondrial CPT-I, HAD, 14C-palmitate oxidation in gastrocnemius muscle and liver, and plasma leptin were measured. Mitochondrial CPT-I was significantly reduced in muscle and liver in CH1 and CH7 as compared to respective controls. HAD activity was significantly reduced in H1 and CH7, and in H1, H7, CH1, and CH7 as compared to unexposed controls in muscle and liver, respectively. A concomitant decrease in 14C-palmitate oxidation was found. Significant reduction in plasma leptin in hypoxia and cold-hypoxia suggested hypometabolic state. It can be concluded that ß-oxidation of fatty acids is reduced in rats exposed to cold-hypoxic environment due to the persisting hypometabolic state in cold-hypoxia exposure.

  12. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    PubMed Central

    Bollmann, Annette; Sedlacek, Christopher J.; Norton, Jeanette; Laanbroek, Hendrikus J.; Suwa, Yuichi; Stein, Lisa Y.; Klotz, Martin G.; Arp, Daniel; Sayavedra-Soto, Luis; Lu, Megan; Bruce, David; Detter, Chris; Tapia, Roxanne; Han, James; Woyke, Tanja; Lucas, Susan M.; Pitluck, Sam; Pennacchio, Len; Nolan, Matt; Land, Miriam L.; Huntemann, Marcel; Deshpande, Shweta; Han, Cliff; Chen, Amy; Kyrpides, Nikos; Mavromatis, Konstantinos; Markowitz, Victor; Szeto, Ernest; Ivanova, Natalia; Mikhailova, Natalia; Pagani, Ioanna; Pati, Amrita; Peters, Lin; Ovchinnikova, Galina; Goodwin, Lynne A.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006. PMID:24019993

  13. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    SciTech Connect

    Bollmann, Annette; Sedlacek, Christopher J; Laanbroek, Hendrikus J; Suwa, Yuichi; Stein, Lisa Y; Klotz, Martin G; Arp, D J; Sayavedra-Soto, LA; Lu, Megan; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, James; Woyke, Tanja; Lucas, Susan; Pitluck, Sam; Pennacchio, Len; Nolan, Matt; Land, Miriam L; Huntemann, Marcel; Deshpande, Shweta; Han, Cliff; Chen, Amy; Kyrpides, Nikos C; Mavromatis, K; Markowitz, Victor; Szeto, Ernest; Ivanova, N; Mikhailova, Natalia; Pagani, Ioanna; Pati, Amrita; Peters, Lin; Ovchinnikova, Galina; Goodwin, Lynne A.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

  14. Methodological adaptations for investigating the perceptions of language-impaired adolescents regarding the relative importance of selected communication skills.

    PubMed

    Reed, Vicki A; Brammall, Helen

    2006-01-01

    This article describes the systematic and detailed processes undertaken to modify a research methodology for use with language-impaired adolescents. The original methodology had been used previously with normally achieving adolescents and speech pathologists to obtain their opinions about the relative importance of selected communication skills for adolescents' positive peer relationships. Modifications attempted to address language-impaired adolescents' characteristic metalinguistic, literacy, cognitive, and information processing weaknesses. Revising the original wording of the communication skills, reducing the reading level of the skills from grade 10 to 4.6, using a Q-sort approach to ranking the importance of the skills, and revising the instructions and administration procedures led to what pilot testing results indicated was a valid methodology for use with language-impaired adolescents. Results of a preliminary study using the revised methodology suggested that language-impaired adolescents may perceive the relative importance of some communication skills differently from their normally achieving peers.

  15. Nitric oxide deficit in chronic intermittent hypoxia impairs large conductance calcium-activated potassium channel activity in rat hippocampal neurons.

    PubMed

    Tjong, Yung-Wui; Li, Meifang; Hung, Ming-Wai; Wang, Kun; Fung, Man-Lung

    2008-02-15

    Sleep apnea associated with chronic intermittent hypoxia (IH) impairs hippocampal functions but the pathogenic mechanisms involving dysfunction of nitric oxide (NO) and ionic channels remain unclear. We examined the hypothesis that hippocampal NO deficit impairs the activity of large conductance calcium-activated potassium (BK) channels in rats with chronic IH, mimicking conditions in patients with sleep apnea. A patch-clamp study was performed on hippocampal CA1 neurons acutely dissociated from IH and control rats. The levels of endogenous NO and intracellular calcium in the CA1 region of the hippocampal slices were measured respectively by electrochemical microsensors and spectrofluorometry. We found that the open probability of BK channels remarkably decreased in the CA1 pyramidal neurons in a time-dependent manner with the IH treatment, without changes in the unitary conductance and reversal potential. NO donors, SNP or DETA/NO, significantly restored the activity of BK channels in the IH neurons, which was prevented by blockade of S-nitrosylation with NEM or MTSES but not by inhibition of the cGMP pathway with ODQ or 8-bromo-cGMP. Endogenous NO levels were substantially lowered in the IH hippocampus during resting and hypoxia. Also, the level of protein expression of neuronal NO synthase was markedly lessened in the IH neurons with decreased intracellular calcium response to hypoxia. Collectively, the results suggest that the IH-induced NO deficit mediated by a down-regulation of the expression of neuronal NO synthase plays a causative role in the impaired activity of BK channels, which could account for the hippocampal injury in patients with sleep apnea.

  16. Chelation of Free Zn²⁺ Impairs Chemotaxis, Phagocytosis, Oxidative Burst, Degranulation, and Cytokine Production by Neutrophil Granulocytes.

    PubMed

    Hasan, Rafah; Rink, Lothar; Haase, Hajo

    2016-05-01

    Neutrophil granulocytes are the largest leukocyte population in the blood and major players in the innate immune response. Impaired neutrophil function has been reported in in vivo studies with zinc-deficient human subjects and experimental animals. Moreover, in vitro formation of neutrophil extracellular traps has been shown to depend on free intracellular Zn(2+). This study investigates the requirement of Zn(2+) for several other essential neutrophil functions, such as chemotaxis, phagocytosis, cytokine production, and degranulation. To exclude artifacts resulting from indirect effects of zinc deprivation, such as impaired hematopoietic development and influences of other immune cells, direct effects of zinc deprivation were tested in vitro using cells isolated from healthy human donors. Chelation of Zn(2+) by the membrane permeable chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN) reduced granulocyte migration toward N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF) and IL-8, indicating a role of free intracellular Zn(2+) in chemotaxis. However, a direct action of Zn(2+) as a chemoattractant, as previously reported by others, was not observed. Similar to chemotaxis, phagocytosis, oxidative burst, and granule release were also impaired in TPEN-treated granulocytes. Moreover, Zn(2+) contributes to the regulatory role of neutrophil granulocytes in the inflammatory response by affecting the cytokine production by these cells. TPEN inhibited the lipopolysaccharide-induced secretion of chemotactic IL-8 and also anti-inflammatory IL-1ra. In conclusion, free intracellular Zn(2+) plays essential roles in multiple neutrophil functions, affecting extravasation to the site of the infection, uptake and killing of microorganisms, and inflammation.

  17. Role of skeletal muscles impairment and brain oxygenation in limiting oxidative metabolism during exercise after bed rest.

    PubMed

    Porcelli, Simone; Marzorati, Mauro; Lanfranconi, Francesca; Vago, Paola; Pisot, Rado; Grassi, Bruno

    2010-07-01

    "Central" and "peripheral" limitations to oxidative metabolism during exercise were evaluated in 10 young males following a 35-day horizontal bed rest (BR). Incremental exercise (IE) and moderate- and heavy-intensity constant-load exercises (CLE) were carried out on a cycloergometer before and 1-2 days after BR. Pulmonary gas exchange, cardiac output (Q; by impedance cardiography), skeletal muscle (vastus lateralis), and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined. After BR, "peak" (values at exhaustion during IE) workload, peak O(2) uptake (Vo(2 peak)), peak stroke volume, Q(peak), and peak skeletal muscle O(2) extraction were decreased (-18, -18, -22, -19, and -33%, respectively). The gas exchange threshold was approximately 60% of Vo(2 peak) both before and after BR. At the highest workloads, brain oxygenation data suggest an increased O(2) extraction, which was unaffected by BR. Vo(2) kinetics during CLE (same percentage of peak workload before and after BR) were slower (time constant of the "fundamental" component: 31.1 +/- 2.0 s before vs. 40.0 +/- 2.2 s after BR); the amplitude of the "slow component" was unaffected by BR, thus it would be greater, after BR, at the same absolute workload. A more pronounced "overshoot" of skeletal muscle O(2) extraction during CLE was observed after BR, suggesting an impaired adjustment of skeletal muscle O(2) delivery. The role of skeletal muscles in the impairment of oxidative metabolism during submaximal and maximal exercise after BR was identified. The reduced capacity of peak cardiovascular O(2) delivery did not determine a "competition" for the available O(2) between skeletal muscles and brain.

  18. Human carotid atherosclerotic plaque protein(s) change HDL protein(s) composition and impair HDL anti-oxidant activity.

    PubMed

    Cohen, Elad; Aviram, Michael; Khatib, Soliman; Volkova, Nina; Vaya, Jacob

    2016-01-01

    High density lipoprotein (HDL) anti-atherogenic functions are closely associated with cardiovascular disease risk factor, and are dictated by its composition, which is often affected by environmental factors. The present study investigates the effects of the human carotid plaque constituents on HDL composition and biological functions. To this end, human carotid plaques were homogenized and incubated with HDL. Results showed that after incubation, most of the apolipoprotein A1 (Apo A1) protein was released from the HDL, and HDL diameter increased by an average of approximately 2 nm. In parallel, HDL antioxidant activity was impaired. In response to homogenate treatment HDL could not prevent the accelerated oxidation of LDL caused by the homogenate. Boiling of the homogenate prior to its incubation with HDL abolished its effects on HDL composition changes. Moreover, tryptophan fluorescence quenching assay revealed an interaction between plaque component(s) and HDL, an interaction that was reduced by 50% upon using pre-boiled homogenate. These results led to hypothesize that plaque protein(s) interacted with HDL-associated Apo A1 and altered the HDL composition. Immuno-precipitation of Apo A1 that was released from the HDL after its incubation with the homogenate revealed a co-precipitation of three isomers of actin. However, beta-actin alone did not significantly affect the HDL composition, and yet the active protein within the plaque was elusive. In conclusion then, protein(s) in the homogenate interact with HDL protein(s), leading to release of Apo A1 from the HDL particle, a process that was associated with an increase in HDL diameter and with impaired HDL anti-oxidant activity.

  19. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress.

    PubMed

    Teixeira, Francisco Bruno; Santana, Luana Nazaré da Silva; Bezerra, Fernando Romualdo; De Carvalho, Sabrina; Fontes-Júnior, Enéas Andrade; Prediger, Rui Daniel; Crespo-López, Maria Elena; Maia, Cristiane Socorro Ferraz; Lima, Rafael Rodrigues

    2014-01-01

    Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.

  20. Enriched environment, nitric oxide production and synaptic plasticity prevent the aging-dependent impairment of spatial cognition.

    PubMed

    Arnaiz, Silvia Lores; D'Amico, Gabriela; Paglia, Nora; Arismendi, Mariana; Basso, Nidia; del Rosario Lores Arnaiz, María

    2004-01-01

    In rodents, neuronal plasticity decreases and spatial learning and working memory deficits increase upon aging. Several authors have shown that rats reared in enriched environments have better cognitive performance in association with increased neuronal plasticity than animals reared in standard environments. We hypothesized that enriched environment could preserve animals from the age-associated neurological impairments, mainly through NO-dependent mechanisms of induction of neuronal plasticity. We present evidence that 27 months old rats from an enriched environment show a better performance in spatial working memory than standard reared rats of the same age. Both mtNOS and cytosolic nNOS activities were found significantly increased (73% and 155%, respectively) in female rats from enriched environment as compared with control animals kept in a standard environment. The enzymatic activity of complex I was 80% increased in rats from enriched environment as compared with control rats. We conclude that an extensively enriched environment prevents old rats from the aging-associated impairment of spatial cognition, synaptic plasticity and nitric oxide production.

  1. Impaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats.

    PubMed

    Kwon, Do Y; Jung, Young S; Kim, Sun J; Park, Hee K; Park, Jae H; Kim, Young C

    2009-01-01

    Nonalcoholic fatty liver is involved in the development of nonalcoholic steatohepatitis and chronic liver injury. Impairment of hepatic transsulfuration reactions is suggested to be critically linked with alcoholic liver injury, but its role in nonalcoholic fatty liver remains unknown. We examined the early changes in sulfur-amino acid metabolism and their implication in nonalcoholic fatty liver disease (NAFLD). Male rats were provided with a standard liquid diet or a high-fat liquid diet (HF) for 3 wk. An additional group of rats received the HF diet supplemented with betaine (1%). HF diet intake elevated hepatic triglyceride and serum tumor necrosis factor-alpha (TNFalpha) concentrations. Antioxidant capacity of liver cytosol against hydroxyl and peroxyl radicals was reduced significantly. Hepatic S-adenosylmethionine (SAM) and glutathione (GSH) decreased, but hypotaurine and taurine concentrations increased. Methionine adenosyltransferase (MAT) activity, not its concentration, was depressed, whereas both activity and concentration of cysteine dioxygenase and GSH S-transferase were elevated. Betaine supplementation of the HF diet inhibited hepatic fat accumulation and serum TNFalpha elevation. The decrease in cytosolic antioxidant capacity was also prevented. MAT activity and its concentration were induced significantly. Hepatic SAM and GSH increased and elevation of hypotaurine and taurine was depressed. The results indicate that the metabolism of S-containing substances is significantly disturbed by the HF diet, suggesting a causal role of impairment of hepatic transsulfuration reactions in NAFLD. Betaine supplementation protects the liver from nonalcoholic steatosis and oxidative stress most probably via its effects on the transsulfuration reactions.

  2. Excess nitric oxide impairs LXR(α)-ABCA1-dependent cholesterol efflux in macrophage foam cells.

    PubMed

    Zhao, Jin-Feng; Shyue, Song-Kun; Lin, Shing-Jong; Wei, Jeng; Lee, Tzong-Shyuan

    2014-01-01

    Excess nitric oxide (NO) promotes the progression of atherosclerosis by increasing the oxidation of low-density lipoprotein (LDL) and inflammatory responses. However, little is known about the impact of NO and its underlying molecular mechanism on lipid metabolism of macrophage foam cells. In this study, Oil-red O staining, cholesterol and triglyceride assay, Dil-oxidized LDL (oxLDL) binding assay, cholesterol efflux assay, real-time RT-PCR and Western blot analysis were used for in vitro experiments. Apolipoprotein E-deficient (apoE(-/-) ) and apoE and inducible nitric oxide synthase-deficient (apoE(-/-) iNOS(-/-) ) mice were as our in vivo models. Treatment with S-nitroso-N-acetyl-D,L-penicillamine (SNAP), an NO donor, exacerbated oxLDL-induced cholesterol accumulation in macrophages, because of reduced efficacy of cholesterol efflux. In addition, SNAP decreased the protein level of ATP-binding cassette transporter A1 (ABCA1) without affecting scavenger receptor type A (SR-A), CD36, ABCG1, or SR-B1 levels. This SNAP-mediated downregulation of ABCA1 was mainly through the effect of NO but not peroxynitrite. Furthermore, the SNAP-downregulated ABCA1 was due to the decrease in the liver X receptor α (LXRα)-dependent transcriptional regulation. Moreover, genetic deletion of iNOS increased the serum capacity of reverse cholesterol efflux and protein expression of LXRα, ABCA1, and SR-BI in aortas and retarded atherosclerosis in apoE(-/-) mice. Our findings provide new insights in the pro-atherogenic effect of excess NO on cholesterol metabolism in macrophages. © 2013 Wiley Periodicals, Inc.

