Designing Networks that are Capable of Self-Healing and Adapting
2017-04-01
from statistical mechanics, combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we... principles for self-healing networks, and applications, and construct an all-possible-paths model for network adaptation. 2015-11-16 UNIT CONVERSION...combinatorics, boolean networks, and numerical simulations, and inspired by design principles from biological networks, we will undertake the fol
Evolution of canalizing Boolean networks
NASA Astrophysics Data System (ADS)
Szejka, A.; Drossel, B.
2007-04-01
Boolean networks with canalizing functions are used to model gene regulatory networks. In order to learn how such networks may behave under evolutionary forces, we simulate the evolution of a single Boolean network by means of an adaptive walk, which allows us to explore the fitness landscape. Mutations change the connections and the functions of the nodes. Our fitness criterion is the robustness of the dynamical attractors against small perturbations. We find that with this fitness criterion the global maximum is always reached and that there is a huge neutral space of 100% fitness. Furthermore, in spite of having such a high degree of robustness, the evolved networks still share many features with “chaotic” networks.
Theory and calculus of cubical complexes
NASA Technical Reports Server (NTRS)
Perlman, M.
1973-01-01
Combination switching networks with multiple outputs may be represented by Boolean functions. Report has been prepared which describes derivation and use of extraction algorithm that may be adapted to simplification of such simultaneous Boolean functions.
Adaptive parallel logic networks
NASA Technical Reports Server (NTRS)
Martinez, Tony R.; Vidal, Jacques J.
1988-01-01
Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.
Boolean dynamics of genetic regulatory networks inferred from microarray time series data
Martin, Shawn; Zhang, Zhaoduo; Martino, Anthony; ...
2007-01-31
Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this paper we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our methodmore » first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation–inhibition networks to match the discretized data. In conclusion, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics.« less
State feedback control design for Boolean networks.
Liu, Rongjie; Qian, Chunjiang; Liu, Shuqian; Jin, Yu-Fang
2016-08-26
Driving Boolean networks to desired states is of paramount significance toward our ultimate goal of controlling the progression of biological pathways and regulatory networks. Despite recent computational development of controllability of general complex networks and structural controllability of Boolean networks, there is still a lack of bridging the mathematical condition on controllability to real boolean operations in a network. Further, no realtime control strategy has been proposed to drive a Boolean network. In this study, we applied semi-tensor product to represent boolean functions in a network and explored controllability of a boolean network based on the transition matrix and time transition diagram. We determined the necessary and sufficient condition for a controllable Boolean network and mapped this requirement in transition matrix to real boolean functions and structure property of a network. An efficient tool is offered to assess controllability of an arbitrary Boolean network and to determine all reachable and non-reachable states. We found six simplest forms of controllable 2-node Boolean networks and explored the consistency of transition matrices while extending these six forms to controllable networks with more nodes. Importantly, we proposed the first state feedback control strategy to drive the network based on the status of all nodes in the network. Finally, we applied our reachability condition to the major switch of P53 pathway to predict the progression of the pathway and validate the prediction with published experimental results. This control strategy allowed us to apply realtime control to drive Boolean networks, which could not be achieved by the current control strategy for Boolean networks. Our results enabled a more comprehensive understanding of the evolution of Boolean networks and might be extended to output feedback control design.
The value of less connected agents in Boolean networks
NASA Astrophysics Data System (ADS)
Epstein, Daniel; Bazzan, Ana L. C.
2013-11-01
In multiagent systems, agents often face binary decisions where one seeks to take either the minority or the majority side. Examples are minority and congestion games in general, i.e., situations that require coordination among the agents in order to depict efficient decisions. In minority games such as the El Farol Bar Problem, previous works have shown that agents may reach appropriate levels of coordination, mostly by looking at the history of past decisions. Not many works consider any kind of structure of the social network, i.e., how agents are connected. Moreover, when structure is indeed considered, it assumes some kind of random network with a given, fixed connectivity degree. The present paper departs from the conventional approach in some ways. First, it considers more realistic network topologies, based on preferential attachments. This is especially useful in social networks. Second, the formalism of random Boolean networks is used to help agents to make decisions given their attachments (for example acquaintances). This is coupled with a reinforcement learning mechanism that allows agents to select strategies that are locally and globally efficient. Third, we use agent-based modeling and simulation, a microscopic approach, which allows us to draw conclusions about individuals and/or classes of individuals. Finally, for the sake of illustration we use two different scenarios, namely the El Farol Bar Problem and a binary route choice scenario. With this approach we target systems that adapt dynamically to changes in the environment, including other adaptive decision-makers. Our results using preferential attachments and random Boolean networks are threefold. First we show that an efficient equilibrium can be achieved, provided agents do experimentation. Second, microscopic analysis show that influential agents tend to consider few inputs in their Boolean functions. Third, we have also conducted measurements related to network clustering and centrality that help to see how agents are organized.
Adaptation and survivors in a random Boolean network.
Nakamura, Ikuo
2002-04-01
We introduce the competitive agent with imitation strategy in a random Boolean network, in which the agent plays a competitive game that rewards those in minority. After a long time interval, the worst performer changes its strategy to the one of the best and the process is repeated. The network, initially in a chaotic state, evolves to an intermittent state and finally reaches a frozen state. Time series of survived species (whose strategies are imitated by other agents) in the system depend on the connectivity of each agent. In a system with various connectivity groups, the low connectivity groups win the minority game over the high connectivity groups. We also compared the result with mutation strategy system.
Optimal stabilization of Boolean networks through collective influence
NASA Astrophysics Data System (ADS)
Wang, Jiannan; Pei, Sen; Wei, Wei; Feng, Xiangnan; Zheng, Zhiming
2018-03-01
Boolean networks have attracted much attention due to their wide applications in describing dynamics of biological systems. During past decades, much effort has been invested in unveiling how network structure and update rules affect the stability of Boolean networks. In this paper, we aim to identify and control a minimal set of influential nodes that is capable of stabilizing an unstable Boolean network. For locally treelike Boolean networks with biased truth tables, we propose a greedy algorithm to identify influential nodes in Boolean networks by minimizing the largest eigenvalue of a modified nonbacktracking matrix. We test the performance of the proposed collective influence algorithm on four different networks. Results show that the collective influence algorithm can stabilize each network with a smaller set of nodes compared with other heuristic algorithms. Our work provides a new insight into the mechanism that determines the stability of Boolean networks, which may find applications in identifying virulence genes that lead to serious diseases.
Spatial features of synaptic adaptation affecting learning performance.
Berger, Damian L; de Arcangelis, Lucilla; Herrmann, Hans J
2017-09-08
Recent studies have proposed that the diffusion of messenger molecules, such as monoamines, can mediate the plastic adaptation of synapses in supervised learning of neural networks. Based on these findings we developed a model for neural learning, where the signal for plastic adaptation is assumed to propagate through the extracellular space. We investigate the conditions allowing learning of Boolean rules in a neural network. Even fully excitatory networks show very good learning performances. Moreover, the investigation of the plastic adaptation features optimizing the performance suggests that learning is very sensitive to the extent of the plastic adaptation and the spatial range of synaptic connections.
Cells adapt to their environment via homeostatic processes that are regulated by complex molecular networks. Our objective was to learn key elements of these networks in HepG2 cells using ToxCast High-content imaging (HCI) measurements taken over three time points (1, 24, and 72h...
Synchronization of coupled large-scale Boolean networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fangfei, E-mail: li-fangfei@163.com
2014-03-15
This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.
An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks
Cabessa, Jérémie; Villa, Alessandro E. P.
2014-01-01
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866
NASA Astrophysics Data System (ADS)
Thakar, Juilee; Albert, Réka
The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References
State feedback controller design for the synchronization of Boolean networks with time delays
NASA Astrophysics Data System (ADS)
Li, Fangfei; Li, Jianning; Shen, Lijuan
2018-01-01
State feedback control design to make the response Boolean network synchronize with the drive Boolean network is far from being solved in the literature. Motivated by this, this paper studies the feedback control design for the complete synchronization of two coupled Boolean networks with time delays. A necessary condition for the existence of a state feedback controller is derived first. Then the feedback control design procedure for the complete synchronization of two coupled Boolean networks is provided based on the necessary condition. Finally, an example is given to illustrate the proposed design procedure.
NASA Astrophysics Data System (ADS)
Ebadi, H.; Saeedian, M.; Ausloos, M.; Jafari, G. R.
2016-11-01
The Boolean network is one successful model to investigate discrete complex systems such as the gene interacting phenomenon. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self-organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function —one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of the yeast cell cycle network, we discover a power-law-like memory with a more robust dynamics than the Markovian dynamics.
NASA Technical Reports Server (NTRS)
Szallasi, Zoltan; Liang, Shoudan
2000-01-01
In this paper we show how Boolean genetic networks could be used to address complex problems in cancer biology. First, we describe a general strategy to generate Boolean genetic networks that incorporate all relevant biochemical and physiological parameters and cover all of their regulatory interactions in a deterministic manner. Second, we introduce 'realistic Boolean genetic networks' that produce time series measurements very similar to those detected in actual biological systems. Third, we outline a series of essential questions related to cancer biology and cancer therapy that could be addressed by the use of 'realistic Boolean genetic network' modeling.
Mcclenny, Levi D; Imani, Mahdi; Braga-Neto, Ulisses M
2017-11-25
Gene regulatory networks govern the function of key cellular processes, such as control of the cell cycle, response to stress, DNA repair mechanisms, and more. Boolean networks have been used successfully in modeling gene regulatory networks. In the Boolean network model, the transcriptional state of each gene is represented by 0 (inactive) or 1 (active), and the relationship among genes is represented by logical gates updated at discrete time points. However, the Boolean gene states are never observed directly, but only indirectly and incompletely through noisy measurements based on expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays. The Partially-Observed Boolean Dynamical System (POBDS) signal model is distinct from other deterministic and stochastic Boolean network models in removing the requirement of a directly observable Boolean state vector and allowing uncertainty in the measurement process, addressing the scenario encountered in practice in transcriptomic analysis. BoolFilter is an R package that implements the POBDS model and associated algorithms for state and parameter estimation. It allows the user to estimate the Boolean states, network topology, and measurement parameters from time series of transcriptomic data using exact and approximated (particle) filters, as well as simulate the transcriptomic data for a given Boolean network model. Some of its infrastructure, such as the network interface, is the same as in the previously published R package for Boolean Networks BoolNet, which enhances compatibility and user accessibility to the new package. We introduce the R package BoolFilter for Partially-Observed Boolean Dynamical Systems (POBDS). The BoolFilter package provides a useful toolbox for the bioinformatics community, with state-of-the-art algorithms for simulation of time series transcriptomic data as well as the inverse process of system identification from data obtained with various expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays.
Minimum energy control and optimal-satisfactory control of Boolean control network
NASA Astrophysics Data System (ADS)
Li, Fangfei; Lu, Xiwen
2013-12-01
In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.
Expected Number of Fixed Points in Boolean Networks with Arbitrary Topology.
Mori, Fumito; Mochizuki, Atsushi
2017-07-14
Boolean network models describe genetic, neural, and social dynamics in complex networks, where the dynamics depend generally on network topology. Fixed points in a genetic regulatory network are typically considered to correspond to cell types in an organism. We prove that the expected number of fixed points in a Boolean network, with Boolean functions drawn from probability distributions that are not required to be uniform or identical, is one, and is independent of network topology if only a feedback arc set satisfies a stochastic neutrality condition. We also demonstrate that the expected number is increased by the predominance of positive feedback in a cycle.
On spectral techniques in analysis of Boolean networks
NASA Astrophysics Data System (ADS)
Kesseli, Juha; Rämö, Pauli; Yli-Harja, Olli
2005-06-01
In this work we present results that can be used for analysis of Boolean networks. The results utilize Fourier spectra of the functions in the network. An accurate formula is given for Derrida plots of networks of finite size N based on a result on Boolean functions presented in another context. Derrida plots are widely used to examine the stability issues of Boolean networks. For the limit N→∞, we give a computationally simple form that can be used as a good approximation for rather small networks as well. A formula for Derrida plots of random Boolean networks (RBNs) presented earlier in the literature is given an alternative derivation. It is shown that the information contained in the Derrida plot is equal to the average Fourier spectrum of the functions in the network. In the case of random networks the mean Derrida plot can be obtained from the mean spectrum of the functions. The method is applied to real data by using the Boolean functions found in genetic regulatory networks of eukaryotic cells in an earlier study. Conventionally, Derrida plots and stability analysis have been computed with statistical sampling resulting in poorer accuracy.
Computing preimages of Boolean networks.
Klotz, Johannes; Bossert, Martin; Schober, Steffen
2013-01-01
In this paper we present an algorithm based on the sum-product algorithm that finds elements in the preimage of a feed-forward Boolean networks given an output of the network. Our probabilistic method runs in linear time with respect to the number of nodes in the network. We evaluate our algorithm for randomly constructed Boolean networks and a regulatory network of Escherichia coli and found that it gives a valid solution in most cases.
Automatic Screening for Perturbations in Boolean Networks.
Schwab, Julian D; Kestler, Hans A
2018-01-01
A common approach to address biological questions in systems biology is to simulate regulatory mechanisms using dynamic models. Among others, Boolean networks can be used to model the dynamics of regulatory processes in biology. Boolean network models allow simulating the qualitative behavior of the modeled processes. A central objective in the simulation of Boolean networks is the computation of their long-term behavior-so-called attractors. These attractors are of special interest as they can often be linked to biologically relevant behaviors. Changing internal and external conditions can influence the long-term behavior of the Boolean network model. Perturbation of a Boolean network by stripping a component of the system or simulating a surplus of another element can lead to different attractors. Apparently, the number of possible perturbations and combinations of perturbations increases exponentially with the size of the network. Manually screening a set of possible components for combinations that have a desired effect on the long-term behavior can be very time consuming if not impossible. We developed a method to automatically screen for perturbations that lead to a user-specified change in the network's functioning. This method is implemented in the visual simulation framework ViSiBool utilizing satisfiability (SAT) solvers for fast exhaustive attractor search.
Griffin: A Tool for Symbolic Inference of Synchronous Boolean Molecular Networks.
Muñoz, Stalin; Carrillo, Miguel; Azpeitia, Eugenio; Rosenblueth, David A
2018-01-01
Boolean networks are important models of biochemical systems, located at the high end of the abstraction spectrum. A number of Boolean gene networks have been inferred following essentially the same method. Such a method first considers experimental data for a typically underdetermined "regulation" graph. Next, Boolean networks are inferred by using biological constraints to narrow the search space, such as a desired set of (fixed-point or cyclic) attractors. We describe Griffin , a computer tool enhancing this method. Griffin incorporates a number of well-established algorithms, such as Dubrova and Teslenko's algorithm for finding attractors in synchronous Boolean networks. In addition, a formal definition of regulation allows Griffin to employ "symbolic" techniques, able to represent both large sets of network states and Boolean constraints. We observe that when the set of attractors is required to be an exact set, prohibiting additional attractors, a naive Boolean coding of this constraint may be unfeasible. Such cases may be intractable even with symbolic methods, as the number of Boolean constraints may be astronomically large. To overcome this problem, we employ an Artificial Intelligence technique known as "clause learning" considerably increasing Griffin 's scalability. Without clause learning only toy examples prohibiting additional attractors are solvable: only one out of seven queries reported here is answered. With clause learning, by contrast, all seven queries are answered. We illustrate Griffin with three case studies drawn from the Arabidopsis thaliana literature. Griffin is available at: http://turing.iimas.unam.mx/griffin.
Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin
2016-01-01
Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.
Computational complexity of Boolean functions
NASA Astrophysics Data System (ADS)
Korshunov, Aleksei D.
2012-02-01
Boolean functions are among the fundamental objects of discrete mathematics, especially in those of its subdisciplines which fall under mathematical logic and mathematical cybernetics. The language of Boolean functions is convenient for describing the operation of many discrete systems such as contact networks, Boolean circuits, branching programs, and some others. An important parameter of discrete systems of this kind is their complexity. This characteristic has been actively investigated starting from Shannon's works. There is a large body of scientific literature presenting many fundamental results. The purpose of this survey is to give an account of the main results over the last sixty years related to the complexity of computation (realization) of Boolean functions by contact networks, Boolean circuits, and Boolean circuits without branching. Bibliography: 165 titles.
Autonomous Modeling, Statistical Complexity and Semi-annealed Treatment of Boolean Networks
NASA Astrophysics Data System (ADS)
Gong, Xinwei
This dissertation presents three studies on Boolean networks. Boolean networks are a class of mathematical systems consisting of interacting elements with binary state variables. Each element is a node with a Boolean logic gate, and the presence of interactions between any two nodes is represented by directed links. Boolean networks that implement the logic structures of real systems are studied as coarse-grained models of the real systems. Large random Boolean networks are studied with mean field approximations and used to provide a baseline of possible behaviors of large real systems. This dissertation presents one study of the former type, concerning the stable oscillation of a yeast cell-cycle oscillator, and two studies of the latter type, respectively concerning the statistical complexity of large random Boolean networks and an extension of traditional mean field techniques that accounts for the presence of short loops. In the cell-cycle oscillator study, a novel autonomous update scheme is introduced to study the stability of oscillations in small networks. A motif that corrects pulse-growing perturbations and a motif that grows pulses are identified. A combination of the two motifs is capable of sustaining stable oscillations. Examining a Boolean model of the yeast cell-cycle oscillator using an autonomous update scheme yields evidence that it is endowed with such a combination. Random Boolean networks are classified as ordered, critical or disordered based on their response to small perturbations. In the second study, random Boolean networks are taken as prototypical cases for the evaluation of two measures of complexity based on a criterion for optimal statistical prediction. One measure, defined for homogeneous systems, does not distinguish between the static spatial inhomogeneity in the ordered phase and the dynamical inhomogeneity in the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing complexity values for networks in the ordered and critical phases and for highly disordered networks, peaking somewhere in the disordered phase. Individual nodes with high complexity have, on average, a larger influence on the system dynamics. Lastly, a semi-annealed approximation that preserves the correlation between states at neighboring nodes is introduced to study a social game-inspired network model in which all links are bidirectional and all nodes have a self-input. The technique developed here is shown to yield accurate predictions of distribution of players' states, and accounts for some nontrivial collective behavior of game theoretic interest.
Perturbation propagation in random and evolved Boolean networks
NASA Astrophysics Data System (ADS)
Fretter, Christoph; Szejka, Agnes; Drossel, Barbara
2009-03-01
In this paper, we investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and its modifications. We show that even small random Boolean networks agree well with the predictions of the annealed approximation, but nonrandom networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display the properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots.
Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N
2015-04-28
Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.
Inferring Boolean network states from partial information
2013-01-01
Networks of molecular interactions regulate key processes in living cells. Therefore, understanding their functionality is a high priority in advancing biological knowledge. Boolean networks are often used to describe cellular networks mathematically and are fitted to experimental datasets. The fitting often results in ambiguities since the interpretation of the measurements is not straightforward and since the data contain noise. In order to facilitate a more reliable mapping between datasets and Boolean networks, we develop an algorithm that infers network trajectories from a dataset distorted by noise. We analyze our algorithm theoretically and demonstrate its accuracy using simulation and microarray expression data. PMID:24006954
Adaptiveness in monotone pseudo-Boolean optimization and stochastic neural computation.
Grossi, Giuliano
2009-08-01
Hopfield neural network (HNN) is a nonlinear computational model successfully applied in finding near-optimal solutions of several difficult combinatorial problems. In many cases, the network energy function is obtained through a learning procedure so that its minima are states falling into a proper subspace (feasible region) of the search space. However, because of the network nonlinearity, a number of undesirable local energy minima emerge from the learning procedure, significantly effecting the network performance. In the neural model analyzed here, we combine both a penalty and a stochastic process in order to enhance the performance of a binary HNN. The penalty strategy allows us to gradually lead the search towards states representing feasible solutions, so avoiding oscillatory behaviors or asymptotically instable convergence. Presence of stochastic dynamics potentially prevents the network to fall into shallow local minima of the energy function, i.e., quite far from global optimum. Hence, for a given fixed network topology, the desired final distribution on the states can be reached by carefully modulating such process. The model uses pseudo-Boolean functions both to express problem constraints and cost function; a combination of these two functions is then interpreted as energy of the neural network. A wide variety of NP-hard problems fall in the class of problems that can be solved by the model at hand, particularly those having a monotonic quadratic pseudo-Boolean function as constraint function. That is, functions easily derived by closed algebraic expressions representing the constraint structure and easy (polynomial time) to maximize. We show the asymptotic convergence properties of this model characterizing its state space distribution at thermal equilibrium in terms of Markov chain and give evidence of its ability to find high quality solutions on benchmarks and randomly generated instances of two specific problems taken from the computational graph theory.
Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S
2013-06-01
A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.
Evolution of regulatory networks towards adaptability and stability in a changing environment
NASA Astrophysics Data System (ADS)
Lee, Deok-Sun
2014-11-01
Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.
Identifying a Probabilistic Boolean Threshold Network From Samples.
Melkman, Avraham A; Cheng, Xiaoqing; Ching, Wai-Ki; Akutsu, Tatsuya
2018-04-01
This paper studies the problem of exactly identifying the structure of a probabilistic Boolean network (PBN) from a given set of samples, where PBNs are probabilistic extensions of Boolean networks. Cheng et al. studied the problem while focusing on PBNs consisting of pairs of AND/OR functions. This paper considers PBNs consisting of Boolean threshold functions while focusing on those threshold functions that have unit coefficients. The treatment of Boolean threshold functions, and triplets and -tuplets of such functions, necessitates a deepening of the theoretical analyses. It is shown that wide classes of PBNs with such threshold functions can be exactly identified from samples under reasonable constraints, which include: 1) PBNs in which any number of threshold functions can be assigned provided that all have the same number of input variables and 2) PBNs consisting of pairs of threshold functions with different numbers of input variables. It is also shown that the problem of deciding the equivalence of two Boolean threshold functions is solvable in pseudopolynomial time but remains co-NP complete.
Dynamic Network-Based Epistasis Analysis: Boolean Examples
Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.
2011-01-01
In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and single-path assumption, but also by demonstrating the importance of considering temporal dynamics, and specifically introducing the usefulness of Boolean network models and also reviewing some key properties of network approaches. PMID:22645556
Controllability and observability of Boolean networks arising from biology
NASA Astrophysics Data System (ADS)
Li, Rui; Yang, Meng; Chu, Tianguang
2015-02-01
Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.
Algebraic model checking for Boolean gene regulatory networks.
Tran, Quoc-Nam
2011-01-01
We present a computational method in which modular and Groebner bases (GB) computation in Boolean rings are used for solving problems in Boolean gene regulatory networks (BN). In contrast to other known algebraic approaches, the degree of intermediate polynomials during the calculation of Groebner bases using our method will never grow resulting in a significant improvement in running time and memory space consumption. We also show how calculation in temporal logic for model checking can be done by means of our direct and efficient Groebner basis computation in Boolean rings. We present our experimental results in finding attractors and control strategies of Boolean networks to illustrate our theoretical arguments. The results are promising. Our algebraic approach is more efficient than the state-of-the-art model checker NuSMV on BNs. More importantly, our approach finds all solutions for the BN problems.
Network dynamics and systems biology
NASA Astrophysics Data System (ADS)
Norrell, Johannes A.
The physics of complex systems has grown considerably as a field in recent decades, largely due to improved computational technology and increased availability of systems level data. One area in which physics is of growing relevance is molecular biology. A new field, systems biology, investigates features of biological systems as a whole, a strategy of particular importance for understanding emergent properties that result from a complex network of interactions. Due to the complicated nature of the systems under study, the physics of complex systems has a significant role to play in elucidating the collective behavior. In this dissertation, we explore three problems in the physics of complex systems, motivated in part by systems biology. The first of these concerns the applicability of Boolean models as an approximation of continuous systems. Studies of gene regulatory networks have employed both continuous and Boolean models to analyze the system dynamics, and the two have been found produce similar results in the cases analyzed. We ask whether or not Boolean models can generically reproduce the qualitative attractor dynamics of networks of continuously valued elements. Using a combination of analytical techniques and numerical simulations, we find that continuous networks exhibit two effects---an asymmetry between on and off states, and a decaying memory of events in each element's inputs---that are absent from synchronously updated Boolean models. We show that in simple loops these effects produce exactly the attractors that one would predict with an analysis of the stability of Boolean attractors, but in slightly more complicated topologies, they can destabilize solutions that are stable in the Boolean approximation, and can stabilize new attractors. Second, we investigate ensembles of large, random networks. Of particular interest is the transition between ordered and disordered dynamics, which is well characterized in Boolean systems. Networks at the transition point, called critical, exhibit many of the features of regulatory networks, and recent studies suggest that some specific regulatory networks are indeed near-critical. We ask whether certain statistical measures of the ensemble behavior of large continuous networks are reproduced by Boolean models. We find that, in spite of the lack of correspondence between attractors observed in smaller systems, the statistical characterization given by the continuous and Boolean models show close agreement, and the transition between order and disorder known in Boolean systems can occur in continuous systems as well. One effect that is not present in Boolean systems, the failure of information to propagate down chains of elements of arbitrary length, is present in a class of continuous networks. In these systems, a modified Boolean theory that takes into account the collective effect of propagation failure on chains throughout the network gives a good description of the observed behavior. We find that propagation failure pushes the system toward greater order, resulting in a partial or complete suppression of the disordered phase. Finally, we explore a dynamical process of direct biological relevance: asymmetric cell division in A. thaliana. The long term goal is to develop a model for the process that accurately accounts for both wild type and mutant behavior. To contribute to this endeavor, we use confocal microscopy to image roots in a SHORT-ROOT inducible mutant. We compute correlation functions between the locations of asymmetrically divided cells, and we construct stochastic models based on a few simple assumptions that accurately predict the non-zero correlations. Our result shows that intracellular processes alone cannot be responsible for the observed divisions, and that an intercell signaling mechanism could account for the measured correlations.
Characterizing short-term stability for Boolean networks over any distribution of transfer functions
Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; ...
2016-07-05
Here we present a characterization of short-term stability of random Boolean networks under arbitrary distributions of transfer functions. Given any distribution of transfer functions for a random Boolean network, we present a formula that decides whether short-term chaos (damage spreading) will happen. We provide a formal proof for this formula, and empirically show that its predictions are accurate. Previous work only works for special cases of balanced families. Finally, it has been observed that these characterizations fail for unbalanced families, yet such families are widespread in real biological networks.
Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard
2014-06-26
A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.
2014-01-01
Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem. PMID:24965213
The objective of this work is to elucidate biological networks underlying cellular tipping points using time-course data. We discretized the high-content imaging (HCI) data and inferred Boolean networks (BNs) that could accurately predict dynamic cellular trajectories. We found t...
Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V
2017-04-01
We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.
Boolean networks with veto functions
NASA Astrophysics Data System (ADS)
Ebadi, Haleh; Klemm, Konstantin
2014-08-01
Boolean networks are discrete dynamical systems for modeling regulation and signaling in living cells. We investigate a particular class of Boolean functions with inhibiting inputs exerting a veto (forced zero) on the output. We give analytical expressions for the sensitivity of these functions and provide evidence for their role in natural systems. In an intracellular signal transduction network [Helikar et al., Proc. Natl. Acad. Sci. USA 105, 1913 (2008), 10.1073/pnas.0705088105], the functions with veto are over-represented by a factor exceeding the over-representation of threshold functions and canalyzing functions in the same system. In Boolean networks for control of the yeast cell cycle [Li et al., Proc. Natl. Acad. Sci. USA 101, 4781 (2004), 10.1073/pnas.0305937101; Davidich et al., PLoS ONE 3, e1672 (2008), 10.1371/journal.pone.0001672], no or minimal changes to the wiring diagrams are necessary to formulate their dynamics in terms of the veto functions introduced here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx; Campos-Cantón, I.
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enablemore » future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.« less
Using computer algebra and SMT solvers in algebraic biology
NASA Astrophysics Data System (ADS)
Pineda Osorio, Mateo
2014-05-01
Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.
Implementing neural nets with programmable logic
NASA Technical Reports Server (NTRS)
Vidal, Jacques J.
1988-01-01
Networks of Boolean programmable logic modules are presented as one purely digital class of artificial neural nets. The approach contrasts with the continuous analog framework usually suggested. Programmable logic networks are capable of handling many neural-net applications. They avoid some of the limitations of threshold logic networks and present distinct opportunities. The network nodes are called dynamically programmable logic modules. They can be implemented with digitally controlled demultiplexers. Each node performs a Boolean function of its inputs which can be dynamically assigned. The overall network is therefore a combinational circuit and its outputs are Boolean global functions of the network's input variables. The approach offers definite advantages for VLSI implementation, namely, a regular architecture with limited connectivity, simplicity of the control machinery, natural modularity, and the support of a mature technology.
Ostrowski, M; Paulevé, L; Schaub, T; Siegel, A; Guziolowski, C
2016-11-01
Boolean networks (and more general logic models) are useful frameworks to study signal transduction across multiple pathways. Logic models can be learned from a prior knowledge network structure and multiplex phosphoproteomics data. However, most efficient and scalable training methods focus on the comparison of two time-points and assume that the system has reached an early steady state. In this paper, we generalize such a learning procedure to take into account the time series traces of phosphoproteomics data in order to discriminate Boolean networks according to their transient dynamics. To that end, we identify a necessary condition that must be satisfied by the dynamics of a Boolean network to be consistent with a discretized time series trace. Based on this condition, we use Answer Set Programming to compute an over-approximation of the set of Boolean networks which fit best with experimental data and provide the corresponding encodings. Combined with model-checking approaches, we end up with a global learning algorithm. Our approach is able to learn logic models with a true positive rate higher than 78% in two case studies of mammalian signaling networks; for a larger case study, our method provides optimal answers after 7min of computation. We quantified the gain in our method predictions precision compared to learning approaches based on static data. Finally, as an application, our method proposes erroneous time-points in the time series data with respect to the optimal learned logic models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Phase transition in NK-Kauffman networks and its correction for Boolean irreducibility
NASA Astrophysics Data System (ADS)
Zertuche, Federico
2014-05-01
In a series of articles published in 1986, Derrida and his colleagues studied two mean field treatments (the quenched and the annealed) for NK-Kauffman networks. Their main results lead to a phase transition curve Kc 2 pc(1-pc)=1 (0
Therapeutic target discovery using Boolean network attractors: improvements of kali
Guziolowski, Carito
2018-01-01
In a previous article, an algorithm for identifying therapeutic targets in Boolean networks modelling pathological mechanisms was introduced. In the present article, the improvements made on this algorithm, named kali, are described. These improvements are (i) the possibility to work on asynchronous Boolean networks, (ii) a finer assessment of therapeutic targets and (iii) the possibility to use multivalued logic. kali assumes that the attractors of a dynamical system, such as a Boolean network, are associated with the phenotypes of the modelled biological system. Given a logic-based model of pathological mechanisms, kali searches for therapeutic targets able to reduce the reachability of the attractors associated with pathological phenotypes, thus reducing their likeliness. kali is illustrated on an example network and used on a biological case study. The case study is a published logic-based model of bladder tumorigenesis from which kali returns consistent results. However, like any computational tool, kali can predict but cannot replace human expertise: it is a supporting tool for coping with the complexity of biological systems in the field of drug discovery. PMID:29515890
Tracking perturbations in Boolean networks with spectral methods
NASA Astrophysics Data System (ADS)
Kesseli, Juha; Rämö, Pauli; Yli-Harja, Olli
2005-08-01
In this paper we present a method for predicting the spread of perturbations in Boolean networks. The method is applicable to networks that have no regular topology. The prediction of perturbations can be performed easily by using a presented result which enables the efficient computation of the required iterative formulas. This result is based on abstract Fourier transform of the functions in the network. In this paper the method is applied to show the spread of perturbations in networks containing a distribution of functions found from biological data. The advances in the study of the spread of perturbations can directly be applied to enable ways of quantifying chaos in Boolean networks. Derrida plots over an arbitrary number of time steps can be computed and thus distributions of functions compared with each other with respect to the amount of order they create in random networks.
Identification of control targets in Boolean molecular network models via computational algebra.
Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard
2016-09-23
Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.
The computational core and fixed point organization in Boolean networks
NASA Astrophysics Data System (ADS)
Correale, L.; Leone, M.; Pagnani, A.; Weigt, M.; Zecchina, R.
2006-03-01
In this paper, we analyse large random Boolean networks in terms of a constraint satisfaction problem. We first develop an algorithmic scheme which allows us to prune simple logical cascades and underdetermined variables, returning thereby the computational core of the network. Second, we apply the cavity method to analyse the number and organization of fixed points. We find in particular a phase transition between an easy and a complex regulatory phase, the latter being characterized by the existence of an exponential number of macroscopically separated fixed point clusters. The different techniques developed are reinterpreted as algorithms for the analysis of single Boolean networks, and they are applied in the analysis of and in silico experiments on the gene regulatory networks of baker's yeast (Saccharomyces cerevisiae) and the segment-polarity genes of the fruitfly Drosophila melanogaster.
Boolean network representation of contagion dynamics during a financial crisis
NASA Astrophysics Data System (ADS)
Caetano, Marco Antonio Leonel; Yoneyama, Takashi
2015-01-01
This work presents a network model for representation of the evolution of certain patterns of economic behavior. More specifically, after representing the agents as points in a space in which each dimension associated to a relevant economic variable, their relative "motions" that can be either stationary or discordant, are coded into a boolean network. Patterns with stationary averages indicate the maintenance of status quo, whereas discordant patterns represent aggregation of new agent into the cluster or departure from the former policies. The changing patterns can be embedded into a network representation, particularly using the concept of autocatalytic boolean networks. As a case study, the economic tendencies of the BRIC countries + Argentina were studied. Although Argentina is not included in the cluster formed by BRIC countries, it tends to follow the BRIC members because of strong commercial ties.
Lähdesmäki, Harri; Hautaniemi, Sampsa; Shmulevich, Ilya; Yli-Harja, Olli
2006-01-01
A significant amount of attention has recently been focused on modeling of gene regulatory networks. Two frequently used large-scale modeling frameworks are Bayesian networks (BNs) and Boolean networks, the latter one being a special case of its recent stochastic extension, probabilistic Boolean networks (PBNs). PBN is a promising model class that generalizes the standard rule-based interactions of Boolean networks into the stochastic setting. Dynamic Bayesian networks (DBNs) is a general and versatile model class that is able to represent complex temporal stochastic processes and has also been proposed as a model for gene regulatory systems. In this paper, we concentrate on these two model classes and demonstrate that PBNs and a certain subclass of DBNs can represent the same joint probability distribution over their common variables. The major benefit of introducing the relationships between the models is that it opens up the possibility of applying the standard tools of DBNs to PBNs and vice versa. Hence, the standard learning tools of DBNs can be applied in the context of PBNs, and the inference methods give a natural way of handling the missing values in PBNs which are often present in gene expression measurements. Conversely, the tools for controlling the stationary behavior of the networks, tools for projecting networks onto sub-networks, and efficient learning schemes can be used for DBNs. In other words, the introduced relationships between the models extend the collection of analysis tools for both model classes. PMID:17415411
Stabilizing Motifs in Autonomous Boolean Networks and the Yeast Cell Cycle Oscillator
NASA Astrophysics Data System (ADS)
Sevim, Volkan; Gong, Xinwei; Socolar, Joshua
2009-03-01
Synchronously updated Boolean networks are widely used to model gene regulation. Some properties of these model networks are known to be artifacts of the clocking in the update scheme. Autonomous updating is a less artificial scheme that allows one to introduce small timing perturbations and study stability of the attractors. We argue that the stabilization of a limit cycle in an autonomous Boolean network requires a combination of motifs such as feed-forward loops and auto-repressive links that can correct small fluctuations in the timing of switching events. A recently published model of the transcriptional cell-cycle oscillator in yeast contains the motifs necessary for stability under autonomous updating [1]. [1] D. A. Orlando, et al. Nature (London), 4530 (7197):0 944--947, 2008.
Analysis Tools for Interconnected Boolean Networks With Biological Applications.
Chaves, Madalena; Tournier, Laurent
2018-01-01
Boolean networks with asynchronous updates are a class of logical models particularly well adapted to describe the dynamics of biological networks with uncertain measures. The state space of these models can be described by an asynchronous state transition graph, which represents all the possible exits from every single state, and gives a global image of all the possible trajectories of the system. In addition, the asynchronous state transition graph can be associated with an absorbing Markov chain, further providing a semi-quantitative framework where it becomes possible to compute probabilities for the different trajectories. For large networks, however, such direct analyses become computationally untractable, given the exponential dimension of the graph. Exploiting the general modularity of biological systems, we have introduced the novel concept of asymptotic graph , computed as an interconnection of several asynchronous transition graphs and recovering all asymptotic behaviors of a large interconnected system from the behavior of its smaller modules. From a modeling point of view, the interconnection of networks is very useful to address for instance the interplay between known biological modules and to test different hypotheses on the nature of their mutual regulatory links. This paper develops two new features of this general methodology: a quantitative dimension is added to the asymptotic graph, through the computation of relative probabilities for each final attractor and a companion cross-graph is introduced to complement the method on a theoretical point of view.
Identification of Boolean Network Models From Time Series Data Incorporating Prior Knowledge.
Leifeld, Thomas; Zhang, Zhihua; Zhang, Ping
2018-01-01
Motivation: Mathematical models take an important place in science and engineering. A model can help scientists to explain dynamic behavior of a system and to understand the functionality of system components. Since length of a time series and number of replicates is limited by the cost of experiments, Boolean networks as a structurally simple and parameter-free logical model for gene regulatory networks have attracted interests of many scientists. In order to fit into the biological contexts and to lower the data requirements, biological prior knowledge is taken into consideration during the inference procedure. In the literature, the existing identification approaches can only deal with a subset of possible types of prior knowledge. Results: We propose a new approach to identify Boolean networks from time series data incorporating prior knowledge, such as partial network structure, canalizing property, positive and negative unateness. Using vector form of Boolean variables and applying a generalized matrix multiplication called the semi-tensor product (STP), each Boolean function can be equivalently converted into a matrix expression. Based on this, the identification problem is reformulated as an integer linear programming problem to reveal the system matrix of Boolean model in a computationally efficient way, whose dynamics are consistent with the important dynamics captured in the data. By using prior knowledge the number of candidate functions can be reduced during the inference. Hence, identification incorporating prior knowledge is especially suitable for the case of small size time series data and data without sufficient stimuli. The proposed approach is illustrated with the help of a biological model of the network of oxidative stress response. Conclusions: The combination of efficient reformulation of the identification problem with the possibility to incorporate various types of prior knowledge enables the application of computational model inference to systems with limited amount of time series data. The general applicability of this methodological approach makes it suitable for a variety of biological systems and of general interest for biological and medical research.
On the inherent competition between valid and spurious inductive inferences in Boolean data
NASA Astrophysics Data System (ADS)
Andrecut, M.
Inductive inference is the process of extracting general rules from specific observations. This problem also arises in the analysis of biological networks, such as genetic regulatory networks, where the interactions are complex and the observations are incomplete. A typical task in these problems is to extract general interaction rules as combinations of Boolean covariates, that explain a measured response variable. The inductive inference process can be considered as an incompletely specified Boolean function synthesis problem. This incompleteness of the problem will also generate spurious inferences, which are a serious threat to valid inductive inference rules. Using random Boolean data as a null model, here we attempt to measure the competition between valid and spurious inductive inference rules from a given data set. We formulate two greedy search algorithms, which synthesize a given Boolean response variable in a sparse disjunct normal form, and respectively a sparse generalized algebraic normal form of the variables from the observation data, and we evaluate numerically their performance.
Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach.
Steggles, L Jason; Banks, Richard; Shaw, Oliver; Wipat, Anil
2007-02-01
New developments in post-genomic technology now provide researchers with the data necessary to study regulatory processes in a holistic fashion at multiple levels of biological organization. One of the major challenges for the biologist is to integrate and interpret these vast data resources to gain a greater understanding of the structure and function of the molecular processes that mediate adaptive and cell cycle driven changes in gene expression. In order to achieve this biologists require new tools and techniques to allow pathway related data to be modelled and analysed as network structures, providing valuable insights which can then be validated and investigated in the laboratory. We propose a new technique for constructing and analysing qualitative models of genetic regulatory networks based on the Petri net formalism. We take as our starting point the Boolean network approach of treating genes as binary switches and develop a new Petri net model which uses logic minimization to automate the construction of compact qualitative models. Our approach addresses the shortcomings of Boolean networks by providing access to the wide range of existing Petri net analysis techniques and by using non-determinism to cope with incomplete and inconsistent data. The ideas we present are illustrated by a case study in which the genetic regulatory network controlling sporulation in the bacterium Bacillus subtilis is modelled and analysed. The Petri net model construction tool and the data files for the B. subtilis sporulation case study are available at http://bioinf.ncl.ac.uk/gnapn.
Origins of Chaos in Autonomous Boolean Networks
NASA Astrophysics Data System (ADS)
Socolar, Joshua; Cavalcante, Hugo; Gauthier, Daniel; Zhang, Rui
2010-03-01
Networks with nodes consisting of ideal Boolean logic gates are known to display either steady states, periodic behavior, or an ultraviolet catastrophe where the number of logic-transition events circulating in the network per unit time grows as a power-law. In an experiment, non-ideal behavior of the logic gates prevents the ultraviolet catastrophe and may lead to deterministic chaos. We identify certain non-ideal features of real logic gates that enable chaos in experimental networks. We find that short-pulse rejection and the asymmetry between the logic states tends to engender periodic behavior. On the other hand, a memory effect termed ``degradation'' can generate chaos. Our results strongly suggest that deterministic chaos can be expected in a large class of experimental Boolean-like networks. Such devices may find application in a variety of technologies requiring fast complex waveforms or flat power spectra. The non-ideal effects identified here also have implications for the statistics of attractors in large complex networks.
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Andresen, Juan Carlos; Moore, M. A.; Katzgraber, Helmut G.
2014-02-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free networks in an external bias (magnetic field). Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First, we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show that the system has a spin-glass phase in a field, i.e., exhibits a de Almeida-Thouless line. Furthermore, we study avalanche distributions when the system is driven by a field at zero temperature to test if the system displays self-organized criticality. Numerical results suggest that avalanches (damage) can spread across the whole system with nonzero probability when the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be fragile when not in thermal equilibrium.
Emergence of diversity in homogeneous coupled Boolean networks
NASA Astrophysics Data System (ADS)
Kang, Chris; Aguilar, Boris; Shmulevich, Ilya
2018-05-01
The origin of multicellularity in metazoa is one of the fundamental questions of evolutionary biology. We have modeled the generic behaviors of gene regulatory networks in isogenic cells as stochastic nonlinear dynamical systems—coupled Boolean networks with perturbation. Model simulations under a variety of dynamical regimes suggest that the central characteristic of multicellularity, permanent spatial differentiation (diversification), indeed can arise. Additionally, we observe that diversification is more likely to occur near the critical regime of Lyapunov stability.
Multilayer neural networks with extensively many hidden units.
Rosen-Zvi, M; Engel, A; Kanter, I
2001-08-13
The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones.