  3. Reversal of propoxur-induced impairment of memory and oxidative stress by 4'-chlorodiazepam in rats.

    PubMed

    Mehta, Kapil Dev; Garg, Gobind Rai; Mehta, Ashish K; Arora, Tarun; Sharma, Amit K; Khanna, Naresh; Tripathi, Ashok K; Sharma, Krishna K

    2010-01-01

    Carbamate pesticides like propoxur have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was designed to explore the modulation of the effects of propoxur over cognitive function by progesterone (PROG) and 4'-chlorodiazepam (4CD). Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus, transfer latency (TL) on a plus maze and spatial navigation test on Morris water maze. Oxidative stress was assessed by examining brain malondialdehyde (MDA) and reduced glutathione (GSH) levels and catalase (CAT) activity. A significant reduction in SDL and prolongation of TL and spatial navigation test was found for the propoxur (10 mg/kg/d; p.o.) treated group at weeks 6 and 7 as compared with control. One-week treatment with 4CD (0.5 mg/kg/d; i.p.) antagonized the effect of propoxur on SDL, spatial navigation test as well as TL; whereas, PROG failed to modulate this effect at a dose of 15 mg/kg/d, i.p. Propoxur produced a statistically significant increase in the brain MDA levels and decrease in the brain GSH levels and CAT activity. Treatment with 4CD at the above dose attenuated the effect of propoxur on oxidative stress whereas PROG (15 mg/kg/d; i.p.) failed to influence the same. The results of the present study thus show that 4-CD has the potential to attenuate cognitive dysfunction and oxidative stress induced by toxicants like propoxur in the brain.

  4. Insufficient sleep is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation.

    PubMed

    Bain, Anthony R; Weil, Brian R; Diehl, Kyle J; Greiner, Jared J; Stauffer, Brian L; DeSouza, Christopher A

    2017-08-18

    Habitual short nightly sleep duration is associated with increased atherosclerotic cardiovascular disease risk and morbidity. Vascular endothelial dysfunction represents an important mechanism that may underlie this heightened cardiovascular risk. Impaired endothelium-dependent vasodilation, particularly NO-mediated vasodilation, contributes to the development and progression of atherosclerotic vascular disease and acute vascular events. We tested the hypothesis that chronic insufficient sleep is associated with impaired NO-mediated endothelium-dependent vasodilation in middle-aged adults. Thirty adult men were studied: 15 with normal nightly sleep duration (age: 58 ± 2 y; sleep duration: 7.7 ± 0.2 h/night) and 15 with short nightly sleep duration (55 ± 2 y; 6.1 ± 0.2 h/night). Forearm blood flow (FBF) responses to intra-arterial infusion of acetylcholine, in the absence and presence of the endothelial NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA), as well as responses to sodium nitroprusside, were determined by strain-gauge venous occlusion plethysmography. The FBF response to acetylcholine was lower (∼20%; p<0.05) in the short sleep duration group (from 4.6 ± 0.3 to 11.7 ± 1.0 ml/100 ml tissue/min) compared with normal sleep duration group (from 4.4 ± 0.3 to 14.5 ± 0.5 ml/100 ml tissue/min). L-NMMA significantly reduced the FBF response to acetylcholine in the normal sleep duration group (∼40%), but not the short sleep duration group. There were no group differences in the vasodilator response to sodium nitroprusside. These data indicate that short nightly sleep duration is associated with endothelial-dependent vasodilator dysfunction due, in part, to diminished NO bioavailability. Impaired NO-mediated endothelium-dependent vasodilation may contribute to the increased cardiovascular risk with insufficient sleep. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Endothelin receptor type B agonist, IRL-1620, prevents beta amyloid (Aβ) induced oxidative stress and cognitive impairment in normal and diabetic rats.

    PubMed

    Briyal, Seema; Shepard, Cortney; Gulati, Anil

    2014-05-01

    Alzheimer's disease (AD) is a progressive brain disorder leading to impairment of learning and memory. Amyloid β (Aβ) induced oxidative stress has been implicated in the initiation and progression of AD. Endothelin (ET) and its receptors have been considered as therapeutic targets for AD. Recent studies indicate that stimulation of ETB receptors may provide neuroprotection. The purpose of this study was to determine the preventative effect of selectively stimulating ETB receptors on cognitive impairment and oxidative stress in Aβ treated non-diabetic and diabetic (induced by streptozotocin) rats. Rats were concurrently treated with Aβ1-40 (day 1, 7 and 14) and either saline, IRL-1620 (an ETB agonist), and/or BQ788 (an ETB antagonist) daily for 14 days in the lateral cerebral ventricles using sterotaxically implanted cannula; experiments were performed on day 15. Aβ treatment produced a significant (p<0.0001) increase of 360% and 365% in malondialdehyde levels (a marker of lipid peroxidation) in non-diabetic and diabetic rats, respectively, compared to sham group. Antioxidants (superoxide dismutase and reduced glutathione) decreased following Aβ treatment compared to sham group. Treatment with IRL-1620 reversed these effects, indicating that ETB receptor stimulation reduces oxidative stress injury following Aβ treatment. In Morris swim task, Aβ treated rats showed impairment in spatial memory. Rats treated with IRL-1620 significantly reduced the cognitive impairment induced by Aβ. BQ788 treatment completely blocked IRL-1620 induced reduction in oxidative stress and cognitive impairment. Results of the present study demonstrate that IRL-1620 improved both acquisition (learning) and retention (memory) on water maze task and reduced oxidative stress parameters. It can be speculated that ETB receptor stimulation prevents cognitive impairment and may be useful in neurodegenerative diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Induction and stability of oxidative stress adaptation in Listeria monocytogenes EGD (Bug600) and F1057 in sublethal concentrations of H2O2 and NaOH

    USDA-ARS?s Scientific Manuscript database

    Food processing and food handling environments may contain residual levels of sanitizers or cleaners which may trigger oxidative stress adaptation in Listeria monocytogenes. The aim of this study was to determine the induction and stability of oxidative stress adaptation in L. monocytogenes EGD (Bug...

  7. Cases of Impaired Oxidative Burst in HIV-Exposed Uninfected Infants’ Neutrophils—A Pilot Study

    PubMed Central

    Maloupazoa Siawaya, Anicet Christel; Mveang-Nzoghe, Amandine; Mvoundza Ndjindji, Ofilia; Mintsa Ndong, Armel; Essone, Paulin N.; Djoba Siawaya, Joel Fleury

    2017-01-01

    An increased risk of serious bacterial infections in HIV-exposed uninfected (HEU) infants has been demonstrated. Although neutrophils are essential for the protection of infants against bacterial infections, no study has investigated their profile in HEU infants to date. In this study, we assessed the function of neutrophils in HEU infants using the nitroblue tetrazolium reduction test. Among 25 HEU infants, 9 (36%) showed a reduced ability of their neutrophils to produce reactive oxygen species upon stimulation with bacteria. No alteration of total neutrophil counts was noted in the blood of HEU infants indicating that the alteration observed in the 36% of HEU infants may only be functional. Conclusively, impaired neutrophil function could be a factor of vulnerability in HEU infants. PMID:28337206

  8. Phosphatidylethanolamine deficiency in Mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology.

    PubMed

    Tasseva, Guergana; Bai, Helin Daniel; Davidescu, Magdalena; Haromy, Alois; Michelakis, Evangelos; Vance, Jean E

    2013-02-08

    Mitochondrial dysfunction is implicated in neurodegenerative, cardiovascular, and metabolic disorders, but the role of phospholipids, particularly the nonbilayer-forming lipid phosphatidylethanolamine (PE), in mitochondrial function is poorly understood. Elimination of mitochondrial PE (mtPE) synthesis via phosphatidylserine decarboxylase in mice profoundly alters mitochondrial morphology and is embryonic lethal (Steenbergen, R., Nanowski, T. S., Beigneux, A., Kulinski, A., Young, S. G., and Vance, J. E. (2005) J. Biol. Chem. 280, 40032-40040). We now report that moderate <30% depletion of mtPE alters mitochondrial morphology and function and impairs cell growth. Acute reduction of mtPE by RNAi silencing of phosphatidylserine decarboxylase and chronic reduction of mtPE in PSB-2 cells that have only 5% of normal phosphatidylserine synthesis decreased respiratory capacity, ATP production, and activities of electron transport chain complexes (C) I and CIV but not CV. Blue native-PAGE analysis revealed defects in the organization of CI and CIV into supercomplexes in PE-deficient mitochondria, correlated with reduced amounts of CI and CIV proteins. Thus, mtPE deficiency impairs formation and/or membrane integration of respiratory supercomplexes. Despite normal or increased levels of mitochondrial fusion proteins in mtPE-deficient cells, and no reduction in mitochondrial membrane potential, mitochondria were extensively fragmented, and mitochondrial ultrastructure was grossly aberrant. In general, chronic reduction of mtPE caused more pronounced mitochondrial defects than did acute mtPE depletion. The functional and morphological changes in PSB-2 cells were largely reversed by normalization of mtPE content by supplementation with lyso-PE, a mtPE precursor. These studies demonstrate that even a modest reduction of mtPE in mammalian cells profoundly alters mitochondrial functions.

  9. The earliest stage of cognitive impairment in transition from normal aging to Alzheimer disease is marked by prominent RNA oxidation in vulnerable neurons.

    PubMed

    Nunomura, Akihiko; Tamaoki, Toshio; Motohashi, Nobutaka; Nakamura, Masao; McKeel, Daniel W; Tabaton, Massimo; Lee, Hyoung-Gon; Smith, Mark A; Perry, George; Zhu, Xiongwei

    2012-03-01

    Although neuronal RNA oxidation is a prominent and established feature in age-associated neurodegenerative disorders such as Alzheimer disease (AD), oxidative damage to neuronal RNA in aging and in the transitional stages from normal elderly to the onset of AD has not been fully examined. In this study, we used an in situ approachto identify an oxidized RNA nucleoside 8-hydroxyguanosine (8OHG) in the cerebral cortex of 65 individuals without dementia ranging in age from 0.3 to 86 years. We also examined brain samples from 20 elderly who were evaluated for their premortem clinicaldementia rating score and postmortem brain pathologic diagnoses to investigate preclinical AD and mild cognitive impairment. Relative density measurements of 8OHG-immunoreactivity revealed a statistically significant increase in neuronal RNA oxidation during aging in the hippocampus and the temporal neocortex. In subjects with mild cognitive impairment but not preclinical AD, neurons of the temporal cortex showed a higher burden of oxidized RNA compared to age-matched controls. These results indicate that, although neuronal RNA oxidation fundamentally occurs as an age-associated phenomenon, more prominent RNA damage than in normal aging correlates with the onset of cognitive impairment in the prodromal stage of AD.

  10. Beneficial Effects of Teucrium polium and Metformin on Diabetes-Induced Memory Impairments and Brain Tissue Oxidative Damage in Rats

    PubMed Central

    Mousavi, S. Mojtaba; Niazmand, Saeed; Hosseini, Mahmoud; Hassanzadeh, Zarha; Sadeghnia, Hamid Reza; Vafaee, Farzaneh; Keshavarzi, Zakieh

    2015-01-01

    Objective. The effects of hydroalcoholic extract of Teucrium polium and metformin on diabetes-induced memory impairment and brain tissues oxidative damage were investigated. Methods. The rats were divided into: (1) Control, (2) Diabetic, (3) Diabetic-Extract 100 (Dia-Ext 100), (4) Diabetic-Extract 200 (Dia-Ext 200), (5) Diabetic-Extract 400 (Dia-Ext 400), and (6) Diabetic-Metformin (Dia-Met). Groups 3–6 were treated by 100, 200, and 400 mg/kg of the extract or metformin, respectively, for 6 weeks (orally). Results. In passive avoidance test, the latency to enter the dark compartment in Diabetic group was lower than that of Control group (P < 0.01). In Dia-Ext 100, Dia-Ext 200, and Dia-Ext 400 and Metformin groups, the latencies were higher than those of Diabetic group (P < 0.01). Lipid peroxides levels (reported as malondialdehyde, MDA, concentration) in the brain of Diabetic group were higher than Control (P < 0.001). Treatment by all doses of the extract and metformin decreased the MDA concentration (P < 0.01). Conclusions. The results of present study showed that metformin and the hydroalcoholic extract of Teucrium polium prevent diabetes-induced memory deficits in rats. Protection against brain tissues oxidative damage might have a role in the beneficial effects of the extract and metformin. PMID:25810947

  11. Constitutive gp130 activation rapidly accelerates the transformation of human hepatocytes via an impaired oxidative stress response

    PubMed Central

    Herden, Johannes; Parplys, Ann Christin; Borgmann, Kerstin; Schmidt-Arras, Dirk; Lohse, Ansgar W.; Rose-John, Stefan; Wege, Henning

    2016-01-01

    Pro-inflammatory signaling pathways, especially interleukin 6 (IL-6), and reactive oxygen species (ROS) promote carcinogenesis in the liver. In order to elucidate the underlying oncogenic mechanism, we activated the IL-6 signal transducer glycoprotein 130 (gp130) via stable expression of a constitutively active gp130 construct (L-gp130) in untransformed telomerase-immortalized human fetal hepatocytes (FH-hTERT). As known from hepatocellular adenomas, forced gp130 activation alone was not sufficient to induce malignant transformation. However, additional challenge of FH-hTERT L-gp130 clones with oxidative stress resulted in 2- to 3-fold higher ROS levels and up to 6-fold more DNA-double strand breaks (DSB). Despite increased DNA damage, ROS-challenged FH-hTERT L-gp130 clones displayed an enhanced proliferation and rapidly developed colony growth capabilities in soft agar. As driving gp130-mediated oncogenic mechanism, we detected a decreased expression of antioxidant genes, in particular glutathione peroxidase 3 and apolipoprotein E, and an absence of P21 upregulation following ROS-conferred induction of DSB. In summary, an impaired oxidative stress response in hepatocytes with gp130 gain-of-function mutations, as detected in dysplastic intrahepatic nodules and hepatocellular adenomas, is one of the central oncogenic mechanisms in chronic liver inflammation. PMID:27489351

  12. Fentanyl-droperidol-nitrous oxide anaesthesia in patients with ischaemic heart disease and various degrees of left ventricular functional impairment.

    PubMed

    Milocco, I; Schlossman, D; William-Olsson, G; Appelgren, L K

    1985-10-01

    Haemodynamic stability and left ventricular function (LVF) during induction of anaesthesia and sternotomy were compared in three groups of patients with ischaemic heart disease, angiographically classified as having good, poor and depressed LVF. Anaesthesia was given with fentanyl-droperidol and nitrous oxide. The group with good LVF showed large variations in arterial pressure and heart rate between stimulated and unstimulated states with a reasonable preservation of LVF, expressed as stroke volume, through the whole observation period. The group with poor LVF showed monotonously falling arterial pressure, and no heart rate response to tracheal intubation. These patients maintained remarkably stable stroke volumes in connection with low afterloads. After nitrous oxide, additional volume loading was required because of profound hypotension. The majority of the patients in the intermediate group, labelled "depressed LVF", reacted to intubation and sternotomy with signs of left ventricular failure in connection with tachycardia and increased afterloads. The individual variations between patients with different degrees of left ventricular impairment were considerable, and these haemodynamic patterns need to be confirmed with a larger material.

  13. Impaired coordination of nutrient intake and substrate oxidation in melanocortin-4 receptor knockout mice.

    PubMed

    Albarado, Diana C; McClaine, Jennifer; Stephens, Jacqueline M; Mynatt, Randall L; Ye, Jianping; Bannon, Anthony W; Richards, William G; Butler, Andrew A

    2004-01-01

    Mutations in the melanocortin-4 receptor (MC4R) are associated with obesity. The obesity syndrome observed in humans with MC4R haploinsufficiency is similar to that observed in MC4R knockout mice, including increased longitudinal growth, hyperphagia, and fasting hyperinsulinemia. For comparison with other commonly investigated models of obesity and insulin resistance, we have backcrossed Mc4r-/- mice into the C57BL/6J (B6) background. Female obese Mc4r-/- mice exhibit reduced energy expenditure and an attenuated increase in fatty acid (FA) oxidation after exposure to high-fat diets compared with obese Lepob/Lepob mice. The reduced energy expenditure and FA oxidation correlates with changes in hepatic gene expression. The expression of genes involved in FA oxidation increased in obese Lepob/Lepob mice compared with wild-type and obese Mc4r-/- mice. In contrast, a key lipogenic enzyme, FA synthase (FAS), is increased in obese Mc4r-/- mice compared with obese Lepob/Lepob mice. Hyperinsulinemia, increased FAS mRNA expression and hepatic steatosis appear to be secondary to obesity in B6 Mc4r-/- mice. However, Mc4r-/- mice in a mixed genetic background develop severe hepatic steatosis at an early age. This might suggest an important role of the MC4R in regulating liver FA metabolism that is masked on the B6 background. Interestingly, the 10- to 20-fold increase in liver triglyceride in the outbred strain of Mc4r-/- mice is not always associated with fasting hyperinsulinemia or increased FAS mRNA expression. This observation suggests that changes in liver secondary to triglyceride accumulation lead to hyperinsulinemia and increased hepatic FAS expression in Mc4r-/- mice.

  14. Grape powder supplementation prevents oxidative stress-induced anxiety-like behavior, memory impairment, and high blood pressure in rats.

    PubMed

    Allam, Farida; Dao, An T; Chugh, Gaurav; Bohat, Ritu; Jafri, Faizan; Patki, Gaurav; Mowrey, Christopher; Asghar, Mohammad; Alkadhi, Karim A; Salim, Samina

    2013-06-01

    We examined whether or not grape powder treatment ameliorates oxidative stress-induced anxiety-like behavior, memory impairment, and hypertension in rats. Oxidative stress in Sprague-Dawley rats was produced by using L-buthionine-(S,R)-sulfoximine (BSO). Four groups of rats were used: 1) control (C; injected with vehicle and provided with tap water), 2) grape powder-treated (GP; injected with vehicle and provided for 3 wk with 15 g/L grape powder dissolved in tap water), 3) BSO-treated [injected with BSO (300 mg/kg body weight), i.p. for 7 d and provided with tap water], and 4) BSO plus grape powder-treated (GP+BSO; injected with BSO and provided with grape powder-treated tap water). Anxiety-like behavior was significantly greater in BSO rats compared with C or GP rats (P < 0.05). Grape powder attenuated BSO-induced anxiety-like behavior in GP+BSO rats. BSO rats made significantly more errors in both short- and long-term memory tests compared with C or GP rats (P < 0.05), which was prevented in GP+BSO rats. Systolic and diastolic blood pressure was significantly greater in BSO rats compared with C or GP rats (P < 0.05), whereas grape powder prevented high blood pressure in GP+BSO rats. Furthermore, brain extracellular signal-regulated kinase-1/2 (ERK-1/2) was activated (P < 0.05), whereas levels of glyoxalase-1 (GLO-1), glutathione reductase-1 (GSR-1), calcium/calmodulin-dependent protein kinase type IV (CAMK-IV), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) were significantly less (P < 0.05) in BSO but not in GP+BSO rats compared with C or GP rats. We suggest that by regulating brain ERK-1/2, GLO-1, GSR-1, CAMK-IV, CREB, and BDNF levels, grape powder prevents oxidative stress-induced anxiety, memory impairment, and hypertension in rats.

  15. Oxygen impairs oligodendroglial development via oxidative stress and reduced expression of HIF-1α

    PubMed Central

    Brill, Christina; Scheuer, Till; Bührer, Christoph; Endesfelder, Stefanie; Schmitz, Thomas

    2017-01-01

    The premature increase of oxygen tension may contribute to oligodendroglial precursor cell (OPC) damage in preterm infants. Fetal OPCs are exposed to low oxygen tissue tensions not matched when cells are cultured in room air. Maturation (A2B5, O4, O1, MBP, CNP, arborization), oxidative stress (nitrotyrosine Western blot, NRF2 and SOD2 expression), apoptosis (TUNEL), proliferation (Ki67), and expression of transcription factors regulated by Hypoxia-Inducible-Factor-1-alpha (Hif-1α) expressed in OPCs (Olig1, Olig2, Sox9, Sox10) were assessed in rat OPCs and OLN93 cells cultured at 5% O2 and 21% O2. Influences of Hif-1α were investigated by Hif-1α luciferase reporter assays and Hif-1α-knockdown experiments. At 21% O2, cell proliferation was decreased and process arborization of OPCs was reduced. Expression of MBP, CNP, Olig1, Sox9 and Sox10 was lower at 21% O2, while Nrf2, SOD2, nitrotyrosine were increased. Apoptosis was unchanged. Luciferease reporter assay in OLN93 cells indicated increased Hif-1α activity at 5% O2. In OLN93 cells at 5% O2, Hif-1α knockdown decreased the expression of MBP and CNP, similar to that observed at 21% O2. These data indicate that culturing OPCs at 21% O2 negatively affects development and maturation. Both enhanced oxidative stress and reduced expression of Hif-1α-regulated genes contribute to these hyperoxia-induced changes. PMID:28230075

  16. Fatty Acid Oxidation is Impaired in An Orthologous Mouse Model of Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Menezes, Luis F.; Lin, Cheng-Chao; Zhou, Fang; Germino, Gregory G.

    2016-01-01

    Background The major gene mutated in autosomal dominant polycystic kidney disease was first identified over 20 years ago, yet its function remains poorly understood. We have used a systems-based approach to examine the effects of acquired loss of Pkd1 in adult mouse kidney as it transitions from normal to cystic state. Methods We performed transcriptional profiling of a large set of male and female kidneys, along with metabolomics and lipidomics analyses of a subset of male kidneys. We also assessed the effects of a modest diet change on cyst progression in young cystic mice. Fatty acid oxidation and glycolytic rates were measured in five control and mutant pairs of epithelial cells. Results We find that females have a significantly less severe kidney phenotype and correlate this protection with differences in lipid metabolism. We show that sex is a major determinant of the transcriptional profile of mouse kidneys and that some of this difference is due to genes involved in lipid metabolism. Pkd1 mutant mice have transcriptional profiles consistent with changes in lipid metabolism and distinct metabolite and complex lipid profiles in kidneys. We also show that cells lacking Pkd1 have an intrinsic fatty acid oxidation defect and that manipulation of lipid content of mouse chow modifies cystic disease. Interpretation Our results suggest PKD could be a disease of altered cellular metabolism. PMID:27077126

  17. Fatty Acid Oxidation is Impaired in An Orthologous Mouse Model of Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Menezes, Luis F; Lin, Cheng-Chao; Zhou, Fang; Germino, Gregory G

    2016-03-01

    The major gene mutated in autosomal dominant polycystic kidney disease was first identified over 20 years ago, yet its function remains poorly understood. We have used a systems-based approach to examine the effects of acquired loss of Pkd1 in adult mouse kidney as it transitions from normal to cystic state. We performed transcriptional profiling of a large set of male and female kidneys, along with metabolomics and lipidomics analyses of a subset of male kidneys. We also assessed the effects of a modest diet change on cyst progression in young cystic mice. Fatty acid oxidation and glycolytic rates were measured in five control and mutant pairs of epithelial cells. We find that females have a significantly less severe kidney phenotype and correlate this protection with differences in lipid metabolism. We show that sex is a major determinant of the transcriptional profile of mouse kidneys and that some of this difference is due to genes involved in lipid metabolism. Pkd1 mutant mice have transcriptional profiles consistent with changes in lipid metabolism and distinct metabolite and complex lipid profiles in kidneys. We also show that cells lacking Pkd1 have an intrinsic fatty acid oxidation defect and that manipulation of lipid content of mouse chow modifies cystic disease. Our results suggest PKD could be a disease of altered cellular metabolism.

  18. Protective Role of Endogenous Ovarian Hormones Against Learning and Memory Impairments and Brain Tissues Oxidative Damage Induced by Lipopolysaccharide

    PubMed Central

    Pourganji, Masoume; Hosseini, Mahmoud; Soukhtanloo, Mohammad; Zabihi, Hoda; Hadjzadeh, Mosa Al-reza

    2014-01-01

    Background: The contribution of neuroinflammation in Alzheimer’s disease (AD) has been widely reported. The effects of female gonadal hormones in both neuroinflammation and brain cognitive functions have also been well considered. Objectives: In the present study, the possible protective role for endogenous ovarian hormones against learning and memory impairment as well as brain tissues oxidative damage induced by lipopolysachride (LPS) was investigated in rats. Materials and Methods: The rats were divided into four groups: Sham-LPS, Ovariectomized (OVX)-LPS, Sham, and OVX. The animals of sham group were in proestrous phase in which the serum concentration of estradiol is high. The Sham-LPS and OVX-LPS groups were treated with LPS (250 µg/kg) before acquisition. The animals were examined using passive avoidance (PA) test. The brains were then removed and malondialdehyde (MDA) and total thiol groups concentrations were measured. Results: The time latency to enter the dark compartment by OVX-LPS group was shorter than that of OVX at both first and 24th hours after the shock (P < 0.05 - P < 0.001). In Sham-LPS and OVX-LPS groups, total thiol concentration in hippocampal and cortical tissues were significantly lower while MDA concentrations were higher than that of Sham and OVX groups (P < 0.05 - P < 0.001). ). The hippocampal MDA concentration in OVX-LPS group was higher than Sham- LPS group (P < 0.01). Conclusions: Brain tissue oxidative damage contributed in deleterious effects of LPS on learning and memory. Some protective effects for the endogenous ovarian hormones against damaging effects of LPS on learning and memory function, as well as brain tissues oxidative damage could be postulated; however, it needs more investigation. PMID:24829769

  19. Chemical adaptability: the integration of different kinds of matter into giant molecular metal oxides.

    PubMed

    Müller, Achim; Merca, Alice; Al-Karawi, Ahmed Jasim M; Garai, Somenath; Bögge, Hartmut; Hou, Guangfeng; Wu, Lixin; Haupt, Erhard T K; Rehder, Dieter; Haso, Fadi; Liu, Tianbo

    2012-12-14

    Unique properties of the two giant wheel-shaped molybdenum-oxides of the type {Mo(154)}≡[{Mo(2)}{Mo(8)}{Mo(1)}](14) (1) and {Mo(176)}≡[{Mo(2)}{Mo(8)}{Mo(1)}](16) (2) that have the same building blocks either 14 or 16 times, respectively, are considered and show a "chemical adaptability" as a new phenomenon regarding the integration of a large number of appropriate cations and anions, for example, in form of the large "salt-like" {M(SO(4))}(16) rings (M = K(+), NH(4)(+)), while the two resulting {Mo(146)(K(SO(4)))(16)} (3) and {Mo(146)(NH(4)(SO(4)))(16)} (4) type hybrid compounds have the same shape as the parent ring structures. The chemical adaptability, which also allows the integration of anions and cations even at the same positions in the {Mo(4)O(6)}-type units of 1 and 2, is caused by easy changes in constitution by reorganisation and simultaneous release of (some) building blocks (one example: two opposite orientations of the same functional groups, that is, of H(2)O{Mo=O} (I) and O={Mo(H(2)O)} (II) are possible). Whereas Cu(2+) in [(H(4)Cu(II)(5))Mo(V)(28)Mo(VI)(114)O(432)(H(2)O)(58)](26-) (5 a) is simply coordinated to two parent O(2-) ions of {Mo(4)O(6)} and to two fragments of type II, the SO(4)(2-) integration in 3 and 4 occurs through the substitution of two oxo ligands of {Mo(4)O(6)} as well as two H(2)O ligands of fragment I. Complexes 3 and now 4 were characterised by different physical methods, for example, solutions of 4 in DMSO with sophisticated NMR spectroscopy (EXSY, DOSY and HSQC). The NH(4)(+) ions integrated in the cluster anion of 4 "communicate" with those in solution in the sense that the related H(+) ion exchange is in equilibrium. The important message: the reported "chemical adaptability" has its formal counterpart in solutions of "molybdates", which can form unique dynamic libraries containing constituents/building blocks that may form and break reversibly and can lead to the isolation of a variety of giant clusters with

  20. Methodological Adaptations for Investigating the Perceptions of Language-Impaired Adolescents Regarding the Relative Importance of Selected Communication Skills

    ERIC Educational Resources Information Center

    Reed, Vicki A.; Brammall, Helen

    2006-01-01

    This article describes the systematic and detailed processes undertaken to modify a research methodology for use with language-impaired adolescents. The original methodology had been used previously with normally achieving adolescents and speech pathologists to obtain their opinions about the relative importance of selected communication skills…

  1. Methodological Adaptations for Investigating the Perceptions of Language-Impaired Adolescents Regarding the Relative Importance of Selected Communication Skills

    ERIC Educational Resources Information Center

    Reed, Vicki A.; Brammall, Helen

    2006-01-01

    This article describes the systematic and detailed processes undertaken to modify a research methodology for use with language-impaired adolescents. The original methodology had been used previously with normally achieving adolescents and speech pathologists to obtain their opinions about the relative importance of selected communication skills…

  2. Impact of Adaptive Materials on Teachers and Their Students with Visual Impairments in Secondary Science and Mathematics Classes

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Stefanich, Greg P.; Boody, Robert M.; Peiffer, Belinda

    2011-01-01

    Science, technology, engineering, and mathematics (STEM) fields, important in today's world, are underrepresented by students with disabilities. Students with visual impairments, although cognitively similar to sighted peers, face challenges as STEM subjects are often taught using visuals. They need alternative forms of access such as enlarged or…

  3. Impairment of macrophage eicosanoid and nitric oxide production by an alkaloid from Sinomenium acutum.

    PubMed

    Liu, L; Riese, J; Resch, K; Kaever, V

    1994-11-01

    The effects of sinomenine (7,8-didehydro-4-hydroxy-3,7-dimethoxy-17-methyl- 9 alpha,13 alpha,14 alpha-morphinan-6-one), a pure alkaloid extracted from the Chinese medical plant Sinomenium acutum, on different macrophage capacities were investigated in vitro using resident mouse peritoneal macrophages and the macrophage-like cell line RAW 264.7. Sinomenine markedly decreased prostaglandin E2 and leukotriene C4 synthesis of macrophages stimulated by zymosan or calcium ionophore and also significantly inhibited the nitric oxide production of RAW 264.7 cells activated by interferon-gamma/lipopolysaccharide. It can be considered that these effects are part of the analgesic, anti-inflammatory, and antirheumatic mechanisms of sinomenine.