Intrinsic noise and deviations from criticality in Boolean gene-regulatory networks
NASA Astrophysics Data System (ADS)
Villegas, Pablo; Ruiz-Franco, José; Hidalgo, Jorge; Muñoz, Miguel A.
2016-10-01
Gene regulatory networks can be successfully modeled as Boolean networks. A much discussed hypothesis says that such model networks reproduce empirical findings the best if they are tuned to operate at criticality, i.e. at the borderline between their ordered and disordered phases. Critical networks have been argued to lead to a number of functional advantages such as maximal dynamical range, maximal sensitivity to environmental changes, as well as to an excellent tradeoff between stability and flexibility. Here, we study the effect of noise within the context of Boolean networks trained to learn complex tasks under supervision. We verify that quasi-critical networks are the ones learning in the fastest possible way -even for asynchronous updating rules- and that the larger the task complexity the smaller the distance to criticality. On the other hand, when additional sources of intrinsic noise in the network states and/or in its wiring pattern are introduced, the optimally performing networks become clearly subcritical. These results suggest that in order to compensate for inherent stochasticity, regulatory and other type of biological networks might become subcritical rather than being critical, all the most if the task to be performed has limited complexity.
Generating probabilistic Boolean networks from a prescribed transition probability matrix.
Ching, W-K; Chen, X; Tsing, N-K
2009-11-01
Probabilistic Boolean networks (PBNs) have received much attention in modeling genetic regulatory networks. A PBN can be regarded as a Markov chain process and is characterised by a transition probability matrix. In this study, the authors propose efficient algorithms for constructing a PBN when its transition probability matrix is given. The complexities of the algorithms are also analysed. This is an interesting inverse problem in network inference using steady-state data. The problem is important as most microarray data sets are assumed to be obtained from sampling the steady-state.
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
Generalization and capacity of extensively large two-layered perceptrons.
Rosen-Zvi, Michal; Engel, Andreas; Kanter, Ido
2002-09-01
The generalization ability and storage capacity of a treelike two-layered neural network with a number of hidden units scaling as the input dimension is examined. The mapping from the input to the hidden layer is via Boolean functions; the mapping from the hidden layer to the output is done by a perceptron. The analysis is within the replica framework where an order parameter characterizing the overlap between two networks in the combined space of Boolean functions and hidden-to-output couplings is introduced. The maximal capacity of such networks is found to scale linearly with the logarithm of the number of Boolean functions per hidden unit. The generalization process exhibits a first-order phase transition from poor to perfect learning for the case of discrete hidden-to-output couplings. The critical number of examples per input dimension, alpha(c), at which the transition occurs, again scales linearly with the logarithm of the number of Boolean functions. In the case of continuous hidden-to-output couplings, the generalization error decreases according to the same power law as for the perceptron, with the prefactor being different.
Feedback Controller Design for the Synchronization of Boolean Control Networks.
Liu, Yang; Sun, Liangjie; Lu, Jianquan; Liang, Jinling
2016-09-01
This brief investigates the partial and complete synchronization of two Boolean control networks (BCNs). Necessary and sufficient conditions for partial and complete synchronization are established by the algebraic representations of logical dynamics. An algorithm is obtained to construct the feedback controller that guarantees the synchronization of master and slave BCNs. Two biological examples are provided to illustrate the effectiveness of the obtained results.
Random Boolean networks for autoassociative memory: Optimization and sequential learning
NASA Astrophysics Data System (ADS)
Sherrington, D.; Wong, K. Y. M.
Conventional neural networks are based on synaptic storage of information, even when the neural states are discrete and bounded. In general, the set of potential local operations is much greater. Here we discuss some aspects of the properties of networks of binary neurons with more general Boolean functions controlling the local dynamics. Two specific aspects are emphasised; (i) optimization in the presence of noise and (ii) a simple model for short-term memory exhibiting primacy and recency in the recall of sequentially taught patterns.
Observability of Boolean multiplex control networks
NASA Astrophysics Data System (ADS)
Wu, Yuhu; Xu, Jingxue; Sun, Xi-Ming; Wang, Wei
2017-04-01
Boolean multiplex (multilevel) networks (BMNs) are currently receiving considerable attention as theoretical arguments for modeling of biological systems and system level analysis. Studying control-related problems in BMNs may not only provide new views into the intrinsic control in complex biological systems, but also enable us to develop a method for manipulating biological systems using exogenous inputs. In this article, the observability of the Boolean multiplex control networks (BMCNs) are studied. First, the dynamical model and structure of BMCNs with control inputs and outputs are constructed. By using of Semi-Tensor Product (STP) approach, the logical dynamics of BMCNs is converted into an equivalent algebraic representation. Then, the observability of the BMCNs with two different kinds of control inputs is investigated by giving necessary and sufficient conditions. Finally, examples are given to illustrate the efficiency of the obtained theoretical results.
Modeling stochasticity and robustness in gene regulatory networks.
Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis
2009-06-15
Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.
"Antelope": a hybrid-logic model checker for branching-time Boolean GRN analysis
2011-01-01
Background In Thomas' formalism for modeling gene regulatory networks (GRNs), branching time, where a state can have more than one possible future, plays a prominent role. By representing a certain degree of unpredictability, branching time can model several important phenomena, such as (a) asynchrony, (b) incompletely specified behavior, and (c) interaction with the environment. Introducing more than one possible future for a state, however, creates a difficulty for ordinary simulators, because infinitely many paths may appear, limiting ordinary simulators to statistical conclusions. Model checkers for branching time, by contrast, are able to prove properties in the presence of infinitely many paths. Results We have developed Antelope ("Analysis of Networks through TEmporal-LOgic sPEcifications", http://turing.iimas.unam.mx:8080/AntelopeWEB/), a model checker for analyzing and constructing Boolean GRNs. Currently, software systems for Boolean GRNs use branching time almost exclusively for asynchrony. Antelope, by contrast, also uses branching time for incompletely specified behavior and environment interaction. We show the usefulness of modeling these two phenomena in the development of a Boolean GRN of the Arabidopsis thaliana root stem cell niche. There are two obstacles to a direct approach when applying model checking to Boolean GRN analysis. First, ordinary model checkers normally only verify whether or not a given set of model states has a given property. In comparison, a model checker for Boolean GRNs is preferable if it reports the set of states having a desired property. Second, for efficiency, the expressiveness of many model checkers is limited, resulting in the inability to express some interesting properties of Boolean GRNs. Antelope tries to overcome these two drawbacks: Apart from reporting the set of all states having a given property, our model checker can express, at the expense of efficiency, some properties that ordinary model checkers (e.g., NuSMV) cannot. This additional expressiveness is achieved by employing a logic extending the standard Computation-Tree Logic (CTL) with hybrid-logic operators. Conclusions We illustrate the advantages of Antelope when (a) modeling incomplete networks and environment interaction, (b) exhibiting the set of all states having a given property, and (c) representing Boolean GRN properties with hybrid CTL. PMID:22192526
PyBoolNet: a python package for the generation, analysis and visualization of boolean networks.
Klarner, Hannes; Streck, Adam; Siebert, Heike
2017-03-01
The goal of this project is to provide a simple interface to working with Boolean networks. Emphasis is put on easy access to a large number of common tasks including the generation and manipulation of networks, attractor and basin computation, model checking and trap space computation, execution of established graph algorithms as well as graph drawing and layouts. P y B ool N et is a Python package for working with Boolean networks that supports simple access to model checking via N u SMV, standard graph algorithms via N etwork X and visualization via dot . In addition, state of the art attractor computation exploiting P otassco ASP is implemented. The package is function-based and uses only native Python and N etwork X data types. https://github.com/hklarner/PyBoolNet. hannes.klarner@fu-berlin.de. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
On the number of different dynamics in Boolean networks with deterministic update schedules.
Aracena, J; Demongeot, J; Fanchon, E; Montalva, M
2013-04-01
Deterministic Boolean networks are a type of discrete dynamical systems widely used in the modeling of genetic networks. The dynamics of such systems is characterized by the local activation functions and the update schedule, i.e., the order in which the nodes are updated. In this paper, we address the problem of knowing the different dynamics of a Boolean network when the update schedule is changed. We begin by proving that the problem of the existence of a pair of update schedules with different dynamics is NP-complete. However, we show that certain structural properties of the interaction diagraph are sufficient for guaranteeing distinct dynamics of a network. In [1] the authors define equivalence classes which have the property that all the update schedules of a given class yield the same dynamics. In order to determine the dynamics associated to a network, we develop an algorithm to efficiently enumerate the above equivalence classes by selecting a representative update schedule for each class with a minimum number of blocks. Finally, we run this algorithm on the well known Arabidopsis thaliana network to determine the full spectrum of its different dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Andresen, Juan Carlos; Janzen, Katharina; Katzgraber, Helmut G.
2013-03-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free graphs in a magnetic field. Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show, in agreement with analytical calculations, that the system exhibits a de Almeida-Thouless line. Furthermore, we study avalanches in the system at zero temperature to see if the system displays self-organized criticality. This would suggest that damage (avalanches) can spread across the whole system with nonzero probability, i.e., that Boolean decision problems on scale-free networks with competing interactions are fragile when not in thermal equilibrium.
Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach
NASA Astrophysics Data System (ADS)
Lin, Guo-Qiang; Ao, Bin; Chen, Jia-Wei; Wang, Wen-Xu; Di, Zeng-Ru
2014-12-01
Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering.
Hiraishi, Kunihiko
2014-01-01
One of the significant topics in systems biology is to develop control theory of gene regulatory networks (GRNs). In typical control of GRNs, expression of some genes is inhibited (activated) by manipulating external stimuli and expression of other genes. It is expected to apply control theory of GRNs to gene therapy technologies in the future. In this paper, a control method using a Boolean network (BN) is studied. A BN is widely used as a model of GRNs, and gene expression is expressed by a binary value (ON or OFF). In particular, a context-sensitive probabilistic Boolean network (CS-PBN), which is one of the extended models of BNs, is used. For CS-PBNs, the verification problem and the optimal control problem are considered. For the verification problem, a solution method using the probabilistic model checker PRISM is proposed. For the optimal control problem, a solution method using polynomial optimization is proposed. Finally, a numerical example on the WNT5A network, which is related to melanoma, is presented. The proposed methods provide us useful tools in control theory of GRNs. PMID:24587766
Energy and criticality in random Boolean networks
NASA Astrophysics Data System (ADS)
Andrecut, M.; Kauffman, S. A.
2008-06-01
The central issue of the research on the Random Boolean Networks (RBNs) model is the characterization of the critical transition between ordered and chaotic phases. Here, we discuss an approach based on the ‘energy’ associated with the unsatisfiability of the Boolean functions in the RBNs model, which provides an upper bound estimation for the energy used in computation. We show that in the ordered phase the RBNs are in a ‘dissipative’ regime, performing mostly ‘downhill’ moves on the ‘energy’ landscape. Also, we show that in the disordered phase the RBNs have to ‘hillclimb’ on the ‘energy’ landscape in order to perform computation. The analytical results, obtained using Derrida's approximation method, are in complete agreement with numerical simulations.
Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R
2017-01-01
Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.
Modeling gene regulatory networks: A network simplification algorithm
NASA Astrophysics Data System (ADS)
Ferreira, Luiz Henrique O.; de Castro, Maria Clicia S.; da Silva, Fabricio A. B.
2016-12-01
Boolean networks have been used for some time to model Gene Regulatory Networks (GRNs), which describe cell functions. Those models can help biologists to make predictions, prognosis and even specialized treatment when some disturb on the GRN lead to a sick condition. However, the amount of information related to a GRN can be huge, making the task of inferring its boolean network representation quite a challenge. The method shown here takes into account information about the interactome to build a network, where each node represents a protein, and uses the entropy of each node as a key to reduce the size of the network, allowing the further inferring process to focus only on the main protein hubs, the ones with most potential to interfere in overall network behavior.
Stabilization of perturbed Boolean network attractors through compensatory interactions
2014-01-01
Background Understanding and ameliorating the effects of network damage are of significant interest, due in part to the variety of applications in which network damage is relevant. For example, the effects of genetic mutations can cascade through within-cell signaling and regulatory networks and alter the behavior of cells, possibly leading to a wide variety of diseases. The typical approach to mitigating network perturbations is to consider the compensatory activation or deactivation of system components. Here, we propose a complementary approach wherein interactions are instead modified to alter key regulatory functions and prevent the network damage from triggering a deregulatory cascade. Results We implement this approach in a Boolean dynamic framework, which has been shown to effectively model the behavior of biological regulatory and signaling networks. We show that the method can stabilize any single state (e.g., fixed point attractors or time-averaged representations of multi-state attractors) to be an attractor of the repaired network. We show that the approach is minimalistic in that few modifications are required to provide stability to a chosen attractor and specific in that interventions do not have undesired effects on the attractor. We apply the approach to random Boolean networks, and further show that the method can in some cases successfully repair synchronous limit cycles. We also apply the methodology to case studies from drought-induced signaling in plants and T-LGL leukemia and find that it is successful in both stabilizing desired behavior and in eliminating undesired outcomes. Code is made freely available through the software package BooleanNet. Conclusions The methodology introduced in this report offers a complementary way to manipulating node expression levels. A comprehensive approach to evaluating network manipulation should take an "all of the above" perspective; we anticipate that theoretical studies of interaction modification, coupled with empirical advances, will ultimately provide researchers with greater flexibility in influencing system behavior. PMID:24885780
Investigating Cell Criticality
NASA Astrophysics Data System (ADS)
Serra, R.; Villani, M.; Damiani, C.; Graudenzi, A.; Ingrami, P.; Colacci, A.
Random Boolean networks provide a way to give a precise meaning to the notion that living beings are in a critical state. Some phenomena which are observed in real biological systems (distribution of "avalanches" in gene knock-out experiments) can be modeled using random Boolean networks, and the results can be analytically proven to depend upon the Derrida parameter, which also determines whether the network is critical. By comparing observed and simulated data one can then draw inferences about the criticality of biological cells, although with some care because of the limited number of experimental observations. The relationship between the criticality of a single network and that of a set of interacting networks, which simulate a tissue or a bacterial colony, is also analyzed by computer simulations.
Feedback topology and XOR-dynamics in Boolean networks with varying input structure
NASA Astrophysics Data System (ADS)
Ciandrini, L.; Maffi, C.; Motta, A.; Bassetti, B.; Cosentino Lagomarsino, M.
2009-08-01
We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter γ . We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying γ , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.
Feedback topology and XOR-dynamics in Boolean networks with varying input structure.
Ciandrini, L; Maffi, C; Motta, A; Bassetti, B; Cosentino Lagomarsino, M
2009-08-01
We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter gamma. We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying gamma , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.
Ahnert, S E; Fink, T M A
2016-07-01
Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. © 2016 The Authors.
Polynomial algebra of discrete models in systems biology.
Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard
2010-07-01
An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.
Phase transition of Boolean networks with partially nested canalizing functions
NASA Astrophysics Data System (ADS)
Jansen, Kayse; Matache, Mihaela Teodora
2013-07-01
We generate the critical condition for the phase transition of a Boolean network governed by partially nested canalizing functions for which a fraction of the inputs are canalizing, while the remaining non-canalizing inputs obey a complementary threshold Boolean function. Past studies have considered the stability of fully or partially nested canalizing functions paired with random choices of the complementary function. In some of those studies conflicting results were found with regard to the presence of chaotic behavior. Moreover, those studies focus mostly on ergodic networks in which initial states are assumed equally likely. We relax that assumption and find the critical condition for the sensitivity of the network under a non-ergodic scenario. We use the proposed mathematical model to determine parameter values for which phase transitions from order to chaos occur. We generate Derrida plots to show that the mathematical model matches the actual network dynamics. The phase transition diagrams indicate that both order and chaos can occur, and that certain parameters induce a larger range of values leading to order versus chaos. The edge-of-chaos curves are identified analytically and numerically. It is shown that the depth of canalization does not cause major dynamical changes once certain thresholds are reached; these thresholds are fairly small in comparison to the connectivity of the nodes.
Huang, Wei Tao; Luo, Hong Qun; Li, Nian Bing
2014-05-06
The most serious, and yet unsolved, problem of constructing molecular computing devices consists in connecting all of these molecular events into a usable device. This report demonstrates the use of Boolean logic tree for analyzing the chemical event network based on graphene, organic dye, thrombin aptamer, and Fenton reaction, organizing and connecting these basic chemical events. And this chemical event network can be utilized to implement fluorescent combinatorial logic (including basic logic gates and complex integrated logic circuits) and fuzzy logic computing. On the basis of the Boolean logic tree analysis and logic computing, these basic chemical events can be considered as programmable "words" and chemical interactions as "syntax" logic rules to construct molecular search engine for performing intelligent molecular search query. Our approach is helpful in developing the advanced logic program based on molecules for application in biosensing, nanotechnology, and drug delivery.
Jimena: efficient computing and system state identification for genetic regulatory networks.
Karl, Stefan; Dandekar, Thomas
2013-10-11
Boolean networks capture switching behavior of many naturally occurring regulatory networks. For semi-quantitative modeling, interpolation between ON and OFF states is necessary. The high degree polynomial interpolation of Boolean genetic regulatory networks (GRNs) in cellular processes such as apoptosis or proliferation allows for the modeling of a wider range of node interactions than continuous activator-inhibitor models, but suffers from scaling problems for networks which contain nodes with more than ~10 inputs. Many GRNs from literature or new gene expression experiments exceed those limitations and a new approach was developed. (i) As a part of our new GRN simulation framework Jimena we introduce and setup Boolean-tree-based data structures; (ii) corresponding algorithms greatly expedite the calculation of the polynomial interpolation in almost all cases, thereby expanding the range of networks which can be simulated by this model in reasonable time. (iii) Stable states for discrete models are efficiently counted and identified using binary decision diagrams. As application example, we show how system states can now be sampled efficiently in small up to large scale hormone disease networks (Arabidopsis thaliana development and immunity, pathogen Pseudomonas syringae and modulation by cytokinins and plant hormones). Jimena simulates currently available GRNs about 10-100 times faster than the previous implementation of the polynomial interpolation model and even greater gains are achieved for large scale-free networks. This speed-up also facilitates a much more thorough sampling of continuous state spaces which may lead to the identification of new stable states. Mutants of large networks can be constructed and analyzed very quickly enabling new insights into network robustness and behavior.
Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.
Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W C; Cao, Jinde
2015-08-28
In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results.
Synchronization Analysis of Master-Slave Probabilistic Boolean Networks
Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W. C.; Cao, Jinde
2015-01-01
In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results. PMID:26315380
Altered Micro-RNA Degradation Promotes Tumor Heterogeneity: A Result from Boolean Network Modeling.
Wu, Yunyi; Krueger, Gerhard R F; Wang, Guanyu
2016-02-01
Cancer heterogeneity may reflect differential dynamical outcomes of the regulatory network encompassing biomolecules at both transcriptional and post-transcriptional levels. In other words, differential gene-expression profiles may correspond to different stable steady states of a mathematical model for simulation of biomolecular networks. To test this hypothesis, we simplified a regulatory network that is important for soft-tissue sarcoma metastasis and heterogeneity, comprising of transcription factors, micro-RNAs, and signaling components of the NOTCH pathway. We then used a Boolean network model to simulate the dynamics of this network, and particularly investigated the consequences of differential miRNA degradation modes. We found that efficient miRNA degradation is crucial for sustaining a homogenous and healthy phenotype, while defective miRNA degradation may lead to multiple stable steady states and ultimately to carcinogenesis and heterogeneity. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Order or chaos in Boolean gene networks depends on the mean fraction of canalizing functions
NASA Astrophysics Data System (ADS)
Karlsson, Fredrik; Hörnquist, Michael
2007-10-01
We explore the connection between order/chaos in Boolean networks and the naturally occurring fraction of canalizing functions in such systems. This fraction turns out to give a very clear indication of whether the system possesses ordered or chaotic dynamics, as measured by Derrida plots, and also the degree of order when we compare different networks with the same number of vertices and edges. By studying also a wide distribution of indegrees in a network, we show that the mean probability of canalizing functions is a more reliable indicator of the type of dynamics for a finite network than the classical result on stability relating the bias to the mean indegree. Finally, we compare by direct simulations two biologically derived networks with networks of similar sizes but with power-law and Poisson distributions of indegrees, respectively. The biologically motivated networks are not more ordered than the latter, and in one case the biological network is even chaotic while the others are not.
Stability of Boolean multilevel networks.
Cozzo, Emanuele; Arenas, Alex; Moreno, Yamir
2012-09-01
The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics of these systems. Our results point out the need for a conceptual transition from the physics of single-layered networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.
Computing smallest intervention strategies for multiple metabolic networks in a boolean model.
Lu, Wei; Tamura, Takeyuki; Song, Jiangning; Akutsu, Tatsuya
2015-02-01
This article considers the problem whereby, given two metabolic networks N1 and N2, a set of source compounds, and a set of target compounds, we must find the minimum set of reactions whose removal (knockout) ensures that the target compounds are not producible in N1 but are producible in N2. Similar studies exist for the problem of finding the minimum knockout with the smallest side effect for a single network. However, if technologies of external perturbations are advanced in the near future, it may be important to develop methods of computing the minimum knockout for multiple networks (MKMN). Flux balance analysis (FBA) is efficient if a well-polished model is available. However, that is not always the case. Therefore, in this article, we study MKMN in Boolean models and an elementary mode (EM)-based model. Integer linear programming (ILP)-based methods are developed for these models, since MKMN is NP-complete for both the Boolean model and the EM-based model. Computer experiments are conducted with metabolic networks of clostridium perfringens SM101 and bifidobacterium longum DJO10A, respectively known as bad bacteria and good bacteria for the human intestine. The results show that larger networks are more likely to have MKMN solutions. However, solving for these larger networks takes a very long time, and often the computation cannot be completed. This is reasonable, because small networks do not have many alternative pathways, making it difficult to satisfy the MKMN condition, whereas in large networks the number of candidate solutions explodes. Our developed software minFvskO is available online.
Jenkins, Dafyd J; Stekel, Dov J
2010-02-01
Gene regulation is one important mechanism in producing observed phenotypes and heterogeneity. Consequently, the study of gene regulatory network (GRN) architecture, function and evolution now forms a major part of modern biology. However, it is impossible to experimentally observe the evolution of GRNs on the timescales on which living species evolve. In silico evolution provides an approach to studying the long-term evolution of GRNs, but many models have either considered network architecture from non-adaptive evolution, or evolution to non-biological objectives. Here, we address a number of important modelling and biological questions about the evolution of GRNs to the realistic goal of biomass production. Can different commonly used simulation paradigms, in particular deterministic and stochastic Boolean networks, with and without basal gene expression, be used to compare adaptive with non-adaptive evolution of GRNs? Are these paradigms together with this goal sufficient to generate a range of solutions? Will the interaction between a biological goal and evolutionary dynamics produce trade-offs between growth and mutational robustness? We show that stochastic basal gene expression forces shrinkage of genomes due to energetic constraints and is a prerequisite for some solutions. In systems that are able to evolve rates of basal expression, two optima, one with and one without basal expression, are observed. Simulation paradigms without basal expression generate bloated networks with non-functional elements. Further, a range of functional solutions was observed under identical conditions only in stochastic networks. Moreover, there are trade-offs between efficiency and yield, indicating an inherent intertwining of fitness and evolutionary dynamics.
Stability Depends on Positive Autoregulation in Boolean Gene Regulatory Networks
Pinho, Ricardo; Garcia, Victor; Irimia, Manuel; Feldman, Marcus W.
2014-01-01
Network motifs have been identified as building blocks of regulatory networks, including gene regulatory networks (GRNs). The most basic motif, autoregulation, has been associated with bistability (when positive) and with homeostasis and robustness to noise (when negative), but its general importance in network behavior is poorly understood. Moreover, how specific autoregulatory motifs are selected during evolution and how this relates to robustness is largely unknown. Here, we used a class of GRN models, Boolean networks, to investigate the relationship between autoregulation and network stability and robustness under various conditions. We ran evolutionary simulation experiments for different models of selection, including mutation and recombination. Each generation simulated the development of a population of organisms modeled by GRNs. We found that stability and robustness positively correlate with autoregulation; in all investigated scenarios, stable networks had mostly positive autoregulation. Assuming biological networks correspond to stable networks, these results suggest that biological networks should often be dominated by positive autoregulatory loops. This seems to be the case for most studied eukaryotic transcription factor networks, including those in yeast, flies and mammals. PMID:25375153
Fisher information at the edge of chaos in random Boolean networks.
Wang, X Rosalind; Lizier, Joseph T; Prokopenko, Mikhail
2011-01-01
We study the order-chaos phase transition in random Boolean networks (RBNs), which have been used as models of gene regulatory networks. In particular we seek to characterize the phase diagram in information-theoretic terms, focusing on the effect of the control parameters (activity level and connectivity). Fisher information, which measures how much system dynamics can reveal about the control parameters, offers a natural interpretation of the phase diagram in RBNs. We report that this measure is maximized near the order-chaos phase transitions in RBNs, since this is the region where the system is most sensitive to its parameters. Furthermore, we use this study of RBNs to clarify the relationship between Shannon and Fisher information measures.
Wittmann, Dominik M; Krumsiek, Jan; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Klamt, Steffen; Theis, Fabian J
2009-01-01
Background The understanding of regulatory and signaling networks has long been a core objective in Systems Biology. Knowledge about these networks is mainly of qualitative nature, which allows the construction of Boolean models, where the state of a component is either 'off' or 'on'. While often able to capture the essential behavior of a network, these models can never reproduce detailed time courses of concentration levels. Nowadays however, experiments yield more and more quantitative data. An obvious question therefore is how qualitative models can be used to explain and predict the outcome of these experiments. Results In this contribution we present a canonical way of transforming Boolean into continuous models, where the use of multivariate polynomial interpolation allows transformation of logic operations into a system of ordinary differential equations (ODE). The method is standardized and can readily be applied to large networks. Other, more limited approaches to this task are briefly reviewed and compared. Moreover, we discuss and generalize existing theoretical results on the relation between Boolean and continuous models. As a test case a logical model is transformed into an extensive continuous ODE model describing the activation of T-cells. We discuss how parameters for this model can be determined such that quantitative experimental results are explained and predicted, including time-courses for multiple ligand concentrations and binding affinities of different ligands. This shows that from the continuous model we may obtain biological insights not evident from the discrete one. Conclusion The presented approach will facilitate the interaction between modeling and experiments. Moreover, it provides a straightforward way to apply quantitative analysis methods to qualitatively described systems. PMID:19785753
Satisfiability of logic programming based on radial basis function neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged
2014-07-10
In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We appliedmore » the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.« less
Kerkhofs, Johan; Geris, Liesbet
2015-01-01
Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model’s scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. PMID:26067297
Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele
2018-02-01
Restricted Boltzmann machines are described by the Gibbs measure of a bipartite spin glass, which in turn can be seen as a generalized Hopfield network. This equivalence allows us to characterize the state of these systems in terms of their retrieval capabilities, both at low and high load, of pure states. We study the paramagnetic-spin glass and the spin glass-retrieval phase transitions, as the pattern (i.e., weight) distribution and spin (i.e., unit) priors vary smoothly from Gaussian real variables to Boolean discrete variables. Our analysis shows that the presence of a retrieval phase is robust and not peculiar to the standard Hopfield model with Boolean patterns. The retrieval region becomes larger when the pattern entries and retrieval units get more peaked and, conversely, when the hidden units acquire a broader prior and therefore have a stronger response to high fields. Moreover, at low load retrieval always exists below some critical temperature, for every pattern distribution ranging from the Boolean to the Gaussian case.
Understanding genetic regulatory networks
NASA Astrophysics Data System (ADS)
Kauffman, Stuart
2003-04-01
Random Boolean networks (RBM) were introduced about 35 years ago as first crude models of genetic regulatory networks. RBNs are comprised of N on-off genes, connected by a randomly assigned regulatory wiring diagram where each gene has K inputs, and each gene is controlled by a randomly assigned Boolean function. This procedure samples at random from the ensemble of all possible NK Boolean networks. The central ideas are to study the typical, or generic properties of this ensemble, and see 1) whether characteristic differences appear as K and biases in Boolean functions are introducted, and 2) whether a subclass of this ensemble has properties matching real cells. Such networks behave in an ordered or a chaotic regime, with a phase transition, "the edge of chaos" between the two regimes. Networks with continuous variables exhibit the same two regimes. Substantial evidence suggests that real cells are in the ordered regime. A key concept is that of an attractor. This is a reentrant trajectory of states of the network, called a state cycle. The central biological interpretation is that cell types are attractors. A number of properties differentiate the ordered and chaotic regimes. These include the size and number of attractors, the existence in the ordered regime of a percolating "sea" of genes frozen in the on or off state, with a remainder of isolated twinkling islands of genes, a power law distribution of avalanches of gene activity changes following perturbation to a single gene in the ordered regime versus a similar power law distribution plus a spike of enormous avalanches of gene changes in the chaotic regime, and the existence of branching pathway of "differentiation" between attractors induced by perturbations in the ordered regime. Noise is serious issue, since noise disrupts attractors. But numerical evidence suggests that attractors can be made very stable to noise, and meanwhile, metaplasias may be a biological manifestation of noise. As we learn more about the wiring diagram and constraints on rules controlling real genes, we can build refined ensembles reflecting these properties, study the generic properties of the refined ensembles, and hope to gain insight into the dynamics of real cells.
Computing Smallest Intervention Strategies for Multiple Metabolic Networks in a Boolean Model
Lu, Wei; Song, Jiangning; Akutsu, Tatsuya
2015-01-01
Abstract This article considers the problem whereby, given two metabolic networks N1 and N2, a set of source compounds, and a set of target compounds, we must find the minimum set of reactions whose removal (knockout) ensures that the target compounds are not producible in N1 but are producible in N2. Similar studies exist for the problem of finding the minimum knockout with the smallest side effect for a single network. However, if technologies of external perturbations are advanced in the near future, it may be important to develop methods of computing the minimum knockout for multiple networks (MKMN). Flux balance analysis (FBA) is efficient if a well-polished model is available. However, that is not always the case. Therefore, in this article, we study MKMN in Boolean models and an elementary mode (EM)-based model. Integer linear programming (ILP)-based methods are developed for these models, since MKMN is NP-complete for both the Boolean model and the EM-based model. Computer experiments are conducted with metabolic networks of clostridium perfringens SM101 and bifidobacterium longum DJO10A, respectively known as bad bacteria and good bacteria for the human intestine. The results show that larger networks are more likely to have MKMN solutions. However, solving for these larger networks takes a very long time, and often the computation cannot be completed. This is reasonable, because small networks do not have many alternative pathways, making it difficult to satisfy the MKMN condition, whereas in large networks the number of candidate solutions explodes. Our developed software minFvskO is available online. PMID:25684199
Critical Dynamics in Genetic Regulatory Networks: Examples from Four Kingdoms
Balleza, Enrique; Alvarez-Buylla, Elena R.; Chaos, Alvaro; Kauffman, Stuart; Shmulevich, Ilya; Aldana, Maximino
2008-01-01
The coordinated expression of the different genes in an organism is essential to sustain functionality under the random external perturbations to which the organism might be subjected. To cope with such external variability, the global dynamics of the genetic network must possess two central properties. (a) It must be robust enough as to guarantee stability under a broad range of external conditions, and (b) it must be flexible enough to recognize and integrate specific external signals that may help the organism to change and adapt to different environments. This compromise between robustness and adaptability has been observed in dynamical systems operating at the brink of a phase transition between order and chaos. Such systems are termed critical. Thus, criticality, a precise, measurable, and well characterized property of dynamical systems, makes it possible for robustness and adaptability to coexist in living organisms. In this work we investigate the dynamical properties of the gene transcription networks reported for S. cerevisiae, E. coli, and B. subtilis, as well as the network of segment polarity genes of D. melanogaster, and the network of flower development of A. thaliana. We use hundreds of microarray experiments to infer the nature of the regulatory interactions among genes, and implement these data into the Boolean models of the genetic networks. Our results show that, to the best of the current experimental data available, the five networks under study indeed operate close to criticality. The generality of this result suggests that criticality at the genetic level might constitute a fundamental evolutionary mechanism that generates the great diversity of dynamically robust living forms that we observe around us. PMID:18560561
Counting and classifying attractors in high dimensional dynamical systems.
Bagley, R J; Glass, L
1996-12-07
Randomly connected Boolean networks have been used as mathematical models of neural, genetic, and immune systems. A key quantity of such networks is the number of basins of attraction in the state space. The number of basins of attraction changes as a function of the size of the network, its connectivity and its transition rules. In discrete networks, a simple count of the number of attractors does not reveal the combinatorial structure of the attractors. These points are illustrated in a reexamination of dynamics in a class of random Boolean networks considered previously by Kauffman. We also consider comparisons between dynamics in discrete networks and continuous analogues. A continuous analogue of a discrete network may have a different number of attractors for many different reasons. Some attractors in discrete networks may be associated with unstable dynamics, and several different attractors in a discrete network may be associated with a single attractor in the continuous case. Special problems in determining attractors in continuous systems arise when there is aperiodic dynamics associated with quasiperiodicity of deterministic chaos.
Evolution of a designless nanoparticle network into reconfigurable Boolean logic
NASA Astrophysics Data System (ADS)
Bose, S. K.; Lawrence, C. P.; Liu, Z.; Makarenko, K. S.; van Damme, R. M. J.; Broersma, H. J.; van der Wiel, W. G.
2015-12-01
Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.
A sparse matrix algorithm on the Boolean vector machine
NASA Technical Reports Server (NTRS)
Wagner, Robert A.; Patrick, Merrell L.
1988-01-01
VLSI technology is being used to implement a prototype Boolean Vector Machine (BVM), which is a large network of very small processors with equally small memories that operate in SIMD mode; these use bit-serial arithmetic, and communicate via cube-connected cycles network. The BVM's bit-serial arithmetic and the small memories of individual processors are noted to compromise the system's effectiveness in large numerical problem applications. Attention is presently given to the implementation of a basic matrix-vector iteration algorithm for space matrices of the BVM, in order to generate over 1 billion useful floating-point operations/sec for this iteration algorithm. The algorithm is expressed in a novel language designated 'BVM'.
NASA Astrophysics Data System (ADS)
Szejka, Agnes; Drossel, Barbara
2010-02-01
We study the evolution of Boolean networks as model systems for gene regulation. Inspired by biological networks, we select simultaneously for robust attractors and for the ability to respond to external inputs by changing the attractor. Mutations change the connections between the nodes and the update functions. In order to investigate the influence of the type of update functions, we perform our simulations with canalizing as well as with threshold functions. We compare the properties of the fitness landscapes that result for different versions of the selection criterion and the update functions. We find that for all studied cases the fitness landscape has a plateau with maximum fitness resulting in the fact that structurally very different networks are able to fulfill the same task and are connected by neutral paths in network (“genotype”) space. We find furthermore a connection between the attractor length and the mutational robustness, and an extremely long memory of the initial evolutionary stage.
General method to find the attractors of discrete dynamic models of biological systems.
Gan, Xiao; Albert, Réka
2018-04-01
Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.
General method to find the attractors of discrete dynamic models of biological systems
NASA Astrophysics Data System (ADS)
Gan, Xiao; Albert, Réka
2018-04-01
Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.
BoolNet--an R package for generation, reconstruction and analysis of Boolean networks.
Müssel, Christoph; Hopfensitz, Martin; Kestler, Hans A
2010-05-15
As the study of information processing in living cells moves from individual pathways to complex regulatory networks, mathematical models and simulation become indispensable tools for analyzing the complex behavior of such networks and can provide deep insights into the functioning of cells. The dynamics of gene expression, for example, can be modeled with Boolean networks (BNs). These are mathematical models of low complexity, but have the advantage of being able to capture essential properties of gene-regulatory networks. However, current implementations of BNs only focus on different sub-aspects of this model and do not allow for a seamless integration into existing preprocessing pipelines. BoolNet efficiently integrates methods for synchronous, asynchronous and probabilistic BNs. This includes reconstructing networks from time series, generating random networks, robustness analysis via perturbation, Markov chain simulations, and identification and visualization of attractors. The package BoolNet is freely available from the R project at http://cran.r-project.org/ or http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/boolnet/ under Artistic License 2.0. hans.kestler@uni-ulm.de Supplementary data are available at Bioinformatics online.
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
Recent development and biomedical applications of probabilistic Boolean networks
2013-01-01
Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be considered. A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past few years, with a focus on network inference, network intervention and control. With respect to areas of applications, PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal transduction, metabolic, and also physiological networks. At the same time, a number of computational tools, facilitating the modelling and analysis of PBNs, are continuously developed. A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis of complex biological systems, ranging from molecular to physiological levels. PMID:23815817
Process-driven inference of biological network structure: feasibility, minimality, and multiplicity
NASA Astrophysics Data System (ADS)
Zeng, Chen
2012-02-01
For a given dynamic process, identifying the putative interaction networks to achieve it is the inference problem. In this talk, we address the computational complexity of inference problem in the context of Boolean networks under dominant inhibition condition. The first is a proof that the feasibility problem (is there a network that explains the dynamics?) can be solved in polynomial-time. Second, while the minimality problem (what is the smallest network that explains the dynamics?) is shown to be NP-hard, a simple polynomial-time heuristic is shown to produce near-minimal solutions, as demonstrated by simulation. Third, the theoretical framework also leads to a fast polynomial-time heuristic to estimate the number of network solutions with reasonable accuracy. We will apply these approaches to two simplified Boolean network models for the cell cycle process of budding yeast (Li 2004) and fission yeast (Davidich 2008). Our results demonstrate that each of these networks contains a giant backbone motif spanning all the network nodes that provides the desired main functionality, while the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. Moreover, we show that the bioprocesses of these two cell cycle models differ considerably from a typically generated process and are intrinsically cascade-like.
Networks and games for precision medicine.
Biane, Célia; Delaplace, Franck; Klaudel, Hanna
2016-12-01
Recent advances in omics technologies provide the leverage for the emergence of precision medicine that aims at personalizing therapy to patient. In this undertaking, computational methods play a central role for assisting physicians in their clinical decision-making by combining data analysis and systems biology modelling. Complex diseases such as cancer or diabetes arise from the intricate interplay of various biological molecules. Therefore, assessing drug efficiency requires to study the effects of elementary perturbations caused by diseases on relevant biological networks. In this paper, we propose a computational framework called Network-Action Game applied to best drug selection problem combining Game Theory and discrete models of dynamics (Boolean networks). Decision-making is modelled using Game Theory that defines the process of drug selection among alternative possibilities, while Boolean networks are used to model the effects of the interplay between disease and drugs actions on the patient's molecular system. The actions/strategies of disease and drugs are focused on arc alterations of the interactome. The efficiency of this framework has been evaluated for drug prediction on a model of breast cancer signalling. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Damage spreading in spatial and small-world random Boolean networks
NASA Astrophysics Data System (ADS)
Lu, Qiming; Teuscher, Christof
2014-02-01
The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean networks (RBNs) are commonly used as a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other nonrandom connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the Hamming distance at very low connectivities (K¯≪1) and that the critical connectivity of stability Ks changes compared to random networks. At higher K¯, this scaling remains unchanged. We also show that the Hamming distance of spatially local networks scales with a power law as the system size N increases, but with a different exponent for local and small-world networks. The scaling arguments for small-world networks are obtained with respect to the system sizes and strength of spatially local connections. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.
Chebouba, Lokmane; Miannay, Bertrand; Boughaci, Dalila; Guziolowski, Carito
2018-03-08
During the last years, several approaches were applied on biomedical data to detect disease specific proteins and genes in order to better target drugs. It was shown that statistical and machine learning based methods use mainly clinical data and improve later their results by adding omics data. This work proposes a new method to discriminate the response of Acute Myeloid Leukemia (AML) patients to treatment. The proposed approach uses proteomics data and prior regulatory knowledge in the form of networks to predict cancer treatment outcomes by finding out the different Boolean networks specific to each type of response to drugs. To show its effectiveness we evaluate our method on a dataset from the DREAM 9 challenge. The results are encouraging and demonstrate the benefit of our approach to distinguish patient groups with different response to treatment. In particular each treatment response group is characterized by a predictive model in the form of a signaling Boolean network. This model describes regulatory mechanisms which are specific to each response group. The proteins in this model were selected from the complete dataset by imposing optimization constraints that maximize the difference in the logical response of the Boolean network associated to each group of patients given the omic dataset. This mechanistic and predictive model also allow us to classify new patients data into the two different patient response groups. We propose a new method to detect the most relevant proteins for understanding different patient responses upon treatments in order to better target drugs using a Prior Knowledge Network and proteomics data. The results are interesting and show the effectiveness of our method.
ASP-G: an ASP-based method for finding attractors in genetic regulatory networks
Mushthofa, Mushthofa; Torres, Gustavo; Van de Peer, Yves; Marchal, Kathleen; De Cock, Martine
2014-01-01
Motivation: Boolean network models are suitable to simulate GRNs in the absence of detailed kinetic information. However, reducing the biological reality implies making assumptions on how genes interact (interaction rules) and how their state is updated during the simulation (update scheme). The exact choice of the assumptions largely determines the outcome of the simulations. In most cases, however, the biologically correct assumptions are unknown. An ideal simulation thus implies testing different rules and schemes to determine those that best capture an observed biological phenomenon. This is not trivial because most current methods to simulate Boolean network models of GRNs and to compute their attractors impose specific assumptions that cannot be easily altered, as they are built into the system. Results: To allow for a more flexible simulation framework, we developed ASP-G. We show the correctness of ASP-G in simulating Boolean network models and obtaining attractors under different assumptions by successfully recapitulating the detection of attractors of previously published studies. We also provide an example of how performing simulation of network models under different settings help determine the assumptions under which a certain conclusion holds. The main added value of ASP-G is in its modularity and declarativity, making it more flexible and less error-prone than traditional approaches. The declarative nature of ASP-G comes at the expense of being slower than the more dedicated systems but still achieves a good efficiency with respect to computational time. Availability and implementation: The source code of ASP-G is available at http://bioinformatics.intec.ugent.be/kmarchal/Supplementary_Information_Musthofa_2014/asp-g.zip. Contact: Kathleen.Marchal@UGent.be or Martine.DeCock@UGent.be Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25028722
Recurrent-neural-network-based Boolean factor analysis and its application to word clustering.
Frolov, Alexander A; Husek, Dusan; Polyakov, Pavel Yu
2009-07-01
The objective of this paper is to introduce a neural-network-based algorithm for word clustering as an extension of the neural-network-based Boolean factor analysis algorithm (Frolov , 2007). It is shown that this extended algorithm supports even the more complex model of signals that are supposed to be related to textual documents. It is hypothesized that every topic in textual data is characterized by a set of words which coherently appear in documents dedicated to a given topic. The appearance of each word in a document is coded by the activity of a particular neuron. In accordance with the Hebbian learning rule implemented in the network, sets of coherently appearing words (treated as factors) create tightly connected groups of neurons, hence, revealing them as attractors of the network dynamics. The found factors are eliminated from the network memory by the Hebbian unlearning rule facilitating the search of other factors. Topics related to the found sets of words can be identified based on the words' semantics. To make the method complete, a special technique based on a Bayesian procedure has been developed for the following purposes: first, to provide a complete description of factors in terms of component probability, and second, to enhance the accuracy of classification of signals to determine whether it contains the factor. Since it is assumed that every word may possibly contribute to several topics, the proposed method might be related to the method of fuzzy clustering. In this paper, we show that the results of Boolean factor analysis and fuzzy clustering are not contradictory, but complementary. To demonstrate the capabilities of this attempt, the method is applied to two types of textual data on neural networks in two different languages. The obtained topics and corresponding words are at a good level of agreement despite the fact that identical topics in Russian and English conferences contain different sets of keywords.