  4. Signaling pathway for nitric oxide generation with simulated ischemia in flow-adapted endothelial cells.

    PubMed

    Wei, Z; Al-Mehdi, A B; Fisher, A B

    2001-11-01

    Ischemia in the intact ventilated lung (oxygenated ischemia) leads to endothelial generation of reactive oxygen species (ROS) and nitric oxide (NO). This study investigated the signaling pathway for NO generation with oxygenated ischemia in bovine pulmonary artery endothelial cells (BPAEC) that were flow adapted in vitro. BPAECs were cultured in an artificial capillary system and subjected to abrupt cessation of flow (ischemia) under conditions where cellular oxygenation was maintained. Immunoblotting and dichlorofluorescein/triazolofluorescein fluorescence were used to assess extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation and ROS/NO generation, respectively. ERK1/2 phosphorylation significantly increased during ischemia, whereas total ERK1/2 did not change. ERK1/2 phosphorylation was suppressed by an inhibitor of tyrosine phosphorylation (genestein), cholesterol-binding reagents (filipin or cyclodextrin), or inhibitors of ROS (diphenyleneiodonium, N-acetylcysteine, or catalase), suggesting a role for both membrane cholesterol and ROS in ERK1/2 activation. Ischemia resulted in a 1.8-fold increase in NO generation that was suppressed by inhibitors of ERK1/2 activation (PD-98059 or U-0126). A calmodulin inhibitor (calmidizolium) or removal of Ca2+ from the medium also blocked NO generation, indicating that endothelial NO synthase (eNOS) is the activated isoform. These results indicate ischemia induces NO generation (possibly through a membrane cholesterol-sensitive flow sensor), the ERK1/2 cascade mediates signaling from the sensor to eNOS, and ROS are required for ERK activation.

  5. [Function of inducible nitric oxide synthase on adaptability to hypoxia in Tibetan chicken].

    PubMed

    Zhang, Hao; Chamba, Yangzom; Zhao, Chun-Jiang; Bao, Hai-Gang; Ling, Yao; Wu, Chang-Xin

    2009-04-01

    The inducible nitric-oxide synthase (iNOS) can be induced by hypoxia to produce NO, which regulates blood flow and improves oxygen delivery to tissues. In present study, SNPs in coding and 5'-flanking regions of iNOS gene were examined in Tibetan chicken and lowland chicken using sequence and PCR-RFLP methods, and the quantitive express of mRNA of iNOS and the enzyme activity were measured in chorioallantoic membrane of chick embryo that was incubated under hypoxic and normal conditions. The results showed that a special SNP (-870C-->T)was found in 5'-flanking region of iNOS gene. Tibetan chicken has higher frequencies in mutation allele T than lowland chicken. In hypoxic incubation, the mRNA expression of iNOS and enzyme activity were higher in Tibetan chicken than that in Dwarf chicken. It was concluded that the mutation of iNOS and hypoxic increase of its expression were important base for adaptability to hypoxia in Tibetan chicken.

  6. Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways.

    PubMed

    Raber, Patrick L; Thevenot, Paul; Sierra, Rosa; Wyczechowska, Dorota; Halle, Daniel; Ramirez, Maria E; Ochoa, Augusto C; Fletcher, Matthew; Velasco, Cruz; Wilk, Anna; Reiss, Krzysztof; Rodriguez, Paulo C

    2014-06-15

    The accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing hosts is a hallmark of malignancy-associated inflammation and a major mediator for the induction of T cell suppression in cancer. MDSC can be divided phenotypically into granulocytic (G-MDSC) and monocytic (Mo-MDSC) subgroups. Several mechanisms mediate the induction of T cell anergy by MDSC; however, the specific role of these pathways in the inhibitory activity of MDSC subpopulations remains unclear. Therefore, we aimed to determine the effector mechanisms by which subsets of tumor-infiltrating MDSC block T cell function. We found that G-MDSC had a higher ability to impair proliferation and expression of effector molecules in activated T cells, as compared to Mo-MDSC. Interestingly, both MDSC subgroups inhibited T cells through nitric oxide (NO)-related pathways, but expressed different effector inhibitory mechanisms. Specifically, G-MDSC impaired T cells through the production of peroxynitrites (PNT), while Mo-MDSC suppressed by the release of NO. The production of PNT in G-MDSC depended on the expression of gp91(phox) and endothelial NO synthase (eNOS), while inducible NO synthase (iNOS) mediated the generation of NO in Mo-MDSC. Deletion of eNOS and gp91(phox) or scavenging of PNT blocked the suppressive function of G-MDSC and induced anti-tumoral effects, without altering Mo-MDSC inhibitory activity. Furthermore, NO-scavenging or iNOS knockdown prevented Mo-MDSC function, but did not affect PNT production or suppression by G-MDSC. These results suggest that MDSC subpopulations utilize independent effector mechanisms to regulate T cell function. Inhibition of these pathways is expected to specifically block MDSC subsets and overcome immune suppression in cancer.

  7. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling

    PubMed Central

    Carreira, Bruno P.; Morte, Maria I.; Santos, Ana I.; Lourenço, Ana S.; Ambrósio, António F.; Carvalho, Caetana M.; Araújo, Inês M.

    2014-01-01

    Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO), which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSCs), and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (lipopolysaccharide plus IFN-γ), using a culture system of subventricular zone (SVZ)-derived NSCs mixed with microglia cells obtained from wild-type mice (iNOS+/+) or from iNOS knockout mice (iNOS-/-). We found an impairment of NSC cell proliferation in iNOS+/+ mixed cultures, which was not observed in iNOS-/- mixed cultures. Furthermore, the increased release of NO by activated iNOS+/+ microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite (ONOO-), or using the ONOO- degradation catalyst FeTMPyP, cell proliferation and ERK signaling were restored to basal levels in iNOS+/+ mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 μM), for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through

  8. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression.

    PubMed

    Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad

    2016-10-01

    Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

  9. Impaired ovulation in mice with targeted deletion of the neuronal isoform of nitric oxide synthase.

    PubMed Central

    Klein, S. L.; Carnovale, D.; Burnett, A. L.; Wallach, E. E.; Zacur, H. A.; Crone, J. K.; Dawson, V. L.; Nelson, R. J.; Dawson, T. M.

    1998-01-01

    BACKGROUND: Nitric oxide (NO) plays an important role in numerous reproductive processes. To date, most studies have assessed the role of NO by using nonspecific pharmacological inhibitors of the precursor to NO, nitric oxide synthase (NOS). These pharmacological NOS inhibitors suppress all isoforms of NOS; thus, the precise contribution of each isoform to female reproductive physiology is unknown. The purpose of this study was to determine the specific role of neuronal NOS (nNOS) in the regulation of ovulation in female mice lacking the gene that encodes for nNOS (nNOS-/-). MATERIALS AND METHODS: Ovulation was assessed in wild-type (WT) and nNOS-/- female mice by examining the number of ovarian rupture sites and number of oocytes recovered from the oviducts following mating or exposure to exogenous gonadotropins (i.e., 5 IU pregnant mares serum gonadotropin [PMSG] and 5 IU human chorionic gonadotropin [hCG]). Ovulatory efficiency was determined as the number of ovulated oocytes per number of ovarian rupture sites. To examine whether ovulatory deficits in nNOS-/- mice were due to alternations in central mechanisms, plasma luteinizing hormone (LH) concentrations were assessed in WT and nNOS-/- mice that were challenged with 25 ng of gonadotropin-releasing hormone (GnRH). To determine whether ovulatory deficits in nNOS-/- mice were due to local ovulation processes, nerves innervating the reproductive tract of WT and nNOS-/- females were examined for the presence of nNOS protein. RESULTS: There were substantial fertility deficits in nNOS-/- female mice; the nNOS-/- mice had fewer oocytes in their oviducts following spontaneous and gonadotropin-stimulated ovulation. Pituitary responsiveness to exogenous GnRH challenge was intact in nNOS-/- mice. Dense nNOS protein staining was observed in nerves innervating the reproductive tracts of WT mice. CONCLUSIONS: The reproductive deficits in nNOS-/- females are most likely due to alternations in the transfer of oocytes from

  10. Participation of a preschooler with visual impairments on the playground: effects of musical adaptations and staff development.

    PubMed

    Kern, P; Wolery PhD, M

    2001-01-01

    The purpose of this study was to evaluate the adaptations of a playground, and subsequently staff development, on the participation of a 3-year-old boy with congenital blindness. A single-subject design with three conditions (baseline, adaptations of the playground, and staff development) was used. The playground adaptation involved adding musical stations in strategic locations on the playground and connecting them with a "path" that provided auditory feedback. The staff training involved the music therapist providing individualized instruction to the staff who supervised the child. The child's participation was measured in terms of social interaction with peers or adults, play and engagement with materials, movement on the playground, and stereotypic behaviors. The playground adaptation resulted in no changes in the child's social interactions with peers or adults, increases in engagement, no change in movement on the playground, and a decrease in stereotypic responses. Staff training resulted in increased but variable interactions with adults and peers, in additional increases in engagement, less movement, and similar levels of stereotypic behavior. The findings suggest that musical adaptations of physical environments may he helpful but not sufficient for promoting desired outcomes.

  11. Protective effect of raisin (currant) against spatial memory impairment and oxidative stress in Alzheimer disease model.

    PubMed

    Gol, Mohammad; Ghorbanian, Davoud; Soltanpour, Nabiollah; Faraji, Jamshid; Pourghasem, Mohsen

    2017-08-16

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive pathological changes of the brain. A number of studies demonstrated compelling evidence of the importance of oxidative processes in AD pathogenesis. Raisin contains polyphenol, phenolic acid, and tannin compounds, which have antioxidant and anti-inflammatory properties. The present study was aimed to evaluate the protective effect of raisin on neurobehavioral and histological changes in rats with Alzheimer. Animal model of AD was induced by intraperitoneal injection of aluminium chloride for 60 days (100 mg/kg body weight). During these 60 days both Alzheimer's and control rats were given 6 g of raisin per rat. At the end of the treatment, blood was collected for biochemical assessment. We used a Morris water task and passive avoidance test to assess spatial memory. Our results showed that aluminium exposure significantly decreased the memory in the MWT and passive avoidance test, but in the raisin + AlCl3 group, it significantly increased spatial memory in both tests. Also, Aluminium exposure significantly increased malondialdehyde (MDA) and decreased ferric reducing ability of plasma (ferric reducing/antioxidant power (FRAP)), while treatment with raisin significantly decreased MDA and increased FRAP in plasma of blood. Our findings showed that raisin has a neuroprotective effect and improves the spatial memory in AD animal models.

  12. Type 2 Diabetes and Breast Cancer: The Interplay between Impaired Glucose Metabolism and Oxidant Stress

    PubMed Central

    Ferroni, Patrizia; Riondino, Silvia; Buonomo, Oreste; Palmirotta, Raffaele; Guadagni, Fiorella; Roselli, Mario

    2015-01-01

    Metabolic disorders, especially type 2 diabetes and its associated complications, represent a growing public health problem. Epidemiological findings indicate a close relationship between diabetes and many types of cancer (including breast cancer risk), which regards not only the dysmetabolic condition, but also its underlying risk factors and therapeutic interventions. This review discusses the advances in understanding of the mechanisms linking metabolic disorders and breast cancer. Among the proposed mechanisms to explain such an association, a major role is played by the dysregulated glucose metabolism, which concurs with a chronic proinflammatory condition and an associated oxidative stress to promote tumour initiation and progression. As regards the altered glucose metabolism, hyperinsulinaemia, both endogenous due to insulin-resistance and drug-induced, appears to promote tumour cell growth through the involvement of innate immune activation, platelet activation, increased reactive oxygen species, exposure to protumorigenic and proangiogenic cytokines, and increased substrate availability to neoplastic cells. In this context, understanding the relationship between metabolic disorders and cancer is becoming imperative, and an accurate analysis of these associations could be used to identify biomarkers able to predict disease risk and/or prognosis and to help in the choice of proper evidence-based diagnostic and therapeutic protocols. PMID:26171112

  13. ICAM-1 and β2 Integrin Deficiency Impairs Fat Oxidation and Insulin Metabolism during Fasting

    PubMed Central

    Babic, Aleksandar M; Wang, Hong-Wei; Lai, Margaret J; Daniels, Thomas G; Felbinger, Thomas W; Burger, Peter C; Stricker-Krongrad, Alain; Wagner, Denisa D

    2004-01-01

    Intercellular adhesion molecule 1 (ICAM-1) and β2 integrins play critical roles in immune responses. ICAM-1 may also participate in regulation of energy balance because ICAM-1–deficient mice become obese on a high-fat diet. We show that mice deficient in these adhesion receptors are unable to respond to fasting by up-regulation of fatty acid oxidation. Normal mice, when fasted, exhibit reduced circulating neutrophil counts and increased ICAM-1 expression and neutrophil recruitment in liver. Mice lacking ICAM-1 or β2 integrins fail to show these responses—instead they become hypoglycemic with steatotic livers. Fasting ICAM-1–deficient mice reduce insulin more slowly than wild-type mice. This produces fasting hyperinsulinemia that prevents activation of adenosine mono-phosphate (AMP)-activated protein kinase in muscles and liver, which results in decreased import of long chain fatty acids into mitochondria. Thus, we show a new role for immune cells and their adhesion receptors in regulating metabolic response to fasting. PMID:15706402

  14. Nicotine improves ethanol-induced impairment of memory: possible involvement of nitric oxide in the dorsal hippocampus of mice.

    PubMed

    Raoufi, N; Piri, M; Moshfegh, A; Shahin, M-S

    2012-09-06

    In the present study, the possible involvement of nitric oxide (NO) systems in the dorsal hippocampus in nicotine's effect on ethanol-induced amnesia and ethanol state-dependent memory was investigated. Adult male mice were cannulated in the CA1 regions of the dorsal hippocampus and trained on a passive avoidance learning task for memory assessment. We found that pre-training intraperitoneal (i.p.) administration of ethanol (1 g/kg) decreased inhibitory avoidance memory when tested 24 h later. The response induced by pre-training ethanol was significantly reversed by pre-test administration of the drug. Similar to ethanol, pre-test administration of nicotine (0.4 and 0.8 μg/mouse, intra-CA1) alone and nicotine (0.2, 0.4 and 0.8 μg/mouse) plus an ineffective dose of ethanol also significantly reversed the amnesia induced by ethanol. Ethanol amnesia was also prevented by pre-test administration of L-arginine (1.2 μg/mouse, intra-CA1), a NO precursor. Interestingly, an ineffective dose of nicotine (0.2 μg/mouse) in combination with a low dose of L-arginine (0.8 μg/mouse) synergistically improved memory performance impaired by ethanol given before training. In contrast, pre-test intra-CA1 microinjection of L-NAME (NG-nitro-L-arginine methyl ester), a nitric oxide synthase (NOS) inhibitor (0.4 and 0.8 μg/mouse), which reduced memory retrieval in inhibitory avoidance task by itself, in combination with an effective dose of nicotine (0.4 μg/mouse) prevented the improving effect of nicotine on memory impaired by pre-training ethanol. Moreover, intra-CA1 microinjection of L-NAME reversed the L-arginine-induced potentiation of the nicotine response. The results suggest the importance of NO system(s) in the CA1 regions of the dorsal hippocampus for improving the effect of nicotine on the ethanol-induced amnesia.