Using Synchronous Boolean Networks to Model Several Phenomena of Collective Behavior
Kochemazov, Stepan; Semenov, Alexander
2014-01-01
In this paper, we propose an approach for modeling and analysis of a number of phenomena of collective behavior. By collectives we mean multi-agent systems that transition from one state to another at discrete moments of time. The behavior of a member of a collective (agent) is called conforming if the opinion of this agent at current time moment conforms to the opinion of some other agents at the previous time moment. We presume that at each moment of time every agent makes a decision by choosing from the set (where 1-decision corresponds to action and 0-decision corresponds to inaction). In our approach we model collective behavior with synchronous Boolean networks. We presume that in a network there can be agents that act at every moment of time. Such agents are called instigators. Also there can be agents that never act. Such agents are called loyalists. Agents that are neither instigators nor loyalists are called simple agents. We study two combinatorial problems. The first problem is to find a disposition of instigators that in several time moments transforms a network from a state where the majority of simple agents are inactive to a state with the majority of active agents. The second problem is to find a disposition of loyalists that returns the network to a state with the majority of inactive agents. Similar problems are studied for networks in which simple agents demonstrate the contrary to conforming behavior that we call anticonforming. We obtained several theoretical results regarding the behavior of collectives of agents with conforming or anticonforming behavior. In computational experiments we solved the described problems for randomly generated networks with several hundred vertices. We reduced corresponding combinatorial problems to the Boolean satisfiability problem (SAT) and used modern SAT solvers to solve the instances obtained. PMID:25526612
An Automated Design Framework for Multicellular Recombinase Logic.
Guiziou, Sarah; Ulliana, Federico; Moreau, Violaine; Leclere, Michel; Bonnet, Jerome
2018-05-18
Tools to systematically reprogram cellular behavior are crucial to address pressing challenges in manufacturing, environment, or healthcare. Recombinases can very efficiently encode Boolean and history-dependent logic in many species, yet current designs are performed on a case-by-case basis, limiting their scalability and requiring time-consuming optimization. Here we present an automated workflow for designing recombinase logic devices executing Boolean functions. Our theoretical framework uses a reduced library of computational devices distributed into different cellular subpopulations, which are then composed in various manners to implement all desired logic functions at the multicellular level. Our design platform called CALIN (Composable Asynchronous Logic using Integrase Networks) is broadly accessible via a web server, taking truth tables as inputs and providing corresponding DNA designs and sequences as outputs (available at http://synbio.cbs.cnrs.fr/calin ). We anticipate that this automated design workflow will streamline the implementation of Boolean functions in many organisms and for various applications.
Information Resources Usage in Project Management Digital Learning System
ERIC Educational Resources Information Center
Davidovitch, Nitza; Belichenko, Margarita; Kravchenko, Yurii
2017-01-01
The article combines a theoretical approach to structuring knowledge that is based on the integrated use of fuzzy semantic network theory predicates, Boolean functions, theory of complexity of network structures and some practical aspects to be considered in the distance learning at the university. The paper proposes a methodological approach that…
Laomettachit, Teeraphan; Chen, Katherine C; Baumann, William T; Tyson, John J
2016-01-01
To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a "standard component" modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with "standard components" can capture in quantitative detail many essential properties of cell cycle control in budding yeast.
Laomettachit, Teeraphan; Chen, Katherine C.; Baumann, William T.
2016-01-01
To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a “standard component” modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with “standard components” can capture in quantitative detail many essential properties of cell cycle control in budding yeast. PMID:27187804
Floral Morphogenesis: Stochastic Explorations of a Gene Network Epigenetic Landscape
Aldana, Maximino; Benítez, Mariana; Cortes-Poza, Yuriria; Espinosa-Soto, Carlos; Hartasánchez, Diego A.; Lotto, R. Beau; Malkin, David; Escalera Santos, Gerardo J.; Padilla-Longoria, Pablo
2008-01-01
In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals, petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for a level of noise of around 0.5–10%, the system exhibited a sequence of transitions among attractors that mimics the sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a continuous system using the Glass model of differential equations, that can be considered as a first approximation of kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis, providing predictions on the population dynamics of cells with different genetic configurations during development. PMID:18978941
Bounds on the number of hidden neurons in three-layer binary neural networks.
Zhang, Zhaozhi; Ma, Xiaomin; Yang, Yixian
2003-09-01
This paper investigates an important problem concerning the complexity of three-layer binary neural networks (BNNs) with one hidden layer. The neuron in the studied BNNs employs a hard limiter activation function with only integer weights and an integer threshold. The studies are focused on implementations of arbitrary Boolean functions which map from [0, 1]n into [0, 1]. A deterministic algorithm called set covering algorithm (SCA) is proposed for the construction of a three-layer BNN to implement an arbitrary Boolean function. The SCA is based on a unit sphere covering (USC) of the Hamming space (HS) which is chosen in advance. It is proved that for the implementation of an arbitrary Boolean function of n-variables (n > or = 3) by using SCA, [3L/2] hidden neurons are necessary and sufficient, where L is the number of unit spheres contained in the chosen USC of the n-dimensional HS. It is shown that by using SCA, the number of hidden neurons required is much less than that by using a two-parallel hyperplane method. In order to indicate the potential ability of three-layer BNNs, a lower bound on the required number of hidden neurons which is derived by using the method of estimating the Vapnik-Chervonenkis (VC) dimension is also given.
Attractor-Based Obstructions to Growth in Homogeneous Cyclic Boolean Automata.
Khan, Bilal; Cantor, Yuri; Dombrowski, Kirk
2015-11-01
We consider a synchronous Boolean organism consisting of N cells arranged in a circle, where each cell initially takes on an independently chosen Boolean value. During the lifetime of the organism, each cell updates its own value by responding to the presence (or absence) of diversity amongst its two neighbours' values. We show that if all cells eventually take a value of 0 (irrespective of their initial values) then the organism necessarily has a cell count that is a power of 2. In addition, the converse is also proved: if the number of cells in the organism is a proper power of 2, then no matter what the initial values of the cells are, eventually all cells take on a value of 0 and then cease to change further. We argue that such an absence of structure in the dynamical properties of the organism implies a lack of adaptiveness, and so is evolutionarily disadvantageous. It follows that as the organism doubles in size (say from m to 2m) it will necessarily encounter an intermediate size that is a proper power of 2, and suffers from low adaptiveness. Finally we show, through computational experiments, that one way an organism can grow to more than twice its size and still avoid passing through intermediate sizes that lack structural dynamics, is for the organism to depart from assumptions of homogeneity at the cellular level.
Attractor-Based Obstructions to Growth in Homogeneous Cyclic Boolean Automata
Khan, Bilal; Cantor, Yuri; Dombrowski, Kirk
2016-01-01
We consider a synchronous Boolean organism consisting of N cells arranged in a circle, where each cell initially takes on an independently chosen Boolean value. During the lifetime of the organism, each cell updates its own value by responding to the presence (or absence) of diversity amongst its two neighbours’ values. We show that if all cells eventually take a value of 0 (irrespective of their initial values) then the organism necessarily has a cell count that is a power of 2. In addition, the converse is also proved: if the number of cells in the organism is a proper power of 2, then no matter what the initial values of the cells are, eventually all cells take on a value of 0 and then cease to change further. We argue that such an absence of structure in the dynamical properties of the organism implies a lack of adaptiveness, and so is evolutionarily disadvantageous. It follows that as the organism doubles in size (say from m to 2m) it will necessarily encounter an intermediate size that is a proper power of 2, and suffers from low adaptiveness. Finally we show, through computational experiments, that one way an organism can grow to more than twice its size and still avoid passing through intermediate sizes that lack structural dynamics, is for the organism to depart from assumptions of homogeneity at the cellular level. PMID:27660398
A stochastic and dynamical view of pluripotency in mouse embryonic stem cells
Lee, Esther J.
2018-01-01
Pluripotent embryonic stem cells are of paramount importance for biomedical sciences because of their innate ability for self-renewal and differentiation into all major cell lines. The fateful decision to exit or remain in the pluripotent state is regulated by complex genetic regulatory networks. The rapid growth of single-cell sequencing data has greatly stimulated applications of statistical and machine learning methods for inferring topologies of pluripotency regulating genetic networks. The inferred network topologies, however, often only encode Boolean information while remaining silent about the roles of dynamics and molecular stochasticity inherent in gene expression. Herein we develop a framework for systematically extending Boolean-level network topologies into higher resolution models of networks which explicitly account for the promoter architectures and gene state switching dynamics. We show the framework to be useful for disentangling the various contributions that gene switching, external signaling, and network topology make to the global heterogeneity and dynamics of transcription factor populations. We find the pluripotent state of the network to be a steady state which is robust to global variations of gene switching rates which we argue are a good proxy for epigenetic states of individual promoters. The temporal dynamics of exiting the pluripotent state, on the other hand, is significantly influenced by the rates of genetic switching which makes cells more responsive to changes in extracellular signals. PMID:29451874
Attractor controllability of Boolean networks by flipping a subset of their nodes
NASA Astrophysics Data System (ADS)
Rafimanzelat, Mohammad Reza; Bahrami, Fariba
2018-04-01
The controllability analysis of Boolean networks (BNs), as models of biomolecular regulatory networks, has drawn the attention of researchers in recent years. In this paper, we aim at governing the steady-state behavior of BNs using an intervention method which can easily be applied to most real system, which can be modeled as BNs, particularly to biomolecular regulatory networks. To this end, we introduce the concept of attractor controllability of a BN by flipping a subset of its nodes, as the possibility of making a BN converge from any of its attractors to any other one, by one-time flipping members of a subset of BN nodes. Our approach is based on the algebraic state-space representation of BNs using semi-tensor product of matrices. After introducing some new matrix tools, we use them to derive necessary and sufficient conditions for the attractor controllability of BNs. A forward search algorithm is then suggested to identify the minimal perturbation set for attractor controllability of a BN. Next, a lower bound is derived for the cardinality of this set. Two new indices are also proposed for quantifying the attractor controllability of a BN and the influence of each network variable on the attractor controllability of the network and the relationship between them is revealed. Finally, we confirm the efficiency of the proposed approach by applying it to the BN models of some real biomolecular networks.
On the robustness of complex heterogeneous gene expression networks.
Gómez-Gardeñes, Jesús; Moreno, Yamir; Floría, Luis M
2005-04-01
We analyze a continuous gene expression model on the underlying topology of a complex heterogeneous network. Numerical simulations aimed at studying the chaotic and periodic dynamics of the model are performed. The results clearly indicate that there is a region in which the dynamical and structural complexity of the system avoid chaotic attractors. However, contrary to what has been reported for Random Boolean Networks, the chaotic phase cannot be completely suppressed, which has important bearings on network robustness and gene expression modeling.
Boolean gates on actin filaments
NASA Astrophysics Data System (ADS)
Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew
2016-01-01
Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.
A framework to find the logic backbone of a biological network.
Maheshwari, Parul; Albert, Réka
2017-12-06
Cellular behaviors are governed by interaction networks among biomolecules, for example gene regulatory and signal transduction networks. An often used dynamic modeling framework for these networks, Boolean modeling, can obtain their attractors (which correspond to cell types and behaviors) and their trajectories from an initial state (e.g. a resting state) to the attractors, for example in response to an external signal. The existing methods however do not elucidate the causal relationships between distant nodes in the network. In this work, we propose a simple logic framework, based on categorizing causal relationships as sufficient or necessary, as a complement to Boolean networks. We identify and explore the properties of complex subnetworks that are distillable into a single logic relationship. We also identify cyclic subnetworks that ensure the stabilization of the state of participating nodes regardless of the rest of the network. We identify the logic backbone of biomolecular networks, consisting of external signals, self-sustaining cyclic subnetworks (stable motifs), and output nodes. Furthermore, we use the logic framework to identify crucial nodes whose override can drive the system from one steady state to another. We apply these techniques to two biological networks: the epithelial-to-mesenchymal transition network corresponding to a developmental process exploited in tumor invasion, and the network of abscisic acid induced stomatal closure in plants. We find interesting subnetworks with logical implications in these networks. Using these subgraphs and motifs, we efficiently reduce both networks to succinct backbone structures. The logic representation identifies the causal relationships between distant nodes and subnetworks. This knowledge can form the basis of network control or used in the reverse engineering of networks.
Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles
With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate t...
A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...
A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression (S)
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...
NASA Astrophysics Data System (ADS)
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS.
Austin, Daniel; Dinwoodie, Ian H
We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks.
MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS
AUSTIN, DANIEL; DINWOODIE, IAN H
2014-01-01
We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks. PMID:25620893
Inferring Toxicological Responses of HepG2 Cells from ...
Understanding the dynamic perturbation of cell states by chemicals can aid in for predicting their adverse effects. High-content imaging (HCI) was used to measure the state of HepG2 cells over three time points (1, 24, and 72 h) in response to 976 ToxCast chemicals for 10 different concentrations (0.39-200µM). Cell state was characterized by p53 activation (p53), c-Jun activation (SK), phospho-Histone H2A.x (OS), phospho-Histone H3 (MA), alpha tubulin (Mt), mitochondrial membrane potential (MMP), mitochondrial mass (MM), cell cycle arrest (CCA), nuclear size (NS) and cell number (CN). Dynamic cell state perturbations due to each chemical concentration were utilized to infer coarse-grained dependencies between cellular functions as Boolean networks (BNs). BNs were inferred from data in two steps. First, the data for each state variable were discretized into changed/active (> 1 standard deviation), and unchanged/inactive values. Second, the discretized data were used to learn Boolean relationships between variables. In our case, a BN is a wiring diagram between nodes that represent 10 previously described observable phenotypes. Functional relationships between nodes were represented as Boolean functions. We found that inferred BN show that HepG2 cell response is chemical and concentration specific. We observed presence of both point and cycle BN attractors. In addition, there are instances where Boolean functions were not found. We believe that this may be either
Presentation of Repeated Phrases in a Computer-Assisted Abstracting Tool Kit.
ERIC Educational Resources Information Center
Craven, Timothy C.
2001-01-01
Discusses automatic indexing methods and describes the development of a prototype computerized abstractor's assistant. Highlights include the text network management system, TEXNET; phrase selection that follows indexing; phrase display, including Boolean capabilities; results of preliminary testing; and availability of TEXNET software. (LRW)
NASA Astrophysics Data System (ADS)
Caglar, Mehmet Umut; Pal, Ranadip
2011-03-01
Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.
Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures
NASA Technical Reports Server (NTRS)
Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland
1998-01-01
Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.
Modeling Nuclear Receptor-Mediated Activity and Hepatotoxicity with Boolean Networks
Predicting the human health risk of chronic exposure to environmental contaminants remains an open problem. Chronic exposure to a wide array of chemicals – e.g., conazoles, perfluourinated chemicals and phthalates – has been associated with a range of hepatic lesions in rodents t...
NASA Astrophysics Data System (ADS)
Ye, Weiming; Li, Pengfei; Huang, Xuhui; Xia, Qinzhi; Mi, Yuanyuan; Chen, Runsheng; Hu, Gang
2010-10-01
Exploring the principle and relationship of gene transcriptional regulations (TR) has been becoming a generally researched issue. So far, two major mathematical methods, ordinary differential equation (ODE) method and Boolean map (BM) method have been widely used for these purposes. It is commonly believed that simplified BMs are reasonable approximations of more realistic ODEs, and both methods may reveal qualitatively the same essential features though the dynamical details of both systems may show some differences. In this Letter we exhaustively enumerated all the 3-gene networks and many autonomous randomly constructed TR networks with more genes by using both the ODE and BM methods. In comparison we found that both methods provide practically identical results in most of cases of steady solutions. However, to our great surprise, most of network structures showing periodic cycles with the BM method possess only stationary states in ODE descriptions. These observations strongly suggest that many periodic oscillations and other complicated oscillatory states revealed by the BM rule may be related to the computational errors of variable and time discretizations and rarely have correspondence in realistic biology transcriptional regulatory circuits.
The value of prior knowledge in machine learning of complex network systems.
Ferranti, Dana; Krane, David; Craft, David
2017-11-15
Our overall goal is to develop machine-learning approaches based on genomics and other relevant accessible information for use in predicting how a patient will respond to a given proposed drug or treatment. Given the complexity of this problem, we begin by developing, testing and analyzing learning methods using data from simulated systems, which allows us access to a known ground truth. We examine the benefits of using prior system knowledge and investigate how learning accuracy depends on various system parameters as well as the amount of training data available. The simulations are based on Boolean networks-directed graphs with 0/1 node states and logical node update rules-which are the simplest computational systems that can mimic the dynamic behavior of cellular systems. Boolean networks can be generated and simulated at scale, have complex yet cyclical dynamics and as such provide a useful framework for developing machine-learning algorithms for modular and hierarchical networks such as biological systems in general and cancer in particular. We demonstrate that utilizing prior knowledge (in the form of network connectivity information), without detailed state equations, greatly increases the power of machine-learning algorithms to predict network steady-state node values ('phenotypes') and perturbation responses ('drug effects'). Links to codes and datasets here: https://gray.mgh.harvard.edu/people-directory/71-david-craft-phd. dcraft@broadinstitute.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions.
Qu, Xiangmeng; Wang, Shaopeng; Ge, Zhilei; Wang, Jianbang; Yao, Guangbao; Li, Jiang; Zuo, Xiaolei; Shi, Jiye; Song, Shiping; Wang, Lihua; Li, Li; Pei, Hao; Fan, Chunhai
2017-08-02
Programmable remodelling of cell surfaces enables high-precision regulation of cell behavior. In this work, we developed in vitro constructed DNA-based chemical reaction networks (CRNs) to program on-chip cell adhesion. We found that the RGD-functionalized DNA CRNs are entirely noninvasive when interfaced with the fluidic mosaic membrane of living cells. DNA toehold with different lengths could tunably alter the release kinetics of cells, which shows rapid release in minutes with the use of a 6-base toehold. We further demonstrated the realization of Boolean logic functions by using DNA strand displacement reactions, which include multi-input and sequential cell logic gates (AND, OR, XOR, and AND-OR). This study provides a highly generic tool for self-organization of biological systems.
A procedure concept for local reflex control of grasping
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Chang, Jeffrey
1989-01-01
An architecture is proposed for the control of robotic devices, and in particular of anthropomorphic hands, characterized by a hierarchical structure in which every level of the architecture contains data and control function with varying degree of abstraction. Bottom levels of the hierarchy interface directly with sensors and actuators, and process raw data and motor commands. Higher levels perform more symbolic types of tasks, such as application of boolean rules and general planning operations. Layers implementation has to be consistent with the type of operation and its requirements for real time control. It is proposed to implement the rule level with a Boolean Artificial Neural Network characterized by a response time sufficient for producing reflex corrective action at the actuator level.
Polak, Marta E; Ung, Chuin Ying; Masapust, Joanna; Freeman, Tom C; Ardern-Jones, Michael R
2017-04-06
Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-γ production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses.
Modeling integrated cellular machinery using hybrid Petri-Boolean networks.
Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay
2013-01-01
The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models.
Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks
Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay
2013-01-01
The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more detailed mathematical models. PMID:24244124
ERIC Educational Resources Information Center
Lowe, M. Sara; Maxson, Bronwen K.; Stone, Sean M.; Miller, Willie; Snajdr, Eric; Hanna, Kathleen
2018-01-01
Boolean logic can be a difficult concept for first-year, introductory students to grasp. This paper compares the results of Boolean and natural language searching across several databases with searches created from student research questions. Performance differences between databases varied. Overall, natural search language is at least as good as…
Target Control in Logical Models Using the Domain of Influence of Nodes.
Yang, Gang; Gómez Tejeda Zañudo, Jorge; Albert, Réka
2018-01-01
Dynamical models of biomolecular networks are successfully used to understand the mechanisms underlying complex diseases and to design therapeutic strategies. Network control and its special case of target control, is a promising avenue toward developing disease therapies. In target control it is assumed that a small subset of nodes is most relevant to the system's state and the goal is to drive the target nodes into their desired states. An example of target control would be driving a cell to commit to apoptosis (programmed cell death). From the experimental perspective, gene knockout, pharmacological inhibition of proteins, and providing sustained external signals are among practical intervention techniques. We identify methodologies to use the stabilizing effect of sustained interventions for target control in Boolean network models of biomolecular networks. Specifically, we define the domain of influence (DOI) of a node (in a certain state) to be the nodes (and their corresponding states) that will be ultimately stabilized by the sustained state of this node regardless of the initial state of the system. We also define the related concept of the logical domain of influence (LDOI) of a node, and develop an algorithm for its identification using an auxiliary network that incorporates the regulatory logic. This way a solution to the target control problem is a set of nodes whose DOI can cover the desired target node states. We perform greedy randomized adaptive search in node state space to find such solutions. We apply our strategy to in silico biological network models of real systems to demonstrate its effectiveness.
Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.
Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence
2012-08-29
Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real numbers, mainly based on differential equations and chemical kinetics formalism; (2) and qualitative modeling, representing chemical species concentrations or activities by a finite set of discrete values. Both approaches answer particular (and often different) biological questions. Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently describes stable state identification but remains inconvenient in describing the transient kinetics leading to these states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or activities of chemical species as a function of time, but requires an important amount of information on the parameters difficult to find in the literature. Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be translated in a set of ordinary differential equations on probability distributions. We developed a C++ software, MaBoSS, that is able to simulate such a system by applying Kinetic Monte-Carlo (or Gillespie algorithm) on the Boolean state space. This software, parallelized and optimized, computes the temporal evolution of probability distributions and estimates stationary distributions. Applications of the Boolean Kinetic Monte-Carlo are demonstrated for three qualitative models: a toy model, a published model of p53/Mdm2 interaction and a published model of the mammalian cell cycle. Our approach allows to describe kinetic phenomena which were difficult to handle in the original models. In particular, transient effects are represented by time dependent probability distributions, interpretable in terms of cell populations.
Network Frontier Workshop 2013
2014-11-11
between Resources on Nodes and Weighted Connections 3:45 – 4:15 Coffee Break Schedule 4:15 – 5:00 Bruce J . West (Army Research Office, USA)Tutorial...of Boolean Networks: The Joint Effect of Topology and Update Rules 3:40 – 4:10 Coffee Break 4:10 – 4:45 Peter J . Mucha (University of North Carolina...indicates a crucial smart design principle for tomorrow’s sustainable power grids: add just a few more lines to avoid dead ends. Reference: P. Menck, J
Introduction to focus issue: quantitative approaches to genetic networks.
Albert, Réka; Collins, James J; Glass, Leon
2013-06-01
All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.
Introduction to Focus Issue: Quantitative Approaches to Genetic Networks
NASA Astrophysics Data System (ADS)
Albert, Réka; Collins, James J.; Glass, Leon
2013-06-01
All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.
Cryptographic Boolean Functions with Biased Inputs
2015-07-31
theory of random graphs developed by Erdős and Rényi [2]. The graph properties in a random graph expressed as such Boolean functions are used by...distributed Bernoulli variates with the parameter p. Since our scope is within the area of cryptography , we initiate an analysis of cryptographic...Boolean functions with biased inputs, which we refer to as µp-Boolean functions, is a common generalization of Boolean functions which stems from the
Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.
Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj
2016-01-01
The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.
A Simple Blueprint for Automatic Boolean Query Processing.
ERIC Educational Resources Information Center
Salton, G.
1988-01-01
Describes a new Boolean retrieval environment in which an extended soft Boolean logic is used to automatically construct queries from original natural language formulations provided by users. Experimental results that compare the retrieval effectiveness of this method to conventional Boolean and vector processing are discussed. (27 references)…
On the Computation of Comprehensive Boolean Gröbner Bases
NASA Astrophysics Data System (ADS)
Inoue, Shutaro
We show that a comprehensive Boolean Gröbner basis of an ideal I in a Boolean polynomial ring B (bar A,bar X) with main variables bar X and parameters bar A can be obtained by simply computing a usual Boolean Gröbner basis of I regarding both bar X and bar A as variables with a certain block term order such that bar X ≫ bar A. The result together with a fact that a finite Boolean ring is isomorphic to a direct product of the Galois field mathbb{GF}_2 enables us to compute a comprehensive Boolean Gröbner basis by only computing corresponding Gröbner bases in a polynomial ring over mathbb{GF}_2. Our implementation in a computer algebra system Risa/Asir shows that our method is extremely efficient comparing with existing computation algorithms of comprehensive Boolean Gröbner bases.
Mining TCGA Data Using Boolean Implications
Sinha, Subarna; Tsang, Emily K.; Zeng, Haoyang; Meister, Michela; Dill, David L.
2014-01-01
Boolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alteration, DNA methylation and gene expression) from the glioblastoma (GBM) and ovarian serous cystadenoma (OV) data sets from The Cancer Genome Atlas (TCGA). We find hundreds of thousands of Boolean implications from these data sets. A direct comparison of the relationships found by Boolean implications and those found by commonly used methods for mining associations show that existing methods would miss relationships found by Boolean implications. Furthermore, many relationships exposed by Boolean implications reflect important aspects of cancer biology. Examples of our findings include cis relationships between copy number alteration, DNA methylation and expression of genes, a new hierarchy of mutations and recurrent copy number alterations, loss-of-heterozygosity of well-known tumor suppressors, and the hypermethylation phenotype associated with IDH1 mutations in GBM. The Boolean implication results used in the paper can be accessed at http://crookneck.stanford.edu/microarray/TCGANetworks/. PMID:25054200
An algebra-based method for inferring gene regulatory networks.
Vera-Licona, Paola; Jarrah, Abdul; Garcia-Puente, Luis David; McGee, John; Laubenbacher, Reinhard
2014-03-26
The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network. Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html.
Construction and analysis of gene-gene dynamics influence networks based on a Boolean model.
Mazaya, Maulida; Trinh, Hung-Cuong; Kwon, Yung-Keun
2017-12-21
Identification of novel gene-gene relations is a crucial issue to understand system-level biological phenomena. To this end, many methods based on a correlation analysis of gene expressions or structural analysis of molecular interaction networks have been proposed. They have a limitation in identifying more complicated gene-gene dynamical relations, though. To overcome this limitation, we proposed a measure to quantify a gene-gene dynamical influence (GDI) using a Boolean network model and constructed a GDI network to indicate existence of a dynamical influence for every ordered pair of genes. It represents how much a state trajectory of a target gene is changed by a knockout mutation subject to a source gene in a gene-gene molecular interaction (GMI) network. Through a topological comparison between GDI and GMI networks, we observed that the former network is denser than the latter network, which implies that there exist many gene pairs of dynamically influencing but molecularly non-interacting relations. In addition, a larger number of hub genes were generated in the GDI network. On the other hand, there was a correlation between these networks such that the degree value of a node was positively correlated to each other. We further investigated the relationships of the GDI value with structural properties and found that there are negative and positive correlations with the length of a shortest path and the number of paths, respectively. In addition, a GDI network could predict a set of genes whose steady-state expression is affected in E. coli gene-knockout experiments. More interestingly, we found that the drug-targets with side-effects have a larger number of outgoing links than the other genes in the GDI network, which implies that they are more likely to influence the dynamics of other genes. Finally, we found biological evidences showing that the gene pairs which are not molecularly interacting but dynamically influential can be considered for novel gene-gene relationships. Taken together, construction and analysis of the GDI network can be a useful approach to identify novel gene-gene relationships in terms of the dynamical influence.
Métris, Aline; George, Susie M; Ropers, Delphine
2017-01-02
Addition of salt to food is one of the most ancient and most common methods of food preservation. However, little is known of how bacterial cells adapt to such conditions. We propose to use piecewise linear approximations to model the regulatory adaptation of Escherichiacoli to osmotic stress. We apply the method to eight selected genes representing the functions known to be at play during osmotic adaptation. The network is centred on the general stress response factor, sigma S, and also includes a module representing the catabolic repressor CRP-cAMP. Glutamate, potassium and supercoiling are combined to represent the intracellular regulatory signal during osmotic stress induced by salt. The output is a module where growth is represented by the concentration of stable RNAs and the transcription of the osmotic gene osmY. The time course of gene expression of transport of osmoprotectant represented by the symporter proP and of the osmY is successfully reproduced by the network. The behaviour of the rpoS mutant predicted by the model is in agreement with experimental data. We discuss the application of the model to food-borne pathogens such as Salmonella; although the genes considered have orthologs, it seems that supercoiling is not regulated in the same way. The model is limited to a few selected genes, but the regulatory interactions are numerous and span different time scales. In addition, they seem to be condition specific: the links that are important during the transition from exponential to stationary phase are not all needed during osmotic stress. This model is one of the first steps towards modelling adaptation to stress in food safety and has scope to be extended to other genes and pathways, other stresses relevant to the food industry, and food-borne pathogens. The method offers a good compromise between systems of ordinary differential equations, which would be unmanageable because of the size of the system and for which insufficient data are available, and the more abstract Boolean methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Cut set-based risk and reliability analysis for arbitrarily interconnected networks
Wyss, Gregory D.
2000-01-01
Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.
The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.
Dridi, G; Julien, R; Hliwa, M; Joachim, C
2015-08-28
The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.
Emergence of homeostasis and “noise imprinting” in an evolution model
Stern, Michael D.
1999-01-01
Homeostasis, the creation of a stabilized internal milieu, is ubiquitous in biological evolution, despite the entropic cost of excluding noise information from a region. The advantages of stability seem self evident, but the alternatives are not so clear. This issue was studied by means of numerical experiments on a simple evolution model: a population of Boolean network “organisms” selected for performance of a curve-fitting task while subjected to noise. During evolution, noise sensitivity increased with fitness. Noise exclusion evolved spontaneously, but only if the noise was sufficiently unpredictable. Noise that was limited to one or a few stereotyped patterns caused symmetry breaking that prevented noise exclusion. Instead, the organisms incorporated the noise into their function at little cost in ultimate fitness and became totally noise dependent. This “noise imprinting” suggests caution when interpreting apparent adaptations seen in nature. If the noise was totally random from generation to generation, noise exclusion evolved reliably and irreversibly, but if the noise was correlated over several generations, maladaptive selection of noise-dependent traits could reverse noise exclusion, with catastrophic effect on population fitness. Noise entering the selection process rather than the organism had a different effect: adaptive evolution was totally abolished above a critical noise amplitude, in a manner resembling a thermodynamic phase transition. Evolutionary adaptation to noise involves the creation of a subsystem screened from noise information but increasingly vulnerable to its effects. Similar considerations may apply to information channeling in human cultural evolution. PMID:10485897
Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.
Caglar, Mehmet Umut; Pal, Ranadip
2013-01-01
Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.
Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.
2011-01-01
Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212
Development of Boolean calculus and its application
NASA Technical Reports Server (NTRS)
Tapia, M. A.
1979-01-01
Formal procedures for synthesis of asynchronous sequential system using commercially available edge-sensitive flip-flops are developed. Boolean differential is defined. The exact number of compatible integrals of a Boolean differential were calculated.
Quantifying Performance Bias in Label Fusion
2012-08-21
detect ), may provide the end-user with the means to appropriately adjust the performance and optimal thresholds for performance by fusing legacy systems...boolean combination of classification systems in ROC space: An application to anomaly detection with HMMs. Pattern Recognition, 43(8), 2732-2752. 10...Shamsuddin, S. (2009). An overview of neural networks use in anomaly intrusion detection systems. Paper presented at the Research and Development (SCOReD
Stationary and structural control in gene regulatory networks: basic concepts
NASA Astrophysics Data System (ADS)
Dougherty, Edward R.; Pal, Ranadip; Qian, Xiaoning; Bittner, Michael L.; Datta, Aniruddha
2010-01-01
A major reason for constructing gene regulatory networks is to use them as models for determining therapeutic intervention strategies by deriving ways of altering their long-run dynamics in such a way as to reduce the likelihood of entering undesirable states. In general, two paradigms have been taken for gene network intervention: (1) stationary external control is based on optimally altering the status of a control gene (or genes) over time to drive network dynamics; and (2) structural intervention involves an optimal one-time change of the network structure (wiring) to beneficially alter the long-run behaviour of the network. These intervention approaches have mainly been developed within the context of the probabilistic Boolean network model for gene regulation. This article reviews both types of intervention and applies them to reducing the metastatic competence of cells via intervention in a melanoma-related network.
NASA Technical Reports Server (NTRS)
Tucker, Jerry H.; Tapia, Moiez A.; Bennett, A. Wayne
1988-01-01
The concept of Boolean integration is developed, and different Boolean integral operators are introduced. Given the changes in a desired function in terms of the changes in its arguments, the ways of 'integrating' (i.e. realizing) such a function, if it exists, are presented. The necessary and sufficient conditions for integrating, in different senses, the expression specifying the changes are obtained. Boolean calculus has applications in the design of logic circuits and in fault analysis.
Automatic query formulations in information retrieval.
Salton, G; Buckley, C; Fox, E A
1983-07-01
Modern information retrieval systems are designed to supply relevant information in response to requests received from the user population. In most retrieval environments the search requests consist of keywords, or index terms, interrelated by appropriate Boolean operators. Since it is difficult for untrained users to generate effective Boolean search requests, trained search intermediaries are normally used to translate original statements of user need into useful Boolean search formulations. Methods are introduced in this study which reduce the role of the search intermediaries by making it possible to generate Boolean search formulations completely automatically from natural language statements provided by the system patrons. Frequency considerations are used automatically to generate appropriate term combinations as well as Boolean connectives relating the terms. Methods are covered to produce automatic query formulations both in a standard Boolean logic system, as well as in an extended Boolean system in which the strict interpretation of the connectives is relaxed. Experimental results are supplied to evaluate the effectiveness of the automatic query formulation process, and methods are described for applying the automatic query formulation process in practice.
Proposed method to construct Boolean functions with maximum possible annihilator immunity
NASA Astrophysics Data System (ADS)
Goyal, Rajni; Panigrahi, Anupama; Bansal, Rohit
2017-07-01
Nonlinearity and Algebraic(annihilator) immunity are two core properties of a Boolean function because optimum values of Annihilator Immunity and nonlinearity are required to resist fast algebraic attack and differential cryptanalysis respectively. For a secure cypher system, Boolean function(S-Boxes) should resist maximum number of attacks. It is possible if a Boolean function has optimal trade-off among its properties. Before constructing Boolean functions, we fixed the criteria of our constructions based on its properties. In present work, our construction is based on annihilator immunity and nonlinearity. While keeping above facts in mind,, we have developed a multi-objective evolutionary approach based on NSGA-II and got the optimum value of annihilator immunity with good bound of nonlinearity. We have constructed balanced Boolean functions having the best trade-off among balancedness, Annihilator immunity and nonlinearity for 5, 6 and 7 variables by the proposed method.
Predictive computation of genomic logic processing functions in embryonic development
Peter, Isabelle S.; Faure, Emmanuel; Davidson, Eric H.
2012-01-01
Gene regulatory networks (GRNs) control the dynamic spatial patterns of regulatory gene expression in development. Thus, in principle, GRN models may provide system-level, causal explanations of developmental process. To test this assertion, we have transformed a relatively well-established GRN model into a predictive, dynamic Boolean computational model. This Boolean model computes spatial and temporal gene expression according to the regulatory logic and gene interactions specified in a GRN model for embryonic development in the sea urchin. Additional information input into the model included the progressive embryonic geometry and gene expression kinetics. The resulting model predicted gene expression patterns for a large number of individual regulatory genes each hour up to gastrulation (30 h) in four different spatial domains of the embryo. Direct comparison with experimental observations showed that the model predictively computed these patterns with remarkable spatial and temporal accuracy. In addition, we used this model to carry out in silico perturbations of regulatory functions and of embryonic spatial organization. The model computationally reproduced the altered developmental functions observed experimentally. Two major conclusions are that the starting GRN model contains sufficiently complete regulatory information to permit explanation of a complex developmental process of gene expression solely in terms of genomic regulatory code, and that the Boolean model provides a tool with which to test in silico regulatory circuitry and developmental perturbations. PMID:22927416
Mammalian synthetic biology: emerging medical applications
Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob
2015-01-01
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341
Collective dynamics in heterogeneous networks of neuronal cellular automata
NASA Astrophysics Data System (ADS)
Manchanda, Kaustubh; Bose, Amitabha; Ramaswamy, Ramakrishna
2017-12-01
We examine the collective dynamics of heterogeneous random networks of model neuronal cellular automata. Each automaton has b active states, a single silent state and r - b - 1 refractory states, and can show 'spiking' or 'bursting' behavior, depending on the values of b. We show that phase transitions that occur in the dynamical activity can be related to phase transitions in the structure of Erdõs-Rényi graphs as a function of edge probability. Different forms of heterogeneity allow distinct structural phase transitions to become relevant. We also show that the dynamics on the network can be described by a semi-annealed process and, as a result, can be related to the Boolean Lyapunov exponent.
Android malware detection based on evolutionary super-network
NASA Astrophysics Data System (ADS)
Yan, Haisheng; Peng, Lingling
2018-04-01
In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.
All optical logic for optical pattern recognition and networking applications
NASA Astrophysics Data System (ADS)
Khoury, Jed
2017-05-01
In this paper, we propose architectures for the implementation 16 Boolean optical gates from two inputs using externally pumped phase- conjugate Michelson interferometer. Depending on the gate to be implemented, some require single stage interferometer and others require two stages interferometer. The proposed optical gates can be used in several applications in optical networks including, but not limited to, all-optical packet routers switching, and all-optical error detection. The optical logic gates can also be used in recognition of noiseless rotation and scale invariant objects such as finger prints for home land security applications.
Exploiting Data Missingness in Bayesian Network Modeling
NASA Astrophysics Data System (ADS)
Rodrigues de Morais, Sérgio; Aussem, Alex
This paper proposes a framework built on the use of Bayesian networks (BN) for representing statistical dependencies between the existing random variables and additional dummy boolean variables, which represent the presence/absence of the respective random variable value. We show how augmenting the BN with these additional variables helps pinpoint the mechanism through which missing data contributes to the classification task. The missing data mechanism is thus explicitly taken into account to predict the class variable using the data at hand. Extensive experiments on synthetic and real-world incomplete data sets reveals that the missingness information improves classification accuracy.
Sriram, Ganesh; Shanks, Jacqueline V
2004-04-01
The biosynthetically directed fractional (13)C labeling method for metabolic flux evaluation relies on performing a 2-D [(13)C, (1)H] NMR experiment on extracts from organisms cultured on a uniformly labeled carbon substrate. This article focuses on improvements in the interpretation of data obtained from such an experiment by employing the concept of bondomers. Bondomers take into account the natural abundance of (13)C; therefore many bondomers in a real network are zero, and can be precluded a priori--thus resulting in fewer balances. Using this method, we obtained a set of linear equations which can be solved to obtain analytical formulas for NMR-measurable quantities in terms of fluxes in glycolysis and the pentose phosphate pathways. For a specific case of this network with four degrees of freedom, a priori identifiability of the fluxes was shown possible for any set of fluxes. For a more general case with five degrees of freedom, the fluxes were shown identifiable for a representative set of fluxes. Minimal sets of measurements which best identify the fluxes are listed. Furthermore, we have delineated Boolean function mapping, a new method to iteratively simulate bondomer abundances or efficiently convert carbon skeleton rearrangement information to mapping matrices. The efficiency of this method is expected to be valuable while analyzing metabolic networks which are not completely known (such as in plant metabolism) or while implementing iterative bondomer balancing methods.
The Event Based Language and Its Multiple Processor Implementations.
1980-01-01
10 6.1 "Recursive" Linear Fibonacci ................................................ 105 6.2 The Readers Writers Problem...kinds. Examples of such systems are: C.mmp [Wu-72], Pluribus [He-73], Data Flow [ De -75], the boolean n-cube parallel machine [Su-77], and the MuNet [Wa...concurrency within programs; therefore, we hate concentrated on two types of systems which seem suitable: a processor network, and a data flow processor [ De -77
ERIC Educational Resources Information Center
Hildreth, Charles R.
1983-01-01
This editorial addresses the issue of whether or not to provide free-text, keyword/boolean search capabilities in the information retrieval mechanisms of online public access catalogs and discusses online catalogs developed prior to 1980--keyword searching, phrase searching, and precoordination and postcoordination. (EJS)
An algebra-based method for inferring gene regulatory networks
2014-01-01
Background The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. Results This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network. Conclusions Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html. PMID:24669835
Complexity of generic biochemical circuits: topology versus strength of interactions.
Tikhonov, Mikhail; Bialek, William
2016-12-06
The historical focus on network topology as a determinant of biological function is still largely maintained today, illustrated by the rise of structure-only approaches to network analysis. However, biochemical circuits and genetic regulatory networks are defined both by their topology and by a multitude of continuously adjustable parameters, such as the strength of interactions between nodes, also recognized as important. Here we present a class of simple perceptron-based Boolean models within which comparing the relative importance of topology versus interaction strengths becomes a quantitatively well-posed problem. We quantify the intuition that for generic networks, optimization of interaction strengths is a crucial ingredient of achieving high complexity, defined here as the number of fixed points the network can accommodate. We propose a new methodology for characterizing the relative role of parameter optimization for topologies of a given class.
DSGRN: Examining the Dynamics of Families of Logical Models.
Cummins, Bree; Gedeon, Tomas; Harker, Shaun; Mischaikow, Konstantin
2018-01-01
We present a computational tool DSGRN for exploring the dynamics of a network by computing summaries of the dynamics of switching models compatible with the network across all parameters. The network can arise directly from a biological problem, or indirectly as the interaction graph of a Boolean model. This tool computes a finite decomposition of parameter space such that for each region, the state transition graph that describes the coarse dynamical behavior of a network is the same. Each of these parameter regions corresponds to a different logical description of the network dynamics. The comparison of dynamics across parameters with experimental data allows the rejection of parameter regimes or entire networks as viable models for representing the underlying regulatory mechanisms. This in turn allows a search through the space of perturbations of a given network for networks that robustly fit the data. These are the first steps toward discovering a network that optimally matches the observed dynamics by searching through the space of networks.
Modeling formalisms in Systems Biology
2011-01-01
Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future. PMID:22141422
An autocatalytic network model for stock markets
NASA Astrophysics Data System (ADS)
Caetano, Marco Antonio Leonel; Yoneyama, Takashi
2015-02-01
The stock prices of companies with businesses that are closely related within a specific sector of economy might exhibit movement patterns and correlations in their dynamics. The idea in this work is to use the concept of autocatalytic network to model such correlations and patterns in the trends exhibited by the expected returns. The trends are expressed in terms of positive or negative returns within each fixed time interval. The time series derived from these trends is then used to represent the movement patterns by a probabilistic boolean network with transitions modeled as an autocatalytic network. The proposed method might be of value in short term forecasting and identification of dependencies. The method is illustrated with a case study based on four stocks of companies in the field of natural resource and technology.
PSPVDC: An Adaptation of the PSP that Incorporates Verified Design by Contract
2013-05-01
characteristics mentioned above, including the following: • Java Modeling Language (JML) implements DbC in Java . VDbC can then be carried out using tools like...Extended Static Checking (ESC/ Java ) [Cok 2005] or TACO [Galeotti 2010]. • Perfect Developer [Crocker 2003] is a specification and modeling language...These are written in the language employed in the environment (e.g., as Java Boolean expressions, if JML is used) which we call the carrier lan
On the Run-Time Optimization of the Boolean Logic of a Program.
ERIC Educational Resources Information Center
Cadolino, C.; Guazzo, M.
1982-01-01
Considers problem of optimal scheduling of Boolean expression (each Boolean variable represents binary outcome of program module) on single-processor system. Optimization discussed consists of finding operand arrangement that minimizes average execution costs representing consumption of resources (elapsed time, main memory, number of…
Boolean integral calculus for digital systems
NASA Technical Reports Server (NTRS)
Tucker, J. H.; Tapia, M. A.; Bennett, A. W.
1985-01-01
The concept of Boolean integration is introduced and developed. When the changes in a desired function are specified in terms of changes in its arguments, then ways of 'integrating' (i.e., realizing) the function, if it exists, are presented. Boolean integral calculus has applications in design of logic circuits.
Two classes of ODE models with switch-like behavior.
Just, Winfried; Korb, Mason; Elbert, Ben; Young, Todd
2013-12-01
In cases where the same real-world system can be modeled both by an ODE system ⅅ and a Boolean system , it is of interest to identify conditions under which the two systems will be consistent, that is, will make qualitatively equivalent predictions. In this note we introduce two broad classes of relatively simple models that provide a convenient framework for studying such questions. In contrast to the widely known class of Glass networks, the right-hand sides of our ODEs are Lipschitz-continuous. We prove that if has certain structures, consistency between ⅅ and is implied by sufficient separation of time scales in one class of our models. Namely, if the trajectories of are "one-stepping" then we prove a strong form of consistency and if has a certain monotonicity property then there is a weaker consistency between ⅅ and . These results appear to point to more general structure properties that favor consistency between ODE and Boolean models.
Comparison of Seven Methods for Boolean Factor Analysis and Their Evaluation by Information Gain.
Frolov, Alexander A; Húsek, Dušan; Polyakov, Pavel Yu
2016-03-01
An usual task in large data set analysis is searching for an appropriate data representation in a space of fewer dimensions. One of the most efficient methods to solve this task is factor analysis. In this paper, we compare seven methods for Boolean factor analysis (BFA) in solving the so-called bars problem (BP), which is a BFA benchmark. The performance of the methods is evaluated by means of information gain. Study of the results obtained in solving BP of different levels of complexity has allowed us to reveal strengths and weaknesses of these methods. It is shown that the Likelihood maximization Attractor Neural Network with Increasing Activity (LANNIA) is the most efficient BFA method in solving BP in many cases. Efficacy of the LANNIA method is also shown, when applied to the real data from the Kyoto Encyclopedia of Genes and Genomes database, which contains full genome sequencing for 1368 organisms, and to text data set R52 (from Reuters 21578) typically used for label categorization.
A Comparison of Two Methods for Boolean Query Relevancy Feedback.
ERIC Educational Resources Information Center
Salton, G.; And Others
1984-01-01
Evaluates and compares two recently proposed automatic methods for relevance feedback of Boolean queries (Dillon method, which uses probabilistic approach as basis, and disjunctive normal form method). Conclusions are drawn concerning the use of effective feedback methods in a Boolean query environment. Nineteen references are included. (EJS)
Representing Network Trust and Using It to Improve Anonymous Communication
2014-07-01
identified by that behavior . References 1. Augustin, B., Krishnamurthy, B., Willinger, W.: IXPs: Mapped? In: Internet Mea- surement Conference ( IMC ’09...empty attributes (e.g., labeling countries by their larger geographic region). The user’s beliefs may incorporate boolean predicates that are evaluated on...and behaviors are. The most useful information about Tor relays for setting a default level of trust is probably relay longevity. Running a relay in
2017-03-20
computation, Prime Implicates, Boolean Abstraction, real- time embedded software, software synthesis, correct by construction software design , model...types for time -dependent data-flow networks". J.-P. Talpin, P. Jouvelot, S. Shukla. ACM-IEEE Conference on Methods and Models for System Design ...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
Boolean Classes and Qualitative Inquiry. WCER Working Paper No. 2006-3
ERIC Educational Resources Information Center
Nathan, Mitchell J.; Jackson, Kristi
2006-01-01
The prominent role of Boolean classes in qualitative data analysis software is viewed by some as an encroachment of logical positivism on qualitative research methodology. The authors articulate an embodiment perspective, in which Boolean classes are viewed as conceptual metaphors for apprehending and manipulating data, concepts, and categories in…
Nonlinear dynamics based digital logic and circuits.
Kia, Behnam; Lindner, John F; Ditto, William L
2015-01-01
We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.
Enumeration and extension of non-equivalent deterministic update schedules in Boolean networks.
Palma, Eduardo; Salinas, Lilian; Aracena, Julio
2016-03-01
Boolean networks (BNs) are commonly used to model genetic regulatory networks (GRNs). Due to the sensibility of the dynamical behavior to changes in the updating scheme (order in which the nodes of a network update their state values), it is increasingly common to use different updating rules in the modeling of GRNs to better capture an observed biological phenomenon and thus to obtain more realistic models.In Aracena et al. equivalence classes of deterministic update schedules in BNs, that yield exactly the same dynamical behavior of the network, were defined according to a certain label function on the arcs of the interaction digraph defined for each scheme. Thus, the interaction digraph so labeled (update digraphs) encode the non-equivalent schemes. We address the problem of enumerating all non-equivalent deterministic update schedules of a given BN. First, we show that it is an intractable problem in general. To solve it, we first construct an algorithm that determines the set of update digraphs of a BN. For that, we use divide and conquer methodology based on the structural characteristics of the interaction digraph. Next, for each update digraph we determine a scheme associated. This algorithm also works in the case where there is a partial knowledge about the relative order of the updating of the states of the nodes. We exhibit some examples of how the algorithm works on some GRNs published in the literature. An executable file of the UpdateLabel algorithm made in Java and the files with the outputs of the algorithms used with the GRNs are available at: www.inf.udec.cl/ ∼lilian/UDE/ CONTACT: lilisalinas@udec.cl Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
E-Referencer: Transforming Boolean OPACs to Web Search Engines.
ERIC Educational Resources Information Center
Khoo, Christopher S. G.; Poo, Danny C. C.; Toh, Teck-Kang; Hong, Glenn
E-Referencer is an expert intermediary system for searching library online public access catalogs (OPACs) on the World Wide Web. It is implemented as a proxy server that mediates the interaction between the user and Boolean OPACs. It transforms a Boolean OPAC into a retrieval system with many of the search capabilities of Web search engines.…
Economic networks: Heterogeneity-induced vulnerability and loss of synchronization
NASA Astrophysics Data System (ADS)
Colon, Célian; Ghil, Michael
2017-12-01
Interconnected systems are prone to propagation of disturbances, which can undermine their resilience to external perturbations. Propagation dynamics can clearly be affected by potential time delays in the underlying processes. We investigate how such delays influence the resilience of production networks facing disruption of supply. Interdependencies between economic agents are modeled using systems of Boolean delay equations (BDEs); doing so allows us to introduce heterogeneity in production delays and in inventories. Complex network topologies are considered that reproduce realistic economic features, including a network of networks. Perturbations that would otherwise vanish can, because of delay heterogeneity, amplify and lead to permanent disruptions. This phenomenon is enabled by the interactions between short cyclic structures. Difference in delays between two interacting, and otherwise resilient, structures can in turn lead to loss of synchronization in damage propagation and thus prevent recovery. Finally, this study also shows that BDEs on complex networks can lead to metastable relaxation oscillations, which are damped out in one part of a network while moving on to another part.
Communication Policies in Knowledge Networks
NASA Astrophysics Data System (ADS)
Ioannidis, Evangelos; Varsakelis, Nikos; Antoniou, Ioannis
2018-02-01
Faster knowledge attainment within organizations leads to improved innovation, and therefore competitive advantage. Interventions on the organizational network may be risky or costly or time-demanding. We investigate several communication policies in knowledge networks, which reduce the knowledge attainment time without interventions. We examine the resulting knowledge dynamics for real organizational networks, as well as for artificial networks. More specifically, we investigate the dependence of knowledge dynamics on: (1) the Selection Rule of agents for knowledge acquisition, and (2) the Order of implementation of "Selection" and "Filtering". Significant decrease of the knowledge attainment time (up to -74%) can be achieved by: (1) selecting agents of both high knowledge level and high knowledge transfer efficiency, and (2) implementing "Selection" after "Filtering" in contrast to the converse, implicitly assumed, conventional prioritization. The Non-Commutativity of "Selection" and "Filtering", reveals a Non-Boolean Logic of the Network Operations. The results demonstrate that significant improvement of knowledge dynamics can be achieved by implementing "fruitful" communication policies, by raising the awareness of agents, without any intervention on the network structure.
Effects of topology on network evolution
NASA Astrophysics Data System (ADS)
Oikonomou, Panos; Cluzel, Philippe
2006-08-01
The ubiquity of scale-free topology in nature raises the question of whether this particular network design confers an evolutionary advantage. A series of studies has identified key principles controlling the growth and the dynamics of scale-free networks. Here, we use neuron-based networks of boolean components as a framework for modelling a large class of dynamical behaviours in both natural and artificial systems. Applying a training algorithm, we characterize how networks with distinct topologies evolve towards a pre-established target function through a process of random mutations and selection. We find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. Whereas homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously. Remarkably, this latter property is robust to variations of the degree exponent. In contrast, homogeneous random networks require a specific tuning of their connectivity to optimize their ability to evolve. These results highlight an organizing principle that governs the evolution of complex networks and that can improve the design of engineered systems.
Yu, Ruomeng; Wu, Wenzhuo; Pan, Caofeng; Wang, Zhaona; Ding, Yong; Wang, Zhong Lin
2015-02-04
Using polarization charges created at the metal-cadmium sulfide interface under strain to gate/modulate electrical transport and optoelectronic processes of charge carriers, the piezo-phototronic effect is applied to process mechanical and optical stimuli into electronic controlling signals. The cascade nanowire networks are demonstrated for achieving logic gates, binary computations, and gated D latches to store information carried by these stimuli. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical Neural Classification Of Binary Patterns
NASA Astrophysics Data System (ADS)
Gustafson, Steven C.; Little, Gordon R.
1988-05-01
Binary pattern classification that may be implemented using optical hardware and neural network algorithms is considered. Pattern classification problems that have no concise description (as in classifying handwritten characters) or no concise computation (as in NP-complete problems) are expected to be particularly amenable to this approach. For example, optical processors that efficiently classify binary patterns in accordance with their Boolean function complexity might be designed. As a candidate for such a design, an optical neural network model is discussed that is designed for binary pattern classification and that consists of an optical resonator with a dynamic multiplex-recorded reflection hologram and a phase conjugate mirror with thresholding and gain. In this model, learning or training examples of binary patterns may be recorded on the hologram such that one bit in each pattern marks the pattern class. Any input pattern, including one with an unknown class or marker bit, will be modified by a large number of parallel interactions with the reflection hologram and nonlinear mirror. After perhaps several seconds and 100 billion interactions, a steady-state pattern may develop with a marker bit that represents a minimum-Boolean-complexity classification of the input pattern. Computer simulations are presented that illustrate progress in understanding the behavior of this model and in developing a processor design that could have commanding and enduring performance advantages compared to current pattern classification techniques.
BEAT: A Web-Based Boolean Expression Fault-Based Test Case Generation Tool
ERIC Educational Resources Information Center
Chen, T. Y.; Grant, D. D.; Lau, M. F.; Ng, S. P.; Vasa, V. R.
2006-01-01
BEAT is a Web-based system that generates fault-based test cases from Boolean expressions. It is based on the integration of our several fault-based test case selection strategies. The generated test cases are considered to be fault-based, because they are aiming at the detection of particular faults. For example, when the Boolean expression is in…
SETS. Set Equation Transformation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worrell, R.B.
1992-01-13
SETS is used for symbolic manipulation of Boolean equations, particularly the reduction of equations by the application of Boolean identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze noncoherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access throughmore » nullification of sensors in its protection system.« less
Monotone Boolean approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulme, B.L.
1982-12-01
This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application formore » the analysis of noncoherent fault trees and event tree sequences.« less
Mammalian synthetic biology: emerging medical applications.
Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob
2015-05-06
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
The informational architecture of the cell.
Walker, Sara Imari; Kim, Hyunju; Davies, Paul C W
2016-03-13
We compare the informational architecture of biological and random networks to identify informational features that may distinguish biological networks from random. The study presented here focuses on the Boolean network model for regulation of the cell cycle of the fission yeast Schizosaccharomyces pombe. We compare calculated values of local and global information measures for the fission yeast cell cycle to the same measures as applied to two different classes of random networks: Erdös-Rényi and scale-free. We report patterns in local information processing and storage that do indeed distinguish biological from random, associated with control nodes that regulate the function of the fission yeast cell-cycle network. Conversely, we find that integrated information, which serves as a global measure of 'emergent' information processing, does not differ from random for the case presented. We discuss implications for our understanding of the informational architecture of the fission yeast cell-cycle network in particular, and more generally for illuminating any distinctive physics that may be operative in life. © 2016 The Author(s).
Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines
1989-09-01
Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Srinivas Devadas and Kurt Keutzer F ( Abstract In this...Projects Agency under contract number N00014-87-K-0825. Author Information Devadas : Department of Electrical Engineering and Computer Science, Room 36...MA 02139; (617) 253-0292. 0 * Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Siivas Devadas
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Huys, Otti, E-mail: otti.dhuys@phy.duke.edu; Haynes, Nicholas D.; Lohmann, Johannes
Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory networks and allow for the prediction of stable dynamical attractors. However, most models do not account for time delays along the network links and noise, which are crucial features of real biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays and noise using digital logic elements on field-programmable gate arrays. We observe transients that last millions to billions of characteristic time scales and scale exponentially with the amount of time delaysmore » between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model that includes time delays along network links and allows for stochastic variation in the delays. Using this model, we explain the observed super-transient scaling of both motifs and recreate the experimentally measured transient distributions.« less
Mathematical modeling of gene expression: a guide for the perplexed biologist
Ay, Ahmet; Arnosti, David N.
2011-01-01
The detailed analysis of transcriptional networks holds a key for understanding central biological processes, and interest in this field has exploded due to new large-scale data acquisition techniques. Mathematical modeling can provide essential insights, but the diversity of modeling approaches can be a daunting prospect to investigators new to this area. For those interested in beginning a transcriptional mathematical modeling project we provide here an overview of major types of models and their applications to transcriptional networks. In this discussion of recent literature on thermodynamic, Boolean and differential equation models we focus on considerations critical for choosing and validating a modeling approach that will be useful for quantitative understanding of biological systems. PMID:21417596
Multi-enzyme logic network architectures for assessing injuries: digital processing of biomarkers.
Halámek, Jan; Bocharova, Vera; Chinnapareddy, Soujanya; Windmiller, Joshua Ray; Strack, Guinevere; Chuang, Min-Chieh; Zhou, Jian; Santhosh, Padmanabhan; Ramirez, Gabriela V; Arugula, Mary A; Wang, Joseph; Katz, Evgeny
2010-12-01
A multi-enzyme biocatalytic cascade processing simultaneously five biomarkers characteristic of traumatic brain injury (TBI) and soft tissue injury (STI) was developed. The system operates as a digital biosensor based on concerted function of 8 Boolean AND logic gates, resulting in the decision about the physiological conditions based on the logic analysis of complex patterns of the biomarkers. The system represents the first example of a multi-step/multi-enzyme biosensor with the built-in logic for the analysis of complex combinations of biochemical inputs. The approach is based on recent advances in enzyme-based biocomputing systems and the present paper demonstrates the potential applicability of biocomputing for developing novel digital biosensor networks.
Two classes of ODE models with switch-like behavior
Just, Winfried; Korb, Mason; Elbert, Ben; Young, Todd
2013-01-01
In cases where the same real-world system can be modeled both by an ODE system ⅅ and a Boolean system 𝔹, it is of interest to identify conditions under which the two systems will be consistent, that is, will make qualitatively equivalent predictions. In this note we introduce two broad classes of relatively simple models that provide a convenient framework for studying such questions. In contrast to the widely known class of Glass networks, the right-hand sides of our ODEs are Lipschitz-continuous. We prove that if 𝔹 has certain structures, consistency between ⅅ and 𝔹 is implied by sufficient separation of time scales in one class of our models. Namely, if the trajectories of 𝔹 are “one-stepping” then we prove a strong form of consistency and if 𝔹 has a certain monotonicity property then there is a weaker consistency between ⅅ and 𝔹. These results appear to point to more general structure properties that favor consistency between ODE and Boolean models. PMID:24244061
Inference of combinatorial Boolean rules of synergistic gene sets from cancer microarray datasets.
Park, Inho; Lee, Kwang H; Lee, Doheon
2010-06-15
Gene set analysis has become an important tool for the functional interpretation of high-throughput gene expression datasets. Moreover, pattern analyses based on inferred gene set activities of individual samples have shown the ability to identify more robust disease signatures than individual gene-based pattern analyses. Although a number of approaches have been proposed for gene set-based pattern analysis, the combinatorial influence of deregulated gene sets on disease phenotype classification has not been studied sufficiently. We propose a new approach for inferring combinatorial Boolean rules of gene sets for a better understanding of cancer transcriptome and cancer classification. To reduce the search space of the possible Boolean rules, we identify small groups of gene sets that synergistically contribute to the classification of samples into their corresponding phenotypic groups (such as normal and cancer). We then measure the significance of the candidate Boolean rules derived from each group of gene sets; the level of significance is based on the class entropy of the samples selected in accordance with the rules. By applying the present approach to publicly available prostate cancer datasets, we identified 72 significant Boolean rules. Finally, we discuss several identified Boolean rules, such as the rule of glutathione metabolism (down) and prostaglandin synthesis regulation (down), which are consistent with known prostate cancer biology. Scripts written in Python and R are available at http://biosoft.kaist.ac.kr/~ihpark/. The refined gene sets and the full list of the identified Boolean rules are provided in the Supplementary Material. Supplementary data are available at Bioinformatics online.
Boolean network inference from time series data incorporating prior biological knowledge.
Haider, Saad; Pal, Ranadip
2012-01-01
Numerous approaches exist for modeling of genetic regulatory networks (GRNs) but the low sampling rates often employed in biological studies prevents the inference of detailed models from experimental data. In this paper, we analyze the issues involved in estimating a model of a GRN from single cell line time series data with limited time points. We present an inference approach for a Boolean Network (BN) model of a GRN from limited transcriptomic or proteomic time series data based on prior biological knowledge of connectivity, constraints on attractor structure and robust design. We applied our inference approach to 6 time point transcriptomic data on Human Mammary Epithelial Cell line (HMEC) after application of Epidermal Growth Factor (EGF) and generated a BN with a plausible biological structure satisfying the data. We further defined and applied a similarity measure to compare synthetic BNs and BNs generated through the proposed approach constructed from transitions of various paths of the synthetic BNs. We have also compared the performance of our algorithm with two existing BN inference algorithms. Through theoretical analysis and simulations, we showed the rarity of arriving at a BN from limited time series data with plausible biological structure using random connectivity and absence of structure in data. The framework when applied to experimental data and data generated from synthetic BNs were able to estimate BNs with high similarity scores. Comparison with existing BN inference algorithms showed the better performance of our proposed algorithm for limited time series data. The proposed framework can also be applied to optimize the connectivity of a GRN from experimental data when the prior biological knowledge on regulators is limited or not unique.
Discrete Logic Modelling Optimization to Contextualize Prior Knowledge Networks Using PRUNET
Androsova, Ganna; del Sol, Antonio
2015-01-01
High-throughput technologies have led to the generation of an increasing amount of data in different areas of biology. Datasets capturing the cell’s response to its intra- and extra-cellular microenvironment allows such data to be incorporated as signed and directed graphs or influence networks. These prior knowledge networks (PKNs) represent our current knowledge of the causality of cellular signal transduction. New signalling data is often examined and interpreted in conjunction with PKNs. However, different biological contexts, such as cell type or disease states, may have distinct variants of signalling pathways, resulting in the misinterpretation of new data. The identification of inconsistencies between measured data and signalling topologies, as well as the training of PKNs using context specific datasets (PKN contextualization), are necessary conditions to construct reliable, predictive models, which are current challenges in the systems biology of cell signalling. Here we present PRUNET, a user-friendly software tool designed to address the contextualization of a PKNs to specific experimental conditions. As the input, the algorithm takes a PKN and the expression profile of two given stable steady states or cellular phenotypes. The PKN is iteratively pruned using an evolutionary algorithm to perform an optimization process. This optimization rests in a match between predicted attractors in a discrete logic model (Boolean) and a Booleanized representation of the phenotypes, within a population of alternative subnetworks that evolves iteratively. We validated the algorithm applying PRUNET to four biological examples and using the resulting contextualized networks to predict missing expression values and to simulate well-characterized perturbations. PRUNET constitutes a tool for the automatic curation of a PKN to make it suitable for describing biological processes under particular experimental conditions. The general applicability of the implemented algorithm makes PRUNET suitable for a variety of biological processes, for instance cellular reprogramming or transitions between healthy and disease states. PMID:26058016
Structures and Boolean Dynamics in Gene Regulatory Networks
NASA Astrophysics Data System (ADS)
Szedlak, Anthony
This dissertation discusses the topological and dynamical properties of GRNs in cancer, and is divided into four main chapters. First, the basic tools of modern complex network theory are introduced. These traditional tools as well as those developed by myself (set efficiency, interset efficiency, and nested communities) are crucial for understanding the intricate topological properties of GRNs, and later chapters recall these concepts. Second, the biology of gene regulation is discussed, and a method for disease-specific GRN reconstruction developed by our collaboration is presented. This complements the traditional exhaustive experimental approach of building GRNs edge-by-edge by quickly inferring the existence of as of yet undiscovered edges using correlations across sets of gene expression data. This method also provides insight into the distribution of common mutations across GRNs. Third, I demonstrate that the structures present in these reconstructed networks are strongly related to the evolutionary histories of their constituent genes. Investigation of how the forces of evolution shaped the topology of GRNs in multicellular organisms by growing outward from a core of ancient, conserved genes can shed light upon the ''reverse evolution'' of normal cells into unicellular-like cancer states. Next, I simulate the dynamics of the GRNs of cancer cells using the Hopfield model, an infinite range spin-glass model designed with the ability to encode Boolean data as attractor states. This attractor-driven approach facilitates the integration of gene expression data into predictive mathematical models. Perturbations representing therapeutic interventions are applied to sets of genes, and the resulting deviations from their attractor states are recorded, suggesting new potential drug targets for experimentation. Finally, I extend the Hopfield model to modular networks, cyclic attractors, and complex attractors, and apply these concepts to simulations of the cell cycle process. Futher development of these and other theoretical and computational tools is necessary to analyze the deluge of experimental data produced by modern and future biological high throughput methods. (Abstract shortened by ProQuest.).
Kaltdorf, Martin; Dandekar, Thomas; Naseem, Muhammad
2017-01-01
In order to increase our understanding of biological dependencies in plant immune signaling pathways, the known interactions involved in plant immune networks are modeled. This allows computational analysis to predict the functions of growth related hormones in plant-pathogen interaction. The SQUAD (Standardized Qualitative Dynamical Systems) algorithm first determines stable system states in the network and then use them to compute continuous dynamical system states. Our reconstructed Boolean model encompassing hormone immune networks of Arabidopsis thaliana (Arabidopsis) and pathogenicity factors injected by model pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) can be exploited to determine the impact of growth hormones in plant immunity. We describe a detailed working protocol how to use the modified SQUAD-package by exemplifying the contrasting effects of auxin and cytokinins in shaping plant-pathogen interaction.
Extreme hydroclimatic events and their socio-economic consequences
NASA Astrophysics Data System (ADS)
Ghil, Michael
2017-04-01
This talk will quickly summarize some earlier work reported in [1,2] and then focus on recent work in progress. The former will include two complementary views on the classical, 1300-year long Nile River records. The latter will cover studies of damage propagation in production-and-supply networks [3,4]. Here we use Boolean delay equations (BDEs), a semi-discrete type of dynamical systems [5], to explore the effect of network topology and of the delays in the supply on network resilience. [1] M. Ghil et al., Nonlin. Processes Geophys. (2011) [2] M. Chavez, M. Ghil & J. Urrutia Fucugauchi, Extreme Events: Observations, Modeling and Economics, Geophys. Monograph 214, AGU & Wiley (2015) [3] B. Coluzzi et al., Intl. J. Bifurcation Chaos (2011) [4] C. Colon & M. Ghil, Chaos, submitted (2017) [5] M. Ghil et al., Physica D (2008)
NASA Astrophysics Data System (ADS)
Barthel, Thomas; De Bacco, Caterina; Franz, Silvio
2018-01-01
We introduce and apply an efficient method for the precise simulation of stochastic dynamical processes on locally treelike graphs. Networks with cycles are treated in the framework of the cavity method. Such models correspond, for example, to spin-glass systems, Boolean networks, neural networks, or other technological, biological, and social networks. Building upon ideas from quantum many-body theory, our approach is based on a matrix product approximation of the so-called edge messages—conditional probabilities of vertex variable trajectories. Computation costs and accuracy can be tuned by controlling the matrix dimensions of the matrix product edge messages (MPEM) in truncations. In contrast to Monte Carlo simulations, the algorithm has a better error scaling and works for both single instances as well as the thermodynamic limit. We employ it to examine prototypical nonequilibrium Glauber dynamics in the kinetic Ising model. Because of the absence of cancellation effects, observables with small expectation values can be evaluated accurately, allowing for the study of decay processes and temporal correlations.
Martinez-Sanchez, Mariana Esther; Mendoza, Luis; Villarreal, Carlos; Alvarez-Buylla, Elena R.
2015-01-01
CD4+ T cells orchestrate the adaptive immune response in vertebrates. While both experimental and modeling work has been conducted to understand the molecular genetic mechanisms involved in CD4+ T cell responses and fate attainment, the dynamic role of intrinsic (produced by CD4+ T lymphocytes) versus extrinsic (produced by other cells) components remains unclear, and the mechanistic and dynamic understanding of the plastic responses of these cells remains incomplete. In this work, we studied a regulatory network for the core transcription factors involved in CD4+ T cell-fate attainment. We first show that this core is not sufficient to recover common CD4+ T phenotypes. We thus postulate a minimal Boolean regulatory network model derived from a larger and more comprehensive network that is based on experimental data. The minimal network integrates transcriptional regulation, signaling pathways and the micro-environment. This network model recovers reported configurations of most of the characterized cell types (Th0, Th1, Th2, Th17, Tfh, Th9, iTreg, and Foxp3-independent T regulatory cells). This transcriptional-signaling regulatory network is robust and recovers mutant configurations that have been reported experimentally. Additionally, this model recovers many of the plasticity patterns documented for different T CD4+ cell types, as summarized in a cell-fate map. We tested the effects of various micro-environments and transient perturbations on such transitions among CD4+ T cell types. Interestingly, most cell-fate transitions were induced by transient activations, with the opposite behavior associated with transient inhibitions. Finally, we used a novel methodology was used to establish that T-bet, TGF-β and suppressors of cytokine signaling proteins are keys to recovering observed CD4+ T cell plastic responses. In conclusion, the observed CD4+ T cell-types and transition patterns emerge from the feedback between the intrinsic or intracellular regulatory core and the micro-environment. We discuss the broader use of this approach for other plastic systems and possible therapeutic interventions. PMID:26090929
Dragović, Ivana; Turajlić, Nina; Pilčević, Dejan; Petrović, Bratislav; Radojević, Dragan
2015-01-01
Fuzzy inference systems (FIS) enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD). Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis) the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated), when medical experts are not close at hand. PMID:27069500
Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach.
Zhang, Jianming; Sclaroff, Stan
2016-05-01
We demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets.
Criticality in finite dynamical networks
NASA Astrophysics Data System (ADS)
Rohlf, Thimo; Gulbahce, Natali; Teuscher, Christof
2007-03-01
It has been shown analytically and experimentally that both random boolean and random threshold networks show a transition from ordered to chaotic dynamics at a critical average connectivity Kc in the thermodynamical limit [1]. By looking at the statistical distributions of damage spreading (damage sizes), we go beyond this extensively studied mean-field approximation. We study the scaling properties of damage size distributions as a function of system size N and initial perturbation size d(t=0). We present numerical evidence that another characteristic point, Kd exists for finite system sizes, where the expectation value of damage spreading in the network is independent of the system size N. Further, the probability to obtain critical networks is investigated for a given system size and average connectivity k. Our results suggest that, for finite size dynamical networks, phase space structure is very complex and may not exhibit a sharp order-disorder transition. Finally, we discuss the implications of our findings for evolutionary processes and learning applied to networks which solve specific computational tasks. [1] Derrida, B. and Pomeau, Y. (1986), Europhys. Lett., 1, 45-49
Neural Network Model For Fast Learning And Retrieval
NASA Astrophysics Data System (ADS)
Arsenault, Henri H.; Macukow, Bohdan
1989-05-01
An approach to learning in a multilayer neural network is presented. The proposed network learns by creating interconnections between the input layer and the intermediate layer. In one of the new storage prescriptions proposed, interconnections are excitatory (positive) only and the weights depend on the stored patterns. In the intermediate layer each mother cell is responsible for one stored pattern. Mutually interconnected neurons in the intermediate layer perform a winner-take-all operation, taking into account correlations between stored vectors. The performance of networks using this interconnection prescription is compared with two previously proposed schemes, one using inhibitory connections at the output and one using all-or-nothing interconnections. The network can be used as a content-addressable memory or as a symbolic substitution system that yields an arbitrarily defined output for any input. The training of a model to perform Boolean logical operations is also described. Computer simulations using the network as an autoassociative content-addressable memory show the model to be efficient. Content-addressable associative memories and neural logic modules can be combined to perform logic operations on highly corrupted data.
On construction of stochastic genetic networks based on gene expression sequences.
Ching, Wai-Ki; Ng, Michael M; Fung, Eric S; Akutsu, Tatsuya
2005-08-01
Reconstruction of genetic regulatory networks from time series data of gene expression patterns is an important research topic in bioinformatics. Probabilistic Boolean Networks (PBNs) have been proposed as an effective model for gene regulatory networks. PBNs are able to cope with uncertainty, corporate rule-based dependencies between genes and discover the sensitivity of genes in their interactions with other genes. However, PBNs are unlikely to use directly in practice because of huge amount of computational cost for obtaining predictors and their corresponding probabilities. In this paper, we propose a multivariate Markov model for approximating PBNs and describing the dynamics of a genetic network for gene expression sequences. The main contribution of the new model is to preserve the strength of PBNs and reduce the complexity of the networks. The number of parameters of our proposed model is O(n2) where n is the number of genes involved. We also develop efficient estimation methods for solving the model parameters. Numerical examples on synthetic data sets and practical yeast data sequences are given to demonstrate the effectiveness of the proposed model.
ERIC Educational Resources Information Center
Bossé, Michael J.; Adu-Gyamfi, Kwaku; Chandler, Kayla; Lynch-Davis, Kathleen
2016-01-01
Dynamic mathematical environments allow users to reify mathematical concepts through multiple representations, transform mathematical relations and organically explore mathematical properties, investigate integrated mathematics, and develop conceptual understanding. Herein, we integrate Boolean algebra, the functionalities of a dynamic…
... Boolean useRights, FileShare share, Int32 bufferSize, FileOptions options, SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean bFromProxy) at System.IO.FileStream..ctor(String path, FileMode mode, FileAccess ...
Sanchez, Robersy; Grau, Ricardo
2005-09-01
A Boolean structure of the genetic code where Boolean deductions have biological and physicochemical meanings was discussed in a previous paper. Now, from these Boolean deductions we propose to define the value of amino acid information in order to consider the genetic information system as a communication system and to introduce the semantic content of information ignored by the conventional information theory. In this proposal, the value of amino acid information is proportional to the molecular weight of amino acids with a proportional constant of about 1.96 x 10(25) bits per kg. In addition to this, for the experimental estimations of the minimum energy dissipation in genetic logic operations, we present two postulates: (1) the energy Ei (i=1,2,...,20) of amino acids in the messages conveyed by proteins is proportional to the value of information, and (2) amino acids are distributed according to their energy Ei so the amino acid population in proteins follows a Boltzmann distribution. Specifically, in the genetic message carried by the DNA from the genomes of living organisms, we found that the minimum energy dissipation in genetic logic operations was close to kTLn(2) joules per bit.
Walko, Gernot; Viswanathan, Priyalakshmi; Tihy, Matthieu; Nijjher, Jagdeesh; Dunn, Sara-Jane; Lamond, Angus I
2017-01-01
Epidermal homeostasis depends on a balance between stem cell renewal and terminal differentiation. The transition between the two cell states, termed commitment, is poorly understood. Here, we characterise commitment by integrating transcriptomic and proteomic data from disaggregated primary human keratinocytes held in suspension to induce differentiation. Cell detachment induces several protein phosphatases, five of which - DUSP6, PPTC7, PTPN1, PTPN13 and PPP3CA – promote differentiation by negatively regulating ERK MAPK and positively regulating AP1 transcription factors. Conversely, DUSP10 expression antagonises commitment. The phosphatases form a dynamic network of transient positive and negative interactions that change over time, with DUSP6 predominating at commitment. Boolean network modelling identifies a mandatory switch between two stable states (stem and differentiated) via an unstable (committed) state. Phosphatase expression is also spatially regulated in vivo and in vitro. We conclude that an auto-regulatory phosphatase network maintains epidermal homeostasis by controlling the onset and duration of commitment. PMID:29043977
Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering
NASA Technical Reports Server (NTRS)
Dhaeseleer, Patrik; Liang, Shoudan; Somogyi, Roland
2000-01-01
Advances in molecular biological, analytical, and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-duster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e., who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting, and bioengineering.
Improving the quantum cost of reversible Boolean functions using reorder algorithm
NASA Astrophysics Data System (ADS)
Ahmed, Taghreed; Younes, Ahmed; Elsayed, Ashraf
2018-05-01
This paper introduces a novel algorithm to synthesize a low-cost reversible circuits for any Boolean function with n inputs represented as a Positive Polarity Reed-Muller expansion. The proposed algorithm applies a predefined rules to reorder the terms in the function to minimize the multi-calculation of common parts of the Boolean function to decrease the quantum cost of the reversible circuit. The paper achieves a decrease in the quantum cost and/or the circuit length, on average, when compared with relevant work in the literature.
Volumetric T-spline Construction Using Boolean Operations
2013-07-01
SUBTITLE Volumetric T-spline Construction Using Boolean Operations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Acknowledgements The work of L. Liu and Y. Zhang was supported by ONR-YIP award N00014- 10-1-0698 and an ONR Grant N00014-08-1-0653. T. J.R. Hughes was sup- 16...T-spline Construction Using Boolean Operations 17 ported by ONR Grant N00014-08-1-0992, NSF GOALI CMI-0700807/0700204, NSF CMMI-1101007 and a SINTEF
Acoustic logic gates and Boolean operation based on self-collimating acoustic beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ting; Xu, Jian-yi; Cheng, Ying, E-mail: chengying@nju.edu.cn
2015-03-16
The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logicmore » and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations.« less
Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao
2017-04-01
Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.
A transition calculus for Boolean functions. [logic circuit analysis
NASA Technical Reports Server (NTRS)
Tucker, J. H.; Bennett, A. W.
1974-01-01
A transition calculus is presented for analyzing the effect of input changes on the output of logic circuits. The method is closely related to the Boolean difference, but it is more powerful. Both differentiation and integration are considered.
High-Density Liquid-State Machine Circuitry for Time-Series Forecasting.
Rosselló, Josep L; Alomar, Miquel L; Morro, Antoni; Oliver, Antoni; Canals, Vincent
2016-08-01
Spiking neural networks (SNN) are the last neural network generation that try to mimic the real behavior of biological neurons. Although most research in this area is done through software applications, it is in hardware implementations in which the intrinsic parallelism of these computing systems are more efficiently exploited. Liquid state machines (LSM) have arisen as a strategic technique to implement recurrent designs of SNN with a simple learning methodology. In this work, we show a new low-cost methodology to implement high-density LSM by using Boolean gates. The proposed method is based on the use of probabilistic computing concepts to reduce hardware requirements, thus considerably increasing the neuron count per chip. The result is a highly functional system that is applied to high-speed time series forecasting.
Core regulatory network motif underlies the ocellar complex patterning in Drosophila melanogaster
NASA Astrophysics Data System (ADS)
Aguilar-Hidalgo, D.; Lemos, M. C.; Córdoba, A.
2015-03-01
During organogenesis, developmental programs governed by Gene Regulatory Networks (GRN) define the functionality, size and shape of the different constituents of living organisms. Robustness, thus, is an essential characteristic that GRNs need to fulfill in order to maintain viability and reproducibility in a species. In the present work we analyze the robustness of the patterning for the ocellar complex formation in Drosophila melanogaster fly. We have systematically pruned the GRN that drives the development of this visual system to obtain the minimum pathway able to satisfy this pattern. We found that the mechanism underlying the patterning obeys to the dynamics of a 3-nodes network motif with a double negative feedback loop fed by a morphogenetic gradient that triggers the inhibition in a French flag problem fashion. A Boolean modeling of the GRN confirms robustness in the patterning mechanism showing the same result for different network complexity levels. Interestingly, the network provides a steady state solution in the interocellar part of the patterning and an oscillatory regime in the ocelli. This theoretical result predicts that the ocellar pattern may underlie oscillatory dynamics in its genetic regulation.
Analysis and logical modeling of biological signaling transduction networks
NASA Astrophysics Data System (ADS)
Sun, Zhongyao
The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.
Boolean and brain-inspired computing using spin-transfer torque devices
NASA Astrophysics Data System (ADS)
Fan, Deliang
Several completely new approaches (such as spintronic, carbon nanotube, graphene, TFETs, etc.) to information processing and data storage technologies are emerging to address the time frame beyond current Complementary Metal-Oxide-Semiconductor (CMOS) roadmap. The high speed magnetization switching of a nano-magnet due to current induced spin-transfer torque (STT) have been demonstrated in recent experiments. Such STT devices can be explored in compact, low power memory and logic design. In order to truly leverage STT devices based computing, researchers require a re-think of circuit, architecture, and computing model, since the STT devices are unlikely to be drop-in replacements for CMOS. The potential of STT devices based computing will be best realized by considering new computing models that are inherently suited to the characteristics of STT devices, and new applications that are enabled by their unique capabilities, thereby attaining performance that CMOS cannot achieve. The goal of this research is to conduct synergistic exploration in architecture, circuit and device levels for Boolean and brain-inspired computing using nanoscale STT devices. Specifically, we first show that the non-volatile STT devices can be used in designing configurable Boolean logic blocks. We propose a spin-memristor threshold logic (SMTL) gate design, where memristive cross-bar array is used to perform current mode summation of binary inputs and the low power current mode spintronic threshold device carries out the energy efficient threshold operation. Next, for brain-inspired computing, we have exploited different spin-transfer torque device structures that can implement the hard-limiting and soft-limiting artificial neuron transfer functions respectively. We apply such STT based neuron (or 'spin-neuron') in various neural network architectures, such as hierarchical temporal memory and feed-forward neural network, for performing "human-like" cognitive computing, which show more than two orders of lower energy consumption compared to state of the art CMOS implementation. Finally, we show the dynamics of injection locked Spin Hall Effect Spin-Torque Oscillator (SHE-STO) cluster can be exploited as a robust multi-dimensional distance metric for associative computing, image/ video analysis, etc. Our simulation results show that the proposed system architecture with injection locked SHE-STOs and the associated CMOS interface circuits can be suitable for robust and energy efficient associative computing and pattern matching.
Quantum algorithms on Walsh transform and Hamming distance for Boolean functions
NASA Astrophysics Data System (ADS)
Xie, Zhengwei; Qiu, Daowen; Cai, Guangya
2018-06-01
Walsh spectrum or Walsh transform is an alternative description of Boolean functions. In this paper, we explore quantum algorithms to approximate the absolute value of Walsh transform W_f at a single point z0 (i.e., |W_f(z0)|) for n-variable Boolean functions with probability at least 8/π 2 using the number of O(1/|W_f(z_{0)|ɛ }) queries, promised that the accuracy is ɛ , while the best known classical algorithm requires O(2n) queries. The Hamming distance between Boolean functions is used to study the linearity testing and other important problems. We take advantage of Walsh transform to calculate the Hamming distance between two n-variable Boolean functions f and g using O(1) queries in some cases. Then, we exploit another quantum algorithm which converts computing Hamming distance between two Boolean functions to quantum amplitude estimation (i.e., approximate counting). If Ham(f,g)=t≠0, we can approximately compute Ham( f, g) with probability at least 2/3 by combining our algorithm and {Approx-Count(f,ɛ ) algorithm} using the expected number of Θ( √{N/(\\lfloor ɛ t\\rfloor +1)}+√{t(N-t)}/\\lfloor ɛ t\\rfloor +1) queries, promised that the accuracy is ɛ . Moreover, our algorithm is optimal, while the exact query complexity for the above problem is Θ(N) and the query complexity with the accuracy ɛ is O(1/ɛ 2N/(t+1)) in classical algorithm, where N=2n. Finally, we present three exact quantum query algorithms for two promise problems on Hamming distance using O(1) queries, while any classical deterministic algorithm solving the problem uses Ω(2n) queries.
Development of Boolean calculus and its applications. [digital systems design
NASA Technical Reports Server (NTRS)
Tapia, M. A.
1980-01-01
The development of Boolean calculus for its application to developing digital system design methodologies that would reduce system complexity, size, cost, speed, power requirements, etc., is discussed. Synthesis procedures for logic circuits are examined particularly asynchronous circuits using clock triggered flip flops.
Advanced Feedback Methods in Information Retrieval.
ERIC Educational Resources Information Center
Salton, G.; And Others
1985-01-01
In this study, automatic feedback techniques are applied to Boolean query statements in online information retrieval to generate improved query statements based on information contained in previously retrieved documents. Feedback operations are carried out using conventional Boolean logic and extended logic. Experimental output is included to…
Compact universal logic gates realized using quantization of current in nanodevices.
Zhang, Wancheng; Wu, Nan-Jian; Yang, Fuhua
2007-12-12
This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.
Solving a discrete model of the lac operon using Z3
NASA Astrophysics Data System (ADS)
Gutierrez, Natalia A.
2014-05-01
A discrete model for the Lcac Operon is solved using the SMT-solver Z3. Traditionally the Lac Operon is formulated in a continuous math model. This model is a system of ordinary differential equations. Here, it was considerated as a discrete model, based on a Boolean red. The biological problem of Lac Operon is enunciated as a problem of Boolean satisfiability, and it is solved using an STM-solver named Z3. Z3 is a powerful solver that allows understanding the basic dynamic of the Lac Operon in an easier and more efficient way. The multi-stability of the Lac Operon can be easily computed with Z3. The code that solves the Boolean red can be written in Python language or SMT-Lib language. Both languages were used in local version of the program as online version of Z3. For future investigations it is proposed to solve the Boolean red of Lac Operon using others SMT-solvers as cvc4, alt-ergo, mathsat and yices.