  15. Central blockade of nitric oxide transmission impairs exercise-induced neuronal activation in the PVN and reduces physical performance.

    PubMed

    Lima, Paulo M A; Santiago, Henrique P; Szawka, Raphael E; Coimbra, Cândido C

    2014-09-01

    The blockade of central nitric oxide (NO) signaling modifies the thermoregulatory and metabolic adjustments that occur during exercise, thereby impairing physical performance. However, the brain areas involved in this response remain unknown. Nitrergic neurons are present in the hypothalamic areas that are activated during exercise and participate in autonomic and neuroendocrine responses, such as, the hypothalamic paraventricular nucleus (PVN) and the supraoptic nucleus (SON). To investigate whether brain NO signaling affects thermoregulation during exercise through the activation of hypothalamic neurons, rats underwent acute submaximal treadmill exercise (18 mmin(-1), 5% inclination) until fatigue received an intracerebroventricular injection of 1.43 μmol Nω-nitro-l-arginine metil ester (L-NAME), a nitric oxide synthase inhibitor, or saline (SAL). Skin tail temperature (Tsk) and internal body temperature (Ti) were continuously recorded and c-Fos expression was determined in the PVN and the SON. L-NAME treatment reduced physical performance by 48%, which was positively correlated with tail vasodilation capacity, which was reduced by 28%, and negatively correlated with heat storage rate (HSR), which was increased by 38%. Physical exercise until fatigue increased the number of c-Fos-immunoreactive (ir) neurons in the PVN and the SON. L-NAME-treatment significantly reduced the exercise-induced c-Fos expression in the PVN, whereas it had no effect in the SON. Interestingly, the number of c-Fos-ir neurons in the PVN was closely correlated with physical performance and inversely associated with HSR. Thus, the inhibition of central NO attenuates neuronal activation induced by exercise in the PVN, impairs the autonomic regulation of heat dissipation, and anticipates the fatigue. Brain NO seems to play a role in exercise performance through the regulation of neuronal activation in the PVN, but not in the SON, although the SON neurons are also activated by running

  16. Oral administration of potassium bromate, a major water disinfection by-product, induces oxidative stress and impairs the antioxidant power of rat blood.

    PubMed

    Ahmad, Mir Kaisar; Mahmood, Riaz

    2012-05-01

    Potassium bromate (KBrO(3)) is a widely used food additive, a water disinfection by-product and a known nephrotoxic agent. The effect of KBrO(3) on rat blood, especially on the anti-oxidant defense system, was studied in this work. Animals were given a single oral dose of KBrO(3) (100 mg/kg body weight) and sacrificed 12, 24, 48, 96 and 168 h after this treatment. Blood was collected from the animals and separated into plasma and erythrocytes. KBrO(3) administration resulted in increased lipid peroxidation, protein oxidation, hydrogen peroxide levels and decreased the reduced glutathione content indicating the induction of oxidative stress in blood. Methemoglobin levels and methemoglobin reductase activity were significantly increased while the total anti-oxidant power was greatly reduced upon KBrO(3) treatment. Nitric oxide levels were enhanced while vitamin C concentration decreased in KBrO(3) treated animals. The activities of major anti-oxidant enzymes were also altered upon KBrO(3) treatment. The maximum changes in all these parameters were 48 h after the administration of KBrO(3) and then recovery took place. These results show for the first time that KBrO(3) induces oxidative stress in blood and impairs the anti-oxidant defense system. Thus impairment in the anti-oxidant power and alterations in the activities of major anti-oxidant enzymes may play an important role in mediating the toxic effects of KBrO(3) in the rat blood. The study of such biochemical events in blood will help elucidate the molecular mechanism of action of KBrO(3) and also for devising methods to overcome its toxic effects.

  17. An aminoglycoside antibiotic gentamycin induces oxidative stress, reduces antioxidant reserve and impairs spermatogenesis in rats.

    PubMed

    Narayana, Kilarkaje

    2008-02-01

    Gentamycin (GS) is an aminoglycoside antibiotic used to treat infections of various Gram-negative organisms. The present study was designed to investigate the effects of GS on oxidative stress, antioxidant levels, testicular structure and sperm parameters in the rat. Adult Wistar rats (12 week old; N=7/group) were treated (i. p.) with 0 mg/kg, 3 mg/kg and 5 mg/kg for 10 days at an interval of 24 hr between subsequent treatments. Animals were sacrificed on days 1 and 35 after the last treatment, and the reproductive organs were removed and weights of testis and seminal vesicle were recorded. The right testis was processed for light microscopic analysis. The left testis was homogenized and step 19 spermatids were counted to determine the daily sperm production (DSP) and daily abnormal sperm production (DASP). The sperm count, sperm motility and incidence of abnormal sperms were estimated in the epididymis. In testicular sections, along with the evaluation of qualitative changes, the seminiferous tubule diameter (STD) and the epithelial height (SE) were measured. The incidence of stage XIV tubules in testicular sections, meiotic figures and step 14 spermatids/stage XIV tubule, and step 19 spermatids/stage VII tubule were estimated. Intra-testicular levels of superoxide anion, lipid peroxidation and antioxidants-superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and ascorbic acid were measured. GS did not affect the body weight, but the testis weight and DSP were decreased at 5 mg/kg dose-level on both days (p<0.05), and the weight of seminal vesicle decreased on day 35 at both dose-levels. The DASP was increased in a dose-dependent manner (p<0.05) on days 1 and 35 at both dose-levels. The sperm count was decreased at both dose-levels on day 35, whereas the sperm motility was decreased and sperm abnormality was increased on day 1 at 5 mg/kg and on day 35 at both dose-levels. GS induced structural changes such as sloughing of seminiferous epithelium

  18. Myeloperoxidase-oxidized high density lipoprotein impairs atherosclerotic plaque stability by inhibiting smooth muscle cell migration.

    PubMed

    Zhou, Boda; Zu, Lingyun; Chen, Yong; Zheng, Xilong; Wang, Yuhui; Pan, Bing; Dong, Min; Zhou, Enchen; Zhao, Mingming; Zhang, Youyi; Zheng, Lemin; Gao, Wei

    2017-01-10

    High density lipoprotein (HDL) has been proved to be a protective factor for coronary heart disease. Notably, HDL in atherosclerotic plaques can be nitrated (NO2-oxHDL) and chlorinated (Cl-oxHDL) by myeloperoxidase (MPO), likely compromising its cardiovascular protective effects. Here we determined the effects of NO2-oxHDL and Cl-oxHDL on SMC migration using wound healing and transwell assays, proliferation using MTT and BrdU assays, and apoptosis using Annexin-V assay in vitro, as well as on atherosclerotic plaque stability in vivo using a coratid artery collar implantation mice model. Our results showed that native HDL promoted SMC proliferation and migration, whereas NO2-oxHDL and Cl-oxHDL inhibited SMC migration and reduced capacity of stimulating SMC proliferation as well as migration, respectively. OxHDL had no significant influence on SMC apoptosis. In addition, we found that ERK1/2-phosphorylation was significantly lower when SMCs were incubated with NO2-oxHDL and Cl-oxHDL. Furthermore, transwell experiments showed that differences between native HDL, NO2-oxHDL and Cl-oxHDL was abolished after PD98059 (MAPK kinase inhibitor) treatment. In aortic SMCs from scavenger receptor BI (SR-BI) deficient mice, differences between migration of native HDL, NO2-oxHDL and Cl-oxHDL treated SMCs vanished, indicating SR-BI's possible role in HDL-associated SMC migration. Importantly, NO2-oxHDL and Cl-oxHDL induced neointima formation and reduced SMC positive staining cells in atherosclerotic plaque, resulting in elevated vulnerable index of atherosclerotic plaque. These findings implicate MPO-catalyzed oxidization of HDL may contribute to atherosclerotic plaque instability by inhibiting SMC proliferation and migration through MAPK-ERK pathway which was dependent on SR-BI.

  19. Involvement of Escherichia coli DNA polymerase II in response to oxidative damage and adaptive mutation.

    PubMed

    Escarceller, M; Hicks, J; Gudmundsson, G; Trump, G; Touati, D; Lovett, S; Foster, P L; McEntee, K; Goodman, M F

    1994-10-01

    DNA polymerase II (Pol II) is regulated as part of the SOS response to DNA damage in Escherichia coli. We examined the participation of Pol II in the response to oxidative damage, adaptive mutation, and recombination. Cells lacking Pol II activity (polB delta 1 mutants) exhibited 5- to 10-fold-greater sensitivity to mode 1 killing by H2O2 compared with isogenic polB+ cells. Survival decreased by about 15-fold when polB mutants containing defective superoxide dismutase genes, sodA and sodB, were compared with polB+ sodA sodB mutants. Resistance to peroxide killing was restored following P1 transduction of polB cells to polB+ or by conjugation of polB cells with an F' plasmid carrying a copy of polB+. The rate at which Lac+ mutations arose in Lac- cells subjected to selection for lactose utilization, a phenomenon known as adaptive mutation, was increased threefold in polB backgrounds and returned to wild-type rates when polB cells were transduced to polB+. Following multiple passages of polB cells or prolonged starvation, a progressive loss of sensitivity to killing by peroxide was observed, suggesting that second-site suppressor mutations may be occurring with relatively high frequencies. The presence of suppressor mutations may account for the apparent lack of a mutant phenotype in earlier studies. A well-established polB strain, a dinA Mu d(Apr lac) fusion (GW1010), exhibited wild-type (Pol II+) sensitivity to killing by peroxide, consistent with the accumulation of second-site suppressor mutations. A high titer anti-Pol II polyclonal antibody was used to screen for the presence of Pol II in other bacteria and in the yeast Saccharomyces cerevisiae. Cross-reacting material was found in all gram-negative strains tested but was not detected in gram-positive strains or in S. cerevisiae. Induction of Pol II by nalidixic acid was observed in E. coli K-12, B, and C, in Shigella flexneri, and in Salmonella typhimurium.

  20. Neuronal nitric-oxide synthase deficiency impairs the long-term memory of olfactory fear learning and increases odor generalization.

    PubMed

    Pavesi, Eloisa; Heldt, Scott A; Fletcher, Max L

    2013-08-16

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice lacking nNOS received six training trials, each consisting of an odor-CS co-terminating with a foot shock-US. Mice showed reduced freezing responses to the trained odor 24 h and 7 d after training, compared to wild-type mice. Pretraining systemic injections of the NO donor, molsidomine, rescued fear retention in nNOS knockout mice. In wild-type mice, pretraining systemic injections of L-NAME, a nonspecific nNOS blocker, disrupted odor-CS fear retention in a dose-dependent manner. To evaluate whether NO signaling is involved in generalization of fear memories, nNOS knockout mice and wild-type mice receiving L-NAME were trained to one odor and tested with a series of similar odors. In both cases, we found increased generalization, as measured by increased freezing to similar, unpaired odors. Despite the impairment in fear memory retention and generalization, neither mice receiving injections of L-NAME nor nNOS knockout mice showed any deficits in either novel odor investigation time or odor habituation, suggesting intact olfactory perception and short-term memory olfactory learning. These results support a necessary role for neuronal NO signaling in the normal expression and generalization of olfactory conditioned fear.

  1. Oxidized High-Density Lipoprotein Impairs Endothelial Progenitor Cells' Function by Activation of CD36-MAPK-TSP-1 Pathways

    PubMed Central

    Wu, Jianxiang; He, Zhiqing; Gao, Xiang; Wu, Feng; Ding, Ru; Ren, Yusheng; Jiang, Qijun; Fan, Min

    2015-01-01

    Abstract Aims: High-density lipoprotein (HDL) levels inversely correlate with cardiovascular events due to the protective effects on vascular wall and stem cells, which are susceptible to oxidative modifications and then lead to potential pro-atherosclerotic effects. We proposed that oxidized HDL (ox-HDL) might lead to endothelial progenitor cells (EPCs) dysfunction and investigated underlying mechanisms. Results: ox-HDL was shown to increase apoptosis and intracellular reactive oxygen species levels, but to reduce migration, angiogenesis, and cholesterol efflux of EPCs in a dose-dependent manner. p38 mitogen-activated protein kinase (MAPK) and NF-κB were activated after ox-HDL stimulation, which also upregulated thrombospondin-1 (TSP-1) expression without affecting vascular endothelial growth factor. Effects caused by ox-HDL could be significantly attenuated by pretreatment with short hairpin RNA-mediated CD36 knockdown or probucol. Data of in vivo experiments and the inverse correlation of ox-HDL and circulating EPC numbers among patients with coronary artery diseases (CAD) or CAD and type 2 diabetes also supported it. Meanwhile, HDL separated from such patients could significantly increase cultured EPC's caspase 3 activity, further supporting our proposal. Innovation: This is the most complete study to date of how ox-HDL would impair EPCs function, which was involved with activation of CD36-p38 MAPK-TSP-1 pathways and proved by not only the inverse relationship between ox-HDL and circulating EPCs in clinic but also pro-apoptotic effects of HDL separated from patients' serum. Conclusion: Activation of CD36-p38 MAPK-TSP-1 pathways contributes to the pathological effects of ox-HDL on EPCs' dysfunction, which might be one of the potential etiological factors responsible for the disturbed neovascularization in chronic ischemic disease. Antioxid. Redox Signal. 22, 308–324. PMID:25313537

  2. Involvement of oxidative stress in the impairment in biliary secretory function induced by intraperitoneal administration of aluminum to rats.

    PubMed

    Gonzalez, Marcela A; Alvarez, Maria Del Lujan; Pisani, Gerardo B; Bernal, Claudio A; Roma, Marcelo G; Carrillo, María C

    2007-06-01

    We have shown that aluminum (Al) induces cholestasis associated with multiple alterations in hepatocellular transporters involved in bile secretory function, like Mrp2. This work aims to investigate whether these harmful effects are mediated by the oxidative stress caused by the metal. For this purpose, the capability of the antioxidant agent, vitamin E, to counteract these alterations was studied in male Wistar rats. Aluminum hydroxide (or saline in controls) was administered ip (27 mg/kg body weight, three times a week, for 90 d). Vitamin E (600 mg/kg body weight) was coadministered, sc. Al increased lipid peroxidation (+50%) and decreased hepatic glutation levels (-43%) and the activity of glutation peroxidase (-50%) and catalase (-88%). Vitamin E counteracted these effects total or partially. Both plasma and hepatic Al levels reached at the end of the treatment were significantly reduced by vitamin E (-40% and -44%, respectively; p<0.05). Al increased 4 times the hepatic apoptotic index, and this effect was fully counteracted by vitamin E. Bile flow was decreased in Altreated rats (-37%) and restored to normality by vitamin E. The antioxidant normalized the hepatic handling of the Mrp2 substrates, rose bengal, and dinitrophenyl-S-glutathione, which was causally associated with restoration of Mrp2 expression. Our data indicate that oxidative stress has a crucial role in cholestasis, apoptotic/necrotic hepatocellular damage, and the impairment in liver transport function induced by Al and that vitamin E counteracts these harmful effects not only by preventing free-radical formation but also by favoring Al disposal.