Wilczynski, Bartek; Furlong, Eileen E M
2010-04-15
Development is regulated by dynamic patterns of gene expression, which are orchestrated through the action of complex gene regulatory networks (GRNs). Substantial progress has been made in modeling transcriptional regulation in recent years, including qualitative "coarse-grain" models operating at the gene level to very "fine-grain" quantitative models operating at the biophysical "transcription factor-DNA level". Recent advances in genome-wide studies have revealed an enormous increase in the size and complexity or GRNs. Even relatively simple developmental processes can involve hundreds of regulatory molecules, with extensive interconnectivity and cooperative regulation. This leads to an explosion in the number of regulatory functions, effectively impeding Boolean-based qualitative modeling approaches. At the same time, the lack of information on the biophysical properties for the majority of transcription factors within a global network restricts quantitative approaches. In this review, we explore the current challenges in moving from modeling medium scale well-characterized networks to more poorly characterized global networks. We suggest to integrate coarse- and find-grain approaches to model gene regulatory networks in cis. We focus on two very well-studied examples from Drosophila, which likely represent typical developmental regulatory modules across metazoans. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Ramírez, Carlos; Mendoza, Luis
2018-04-01
Blood cell formation has been recognized as a suitable system to study celular differentiation mainly because of its experimental accessibility, and because it shows characteristics such as hierarchical and gradual bifurcated patterns of commitment, which are present in several developmental processes. Although hematopoiesis has been extensively studied and there is a wealth of molecular and cellular data about it, it is not clear how the underlying molecular regulatory networks define or restrict cellular differentiation processes. Here, we infer the molecular regulatory network that controls the differentiation of a blood cell subpopulation derived from the granulocyte-monocyte precursor (GMP), comprising monocytes, neutrophils, eosinophils, basophils and mast cells. We integrate published qualitative experimental data into a model to describe temporal expression patterns observed in GMP-derived cells. The model is implemented as a Boolean network, and its dynamical behavior is studied. Steady states of the network can be clearly identified with the expression profiles of monocytes, mast cells, neutrophils, basophils, and eosinophils, under wild-type and mutant backgrounds. All scripts are publicly available at https://github.com/caramirezal/RegulatoryNetworkGMPModel. lmendoza@biomedicas.unam.mx. Supplementary data are available at Bioinformatics online.
Boolean linear differential operators on elementary cellular automata
NASA Astrophysics Data System (ADS)
Martín Del Rey, Ángel
2014-12-01
In this paper, the notion of boolean linear differential operator (BLDO) on elementary cellular automata (ECA) is introduced and some of their more important properties are studied. Special attention is paid to those differential operators whose coefficients are the ECA with rule numbers 90 and 150.
A model for cancer tissue heterogeneity.
Mohanty, Anwoy Kumar; Datta, Aniruddha; Venkatraj, Vijayanagaram
2014-03-01
An important problem in the study of cancer is the understanding of the heterogeneous nature of the cell population. The clonal evolution of the tumor cells results in the tumors being composed of multiple subpopulations. Each subpopulation reacts differently to any given therapy. This calls for the development of novel (regulatory network) models, which can accommodate heterogeneity in cancerous tissues. In this paper, we present a new approach to model heterogeneity in cancer. We model heterogeneity as an ensemble of deterministic Boolean networks based on prior pathway knowledge. We develop the model considering the use of qPCR data. By observing gene expressions when the tissue is subjected to various stimuli, the compositional breakup of the tissue under study can be determined. We demonstrate the viability of this approach by using our model on synthetic data, and real-world data collected from fibroblasts.
Describing the What and Why of Students' Difficulties in Boolean Logic
ERIC Educational Resources Information Center
Herman, Geoffrey L.; Loui, Michael C.; Kaczmarczyk, Lisa; Zilles, Craig
2012-01-01
The ability to reason with formal logic is a foundational skill for computer scientists and computer engineers that scaffolds the abilities to design, debug, and optimize. By interviewing students about their understanding of propositional logic and their ability to translate from English specifications to Boolean expressions, we characterized…
Martins, Marcelo Ramos; Schleder, Adriana Miralles; Droguett, Enrique López
2014-12-01
This article presents an iterative six-step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty. © 2014 Society for Risk Analysis.
A network model for biofilm development in Escherichia coli K-12.
Shalá, Andrew A; Restrepo, Silvia; González Barrios, Andrés F
2011-09-22
In nature, bacteria often exist as biofilms. Biofilms are communities of microorganisms attached to a surface. It is clear that biofilm-grown cells harbor properties remarkably distinct from planktonic cells. Biofilms frequently complicate treatments of infections by protecting bacteria from the immune system, decreasing antibiotic efficacy and dispersing planktonic cells to distant body sites. In this work, we employed enhanced Boolean algebra to model biofilm formation. The network obtained describes biofilm formation successfully, assuming - in accordance with the literature - that when the negative regulators (RscCD and EnvZ/OmpR) are off, the positive regulator (FlhDC) is on. The network was modeled under three different conditions through time with satisfactory outcomes. Each cluster was constructed using the K-means/medians Clustering Support algorithm on the basis of published Affymetrix microarray gene expression data from biofilm-forming bacteria and the planktonic state over four time points for Escherichia coli K-12. The different phenotypes obtained demonstrate that the network model of biofilm formation can simulate the formation or repression of biofilm efficiently in E. coli K-12.
Gene network analysis: from heart development to cardiac therapy.
Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B
2015-03-01
Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.
Stability and structural properties of gene regulation networks with coregulation rules.
Warrell, Jonathan; Mhlanga, Musa
2017-05-07
Coregulation of the expression of groups of genes has been extensively demonstrated empirically in bacterial and eukaryotic systems. Such coregulation can arise through the use of shared regulatory motifs, which allow the coordinated expression of modules (and module groups) of functionally related genes across the genome. Coregulation can also arise through the physical association of multi-gene complexes through chromosomal looping, which are then transcribed together. We present a general formalism for modeling coregulation rules in the framework of Random Boolean Networks (RBN), and develop specific models for transcription factor networks with modular structure (including module groups, and multi-input modules (MIM) with autoregulation) and multi-gene complexes (including hierarchical differentiation between multi-gene complex members). We develop a mean-field approach to analyse the dynamical stability of large networks incorporating coregulation, and show that autoregulated MIM and hierarchical gene-complex models can achieve greater stability than networks without coregulation whose rules have matching activation frequency. We provide further analysis of the stability of small networks of both kinds through simulations. We also characterize several general properties of the transients and attractors in the hierarchical coregulation model, and show using simulations that the steady-state distribution factorizes hierarchically as a Bayesian network in a Markov Jump Process analogue of the RBN model. Copyright © 2017. Published by Elsevier Ltd.
Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing
NASA Astrophysics Data System (ADS)
Kumar, Suhas; Strachan, John Paul; Williams, R. Stanley
2017-08-01
At present, machine learning systems use simplified neuron models that lack the rich nonlinear phenomena observed in biological systems, which display spatio-temporal cooperative dynamics. There is evidence that neurons operate in a regime called the edge of chaos that may be central to complexity, learning efficiency, adaptability and analogue (non-Boolean) computation in brains. Neural networks have exhibited enhanced computational complexity when operated at the edge of chaos, and networks of chaotic elements have been proposed for solving combinatorial or global optimization problems. Thus, a source of controllable chaotic behaviour that can be incorporated into a neural-inspired circuit may be an essential component of future computational systems. Such chaotic elements have been simulated using elaborate transistor circuits that simulate known equations of chaos, but an experimental realization of chaotic dynamics from a single scalable electronic device has been lacking. Here we describe niobium dioxide (NbO2) Mott memristors each less than 100 nanometres across that exhibit both a nonlinear-transport-driven current-controlled negative differential resistance and a Mott-transition-driven temperature-controlled negative differential resistance. Mott materials have a temperature-dependent metal-insulator transition that acts as an electronic switch, which introduces a history-dependent resistance into the device. We incorporate these memristors into a relaxation oscillator and observe a tunable range of periodic and chaotic self-oscillations. We show that the nonlinear current transport coupled with thermal fluctuations at the nanoscale generates chaotic oscillations. Such memristors could be useful in certain types of neural-inspired computation by introducing a pseudo-random signal that prevents global synchronization and could also assist in finding a global minimum during a constrained search. We specifically demonstrate that incorporating such memristors into the hardware of a Hopfield computing network can greatly improve the efficiency and accuracy of converging to a solution for computationally difficult problems.
Circulant Matrices and Affine Equivalence of Monomial Rotation Symmetric Boolean Functions
2015-01-01
definitions , including monomial rotation symmetric (MRS) Boolean functions and affine equivalence, and a known result for such quadratic functions...degree of the MRS is, we have a similar result as [40, Theorem 1.1] for n = 4p (p prime), or squarefree integers n, which along with our Theorem 5.2
User Practices in Keyword and Boolean Searching on an Online Public Access Catalog.
ERIC Educational Resources Information Center
Ensor, Pat
1992-01-01
Discussion of keyword and Boolean searching techniques in online public access catalogs (OPACs) focuses on a study conducted at Indiana State University that examined users' attitudes toward searching on NOTIS (Northwestern Online Total Integrated System). Relevant literature is reviewed, and implications for library instruction are suggested. (17…
Using Vector and Extended Boolean Matching in an Expert System for Selecting Foster Homes.
ERIC Educational Resources Information Center
Fox, Edward A.; Winett, Sheila G.
1990-01-01
Describes FOCES (Foster Care Expert System), a prototype expert system for choosing foster care placements for children which integrates information retrieval techniques with artificial intelligence. The use of prototypes and queries in Prolog routines, extended Boolean matching, and vector correlation are explained, as well as evaluation by…
A Construction of Boolean Functions with Good Cryptographic Properties
2014-01-01
be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT...2008, LNCS 5350, Springer–Verlag, 2008, pp. 425–440. [10] C. Carlet and K. Feng, “An Infinite Class of Balanced Vectorial Boolean Functions with Optimum
3D Boolean operations in virtual surgical planning.
Charton, Jerome; Laurentjoye, Mathieu; Kim, Youngjun
2017-10-01
Boolean operations in computer-aided design or computer graphics are a set of operations (e.g. intersection, union, subtraction) between two objects (e.g. a patient model and an implant model) that are important in performing accurate and reproducible virtual surgical planning. This requires accurate and robust techniques that can handle various types of data, such as a surface extracted from volumetric data, synthetic models, and 3D scan data. This article compares the performance of the proposed method (Boolean operations by a robust, exact, and simple method between two colliding shells (BORES)) and an existing method based on the Visualization Toolkit (VTK). In all tests presented in this article, BORES could handle complex configurations as well as report impossible configurations of the input. In contrast, the VTK implementations were unstable, do not deal with singular edges and coplanar collisions, and have created several defects. The proposed method of Boolean operations, BORES, is efficient and appropriate for virtual surgical planning. Moreover, it is simple and easy to implement. In future work, we will extend the proposed method to handle non-colliding components.
Control of complex networks requires both structure and dynamics
NASA Astrophysics Data System (ADS)
Gates, Alexander J.; Rocha, Luis M.
2016-04-01
The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics.
Toward synthesizing executable models in biology.
Fisher, Jasmin; Piterman, Nir; Bodik, Rastislav
2014-01-01
Over the last decade, executable models of biological behaviors have repeatedly provided new scientific discoveries, uncovered novel insights, and directed new experimental avenues. These models are computer programs whose execution mechanistically simulates aspects of the cell's behaviors. If the observed behavior of the program agrees with the observed biological behavior, then the program explains the phenomena. This approach has proven beneficial for gaining new biological insights and directing new experimental avenues. One advantage of this approach is that techniques for analysis of computer programs can be applied to the analysis of executable models. For example, one can confirm that a model agrees with experiments for all possible executions of the model (corresponding to all environmental conditions), even if there are a huge number of executions. Various formal methods have been adapted for this context, for example, model checking or symbolic analysis of state spaces. To avoid manual construction of executable models, one can apply synthesis, a method to produce programs automatically from high-level specifications. In the context of biological modeling, synthesis would correspond to extracting executable models from experimental data. We survey recent results about the usage of the techniques underlying synthesis of computer programs for the inference of biological models from experimental data. We describe synthesis of biological models from curated mutation experiment data, inferring network connectivity models from phosphoproteomic data, and synthesis of Boolean networks from gene expression data. While much work has been done on automated analysis of similar datasets using machine learning and artificial intelligence, using synthesis techniques provides new opportunities such as efficient computation of disambiguating experiments, as well as the ability to produce different kinds of models automatically from biological data.
Social interaction as a heuristic for combinatorial optimization problems
NASA Astrophysics Data System (ADS)
Fontanari, José F.
2010-11-01
We investigate the performance of a variant of Axelrod’s model for dissemination of culture—the Adaptive Culture Heuristic (ACH)—on solving an NP-Complete optimization problem, namely, the classification of binary input patterns of size F by a Boolean Binary Perceptron. In this heuristic, N agents, characterized by binary strings of length F which represent possible solutions to the optimization problem, are fixed at the sites of a square lattice and interact with their nearest neighbors only. The interactions are such that the agents’ strings (or cultures) become more similar to the low-cost strings of their neighbors resulting in the dissemination of these strings across the lattice. Eventually the dynamics freezes into a homogeneous absorbing configuration in which all agents exhibit identical solutions to the optimization problem. We find through extensive simulations that the probability of finding the optimal solution is a function of the reduced variable F/N1/4 so that the number of agents must increase with the fourth power of the problem size, N∝F4 , to guarantee a fixed probability of success. In this case, we find that the relaxation time to reach an absorbing configuration scales with F6 which can be interpreted as the overall computational cost of the ACH to find an optimal set of weights for a Boolean binary perceptron, given a fixed probability of success.
New scaling relation for information transfer in biological networks
Kim, Hyunju; Davies, Paul; Walker, Sara Imari
2015-01-01
We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781–4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös–Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties. PMID:26701883
Criticality Is an Emergent Property of Genetic Networks that Exhibit Evolvability
Torres-Sosa, Christian; Huang, Sui; Aldana, Maximino
2012-01-01
Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype) while allowing for switching between multiple phenotypes (network states) as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i) preserve all the already acquired phenotypes (dynamical attractor states) and (ii) generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation) while conserving the existing phenotypes (conservation) suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators) similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape. PMID:22969419
Interpolation of the Extended Boolean Retrieval Model.
ERIC Educational Resources Information Center
Zanger, Daniel Z.
2002-01-01
Presents an interpolation theorem for an extended Boolean information retrieval model. Results show that whenever two or more documents are similarly ranked at any two points for a query containing exactly two terms, then they are similarly ranked at all points in between; and that results can fail for queries with more than two terms. (Author/LRW)
The Concept of the "Imploded Boolean Search": A Case Study with Undergraduate Chemistry Students
ERIC Educational Resources Information Center
Tomaszewski, Robert
2016-01-01
Critical thinking and analytical problem-solving skills in research involves using different search strategies. A proposed concept for an "Imploded Boolean Search" combines three unique identifiable field types to perform a search: keyword(s), numerical value(s), and a chemical structure or reaction. The object of this type of search is…
Optical programmable Boolean logic unit.
Chattopadhyay, Tanay
2011-11-10
Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.
Neurotrophic factors switch between two signaling pathways that trigger axonal growth.
Paveliev, Mikhail; Lume, Maria; Velthut, Agne; Phillips, Matthew; Arumäe, Urmas; Saarma, Mart
2007-08-01
Integration of multiple inputs from the extracellular environment, such as extracellular matrix molecules and growth factors, is a crucial process for cell function and information processing in multicellular organisms. Here we demonstrate that co-stimulation of dorsal root ganglion neurons with neurotrophic factors (NTFs) - glial-cell-line-derived neurotrophic factor, neurturin or nerve growth factor - and laminin leads to axonal growth that requires activation of Src family kinases (SFKs). A different, SFK-independent signaling pathway evokes axonal growth on laminin in the absence of the NTFs. By contrast, axonal branching is regulated by SFKs both in the presence and in the absence of NGF. We propose and experimentally verify a Boolean model of the signaling network triggered by NTFs and laminin. Our results demonstrate that NTFs provide an environmental cue that triggers a switch between separate pathways in the cell signaling network.
Data Auditor: Analyzing Data Quality Using Pattern Tableaux
NASA Astrophysics Data System (ADS)
Srivastava, Divesh
Monitoring databases maintain configuration and measurement tables about computer systems, such as networks and computing clusters, and serve important business functions, such as troubleshooting customer problems, analyzing equipment failures, planning system upgrades, etc. These databases are prone to many data quality issues: configuration tables may be incorrect due to data entry errors, while measurement tables may be affected by incorrect, missing, duplicate and delayed polls. We describe Data Auditor, a tool for analyzing data quality and exploring data semantics of monitoring databases. Given a user-supplied constraint, such as a boolean predicate expected to be satisfied by every tuple, a functional dependency, or an inclusion dependency, Data Auditor computes "pattern tableaux", which are concise summaries of subsets of the data that satisfy or fail the constraint. We discuss the architecture of Data Auditor, including the supported types of constraints and the tableau generation mechanism. We also show the utility of our approach on an operational network monitoring database.
Multiple neural network approaches to clinical expert systems
NASA Astrophysics Data System (ADS)
Stubbs, Derek F.
1990-08-01
We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results
A.I.-based real-time support for high performance aircraft operations
NASA Technical Reports Server (NTRS)
Vidal, J. J.
1985-01-01
Artificial intelligence (AI) based software and hardware concepts are applied to the handling system malfunctions during flight tests. A representation of malfunction procedure logic using Boolean normal forms are presented. The representation facilitates the automation of malfunction procedures and provides easy testing for the embedded rules. It also forms a potential basis for a parallel implementation in logic hardware. The extraction of logic control rules, from dynamic simulation and their adaptive revision after partial failure are examined. It uses a simplified 2-dimensional aircraft model with a controller that adaptively extracts control rules for directional thrust that satisfies a navigational goal without exceeding pre-established position and velocity limits. Failure recovery (rule adjusting) is examined after partial actuator failure. While this experiment was performed with primitive aircraft and mission models, it illustrates an important paradigm and provided complexity extrapolations for the proposed extraction of expertise from simulation, as discussed. The use of relaxation and inexact reasoning in expert systems was also investigated.
Discovery of Boolean metabolic networks: integer linear programming based approach.
Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing
2018-04-11
Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".
Demongeot, Jacques; Ben Amor, Hedi; Elena, Adrien; Gillois, Pierre; Noual, Mathilde; Sené, Sylvain
2009-01-01
Regulatory interaction networks are often studied on their dynamical side (existence of attractors, study of their stability). We focus here also on their robustness, that is their ability to offer the same spatiotemporal patterns and to resist to external perturbations such as losses of nodes or edges in the networks interactions architecture, changes in their environmental boundary conditions as well as changes in the update schedule (or updating mode) of the states of their elements (e.g., if these elements are genes, their synchronous coexpression mode versus their sequential expression). We define the generic notions of boundary, core, and critical vertex or edge of the underlying interaction graph of the regulatory network, whose disappearance causes dramatic changes in the number and nature of attractors (e.g., passage from a bistable behaviour to a unique periodic regime) or in the range of their basins of stability. The dynamic transition of states will be presented in the framework of threshold Boolean automata rules. A panorama of applications at different levels will be given: brain and plant morphogenesis, bulbar cardio-respiratory regulation, glycolytic/oxidative metabolic coupling, and eventually cell cycle and feather morphogenesis genetic control. PMID:20057955
Towards Symbolic Model Checking for Multi-Agent Systems via OBDDs
NASA Technical Reports Server (NTRS)
Raimondi, Franco; Lomunscio, Alessio
2004-01-01
We present an algorithm for model checking temporal-epistemic properties of multi-agent systems, expressed in the formalism of interpreted systems. We first introduce a technique for the translation of interpreted systems into boolean formulae, and then present a model-checking algorithm based on this translation. The algorithm is based on OBDD's, as they offer a compact and efficient representation for boolean formulae.
Computer Aided Instruction for a Course in Boolean Algebra and Logic Design. Final Report (Revised).
ERIC Educational Resources Information Center
Roy, Rob
The use of computers to prepare deficient college and graduate students for courses that build upon previously acquired information would solve the growing problem of professors who must spend up to one third of their class time in review of material. But examination of students who were taught Boolean Algebra and Logic Design by means of Computer…
Deriving Laws from Ordering Relations
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.
2003-01-01
It took much effort in the early days of non-Euclidean geometry to break away from the mindset that all spaces are flat and that two distinct parallel lines do not cross. Up to that point, all that was known was Euclidean geometry, and it was difficult to imagine anything else. We have suffered a similar handicap brought on by the enormous relevance of Boolean algebra to the problems of our age-logic and set theory. Previously, I demonstrated that the algebra of questions is not Boolean, but rather is described by the free distributive algebra. To get to this stage took much effort, as many obstacles-most self-placed-had to be overcome. As Boolean algebras were all I had ever known, it was almost impossible for me to imagine working with an algebra where elements do not have complements. With this realization, it became very clear that the sum and product rules of probability theory at the most basic level had absolutely nothing to do with the Boolean algebra of logical statements. Instead, a measure of degree of inclusion can be invented for many different partially ordered sets, and the sum and product rules fall out of the associativity and distributivity of the algebra. To reinforce this very important idea, this paper will go over how these constructions are made, while focusing on the underlying assumptions. I will derive the sum and product rules for a distributive lattice in general and demonstrate how this leads to probability theory on the Boolean lattice and is related to the calculus of quantum mechanical amplitudes on the partially ordered set of experimental setups. I will also discuss the rules that can be derived from modular lattices and their relevance to the cross-ratio of projective geometry.
Leroux, Janette S; Moore, Spencer; Dubé, Laurette
2013-01-01
Recent research has shown the importance of networks in the spread of obesity. Yet, the translation of research on social networks and obesity into health promotion practice has been slow. To review the types of obesity interventions targeting social relational factors. Six databases were searched in January 2013. A Boolean search was employed with the following sets of terms: (1) social dimensions: social capital, cohesion, collective efficacy, support, social networks, or trust; (2) intervention type: intervention, experiment, program, trial, or policy; and (3) obesity in the title or abstract. Titles and abstracts were reviewed. Articles were included if they described an obesity intervention with the social relational component central. Articles were assessed on the social relational factor(s) addressed, social ecological level(s) targeted, the intervention's theoretical approach, and the conceptual placement of the social relational component in the intervention. Database searches and final article screening yielded 30 articles. Findings suggested that (1) social support was most often targeted; (2) few interventions were beyond the individual level; (3) most interventions were framed on behaviour change theories; and (4) the social relational component tended to be conceptually ancillary to the intervention. Theoretically and practically, social networks remain marginal to current interventions addressing obesity.
Discrete interference modeling via boolean algebra.
Beckhoff, Gerhard
2011-01-01
Two types of boolean functions are considered, the locus function of n variables, and the interval function of ν = n - 1 variables. A 1-1 mapping is given that takes elements (cells) of the interval function to antidual pairs of elements in the locus function, and vice versa. A set of ν binary codewords representing the intervals are defined and used to generate the codewords of all genomic regions. Next a diallelic three-point system is reviewed in the light of boolean functions, which leads to redefining complete interference by a logic function. Together with the upper bound of noninterference already defined by a boolean function, it confines the region of interference. Extensions of these two functions to any finite number of ν are straightforward, but have been also made in terms of variables taken from the inclusion-exclusion principle (expressing "at least" and "exactly equal to" a decimal integer). Two coefficients of coincidence for systems with more than three loci are defined and discussed, one using the average of several individual coefficients and the other taking as coefficient a real number between zero and one. Finally, by way of a malfunction of the mod-2 addition, it is shown that a four-point system may produce two different functions, one of which exhibiting loss of a class of odd recombinants.
Managing biological networks by using text mining and computer-aided curation
NASA Astrophysics Data System (ADS)
Yu, Seok Jong; Cho, Yongseong; Lee, Min-Ho; Lim, Jongtae; Yoo, Jaesoo
2015-11-01
In order to understand a biological mechanism in a cell, a researcher should collect a huge number of protein interactions with experimental data from experiments and the literature. Text mining systems that extract biological interactions from papers have been used to construct biological networks for a few decades. Even though the text mining of literature is necessary to construct a biological network, few systems with a text mining tool are available for biologists who want to construct their own biological networks. We have developed a biological network construction system called BioKnowledge Viewer that can generate a biological interaction network by using a text mining tool and biological taggers. It also Boolean simulation software to provide a biological modeling system to simulate the model that is made with the text mining tool. A user can download PubMed articles and construct a biological network by using the Multi-level Knowledge Emergence Model (KMEM), MetaMap, and A Biomedical Named Entity Recognizer (ABNER) as a text mining tool. To evaluate the system, we constructed an aging-related biological network that consist 9,415 nodes (genes) by using manual curation. With network analysis, we found that several genes, including JNK, AP-1, and BCL-2, were highly related in aging biological network. We provide a semi-automatic curation environment so that users can obtain a graph database for managing text mining results that are generated in the server system and can navigate the network with BioKnowledge Viewer, which is freely available at http://bioknowledgeviewer.kisti.re.kr.
The Statistical Mechanics of Dilute, Disordered Systems
NASA Astrophysics Data System (ADS)
Blackburn, Roger Michael
Available from UMI in association with The British Library. Requires signed TDF. A graph partitioning problem with variable inter -partition costs is studied by exploiting its mapping on to the Ashkin-Teller spin glass. The cavity method is used to derive the TAP equations and free energy for both extensively connected and dilute systems. Unlike Ising and Potts spin glasses, the self-consistent equation for the distribution of effective fields does not have a solution solely made up of delta functions. Numerical integration is used to find the stable solution, from which the ground state energy is calculated. Simulated annealing is used to test the results. The retrieving activity distribution for networks of boolean functions trained as associative memories for optimal capacity is derived. For infinite networks, outputs are shown to be frozen, in contrast to dilute asymmetric networks trained with the Hebb rule. For finite networks, a steady leaking to the non-retrieving attractor is demonstrated. Simulations of quenched networks are reported which show a departure from this picture: some configurations remain frozen for all time, while others follow cycles of small periods. An estimate of the critical capacity from the simulations is found to be in broad agreement with recent analytical results. The existing theory is extended to include noise on recall, and the behaviour is found to be robust to noise up to order 1/c^2 for networks with connectivity c.
Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates.
Gao, Long; Chen, Li; Wei, Hong; Xu, Hongxing
2018-06-14
Fabricating plasmonic nanowire waveguides and circuits by lithographic fabrication methods is highly desired for nanophotonic circuitry applications. Here we report an approach for fabricating metal nanowire networks by using electron beam lithography and metal film deposition techniques. The gold nanowire structures are fabricated on quartz substrates without using any adhesion layer but coated with a thin layer of Al2O3 film for immobilization. The thermal annealing during the Al2O3 deposition process decreases the surface plasmon loss. In a Y-shaped gold nanowire network, the surface plasmons can be routed to different branches by controlling the polarization of the excitation light, and the routing behavior is dependent on the length of the main nanowire. Simulated electric field distributions show that the zigzag distribution of the electric field in the nanowire network determines the surface plasmon routing. By using two laser beams to excite surface plasmons in a Y-shaped nanowire network, the output intensity can be modulated by the interference of surface plasmons, which can be used to design Boolean logic gates. We experimentally demonstrate that AND, OR, XOR and NOT gates can be realized in three-terminal nanowire networks, and NAND, NOR and XNOR gates can be realized in four-terminal nanowire networks. This work takes a step toward the fabrication of on-chip integrated plasmonic circuits.
Adaptive oxide electronics: A review
NASA Astrophysics Data System (ADS)
Ha, Sieu D.; Ramanathan, Shriram
2011-10-01
Novel information processing techniques are being actively explored to overcome fundamental limitations associated with CMOS scaling. A new paradigm of adaptive electronic devices is emerging that may reshape the frontiers of electronics and enable new modalities. Creating systems that can learn and adapt to various inputs has generally been a complex algorithm problem in information science, albeit with wide-ranging and powerful applications from medical diagnosis to control systems. Recent work in oxide electronics suggests that it may be plausible to implement such systems at the device level, thereby drastically increasing computational density and power efficiency and expanding the potential for electronics beyond Boolean computation. Intriguing possibilities of adaptive electronics include fabrication of devices that mimic human brain functionality: the strengthening and weakening of synapses emulated by electrically, magnetically, thermally, or optically tunable properties of materials.In this review, we detail materials and device physics studies on functional metal oxides that may be utilized for adaptive electronics. It has been shown that properties, such as resistivity, polarization, and magnetization, of many oxides can be modified electrically in a non-volatile manner, suggesting that these materials respond to electrical stimulus similarly as a neural synapse. We discuss what device characteristics will likely be relevant for integration into adaptive platforms and then survey a variety of oxides with respect to these properties, such as, but not limited to, TaOx, SrTiO3, and Bi4-xLaxTi3O12. The physical mechanisms in each case are detailed and analyzed within the framework of adaptive electronics. We then review theoretically formulated and current experimentally realized adaptive devices with functional oxides, such as self-programmable logic and neuromorphic circuits. Finally, we speculate on what advances in materials physics and engineering may be needed to realize the full potential of adaptive oxide electronics.
Exact Algorithms for Output Encoding, State Assignment and Four-Level Boolean Minimization
1989-10-01
APPROVED FOR PUBLIC DISTRIBUTION • DTIC MASSACHUSETTS INTITUTE OF TECHNOLOGY M VLSI PUBLICATIONSJAN 17 1990 VLSI Memo No. 89-569 JN. 9October 1989...nunijize large funclions exacly within reasonable amocunt. of CPt targeting twro-level logic imnplemientations involve finding ap- time. However, thle ,, m ...0(NV!) m ~iimizations . n5 10 The inptut encoding problemt can be exactly solved using mrultiple-valued Boolean nimuization. We present an exact (a) (b
A single-layer platform for Boolean logic and arithmetic through DNA excision in mammalian cells
Weinberg, Benjamin H.; Hang Pham, N. T.; Caraballo, Leidy D.; Lozanoski, Thomas; Engel, Adrien; Bhatia, Swapnil; Wong, Wilson W.
2017-01-01
Genetic circuits engineered for mammalian cells often require extensive fine-tuning to perform their intended functions. To overcome this problem, we present a generalizable biocomputing platform that can engineer genetic circuits which function in human cells with minimal optimization. We used our Boolean Logic and Arithmetic through DNA Excision (BLADE) platform to build more than 100 multi-input-multi-output circuits. We devised a quantitative metric to evaluate the performance of the circuits in human embryonic kidney and Jurkat T cells. Of 113 circuits analysed, 109 functioned (96.5%) with the correct specified behavior without any optimization. We used our platform to build a three-input, two-output Full Adder and six-input, one-output Boolean Logic Look Up Table. We also used BLADE to design circuits with temporal small molecule-mediated inducible control and circuits that incorporate CRISPR/Cas9 to regulate endogenous mammalian genes. PMID:28346402
Enhanced vaccine control of epidemics in adaptive networks
NASA Astrophysics Data System (ADS)
Shaw, Leah B.; Schwartz, Ira B.
2010-04-01
We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.
Enhanced vaccine control of epidemics in adaptive networks.
Shaw, Leah B; Schwartz, Ira B
2010-04-01
We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior. Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine control is much more effective in adaptive networks than in static networks due to feedback interaction between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are as much as two orders of magnitude lower in adaptive networks.
Harris, Daniel R.; Henderson, Darren W.; Kavuluru, Ramakanth; Stromberg, Arnold J.; Johnson, Todd R.
2015-01-01
We present a custom, Boolean query generator utilizing common-table expressions (CTEs) that is capable of scaling with big datasets. The generator maps user-defined Boolean queries, such as those interactively created in clinical-research and general-purpose healthcare tools, into SQL. We demonstrate the effectiveness of this generator by integrating our work into the Informatics for Integrating Biology and the Bedside (i2b2) query tool and show that it is capable of scaling. Our custom generator replaces and outperforms the default query generator found within the Clinical Research Chart (CRC) cell of i2b2. In our experiments, sixteen different types of i2b2 queries were identified by varying four constraints: date, frequency, exclusion criteria, and whether selected concepts occurred in the same encounter. We generated non-trivial, random Boolean queries based on these 16 types; the corresponding SQL queries produced by both generators were compared by execution times. The CTE-based solution significantly outperformed the default query generator and provided a much more consistent response time across all query types (M=2.03, SD=6.64 vs. M=75.82, SD=238.88 seconds). Without costly hardware upgrades, we provide a scalable solution based on CTEs with very promising empirical results centered on performance gains. The evaluation methodology used for this provides a means of profiling clinical data warehouse performance. PMID:25192572
Marmarelis, Vasilis Z.; Zanos, Theodoros P.; Berger, Theodore W.
2010-01-01
This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a “Boolean-Volterra” model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II). PMID:19517238
Robust optimization with transiently chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.
2014-05-01
Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.
Synchronous versus asynchronous modeling of gene regulatory networks.
Garg, Abhishek; Di Cara, Alessandro; Xenarios, Ioannis; Mendoza, Luis; De Micheli, Giovanni
2008-09-01
In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.
An adaptive radiotherapy planning strategy for bladder cancer using deformation vector fields.
Vestergaard, Anne; Kallehauge, Jesper Folsted; Petersen, Jørgen Breede Baltzer; Høyer, Morten; Søndergaard, Jimmi; Muren, Ludvig Paul
2014-09-01
Adaptive radiotherapy (ART) has considerable potential in treatment of bladder cancer due to large inter-fractional changes in shape and size of the target. The aim of this study was to compare our clinically applied method for plan library creation that involves manual bladder delineations (Clin-ART) with a method using the deformation vector fields (DVFs) resulting from intensity-based deformable image registrations (DVF-based ART). The study included thirteen patients with urinary bladder cancer who had daily cone beam CTs (CBCTs) acquired for set-up. In both ART strategies investigated, three plan selection volumes were generated using the CBCTs from the first four fractions; in Clin-ART boolean combinations of delineated bladders were used, while the DVF-based strategy applied combinations of the mean and standard deviation of patient-specific DVFs. The volume ratios (VRs) of the course-averaged PTV for the two ART strategies relative the non-adaptive PTV were calculated. Both Clin-ART and DVF-based ART considerably reduced the course-averaged PTV, compared to non-adaptive RT. The VR for DVF-based ART was lower than for Clin-ART (0.65 vs. 0.73; p<0.01). DVF-based ART for bladder irradiation has a considerable normal tissue sparing potential surpassing our already highly conformal clinically applied ART strategy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kaneko, Yuko; Kondo, Harumi; Takeuchi, Tsutomu
2013-08-01
To investigate the performance of the new remission criteria for rheumatoid arthritis (RA) in daily clinical practice and the effect of possible misclassification of remission when 44 joints are assessed. Disease activity and remission rate were calculated according to the Disease Activity Score (DAS28), Simplified Disease Activity Index (SDAI), Clinical Disease Activity Index (CDAI), and a Boolean-based definition for 1402 patients with RA in Keio University Hospital. Characteristics of patients in remission were investigated, and the number of misclassified patients was determined--those classified as being in remission based on 28-joint count but as nonremission based on a 44-joint count for each definition criterion. Of all patients analyzed, 46.6%, 45.9%, 41.0%, and 31.5% were classified as in remission in the DAS28, SDAI, CDAI, and Boolean definitions, respectively. Patients classified into remission based only on the DAS28 showed relatively low erythrocyte sedimentation rates but greater swollen joint counts than those classified into remission based on the other definitions. In patients classified into remission based only on the Boolean criteria, the mean physician global assessment was greater than the mean patient global assessment. Although 119 patients had ≤ 1 involved joint in the 28-joint count but > 1 in the 44-joint count, only 34 of these 119 (2.4% of all subjects) were found to have been misclassified into remission. In practice, about half of patients with RA can achieve clinical remission within the DAS28, SDAI, and CDAI; and one-third according to the Boolean-based definition. Patients classified in remission based on a 28-joint count may have pain and swelling in the feet, but misclassification of remission was relatively rare and was seen in only 2.4% of patients under a Boolean definition. The 28-joint count can be sufficient for assessing clinical remission based on the new remission criteria.
Security analysis of boolean algebra based on Zhang-Wang digital signature scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jinbin, E-mail: jbzheng518@163.com
2014-10-06
In 2005, Zhang and Wang proposed an improvement signature scheme without using one-way hash function and message redundancy. In this paper, we show that this scheme exits potential safety concerns through the analysis of boolean algebra, such as bitwise exclusive-or, and point out that mapping is not one to one between assembly instructions and machine code actually by means of the analysis of the result of the assembly program segment, and which possibly causes safety problems unknown to the software.
Realization of a quantum Hamiltonian Boolean logic gate on the Si(001):H surface.
Kolmer, Marek; Zuzak, Rafal; Dridi, Ghassen; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek
2015-08-07
The design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status.
Ad Hoc Information Extraction for Clinical Data Warehouses.
Dietrich, Georg; Krebs, Jonathan; Fette, Georg; Ertl, Maximilian; Kaspar, Mathias; Störk, Stefan; Puppe, Frank
2018-05-01
Clinical Data Warehouses (CDW) reuse Electronic health records (EHR) to make their data retrievable for research purposes or patient recruitment for clinical trials. However, much information are hidden in unstructured data like discharge letters. They can be preprocessed and converted to structured data via information extraction (IE), which is unfortunately a laborious task and therefore usually not available for most of the text data in CDW. The goal of our work is to provide an ad hoc IE service that allows users to query text data ad hoc in a manner similar to querying structured data in a CDW. While search engines just return text snippets, our systems also returns frequencies (e.g. how many patients exist with "heart failure" including textual synonyms or how many patients have an LVEF < 45) based on the content of discharge letters or textual reports for special investigations like heart echo. Three subtasks are addressed: (1) To recognize and to exclude negations and their scopes, (2) to extract concepts, i.e. Boolean values and (3) to extract numerical values. We implemented an extended version of the NegEx-algorithm for German texts that detects negations and determines their scope. Furthermore, our document oriented CDW PaDaWaN was extended with query functions, e.g. context sensitive queries and regex queries, and an extraction mode for computing the frequencies for Boolean and numerical values. Evaluations in chest X-ray reports and in discharge letters showed high F1-scores for the three subtasks: Detection of negated concepts in chest X-ray reports with an F1-score of 0.99 and in discharge letters with 0.97; of Boolean values in chest X-ray reports about 0.99, and of numerical values in chest X-ray reports and discharge letters also around 0.99 with the exception of the concept age. The advantages of an ad hoc IE over a standard IE are the low development effort (just entering the concept with its variants), the promptness of the results and the adaptability by the user to his or her particular question. Disadvantage are usually lower accuracy and confidence.This ad hoc information extraction approach is novel and exceeds existing systems: Roogle [1] extracts predefined concepts from texts at preprocessing and makes them retrievable at runtime. Dr. Warehouse [2] applies negation detection and indexes the produced subtexts which include affirmed findings. Our approach combines negation detection and the extraction of concepts. But the extraction does not take place during preprocessing, but at runtime. That provides an ad hoc, dynamic, interactive and adjustable information extraction of random concepts and even their values on the fly at runtime. We developed an ad hoc information extraction query feature for Boolean and numerical values within a CDW with high recall and precision based on a pipeline that detects and removes negations and their scope in clinical texts. Schattauer GmbH.
Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore
Ibrahim, Bashar; Henze, Richard; Gruenert, Gerd; Egbert, Matthew; Huwald, Jan; Dittrich, Peter
2013-01-01
A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models. PMID:24709796
A Clb/Cdk1-mediated regulation of Fkh2 synchronizes CLB expression in the budding yeast cell cycle.
Linke, Christian; Chasapi, Anastasia; González-Novo, Alberto; Al Sawad, Istabrak; Tognetti, Silvia; Klipp, Edda; Loog, Mart; Krobitsch, Sylvia; Posas, Francesc; Xenarios, Ioannis; Barberis, Matteo
2017-01-01
Precise timing of cell division is achieved by coupling waves of cyclin-dependent kinase (Cdk) activity with a transcriptional oscillator throughout cell cycle progression. Although details of transcription of cyclin genes are known, it is unclear which is the transcriptional cascade that modulates their expression in a timely fashion. Here, we demonstrate that a Clb/Cdk1-mediated regulation of the Fkh2 transcription factor synchronizes the temporal mitotic CLB expression in budding yeast. A simplified kinetic model of the cyclin/Cdk network predicts a linear cascade where a Clb/Cdk1-mediated regulation of an activator molecule drives CLB3 and CLB2 expression. Experimental validation highlights Fkh2 as modulator of CLB3 transcript levels, besides its role in regulating CLB2 expression. A Boolean model based on the minimal number of interactions needed to capture the information flow of the Clb/Cdk1 network supports the role of an activator molecule in the sequential activation, and oscillatory behavior, of mitotic Clb cyclins. This work illustrates how transcription and phosphorylation networks can be coupled by a Clb/Cdk1-mediated regulation that synchronizes them.
Self-Organized Link State Aware Routing for Multiple Mobile Agents in Wireless Network
NASA Astrophysics Data System (ADS)
Oda, Akihiro; Nishi, Hiroaki
Recently, the importance of data sharing structures in autonomous distributed networks has been increasing. A wireless sensor network is used for managing distributed data. This type of distributed network requires effective information exchanging methods for data sharing. To reduce the traffic of broadcasted messages, reduction of the amount of redundant information is indispensable. In order to reduce packet loss in mobile ad-hoc networks, QoS-sensitive routing algorithm have been frequently discussed. The topology of a wireless network is likely to change frequently according to the movement of mobile nodes, radio disturbance, or fading due to the continuous changes in the environment. Therefore, a packet routing algorithm should guarantee QoS by using some quality indicators of the wireless network. In this paper, a novel information exchanging algorithm developed using a hash function and a Boolean operation is proposed. This algorithm achieves efficient information exchanges by reducing the overhead of broadcasting messages, and it can guarantee QoS in a wireless network environment. It can be applied to a routing algorithm in a mobile ad-hoc network. In the proposed routing algorithm, a routing table is constructed by using the received signal strength indicator (RSSI), and the neighborhood information is periodically broadcasted depending on this table. The proposed hash-based routing entry management by using an extended MAC address can eliminate the overhead of message flooding. An analysis of the collision of hash values contributes to the determination of the length of the hash values, which is minimally required. Based on the verification of a mathematical theory, an optimum hash function for determining the length of hash values can be given. Simulations are carried out to evaluate the effectiveness of the proposed algorithm and to validate the theory in a general wireless network routing algorithm.
Experimental Clocking of Nanomagnets with Strain for Ultralow Power Boolean Logic.