  3. Association between endothelial nitric oxide synthase (ENOS) G894T polymorphism and high altitude (HA) adaptation: a meta-analysis.

    PubMed

    Lu, Hong-xiang; Wang, Yu-xiao; Chen, Yu; Luo, Yong-jun

    2015-11-01

    Highland natives adapt well to the hypoxic environment at high altitude (HA). Several genes have been reported to be linked to HA adaptation. Previous studies showed that the endothelial ni- tric oxide synthase (ENOS) G894T polymorphism contributed to the physiology and pathophysiology of hu- mans at HA by regulating the production of NO. In this meta-analysis, we evaluate the association between the ENOS G894T polymorphism and HA adaptation through analyzing the published data. We searched all relevant literature about the ENOS G894T polymorphism and HA adaptation in PubMed, Med- line, and Embase before Step 2015. A random-effects model was applied (Revman 5.0), and study quality was assessed in duplicate. Six studies with 634 HA native cases and 621 low-altitude controls were included in this meta-analysis. From the results, we observed that the wild-type allele G was significantly overrepresented in the HA groups (OR = 1.85; 95% Cl, 1.47-2.33; P < 0.0001). In addition, the GG genotype was significantly associated with HA adaptation (OR = 1.99; 95% Cl, 1.54-2.57; P < 0.0001). Our results showed that in 894 G allele carriers, the GG genotype might be a beneficial factor for HA adaptation through enhancing the level of NO. However, more studies were needed to confirm our findings due to the limited sample size.

  4. Psychosocial Adaptation to Visual Impairment and Its Relationship to Depressive Affect in Older Adults with Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Tolman, Jennifer; Hill, Robert D.; Kleinschmidt, Julia J.; Gregg, Charles H.

    2005-01-01

    Purpose: In this study we examined psychosocial adaptation to vision loss and its relationship to depressive symptomatology in legally blind older adults with age-related macular degeneration (ARMD). Design and Methods: The 144 study participants were outpatients of a large regional vision clinic that specializes in the diagnosis and treatment of…

  5. Psychosocial Adaptation to Visual Impairment and Its Relationship to Depressive Affect in Older Adults with Age-Related Macular Degeneration

    ERIC Educational Resources Information Center

    Tolman, Jennifer; Hill, Robert D.; Kleinschmidt, Julia J.; Gregg, Charles H.

    2005-01-01

    Purpose: In this study we examined psychosocial adaptation to vision loss and its relationship to depressive symptomatology in legally blind older adults with age-related macular degeneration (ARMD). Design and Methods: The 144 study participants were outpatients of a large regional vision clinic that specializes in the diagnosis and treatment of…

  6. Interdisciplinary Collaboration in the Choice of an Adapted Mobility Device for a Child with Cerebral Palsy and Visual Impairment.

    ERIC Educational Resources Information Center

    Glanzman, Allan; Ducret, Walter

    2003-01-01

    To select an adapted mobility device for a 5-year-old boy with blindness and spastic diplegic cerebral palsy, a multidisciplinary team used 8-millimeter videography to evaluate the subject's joint angle during ambulation with one of three canes and with no cane. The I-style cane provided optimal posture and gait pattern. (Contains references.) (CR)

  7. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    PubMed Central

    Mauro, Marcella; Crosera, Matteo; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Piero; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca

    2015-01-01

    Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded human skin (experiment 2). Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2), while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2) and those with intact skin (1.08 ± 0.20 ng·cm−2). To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI) uptake assays. The results indicate that a long exposure time (i.e., seven days) was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay) that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay). This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure. PMID:26193294

  8. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity.

    PubMed

    Mauro, Marcella; Crosera, Matteo; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Piero; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Filon, Francesca Larese

    2015-07-17

    Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded human skin (experiment 2). Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled-Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm⁻²), while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm⁻²) and those with intact skin (1.08 ± 0.20 ng·cm⁻²). To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue and propidium iodide (PI) uptake assays. The results indicate that a long exposure time (i.e., seven days) was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10-4 M, 95% CL = 0.8-1.9 × 10⁻⁴ M, MTT essay; 3.7 × 10⁻⁵ M, 95% CI = 2.2-6.1 × 10⁻⁵ M, AlamarBlue assay) that seems to be associated to necrotic events (EC50 value: 1.3 × 10⁻⁴ M, 95% CL = 0.9-1.9 × 10⁻⁴ M, PI assay). This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure.

  9. Effect of Capparis spinosa L. on cognitive impairment induced by D-galactose in mice via inhibition of oxidative stress.

    PubMed

    Turgut, Nergiz Hacer; Kara, Haki; Arslanbaş, Emre; Mert, Derya Güliz; Tepe, Bektaş; Güngör, Hüseyin

    2015-01-01

    To determine the phenolic acid levels and DNA damage protection potential of Capparis spinosa L. seed extract and to investigate the effect of the extract on cognitive impairment and oxidative stress in an Alzheimer disease mice model. Thirty BALB/c mice divided into 5 groups (control, D-galactose, D-galactose + C. spinosa 50, D-galactose + C. spinosa 100, D-galactose + C. spinosa 200) were used. Mice were administered an injection of D-galactose (100 mg/kg, subcutaneous) and orally administered C. spinosa (50, 100, or 200 mg/kg) daily for 8 weeks. Syringic acid was detected and the total amount was 204.629 µg/g. Addition of 0.05 mg/mL C. spinosa extract provided significant protection against the damage of DNA bands. C. spinosa attenuated D-galactose-induced learning dysfunctions in mice and significantly increased memory retention. Malondialdehyde (MDA) levels increased and superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities decreased in the D-galactose group. C. spinosa (200 mg/kg body weight) significantly decreased MDA level and increased SOD, GPx, and CAT activities. These results show that C. spinosa has the potential in ameliorating cognitive deficits induced by D-galactose in mice and the antioxidant activity may partially account for the improvement of learning and memory function.

  10. Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism.

    PubMed

    Martínez-Vega, Raquel; Garrido, Francisco; Partearroyo, Teresa; Cediel, Rafael; Zeisel, Steven H; Martínez-Álvarez, Concepción; Varela-Moreiras, Gregorio; Varela-Nieto, Isabel; Pajares, María A

    2015-02-01

    Nutritional imbalance is emerging as a causative factor of hearing loss. Epidemiologic studies have linked hearing loss to elevated plasma total homocysteine (tHcy) and folate deficiency, and have shown that folate supplementation lowers tHcy levels potentially ameliorating age-related hearing loss. The purpose of this study was to address the impact of folate deficiency on hearing loss and to examine the underlying mechanisms. For this purpose, 2-mo-old C57BL/6J mice (Animalia Chordata Mus musculus) were randomly divided into 2 groups (n = 65 each) that were fed folate-deficient (FD) or standard diets for 8 wk. HPLC analysis demonstrated a 7-fold decline in serum folate and a 3-fold increase in tHcy levels. FD mice exhibited severe hearing loss measured by auditory brainstem recordings and TUNEL-positive-apoptotic cochlear cells. RT-quantitative PCR and Western blotting showed reduced levels of enzymes catalyzing homocysteine (Hcy) production and recycling, together with a 30% increase in protein homocysteinylation. Redox stress was demonstrated by decreased expression of catalase, glutathione peroxidase 4, and glutathione synthetase genes, increased levels of manganese superoxide dismutase, and NADPH oxidase-complex adaptor cytochrome b-245, α-polypeptide (p22phox) proteins, and elevated concentrations of glutathione species. Altogether, our findings demonstrate, for the first time, that the relationship between hyperhomocysteinemia induced by folate deficiency and premature hearing loss involves impairment of cochlear Hcy metabolism and associated oxidative stress. © FASEB.

  11. PEGylated Carbon Nanotubes Impair Retrieval of Contextual Fear Memory and Alter Oxidative Stress Parameters in the Rat Hippocampus

    PubMed Central

    Dal Bosco, Lidiane; Weber, Gisele E. B.; Parfitt, Gustavo M.; Paese, Karina; Gonçalves, Carla O. F.; Serodre, Tiago M.; Furtado, Clascídia A.; Santos, Adelina P.; Monserrat, José M.; Barros, Daniela M.

    2015-01-01

    Carbon nanotubes (CNT) are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG) on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions. PMID:25738149

  12. Oxidative Stress in Mouse Sperm Impairs Embryo Development, Fetal Growth and Alters Adiposity and Glucose Regulation in Female Offspring

    PubMed Central

    Lane, Michelle; McPherson, Nicole O.; Fullston, Tod; Spillane, Marni; Sandeman, Lauren; Kang, Wan Xian; Zander-Fox, Deirdre L.

    2014-01-01

    Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS) are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2), which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM) in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity. PMID:25006800

  13. The “Goldilocks Zone” from a redox perspective—Adaptive vs. deleterious responses to oxidative stress in striated muscle

    PubMed Central

    Alleman, Rick J.; Katunga, Lalage A.; Nelson, Margaret A. M.; Brown, David A.; Anderson, Ethan J.

    2014-01-01

    Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system's position on the “hormetic curve” is governed by the source and temporality of reactive oxygen species (ROS) production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage) is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g., months to years) inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning) and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome). PMID:25278906

  14. Impaired regulation of pH homeostasis by oxidative stress in rat brain capillary endothelial cells.

    PubMed

    Sipos, Hdikó; Törocsik, Beáta; Tretter, Laszlo; Adam-Vizi, Vera

    2005-02-01

    (1) Endothelial cells are permanently challenged by altering pH in the blood, and oxidative damage could also influence the intracellular pH (pH(i)) of the endothelium. Cerebral microvascular endothelial cells form the blood-brain barrier (BBB) and pH(i) regulation of brain capillary endothelial cells is important for the maintenance of BBB integrity. The aim of this study was to address the pH regulatory mechanisms and the effect of an acute exposure to hydrogen peroxide (H2O2) on the pH regulation in primary rat brain capillary endothelial (RBCE) cells The RBCE monolayers were loaded with the fluorescent pH indicator BCECF and pH(i) was monitored by detecting the fluorescent changes. (2) The steady-state pH(i) of RBCE cells in HEPES-buffer (6.83 +/- 0.1) did not differ significantly from that found in bicarbonate-buffered medium (6.90 +/- 0.08). Cells were exposed to NH4CI to induce intracellular acidification and then the recovery to resting pH was studied. Half-recovery time after NH4Cl prepulse-induced acid load was significantly less in the bicarbonate-buffered medium than in the HEPES-medium, suggesting that in addition to the Na+ / H+ exchanger, HCO3- / Cl- exchange mechanism is also involved in the restoration of pH(i) after an intracellular acid load in primary RBCE cells. We used RT-PCR-reactions to detect the isoforms of Na+ / H+ exchanger gene family (NHE). NHE-1 -2, -3 and -4 were equally present, and there was no significant difference in the relative abundance of the four transcripts in these cells. (3) No pH(i) recovery was detected when the washout after an intracellular acid load occurred in nominally Na+ -free HEPES-buffered medium or in the presence of 10 microM 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a specific inhibitor of Na+ / H+ exchanger. The new steady-state pH(i) were 6.37 +/- 0.02 and 6.60 +/- 0.02, respectively. (4) No detectable change was observed in the steady-state pH(i) in the presence of 100 microM H2O2; however, recovery from

  15. Age-Related Impairment of Bones' Adaptive Response to Loading in Mice Is Associated With Sex-Related Deficiencies in Osteoblasts but No Change in Osteocytes†

    PubMed Central

    Meakin, Lee B; Galea, Gabriel L; Sugiyama, Toshihiro; Lanyon, Lance E; Price, Joanna S

    2014-01-01

    Bones adjust their mass and architecture to be sufficiently robust to withstand functional loading by adapting to their strain environment. This mechanism appears less effective with age, resulting in low bone mass. In male and female young adult (17-week-old) and old (19-month-old) mice, we investigated the effect of age in vivo on bones' adaptive response to loading and in vitro in primary cultures of osteoblast-like cells derived from bone cortices. Right tibias were axially loaded on alternate days for 2 weeks. Left tibias were non-loaded controls. In a separate group, the number of sclerostin-positive osteocytes and the number of periosteal osteoblasts were analyzed 24 hours after a single loading episode. The responses to strain of the primary osteoblast-like cells derived from these mice were assessed by EGR2 expression, change in cell number and Ki67 immunofluorescence. In young male and female mice, loading increased trabecular thickness and the number of trabecular connections. Increase in the number of trabecular connections was impaired with age but trabecular thickness was not. In old mice, the loading-related increase in periosteal apposition of the cortex was less than in young ones. Age was associated with a lesser loading-related increase in osteoblast number on the periosteal surface but had no effect on loading-related reduction in the number of sclerostin-positive osteocytes. In vitro, strain-related proliferation of osteoblast-like cells was lower in cells from old than young mice. Cells from aged female mice demonstrated normal entry into the cell cycle but subsequently arrested in G2 phase, reducing strain-related increases in cell number. Thus, in both male and female mice, loading-related adaptive responses are impaired with age. This impairment is different in females and males. The deficit appears to occur in osteoblasts' proliferative responses to strain rather than earlier strain-related responses in the osteocytes. © 2014 The Authors

  16. Mutant eIF2B leads to impaired mitochondrial oxidative phosphorylation in vanishing white matter disease.

    PubMed

    Raini, Gali; Sharet, Reut; Herrero, Melisa; Atzmon, Andrea; Shenoy, Anjana; Geiger, Tamar; Elroy-Stein, Orna

    2017-06-01

    Eukaryotic translation initiation factor 2B (eIF2B) is a master regulator of protein synthesis under normal and stress conditions. Mutations in any of the five genes encoding its subunits lead to vanishing white matter (VWM) disease, a recessive genetic deadly illness caused by progressive loss of white matter in the brain. In this study we used fibroblasts, which are not involved in the disease, to demonstrate the involvement of eIF2B in mitochondrial function and abundance. Mass spectrometry of total proteome of mouse embryonic fibroblasts (MEFs) isolated from Eif2b5(R132H/R132H) mice revealed unbalanced stoichiometry of proteins involved in oxidative phosphorylation and of mitochondrial translation machinery components, among others. Mutant MEFs exhibit 55% decrease in oxygen consumption rate per mtDNA content and 47% increase in mitochondrial abundance (p < 0.005), reflecting adaptation to energy requirements. A more robust eIF2B-associated oxidative respiration deficiency was found in mutant primary astrocytes, which exhibit > 3-fold lower ATP-linked respiration per cell despite a 2-fold increase in mtDNA content (p < 0.03). The 2-fold increase in basal and stimulated glycolysis in mutant astrocytes (p ≤ 0.03), but not in MEFs, demonstrates their higher energetic needs and further explicates their involvement in the disease. The data demonstrate the critical role of eIF2B in tight coordination of expression from nuclear and mitochondrial genomes and illuminates the importance of mitochondrial function in VWM pathology. Further dissection of the signaling network associated with eIF2B function will help generating therapeutic strategies for VWM disease and possibly other neurodegenerative disorders. © 2017 International Society for Neurochemistry.