D'Souza, Noel; Salehi Fashami, Mohammad; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha
2016-02-10
Nanomagnetic implementations of Boolean logic have attracted attention because of their nonvolatility and the potential for unprecedented overall energy-efficiency. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque severely compromise the energy-efficiency. Recently, there have been experimental reports of utilizing the Spin Hall effect for switching magnets, and theoretical proposals for strain induced switching of single-domain magnetostrictive nanomagnets, that might reduce the dissipative losses significantly. Here, we experimentally demonstrate, for the first time that strain-induced switching of single-domain magnetostrictive nanomagnets of lateral dimensions ∼200 nm fabricated on a piezoelectric substrate can implement a nanomagnetic Boolean NOT gate and steer bit information unidirectionally in dipole-coupled nanomagnet chains. On the basis of the experimental results with bulk PMN-PT substrates, we estimate that the energy dissipation for logic operations in a reasonably scaled system using thin films will be a mere ∼1 aJ/bit.
Stochastic Models of Emerging Infectious Disease Transmission on Adaptive Random Networks
Pipatsart, Navavat; Triampo, Wannapong
2017-01-01
We presented adaptive random network models to describe human behavioral change during epidemics and performed stochastic simulations of SIR (susceptible-infectious-recovered) epidemic models on adaptive random networks. The interplay between infectious disease dynamics and network adaptation dynamics was investigated in regard to the disease transmission and the cumulative number of infection cases. We found that the cumulative case was reduced and associated with an increasing network adaptation probability but was increased with an increasing disease transmission probability. It was found that the topological changes of the adaptive random networks were able to reduce the cumulative number of infections and also to delay the epidemic peak. Our results also suggest the existence of a critical value for the ratio of disease transmission and adaptation probabilities below which the epidemic cannot occur. PMID:29075314
Qualitative dynamics semantics for SBGN process description.
Rougny, Adrien; Froidevaux, Christine; Calzone, Laurence; Paulevé, Loïc
2016-06-16
Qualitative dynamics semantics provide a coarse-grain modeling of networks dynamics by abstracting away kinetic parameters. They allow to capture general features of systems dynamics, such as attractors or reachability properties, for which scalable analyses exist. The Systems Biology Graphical Notation Process Description language (SBGN-PD) has become a standard to represent reaction networks. However, no qualitative dynamics semantics taking into account all the main features available in SBGN-PD had been proposed so far. We propose two qualitative dynamics semantics for SBGN-PD reaction networks, namely the general semantics and the stories semantics, that we formalize using asynchronous automata networks. While the general semantics extends standard Boolean semantics of reaction networks by taking into account all the main features of SBGN-PD, the stories semantics allows to model several molecules of a network by a unique variable. The obtained qualitative models can be checked against dynamical properties and therefore validated with respect to biological knowledge. We apply our framework to reason on the qualitative dynamics of a large network (more than 200 nodes) modeling the regulation of the cell cycle by RB/E2F. The proposed semantics provide a direct formalization of SBGN-PD networks in dynamical qualitative models that can be further analyzed using standard tools for discrete models. The dynamics in stories semantics have a lower dimension than the general one and prune multiple behaviors (which can be considered as spurious) by enforcing the mutual exclusiveness between the activity of different nodes of a same story. Overall, the qualitative semantics for SBGN-PD allow to capture efficiently important dynamical features of reaction network models and can be exploited to further refine them.
Linking Individual and Collective Behavior in Adaptive Social Networks
NASA Astrophysics Data System (ADS)
Pinheiro, Flávio L.; Santos, Francisco C.; Pacheco, Jorge M.
2016-03-01
Adaptive social structures are known to promote the evolution of cooperation. However, up to now the characterization of the collective, population-wide dynamics resulting from the self-organization of individual strategies on a coevolving, adaptive network has remained unfeasible. Here we establish a (reversible) link between individual (micro)behavior and collective (macro)behavior for coevolutionary processes. We demonstrate that an adaptive network transforms a two-person social dilemma locally faced by individuals into a collective dynamics that resembles that associated with an N -person coordination game, whose characterization depends sensitively on the relative time scales between the entangled behavioral and network evolutions. In particular, we show that the faster the relative rate of adaptation of the network, the smaller the critical fraction of cooperators required for cooperation to prevail, thus establishing a direct link between network adaptation and the evolution of cooperation. The framework developed here is general and may be readily applied to other dynamical processes occurring on adaptive networks, notably, the spreading of contagious diseases or the diffusion of innovations.
Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams
1992-07-01
memories , where careful attention has been given to programming the memory management routines [Brace et al 19901. To extract maximum performance, it...OBDDs) represent Boolean functions as directed acyclic graphs. They form a canonical representation, making testing of functional properties such as...indicated 3 X X2 X3 f 000 0 0 01 0X22 0 10 0 0 11 1 d 1 0 0 0 X3 X 3X 1 01 1 1 10 0 - i"o11 10o 1 1 Figure 1: Truth Table and Decison Tree Repremmtatios
NASA Astrophysics Data System (ADS)
Willemse, Tim A. C.
We introduce the concept of consistent correlations for parameterised Boolean equation systems (PBESs), motivated largely by the laborious proofs of correctness required for most manipulations in this setting. Consistent correlations focus on relating the equations that occur in PBESs, rather than their solutions. For a fragment of PBESs, consistent correlations are shown to coincide with a recently introduced form of bisimulation. Finally, we show that bisimilarity on processes induces consistent correlations on PBESs encoding model checking problems. We apply our theory to two example manipulations from the literature.
A Parallel Approach in Computing Correlation Immunity up to Six Variables
2015-03-10
their nonlinearity is divisible by 4. Let CI(n, k) (respectively, BCI (n, k)) be the number of exact order k correlation im- mune, (respectively...further balanced) n-variable Boolean functions. The notations CI(n, k, d), BCI (n, k, d) restricts the previous count to degree d Boolean functions...Theorem 3. The following are true: (i) BCI (n, n, 0) = 0, CI(n, n, 0) = 2, CI(n, k, 1) = BCI (n, k, 1) = 2 ( n k+1 ) , 0 ≤ k ≤ n− 1. (ii) BCI (n, n− 2) = 2
On Weak and Strong 2k- bent Boolean Functions
2016-01-01
U.S.A. Email: pstanica@nps.edu Abstract—In this paper we introduce a sequence of discrete Fourier transforms and define new versions of bent...denotes the complex conjugate of z. An important tool in our analysis is the discrete Fourier transform , known in Boolean functions literature, as Walsh...Hadamard, or Walsh–Hadamard transform , which is the func- tion Wf : Fn2 → C, defined by Wf (u) = 2− n 2 ∑ x∈Vn (−1)f(x)⊕u·x. Any f ∈ Bn can be
Qubits and quantum Hamiltonian computing performances for operating a digital Boolean 1/2-adder
NASA Astrophysics Data System (ADS)
Dridi, Ghassen; Faizy Namarvar, Omid; Joachim, Christian
2018-04-01
Quantum Boolean (1 + 1) digits 1/2-adders are designed with 3 qubits for the quantum computing (Qubits) and 4 quantum states for the quantum Hamiltonian computing (QHC) approaches. Detailed analytical solutions are provided to analyse the time operation of those different 1/2-adder gates. QHC is more robust to noise than Qubits and requires about the same amount of energy for running its 1/2-adder logical operations. QHC is faster in time than Qubits but its logical output measurement takes longer.
Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria
NASA Astrophysics Data System (ADS)
Chaves, M.; Preto, M.
2013-06-01
A hierarchy of models, ranging from high to lower levels of abstraction, is proposed to construct "minimal" but predictive and explanatory models of biological systems. Three hierarchical levels will be considered: Boolean networks, piecewise affine differential (PWA) equations, and a class of continuous, ordinary, differential equations' models derived from the PWA model. This hierarchy provides different levels of approximation of the biological system and, crucially, allows the use of theoretical tools to more exactly analyze and understand the mechanisms of the system. The Kai ABC oscillator, which is at the core of the cyanobacterial circadian rhythm, is analyzed as a case study, showing how several fundamental properties—order of oscillations, synchronization when mixing oscillating samples, structural robustness, and entrainment by external cues—can be obtained from basic mechanisms.
A Clinical Decision Support System for Breast Cancer Patients
NASA Astrophysics Data System (ADS)
Fernandes, Ana S.; Alves, Pedro; Jarman, Ian H.; Etchells, Terence A.; Fonseca, José M.; Lisboa, Paulo J. G.
This paper proposes a Web clinical decision support system for clinical oncologists and for breast cancer patients making prognostic assessments, using the particular characteristics of the individual patient. This system comprises three different prognostic modelling methodologies: the clinically widely used Nottingham prognostic index (NPI); the Cox regression modelling and a partial logistic artificial neural network with automatic relevance determination (PLANN-ARD). All three models yield a different prognostic index that can be analysed together in order to obtain a more accurate prognostic assessment of the patient. Missing data is incorporated in the mentioned models, a common issue in medical data that was overcome using multiple imputation techniques. Risk group assignments are also provided through a methodology based on regression trees, where Boolean rules can be obtained expressed with patient characteristics.
NASA Astrophysics Data System (ADS)
Maslennikov, O. V.; Nekorkin, V. I.
2017-10-01
Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.
Using Bayesian belief networks in adaptive management.
J.B. Nyberg; B.G. Marcot; R. Sulyma
2006-01-01
Bayesian belief and decision networks are relatively new modeling methods that are especially well suited to adaptive-management applications, but they appear not to have been widely used in adaptive management to date. Bayesian belief networks (BBNs) can serve many purposes for practioners of adaptive management, from illustrating system relations conceptually to...
Method and system for determining induction motor speed
Parlos, Alexander G.; Bharadwaj, Raj M.
2004-03-30
A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.
An end-to-end workflow for engineering of biological networks from high-level specifications.
Beal, Jacob; Weiss, Ron; Densmore, Douglas; Adler, Aaron; Appleton, Evan; Babb, Jonathan; Bhatia, Swapnil; Davidsohn, Noah; Haddock, Traci; Loyall, Joseph; Schantz, Richard; Vasilev, Viktor; Yaman, Fusun
2012-08-17
We present a workflow for the design and production of biological networks from high-level program specifications. The workflow is based on a sequence of intermediate models that incrementally translate high-level specifications into DNA samples that implement them. We identify algorithms for translating between adjacent models and implement them as a set of software tools, organized into a four-stage toolchain: Specification, Compilation, Part Assignment, and Assembly. The specification stage begins with a Boolean logic computation specified in the Proto programming language. The compilation stage uses a library of network motifs and cellular platforms, also specified in Proto, to transform the program into an optimized Abstract Genetic Regulatory Network (AGRN) that implements the programmed behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from a database for the target cellular platform, to create a DNA sequence implementing the AGRN. Finally, the assembly stage computes an optimized assembly plan to create the DNA sequence from available part samples, yielding a protocol for producing a sample of engineered plasmids with robotics assistance. Our workflow is the first to automate the production of biological networks from a high-level program specification. Furthermore, the workflow's modular design allows the same program to be realized on different cellular platforms simply by swapping workflow configurations. We validated our workflow by specifying a small-molecule sensor-reporter program and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli bacterial cells.
Nolan, Samantha; Hendricks, Joyce; Williamson, Moira; Ferguson, Sally
2018-03-01
This article presents a discussion highlighting the relevance and strengths of using narrative inquiry to explore experiences of social networking site (SNS) use by adolescent mothers. Narrative inquiry as a method reveals truths about holistic human experience. Knowledge gleaned from personal narratives informs nursing knowledge and clinical practice. This approach gives voice to adolescent mothers in relation to their experiences with SNS as a means of providing social support. Discussion paper. This paper draws and reflects on the author's experiences using narrative inquiry and is supported by literature and theory. The following databases were searched: CINAHL, Cochrane Library, Medline, Scopus, ERIC, ProQuest, PsychINFO, Web of Science and Health Collection (Informit). Key terms and Boolean search operators were used to broaden the search criteria. Search terms included: adolescent mother, teenage mother, "social networking sites", online, social media, Facebook, social support, social capital and information. Dates for the search were limited to January 1995-June 2017. Narrative research inherently values the individual "story" of experience. This approach facilitates rapport building and methodological flexibility with an often difficult to engage sample group, adolescents. Narrative inquiry reveals a deep level of insight into social networking site use by adolescent mothers. The flexibility afforded by use of a narrative approach allows for fluidity and reflexivity in the research process. © 2017 John Wiley & Sons Ltd.
Sengupta, Abhronil; Shim, Yong; Roy, Kaushik
2016-12-01
Non-Boolean computing based on emerging post-CMOS technologies can potentially pave the way for low-power neural computing platforms. However, existing work on such emerging neuromorphic architectures have either focused on solely mimicking the neuron, or the synapse functionality. While memristive devices have been proposed to emulate biological synapses, spintronic devices have proved to be efficient at performing the thresholding operation of the neuron at ultra-low currents. In this work, we propose an All-Spin Artificial Neural Network where a single spintronic device acts as the basic building block of the system. The device offers a direct mapping to synapse and neuron functionalities in the brain while inter-layer network communication is accomplished via CMOS transistors. To the best of our knowledge, this is the first demonstration of a neural architecture where a single nanoelectronic device is able to mimic both neurons and synapses. The ultra-low voltage operation of low resistance magneto-metallic neurons enables the low-voltage operation of the array of spintronic synapses, thereby leading to ultra-low power neural architectures. Device-level simulations, calibrated to experimental results, was used to drive the circuit and system level simulations of the neural network for a standard pattern recognition problem. Simulation studies indicate energy savings by ∼ 100× in comparison to a corresponding digital/analog CMOS neuron implementation.
Adaptive neural network motion control of manipulators with experimental evaluations.
Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.
Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations
Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910
Logic circuits from zero forcing.
Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael
We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.
Adaptive categorization of ART networks in robot behavior learning using game-theoretic formulation.
Fung, Wai-keung; Liu, Yun-hui
2003-12-01
Adaptive Resonance Theory (ART) networks are employed in robot behavior learning. Two of the difficulties in online robot behavior learning, namely, (1) exponential memory increases with time, (2) difficulty for operators to specify learning tasks accuracy and control learning attention before learning. In order to remedy the aforementioned difficulties, an adaptive categorization mechanism is introduced in ART networks for perceptual and action patterns categorization in this paper. A game-theoretic formulation of adaptive categorization for ART networks is proposed for vigilance parameter adaptation for category size control on the categories formed. The proposed vigilance parameter update rule can help improving categorization performance in the aspect of category number stability and solve the problem of selecting initial vigilance parameter prior to pattern categorization in traditional ART networks. Behavior learning using physical robot is conducted to demonstrate the effectiveness of the proposed adaptive categorization mechanism in ART networks.
Epidemics in Adaptive Social Networks with Temporary Link Deactivation
NASA Astrophysics Data System (ADS)
Tunc, Ilker; Shkarayev, Maxim S.; Shaw, Leah B.
2013-04-01
Disease spread in a society depends on the topology of the network of social contacts. Moreover, individuals may respond to the epidemic by adapting their contacts to reduce the risk of infection, thus changing the network structure and affecting future disease spread. We propose an adaptation mechanism where healthy individuals may choose to temporarily deactivate their contacts with sick individuals, allowing reactivation once both individuals are healthy. We develop a mean-field description of this system and find two distinct regimes: slow network dynamics, where the adaptation mechanism simply reduces the effective number of contacts per individual, and fast network dynamics, where more efficient adaptation reduces the spread of disease by targeting dangerous connections. Analysis of the bifurcation structure is supported by numerical simulations of disease spread on an adaptive network. The system displays a single parameter-dependent stable steady state and non-monotonic dependence of connectivity on link deactivation rate.
Markovian robots: Minimal navigation strategies for active particles
NASA Astrophysics Data System (ADS)
Nava, Luis Gómez; Großmann, Robert; Peruani, Fernando
2018-04-01
We explore minimal navigation strategies for active particles in complex, dynamical, external fields, introducing a class of autonomous, self-propelled particles which we call Markovian robots (MR). These machines are equipped with a navigation control system (NCS) that triggers random changes in the direction of self-propulsion of the robots. The internal state of the NCS is described by a Boolean variable that adopts two values. The temporal dynamics of this Boolean variable is dictated by a closed Markov chain—ensuring the absence of fixed points in the dynamics—with transition rates that may depend exclusively on the instantaneous, local value of the external field. Importantly, the NCS does not store past measurements of this value in continuous, internal variables. We show that despite the strong constraints, it is possible to conceive closed Markov chain motifs that lead to nontrivial motility behaviors of the MR in one, two, and three dimensions. By analytically reducing the complexity of the NCS dynamics, we obtain an effective description of the long-time motility behavior of the MR that allows us to identify the minimum requirements in the design of NCS motifs and transition rates to perform complex navigation tasks such as adaptive gradient following, detection of minima or maxima, or selection of a desired value in a dynamical, external field. We put these ideas in practice by assembling a robot that operates by the proposed minimalistic NCS to evaluate the robustness of MR, providing a proof of concept that is possible to navigate through complex information landscapes with such a simple NCS whose internal state can be stored in one bit. These ideas may prove useful for the engineering of miniaturized robots.
NASA Technical Reports Server (NTRS)
Gupta, Pramod; Loparo, Kenneth; Mackall, Dale; Schumann, Johann; Soares, Fola
2004-01-01
Recent research has shown that adaptive neural based control systems are very effective in restoring stability and control of an aircraft in the presence of damage or failures. The application of an adaptive neural network with a flight critical control system requires a thorough and proven process to ensure safe and proper flight operation. Unique testing tools have been developed as part of a process to perform verification and validation (V&V) of real time adaptive neural networks used in recent adaptive flight control system, to evaluate the performance of the on line trained neural networks. The tools will help in certification from FAA and will help in the successful deployment of neural network based adaptive controllers in safety-critical applications. The process to perform verification and validation is evaluated against a typical neural adaptive controller and the results are discussed.
QOS-aware error recovery in wireless body sensor networks using adaptive network coding.
Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah
2014-12-29
Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.
NASA Astrophysics Data System (ADS)
Gong, Weiwei; Zhou, Xu
2017-06-01
In Computer Science, the Boolean Satisfiability Problem(SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. SAT is one of the first problems that was proven to be NP-complete, which is also fundamental to artificial intelligence, algorithm and hardware design. This paper reviews the main algorithms of the SAT solver in recent years, including serial SAT algorithms, parallel SAT algorithms, SAT algorithms based on GPU, and SAT algorithms based on FPGA. The development of SAT is analyzed comprehensively in this paper. Finally, several possible directions for the development of the SAT problem are proposed.
NASA Technical Reports Server (NTRS)
Strahler, Alan H.; Jupp, David L. B.
1990-01-01
Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.
A Parallel Approach in Computing Correlation Immunity up to Six Variables
2015-07-24
nonlinearity is divisible by 4. Let CI(n, k) (respectively, BCI (n, k)) be the number of exact order k corre- lation immune, (respectively, further...balanced) n-variable Boolean functions. The notations CI(n, k, d), BCI (n, k, d) restricts the previous count to degree d Boolean functions. Theorem 3...The following are true: (i) BCI (n, n, 0) = 0, CI(n, n, 0) = 2, CI(n, k, 1) = BCI (n, k, 1) = 2 ( n k+1 ) , 0 ≤ k ≤ n− 1. (ii) BCI (n, n− 2) = 2 ( n n−1
High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.
Ma, Shaozhen; Chen, Zhe; Sun, Hongzhi; Dutta, Niloy K
2010-03-29
A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.
Huang, Yanyan; Ran, Xiang; Lin, Youhui; Ren, Jinsong; Qu, Xiaogang
2015-04-22
Based on enzymatic reactions-triggered changes of pH values and biocomputing, a novel and multistage interconnection biological network with multiple easy-detectable signal outputs has been developed. Compared with traditional chemical computing, the enzyme-based biological system could overcome the interference between reactions or the incompatibility of individual computing gates and offer a unique opportunity to assemble multicomponent/multifunctional logic circuitries. Our system included four enzyme inputs: β-galactosidase (β-gal), glucose oxidase (GOx), esterase (Est) and urease (Ur). With the assistance of two signal transducers (gold nanoparticles and acid-base indicators) or pH meter, the outputs of the biological network could be conveniently read by the naked eyes. In contrast to current methods, the approach present here could realize cost-effective, label-free and colorimetric logic operations without complicated instrument. By designing a series of Boolean logic operations, we could logically make judgment of the compositions of the samples on the basis of visual output signals. Our work offered a promising paradigm for future biological computing technology and might be highly useful in future intelligent diagnostics, prodrug activation, smart drug delivery, process control, and electronic applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Spontaneous scale-free structure in adaptive networks with synchronously dynamical linking
NASA Astrophysics Data System (ADS)
Yuan, Wu-Jie; Zhou, Jian-Fang; Li, Qun; Chen, De-Bao; Wang, Zhen
2013-08-01
Inspired by the anti-Hebbian learning rule in neural systems, we study how the feedback from dynamical synchronization shapes network structure by adding new links. Through extensive numerical simulations, we find that an adaptive network spontaneously forms scale-free structure, as confirmed in many real systems. Moreover, the adaptive process produces two nontrivial power-law behaviors of deviation strength from mean activity of the network and negative degree correlation, which exists widely in technological and biological networks. Importantly, these scalings are robust to variation of the adaptive network parameters, which may have meaningful implications in the scale-free formation and manipulation of dynamical networks. Our study thus suggests an alternative adaptive mechanism for the formation of scale-free structure with negative degree correlation, which means that nodes of high degree tend to connect, on average, with others of low degree and vice versa. The relevance of the results to structure formation and dynamical property in neural networks is briefly discussed as well.
Elementary signaling modes predict the essentiality of signal transduction network components
2011-01-01
Background Understanding how signals propagate through signaling pathways and networks is a central goal in systems biology. Quantitative dynamic models help to achieve this understanding, but are difficult to construct and validate because of the scarcity of known mechanistic details and kinetic parameters. Structural and qualitative analysis is emerging as a feasible and useful alternative for interpreting signal transduction. Results In this work, we present an integrative computational method for evaluating the essentiality of components in signaling networks. This approach expands an existing signaling network to a richer representation that incorporates the positive or negative nature of interactions and the synergistic behaviors among multiple components. Our method simulates both knockout and constitutive activation of components as node disruptions, and takes into account the possible cascading effects of a node's disruption. We introduce the concept of elementary signaling mode (ESM), as the minimal set of nodes that can perform signal transduction independently. Our method ranks the importance of signaling components by the effects of their perturbation on the ESMs of the network. Validation on several signaling networks describing the immune response of mammals to bacteria, guard cell abscisic acid signaling in plants, and T cell receptor signaling shows that this method can effectively uncover the essentiality of components mediating a signal transduction process and results in strong agreement with the results of Boolean (logical) dynamic models and experimental observations. Conclusions This integrative method is an efficient procedure for exploratory analysis of large signaling and regulatory networks where dynamic modeling or experimental tests are impractical. Its results serve as testable predictions, provide insights into signal transduction and regulatory mechanisms and can guide targeted computational or experimental follow-up studies. The source codes for the algorithms developed in this study can be found at http://www.phys.psu.edu/~ralbert/ESM. PMID:21426566
Nandi, Anjan K; Sumana, Annagiri; Bhattacharya, Kunal
2014-12-06
Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the 'feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Nolan, Samantha; Hendricks, Joyce; Ferguson, Sally; Towell, Amanda
2017-05-01
to critically appraise the available literature and summarise the evidence relating to adolescent mothers' use of social networking sites in terms of any social support and social capital they may provide and to identify areas for future exploration. social networking sites have been demonstrated to provide social support to marginalised individuals and provide psycho-social benefits to members of such groups. Adolescent mothers are at risk of; social marginalisation; anxiety disorders and depressive symptoms; and poorer health and educational outcomes for their children. Social support has been shown to benefit adolescent mothers thus online mechanisms require consideration. a review of original research articles METHOD: key terms and Boolean operators identified research reports across a 20-year timeframe pertaining to the area of enquiry in: CINAHL, Cochrane Library, Medline, Scopus, ERIC, ProQuest, PsychINFO, Web of Science, Health Collection (Informit) and Google Scholar databases. Eight original research articles met the inclusion criteria for this review. studies demonstrate that adolescent mothers actively search for health information using the Internet and social networking sites, and that social support and social capital can be attributed to their use of specifically created online groups from within targeted health interventions. Use of a message board forum for pregnant and parenting adolescents also demonstrates elements of social support. There are no studies to date pertaining to adolescent mothers' use of globally accessible social networking sites in terms of social support provision and related outcomes. further investigation is warranted to explore the potential benefits of adolescent mothers' use of globally accessible social networking sites in terms of any social support provision and social capital they may provide. Copyright © 2017 Elsevier Ltd. All rights reserved.
Asymptotically inspired moment-closure approximation for adaptive networks
NASA Astrophysics Data System (ADS)
Shkarayev, Maxim
2013-03-01
Dynamics of adaptive social networks, in which nodes and network structure co-evolve, are often described using a mean-field system of equations for the density of node and link types. These equations constitute an open system due to dependence on higher order topological structures. We propose a systematic approach to moment closure approximation based on the analytical description of the system in an asymptotic regime. We apply the proposed approach to two examples of adaptive networks: recruitment to a cause model and adaptive epidemic model. We show a good agreement between the mean-field prediction and simulations of the full network system.
Asymptotically inspired moment-closure approximation for adaptive networks
NASA Astrophysics Data System (ADS)
Shkarayev, Maxim S.; Shaw, Leah B.
2013-11-01
Adaptive social networks, in which nodes and network structure coevolve, are often described using a mean-field system of equations for the density of node and link types. These equations constitute an open system due to dependence on higher-order topological structures. We propose a new approach to moment closure based on the analytical description of the system in an asymptotic regime. We apply the proposed approach to two examples of adaptive networks: recruitment to a cause model and adaptive epidemic model. We show a good agreement between the improved mean-field prediction and simulations of the full network system.
Combinatorial explosion in model gene networks
NASA Astrophysics Data System (ADS)
Edwards, R.; Glass, L.
2000-09-01
The explosive growth in knowledge of the genome of humans and other organisms leaves open the question of how the functioning of genes in interacting networks is coordinated for orderly activity. One approach to this problem is to study mathematical properties of abstract network models that capture the logical structures of gene networks. The principal issue is to understand how particular patterns of activity can result from particular network structures, and what types of behavior are possible. We study idealized models in which the logical structure of the network is explicitly represented by Boolean functions that can be represented by directed graphs on n-cubes, but which are continuous in time and described by differential equations, rather than being updated synchronously via a discrete clock. The equations are piecewise linear, which allows significant analysis and facilitates rapid integration along trajectories. We first give a combinatorial solution to the question of how many distinct logical structures exist for n-dimensional networks, showing that the number increases very rapidly with n. We then outline analytic methods that can be used to establish the existence, stability and periods of periodic orbits corresponding to particular cycles on the n-cube. We use these methods to confirm the existence of limit cycles discovered in a sample of a million randomly generated structures of networks of 4 genes. Even with only 4 genes, at least several hundred different patterns of stable periodic behavior are possible, many of them surprisingly complex. We discuss ways of further classifying these periodic behaviors, showing that small mutations (reversal of one or a few edges on the n-cube) need not destroy the stability of a limit cycle. Although these networks are very simple as models of gene networks, their mathematical transparency reveals relationships between structure and behavior, they suggest that the possibilities for orderly dynamics in such networks are extremely rich and they offer novel ways to think about how mutations can alter dynamics.
Combinatorial explosion in model gene networks.
Edwards, R.; Glass, L.
2000-09-01
The explosive growth in knowledge of the genome of humans and other organisms leaves open the question of how the functioning of genes in interacting networks is coordinated for orderly activity. One approach to this problem is to study mathematical properties of abstract network models that capture the logical structures of gene networks. The principal issue is to understand how particular patterns of activity can result from particular network structures, and what types of behavior are possible. We study idealized models in which the logical structure of the network is explicitly represented by Boolean functions that can be represented by directed graphs on n-cubes, but which are continuous in time and described by differential equations, rather than being updated synchronously via a discrete clock. The equations are piecewise linear, which allows significant analysis and facilitates rapid integration along trajectories. We first give a combinatorial solution to the question of how many distinct logical structures exist for n-dimensional networks, showing that the number increases very rapidly with n. We then outline analytic methods that can be used to establish the existence, stability and periods of periodic orbits corresponding to particular cycles on the n-cube. We use these methods to confirm the existence of limit cycles discovered in a sample of a million randomly generated structures of networks of 4 genes. Even with only 4 genes, at least several hundred different patterns of stable periodic behavior are possible, many of them surprisingly complex. We discuss ways of further classifying these periodic behaviors, showing that small mutations (reversal of one or a few edges on the n-cube) need not destroy the stability of a limit cycle. Although these networks are very simple as models of gene networks, their mathematical transparency reveals relationships between structure and behavior, they suggest that the possibilities for orderly dynamics in such networks are extremely rich and they offer novel ways to think about how mutations can alter dynamics. (c) 2000 American Institute of Physics.
A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy
Wen, Hui; Xie, Weixin; Pei, Jihong
2016-01-01
This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms. PMID:27792737
New transmission scheme to enhance throughput of DF relay network using rate and power adaptation
NASA Astrophysics Data System (ADS)
Taki, Mehrdad; Heshmati, Milad
2017-09-01
This paper presents a new transmission scheme for a decode and forward (DF) relay network using continuous power adaptation while independent average power constraints are provisioned for each node. To have analytical insight, the achievable throughputs are analysed using continuous adaptation of the rates and the powers. As shown by numerical evaluations, a considerable outperformance is seen by continuous power adaptation compared to the case where constant powers are utilised. Also for practical systems, a new throughput maximised transmission scheme is developed using discrete rate adaptation (adaptive modulation and coding) and continuous transmission power adaptation. First a 2-hop relay network is considered and then the scheme is extended for an N-hop network. Numerical evaluations show the efficiency of the designed schemes.
Barnabe, Cheryl; Thanh, Nguyen Xuan; Ohinmaa, Arto; Homik, Joanne; Barr, Susan G; Martin, Liam; Maksymowych, Walter P
2014-08-01
Sustained remission in rheumatoid arthritis (RA) results in healthcare utilization cost savings. We evaluated the variation in estimates of savings when different definitions of remission [2011 American College of Rheumatology/European League Against Rheumatism Boolean Definition, Simplified Disease Activity Index (SDAI) ≤ 3.3, Clinical Disease Activity Index (CDAI) ≤ 2.8, and Disease Activity Score-28 (DAS28) ≤ 2.6] are applied. The annual mean healthcare service utilization costs were estimated from provincial physician billing claims, outpatient visits, and hospitalizations, with linkage to clinical data from the Alberta Biologics Pharmacosurveillance Program (ABioPharm). Cost savings in patients who had a 1-year continuous period of remission were compared to those who did not, using 4 definitions of remission. In 1086 patients, sustained remission rates were 16.1% for DAS28, 8.8% for Boolean, 5.5% for CDAI, and 4.2% for SDAI. The estimated mean annual healthcare cost savings per patient achieving remission (relative to not) were SDAI $1928 (95% CI 592, 3264), DAS28 $1676 (95% CI 987, 2365), and Boolean $1259 (95% CI 417, 2100). The annual savings by CDAI remission per patient were not significant at $423 (95% CI -1757, 2602). For patients in DAS28, Boolean, and SDAI remission, savings were seen both in costs directly related to RA and its comorbidities, and in costs for non-RA-related conditions. The magnitude of the healthcare cost savings varies according to the remission definition used in classifying patient disease status. The highest point estimate for cost savings was observed in patients attaining SDAI remission and the least with the CDAI; confidence intervals for these estimates do overlap. Future pharmacoeconomic analyses should employ all response definitions in assessing the influence of treatment.
Hirabayashi, Yasuhiko; Ishii, Tomonori
2013-01-01
To seek the cutoff value of the 28-joint disease activity score using erythrocyte sedimentation rate (DAS28-ESR) that is necessary to achieve remission under the new Boolean-based criteria, we analyzed the data for 285 patients with rheumatoid arthritis registered between May 2008 and November 2009 by the Michinoku Tocilizumab Study Group and observed for 1 year after receiving tocilizumab (TCZ) in real clinical practice. Remission rates under the DAS28-ESR criteria and the Boolean criteria were assessed every 6 months after the first TCZ dose. The DAS28-ESR cutoff value necessary to achieve remission under the new criteria was analyzed by receiver operating characteristic (ROC) analysis. Data were analyzed using last observation carried forward. After 12 months of TCZ use, remission was achieved in 164 patients (57.5 %) by DAS28-ESR and 71 patients (24.9 %) under the new criteria for clinical trials. CRP levels scarcely affected remission rates, and the difference between remission rates defined by DAS28-ESR and by the new criteria was mainly due to patient global assessment (PGA). Improvement of PGA was inversely related to disease duration. ROC analysis revealed that the DAS28-ESR cutoff value necessary to predict remission under the new criteria for clinical trials was 1.54, with a sensitivity of 88.7 %, specificity of 85.5 %, positive predictive value of 67.0 %, and negative predictive value of 95.8 %. A DAS28-ESR cutoff value of 1.54 may be reasonable to predict achievement of remission under the new Boolean-based criteria for clinical trials in patients receiving TCZ.
The fuzzy cube and causal efficacy: representation of concomitant mechanisms in stroke.
Jobe, Thomas H.; Helgason, Cathy M.
1998-04-01
Twentieth century medical science has embraced nineteenth century Boolean probability theory based upon two-valued Aristotelian logic. With the later addition of bit-based, von Neumann structured computational architectures, an epistemology based on randomness has led to a bivalent epidemiological methodology that dominates medical decision making. In contrast, fuzzy logic, based on twentieth century multi-valued logic, and computational structures that are content addressed and adaptively modified, has advanced a new scientific paradigm for the twenty-first century. Diseases such as stroke involve multiple concomitant causal factors that are difficult to represent using conventional statistical methods. We tested which paradigm best represented this complex multi-causal clinical phenomenon-stroke. We show that the fuzzy logic paradigm better represented clinical complexity in cerebrovascular disease than current probability theory based methodology. We believe this finding is generalizable to all of clinical science since multiple concomitant causal factors are involved in nearly all known pathological processes.
NASA Astrophysics Data System (ADS)
Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min
2015-12-01
In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune
2011-07-12
This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet.more » The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks using feasibly-implementable rate adaptivity. • A buffer-management algorithm that is designed to reduce the size of router buffers, and hence energy consumed. • A packet-scheduling algorithm designed to minimize packet-processing energy requirements. Additional research is recommended in at least two areas: further exploration of rate-adaptation in network switching equipment, including incorporation of rate-adaptation in actual hardware, allowing experimentation in operational networks; and development of control protocols that allow parts of networks to be shut down while minimizing disruption to traffic flow in the network. The research is an integral part of a large effort within Bell Laboratories, Alcatel-Lucent, aimed at dramatic improvements in the energy efficiency of telecommunication networks. This Study did not explicitly consider any commercialization opportunities.« less
Networked Airborne Communications Using Adaptive Multi Beam Directional Links
2016-03-05
Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach
Evaluation of electrosurgical interference to low-power spread-spectrum local area net transceivers.
Gibby, G L; Schwab, W K; Miller, W C
1997-11-01
To study whether an electrosurgery device interferes with the operation of a low-power spread-spectrum wireless network adapter. Nonrandomized, unblinded trials with controls, conducted in the corridor of our institution's operating suite using two portable computers equipped with RoamAbout omnidirectional 250 mW spread-spectrum 928 MHz wireless network adapters. To simulate high power electrosurgery interference, a 100-watt continuous electrocoagulation arc was maintained five feet from the receiving adapter, while device reported signal to noise values were measured at 150 feet and 400 feet distance between the wireless-networked computers. At 150 feet range, and with continuous 100-watt electrocoagulation arc five feet from one computer, error-corrected local area net throughput was measured by sending and receiving a large file multiple times. The reported signal to noise (N = 50) decreased with electrocoagulation from 36.42+/-3.47 (control) to 31.85+/-3.64 (electrocoagulation) (p < 0.001) at 400 feet inter-adapter distance, and from 64.53+/-1.43 (control) to 60.12+/-3.77 (electrocoagulation) (p < 0.001) at 150 feet inter-adapter distance. There was no statistically significant change in network throughput (average 93 kbyte/second) at 150 feet inter-adapter distance, either transmitting or receiving during continuous 100 Watt electrocoagulation arc. The manufacturer indicates "acceptable" performance will be obtained with signal to noise values as low as 20. In view of this, while electrocoagulation affects this spread spectrum network adapter, the effects are small even at 400 feet. At a distance of 150 feet, no discernible effect on network communications was found, suggesting that if other obstructions are minimal, within a wide range on one floor of an operating suite, network communications may be maintained using the technology of this wireless spread spectrum network adapter. The impact of such adapters on cardiac pacemakers should be studied. Wireless spread spectrum network adapters are an attractive technology for mobile computer communications in the operating room.
Adaptive mechanism-based congestion control for networked systems
NASA Astrophysics Data System (ADS)
Liu, Zhi; Zhang, Yun; Chen, C. L. Philip
2013-03-01
In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.
Keef, Ericka; Zhang, Li Ang; Swigon, David; Urbano, Alisa; Ermentrout, G Bard; Matuszewski, Michael; Toapanta, Franklin R; Ross, Ted M; Parker, Robert S; Clermont, Gilles
2017-12-01
Immunosenescence, an age-related decline in immune function, is a major contributor to morbidity and mortality in the elderly. Older hosts exhibit a delayed onset of immunity and prolonged inflammation after an infection, leading to excess damage and a greater likelihood of death. Our study applies a rule-based model to infer which components of the immune response are most changed in an aged host. Two groups of BALB/c mice (aged 12 to 16 weeks and 72 to 76 weeks) were infected with 2 inocula: a survivable dose of 50 PFU and a lethal dose of 500 PFU. Data were measured at 10 points over 19 days in the sublethal case and at 6 points over 7 days in the lethal case, after which all mice had died. Data varied primarily in the onset of immunity, particularly the inflammatory response, which led to a 2-day delay in the clearance of the virus from older hosts in the sublethal cohort. We developed a Boolean model to describe the interactions between the virus and 21 immune components, including cells, chemokines, and cytokines, of innate and adaptive immunity. The model identifies distinct sets of rules for each age group by using Boolean operators to describe the complex series of interactions that activate and deactivate immune components. Our model accurately simulates the immune responses of mice of both ages and with both inocula included in the data (95% accurate for younger mice and 94% accurate for older mice) and shows distinct rule choices for the innate immunity arm of the model between younger and aging mice in response to influenza A virus infection. IMPORTANCE Influenza virus infection causes high morbidity and mortality rates every year, especially in the elderly. The elderly tend to have a delayed onset of many immune responses as well as prolonged inflammatory responses, leading to an overall weakened response to infection. Many of the details of immune mechanisms that change with age are currently not well understood. We present a rule-based model of the intrahost immune response to influenza virus infection. The model is fit to experimental data for young and old mice infected with influenza virus. We generated distinct sets of rules for each age group to capture the temporal differences seen in the immune responses of these mice. These rules describe a network of interactions leading to either clearance of the virus or death of the host, depending on the initial dosage of the virus. Our models clearly demonstrate differences in these two age groups, particularly in the innate immune responses. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyadera, Takayuki; Imai, Hideki; Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551
This paper discusses the no-cloning theorem in a logicoalgebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result, indicating a relation between the cloningmore » on effect algebras and hidden variables.« less
Diagnostic reasoning techniques for selective monitoring
NASA Technical Reports Server (NTRS)
Homem-De-mello, L. S.; Doyle, R. J.
1991-01-01
An architecture for using diagnostic reasoning techniques in selective monitoring is presented. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that changes are slow enough to allow the computation.
1982-11-05
routines required by the Back End. 3.3 Detailed Functional Requirements 3.3.1 Front End 3.3.1.1 DRIVER The DRIVER is the primary user interface to the...Main 2. Exam ple" !.i ,, , ,vari able • id -: go for B Boolean Ai ’ A" ’ I type d 1 I , for Boolean I (from Standard) i I - - for A function i fuction ...TN in. If a TN cannot be allocated to the primary area of storage it needs(such as a register) it is allocated to the spill area reserved in the local
Nadkarni, P M
1997-08-01
Concept Locator (CL) is a client-server application that accesses a Sybase relational database server containing a subset of the UMLS Metathesaurus for the purpose of retrieval of concepts corresponding to one or more query expressions supplied to it. CL's query grammar permits complex Boolean expressions, wildcard patterns, and parenthesized (nested) subexpressions. CL translates the query expressions supplied to it into one or more SQL statements that actually perform the retrieval. The generated SQL is optimized by the client to take advantage of the strengths of the server's query optimizer, and sidesteps its weaknesses, so that execution is reasonably efficient.
A comparison of Boolean-based retrieval to the WAIS system for retrieval of aeronautical information
NASA Technical Reports Server (NTRS)
Marchionini, Gary; Barlow, Diane
1994-01-01
An evaluation of an information retrieval system using a Boolean-based retrieval engine and inverted file architecture and WAIS, which uses a vector-based engine, was conducted. Four research questions in aeronautical engineering were used to retrieve sets of citations from the NASA Aerospace Database which was mounted on a WAIS server and available through Dialog File 108 which served as the Boolean-based system (BBS). High recall and high precision searches were done in the BBS and terse and verbose queries were used in the WAIS condition. Precision values for the WAIS searches were consistently above the precision values for high recall BBS searches and consistently below the precision values for high precision BBS searches. Terse WAIS queries gave somewhat better precision performance than verbose WAIS queries. In every case, a small number of relevant documents retrieved by one system were not retrieved by the other, indicating the incomplete nature of the results from either retrieval system. Relevant documents in the WAIS searches were found to be randomly distributed in the retrieved sets rather than distributed by ranks. Advantages and limitations of both types of systems are discussed.
Boolean logic analysis for flow regime recognition of gas-liquid horizontal flow
NASA Astrophysics Data System (ADS)
Ramskill, Nicholas P.; Wang, Mi
2011-10-01
In order to develop a flowmeter for the accurate measurement of multiphase flows, it is of the utmost importance to correctly identify the flow regime present to enable the selection of the optimal method for metering. In this study, the horizontal flow of air and water in a pipeline was studied under a multitude of conditions using electrical resistance tomography but the flow regimes that are presented in this paper have been limited to plug and bubble air-water flows. This study proposes a novel method for recognition of the prevalent flow regime using only a fraction of the data, thus rendering the analysis more efficient. By considering the average conductivity of five zones along the central axis of the tomogram, key features can be identified, thus enabling the recognition of the prevalent flow regime. Boolean logic and frequency spectrum analysis has been applied for flow regime recognition. Visualization of the flow using the reconstructed images provides a qualitative comparison between different flow regimes. Application of the Boolean logic scheme enables a quantitative comparison of the flow patterns, thus reducing the subjectivity in the identification of the prevalent flow regime.
Intelligent neural network and fuzzy logic control of industrial and power systems
NASA Astrophysics Data System (ADS)
Kuljaca, Ognjen
The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.
Doulamis, A D; Doulamis, N D; Kollias, S D
2003-01-01
Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.
Adaptive-network models of collective dynamics
NASA Astrophysics Data System (ADS)
Zschaler, G.