  17. Induction and stability of oxidative stress adaptation in Listeria monocytogenes EGD (Bug600) and F1057 in sublethal concentrations of H2O2 and NaOH.

    PubMed

    De Abrew Abeysundara, Piumi; Nannapaneni, Ramakrishna; Soni, Kamlesh A; Sharma, Chander S; Mahmoud, Barakat

    2016-12-05

    Food processing and food handling environments may contain residual levels of sanitizers or cleaners which may trigger oxidative stress adaptation in Listeria monocytogenes. The aim of this study was to determine the induction and stability of oxidative stress adaptation in L. monocytogenes EGD (Bug600) (serotype 1/2a) and F1057 (serotype 4b) at different concentrations and times of sublethal oxidative stress induced by H2O2 or sublethal alkali stress induced by NaOH at 37°C. Both L. monocytogenes Bug600 and F1057 strains showed significantly higher survival in lethal oxidative stress (1000ppm H2O2) after pre-exposure to 50ppm H2O2 for 30min compared to control cells (no pre-exposure to H2O2). When the cells were pre-exposed to sublethal alkali stress by NaOH, the oxidative stress adaptation was induced within 5min in L. monocytogenes. The survival of both L. monocytogenes strains was increased by 2 to 4.5 logs in lethal oxidative stress when the cells were pre-exposed to sublethal alkali stress at pH9 from 5 to 120min by NaOH compared to control cells (no pre-exposure to sublethal alkali pH). Two other alkali reagents tested (KOH and NH4OH) also induced oxidative stress adaptation in L. monocytogenes. For both L. monocytogenes strains, the oxidative stress adaptation induced by sublethal H2O2 was reversible in 30min and that induced by sublethal alkali stress was reversible within 60min at 37°C in the absence of such sublethal stress. These findings show that sublethal oxidative or alkali stress conditions can induce oxidative stress adaptation that may increase the risk of survival of L. monocytogenes cells in lethal oxidative stress.

  18. Swimming Training Induces Liver Mitochondrial Adaptations to Oxidative Stress in Rats Submitted to Repeated Exhaustive Swimming Bouts

    PubMed Central

    Lima, Frederico D.; Stamm, Daniel N.; Della-Pace, Iuri D.; Dobrachinski, Fernando; de Carvalho, Nélson R.; Royes, Luiz Fernando F.; Soares, Félix A.; Rocha, João B.; González-Gallego, Javier; Bresciani, Guilherme

    2013-01-01

    Background and Aims Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS) production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. Methods Wistar rats were divided into training (n = 14) and control (n = 14) groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7) and control (n = 7) rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. Results Trained group showed increased reduced glutathione (GSH) content and reduced/oxidized (GSH/GSSG) ratio, higher superoxide dismutase (MnSOD) activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. Conclusions Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance. PMID:23405192

  19. Angiotensin receptor-mediated oxidative stress is associated with impaired cardiac redox signaling and mitochondrial function in insulin-resistant rats

    PubMed Central

    Vázquez-Medina, José Pablo; Popovich, Irina; Thorwald, Max A.; Viscarra, Jose A.; Rodriguez, Ruben; Sonanez-Organis, Jose G.; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira

    2013-01-01

    Activation of angiotensin receptor type 1 (AT1) contributes to NADPH oxidase (Nox)-derived oxidative stress during metabolic syndrome. However, the specific role of AT1 in modulating redox signaling, mitochondrial function, and oxidative stress in the heart remains more elusive. To test the hypothesis that AT1 activation increases oxidative stress while impairing redox signaling and mitochondrial function in the heart during diet-induced insulin resistance in obese animals, Otsuka Long Evans Tokushima Fatty (OLETF) rats (n = 8/group) were treated with the AT1 blocker (ARB) olmesartan for 6 wk. Cardiac Nox2 protein expression increased 40% in OLETF compared with age-matched, lean, strain-control Long Evans Tokushima Otsuka (LETO) rats, while mRNA and protein expression of the H2O2-producing Nox4 increased 40–100%. ARB treatment prevented the increase in Nox2 without altering Nox4. ARB treatment also normalized the increased levels of protein and lipid oxidation (nitrotyrosine, 4-hydroxynonenal) and increased the redox-sensitive transcription factor Nrf2 by 30% and the activity of antioxidant enzymes (SOD, catalase, GPx) by 50–70%. Citrate synthase (CS) and succinate dehydrogenase (SDH) activities decreased 60–70%, whereas cardiac succinate levels decreased 35% in OLETF compared with LETO, suggesting that mitochondrial function in the heart is impaired during obesity-induced insulin resistance. ARB treatment normalized CS and SDH activities, as well as succinate levels, while increasing AMPK and normalizing Akt, suggesting that AT1 activation also impairs cellular metabolism in the diabetic heart. These data suggest that the cardiovascular complications associated with metabolic syndrome may result from AT1 receptor-mediated Nox2 activation leading to impaired redox signaling, mitochondrial activity, and dysregulation of cellular metabolism in the heart. PMID:23771688

  20. Angiotensin receptor-mediated oxidative stress is associated with impaired cardiac redox signaling and mitochondrial function in insulin-resistant rats.

    PubMed

    Vázquez-Medina, José Pablo; Popovich, Irina; Thorwald, Max A; Viscarra, Jose A; Rodriguez, Ruben; Sonanez-Organis, Jose G; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2013-08-15

    Activation of angiotensin receptor type 1 (AT1) contributes to NADPH oxidase (Nox)-derived oxidative stress during metabolic syndrome. However, the specific role of AT1 in modulating redox signaling, mitochondrial function, and oxidative stress in the heart remains more elusive. To test the hypothesis that AT1 activation increases oxidative stress while impairing redox signaling and mitochondrial function in the heart during diet-induced insulin resistance in obese animals, Otsuka Long Evans Tokushima Fatty (OLETF) rats (n = 8/group) were treated with the AT1 blocker (ARB) olmesartan for 6 wk. Cardiac Nox2 protein expression increased 40% in OLETF compared with age-matched, lean, strain-control Long Evans Tokushima Otsuka (LETO) rats, while mRNA and protein expression of the H₂O₂-producing Nox4 increased 40-100%. ARB treatment prevented the increase in Nox2 without altering Nox4. ARB treatment also normalized the increased levels of protein and lipid oxidation (nitrotyrosine, 4-hydroxynonenal) and increased the redox-sensitive transcription factor Nrf2 by 30% and the activity of antioxidant enzymes (SOD, catalase, GPx) by 50-70%. Citrate synthase (CS) and succinate dehydrogenase (SDH) activities decreased 60-70%, whereas cardiac succinate levels decreased 35% in OLETF compared with LETO, suggesting that mitochondrial function in the heart is impaired during obesity-induced insulin resistance. ARB treatment normalized CS and SDH activities, as well as succinate levels, while increasing AMPK and normalizing Akt, suggesting that AT1 activation also impairs cellular metabolism in the diabetic heart. These data suggest that the cardiovascular complications associated with metabolic syndrome may result from AT1 receptor-mediated Nox2 activation leading to impaired redox signaling, mitochondrial activity, and dysregulation of cellular metabolism in the heart.

  1. Postsynaptic α1-Adrenergic Vasoconstriction Is Impaired in Young Patients With Vasovagal Syncope and Is Corrected by Nitric Oxide Synthase Inhibition.

    PubMed

    Stewart, Julian M; Suggs, Melissa; Merchant, Sana; Sutton, Richard; Terilli, Courtney; Visintainer, Paul; Medow, Marvin S

    2016-08-01

    Syncope is a sudden transient loss of consciousness and postural tone with spontaneous recovery; the most common form is vasovagal syncope (VVS). During VVS, gravitational pooling excessively reduces central blood volume and cardiac output. In VVS, as in hemorrhage, impaired adrenergic vasoconstriction and venoconstriction result in hypotension. We hypothesized that impaired adrenergic responsiveness because of excess nitric oxide can be reversed by reducing nitric oxide. We recorded cardiopulmonary dynamics in supine syncope patients and healthy volunteers (aged 15-27 years) challenged with a dose-response using the α1-agonist phenylephrine (PE), with and without the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine, monoacetate salt (L-NMMA). Systolic and diastolic pressures among control and VVS were the same, although they increased after L-NMMA and saline+PE (volume and pressor control for L-NMMA). Heart rate was significantly reduced by L-NMMA (P<0.05) for control and VVS compared with baseline, but there was no significant difference in heart rate between L-NMMA and saline+PE. Cardiac output and splanchnic blood flow were reduced by L-NMMA for control and VVS (P<0.05) compared with baseline, while total peripheral resistance increased (P<0.05). PE dose-response for splanchnic flow and resistance were blunted for VVS compared with control after saline+PE, but enhanced after L-NMMA (P<0.001). Postsynaptic α1-adrenergic vasoconstrictive impairment was greatest in the splanchnic vasculature, and splanchnic blood flow was unaffected by PE. Forearm and calf α1-adrenergic vasoconstriction were unimpaired in VVS and unaffected by L-NMMA. Impaired postsynaptic α1-adrenergic vasoconstriction in young adults with VVS can be corrected by nitric oxide synthase inhibition, demonstrated with our use of L-NMMA. © 2016 American Heart Association, Inc.

  2. Impaired Endothelial Repair Capacity of Early Endothelial Progenitor Cells in Hypertensive Patients With Primary Hyperaldosteronemia: Role of 5,6,7,8-Tetrahydrobiopterin Oxidation and Endothelial Nitric Oxide Synthase Uncoupling.

    PubMed

    Chen, Long; Ding, Mei-Lin; Wu, Fang; He, Wen; Li, Jin; Zhang, Xiao-Yu; Xie, Wen-Li; Duan, Sheng-Zhong; Xia, Wen-Hao; Tao, Jun

    2016-02-01

    Although hyperaldosteronemia exerts detrimental impacts on vascular endothelium in addition to elevating blood pressure, the effects and molecular mechanisms of hyperaldosteronemia on early endothelial progenitor cell (EPC)-mediated endothelial repair after arterial damage are yet to be determined. The aim of this study was to investigate the endothelial repair capacity of early EPCs from hypertensive patients with primary hyperaldosteronemia (PHA). In vivo endothelial repair capacity of early EPCs from PHAs (n=20), age- and blood pressure-matched essential hypertension patients (n=20), and age-matched healthy subjects (n=20) was evaluated by transplantation into a nude mouse carotid endothelial denudation model. Endothelial function was evaluated by flow-mediated dilation of brachial artery in human subjects. In vivo endothelial repair capacity of early EPCs and flow-mediated dilation were impaired both in PHAs and in essential hypertension patients when compared with age-matched healthy subjects; however, the early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs were impaired more severely than essential hypertension patients. Oral spironolactone improved early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs. Increased oxidative stress, oxidative 5,6,7,8-tetrahydrobiopterin degradation, endothelial nitric oxide synthase uncoupling and decreased nitric oxide production were found in early EPCs from PHAs. Nicotinamide adenine dinucleotide phosphate oxidase subunit p47(phox) knockdown or 5,6,7,8-tetrahydrobiopterin supplementation attenuated endothelial nitric oxide synthase uncoupling and enhanced in vivo endothelial repair capacity of early EPCs from PHAs. In conclusion, PHAs exhibited more impaired endothelial repair capacity of early EPCs than did essential hypertension patients independent of blood pressure, which was associated with mineralocorticoid receptor-dependent oxidative stress and subsequently 5

  3. Adaptations of the autonomous nervous system controlling heart rate are impaired by a mutant thyroid hormone receptor-alpha1.

    PubMed

    Mittag, Jens; Davis, Benjamin; Vujovic, Milica; Arner, Anders; Vennström, Björn

    2010-05-01

    Thyroid hormone has profound direct effects on cardiac function, but the hormonal interactions with the autonomic control of heart rate are unclear. Because thyroid hormone receptor (TR)-alpha1 has been implicated in the autonomic control of brown adipose energy metabolism, it might also play an important role in the central autonomic control of heart rate. Thus, we aimed to analyze the role of TRalpha1 signaling in the autonomic control of heart rate using an implantable radio telemetry system. We identified that mice expressing the mutant TRalpha1R384C (TRalpha1+m mice) displayed a mild bradycardia, which becomes more pronounced during night activity or on stress and is accompanied by a reduced expression of nucleotide-gated potassium channel 2 mRNA in the heart. Pharmacological blockage with scopolamine and the beta-adrenergic receptor antagonist timolol revealed that the autonomic control of cardiac activity was similar to that in wild-type mice at room temperature. However, at thermoneutrality, in which the regulation of heart rate switches from sympathetic to parasympathetic in wild-type mice, TRalpha1+m mice maintained sympathetic stimulation and failed to activate parasympathetic signaling. Our findings demonstrate a novel role for TRalpha1 in the adaptation of cardiac activity by the autonomic nervous system and suggest that human patients with a similar mutation in TRalpha1 might exhibit a deficit in cardiac adaptation to stress or physical activity and an increased sensitivity to beta-blockers.

  4. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice

    PubMed Central

    Talukder, M. A. Hassan; Johnson, Wesley M.; Varadharaj, Saradhadevi; Lian, Jiarui; Kearns, Patrick N.; El-Mahdy, Mohamed A.; Liu, Xiaoping

    2011-01-01

    Cigarette smoking is a major independent risk factor for cardiovascular disease. While the association between chronic smoking and cardiovascular disease is well established, the underlying mechanisms are incompletely understood, partly due to the lack of adequate in vivo animal models. Here, we report a mouse model of chronic smoking-induced cardiovascular pathology. Male C57BL/6J mice were exposed to whole body mainstream cigarette smoke (CS) using a SCIREQ “InExpose” smoking system (48 min/day, 5 days/wk) for 16 or 32 wk. Age-matched, air-exposed mice served as nonsmoking controls. Blood pressure was measured, and cardiac MRI was performed. In vitro vascular ring and isolated heart experiments were performed to measure vascular reactivity and cardiac function. Blood from control and smoking mice was studied for the nitric oxide (NO) decay rate and reactive oxygen species (ROS) generation. With 32 wk of CS exposure, mice had significantly less body weight gain and markedly higher blood pressure. At 32 wk of CS exposure, ACh-induced vasorelaxation was significantly shifted to the right and downward, left ventricular mass was significantly larger along with an increased heart-to-body weight ratio, in vitro cardiac function tended to be impaired with high afterload, white blood cells had significantly higher ROS generation, and the blood NO decay rate was significantly faster. Thus, smoking led to blunted weight gain, hypertension, endothelial dysfunction, leukocyte activation with ROS generation, decreased NO bioavailability, and mild cardiac hypertrophy in mice that were not otherwise predisposed to disease. This mouse model is a useful tool to enable further elucidation of the molecular and cellular mechanisms of smoking-induced cardiovascular diseases. PMID:21057039

  5. Cell membrane damage is involved in the impaired survival of bone marrow stem cells by oxidized low-density lipoprotein.