2012-09-01
Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge. Moreover, we show what minimal microscopic interaction rules determine whether the transition to collective motion is continuous or discontinuous. Second, we consider a model of opinion formation in groups of individuals, where we focus on the effect of directed links in adaptive networks. Extending the adaptive voter model to directed networks, we find a novel fragmentation mechanism, by which the network breaks into distinct components of opposing agents. This fragmentation is mediated by the formation of self-stabilizing structures in the network, which do not occur in the undirected case. We find that they are related to degree correlations stemming from the interplay of link directionality and adaptive topological change. Third, we discuss a model for the evolution of cooperation among self-interested agents, in which the adaptive nature of their interaction network gives rise to a novel dynamical mechanism promoting cooperation. We show that even full cooperation can be achieved asymptotically if the networks' adaptive response to the agents' dynamics is sufficiently fast.
Terfve, Camille; Cokelaer, Thomas; Henriques, David; MacNamara, Aidan; Goncalves, Emanuel; Morris, Melody K; van Iersel, Martijn; Lauffenburger, Douglas A; Saez-Rodriguez, Julio
2012-10-18
Cells process signals using complex and dynamic networks. Studying how this is performed in a context and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but formalisms that can take advantage of these features to build models of signaling are still comparatively scarce. Here we present CellNOptR, an open-source R software package for building predictive logic models of signaling networks by training networks derived from prior knowledge to signaling (typically phosphoproteomic) data. CellNOptR features different logic formalisms, from Boolean models to differential equations, in a common framework. These different logic model representations accommodate state and time values with increasing levels of detail. We provide in addition an interface via Cytoscape (CytoCopteR) to facilitate use and integration with Cytoscape network-based capabilities. Models generated with this pipeline have two key features. First, they are constrained by prior knowledge about the network but trained to data. They are therefore context and cell line specific, which results in enhanced predictive and mechanistic insights. Second, they can be built using different logic formalisms depending on the richness of the available data. Models built with CellNOptR are useful tools to understand how signals are processed by cells and how this is altered in disease. They can be used to predict the effect of perturbations (individual or in combinations), and potentially to engineer therapies that have differential effects/side effects depending on the cell type or context.
2012-01-01
Background Cells process signals using complex and dynamic networks. Studying how this is performed in a context and cell type specific way is essential to understand signaling both in physiological and diseased situations. Context-specific medium/high throughput proteomic data measured upon perturbation is now relatively easy to obtain but formalisms that can take advantage of these features to build models of signaling are still comparatively scarce. Results Here we present CellNOptR, an open-source R software package for building predictive logic models of signaling networks by training networks derived from prior knowledge to signaling (typically phosphoproteomic) data. CellNOptR features different logic formalisms, from Boolean models to differential equations, in a common framework. These different logic model representations accommodate state and time values with increasing levels of detail. We provide in addition an interface via Cytoscape (CytoCopteR) to facilitate use and integration with Cytoscape network-based capabilities. Conclusions Models generated with this pipeline have two key features. First, they are constrained by prior knowledge about the network but trained to data. They are therefore context and cell line specific, which results in enhanced predictive and mechanistic insights. Second, they can be built using different logic formalisms depending on the richness of the available data. Models built with CellNOptR are useful tools to understand how signals are processed by cells and how this is altered in disease. They can be used to predict the effect of perturbations (individual or in combinations), and potentially to engineer therapies that have differential effects/side effects depending on the cell type or context. PMID:23079107
Hu, Jin; Zeng, Chunna
2017-02-01
The complex-valued Cohen-Grossberg neural network is a special kind of complex-valued neural network. In this paper, the synchronization problem of a class of complex-valued Cohen-Grossberg neural networks with known and unknown parameters is investigated. By using Lyapunov functionals and the adaptive control method based on parameter identification, some adaptive feedback schemes are proposed to achieve synchronization exponentially between the drive and response systems. The results obtained in this paper have extended and improved some previous works on adaptive synchronization of Cohen-Grossberg neural networks. Finally, two numerical examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Laarits, T; Bordalo, P; Lemos, B
2016-08-01
Regulatory networks play a central role in the modulation of gene expression, the control of cellular differentiation, and the emergence of complex phenotypes. Regulatory networks could constrain or facilitate evolutionary adaptation in gene expression levels. Here, we model the adaptation of regulatory networks and gene expression levels to a shift in the environment that alters the optimal expression level of a single gene. Our analyses show signatures of natural selection on regulatory networks that both constrain and facilitate rapid evolution of gene expression level towards new optima. The analyses are interpreted from the standpoint of neutral expectations and illustrate the challenge to making inferences about network adaptation. Furthermore, we examine the consequence of variable stabilizing selection across genes on the strength and direction of interactions in regulatory networks and in their subsequent adaptation. We observe that directional selection on a highly constrained gene previously under strong stabilizing selection was more efficient when the gene was embedded within a network of partners under relaxed stabilizing selection pressure. The observation leads to the expectation that evolutionarily resilient regulatory networks will contain optimal ratios of genes whose expression is under weak and strong stabilizing selection. Altogether, our results suggest that the variable strengths of stabilizing selection across genes within regulatory networks might itself contribute to the long-term adaptation of complex phenotypes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Electrooptical adaptive switching network for the hypercube computer
NASA Technical Reports Server (NTRS)
Chow, E.; Peterson, J.
1988-01-01
An all-optical network design for the hyperswitch network using regular free-space interconnects between electronic processor nodes is presented. The adaptive routing model used is described, and an adaptive routing control example is presented. The design demonstrates that existing electrooptical techniques are sufficient for implementing efficient parallel architectures without the need for more complex means of implementing arbitrary interconnection schemes. The electrooptical hyperswitch network significantly improves the communication performance of the hypercube computer.
Self-organizing network services with evolutionary adaptation.
Nakano, Tadashi; Suda, Tatsuya
2005-09-01
This paper proposes a novel framework for developing adaptive and scalable network services. In the proposed framework, a network service is implemented as a group of autonomous agents that interact in the network environment. Agents in the proposed framework are autonomous and capable of simple behaviors (e.g., replication, migration, and death). In this paper, an evolutionary adaptation mechanism is designed using genetic algorithms (GAs) for agents to evolve their behaviors and improve their fitness values (e.g., response time to a service request) to the environment. The proposed framework is evaluated through simulations, and the simulation results demonstrate the ability of autonomous agents to adapt to the network environment. The proposed framework may be suitable for disseminating network services in dynamic and large-scale networks where a large number of data and services need to be replicated, moved, and deleted in a decentralized manner.
Improving the energy efficiency of telecommunication networks
NASA Astrophysics Data System (ADS)
Lange, Christoph; Gladisch, Andreas
2011-05-01
The energy consumption of telecommunication networks has gained increasing interest throughout the recent past: Besides its environmental implications it has been identified to be a major contributor to operational expenditures of network operators. Targeting at sustainable telecommunication networks, thus, it is important to find appropriate strategies for improving their energy efficiency before the background of rapidly increasing traffic volumes. Besides the obvious benefits of increasing energy efficiency of network elements by leveraging technology progress, load-adaptive network operation is a very promising option, i.e. using network resources only to an extent and for the time they are actually needed. In contrast, current network operation takes almost no advantage of the strongly time-variant behaviour of the network traffic load. Mechanisms for energy-aware load-adaptive network operation can be subdivided in techniques based on local autonomous or per-link decisions and in techniques relying on coordinated decisions incorporating information from several links. For the transformation from current network structures and operation paradigms towards energy-efficient and sustainable networks it will be essential to use energy-optimized network elements as well as including the overall energy consumption in network design and planning phases together with the energy-aware load-adaptive operation. In load-adaptive operation it will be important to establish the optimum balance between local and overarching power management concepts in telecommunication networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael
2012-07-24
The goal of the DTRA project is to develop a mathematical framework that will provide the fundamental understanding of network survivability, algorithms for detecting/inferring pre-cursors of abnormal network behaviors, and methods for network adaptability and self-healing from cascading failures.
Mobilization and Adaptation of a Rural Cradle-to-Career Network
ERIC Educational Resources Information Center
Zuckerman, Sarah J.
2016-01-01
This case study explored the development of a rural cradle-to-career network with a dual focus on the initial mobilization of network members and subsequent adaptations made to maintain mobilization, while meeting local needs. Data sources included interviews with network members, observations of meetings, and documentary evidence. Network-based…
Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.
Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems. PMID:28809957
Bayesian Analysis for Exponential Random Graph Models Using the Adaptive Exchange Sampler.
Jin, Ick Hoon; Yuan, Ying; Liang, Faming
2013-10-01
Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the intractable normalizing constant and model degeneracy. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the intractable normalizing constant and model degeneracy issues encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.
Emergent explosive synchronization in adaptive complex networks
NASA Astrophysics Data System (ADS)
Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.
2018-04-01
Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.
Emergent explosive synchronization in adaptive complex networks.
Avalos-Gaytán, Vanesa; Almendral, Juan A; Leyva, I; Battiston, F; Nicosia, V; Latora, V; Boccaletti, S
2018-04-01
Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.
Nikolaev, Anton; Zheng, Lei; Wardill, Trevor J; O'Kane, Cahir J; de Polavieja, Gonzalo G; Juusola, Mikko
2009-01-01
Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information.
2016-10-01
and implementation of embedded, adaptive feedback and performance assessment. The investigators also initiated work designing a Bayesian Belief ...training; Teamwork; Adaptive performance; Leadership; Simulation; Modeling; Bayesian belief networks (BBN) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Trauma teams Team training Teamwork Adaptability Adaptive performance Leadership Simulation Modeling Bayesian belief networks (BBN) 6
Wang, Lei
2013-04-01
Understanding the transport mechanism of 1,3-propanediol (1,3-PD) is of critical importance to do further research on gene regulation. Due to the lack of intracellular information, on the basis of enzyme-catalytic system, using biological robustness as performance index, we present a system identification model to infer the most possible transport mechanism of 1,3-PD, in which the performance index consists of the relative error of the extracellular substance concentrations and biological robustness of the intracellular substance concentrations. We will not use a Boolean framework but prefer a model description based on ordinary differential equations. Among other advantages, this also facilitates the robustness analysis, which is the main goal of this paper. An algorithm is constructed to seek the solution of the identification model. Numerical results show that the most possible transport way is active transport coupled with passive diffusion.
Biosensors with Built-In Biomolecular Logic Gates for Practical Applications
Lai, Yu-Hsuan; Sun, Sin-Cih; Chuang, Min-Chieh
2014-01-01
Molecular logic gates, designs constructed with biological and chemical molecules, have emerged as an alternative computing approach to silicon-based logic operations. These molecular computers are capable of receiving and integrating multiple stimuli of biochemical significance to generate a definitive output, opening a new research avenue to advanced diagnostics and therapeutics which demand handling of complex factors and precise control. In molecularly gated devices, Boolean logic computations can be activated by specific inputs and accurately processed via bio-recognition, bio-catalysis, and selective chemical reactions. In this review, we survey recent advances of the molecular logic approaches to practical applications of biosensors, including designs constructed with proteins, enzymes, nucleic acids, nanomaterials, and organic compounds, as well as the research avenues for future development of digitally operating “sense and act” schemes that logically process biochemical signals through networked circuits to implement intelligent control systems. PMID:25587423
Post optimization paradigm in maximum 3-satisfiability logic programming
NASA Astrophysics Data System (ADS)
Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd
2017-08-01
Maximum 3-Satisfiability (MAX-3SAT) is a counterpart of the Boolean satisfiability problem that can be treated as a constraint optimization problem. It deals with a conundrum of searching the maximum number of satisfied clauses in a particular 3-SAT formula. This paper presents the implementation of enhanced Hopfield network in hastening the Maximum 3-Satisfiability (MAX-3SAT) logic programming. Four post optimization techniques are investigated, including the Elliot symmetric activation function, Gaussian activation function, Wavelet activation function and Hyperbolic tangent activation function. The performances of these post optimization techniques in accelerating MAX-3SAT logic programming will be discussed in terms of the ratio of maximum satisfied clauses, Hamming distance and the computation time. Dev-C++ was used as the platform for training, testing and validating our proposed techniques. The results depict the Hyperbolic tangent activation function and Elliot symmetric activation function can be used in doing MAX-3SAT logic programming.
Speaker normalization and adaptation using second-order connectionist networks.
Watrous, R L
1993-01-01
A method for speaker normalization and adaption using connectionist networks is developed. A speaker-specific linear transformation of observations of the speech signal is computed using second-order network units. Classification is accomplished by a multilayer feedforward network that operates on the normalized speech data. The network is adapted for a new talker by modifying the transformation parameters while leaving the classifier fixed. This is accomplished by backpropagating classification error through the classifier to the second-order transformation units. This method was evaluated for the classification of ten vowels for 76 speakers using the first two formant values of the Peterson-Barney data. The results suggest that rapid speaker adaptation resulting in high classification accuracy can be accomplished by this method.
NASA Astrophysics Data System (ADS)
Fischer, A.
2012-12-01
Social networks are the patterned interactions among individuals and organizations through which people refine their beliefs and values, negotiate meanings for things and develop behavioral intentions. The structure of social networks has bearing on how people communicate information, generate and retain knowledge, make decisions and act collectively. Thus, social network structure is important for how people perceive, shape and adapt to the environment. We investigated the relationship between social network structure and human adaptation to wildfire risk in the fire-prone forested landscape of Central Oregon. We conducted descriptive and non-parametric social network analysis on data gathered through interviews to 1) characterize the structure of the network of organizations involved in forest and wildfire issues and 2) determine whether network structure is associated with organizations' beliefs, values and behaviors regarding fire and forest management. Preliminary findings indicate that fire protection and forest-related organizations do not frequently communicate or cooperate, suggesting that opportunities for joint problem-solving, innovation and collective action are limited. Preliminary findings also suggest that organizations with diverse partners are more likely to hold adaptive beliefs about wildfire and work cooperatively. We discuss the implications of social network structure for adaptation to changing environmental conditions such as wildfire risk.
Coevolution of dynamical states and interactions in dynamic networks
NASA Astrophysics Data System (ADS)
Zimmermann, Martín G.; Eguíluz, Víctor M.; San Miguel, Maxi
2004-06-01
We explore the coupled dynamics of the internal states of a set of interacting elements and the network of interactions among them. Interactions are modeled by a spatial game and the network of interaction links evolves adapting to the outcome of the game. As an example, we consider a model of cooperation in which the adaptation is shown to facilitate the formation of a hierarchical interaction network that sustains a highly cooperative stationary state. The resulting network has the characteristics of a small world network when a mechanism of local neighbor selection is introduced in the adaptive network dynamics. The highly connected nodes in the hierarchical structure of the network play a leading role in the stability of the network. Perturbations acting on the state of these special nodes trigger global avalanches leading to complete network reorganization.
Boolean function applied to Mimosa pudica movements.
De Luccia, Thiago Paes de Barros; Friedman, Pedro
2011-09-01
Seismonastic or thigmonastic movements of Mimosa pudica L. is mostly because of the fast loss of water from swollen motor cells, resulting in temporary collapse of cells and quick curvature in the parts where these cells are located. Because of this, the plant has been much studied since the 18th century, leading us to think about the classical binomial stimulus-response (action-reaction) when compared to animals. Mechanic and electrical stimuli were used to investigate the analogy of mimosa branch with an artificial neuron model and to observe the action potential propagation through the mimosa branch. Boolean function applied to the mimosa branch in analogy with an artificial neuron model is one of the peculiarities of our hypothesis.
Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Zhong, Y. P.; Deng, Y. F.
2013-12-21
Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.
Reservoir computing with a single time-delay autonomous Boolean node
NASA Astrophysics Data System (ADS)
Haynes, Nicholas D.; Soriano, Miguel C.; Rosin, David P.; Fischer, Ingo; Gauthier, Daniel J.
2015-02-01
We demonstrate reservoir computing with a physical system using a single autonomous Boolean logic element with time-delay feedback. The system generates a chaotic transient with a window of consistency lasting between 30 and 300 ns, which we show is sufficient for reservoir computing. We then characterize the dependence of computational performance on system parameters to find the best operating point of the reservoir. When the best parameters are chosen, the reservoir is able to classify short input patterns with performance that decreases over time. In particular, we show that four distinct input patterns can be classified for 70 ns, even though the inputs are only provided to the reservoir for 7.5 ns.
Questions Revisited: A Close Examination of Calculus of Inference and Inquiry
NASA Technical Reports Server (NTRS)
Knuth, Kevin H.; Koga, Dennis (Technical Monitor)
2003-01-01
In this paper I examine more closely the way in which probability theory, the calculus of inference, is derived from the Boolean lattice structure of logical assertions ordered by implication. I demonstrate how the duality between the logical conjunction and disjunction in Boolean algebra is lost when deriving the probability calculus. In addition, I look more closely at the other lattice identities to verify that they are satisfied by the probability calculus. Last, I look towards developing the calculus of inquiry demonstrating that there is a sum and product rule for the relevance measure as well as a Bayes theorem. Current difficulties in deriving the complete inquiry calculus will also be discussed.
Optical reversible programmable Boolean logic unit.
Chattopadhyay, Tanay
2012-07-20
Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.
Extending Clause Learning of SAT Solvers with Boolean Gröbner Bases
NASA Astrophysics Data System (ADS)
Zengler, Christoph; Küchlin, Wolfgang
We extend clause learning as performed by most modern SAT Solvers by integrating the computation of Boolean Gröbner bases into the conflict learning process. Instead of learning only one clause per conflict, we compute and learn additional binary clauses from a Gröbner basis of the current conflict. We used the Gröbner basis engine of the logic package Redlog contained in the computer algebra system Reduce to extend the SAT solver MiniSAT with Gröbner basis learning. Our approach shows a significant reduction of conflicts and a reduction of restarts and computation time on many hard problems from the SAT 2009 competition.
Medical image processing using neural networks based on multivalued and universal binary neurons
NASA Astrophysics Data System (ADS)
Aizenberg, Igor N.; Aizenberg, Naum N.; Gotko, Eugen S.; Sochka, Vladimir A.
1998-06-01
Cellular Neural Networks (CNN) has become a very good mean for solution of the different kind of image processing problems. CNN based on multi-valued neurons (CNN-MVN) and CNN based on universal binary neurons (CNN-UBN) are the specific kinds of the CNN. MVN and UBN are neurons with complex-valued weights, and complex internal arithmetic. Their main feature is possibility of implementation of the arbitrary mapping between inputs and output described by the MVN, and arbitrary (not only threshold) Boolean function (UBN). Great advantage of the CNN is possibility of implementation of the any linear and many non-linear filters in spatial domain. Together with noise removing using CNN it is possible to implement filters, which can amplify high and medium frequencies. These filters are a very good mean for solution of the enhancement problem, and problem of details extraction against complex background. So, CNN make it possible to organize all the processing process from filtering until extraction of the important details. Organization of this process for medical image processing is considered in the paper. A major attention will be concentrated on the processing of the x-ray and ultrasound images corresponding to different oncology (or closed to oncology) pathologies. Additionally we will consider new structure of the neural network for solution of the problem of differential diagnostics of breast cancer.
Nonlinear adaptive inverse control via the unified model neural network
NASA Astrophysics Data System (ADS)
Jeng, Jin-Tsong; Lee, Tsu-Tian
1999-03-01
In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
A case study of evolutionary computation of biochemical adaptation
NASA Astrophysics Data System (ADS)
François, Paul; Siggia, Eric D.
2008-06-01
Simulations of evolution have a long history, but their relation to biology is questioned because of the perceived contingency of evolution. Here we provide an example of a biological process, adaptation, where simulations are argued to approach closer to biology. Adaptation is a common feature of sensory systems, and a plausible component of other biochemical networks because it rescales upstream signals to facilitate downstream processing. We create random gene networks numerically, by linking genes with interactions that model transcription, phosphorylation and protein-protein association. We define a fitness function for adaptation in terms of two functional metrics, and show that any reasonable combination of them will yield the same adaptive networks after repeated rounds of mutation and selection. Convergence to these networks is driven by positive selection and thus fast. There is always a path in parameter space of continuously improving fitness that leads to perfect adaptation, implying that the actual mutation rates we use in the simulation do not bias the results. Our results imply a kinetic view of evolution, i.e., it favors gene networks that can be learned quickly from the random examples supplied by mutation. This formulation allows for deductive predictions of the networks realized in nature.
In-network adaptation of SHVC video in software-defined networks
NASA Astrophysics Data System (ADS)
Awobuluyi, Olatunde; Nightingale, James; Wang, Qi; Alcaraz Calero, Jose Maria; Grecos, Christos
2016-04-01
Software Defined Networks (SDN), when combined with Network Function Virtualization (NFV) represents a paradigm shift in how future networks will behave and be managed. SDN's are expected to provide the underpinning technologies for future innovations such as 5G mobile networks and the Internet of Everything. The SDN architecture offers features that facilitate an abstracted and centralized global network view in which packet forwarding or dropping decisions are based on application flows. Software Defined Networks facilitate a wide range of network management tasks, including the adaptation of real-time video streams as they traverse the network. SHVC, the scalable extension to the recent H.265 standard is a new video encoding standard that supports ultra-high definition video streams with spatial resolutions of up to 7680×4320 and frame rates of 60fps or more. The massive increase in bandwidth required to deliver these U-HD video streams dwarfs the bandwidth requirements of current high definition (HD) video. Such large bandwidth increases pose very significant challenges for network operators. In this paper we go substantially beyond the limited number of existing implementations and proposals for video streaming in SDN's all of which have primarily focused on traffic engineering solutions such as load balancing. By implementing and empirically evaluating an SDN enabled Media Adaptation Network Entity (MANE) we provide a valuable empirical insight into the benefits and limitations of SDN enabled video adaptation for real time video applications. The SDN-MANE is the video adaptation component of our Video Quality Assurance Manager (VQAM) SDN control plane application, which also includes an SDN monitoring component to acquire network metrics and a decision making engine using algorithms to determine the optimum adaptation strategy for any real time video application flow given the current network conditions. Our proposed VQAM application has been implemented and evaluated on an SDN allowing us to provide important benchmarks for video streaming over SDN and for SDN control plane latency.
NATO IST 124 Experimentation Instructions
2016-11-10
more reliable and predictable network performance through adaptive and efficient control schemes . This report provides guidance and instructions for...tactical heterogeneous networks for more reliable and predictable network performance through adaptive and efficient control schemes . This report
Epidemics in adaptive networks with community structure
NASA Astrophysics Data System (ADS)
Shaw, Leah; Tunc, Ilker
2010-03-01
Models for epidemic spread on static social networks do not account for changes in individuals' social interactions. Recent studies of adaptive networks have modeled avoidance behavior, as non-infected individuals try to avoid contact with infectives. Such models have not generally included realistic social structure. Here we study epidemic spread on an adaptive network with community structure. We model the effect of heterogeneous communities on infection levels and epidemic extinction. We also show how an epidemic can alter the community structure.
Recruitment dynamics in adaptive social networks
NASA Astrophysics Data System (ADS)
Shkarayev, Maxim S.; Schwartz, Ira B.; Shaw, Leah B.
2013-06-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).
Recruitment dynamics in adaptive social networks.
Shkarayev, Maxim S; Schwartz, Ira B; Shaw, Leah B
2013-01-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).
Asymptotically inspired moment-closure approximation for adaptive networks
NASA Astrophysics Data System (ADS)
Shkarayev, Maxim; Shaw, Leah
2012-02-01
Adaptive social networks, in which nodes and network structure co-evolve, are often described using a mean-field system of equations for the density of node and link types. These equations constitute an open system due to dependence on higher order topological structures. We propose a moment-closure approximation based on the analytical description of the system in an asymptotic regime. We apply the proposed approach to two examples of adaptive networks: recruitment to a cause model and epidemic spread model. We show a good agreement between the improved mean-field prediction and simulations of the full network system.
Adaptive capacity of geographical clusters: Complexity science and network theory approach
NASA Astrophysics Data System (ADS)
Albino, Vito; Carbonara, Nunzia; Giannoccaro, Ilaria
This paper deals with the adaptive capacity of geographical clusters (GCs), that is a relevant topic in the literature. To address this topic, GC is considered as a complex adaptive system (CAS). Three theoretical propositions concerning the GC adaptive capacity are formulated by using complexity theory. First, we identify three main properties of CAS s that affect the adaptive capacity, namely the interconnectivity, the heterogeneity, and the level of control, and define how the value of these properties influence the adaptive capacity. Then, we associate these properties with specific GC characteristics so obtaining the key conditions of GCs that give them the adaptive capacity so assuring their competitive advantage. To test these theoretical propositions, a case study on two real GCs is carried out. The considered GCs are modeled as networks where firms are nodes and inter-firms relationships are links. Heterogeneity, interconnectivity, and level of control are considered as network properties and thus measured by using the methods of the network theory.
Development of a computer-aided design software for dental splint in orthognathic surgery
NASA Astrophysics Data System (ADS)
Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan
2016-12-01
In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated.
Toward using games to teach fundamental computer science concepts
NASA Astrophysics Data System (ADS)
Edgington, Jeffrey Michael
Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.
Development of a computer-aided design software for dental splint in orthognathic surgery
Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan
2016-01-01
In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated. PMID:27966601
Development of a computer-aided design software for dental splint in orthognathic surgery.
Chen, Xiaojun; Li, Xing; Xu, Lu; Sun, Yi; Politis, Constantinus; Egger, Jan
2016-12-14
In the orthognathic surgery, dental splints are important and necessary to help the surgeon reposition the maxilla or mandible. However, the traditional methods of manual design of dental splints are difficult and time-consuming. The research on computer-aided design software for dental splints is rarely reported. Our purpose is to develop a novel special software named EasySplint to design the dental splints conveniently and efficiently. The design can be divided into two steps, which are the generation of initial splint base and the Boolean operation between it and the maxilla-mandibular model. The initial splint base is formed by ruled surfaces reconstructed using the manually picked points. Then, a method to accomplish Boolean operation based on the distance filed of two meshes is proposed. The interference elimination can be conducted on the basis of marching cubes algorithm and Boolean operation. The accuracy of the dental splint can be guaranteed since the original mesh is utilized to form the result surface. Using EasySplint, the dental splints can be designed in about 10 minutes and saved as a stereo lithography (STL) file for 3D printing in clinical applications. Three phantom experiments were conducted and the efficiency of our method was demonstrated.
From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks
Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming
2016-01-01
The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains. PMID:26972968
From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.
Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming
2016-03-14
The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.
Stochastic analysis of epidemics on adaptive time varying networks
NASA Astrophysics Data System (ADS)
Kotnis, Bhushan; Kuri, Joy
2013-06-01
Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.
Robustness of non-interdependent and interdependent networks against dependent and adaptive attacks
NASA Astrophysics Data System (ADS)
Tyra, Adam; Li, Jingtao; Shang, Yilun; Jiang, Shuo; Zhao, Yanjun; Xu, Shouhuai
2017-09-01
Robustness of complex networks has been extensively studied via the notion of site percolation, which typically models independent and non-adaptive attacks (or disruptions). However, real-life attacks are often dependent and/or adaptive. This motivates us to characterize the robustness of complex networks, including non-interdependent and interdependent ones, against dependent and adaptive attacks. For this purpose, dependent attacks are accommodated by L-hop percolation where the nodes within some L-hop (L ≥ 0) distance of a chosen node are all deleted during one attack (with L = 0 degenerating to site percolation). Whereas, adaptive attacks are launched by attackers who can make node-selection decisions based on the network state in the beginning of each attack. The resulting characterization enriches the body of knowledge with new insights, such as: (i) the Achilles' Heel phenomenon is only valid for independent attacks, but not for dependent attacks; (ii) powerful attack strategies (e.g., targeted attacks and dependent attacks, dependent attacks and adaptive attacks) are not compatible and cannot help the attacker when used collectively. Our results shed some light on the design of robust complex networks.
Disparity between ultrasound and clinical findings in psoriatic arthritis.
Husic, Rusmir; Gretler, Judith; Felber, Anja; Graninger, Winfried B; Duftner, Christina; Hermann, Josef; Dejaco, Christian
2014-08-01
To investigate the association between psoriatic arthritis (PsA)-specific clinical composite scores and ultrasound-verified pathology as well as comparison of clinical and ultrasound definitions of remission. We performed a prospective study on 70 consecutive PsA patients. Clinical assessments included components of Disease Activity Index for Psoriatic Arthritis (DAPSA) and the Composite Psoriatic Disease Activity Index (CPDAI). Minimal disease activity (MDA) and the following remission criteria were applied: CPDAI joint, entheses and dactylitis domains (CPDAI-JED)=0, DAPSA≤3.3, Boolean's remission definition and physician-judged remission (rem-phys). B-mode and power Doppler (PD-) ultrasound findings were semiquantitatively scored at 68 joints (evaluating synovia, peritendinous tissue, tendons and bony changes) and 14 entheses. Ultrasound remission and minimal ultrasound disease activity (MUDA) were defined as PD-score=0 and PD-score ≤1, respectively, at joints, peritendinous tissue, tendons and entheses. DAPSA but not CPDAI correlated with B-mode and PD-synovitis. Ultrasound signs of enthesitis, dactylitis, tenosynovitis and perisynovitis were not linked with clinical composites. Clinical remission or MDA was observed in 15.7% to 47.1% of PsA patients. Ultrasound remission and MUDA were present in 4.3% and 20.0% of patients, respectively. Joint and tendon-related PD-scores were higher in patients with active versus inactive disease according to CPDAI-JED, DAPSA, Boolean's and rem-phys, whereas no difference was observed regarding enthesitis and perisynovitis. DAPSA≤3.3 (OR 3.9, p=0.049) and Boolean's definition (OR 4.6, p=0.03) were more useful to predict MUDA than other remission criteria. PsA-specific composite scores partially reflect ultrasound findings. DAPSA and Boolean's remission definitions better identify MUDA patients than other clinical criteria. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.
2000-01-01
Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.
Controlling false-negative errors in microarray differential expression analysis: a PRIM approach.
Cole, Steve W; Galic, Zoran; Zack, Jerome A
2003-09-22
Theoretical considerations suggest that current microarray screening algorithms may fail to detect many true differences in gene expression (Type II analytic errors). We assessed 'false negative' error rates in differential expression analyses by conventional linear statistical models (e.g. t-test), microarray-adapted variants (e.g. SAM, Cyber-T), and a novel strategy based on hold-out cross-validation. The latter approach employs the machine-learning algorithm Patient Rule Induction Method (PRIM) to infer minimum thresholds for reliable change in gene expression from Boolean conjunctions of fold-induction and raw fluorescence measurements. Monte Carlo analyses based on four empirical data sets show that conventional statistical models and their microarray-adapted variants overlook more than 50% of genes showing significant up-regulation. Conjoint PRIM prediction rules recover approximately twice as many differentially expressed transcripts while maintaining strong control over false-positive (Type I) errors. As a result, experimental replication rates increase and total analytic error rates decline. RT-PCR studies confirm that gene inductions detected by PRIM but overlooked by other methods represent true changes in mRNA levels. PRIM-based conjoint inference rules thus represent an improved strategy for high-sensitivity screening of DNA microarrays. Freestanding JAVA application at http://microarray.crump.ucla.edu/focus
Generalized Adaptive Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1993-01-01
Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.
Recruitment dynamics in adaptive social networks
NASA Astrophysics Data System (ADS)
Shkarayev, Maxim; Shaw, Leah; Schwartz, Ira
2011-03-01
We model recruitment in social networks in the presence of birth and death processes. The recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. The recruiting nodes may adapt their connections in order to improve recruitment capabilities, thus changing the network structure. We develop a mean-field theory describing the system dynamics. Using mean-field theory we characterize the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment dynamics, as well as on network topology. The theoretical predictions are confirmed by the direct simulations of the full system.
Multi-Gigabit Free-Space Optical Data Communication and Network System
2016-04-01
IR), Ultraviolet ( UV ), Laser Transceiver, Adaptive Beam Tracking, Electronic Attack (EA), Cyber Attack, Multipoint-to-Multipoint Network, Adaptive...FileName.pptx Free Space Optical Datalink Timeline Phase 1 Point-to-point demonstration 2012 Future Adaptive optic & Quantum Cascade Laser
Institutional networks and adaptive water governance in the Klamath River Basin, USA.
Polycentric networks of formal organizations and informal stakeholder groups, as opposed to centralized institutional hierarchies, can be critically important for strengthening the capacity of governance systems to adapt to unexpected social and biophysical change. Adaptive gover...
Adaptively Adjusted Event-Triggering Mechanism on Fault Detection for Networked Control Systems.
Wang, Yu-Long; Lim, Cheng-Chew; Shi, Peng
2016-12-08
This paper studies the problem of adaptively adjusted event-triggering mechanism-based fault detection for a class of discrete-time networked control system (NCS) with applications to aircraft dynamics. By taking into account the fault occurrence detection progress and the fault occurrence probability, and introducing an adaptively adjusted event-triggering parameter, a novel event-triggering mechanism is proposed to achieve the efficient utilization of the communication network bandwidth. Both the sensor-to-control station and the control station-to-actuator network-induced delays are taken into account. The event-triggered sensor and the event-triggered control station are utilized simultaneously to establish new network-based closed-loop models for the NCS subject to faults. Based on the established models, the event-triggered simultaneous design of fault detection filter (FDF) and controller is presented. A new algorithm for handling the adaptively adjusted event-triggering parameter is proposed. Performance analysis verifies the effectiveness of the adaptively adjusted event-triggering mechanism, and the simultaneous design of FDF and controller.
Evolving RBF neural networks for adaptive soft-sensor design.
Alexandridis, Alex
2013-12-01
This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.
New MPLS network management techniques based on adaptive learning.
Anjali, Tricha; Scoglio, Caterina; de Oliveira, Jaudelice Cavalcante
2005-09-01
The combined use of the differentiated services (DiffServ) and multiprotocol label switching (MPLS) technologies is envisioned to provide guaranteed quality of service (QoS) for multimedia traffic in IP networks, while effectively using network resources. These networks need to be managed adaptively to cope with the changing network conditions and provide satisfactory QoS. An efficient strategy is to map the traffic from different DiffServ classes of service on separate label switched paths (LSPs), which leads to distinct layers of MPLS networks corresponding to each DiffServ class. In this paper, three aspects of the management of such a layered MPLS network are discussed. In particular, an optimal technique for the setup of LSPs, capacity allocation of the LSPs and LSP routing are presented. The presented techniques are based on measurement of the network state to adapt the network configuration to changing traffic conditions.
Skeleton-supported stochastic networks of organic memristive devices: Adaptations and learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erokhina, Svetlana; Sorokin, Vladimir; Erokhin, Victor, E-mail: victor.erokhin@fis.unipr.it
Stochastic networks of memristive devices were fabricated using a sponge as a skeleton material. Cyclic voltage-current characteristics, measured on the network, revealed properties, similar to the organic memristive device with deterministic architecture. Application of the external training resulted in the adaptation of the network electrical properties. The system revealed an improved stability with respect to the networks, composed from polymer fibers.
An Adaptive Failure Detector Based on Quality of Service in Peer-to-Peer Networks
Dong, Jian; Ren, Xiao; Zuo, Decheng; Liu, Hongwei
2014-01-01
The failure detector is one of the fundamental components that maintain high availability of Peer-to-Peer (P2P) networks. Under different network conditions, the adaptive failure detector based on quality of service (QoS) can achieve the detection time and accuracy required by upper applications with lower detection overhead. In P2P systems, complexity of network and high churn lead to high message loss rate. To reduce the impact on detection accuracy, baseline detection strategy based on retransmission mechanism has been employed widely in many P2P applications; however, Chen's classic adaptive model cannot describe this kind of detection strategy. In order to provide an efficient service of failure detection in P2P systems, this paper establishes a novel QoS evaluation model for the baseline detection strategy. The relationship between the detection period and the QoS is discussed and on this basis, an adaptive failure detector (B-AFD) is proposed, which can meet the quantitative QoS metrics under changing network environment. Meanwhile, it is observed from the experimental analysis that B-AFD achieves better detection accuracy and time with lower detection overhead compared to the traditional baseline strategy and the adaptive detectors based on Chen's model. Moreover, B-AFD has better adaptability to P2P network. PMID:25198005
Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui
2011-01-01
To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.
Functional connectivity patterns reflect individual differences in conflict adaptation.
Wang, Xiangpeng; Wang, Ting; Chen, Zhencai; Hitchman, Glenn; Liu, Yijun; Chen, Antao
2015-04-01
Individuals differ in the ability to utilize previous conflict information to optimize current conflict resolution, which is termed the conflict adaptation effect. Previous studies have linked individual differences in conflict adaptation to distinct brain regions. However, the network-based neural mechanisms subserving the individual differences of the conflict adaptation effect have not been studied. The present study employed a psychophysiological interaction (PPI) analysis with a color-naming Stroop task to examine this issue. The main results were as follows: (1) the anterior cingulate cortex (ACC)-seeded PPI revealed the involvement of the salience network (SN) in conflict adaptation, while the posterior parietal cortex (PPC)-seeded PPI revealed the engagement of the central executive network (CEN). (2) Participants with high conflict adaptation effect showed higher intra-CEN connectivity and lower intra-SN connectivity; while those with low conflict adaptation effect showed higher intra-SN connectivity and lower intra-CEN connectivity. (3) The PPC-centered intra-CEN connectivity positively predicted the conflict adaptation effect; while the ACC-centered intra-SN connectivity had a negative correlation with this effect. In conclusion, our data demonstrated that conflict adaptation is likely supported by the CEN and the SN, providing a new perspective on studying individual differences in conflict adaptation on the basis of large-scale networks. Copyright © 2015 Elsevier Ltd. All rights reserved.
André, Karin; Baird, Julia; Gerger Swartling, Åsa; Vulturius, Gregor; Plummer, Ryan
2017-06-01
To further the understanding of climate change adaptation processes, more attention needs to be paid to the various contextual factors that shape whether and how climate-related knowledge and information is received and acted upon by actors involved. This study sets out to examine the characteristics of forest owners' in Sweden, the information and knowledge-sharing networks they draw upon for decision-making, and their perceptions of climate risks, their forests' resilience, the need for adaptation, and perceived adaptive capacity. By applying the concept of ego-network analysis, the empirical data was generated by a quantitative survey distributed to 3000 private forest owners' in Sweden in 2014 with a response rate of 31%. The results show that there is a positive correlation, even though it is generally weak, between forest owner climate perceptions and (i) network features, i.e. network size and heterogeneity, and (ii) presence of certain alter groups (i.e. network members or actors). Results indicate that forest owners' social networks currently serve only a minimal function of sharing knowledge of climate change and adaptation. Moreover, considering the fairly infrequent contact between respondents and alter groups, the timing of knowledge sharing is important. In conclusion we suggest those actors that forest owners' most frequently communicate with, especially forestry experts providing advisory services (e.g. forest owner associations, companies, and authorities) have a clear role to communicate both the risks of climate change and opportunities for adaptation. Peers are valuable in connecting information about climate risks and adaptation to the actual forest property.
NASA Astrophysics Data System (ADS)
André, Karin; Baird, Julia; Gerger Swartling, Åsa; Vulturius, Gregor; Plummer, Ryan
2017-06-01
To further the understanding of climate change adaptation processes, more attention needs to be paid to the various contextual factors that shape whether and how climate-related knowledge and information is received and acted upon by actors involved. This study sets out to examine the characteristics of forest owners' in Sweden, the information and knowledge-sharing networks they draw upon for decision-making, and their perceptions of climate risks, their forests' resilience, the need for adaptation, and perceived adaptive capacity. By applying the concept of ego-network analysis, the empirical data was generated by a quantitative survey distributed to 3000 private forest owners' in Sweden in 2014 with a response rate of 31%. The results show that there is a positive correlation, even though it is generally weak, between forest owner climate perceptions and (i) network features, i.e. network size and heterogeneity, and (ii) presence of certain alter groups (i.e. network members or actors). Results indicate that forest owners' social networks currently serve only a minimal function of sharing knowledge of climate change and adaptation. Moreover, considering the fairly infrequent contact between respondents and alter groups, the timing of knowledge sharing is important. In conclusion we suggest those actors that forest owners' most frequently communicate with, especially forestry experts providing advisory services (e.g. forest owner associations, companies, and authorities) have a clear role to communicate both the risks of climate change and opportunities for adaptation. Peers are valuable in connecting information about climate risks and adaptation to the actual forest property.
Boolean function applied to Mimosa pudica movements
Friedman, Pedro
2011-01-01
Seismonastic or thigmonastic movements of Mimosa pudica L. is mostly because of the fast loss of water from swollen motor cells, resulting in temporary collapse of cells and quick curvature in the parts where these cells are located. Because of this, the plant has been much studied since the 18th century, leading us to think about the classical binomial stimulus-response (action-reaction) when compared to animals. Mechanic and electrical stimuli were used to investigate the analogy of mimosa branch with an artificial neuron model and to observe the action potential propagation through the mimosa branch. Boolean function applied to the mimosa branch in analogy with an artificial neuron model is one of the peculiarities of our hypothesis. PMID:21847029
Reliable computation from contextual correlations
NASA Astrophysics Data System (ADS)
Oestereich, André L.; Galvão, Ernesto F.
2017-12-01
An operational approach to the study of computation based on correlations considers black boxes with one-bit inputs and outputs, controlled by a limited classical computer capable only of performing sums modulo-two. In this setting, it was shown that noncontextual correlations do not provide any extra computational power, while contextual correlations were found to be necessary for the deterministic evaluation of nonlinear Boolean functions. Here we investigate the requirements for reliable computation in this setting; that is, the evaluation of any Boolean function with success probability bounded away from 1 /2 . We show that bipartite CHSH quantum correlations suffice for reliable computation. We also prove that an arbitrarily small violation of a multipartite Greenberger-Horne-Zeilinger noncontextuality inequality also suffices for reliable computation.
The pseudo-Boolean optimization approach to form the N-version software structure
NASA Astrophysics Data System (ADS)
Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.
2015-10-01
The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality. Some additional modifications of MVP have been made to solve the problem of N-version systems design. Those algorithms take into account the discovered specific features of the objective function. The practical experiments have shown the advantage of using these algorithm modifications because of reducing a search space.
Poirazi, Panayiota; Neocleous, Costas; Pattichis, Costantinos S; Schizas, Christos N
2004-05-01
A three-layer neural network (NN) with novel adaptive architecture has been developed. The hidden layer of the network consists of slabs of single neuron models, where neurons within a slab--but not between slabs--have the same type of activation function. The network activation functions in all three layers have adaptable parameters. The network was trained using a biologically inspired, guided-annealing learning rule on a variety of medical data. Good training/testing classification performance was obtained on all data sets tested. The performance achieved was comparable to that of SVM classifiers. It was shown that the adaptive network architecture, inspired from the modular organization often encountered in the mammalian cerebral cortex, can benefit classification performance.
Using social network analysis to evaluate health-related adaptation decision-making in Cambodia.
Bowen, Kathryn J; Alexander, Damon; Miller, Fiona; Dany, Va
2014-01-30
Climate change adaptation in the health sector requires decisions across sectors, levels of government, and organisations. The networks that link these different institutions, and the relationships among people within these networks, are therefore critical influences on the nature of adaptive responses to climate change in the health sector. This study uses social network research to identify key organisational players engaged in developing health-related adaptation activities in Cambodia. It finds that strong partnerships are reported as developing across sectors and different types of organisations in relation to the health risks from climate change. Government ministries are influential organisations, whereas donors, development banks and non-government organisations do not appear to be as influential in the development of adaptation policy in the health sector. Finally, the study highlights the importance of informal partnerships (or 'shadow networks') in the context of climate change adaptation policy and activities. The health governance 'map' in relation to health and climate change adaptation that is developed in this paper is a novel way of identifying organisations that are perceived as key agents in the decision-making process, and it holds substantial benefits for both understanding and intervening in a broad range of climate change-related policy problems where collaboration is paramount for successful outcomes.
On the Effectiveness of a Neural Network for Adaptive External Pacing.
ERIC Educational Resources Information Center
Montazemi, Ali R.; Wang, Feng
1995-01-01
Proposes a neural network model for an intelligent tutoring system featuring adaptive external control of student pacing. An experiment was conducted, and students using adaptive external pacing experienced improved mastery learning and increased motivation for time management. Contains 66 references. (JKP)
Zheng, Lei; Nikolaev, Anton; Wardill, Trevor J; O'Kane, Cahir J; de Polavieja, Gonzalo G; Juusola, Mikko
2009-01-01
Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1-R6) and their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II).
Wardill, Trevor J.; O'Kane, Cahir J.; de Polavieja, Gonzalo G.; Juusola, Mikko
2009-01-01
Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1–R6) and their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II). PMID:19180196
Transitions from trees to cycles in adaptive flow networks
NASA Astrophysics Data System (ADS)
Martens, Erik A.; Klemm, Konstantin
2017-11-01
Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances). We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two distinct regions with cyclic and tree-like structures. The location of the boundary between these two regions is determined by the amplitude of the fluctuations. These findings may explain why natural transport networks display cyclic structures in the micro-vascular regions near terminal nodes, but tree-like features in the regions with larger veins.
Flight control with adaptive critic neural network
NASA Astrophysics Data System (ADS)
Han, Dongchen
2001-10-01
In this dissertation, the adaptive critic neural network technique is applied to solve complex nonlinear system control problems. Based on dynamic programming, the adaptive critic neural network can embed the optimal solution into a neural network. Though trained off-line, the neural network forms a real-time feedback controller. Because of its general interpolation properties, the neurocontroller has inherit robustness. The problems solved here are an agile missile control for U.S. Air Force and a midcourse guidance law for U.S. Navy. In the first three papers, the neural network was used to control an air-to-air agile missile to implement a minimum-time heading-reverse in a vertical plane corresponding to following conditions: a system without constraint, a system with control inequality constraint, and a system with state inequality constraint. While the agile missile is a one-dimensional problem, the midcourse guidance law is the first test-bed for multiple-dimensional problem. In the fourth paper, the neurocontroller is synthesized to guide a surface-to-air missile to a fixed final condition, and to a flexible final condition from a variable initial condition. In order to evaluate the adaptive critic neural network approach, the numerical solutions for these cases are also obtained by solving two-point boundary value problem with a shooting method. All of the results showed that the adaptive critic neural network could solve complex nonlinear system control problems.
Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter
2014-05-01
During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.
NASA Astrophysics Data System (ADS)
Tiwari, Shivendra N.; Padhi, Radhakant
2018-01-01
Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as 'Dynamically Re-optimised single network adaptive critic (DR-SNAC)'. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.
Adaptation technology between IP layer and optical layer in optical Internet
NASA Astrophysics Data System (ADS)
Ji, Yuefeng; Li, Hua; Sun, Yongmei
2001-10-01
Wavelength division multiplexing (WDM) optical network provides a platform with high bandwidth capacity and is supposed to be the backbone infrastructure supporting the next-generation high-speed multi-service networks (ATM, IP, etc.). In the foreseeable future, IP will be the predominant data traffic, to make fully use of the bandwidth of the WDM optical network, many attentions have been focused on IP over WDM, which has been proposed as the most promising technology for new kind of network, so-called Optical Internet. According to OSI model, IP is in the 3rd layer (network layer) and optical network is in the 1st layer (physical layer), so the key issue is what adaptation technology should be used in the 2nd layer (data link layer). In this paper, firstly, we analyze and compare the current adaptation technologies used in backbone network nowadays. Secondly, aiming at the drawbacks of above technologies, we present a novel adaptation protocol (DONA) between IP layer and optical layer in Optical Internet and describe it in details. Thirdly, the gigabit transmission adapter (GTA) we accomplished based on the novel protocol is described. Finally, we set up an experiment platform to apply and verify the DONA and GTA, the results and conclusions of the experiment are given.
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Microcomputer Network for Computerized Adaptive Testing (CAT): Program Listing. Supplement.
1984-03-01
UMICROCOMPUTER NETWORK FOR COMPUTERIZED ADAPTIVE TESTING ( CAT ): PROGRAM LISTING in APPROVED FOR PUBLIC RELEASE;IDISTRIBUTION UNLIMITEDPs DTIC ’ Akf 3 0 1-d84...NETWORK FOR COMPUTERIZED ADAPTIVE TESTING ( CAT ).- PROGRAM LISTING , ,j Baldwin Quan Thomas A. Park Gary Sandahl John H. Wolfe Reviewed by James R. McBride A...Center San Diego, California 92152 V.% :-, CONTENTrS Page CATPROJECT.TEXT CAT system driver textfile I 1 ADMINDIR- Subdirectory - Test administration
NASA Astrophysics Data System (ADS)
Lee, Michael; Freed, Adrian; Wessel, David
1992-08-01
In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.
An extension of the finite cell method using boolean operations
NASA Astrophysics Data System (ADS)
Abedian, Alireza; Düster, Alexander
2017-05-01
In the finite cell method, the fictitious domain approach is combined with high-order finite elements. The geometry of the problem is taken into account by integrating the finite cell formulation over the physical domain to obtain the corresponding stiffness matrix and load vector. In this contribution, an extension of the FCM is presented wherein both the physical and fictitious domain of an element are simultaneously evaluated during the integration. In the proposed extension of the finite cell method, the contribution of the stiffness matrix over the fictitious domain is subtracted from the cell, resulting in the desired stiffness matrix which reflects the contribution of the physical domain only. This method results in an exponential rate of convergence for porous domain problems with a smooth solution and accurate integration. In addition, it reduces the computational cost, especially when applying adaptive integration schemes based on the quadtree/octree. Based on 2D and 3D problems of linear elastostatics, numerical examples serve to demonstrate the efficiency and accuracy of the proposed method.
Logic regression and its extensions.
Schwender, Holger; Ruczinski, Ingo
2010-01-01
Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hudlicka, Eva; Corker, Kevin
1988-01-01
In this paper, a problem-solving system which uses a multilevel causal model of its domain is described. The system functions in the role of a pilot's assistant in the domain of commercial air transport emergencies. The model represents causal relationships among the aircraft subsystems, the effectors (engines, control surfaces), the forces that act on an aircraft in flight (thrust, lift), and the aircraft's flight profile (speed, altitude, etc.). The causal relationships are represented at three levels of abstraction: Boolean, qualitative, and quantitative, and reasoning about causes and effects can take place at each of these levels. Since processing at each level has different characteristics with respect to speed, the type of data required, and the specificity of the results, the problem-solving system can adapt to a wide variety of situations. The system is currently being implemented in the KEE(TM) development environment on a Symbolics Lisp machine.
Benefit of adaptive FEC in shared backup path protected elastic optical network.
Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang
2015-07-27
We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.
Concurrent enhancement of percolation and synchronization in adaptive networks
Eom, Young-Ho; Boccaletti, Stefano; Caldarelli, Guido
2016-01-01
Co-evolutionary adaptive mechanisms are not only ubiquitous in nature, but also beneficial for the functioning of a variety of systems. We here consider an adaptive network of oscillators with a stochastic, fitness-based, rule of connectivity, and show that it self-organizes from fragmented and incoherent states to connected and synchronized ones. The synchronization and percolation are associated to abrupt transitions, and they are concurrently (and significantly) enhanced as compared to the non-adaptive case. Finally we provide evidence that only partial adaptation is sufficient to determine these enhancements. Our study, therefore, indicates that inclusion of simple adaptive mechanisms can efficiently describe some emergent features of networked systems’ collective behaviors, and suggests also self-organized ways to control synchronization and percolation in natural and social systems. PMID:27251577
Detection of network attacks based on adaptive resonance theory
NASA Astrophysics Data System (ADS)
Bukhanov, D. G.; Polyakov, V. M.
2018-05-01
The paper considers an approach to intrusion detection systems using a neural network of adaptive resonant theory. It suggests the structure of an intrusion detection system consisting of two types of program modules. The first module manages connections of user applications by preventing the undesirable ones. The second analyzes the incoming network traffic parameters to check potential network attacks. After attack detection, it notifies the required stations using a secure transmission channel. The paper describes the experiment on the detection and recognition of network attacks using the test selection. It also compares the obtained results with similar experiments carried out by other authors. It gives findings and conclusions on the sufficiency of the proposed approach. The obtained information confirms the sufficiency of applying the neural networks of adaptive resonant theory to analyze network traffic within the intrusion detection system.
Yang, S; Wang, D
2000-01-01
This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.
Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis
NASA Astrophysics Data System (ADS)
Tang, Ming; Wang, Mingjie; Shi, Changji; Iglesias, Pablo A.; Devreotes, Peter N.; Huang, Chuan-Hsiang
2014-10-01
Numerous models explain how cells sense and migrate towards shallow chemoattractant gradients. Studies show that an excitable signal transduction network acts as a pacemaker that controls the cytoskeleton to drive motility. Here we show that this network is required to link stimuli to actin polymerization and chemotactic motility and we distinguish the various models of chemotaxis. First, signalling activity is suppressed towards the low side in a gradient or following removal of uniform chemoattractant. Second, signalling activities display a rapid shut off and a slower adaptation during which responsiveness to subsequent test stimuli decline. Simulations of various models indicate that these properties require coupled adaptive and excitable networks. Adaptation involves a G-protein-independent inhibitor, as stimulation of cells lacking G-protein function suppresses basal activities. The salient features of the coupled networks were observed for different chemoattractants in Dictyostelium and in human neutrophils, suggesting an evolutionarily conserved mechanism for eukaryotic chemotaxis.
Adaptive control of nonlinear system using online error minimum neural networks.
Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei
2016-11-01
In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Deep neural network-based domain adaptation for classification of remote sensing images
NASA Astrophysics Data System (ADS)
Ma, Li; Song, Jiazhen
2017-10-01
We investigate the effectiveness of deep neural network for cross-domain classification of remote sensing images in this paper. In the network, class centroid alignment is utilized as a domain adaptation strategy, making the network able to transfer knowledge from the source domain to target domain on a per-class basis. Since predicted labels of target data should be used to estimate the centroid of each class, we use overall centroid alignment as a coarse domain adaptation method to improve the estimation accuracy. In addition, rectified linear unit is used as the activation function to produce sparse features, which may improve the separation capability. The proposed network can provide both aligned features and an adaptive classifier, as well as obtain label-free classification of target domain data. The experimental results using Hyperion, NCALM, and WorldView-2 remote sensing images demonstrated the effectiveness of the proposed approach.
Adaptive Network Dynamics - Modeling and Control of Time-Dependent Social Contacts
Schwartz, Ira B.; Shaw, Leah B.; Shkarayev, Maxim S.
2013-01-01
Real networks consisting of social contacts do not possess static connections. That is, social connections may be time dependent due to a variety of individual behavioral decisions based on current network connections. Examples of adaptive networks occur in epidemics, where information about infectious individuals may change the rewiring of healthy people, or in the recruitment of individuals to a cause or fad, where rewiring may optimize recruitment of susceptible individuals. In this paper, we will review some of the dynamical properties of adaptive networks, and show how they predict novel phenomena as well as yield insight into new controls. The applications will be control of epidemic outbreaks and terrorist recruitment modeling. PMID:25414913
Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints
NASA Astrophysics Data System (ADS)
Kmet', Tibor; Kmet'ová, Mária
2009-09-01
A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Information processing in dendrites I. Input pattern generalisation.
Gurney, K N
2001-10-01
In this paper and its companion, we address the question as to whether there are any general principles underlying information processing in the dendritic trees of biological neurons. In order to address this question, we make two assumptions. First, the key architectural feature of dendrites responsible for many of their information processing abilities is the existence of independent sub-units performing local non-linear processing. Second, any general functional principles operate at a level of abstraction in which neurons are modelled by Boolean functions. To accommodate these assumptions, we therefore define a Boolean model neuron-the multi-cube unit (MCU)-which instantiates the notion of the discrete functional sub-unit. We then use this model unit to explore two aspects of neural functionality: generalisation (in this paper) and processing complexity (in its companion). Generalisation is dealt with from a geometric viewpoint and is quantified using a new metric-the set of order parameters. These parameters are computed for threshold logic units (TLUs), a class of random Boolean functions, and MCUs. Our interpretation of the order parameters is consistent with our knowledge of generalisation in TLUs and with the lack of generalisation in randomly chosen functions. Crucially, the order parameters for MCUs imply that these functions possess a range of generalisation behaviour. We argue that this supports the general thesis that dendrites facilitate input pattern generalisation despite any local non-linear processing within functionally isolated sub-units.
Integrating Multiple Data Sources for Combinatorial Marker Discovery: A Study in Tumorigenesis.
Bandyopadhyay, Sanghamitra; Mallik, Saurav
2018-01-01
Identification of combinatorial markers from multiple data sources is a challenging task in bioinformatics. Here, we propose a novel computational framework for identifying significant combinatorial markers ( s) using both gene expression and methylation data. The gene expression and methylation data are integrated into a single continuous data as well as a (post-discretized) boolean data based on their intrinsic (i.e., inverse) relationship. A novel combined score of methylation and expression data (viz., ) is introduced which is computed on the integrated continuous data for identifying initial non-redundant set of genes. Thereafter, (maximal) frequent closed homogeneous genesets are identified using a well-known biclustering algorithm applied on the integrated boolean data of the determined non-redundant set of genes. A novel sample-based weighted support ( ) is then proposed that is consecutively calculated on the integrated boolean data of the determined non-redundant set of genes in order to identify the non-redundant significant genesets. The top few resulting genesets are identified as potential s. Since our proposed method generates a smaller number of significant non-redundant genesets than those by other popular methods, the method is much faster than the others. Application of the proposed technique on an expression and a methylation data for Uterine tumor or Prostate Carcinoma produces a set of significant combination of markers. We expect that such a combination of markers will produce lower false positives than individual markers.
Adaptive coupling optimized spiking coherence and synchronization in Newman-Watts neuronal networks
NASA Astrophysics Data System (ADS)
Gong, Yubing; Xu, Bo; Wu, Ya'nan
2013-09-01
In this paper, we have numerically studied the effect of adaptive coupling on the temporal coherence and synchronization of spiking activity in Newman-Watts Hodgkin-Huxley neuronal networks. It is found that random shortcuts can enhance the spiking synchronization more rapidly when the increment speed of adaptive coupling is increased and can optimize the temporal coherence of spikes only when the increment speed of adaptive coupling is appropriate. It is also found that adaptive coupling strength can enhance the synchronization of spikes and can optimize the temporal coherence of spikes when random shortcuts are appropriate. These results show that adaptive coupling has a big influence on random shortcuts related spiking activity and can enhance and optimize the temporal coherence and synchronization of spiking activity of the network. These findings can help better understand the roles of adaptive coupling for improving the information processing and transmission in neural systems.
Complexity and network dynamics in physiological adaptation: an integrated view.
Baffy, György; Loscalzo, Joseph
2014-05-28
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.
Uncoordinated MAC for Adaptive Multi Beam Directional Networks: Analysis and Evaluation
2016-08-01
control (MAC) policies for emerging systems that are equipped with fully digital antenna arrays which are capable of adaptive multi-beam directional...Adaptive Beam- forming, Multibeam, Directional Networking, Random Access, Smart Antennas I. INTRODUCTION Fully digital beamforming antenna arrays that...are capable of adaptive multi-beam communications are quickly becoming a reality. These antenna arrays allow users to form multiple simultaneous
Neural network with dynamically adaptable neurons
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
1994-01-01
This invention is an adaptive neuron for use in neural network processors. The adaptive neuron participates in the supervised learning phase of operation on a co-equal basis with the synapse matrix elements by adaptively changing its gain in a similar manner to the change of weights in the synapse IO elements. In this manner, training time is decreased by as much as three orders of magnitude.
NASA Astrophysics Data System (ADS)
Donges, Jonathan; Lucht, Wolfgang; Wiedermann, Marc; Heitzig, Jobst; Kurths, Jürgen
2015-04-01
In the anthropocene, the rise of global social and economic networks with ever increasing connectivity and speed of interactions, e.g., the internet or global financial markets, is a key challenge for sustainable development. The spread of opinions, values or technologies on these networks, in conjunction with the coevolution of the network structures themselves, underlies nexuses of current concern such as anthropogenic climate change, biodiversity loss or global land use change. To isolate and quantitatively study the effects and implications of network dynamics for sustainable development, we propose an agent-based model of information flow on adaptive networks between myopic harvesters that exploit private renewable resources. In this conceptual model of a network of socio-ecological systems, information on management practices flows between agents via boundedly rational imitation depending on the state of the resource stocks involved in an interaction. Agents can also adapt the structure of their social network locally by preferentially connecting to culturally similar agents with identical management practices and, at the same time, disconnecting from culturally dissimilar agents. Investigating in detail the statistical mechanics of this model, we find that an increasing rate of information flow through faster imitation dynamics or growing density of network connectivity leads to a marked increase in the likelihood of environmental resource collapse. However, we show that an optimal rate of social network adaptation can mitigate this negative effect without loss of social cohesion through network fragmentation. Our results highlight that seemingly immaterial network dynamics of spreading opinions or values can be of large relevance for the sustainable management of socio-ecological systems and suggest smartly conservative network adaptation as a strategy for mitigating environmental collapse. Hence, facing the great acceleration, these network dynamics should be more routinely incorporated in standard models of economic development or integrated assessment models used for evaluating anthropogenic climate change.
NASA Astrophysics Data System (ADS)
Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei
2018-02-01
This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.
NASA Astrophysics Data System (ADS)
Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng
2017-10-01
So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.
A candidate multimodal functional genetic network for thermal adaptation
Pathak, Rachana; Prajapati, Indira; Bankston, Shannon; Thompson, Aprylle; Usher, Jaytriece; Isokpehi, Raphael D.
2014-01-01
Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other vertebrate ectotherms. PMID:25289178
Epidemic spreading on preferred degree adaptive networks.
Jolad, Shivakumar; Liu, Wenjia; Schmittmann, B; Zia, R K P
2012-01-01
We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree κ. Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erdös-Rényi or scale free networks. By letting κ depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either 'blind' or 'selective'--depending on whether a node adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen preferred network, we find that the infection threshold follows the heterogeneous mean field result λ(c)/μ = <κ>/<κ2> and the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With 'blind' adaptations, although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details of the adaptation. The 'selective' adaptive SIS models are most interesting. Both the threshold and the level of infection changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links (compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.
Adaptive Optimization of Aircraft Engine Performance Using Neural Networks
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Long, Theresa W.
1995-01-01
Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.
Homeostatic Scaling of Excitability in Recurrent Neural Networks
Remme, Michiel W. H.; Wadman, Wytse J.
2012-01-01
Neurons adjust their intrinsic excitability when experiencing a persistent change in synaptic drive. This process can prevent neural activity from moving into either a quiescent state or a saturated state in the face of ongoing plasticity, and is thought to promote stability of the network in which neurons reside. However, most neurons are embedded in recurrent networks, which require a delicate balance between excitation and inhibition to maintain network stability. This balance could be disrupted when neurons independently adjust their intrinsic excitability. Here, we study the functioning of activity-dependent homeostatic scaling of intrinsic excitability (HSE) in a recurrent neural network. Using both simulations of a recurrent network consisting of excitatory and inhibitory neurons that implement HSE, and a mean-field description of adapting excitatory and inhibitory populations, we show that the stability of such adapting networks critically depends on the relationship between the adaptation time scales of both neuron populations. In a stable adapting network, HSE can keep all neurons functioning within their dynamic range, while the network is undergoing several (patho)physiologically relevant types of plasticity, such as persistent changes in external drive, changes in connection strengths, or the loss of inhibitory cells from the network. However, HSE cannot prevent the unstable network dynamics that result when, due to such plasticity, recurrent excitation in the network becomes too strong compared to feedback inhibition. This suggests that keeping a neural network in a stable and functional state requires the coordination of distinct homeostatic mechanisms that operate not only by adjusting neural excitability, but also by controlling network connectivity. PMID:22570604
Loke, Desmond; Skelton, Jonathan M; Chong, Tow-Chong; Elliott, Stephen R
2016-12-21
One of the requirements for achieving faster CMOS electronics is to mitigate the unacceptably large chip areas required to steer heat away from or, more recently, toward the critical nodes of state-of-the-art devices. Thermal-guiding (TG) structures can efficiently direct heat by "meta-materials" engineering; however, some key aspects of the behavior of these systems are not fully understood. Here, we demonstrate control of the thermal-diffusion properties of TG structures by using nanometer-scale, CMOS-integrable, graphene-on-silica stacked materials through finite-element-methods simulations. It has been shown that it is possible to implement novel, controllable, thermally based Boolean-logic and spike-timing-dependent plasticity operations for advanced (neuromorphic) computing applications using such thermal-guide architectures.
Dinh, Jean-Louis; Farcot, Etienne; Hodgman, Charlie
2017-09-01
Much laboratory work has been carried out to determine the gene regulatory network (GRN) that results in plant cells becoming flowers instead of leaves. However, this also involves the spatial distribution of different cell types, and poses the question of whether alternative networks could produce the same set of observed results. This issue has been addressed here through a survey of the published intercellular distribution of expressed regulatory genes and techniques both developed and applied to Boolean network models. This has uncovered a large number of models which are compatible with the currently available data. An exhaustive exploration had some success but proved to be unfeasible due to the massive number of alternative models, so genetic programming algorithms have also been employed. This approach allows exploration on the basis of both data-fitting criteria and parsimony of the regulatory processes, ruling out biologically unrealistic mechanisms. One of the conclusions is that, despite the multiplicity of acceptable models, an overall structure dominates, with differences mostly in alternative fine-grained regulatory interactions. The overall structure confirms the known interactions, including some that were not present in the training set, showing that current data are sufficient to determine the overall structure of the GRN. The model stresses the importance of relative spatial location, through explicit references to this aspect. This approach also provides a quantitative indication of how likely some regulatory interactions might be, and can be applied to the study of other developmental transitions.
NASA Astrophysics Data System (ADS)
Xie, Huijuan; Gong, Yubing; Wang, Baoying
In this paper, we numerically study the effect of channel noise on synchronization transitions induced by time delay in adaptive scale-free Hodgkin-Huxley neuronal networks with spike-timing-dependent plasticity (STDP). It is found that synchronization transitions by time delay vary as channel noise intensity is changed and become most pronounced when channel noise intensity is optimal. This phenomenon depends on STDP and network average degree, and it can be either enhanced or suppressed as network average degree increases depending on channel noise intensity. These results show that there are optimal channel noise and network average degree that can enhance the synchronization transitions by time delay in the adaptive neuronal networks. These findings could be helpful for better understanding of the regulation effect of channel noise on synchronization of neuronal networks. They could find potential implications for information transmission in neural systems.
Algebraic and adaptive learning in neural control systems
NASA Astrophysics Data System (ADS)
Ferrari, Silvia
A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.
Multidimensional adaptive evolution of a feed-forward network and the illusion of compensation
Bullaughey, Kevin
2016-01-01
When multiple substitutions affect a trait in opposing ways, they are often assumed to be compensatory, not only with respect to the trait, but also with respect to fitness. This type of compensatory evolution has been suggested to underlie the evolution of protein structures and interactions, RNA secondary structures, and gene regulatory modules and networks. The possibility for compensatory evolution results from epistasis. Yet if epistasis is widespread, then it is also possible that the opposing substitutions are individually adaptive. I term this possibility an adaptive reversal. Although possible for arbitrary phenotype-fitness mappings, it has not yet been investigated whether such epistasis is prevalent in a biologically-realistic setting. I investigate a particular regulatory circuit, the type I coherent feed-forward loop, which is ubiquitous in natural systems and is accurately described by a simple mathematical model. I show that such reversals are common during adaptive evolution, can result solely from the topology of the fitness landscape, and can occur even when adaptation follows a modest environmental change and the network was well adapted to the original environment. The possibility of adaptive reversals warrants a systems perspective when interpreting substitution patterns in gene regulatory networks. PMID:23289561
Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.
Ladenbauer, Josef; Augustin, Moritz; Shiau, LieJune; Obermayer, Klaus
2012-01-01
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies.
Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons
Ladenbauer, Josef; Augustin, Moritz; Shiau, LieJune; Obermayer, Klaus
2012-01-01
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies. PMID:22511861
NASA Astrophysics Data System (ADS)
Jiang, Shengqin; Lu, Xiaobo; Cai, Guoliang; Cai, Shuiming
2017-12-01
This paper focuses on the cluster synchronisation problem of coupled complex networks with uncertain disturbances under an adaptive fixed-time control strategy. To begin with, complex dynamical networks with community structure which are subject to uncertain disturbances are taken into account. Then, a novel adaptive control strategy combined with fixed-time techniques is proposed to guarantee the nodes in the communities to desired states in a settling time. In addition, the stability of complex error systems is theoretically proved based on Lyapunov stability theorem. At last, two examples are presented to verify the effectiveness of the proposed adaptive fixed-time control.
2013-01-01
Major depressive disorder (MDD) is a multifactorial disorder known to be influenced by both genetic and environmental factors. MDD presents a heritability of 37%, and a genetic contribution has also been observed in studies of family members of individuals with MDD that imply that the probability of suffering the disorder is approximately three times higher if a first-degree family member is affected. Childhood maltreatment and stressful life events (SLEs) have been established as critical environmental factors that profoundly influence the onset of MDD. The serotonin pathway has been a strong candidate for genetic studies, but it only explains a small proportion of the heritability of the disorder, which implies the involvement of other pathways. The serotonin (5-HT) pathway interacts with the stress response pathway in a manner mediated by the hypothalamic-pituitary-adrenal (HPA) axis. To analyze the interaction between the pathways, we propose the use of a synchronous Boolean network (SBN) approximation. The principal aim of this work was to model the interaction between these pathways, taking into consideration the presence of selective serotonin reuptake inhibitors (SSRIs), in order to observe how the pathways interact and to examine if the system is stable. Additionally, we wanted to study which genes or metabolites have the greatest impact on model stability when knocked out in silico. We observed that the biological model generated predicts steady states (attractors) for each of the different runs performed, thereby proving that the system is stable. These attractors changed in shape, especially when anti-depressive drugs were also included in the simulation. This work also predicted that the genes with the greatest impact on model stability were those involved in the neurotrophin pathway, such as CREB, BDNF (which has been associated with major depressive disorder in a variety of studies) and TRkB, followed by genes and metabolites related to 5-HT synthesis. PMID:24093582
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
Evolutionary transitions in controls reconcile adaptation with continuity of evolution.
Badyaev, Alexander V
2018-05-19
Evolution proceeds by accumulating functional solutions, necessarily forming an uninterrupted lineage from past solutions of ancestors to the current design of extant forms. At the population level, this process requires an organismal architecture in which the maintenance of local adaptation does not preclude the ability to innovate in the same traits and their continuous evolution. Representing complex traits as networks enables us to visualize a fundamental principle that resolves tension between adaptation and continuous evolution: phenotypic states encompassing adaptations traverse the continuous multi-layered landscape of past physical, developmental and functional associations among traits. The key concept that captures such traversing is network controllability - the ability to move a network from one state into another while maintaining its functionality (reflecting evolvability) and to efficiently propagate information or products through the network within a phenotypic state (maintaining its robustness). Here I suggest that transitions in network controllability - specifically in the topology of controls - help to explain how robustness and evolvability are balanced during evolution. I will focus on evolutionary transitions in degeneracy of metabolic networks - a ubiquitous property of phenotypic robustness where distinct pathways achieve the same end product - to suggest that associated changes in network controls is a common rule underlying phenomena as distinct as phenotypic plasticity, organismal accommodation of novelties, genetic assimilation, and macroevolutionary diversification. Capitalizing on well understood principles by which network structure translates into function of control nodes, I show that accumulating redundancy in one type of network controls inevitably leads to the emergence of another type of controls, forming evolutionary cycles of network controllability that, ultimately, reconcile local adaptation with continuity of evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Methods and means used in programming intelligent searches of technical documents
NASA Technical Reports Server (NTRS)
Gross, David L.
1993-01-01
In order to meet the data research requirements of the Safety, Reliability & Quality Assurance activities at Kennedy Space Center (KSC), a new computer search method for technical data documents was developed. By their very nature, technical documents are partially encrypted because of the author's use of acronyms, abbreviations, and shortcut notations. This problem of computerized searching is compounded at KSC by the volume of documentation that is produced during normal Space Shuttle operations. The Centralized Document Database (CDD) is designed to solve this problem. It provides a common interface to an unlimited number of files of various sizes, with the capability to perform any diversified types and levels of data searches. The heart of the CDD is the nature and capability of its search algorithms. The most complex form of search that the program uses is with the use of a domain-specific database of acronyms, abbreviations, synonyms, and word frequency tables. This database, along with basic sentence parsing, is used to convert a request for information into a relational network. This network is used as a filter on the original document file to determine the most likely locations for the data requested. This type of search will locate information that traditional techniques, (i.e., Boolean structured key-word searching), would not find.
Fertig, Elana J; Danilova, Ludmila V; Favorov, Alexander V; Ochs, Michael F
2011-01-01
Modeling of signal driven transcriptional reprogramming is critical for understanding of organism development, human disease, and cell biology. Many current modeling techniques discount key features of the biological sub-systems when modeling multiscale, organism-level processes. We present a mechanistic hybrid model, GESSA, which integrates a novel pooled probabilistic Boolean network model of cell signaling and a stochastic simulation of transcription and translation responding to a diffusion model of extracellular signals. We apply the model to simulate the well studied cell fate decision process of the vulval precursor cells (VPCs) in C. elegans, using experimentally derived rate constants wherever possible and shared parameters to avoid overfitting. We demonstrate that GESSA recovers (1) the effects of varying scaffold protein concentration on signal strength, (2) amplification of signals in expression, (3) the relative external ligand concentration in a known geometry, and (4) feedback in biochemical networks. We demonstrate that setting model parameters based on wild-type and LIN-12 loss-of-function mutants in C. elegans leads to correct prediction of a wide variety of mutants including partial penetrance of phenotypes. Moreover, the model is relatively insensitive to parameters, retaining the wild-type phenotype for a wide range of cell signaling rate parameters.
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
Wu, Chia-Chou; Chen, Bor-Sen
2016-01-01
Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host–pathogen dynamic interaction networks. The consideration of host–pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host–pathogen molecular interaction networks, and consequent inferences of the host–pathogen relationship could be translated into biomedical applications. PMID:26881892
Wu, Chia-Chou; Chen, Bor-Sen
2016-01-01
Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.
Analysis of adaptive algorithms for an integrated communication network
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Barr, Matthew; Chong-Kwon, Kim
1985-01-01
Techniques were examined that trade communication bandwidth for decreased transmission delays. When the network is lightly used, these schemes attempt to use additional network resources to decrease communication delays. As the network utilization rises, the schemes degrade gracefully, still providing service but with minimal use of the network. Because the schemes use a combination of circuit and packet switching, they should respond to variations in the types and amounts of network traffic. Also, a combination of circuit and packet switching to support the widely varying traffic demands imposed on an integrated network was investigated. The packet switched component is best suited to bursty traffic where some delays in delivery are acceptable. The circuit switched component is reserved for traffic that must meet real time constraints. Selected packet routing algorithms that might be used in an integrated network were simulated. An integrated traffic places widely varying workload demands on a network. Adaptive algorithms were identified, ones that respond to both the transient and evolutionary changes that arise in integrated networks. A new algorithm was developed, hybrid weighted routing, that adapts to workload changes.
Control of cancer-related signal transduction networks
NASA Astrophysics Data System (ADS)
Albert, Reka
2013-03-01
Intra-cellular signaling networks are crucial to the maintenance of cellular homeostasis and for cell behavior (growth, survival, apoptosis, movement). Mutations or alterations in the expression of elements of cellular signaling networks can lead to incorrect behavioral decisions that could result in tumor development and/or the promotion of cell migration and metastasis. Thus, mitigation of the cascading effects of such dysregulations is an important control objective. My group at Penn State is collaborating with wet-bench biologists to develop and validate predictive models of various biological systems. Over the years we found that discrete dynamic modeling is very useful in molding qualitative interaction information into a predictive model. We recently demonstrated the effectiveness of network-based targeted manipulations on mitigating the disease T cell large granular lymphocyte (T-LGL) leukemia. The root of this disease is the abnormal survival of T cells which, after successfully fighting an infection, should undergo programmed cell death. We synthesized the relevant network of within-T-cell interactions from the literature, integrated it with qualitative knowledge of the dysregulated (abnormal) states of several network components, and formulated a Boolean dynamic model. The model indicated that the system possesses a steady state corresponding to the normal cell death state and a T-LGL steady state corresponding to the abnormal survival state. For each node, we evaluated the restorative manipulation consisting of maintaining the node in the state that is the opposite of its T-LGL state, e.g. knocking it out if it is overexpressed in the T-LGL state. We found that such control of any of 15 nodes led to the disappearance of the T-LGL steady state, leaving cell death as the only potential outcome from any initial condition. In four additional cases the probability of reaching the T-LGL state decreased dramatically, thus these nodes are also possible control targets. Our collaborators validated two of these predicted control mechanisms experimentally. Our work suggests that external control of a single node can be a fruitful therapeutic strategy.
NASA Technical Reports Server (NTRS)
Burken, John J.
2005-01-01
This viewgraph presentation covers the following topics: 1) Brief explanation of Generation II Flight Program; 2) Motivation for Neural Network Adaptive Systems; 3) Past/ Current/ Future IFCS programs; 4) Dynamic Inverse Controller with Explicit Model; 5) Types of Neural Networks Investigated; and 6) Brief example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn
2014-09-01
The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient formore » the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.« less
Neural network-based model reference adaptive control system.
Patino, H D; Liu, D
2000-01-01
In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.
Extinction Dynamics and Control in Adaptive Networks
NASA Astrophysics Data System (ADS)
Schwartz, Ira; Shaw, Leah; Hindes, Jason
Disease control is of paramount importance in public health. Moreover, models of disease spread are an important component in implementing effective vaccination and treatment campaigns. However, human behavior in response to an outbreak has only recently been included in epidemic models on networks. Here we develop the mathematical machinery to describe the dynamics of extinction in finite populations that include human adaptive behavior. The formalism enables us to compute the optimal, fluctuation-induced path to extinction, and predict the average extinction time in adaptive networks as a function of the adaptation rate. We find that both observables have several unique scalings depending on the relative speed of infection and adaptivity. Finally, we discuss how the theory can be used to design optimal control programs in general networks, by coupling the effective force of noise with treatment and human behavior. Research supported by U.S. Naval Research Laboratory funding (Grant No. N0001414WX00023) and the Office of Naval Research (Grant No. N0001414WX20610).
Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template
Bleris, Leonidas; Xie, Zhen; Glass, David; Adadey, Asa; Sontag, Eduardo; Benenson, Yaakov
2011-01-01
Natural and synthetic biological networks must function reliably in the face of fluctuating stoichiometry of their molecular components. These fluctuations are caused in part by changes in relative expression efficiency and the DNA template amount of the network-coding genes. Gene product levels could potentially be decoupled from these changes via built-in adaptation mechanisms, thereby boosting network reliability. Here, we show that a mechanism based on an incoherent feedforward motif enables adaptive gene expression in mammalian cells. We modeled, synthesized, and tested transcriptional and post-transcriptional incoherent loops and found that in all cases the gene product adapts to changes in DNA template abundance. We also observed that the post-transcriptional form results in superior adaptation behavior, higher absolute expression levels, and lower intrinsic fluctuations. Our results support a previously hypothesized endogenous role in gene dosage compensation for such motifs and suggest that their incorporation in synthetic networks will improve their robustness and reliability. PMID:21811230
NASA Astrophysics Data System (ADS)
Ogasawara, Takashi; Tanimoto, Jun; Fukuda, Eriko; Hagishima, Aya; Ikegaya, Naoki
2014-12-01
In 2 × 2 prisoner's dilemma (PD) games, network reciprocity is one mechanism for adding social viscosity, leading to a cooperative equilibrium. In this paper, we explain how gaming neighborhoods and strategy-adaptation neighborhoods affect network reciprocity independently in spatial PD games. We explore an appropriate range of strategy adaptation neighborhoods as opposed to the conventional method of making the gaming and strategy adaptation neighborhoods coincide to enhance the level of cooperation. In cases of expanding gaming neighborhoods, network reciprocity falls to a low level relative to the conventional setting. In the discussion below, which is based on the results of our simulation, we explore how these enhancements come about. Essentially, varying the range of the neighborhoods influences how cooperative clusters form and expand in the evolutionary process.
Macroscopic description of complex adaptive networks coevolving with dynamic node states
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
Macroscopic description of complex adaptive networks coevolving with dynamic node states.
Wiedermann, Marc; Donges, Jonathan F; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen
2015-05-01
In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.
NASA Astrophysics Data System (ADS)
Ling, F. H.; Yasuhara, K.; Tamura, M.; Tabayashi, Y.; Mimura, N.
2011-12-01
As the international climate regime continues to evolve, adaptation has emerged as a key component of responding to climate change. Due to limited scientific, financial, and institutional capacities, as well as perceived competition with multiple priorities, strategies for adaptive measures are not being implemented at the pace needed to address current and future climate risks. Adaptation networks, both global and in the Asia-Pacific region, have formed to overcome the lack of sufficient communication and collaboration among different stakeholders and domains of expertise. In this presentation, we discuss various efforts at Ibaraki University in Japan to integrate technical and social aspects of adaptation into a multidisciplinary effort, to foster synergies among various networks, to clarify the roles of developed and developing countries, and to develop a standard for assessing vulnerability and adaptability across various geographical contexts.
Connection adaption for control of networked mobile chaotic agents.
Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Xiao, Gaoxi; Boccaletti, S
2017-11-22
In this paper, we propose a strategy for the control of mobile chaotic oscillators by adaptively rewiring connections between nearby agents with local information. In contrast to the dominant adaptive control schemes where coupling strength is adjusted continuously according to the states of the oscillators, our method does not request adaption of coupling strength. As the resulting interaction structure generated by this proposed strategy is strongly related to unidirectional chains, by investigating synchronization property of unidirectional chains, we reveal that there exists a certain coupling range in which the agents could be controlled regardless of the length of the chain. This feature enables the adaptive strategy to control the mobile oscillators regardless of their moving speed. Compared with existing adaptive control strategies for networked mobile agents, our proposed strategy is simpler for implementation where the resulting interaction networks are kept unweighted at all time.
Kenney, Michael; Horgan, John; Horne, Cale; Vining, Peter; Carley, Kathleen M; Bigrigg, Michael W; Bloom, Mia; Braddock, Kurt
2013-09-01
Social networks are said to facilitate learning and adaptation by providing the connections through which network nodes (or agents) share information and experience. Yet, our understanding of how this process unfolds in real-world networks remains underdeveloped. This paper explores this gap through a case study of al-Muhajiroun, an activist network that continues to call for the establishment of an Islamic state in Britain despite being formally outlawed by British authorities. Drawing on organisation theory and social network analysis, we formulate three hypotheses regarding the learning capacity and social network properties of al-Muhajiroun (AM) and its successor groups. We then test these hypotheses using mixed methods. Our methods combine quantitative analysis of three agent-based networks in AM measured for structural properties that facilitate learning, including connectedness, betweenness centrality and eigenvector centrality, with qualitative analysis of interviews with AM activists focusing organisational adaptation and learning. The results of these analyses confirm that al-Muhajiroun activists respond to government pressure by changing their operations, including creating new platforms under different names and adjusting leadership roles among movement veterans to accommodate their spiritual leader's unwelcome exodus to Lebanon. Simple as they are effective, these adaptations have allowed al-Muhajiroun and its successor groups to continue their activism in an increasingly hostile environment. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Implementation of an Adaptive Learning System Using a Bayesian Network
ERIC Educational Resources Information Center
Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki
2015-01-01
An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…
Symbolic Computation Using Cellular Automata-Based Hyperdimensional Computing.
Yilmaz, Ozgur
2015-12-01
This letter introduces a novel framework of reservoir computing that is capable of both connectionist machine intelligence and symbolic computation. A cellular automaton is used as the reservoir of dynamical systems. Input is randomly projected onto the initial conditions of automaton cells, and nonlinear computation is performed on the input via application of a rule in the automaton for a period of time. The evolution of the automaton creates a space-time volume of the automaton state space, and it is used as the reservoir. The proposed framework is shown to be capable of long-term memory, and it requires orders of magnitude less computation compared to echo state networks. As the focus of the letter, we suggest that binary reservoir feature vectors can be combined using Boolean operations as in hyperdimensional computing, paving a direct way for concept building and symbolic processing. To demonstrate the capability of the proposed system, we make analogies directly on image data by asking, What is the automobile of air?
Model Checking of a Diabetes-Cancer Model
NASA Astrophysics Data System (ADS)
Gong, Haijun; Zuliani, Paolo; Clarke, Edmund M.
2011-06-01
Accumulating evidence suggests that cancer incidence might be associated with diabetes mellitus, especially Type II diabetes which is characterized by hyperinsulinaemia, hyperglycaemia, obesity, and overexpression of multiple WNT pathway components. These diabetes risk factors can activate a number of signaling pathways that are important in the development of different cancers. To systematically understand the signaling components that link diabetes and cancer risk, we have constructed a single-cell, Boolean network model by integrating the signaling pathways that are influenced by these risk factors to study insulin resistance, cancer cell proliferation and apoptosis. Then, we introduce and apply the Symbolic Model Verifier (SMV), a formal verification tool, to qualitatively study some temporal logic properties of our diabetes-cancer model. The verification results show that the diabetes risk factors might not increase cancer risk in normal cells, but they will promote cell proliferation if the cell is in a precancerous or cancerous stage characterized by losses of the tumor-suppressor proteins ARF and INK4a.
Jafari, Mohieddin; Ansari-Pour, Naser; Azimzadeh, Sadegh; Mirzaie, Mehdi
It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.
Zhang, Fan; Liu, Runsheng; Zheng, Jie
2016-12-23
Linking computational models of signaling pathways to predicted cellular responses such as gene expression regulation is a major challenge in computational systems biology. In this work, we present Sig2GRN, a Cytoscape plugin that is able to simulate time-course gene expression data given the user-defined external stimuli to the signaling pathways. A generalized logical model is used in modeling the upstream signaling pathways. Then a Boolean model and a thermodynamics-based model are employed to predict the downstream changes in gene expression based on the simulated dynamics of transcription factors in signaling pathways. Our empirical case studies show that the simulation of Sig2GRN can predict changes in gene expression patterns induced by DNA damage signals and drug treatments. As a software tool for modeling cellular dynamics, Sig2GRN can facilitate studies in systems biology by hypotheses generation and wet-lab experimental design. http://histone.scse.ntu.edu.sg/Sig2GRN/.