    PubMed

    Li, Xin; Xiao, Yuan; Cui, Yuqi; Tan, Tao; Narasimhulu, Chandrakala A; Hao, Hong; Liu, Lingjuan; Zhang, Jia; He, Guanglong; Verfaillie, Catherine M; Lei, Minxiang; Parthasarathy, Sampath; Ma, Jianjie; Zhu, Hua; Liu, Zhenguo

    2014-12-01

    Cell therapy with bone marrow stem cells (BMSCs) remains a viable option for tissue repair and regeneration. A major challenge for cell therapy is the limited cell survival after implantation. This study was to investigate the effect of oxidized low-density lipoprotein (ox-LDL, naturally present in human blood) on BMSC injury and the effect of MG53, a tissue repair protein, for the improvement of stem cell survival. Rat bone marrow multipotent adult progenitor cells (MAPCs) were treated with ox-LDL, which caused significant cell death as reflected by the increased LDH release to the media. Exposure of MAPCs to ox-LDL led to entry of fluorescent dye FM1-43 measured under confocal microscope, suggesting damage to the plasma membrane. Ox-LDL also generated reactive oxygen species (ROS) as measured with electron paramagnetic resonance spectroscopy. While antioxidant N-acetylcysteine completely blocked ROS production from ox-LDL, it failed to prevent ox-LDL-induced cell death. When MAPCs were treated with the recombinant human MG53 protein (rhMG53) ox-LDL induced LDH release and FM1-43 dye entry were significantly reduced. In the presence of rhMG53, the MAPCs showed enhanced cell survival and proliferation. Our data suggest that membrane damage induced by ox-LDL contributed to the impaired survival of MAPCs. rhMG53 treatment protected MAPCs against membrane damage and enhanced their survival which might represent a novel means for improving efficacy for stem cell-based therapy for treatment of diseases, especially in setting of hyperlipidemia.

  6. Relationship of Cell-Free Hemoglobin to Impaired Endothelial Nitric Oxide Bioavailability and Perfusion in Severe Falciparum Malaria

    PubMed Central

    Yeo, Tsin W.; Lampah, Daniel A.; Tjitra, Emiliana; Gitawati, Retno; Kenangalem, Enny; Piera, Kim; Granger, Donald L.; Lopansri, Bert K.; Weinberg, J. Brice; Price, Ric N.; Duffull, Stephen B.; Celermajer, David S.; Anstey, Nicholas M.

    2013-01-01

    Background Hemolysis causes anemia in falciparum malaria, but its contribution to microvascular pathology in severe malaria (SM) is not well characterized. In other hemolytic diseases, release of cell-free hemoglobin causes nitric oxide (NO) quenching, endothelial activation, and vascular complications. We examined the relationship of plasma hemoglobin and myoglobin to endothelial dysfunction and disease severity in malaria. Methods Cell-free hemoglobin (a potent NO quencher), reactive hyperemia peripheral arterial tonometry (RH-PAT) (a measure of endothelial NO bioavailability), and measures of perfusion and endothelial activation were quantified in adults with moderately severe (n = 78) or severe (n = 49) malaria and control subjects (n = 16) from Papua, Indonesia. Results Cell-free hemoglobin concentrations in patients with SM (median, 5.4 μmol/L; interquartile range [IQR], 3.2–7.4 μmol/L) were significantly higher than in those with moderately severe malaria (2.6 μmol/L; IQR, 1.3–4.5 μmol/L) or controls (1.2 μmol/L; IQR, 0.9–2.4 μmol/L; P < .001). Multivariable regression analysis revealed that cell-free hemoglobin remained inversely associated with RH-PAT, and in patients with SM, there was a significant longitudinal association between improvement in RH-PAT index and decreasing levels of cell-free hemoglobin (P = .047). Cell-free hemoglobin levels were also independently associated with lactate, endothelial activation, and proinflammatory cytokinemia. Conclusions Hemolysis in falciparum malaria results in NO quenching by cell-free hemoglobin, and may exacerbate endothelial dysfunction, adhesion receptor expression and impaired tissue perfusion. Treatments that increase NO bioavailability may have potential as adjunctive therapies in SM. PMID:19803726

  7. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice.

    PubMed

    Talukder, M A Hassan; Johnson, Wesley M; Varadharaj, Saradhadevi; Lian, Jiarui; Kearns, Patrick N; El-Mahdy, Mohamed A; Liu, Xiaoping; Zweier, Jay L

    2011-01-01

    Cigarette smoking is a major independent risk factor for cardiovascular disease. While the association between chronic smoking and cardiovascular disease is well established, the underlying mechanisms are incompletely understood, partly due to the lack of adequate in vivo animal models. Here, we report a mouse model of chronic smoking-induced cardiovascular pathology. Male C57BL/6J mice were exposed to whole body mainstream cigarette smoke (CS) using a SCIREQ "InExpose" smoking system (48 min/day, 5 days/wk) for 16 or 32 wk. Age-matched, air-exposed mice served as nonsmoking controls. Blood pressure was measured, and cardiac MRI was performed. In vitro vascular ring and isolated heart experiments were performed to measure vascular reactivity and cardiac function. Blood from control and smoking mice was studied for the nitric oxide (NO) decay rate and reactive oxygen species (ROS) generation. With 32 wk of CS exposure, mice had significantly less body weight gain and markedly higher blood pressure. At 32 wk of CS exposure, ACh-induced vasorelaxation was significantly shifted to the right and downward, left ventricular mass was significantly larger along with an increased heart-to-body weight ratio, in vitro cardiac function tended to be impaired with high afterload, white blood cells had significantly higher ROS generation, and the blood NO decay rate was significantly faster. Thus, smoking led to blunted weight gain, hypertension, endothelial dysfunction, leukocyte activation with ROS generation, decreased NO bioavailability, and mild cardiac hypertrophy in mice that were not otherwise predisposed to disease. This mouse model is a useful tool to enable further elucidation of the molecular and cellular mechanisms of smoking-induced cardiovascular diseases.

  8. Impaired Corpus Cavernosum Relaxation Is Accompanied by Increased Oxidative Stress and Up-Regulation of the Rho-Kinase Pathway in Diabetic (Db/Db) Mice.

    PubMed

    Priviero, Fernanda B M; Toque, Haroldo A F; Nunes, Kenia Pedrosa; Priolli, Denise G; Teixeira, Cleber E; Webb, R Clinton

    2016-01-01

    Basal release of nitric oxide from endothelial cells modulates contractile activity in the corpus cavernosum via inhibition of the RhoA/Rho-kinase signaling pathway. We aimed to investigate nitric oxide bioavailability, oxidative stress and the Rho-kinase pathway in the relaxation of the corpus cavernosum of an obese and diabetic model of mice (db/db mice). We hypothesized that in db/db mice impaired relaxation induced by Rho-kinase inhibitor is accompanied by diminished NO bioavailability, increased oxidative stress and upregulation of the RhoA/Rho-kinase signalling pathway. Cavernosal strips from male lean and non-diabetic db/+ and db/db mice were mounted in myographs and isometric force in response to Rho-kinase inhibitor Y-27632 was recorded. Enzyme activity and protein expression of oxidative stress markers and key molecules of the RhoA/Rho-kinase pathway were analyzed. The Rho-kinase inhibitor Y-27632 concentration-dependently caused corpus cavernosum relaxation and inhibited cavernosal contractions. Nonetheless, a rightward shift in the curves obtained in corpus cavernosum of db/db mice was observed. Compared to db/+, this strain presented increased active RhoA, higher MYPT-1 phosphorylation stimulated by phenylephrine, and increased expression of ROKα and Rho-GEFs. Further, we observed normal expression of endothelial and neuronal NOS in corpus cavernosum of db/db mice. However, nitrate/nitrate (NOx) levels were diminished, suggesting decreased NO bioavailability. We measured the oxidant status and observed increased lipid peroxidation, with decreased SOD activity and expression. In conclusion, our data demonstrate that in db/db mice, upregulation of the RhoA/Rho-kinase signalling pathway was accompanied by decreased NO bioavailability and increased oxidative stress contributing to impaired relaxation of the corpus cavermosum of db/db mice.

  9. Impaired Corpus Cavernosum Relaxation Is Accompanied by Increased Oxidative Stress and Up-Regulation of the Rho-Kinase Pathway in Diabetic (Db/Db) Mice

    PubMed Central

    Priviero, Fernanda B. M.; Toque, Haroldo A. F.; Nunes, Kenia Pedrosa; Priolli, Denise G.; Webb, R. Clinton

    2016-01-01

    Basal release of nitric oxide from endothelial cells modulates contractile activity in the corpus cavernosum via inhibition of the RhoA/Rho-kinase signaling pathway. We aimed to investigate nitric oxide bioavailability, oxidative stress and the Rho-kinase pathway in the relaxation of the corpus cavernosum of an obese and diabetic model of mice (db/db mice). We hypothesized that in db/db mice impaired relaxation induced by Rho-kinase inhibitor is accompanied by diminished NO bioavailability, increased oxidative stress and upregulation of the RhoA/Rho-kinase signalling pathway. Cavernosal strips from male lean and non-diabetic db/+ and db/db mice were mounted in myographs and isometric force in response to Rho-kinase inhibitor Y-27632 was recorded. Enzyme activity and protein expression of oxidative stress markers and key molecules of the RhoA/Rho-kinase pathway were analyzed. The Rho-kinase inhibitor Y-27632 concentration-dependently caused corpus cavernosum relaxation and inhibited cavernosal contractions. Nonetheless, a rightward shift in the curves obtained in corpus cavernosum of db/db mice was observed. Compared to db/+, this strain presented increased active RhoA, higher MYPT-1 phosphorylation stimulated by phenylephrine, and increased expression of ROKα and Rho-GEFs. Further, we observed normal expression of endothelial and neuronal NOS in corpus cavernosum of db/db mice. However, nitrate/nitrate (NOx) levels were diminished, suggesting decreased NO bioavailability. We measured the oxidant status and observed increased lipid peroxidation, with decreased SOD activity and expression. In conclusion, our data demonstrate that in db/db mice, upregulation of the RhoA/Rho-kinase signalling pathway was accompanied by decreased NO bioavailability and increased oxidative stress contributing to impaired relaxation of the corpus cavermosum of db/db mice. PMID:27227463

  10. Paraquat-induced Oxidative Stress Represses Phosphatidylinositol 3-Kinase Activities Leading to Impaired Glucose Uptake in 3T3-L1 Adipocytes*

    PubMed Central

    Shibata, Michihiro; Hakuno, Fumihiko; Yamanaka, Daisuke; Okajima, Hiroshi; Fukushima, Toshiaki; Hasegawa, Takashi; Ogata, Tomomi; Toyoshima, Yuka; Chida, Kazuhiro; Kimura, Kumi; Sakoda, Hideyuki; Takenaka, Asako; Asano, Tomoichiro; Takahashi, Shin-Ichiro

    2010-01-01

    Accumulated evidence indicates that oxidative stress causes and/or promotes insulin resistance; however, the mechanism by which this occurs is not fully understood. This study was undertaken to elucidate the molecular mechanism by which oxidative stress induced by paraquat impairs insulin-dependent glucose uptake in 3T3-L1 adipocytes. We confirmed that paraquat-induced oxidative stress decreased glucose transporter 4 (GLUT4) translocation to the cell surface, resulting in repression of insulin-dependent 2-deoxyglucose uptake. Under these conditions, oxidative stress did not affect insulin-dependent tyrosine phosphorylation of insulin receptor, insulin receptor substrate (IRS)-1 and -2, or binding of the phosphatidylinositol 3′-OH kinase (PI 3-kinase) p85 regulatory subunit or p110α catalytic subunit to each IRS. In contrast, we found that oxidative stress induced by paraquat inhibited activities of PI 3-kinase bound to IRSs and also inhibited phosphorylation of Akt, the downstream serine/threonine kinase that has been shown to play an essential role in insulin-dependent translocation of GLUT4 to the plasma membrane. Overexpression of active form Akt (myr-Akt) restored inhibition of insulin-dependent glucose uptake by paraquat, indicating that paraquat-induced oxidative stress inhibits insulin signals upstream of Akt. Paraquat treatment with and without insulin treatment decreased the activity of class Ia PI 3-kinases p110α and p110β that are mainly expressed in 3T3-L1 adipocytes. However, paraquat treatment did not repress the activity of the PI 3-kinase p110α mutated at Cys90 in the p85 binding region. These results indicate that the PI 3-kinase p110 is a possible primary target of paraquat-induced oxidative stress to reduce the PI 3-kinase activity and impaired glucose uptake in 3T3-L1 adipocytes. PMID:20430890

  11. Winter-swimming as a building-up body resistance factor inducing adaptive changes in the oxidant/antioxidant status.

    PubMed

    Lubkowska, Anna; Dołęgowska, Barbara; Szyguła, Zbigniew; Bryczkowska, Iwona; Stańczyk-Dunaj, Małgorzata; Sałata, Daria; Budkowska, Marta

    2013-01-01

    The aim of our research was to examine whether winter-swimming for five consecutive months results in adaptational changes improving tolerance to stress induced by exposure to cryogenic temperatures during whole-body cryostimulation (WBC). The research involved 15 healthy men, with normal bodyweight, who had never been subjected to either WBC or cold water immersion. During the experiment, the participants were twice subjected to WBC (3 min/- 130°C), namely before the winter-swimming season and after the season. Blood was taken seven times: In the morning before each cryostimulation, 30 min after each cryostimulation and the next morning. Additionally, control blood was collected in the middle of the winter season, in February. Our analysis concerned changes in hematological parameters as well as in reduced glutathione and oxidized glutathione, total oxidant status, total antioxidant status and in components of the antioxidant system: Superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and 8-Isoprostanes as a sensitive indicator of oxidative stress. We found significant changes in hemoglobin concentration, the number of red blood cells, the hematocrit index and mean corpuscular volume of red blood cell and the percentage of monocytes and granulocytes after the winter swimming season. The response to cryogenic temperatures was milder after five months of winter-swimming. The obtained results may indicate positive adaptive changes in the antioxidant system of healthy winter-swimmers. These changes seem to increase the readiness of the human body to stress factors.

  12. White Matter Damage Impairs Adaptive Recovery More than Cortical Damage in an in silico Model of Activity-Dependent Plasticity

    PubMed Central

    Follett, Pamela L.; Roth, Cassandra; Follett, David; Dammann, Olaf

    2013-01-01

    Little is understood of how damaged white matter interacts with developmental plasticity. We propose that computational neuroscience methods are underutilized in this problem. In this paper we present a non-deterministic, in silico model of activity-dependent plasticity. Using this model we compared the impact of neuronal cell loss or axonal dysfunction on the ability of the system to generate, maintain, and recover synapses. The results suggest the axonal dysfunction seen in white matter injury is a greater burden to adaptive plasticity and recovery than is the neuronal loss of cortical injury. Better understanding of the interaction between features of preterm brain injury and developmental plasticity is an essential component for improving recovery. PMID:19745092

  13. Deletion of the von Hippel–Lindau gene causes sympathoadrenal cell death and impairs chemoreceptor-mediated adaptation to hypoxia

    PubMed Central

    Macías, David; Fernández-Agüera, Mary Carmen; Bonilla-Henao, Victoria; López-Barneo, José

    2014-01-01

    Mutations of the von Hippel–Lindau (VHL) gene are associated with pheochromocytomas and paragangliomas, but the role of VHL in sympathoadrenal homeostasis is unknown. We generated mice lacking Vhl in catecholaminergic cells. They exhibited atrophy of the carotid body (CB), adrenal medulla, and sympathetic ganglia. Vhl-null animals had an increased number of adult CB stem cells, although the survival of newly generated neuron-like glomus